Algorithms M2 IFIntroduction to Randomized Algorithms

Michael Lampis

Fall 2019

This is an **Advanced Algorithms** class. We will care about:

- • Time complexity (and also space complexity) of our algorithms as ^afunction of n , the input size.
- \bullet We will pay close attention to the asymptotics. We distinguish between $O(n)$ and $O(n^2)$
- \bullet Performance Guarantees. We only care about an algorithm if we can**prove mathematically** that it "works well".
- \bullet Possible definitions of "works well": solves the problem always or with high probability, its time complexity is below ^a certain bound always, orwith high probability.

This is an **Advanced Algorithms** class. We will care about:

- • Time complexity (and also space complexity) of our algorithms as ^afunction of n , the input size.
- \bullet We will pay close attention to the asymptotics. We distinguish between $O(n)$ and $O(n^2)$
- \bullet Performance Guarantees. We only care about an algorithm if we can**prove mathematically** that it "works well".
- \bullet Possible definitions of "works well": solves the problem always or with high probability, its time complexity is below ^a certain bound always, orwith high probability.
	- \bullet With high probability (whp) is a precise mathematical statement \rightarrow with probability $\geq 1-o(1)$.

This is an **Advanced Algorithms** class. We will care about:

- • Time complexity (and also space complexity) of our algorithms as ^afunction of n , the input size.
- \bullet We will pay close attention to the asymptotics. We distinguish between $O(n)$ and $O(n^2)$
- \bullet Performance Guarantees. We only care about an algorithm if we can**prove mathematically** that it "works well".
- \bullet Possible definitions of "works well": solves the problem always or with high probability, its time complexity is below ^a certain bound always, orwith high probability.

Topics that will be covered (this may be updated during the semester):

- •Randomized Algorithms
- \bullet Dynamic Programming (vs. Recursion and Divide-and-Conquer)
- •(*) Sub-linear Algorithms – Property Testing
- (*) On-line Algorithms

Algorithms M2 IF

Administration

- \bullet Course taught in English.
- \bullet Web page:
	- [https://www.lamsade.dauphine.fr/˜mlampis/Algo/](https://www.lamsade.dauphine.fr/~mlampis/Algo/)
- Regularly check web page (and Dauphine planning) for updates! \bullet
- \bullet Grading:
	- 30% Homework assignments (CC)
	- 70% Final exam
- \bullet Course organization:
	- 1h30 of lecture
	- 1h30 of exercises (TD) \bullet
	- \bullet Homeworks will be of same spirit as TD.
- \bullet Reading material (including these slides) found on the web page.
- \bullet If in doubt, email me!

Randomized Algorithms

Introduction

 \bullet ^A **randomized** algorithm is an algorithm which may at any step produce ^a random bit (say, by flipping ^a coin) and use this bit in itscalculations.

Introduction

- \bullet ^A **randomized** algorithm is an algorithm which may at any step produce ^a random bit (say, by flipping ^a coin) and use this bit in itscalculations.
	- \bullet • Example: Polling for elections. Given n voters, the algortihm selects $k << n$ voters at random and uses their preferences to predict the outcome of the election.

 \bullet ^A **randomized** algorithm is an algorithm which may at any step produce ^a random bit (say, by flipping ^a coin) and use this bit in itscalculations.

Main applications/advantages of randomized algorithms:

- \bullet Simpler to describe
- Faster to run (if we have access to random bits!) \bullet
- \bullet **•** Performance guarantee depends on **our own** random bits, applies **to all inputs**

On ^a basic level, randomized algorithms make it easy to "find hay in ^ahaystack". Same problem not obvious for deterministic algorithms(think serial search).

Disadvantages:

- \bullet Math is usually harder!
- \bullet Producing random bits is not obvious.

Randomized Algorithms – This course

- \bullet We want to prove theorems of the form "With high probability, (randomized) algorithm A does X"
	- \bullet Implied→ **for any input**.
- \bullet We assume that random bits are given for free.
	- •Not necessarily realistic (pseudo-random bit generators are hard!)
- \bullet Type of performance guarantee we want:
	- •Whp algorithm ^A is "fast"
	- \bullet Whp algorithm ^A is correct.
		- •If not, what kind of error could we have?
	- • Algorithm ^A is **expected** to be fast/good/correct.
		- • Will discuss how to transform expectation guarantees to whpguarantees.

References

- \bullet Refs:
	- \bullet Mitzenmacher and Upfal, Probability and Computing [MU]
	- \bullet Motwani and Raghavan, Randomized Algorithms [MR]

Average-Case Analysis of (Deterministic) Algorithms

- \bullet Probabilities are also important for "normal" (deterministic) algorithms.
- • Example: algorithm ^A works great "most of the time".
	- \bullet Meaning what?
- \bullet One possible interpretation:
	- •Define ^a natural probability distribution over inputs (uniform?)
	- •**Prove** that if input follows this distribution, then algorithm A is "good".
	- $\bullet \quad \rightarrow$ algorithm A is good with high probability!

Example Theorem:

 \bullet • (Deterministic) Quicksort takes time $O(n \log n)$ on average.

Worst-Case Analysis of Randomized Algorithms

- \bullet In this course we are less interested in **average-case** guarantees, and more in **worst-case** (i.e. all cases) guarantees.
- \bullet Problems with average-case guarantees:
	- What is the average case? Uniform? Sparse? Gaussian?
	- \bullet Hard to analyze.
	- •Still may fail badly sometimes (though not often).
- \bullet We prefer theorems which prove ^a statement **for all inputs**, and may rely on probabilities on bits **picked by the algorithm**.
- • Think that the input is selected by an adversary, but the random bits by the referee.

Example Theorem:

 \bullet • Randomized Quicksort takes $O(n \log n)$ time on average.

Worst-Case Analysis of Randomized Algorithms

- \bullet In this course we are less interested in **average-case** guarantees, and more in **worst-case** (i.e. all cases) guarantees.
- \bullet Problems with average-case guarantees:
	- What is the average case? Uniform? Sparse? Gaussian?
	- \bullet Hard to analyze.
	- •Still may fail badly sometimes (though not often).
- \bullet We prefer theorems which prove ^a statement **for all inputs**, and may rely on probabilities on bits **picked by the algorithm**.
- • Think that the input is selected by an adversary, but the random bits by the referee.

Example Theorem:

- \bullet • Randomized Quicksort takes $O(n \log n)$ time on average.
- \bullet Can you tell the difference with the previous slide? Which is better?

- \bullet • Input: an array of *n* **distinct** integers.
- \bullet Operations: Compare, Swap, in unit time.
- \bullet Output: the same numbers sorted in increasing order.

Quicksort

- \bullet • If $n \leq 1$ Done!
- Partition the array into $L=$ \bullet ${x \mid x < A[1]}, R =$ ${x \mid x > A[1]}$
	- We are using $A[1]$ as the **pivot**
- \bullet • Output $QSort(L)$, $A[1]$, $QSort(R)$.

- \bullet • Input: an array of *n* **distinct** integers.
- \bullet Operations: Compare, Swap, in unit time.
- \bullet Output: the same numbers sorted in increasing order.

Quicksort

- \bullet • If $n \leq 1$ Done!
- Partition the array into $L=$ \bullet ${x \mid x < A[1]}, R =$ ${x \mid x > A[1]}$
	- We are using $A[1]$ as the **pivot**
- \bullet • Output $QSort(L)$, $A[1]$, $QSort(R)$.
- \bullet Correctness?
- Worst-case complexity: $O(n)$ \bullet 2 $^{2})$ operations. (Why?)

Time complexity on n elements:

$$
T(n) \leq T(q) + T(n - q - 1) + O(n)
$$

where $q=\,$ $=|L|.$ Time complexity on n elements:

$$
T(n) \leq T(q) + T(n - q - 1) + O(n)
$$

where $q=\,$ $=|L|.$

This gives

•
$$
T(n) = O(n \log n)
$$
 if $q = n/2$ always (unlikely!)

- $\overline{}$ \bullet $T(n) = O(n\log n)$ if $q \in [n/4, 3n/4]$ always (more likely)
- **Contract Contract Contract Contract** • $T(n) = O(n^2)$ if $q =$ 2 $\left(\begin{smallmatrix} 2 \end{smallmatrix} \right)$ if $q=$ $O(1)$. (Tight example?)

Time complexity on n elements:

$$
T(n) \leq T(q) + T(n - q - 1) + O(n)
$$

where $q=\,$ $=|L|.$

This gives

- \bullet $T(n) = O(n \log n)$ if $q =$ $n = 2$ always (unlikely!)
- $\overline{}$ $T(n) = O(n \log n)$ if $q \in [n/4, 3n/4]$ always (more likely) •
- **Contract Contract Contract Contract** • $T(n) = O(n^2)$ if $q =$ 2 $\left(\begin{smallmatrix} 2 \end{smallmatrix} \right)$ if $q=$ $O(1)$. (Tight example?)

Would like to prove:

 \bullet • If A is in a (uniformly) random permutation, then the expected time complexity of Quicksort is $O(n\log n).$

Theorem: (Det.) Quicksort on average continued

- \bullet $T(n)$ now denotes $\boldsymbol{\mathsf{expected}}$ number of steps. (We are using linearity of expectations.)
- \bullet • Assume that $T(n)$ is increasing, and in fact super-linear $(\Omega(n \log n))$.
- Say $A[1]$ is a good pivot if $q \in [n/4, 3n/4]$. \bullet

Then:

$$
T(n) \leq \frac{1}{2}(T(q_{good}) + T(n - q_{good})) + \frac{1}{2}T(n) + c \cdot n
$$

\n
$$
T(n) \leq T(3n/4) + T(n/4) + 2c \cdot n
$$

\n
$$
T(n) \leq O(n \log n)
$$

Theorem: (Det.) Quicksort on average continued

- \bullet $T(n)$ now denotes $\boldsymbol{\mathsf{expected}}$ number of steps. (We are using linearity of expectations.)
- \bullet • Assume that $T(n)$ is increasing, and in fact super-linear $(\Omega(n \log n))$.
- Say $A[1]$ is a good pivot if $q \in [n/4, 3n/4]$. \bullet

Then:

$$
T(n) \leq \frac{1}{2}(T(q_{good}) + T(n - q_{good})) + \frac{1}{2}T(n) + c \cdot n
$$

\n
$$
T(n) \leq T(3n/4) + T(n/4) + 2c \cdot n
$$

\n
$$
T(n) \leq O(n \log n)
$$

- \bullet • We use the fact that $T(n)$ is increasing (so in case of bad pivot we assume we spend another $T(n)$ steps).
- $T(n)$ is super-linear $\rightarrow T(q)+T(n-q)\leq T(n/4)+T(3n/4).$ \bullet
- ___ Final recurrence can be solved with standard techniques (or verified•with induction).

Algorithms M2 IF

Alternative algorithm:

- 1. Pick a random element x of A as pivot.
- $2.$ x is a good pivot, partition, recurse.
- 3. If not, go back to step 1.

Alternative algorithm:

- 1. Pick a random element x of A as pivot.
- $2₁$ x is a good pivot, partition, recurse.
- 3. If not, go back to step 1.

Notes:

- \bullet • Can check if x is a good pivot in $O(n)$ time. (How?)
- Probability that x is a good pivot is $\frac{1}{2}$ \bullet $2\,$.
- \rightarrow Expected number of times going back to 1 is 2. \bullet

Alternative algorithm:

- 1. Pick a random element x of A as pivot.
- $2.$ x is a good pivot, partition, recurse.
- 3. If not, go back to step 1.

Notes:

- \bullet • Can check if x is a good pivot in $O(n)$ time. (How?)
- Probability that x is a good pivot is $\frac{1}{2}$ • $2\,$.
- \rightarrow Expected number of times going back to 1 is 2. \bullet

$$
T(n) \leq T(n/4) + T(3n/4) + 2 \cdot c \cdot n
$$

$$
T(n) \leq O(n \log n)
$$

Important lessons to remember.

- \bullet "Alg ^A is good on most inputs" is NOT THE SAME as "Alg ^A is goodmost of the time"
	- \bullet For the former we need input to be random.
	- • For the latter we need random bits to be random. Much morerealistic.
	- • Example: for Quicksort, second algorithm is provably expected $O(n\log n)$, no matter the input.
- \bullet Only proved expected performance (because it's easier). How to get "with high probability" guarantee?

Important lessons to remember.

- \bullet "Alg ^A is good on most inputs" is NOT THE SAME as "Alg ^A is goodmost of the time"
	- \bullet For the former we need input to be random.
	- • For the latter we need random bits to be random. Much morerealistic.
	- • Example: for Quicksort, second algorithm is provably expected $O(n\log n)$, no matter the input.
- \bullet Only proved expected performance (because it's easier). How to get "with high probability" guarantee?
	- •• Here, use Markov's inequality. $Prob[X > aE[X]] \leq \frac{1}{a}$.

Important lessons to remember.

- \bullet "Alg ^A is good on most inputs" is NOT THE SAME as "Alg ^A is goodmost of the time"
	- \bullet For the former we need input to be random.
	- • For the latter we need random bits to be random. Much morerealistic.
	- • Example: for Quicksort, second algorithm is provably expected $O(n\log n)$, no matter the input.
- \bullet Only proved expected performance (because it's easier). How to get "with high probability" guarantee?
- This algorithm ALWAYS produces the correct answer. •
	- $\bullet \quad \rightarrow$ Las Vegas algorithm
ns M2 IF

Algorithms M2 IF

- \bullet • Input: Three $n \times n$ matrices A, B, C .
- **•** Operations: Addition, multiplication over scalars. \bullet
- \bullet • Question: Is it true that AB $=C$?

Example:

$$
\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] \cdot \left[\begin{array}{cc} 3 & 4 \\ 1 & 2 \end{array}\right] \stackrel{?}{=} \left[\begin{array}{cc} 5 & 8 \\ 13 & 20 \end{array}\right]
$$

 \bullet • Important note: we do not need to calculate C from scratch! It is given to us and we want to verify if it is correct (or find an error).

- \bullet • Input: Three $n \times n$ matrices A, B, C .
- **•** Operations: Addition, multiplication over scalars. \bullet
- \bullet • Question: Is it true that AB $=C$?

Example:

$$
\left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right] \cdot \left[\begin{array}{cc} 3 & 4 \\ 1 & 2 \end{array}\right] \stackrel{?}{=} \left[\begin{array}{cc} 5 & 8 \\ 13 & 20 \end{array}\right]
$$

- \bullet • Important note: we do not need to calculate C from scratch! It is given to us and we want to verify if it is correct (or find an error).
- \bullet Can we do this in linear time?
	- •**• Linear in what**? Here, the input has size $\Theta(n)$ numbers take constant space). Hence, we are looking for an $O(n\,$ 2 $^{2})$ (if we assume 2 $^{2})$ algorithm.

Naive algorithm:

- •• Calculate AB from scratch.
- \bullet • Compare each element of AB with the corresponding element of C .

What is the complexity of this algorithm?

Naive algorithm:

- \bullet • Calculate AB from scratch.
- \bullet • Compare each element of AB with the corresponding element of C .

What is the complexity of this algorithm?

- \bullet Step ¹ takes time:
	- $\bullet\quad O(n^3$ $^{3})$ if done trivially.
	- About $O(n^{2.3})$ \bullet $^3)$ if we use state of the art MM algorithms.
	- HUGE open problem if it can be done in $O(n)$ •2 $^2).$
- \bullet • Step 2 takes $O(n)$ 2 $^{2})$ and this is obviously tight (why?)
- \rightarrow algorithm runs in more than linear time. \bullet

Let's use randomness!

- •• Pick a random element $C[i, j]$
- \bullet • Calculate the product of row i of A with column j of B .
- If not equal, we have found an error. •
- \bullet Otherwise, accept as "probably equal".

This algorithm has

- \bullet • One-sided error (can only be wrong if it accepts that AB $=C$). :-)
	- •Monte Carlo algorithm
- \bullet • Running time $O(n)$ (sub-linear!) :-)
- Probability of success? \bullet

Let's use randomness!

- \bullet • Pick a random element $C[i, j]$
- \bullet • Calculate the product of row i of A with column j of B .
- If not equal, we have found an error. \bullet
- \bullet Otherwise, accept as "probably equal".

This algorithm has

- \bullet • One-sided error (can only be wrong if it accepts that AB $=C$). :-)
	- •Monte Carlo algorithm
- \bullet • Running time $O(n)$ (sub-linear!) :-)
- • Probability of success? •
	- \bullet • Suppose C is incorrect in just 1 element.
	- With probability $1-\frac{1}{n^2}$ • $\frac{1}{n^2}$ algorithm picks another element \rightarrow error. :-(
times prob of error $(1 - \frac{1}{n})^n \rightarrow 1$...(
	- Even if we repeat n times prob of error (1) •−1 $\frac{1}{n^2})^n$ $^n \rightarrow 1.$:-(

Let's use randomness in ^a more clever way!

- \bullet • Pick d to be an $n \times 1$ vector.
	- \bullet • Each element is $\{0,1\}$ independently with probability $1/2$.
- \bullet • Check if ABd $= Cd.$
	- If no, we have a proof that $AB\neq C$.
	- \bullet If yes, say "probably equal".

Let's use randomness in ^a more clever way!

- \bullet • Pick d to be an $n \times 1$ vector.
	- •• Each element is $\{0,1\}$ independently with probability $1/2$.
- \bullet • Check if ABd $= Cd.$
	- If no, we have a proof that $AB\neq C$.
	- If yes, say "probably equal".

Analysis:

- \bullet • Calculating Bd takes $O(n)$ 2 $^{2})$ (trivial). Same for Cd .
- Given Bd , calculating $A(Bd) = ABd$ takes $O(n$ \bullet 2 $^2).$
- • Checking if $ABd = Cd$ takes $O(n^2)$. Total time \bullet $= Cd$ takes $O(n)$ 2 2). Total time = $O(n)$ 2 $^2).$
- Probability of success? \bullet

Let $D = AB - C$. If $D \neq 0$ then what is the probability that $Dd = 0$?

- \bullet • Note: if $Dd = 0$ the algorithm is wrong! We want this probability to be low.
- \bullet • Suppose that $D \neq 0$, so D contains a non-zero element. Without loss of generality $D[1,1] \neq 0.$
- \bullet • If $Dd = 0$ then

$$
D[1,1]d[1] + \sum_{j=2}^{n} D[1,j]d[j] = 0 \Rightarrow
$$

$$
d[1] = -\frac{\sum_{j=2}^{n} D[1,j]d[j]}{D[1,1]}
$$

- \bullet Note: we have used that $D[1, 1] \neq 0$
- \bullet Prob that $d[1]$ takes the rhs value is at most $1/2$.

Important lessons to remember.

- \bullet Randomized algorithms are great for finding hay in ^a haystack.
- \bullet If we want to find a needle in a haystack (here: one out of n^2 elements) we need to do some work to "spread it around" so that it's easy to find.
- \bullet • Probability of success is $\frac{1}{2}$. Can be improved:
	- \bullet • Repeat the algorithm k times, independently. Because one-sided express arror probability because 2^{-k} error, error probability becomes $2^{-k}.$
	- \bullet Important here: randomness is over our own bits!
	- •• Alternative: set d a random vector over $\{0, \ldots, k\}$. (Problem-specific solution).

- •• Input: Two polynomials on one variable x
- •Operations: Normal arithmetic
- \bullet • Output: Are the two polynomials equal for all x ?

Examples:

$$
(x+1)(x+2) \ \stackrel{?}{=} \ x^2 + 2x + 1
$$

- •• Input: Two polynomials on one variable x
- \bullet Operations: Normal arithmetic
- \bullet • Output: Are the two polynomials equal for all x ?

Examples:

$$
(x+1)(x+2) \stackrel{?}{=} x^2 + 2x + 1
$$

$$
(x+1)(x+2)(x-1)(x-2) \stackrel{?}{=} (x^2 - 1)(x^2 - 4)
$$

- •• Input: Two polynomials on one variable x
- \bullet Operations: Normal arithmetic
- \bullet • Output: Are the two polynomials equal for all x ?

Examples:

$$
(x+1)(x+2) \stackrel{?}{=} x^2 + 2x + 1
$$

\n
$$
(x+1)(x+2)(x-1)(x-2) \stackrel{?}{=} (x^2 - 1)(x^2 - 4)
$$

\n
$$
(x^3 + 9x^2 + 23x + 15)(x^3 + 12x^2 + 44x + 48) \stackrel{?}{=} (x^2 + 3x + 2)(x^2 + 7x + 1)(x^2 + 11x + 30)
$$

Testing Polynomial Identities – Algorithm 1

 \bullet Every polynomial has ^a canonical form as ^a sum of monomials

$$
a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0
$$

 \bullet Could try to calculate canonical forms for both polynomials, compare.

Testing Polynomial Identities – Algorithm 1

 \bullet Every polynomial has ^a canonical form as ^a sum of monomials

$$
a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0
$$

- \bullet Could try to calculate canonical forms for both polynomials, compare.
- \bullet Problem: this form may be exponentially longer than the original input!!

$$
((x+1)^2+1)^2+1)^2+1...
$$

- •• Degree of this polynomial is 2^n
- However, we can use the fact that **evaluating** ^a polynomial on ^a given \bullet value of x is easy.

 \bullet We prove that two objects are different by showing that they interact indifferent ways with ^a random object.

- \bullet We prove that two objects are different by showing that they interact indifferent ways with ^a random object.
- \bullet • Given $P_1(x)$, $P_2(x)$, select a random value x_0 .
- If $P_1(x_0) \neq P_2(x_0)$, reject. \bullet
- **Contract Contract Contract Contract** Otherwise, accept as "probably equal". \bullet

- \bullet We prove that two objects are different by showing that they interact indifferent ways with ^a random object.
- \bullet • Given $P_1(x)$, $P_2(x)$, select a random value x_0 .
- If $P_1(x_0) \neq P_2(x_0)$, reject. \bullet
- **Contract Contract Contract Contract** Otherwise, accept as "probably equal". \bullet

Problem: even if $P_1(x)\neq P_2(x),$ they could still agree on $x_0!$

 \bullet • If $P_1(x) \neq P_2(x)$, in how many values could P_1, P_2 agree?

- \bullet We prove that two objects are different by showing that they interact indifferent ways with ^a random object.
- \bullet • Given $P_1(x)$, $P_2(x)$, select a random value x_0 .
- If $P_1(x_0) \neq P_2(x_0)$, reject. •
- **Contract Contract Contract Contract** Otherwise, accept as "probably equal". \bullet

Problem: even if $P_1(x)\neq P_2(x),$ they could still agree on $x_0!$

- \bullet • If $P_1(x) \neq P_2(x)$, in how many values could P_1, P_2 agree?
	- Let $Q(x) = P_1(x)$ P_1, P_2 , say n . − $P_2(x)$. The degree of Q is at most the degree of
	- $\bullet \quad \Rightarrow Q$ has at most n roots.

Testing Polynomial Identities – Algorithm 2

- \bullet • Calculate the degrees of the two polynomials n .
- •• Pick a random number x_0 $_0$ in $\{0, \ldots, 2n\}$.
- Check if $P_1(x_0) = P_2(x_0)$. \bullet
	- If no, reject.
	- \bullet If yes, say "probably equal"

Analysis:

- •• Probability of success at least $1/2$.
- Can be increased by repeating the algorithm. \bullet
- \bullet Derandomizing this algorithm is ^a major open research problem.

Min-Cut

Problem:

- \bullet • Input: Graph $G = (V, E)$
- \bullet Output: A minimum cut of G
- \bullet ^A cut is ^a set of edges whose removal creates at least two connectedcomponents.
- \bullet Problem solvable in polynomial time using max flow techniques.
- •Goal: simple polynomial-time (randomized) algorithm.
- \bullet Note: linear-time probably very hard to do!

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

Min-Cut Algorithm

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

A possible input

Min-Cut Algorithm

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

A bad solution

Min-Cut Algorithm

Algorithm for Min-Cut on multi-graphs (allow parallel edges).

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

A good solution

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- 1. If $n = 2$ output the trivial cut.
- 2. Otherwise, pick a random edge $(u,v) \in E$.
- 3. Contract (u, v) (i.e. merge u, v).
- 4. Go back to step 1.

- \bullet Suppose min cut size is k . Consider a specific min cut C .
- \bullet $\bullet \quad \Rightarrow$ min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
▲ Probability that algorithm avoids cut at first it
- \bullet Probability that algorithm avoids cut at first iteration:

$$
\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}.
$$

- \bullet Suppose min cut size is k . Consider a specific min cut C .
- \bullet $\bullet \quad \Rightarrow$ min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
▲ Probability that algorithm avoids cut at first it
- \bullet Probability that algorithm avoids cut at first iteration:

$$
\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}.
$$

 \bullet • Probability that algorithm avoids cut at first iteration, assuming first iteration OK: $\geq 1 - \frac{k}{k(n-1)/2} = 1 - \frac{2}{n} = \frac{n-3}{n-1}$.

- \bullet Suppose min cut size is k . Consider a specific min cut C .
- \bullet $\bullet \quad \Rightarrow$ min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
▲ Probability that algorithm avoids cut at first it
- \bullet Probability that algorithm avoids cut at first iteration:

$$
\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}.
$$

- \bullet • Probability that algorithm avoids cut at first iteration, assuming first iteration OK: $\ge 1 - \frac{k}{k(n-1)/2} = 1 - \frac{2}{n} = \frac{n-3}{n-1}.$
- \bullet Probability that all iterations good:

$$
\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \cdots \frac{2}{4} \frac{1}{3} = \frac{2}{n(n-1)}
$$

- \bullet Suppose min cut size is k . Consider a specific min cut C .
- • $\bullet \quad \Rightarrow$ min degree is $\geq k$. Therefore, $|E| \geq kn/2$.
▲ Probability that algorithm avoids cut at first it
- \bullet Probability that algorithm avoids cut at first iteration:

$$
\geq 1 - \frac{k}{kn/2} = 1 - \frac{2}{n} = \frac{n-2}{n}.
$$

- \bullet • Probability that algorithm avoids cut at first iteration, assuming first iteration OK: $\ge 1 - \frac{k}{k(n-1)/2} = 1 - \frac{2}{n} = \frac{n-3}{n-1}.$
- •Probability that all iterations good:

$$
\frac{n-2}{n} \frac{n-3}{n-1} \frac{n-4}{n-2} \cdots \frac{2}{4} \frac{1}{3} = \frac{2}{n(n-1)}
$$

- \bullet Can repeat many (n^2) times to get better $(\Omega(1))$ probability.
- \bullet Better idea to run the algorithm until graph small, then use some other algorithm (notice probability of success keeps falling).