
Distributed hash table
From Wikipedia, the free encyclopedia

Distributed hash tables (DHTs) are a class of decentralized distributed systems that provide a
lookup service similar to a hash table: (key, value) pairs are stored in the DHT, and any participating
node can efficiently retrieve the value associated with a given key. Responsibility for maintaining
the mapping from keys to values is distributed among the nodes, in such a way that a change in the
set of participants causes a minimal amount of disruption. This allows DHTs to scale to extremely
large numbers of nodes and to handle continual node arrivals, departures, and failures.

DHTs form an infrastructure that can be used to build more complex services, such as distributed file
systems, peer-to-peer file sharing and content distribution systems, cooperative web caching,
multicast, anycast, domain name services, and instant messaging. Notable distributed networks that
use DHTs include BitTorrent's distributed tracker, the eDonkey network, the Storm botnet, YaCy,
and the Coral Content Distribution Network.

History
DHT research was originally motivated, in part, by peer-to-peer systems such as Napster, Gnutella,
and Freenet, which took advantage of resources distributed across the Internet to provide a single
useful application. In particular, they took advantage of increased bandwidth and hard disk capacity
to provide a file sharing service.

These systems differed in how they found the data their peers contained:

Napster had a central index server: each node, upon joining, would send a list of locally held
files to the server, which would perform searches and refer the querier to the nodes that held
the results. This central component left the system vulnerable to attacks and lawsuits.
Gnutella and similar networks moved to a flooding query model—in essence, each search
would result in a message being broadcast to every other machine in the network. While
avoiding a single point of failure, this method was significantly less efficient than Napster.
Finally, Freenet was also fully distributed, but employed a heuristic key based routing in
which each file was associated with a key, and files with similar keys tended to cluster on a
similar set of nodes. Queries were likely to be routed through the network to such a cluster

Contents
1 History
2 Properties
3 Structure

3.1 Keyspace partitioning
3.2 Overlay network
3.3 Algorithms for overlay networks

4 Real world DHTs and their differences and improvements over basic schemes
5 Examples

5.1 DHT protocols and implementations
5.2 Applications employing DHTs

6 See also
7 References
8 External links

Page 1 sur 6Distributed hash table - Wikipedia, the free encyclopedia

10/02/2009http://en.wikipedia.org/wiki/Distributed_hash_table

without needing to visit many peers. However, Freenet did not guarantee that data would be
found.

Distributed hash tables use a more structured key based routing in order to attain both the
decentralization of Gnutella and Freenet, and the efficiency and guaranteed results of Napster. One
drawback is that, like Freenet, DHTs only directly support exact-match search, rather than keyword
search, although that functionality can be layered on top of a DHT.

The first four DHTs—CAN, Chord,[1] Pastry, and Tapestry—were introduced about the same time
in 2001. Since then this area of research has been quite active. Outside academia, DHT technology
has been adopted as a component of BitTorrent and in the Coral Content Distribution Network.

Properties
DHTs characteristically emphasize the following properties:

Decentralization: the nodes collectively form the system without any central coordination.
Scalability: the system should function efficiently even with thousands or millions of nodes.
Fault tolerance: the system should be reliable (in some sense) even with nodes continuously
joining, leaving, and failing.

A key technique used to achieve these goals is that any one node needs to coordinate with only a few
other nodes in the system – most commonly, Θ(logn) of the n participants (see below) – so that only
a limited amount of work needs to be done for each change in membership.

Some DHT designs seek to be secure against malicious participants and to allow participants to
remain anonymous, though this is less common than in many other peer-to-peer (especially file
sharing) systems; see anonymous P2P.

Finally, DHTs must deal with more traditional distributed systems issues such as load balancing,
data integrity, and performance (in particular, ensuring that operations such as routing and data
storage or retrieval complete quickly).

Structure

The structure of a DHT can be decomposed into several main components.[2][3] The foundation is an
abstract keyspace, such as the set of 160-bit strings. A keyspace partitioning scheme splits
ownership of this keyspace among the participating nodes. An overlay network then connects the
nodes, allowing them to find the owner of any given key in the keyspace.

Once these components are in place, a typical use of the DHT for storage and retrieval might proceed
as follows. Suppose the keyspace is the set of 160-bit strings. To store a file with given filename and
data in the DHT, the SHA1 hash of filename is found, producing a 160-bit key k, and a message
put(k,data) is sent to any node participating in the DHT. The message is forwarded from node to
node through the overlay network until it reaches the single node responsible for key k as specified
by the keyspace partitioning, where the pair (k,data) is stored. Any other client can then retrieve the
contents of the file by again hashing filename to produce k and asking any DHT node to find the data
associated with k with a message get(k). The message will again be routed through the overlay to the
node responsible for k, which will reply with the stored data.

The keyspace partitioning and overlay network components are described below with the goal of

Page 2 sur 6Distributed hash table - Wikipedia, the free encyclopedia

10/02/2009http://en.wikipedia.org/wiki/Distributed_hash_table

capturing the principal ideas common to most DHTs; many designs differ in the details.

Keyspace partitioning

Most DHTs use some variant of consistent hashing to map keys to nodes. This technique employs a
function δ(k1,k2) which defines an abstract notion of the distance from key k1 to key k2, which is
unrelated to geographical distance or network latency. Each node is assigned a single key called its
identifier (ID). A node with ID i owns all the keys for which i is the closest ID, measured according
to δ.

Example. The Chord DHT treats keys as points on a circle, and δ(k1,k2) is the distance traveling
clockwise around the circle from k1 to k2. Thus, the circular keyspace is split into contiguous
segments whose endpoints are the node identifiers. If i1 and i2 are two adjacent IDs, then the node
with ID i2 owns all the keys that fall between i1 and i2.

Consistent hashing has the essential property that removal or addition of one node changes only the
set of keys owned by the nodes with adjacent IDs, and leaves all other nodes unaffected. Contrast
this with a traditional hash table in which addition or removal of one bucket causes nearly the entire
keyspace to be remapped. Since any change in ownership typically corresponds to bandwidth-
intensive movement of objects stored in the DHT from one node to another, minimizing such
reorganization is required to efficiently support high rates of churn (node arrival and failure).

Overlay network

Each node maintains a set of links to other nodes (its neighbors or routing table). Together these
links form the overlay network. A node picks its neighbors according to a certain structure, called the
network's topology.

All DHT topologies share some variant of the most essential property: for any key k, the node either
owns k or has a link to a node that is closer to k in terms of the keyspace distance defined above. It is
then easy to route a message to the owner of any key k using the following greedy algorithm: at each
step, forward the message to the neighbor whose ID is closest to k. When there is no such neighbor,
then we must have arrived at the closest node, which is the owner of k as defined above. This style of
routing is sometimes called key based routing.

Beyond basic routing correctness, two important constraints on the topology are to guarantee that the
maximum number of hops in any route (route length) is low, so that requests complete quickly; and
that the maximum number of neighbors of any node (maximum node degree) is low, so that
maintenance overhead is not excessive. Of course, having shorter routes requires higher maximum
degree. Some common choices for maximum degree and route length are as follows, where n is the
number of nodes in the DHT, using Big O notation:

Degree O(1), route length O(logn)
Degree O(logn), route length O(logn / loglogn)
Degree O(logn), route length O(logn)
Degree O(n1 / 2), route length O(1)

The third choice is the most common, even though it is not quite optimal in terms of degree/route
length tradeoff, because such topologies typically allow more flexibility in choice of neighbors.
Many DHTs use that flexibility to pick neighbors which are close in terms of latency in the physical
underlying network.

Page 3 sur 6Distributed hash table - Wikipedia, the free encyclopedia

10/02/2009http://en.wikipedia.org/wiki/Distributed_hash_table

Maximum route length is closely related to diameter: the maximum number of hops in any shortest
path between nodes. Clearly the network's route length is at least as large as its diameter, so DHTs
are limited by the degree/diameter tradeoff[4] which is fundamental in graph theory. Route length
can be greater than diameter since the greedy routing algorithm may not find shortest paths.[5]

Algorithms for overlay networks

Aside from routing, there exist many algorithms which exploit the structure of the overlay network
for sending a message to all nodes, or a subset of nodes, in a DHT.[6] These algorithms are used by
applications to do overlay multicast, range queries, or to collect statistics.

Real world DHTs and their differences and improvements over
basic schemes
Most notable differences encountered in "real world" DHT implementations include at least the
following:

The address space is a parameter of DHT. Several real world DHTs use 128 bit or 160 bit key
space
Some real-world DHTs use hash functions other than SHA1.
In the real world the key k could be a hash of a file's content rather than a hash of a file's name,
so that renaming of the file does not prevent users from finding it.
Some DHTs may also publish objects of different types. For example, key k could be node ID
and associated data could describe how to contact this node. This allows publication of
presence information and often used in IM applications, etc. In simplest case ID is just a
random number which is directly used as key k (so in 160-bits DHT ID will be a 160 bits
number, usually randomly chosen). In some DHTs publishing of nodes IDs is also used to
optimize DHT operations.
Key k could be stored to more than exactly one node corresponding to such key to cause
redundancy and improve DHT reliability. Usually rather than selecting one node, real world
DHT algorithm selects i suitable nodes and it is an implementation specific parameter of DHT
reflecting DHT's redundancy. In such DHT designs nodes agree to handle certain keyspace
range which is even sometimes not a hardcoded value but dynamically chosen
Some advanced DHTs like Kademlia are rather doing iterative lookups through DHT first to
select set of suitable nodes and only sending put(k,data) message to such nodes therefore
drastically reducing useless traffic since publish messages are only sent to nodes which are
apparently suitable for storing such key k and iterative lookups are only touching few nodes
rather than whole DHT while useless forwarding is eliminated. In such DHTs forwarding of
put(k,data) message may only occur as part of self-healing algorithm: if target node receives
put(k,data) message but believes that key k is out of handled range and closer (in terms of
DHT keyspace) node is known, message is forwarded to such node. Otherwise data are
indexed locally. This leads to somewhat self-balancing DHT behavior. Of course such
algorithm requires nodes to publish their presence data in DHT to allow mentioned iterative
lookups of nodes itself via DHT before sending put(k,data) messages.

Examples

DHT protocols and implementations

CAN (Content Addressable Network)
Chord

Page 4 sur 6Distributed hash table - Wikipedia, the free encyclopedia

10/02/2009http://en.wikipedia.org/wiki/Distributed_hash_table

Kademlia
Pastry
P-Grid
Tapestry

Applications employing DHTs

BitTorrent: File distribution. BitTorrent optionally uses a DHT as a distributed tracker to
provide rendezvous between clients downloading a particular file (see BitTorrent client)
The Circle: File sharing and chat
Codeen: Web caching
Coral Content Distribution Network
Dijjer: Freenet-like distribution network
eMule: File sharing
FAROO: Peer-to-peer web search engine
GNUnet: Freenet-like distribution network including a DHT implementation [1]
I2P: Anonymous network
JXTA: Opensource P2P platform
LimeWire: File sharing; includes the Mojito DHT
NEOnet: File sharing
Overnet: File sharing
Warez P2P: File sharing
YaCy: distributed search engine

See also
memcached: a high-performance, distributed memory object caching system
Prefix Hash Tree: Sophisticated querying over DHTs

References
1. ^ Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Looking up data

in P2P systems. In Communications of the ACM, February 2003.
2. ^ Moni Naor and Udi Wieder. Novel Architectures for P2P Applications: the Continuous-Discrete

Approach. Proc. SPAA, 2003.
3. ^ Gurmeet Singh Manku. Dipsea: A Modular Distributed Hash Table. Ph. D. Thesis (Stanford

University), August 2004.
4. ^ The (Degree,Diameter) Problem for Graphs
5. ^ Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy Neighbor's Neighbor: the Power of

Lookahead in Randomized P2P Networks. Proc. STOC, 2004.
6. ^ Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed Hash Tables. KTH-Royal Institute of

Technology, 2006.

External links
Distributed Hash Tables, Part 1 by Brandon Wiley.
Distributed Hash Tables links Carles Pairot's Page on DHT and P2P research
GemStone's GemFire supports a DHT with optional redundancy for high availability
Tangosol Coherence includes a structure similar to a DHT, though all nodes have knowledge
of the other participants
kademlia.scs.cs.nyu.edu Archive.org snapshots of kademlia.scs.cs.nyu.edu
Open DHT: A publicly accessible distributed hash table (DHT) service.
Cacheonix uses an approach similar to DHT with added replication for better failure-tolerance
Hazelcast: P2P and partitioned DHT implementation.

Page 5 sur 6Distributed hash table - Wikipedia, the free encyclopedia

10/02/2009http://en.wikipedia.org/wiki/Distributed_hash_table

This page was last modified on 9 February 2009, at 21:02.
All text is available under the terms of the GNU Free Documentation License. (See
Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501
(c)(3) tax-deductible nonprofit charity.

Retrieved from "http://en.wikipedia.org/wiki/Distributed_hash_table"
Categories: Distributed computing | Distributed data sharing | File sharing

Page 6 sur 6Distributed hash table - Wikipedia, the free encyclopedia

10/02/2009http://en.wikipedia.org/wiki/Distributed_hash_table

