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This is an Advanced Algorithms class. We will care about:

• Time complexity (and also space complexity) of our algorithms as a

function of n, the input size.

• We will pay close attention to the asymptotics. We distinguish between

O(n) and O(n2)
• Performance Guarantees. We only care about an algorithm if we can

prove mathematically that it “works well”.

• Possible definitions of “works well”: solves the problem always or with

high probability, its time complexity is below a certain bound always, or

with high probability.
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• Performance Guarantees. We only care about an algorithm if we can

prove mathematically that it “works well”.
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high probability, its time complexity is below a certain bound always, or

with high probability.

• With high probability (whp) is a precise mathematical statement →
with probability ≥ 1− o(1).
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This is an Advanced Algorithms class. We will care about:

• Time complexity (and also space complexity) of our algorithms as a

function of n, the input size.

• We will pay close attention to the asymptotics. We distinguish between

O(n) and O(n2)
• Performance Guarantees. We only care about an algorithm if we can

prove mathematically that it “works well”.

• Possible definitions of “works well”: solves the problem always or with

high probability, its time complexity is below a certain bound always, or

with high probability.

Topics that will be covered (this may be updated during the semester):

• Randomized Algorithms

• Dynamic Programming (vs. Recursion and Divide-and-Conquer)

• (*) Sub-linear Algorithms – Property Testing

• (*) On-line Algorithms
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• Course taught in English.

• Web page:

https://www.lamsade.dauphine.fr/˜mlampis/Algo/

• Regularly check web page (and Dauphine planning) for updates!

• Grading:

• 30% Homework assignments (CC)

• 70% Final exam

• Course organization:

• 1h30 of lecture

• 1h30 of exercises (TD)

• Homeworks will be of same spirit as TD.

• Reading material (including these slides) found on the web page.

• If in doubt, email me!

https://www.lamsade.dauphine.fr/~mlampis/Algo/
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produce a random bit (say, by flipping a coin) and use this bit in its

calculations.
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• A randomized algorithm is an algorithm which may at any step

produce a random bit (say, by flipping a coin) and use this bit in its

calculations.

• Example: Polling for elections. Given n voters, the algortihm

selects k << n voters at random and uses their preferences to

predict the outcome of the election.
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• A randomized algorithm is an algorithm which may at any step

produce a random bit (say, by flipping a coin) and use this bit in its

calculations.

Main applications/advantages of randomized algorithms:

• Simpler to describe

• Faster to run (if we have access to random bits!)

• Performance guarantee depends on our own random bits, applies

to all inputs

On a basic level, randomized algorithms make it easy to “find hay in a

haystack”. Same problem not obvious for deterministic algorithms

(think serial search).

Disadvantages:

• Math is usually harder!

• Producing random bits is not obvious.



Randomized Algorithms – This course
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• We want to prove theorems of the form “With high probability,

(randomized) algorithm A does X”

• Implied → for any input.

• We assume that random bits are given for free.

• Not necessarily realistic (pseudo-random bit generators are hard!)

• Type of performance guarantee we want:

• Whp algorithm A is “fast”

• Whp algorithm A is correct.

• If not, what kind of error could we have?

• Algorithm A is expected to be fast/good/correct.

• Will discuss how to transform expectation guarantees to whp

guarantees.
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• Probabilities are also important for “normal” (deterministic) algorithms.

• Example: algorithm A works great “most of the time”.

• Meaning what?

• One possible interpretation:

• Define a natural probability distribution over inputs (uniform?)

• Prove that if input follows this distribution, then algorithm A is

“good”.

• → algorithm A is good with high probability!

Example Theorem:

• (Deterministic) Quicksort takes time O(n logn) on average.
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• In this course we are less interested in average-case guarantees, and

more in worst-case (i.e. all cases) guarantees.

• Problems with average-case guarantees:

• What is the average case? Uniform? Sparse? Gaussian?

• Hard to analyze.

• Still may fail badly sometimes (though not often).

• We prefer theorems which prove a statement for all inputs, and may

rely on probabilities on bits picked by the algorithm.

• Think that the input is selected by an adversary, but the random bits by

the referee.

Example Theorem:

• Randomized Quicksort takes O(n logn) time on average.
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• In this course we are less interested in average-case guarantees, and

more in worst-case (i.e. all cases) guarantees.

• Problems with average-case guarantees:

• What is the average case? Uniform? Sparse? Gaussian?

• Hard to analyze.

• Still may fail badly sometimes (though not often).

• We prefer theorems which prove a statement for all inputs, and may

rely on probabilities on bits picked by the algorithm.

• Think that the input is selected by an adversary, but the random bits by

the referee.

Example Theorem:

• Randomized Quicksort takes O(n logn) time on average.

• Can you tell the difference with the previous slide? Which is better?
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Problem:

• Input: an array of n distinct integers.

• Operations: Compare, Swap, in unit time.

• Output: the same numbers sorted in increasing order.

Quicksort

• If n ≤ 1 Done!

• Partition the array into L = {x | x < A[1]}, R = {x | x > A[1]}

• We are using A[1] as the pivot

• Output QSort(L), A[1], QSort(R).
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Problem:

• Input: an array of n distinct integers.

• Operations: Compare, Swap, in unit time.

• Output: the same numbers sorted in increasing order.

Quicksort

• If n ≤ 1 Done!

• Partition the array into L = {x | x < A[1]}, R = {x | x > A[1]}

• We are using A[1] as the pivot

• Output QSort(L), A[1], QSort(R).
• Correctness?

• Worst-case complexity: O(n2) operations. (Why?)
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Time complexity on n elements:

T (n) ≤ T (q) + T (n− q − 1) +O(n)

where q = |L|.



Theorem: (Det.) Quicksort on average

Algorithms M2 IF 11 / 27

Time complexity on n elements:

T (n) ≤ T (q) + T (n− q − 1) +O(n)

where q = |L|.

This gives

• T (n) = O(n logn) if q = n/2 always (unlikely!)

• T (n) = O(n logn) if q ∈ [n/4, 3n/4] always (more likely)

• T (n) = O(n2) if q = O(1). (Tight example?)
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Time complexity on n elements:

T (n) ≤ T (q) + T (n− q − 1) +O(n)

where q = |L|.

This gives

• T (n) = O(n logn) if q = n/2 always (unlikely!)

• T (n) = O(n logn) if q ∈ [n/4, 3n/4] always (more likely)

• T (n) = O(n2) if q = O(1). (Tight example?)

Would like to prove:

• If A is in a (uniformly) random permutation, then the expected time

complexity of Quicksort is O(n logn).
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• T (n) now denotes expected number of steps. (We are using linearity

of expectations.)

• Assume that T (n) is increasing, and in fact super-linear (Ω(n logn)).
• Say A[1] is a good pivot if q ∈ [n/4, 3n/4].

Then:

T (n) ≤
1

2
(T (qgood) + T (n− qgood)) +

1

2
T (n) + c · n

T (n) ≤ T (3n/4) + T (n/4) + 2c · n

T (n) ≤ O(n logn)
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• T (n) now denotes expected number of steps. (We are using linearity

of expectations.)

• Assume that T (n) is increasing, and in fact super-linear (Ω(n logn)).
• Say A[1] is a good pivot if q ∈ [n/4, 3n/4].

Then:

T (n) ≤
1

2
(T (qgood) + T (n− qgood)) +

1

2
T (n) + c · n

T (n) ≤ T (3n/4) + T (n/4) + 2c · n

T (n) ≤ O(n logn)

• We use the fact that T (n) is increasing (so in case of bad pivot we

assume we spend another T (n) steps).

• T (n) is super-linear → T (q) + T (n− q) ≤ T (n/4) + T (3n/4).
• Final recurrence can be solved with standard techniques (or verified

with induction).
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Alternative algorithm:

1. Pick a random element x of A as pivot.

2. If x is a good pivot, partition, recurse.

3. If not, go back to step 1.
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Alternative algorithm:

1. Pick a random element x of A as pivot.

2. If x is a good pivot, partition, recurse.

3. If not, go back to step 1.

Notes:

• Can check if x is a good pivot in O(n) time. (How?)

• Probability that x is a good pivot is 1
2 .

• → Expected number of times going back to 1 is 2.
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Alternative algorithm:

1. Pick a random element x of A as pivot.

2. If x is a good pivot, partition, recurse.

3. If not, go back to step 1.

Notes:

• Can check if x is a good pivot in O(n) time. (How?)

• Probability that x is a good pivot is 1
2 .

• → Expected number of times going back to 1 is 2.

T (n) ≤ T (n/4) + T (3n/4) + 2 · c · n

T (n) ≤ O(n logn)
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Important lessons to remember.

• “Alg A is good on most inputs” is NOT THE SAME as “Alg A is good

most of the time”

• For the former we need input to be random.

• For the latter we need random bits to be random. Much more

realistic.

• Example: for Quicksort, second algorithm is provably expected

O(n log n), no matter the input.

• Only proved expected performance (because it’s easier). How to get

“with high probability” guarantee?
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Important lessons to remember.

• “Alg A is good on most inputs” is NOT THE SAME as “Alg A is good

most of the time”

• For the former we need input to be random.

• For the latter we need random bits to be random. Much more

realistic.

• Example: for Quicksort, second algorithm is provably expected

O(n log n), no matter the input.

• Only proved expected performance (because it’s easier). How to get

“with high probability” guarantee?

• Here, use Markov’s inequality. Prob[X > aE[X]] ≤ 1
a .
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Important lessons to remember.

• “Alg A is good on most inputs” is NOT THE SAME as “Alg A is good

most of the time”

• For the former we need input to be random.

• For the latter we need random bits to be random. Much more

realistic.

• Example: for Quicksort, second algorithm is provably expected

O(n log n), no matter the input.

• Only proved expected performance (because it’s easier). How to get

“with high probability” guarantee?

• This algorithm ALWAYS produces the correct answer.

• → Las Vegas algorithm



Testing Matrix Multiplication
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Problem:

• Input: Three n× n matrices A,B,C.

• Operations: Addition, multiplication over scalars.

• Question: Is it true that AB = C?

Example:
[

1 2
3 4

]

·

[

3 4
1 2

]

?
=

[

5 8
13 20

]

• Important note: we do not need to calculate C from scratch! It is given

to us and we want to verify if it is correct (or find an error).
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Problem:

• Input: Three n× n matrices A,B,C.

• Operations: Addition, multiplication over scalars.

• Question: Is it true that AB = C?

Example:
[

1 2
3 4

]

·

[

3 4
1 2

]

?
=

[

5 8
13 20

]

• Important note: we do not need to calculate C from scratch! It is given

to us and we want to verify if it is correct (or find an error).

• Can we do this in linear time?

• Linear in what? Here, the input has size Θ(n2) (if we assume

numbers take constant space). Hence, we are looking for an O(n2)
algorithm.
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Naive algorithm:

• Calculate AB from scratch.

• Compare each element of AB with the corresponding element of C.

What is the complexity of this algorithm?
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Naive algorithm:

• Calculate AB from scratch.

• Compare each element of AB with the corresponding element of C.

What is the complexity of this algorithm?

• Step 1 takes time:

• O(n3) if done trivially.

• About O(n2.3) if we use state of the art MM algorithms.

• HUGE open problem if it can be done in O(n2).

• Step 2 takes O(n2) and this is obviously tight (why?)

• → algorithm runs in more than linear time.



Testing Matrix Multiplication – Algorithm 2
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Let’s use randomness!

• Pick a random element C[i, j]
• Calculate the product of row i of A with column j of B.

• If not equal, we have found an error.

• Otherwise, accept as “probably equal”.

This algorithm has

• One-sided error (can only be wrong if it accepts that AB = C). :-)

• Monte Carlo algorithm

• Running time O(n) (sub-linear!) :-)

• Probability of success?
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Let’s use randomness!

• Pick a random element C[i, j]
• Calculate the product of row i of A with column j of B.

• If not equal, we have found an error.

• Otherwise, accept as “probably equal”.

This algorithm has

• One-sided error (can only be wrong if it accepts that AB = C). :-)

• Monte Carlo algorithm

• Running time O(n) (sub-linear!) :-)

• Probability of success?

• Suppose C is incorrect in just 1 element.

• With probability 1− 1
n2 algorithm picks another element → error. :-(

• Even if we repeat n times prob of error (1− 1
n2 )

n → 1. :-(
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Let’s use randomness in a more clever way!

• Pick d to be an n× 1 vector.

• Each element is {0, 1} independently with probability 1/2.

• Check if ABd = Cd.

• If no, we have a proof that AB 6= C.

• If yes, say “probably equal”.
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Let’s use randomness in a more clever way!

• Pick d to be an n× 1 vector.

• Each element is {0, 1} independently with probability 1/2.

• Check if ABd = Cd.

• If no, we have a proof that AB 6= C.

• If yes, say “probably equal”.

Analysis:

• Calculating Bd takes O(n2) (trivial). Same for Cd.

• Given Bd, calculating A(Bd) = ABd takes O(n2).
• Checking if ABd = Cd takes O(n2). Total time = O(n2).
• Probability of success?
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Let D = AB − C. If D 6= 0 then what is the probability that Dd = 0?

• Note: if Dd = 0 the algorithm is wrong! We want this probability to be

low.

• Suppose that D 6= 0, so D contains a non-zero element. Without loss

of generality D[1, 1] 6= 0.

• If Dd = 0 then

D[1, 1]d[1] +

n
∑

j=2

D[1, j]d[j] = 0 ⇒

d[1] = −

∑n
j=2D[1, j]d[j]

D[1, 1]

• Note: we have used that D[1, 1] 6= 0
• Prob that d[1] takes the rhs value is at most 1/2.
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Important lessons to remember.

• Randomized algorithms are great for finding hay in a haystack.

• If we want to find a needle in a haystack (here: one out of n2 elements)

we need to do some work to “spread it around” so that it’s easy to find.

• Probability of success is 1
2 . Can be improved:

• Repeat the algorithm k times, independently. Because one-sided

error, error probability becomes 2−k.

• Important here: randomness is over our own bits!

• Alternative: set d a random vector over {0, . . . , k}.

(Problem-specific solution).
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Problem:

• Input: Two polynomials on one variable x
• Operations: Normal arithmetic

• Output: Are the two polynomials equal for all x?

Examples:

(x+ 1)(x+ 2)
?
= x2 + 2x+ 1



Testing Polynomial Identities

Algorithms M2 IF 21 / 27

Problem:

• Input: Two polynomials on one variable x
• Operations: Normal arithmetic

• Output: Are the two polynomials equal for all x?

Examples:

(x+ 1)(x+ 2)
?
= x2 + 2x+ 1

(x+ 1)(x+ 2)(x− 1)(x− 2)
?
= (x2 − 1)(x2 − 4)
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Problem:

• Input: Two polynomials on one variable x
• Operations: Normal arithmetic

• Output: Are the two polynomials equal for all x?

Examples:

(x+ 1)(x+ 2)
?
= x2 + 2x+ 1

(x+ 1)(x+ 2)(x− 1)(x− 2)
?
= (x2 − 1)(x2 − 4)

(x3 + 9x2 + 23x+ 15)(x3 + 12x2 + 44x+ 48)
?
=

(x2 + 3x+ 2)(x2 + 7x+ 1)(x2 + 11x+ 30)



Testing Polynomial Identities – Algorithm 1

Algorithms M2 IF 22 / 27

• Every polynomial has a canonical form as a sum of monomials

anx
n + an−1x

n−1 + . . .+ a1x+ a0

• Could try to calculate canonical forms for both polynomials, compare.
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• Every polynomial has a canonical form as a sum of monomials

anx
n + an−1x

n−1 + . . .+ a1x+ a0

• Could try to calculate canonical forms for both polynomials, compare.

• Problem: this form may be exponentially longer than the original input!!

(

(

(x+ 1)2 + 1
)2

+ 1
)2

+ 1 . . .

• Degree of this polynomial is 2n

• However, we can use the fact that evaluating a polynomial on a given

value of x is easy.



Testing Polynomial Identities – Algorithm 2
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Recall MM verification algorithm:

• We prove that two objects are different by showing that they interact in

different ways with a random object.
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• Given P1(x), P2(x), select a random value x0.
• If P1(x0) 6= P2(x0), reject.

• Otherwise, accept as “probably equal”.
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• Otherwise, accept as “probably equal”.

Problem: even if P1(x) 6= P2(x), they could still agree on x0!

• If P1(x) 6= P2(x), in how many values could P1, P2 agree?
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Recall MM verification algorithm:

• We prove that two objects are different by showing that they interact in

different ways with a random object.

• Given P1(x), P2(x), select a random value x0.
• If P1(x0) 6= P2(x0), reject.

• Otherwise, accept as “probably equal”.

Problem: even if P1(x) 6= P2(x), they could still agree on x0!

• If P1(x) 6= P2(x), in how many values could P1, P2 agree?

• Let Q(x) = P1(x)−P2(x). The degree of Q is at most the degree of

P1, P2, say n.

• ⇒ Q has at most n roots.
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• Calculate the degrees of the two polynomials n.

• Pick a random number x0 in {0, . . . , 2n}.

• Check if P1(x0) = P2(x0).

• If no, reject.

• If yes, say “probably equal”

Analysis:

• Probability of success at least 1/2.

• Can be increased by repeating the algorithm.

• Derandomizing this algorithm is a major open research problem.



Min-Cut
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Problem:

• Input: Graph G = (V,E)
• Output: A minimum cut of G

• A cut is a set of edges whose removal creates at least two connected

components.

• Problem solvable in polynomial time using max flow techniques.

• Goal: simple polynomial-time (randomized) algorithm.

• Note: linear-time probably very hard to do!
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Algorithm for Min-Cut on multi-graphs (allow parallel edges).

1. If n = 2 output the trivial cut.

2. Otherwise, pick a random edge (u, v) ∈ E.

3. Contract (u, v) (i.e. merge u, v).

4. Go back to step 1.
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Algorithm for Min-Cut on multi-graphs (allow parallel edges).

1. If n = 2 output the trivial cut.

2. Otherwise, pick a random edge (u, v) ∈ E.

3. Contract (u, v) (i.e. merge u, v).

4. Go back to step 1.

A possible input
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4. Go back to step 1.

A bad solution
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1. If n = 2 output the trivial cut.

2. Otherwise, pick a random edge (u, v) ∈ E.

3. Contract (u, v) (i.e. merge u, v).

4. Go back to step 1.

A “good” run of the algorithm:

We never contract an edge of the min

cut.

Solution size = 2
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A “bad” run of the algorithm:

We mistakenly contract an edge of

the min cut.

Solution size ≥ 3



Min-Cut Algorithm

Algorithms M2 IF 26 / 27

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

1. If n = 2 output the trivial cut.

2. Otherwise, pick a random edge (u, v) ∈ E.

3. Contract (u, v) (i.e. merge u, v).
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Theorem: Algorithm of previous slide finds min cut with probability at least
1
n2 .

• Suppose min cut size is k. Consider a specific min cut C.

• ⇒ min degree is ≥ k. Therefore, |E| ≥ kn/2.

• Probability that algorithm avoids cut at first iteration:

≥ 1− k
kn/2 = 1− 2

n = n−2
n .
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• Can repeat many (n2) times to get better (Ω(1)) probability.

• Better idea to run the algorithm until graph small, then use some other

algorithm (notice probability of success keeps falling).
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