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APPENDIX C

8. LH∗ ADDRESSING ALGORITHMS

The LH∗
RS Forwarding Algorithm executed at bucket a, getting a key-based

request from a client is as follows [Litwin et al. 1996]. Here c is the key and
j is the level of bucket a. As the result, the bucket determines whether it
is the correct one for c, according to (LH), or forwards the request to bucket
a′ > a.

Algorithm A1
a′ := h j (c) ;
if a’ = a then accept c ;
else a′′ := hj−1 (c) ;

if a′′ > a and a′′ < a′ then a′ := a′′;
send c to bucket a′;

The Image Adjustment Algorithm that LH∗
RS client executes to update its

image when the IAM comes back is as follows. Here a is the address of the last
bucket to forward the request to the correct one, and j is the level of bucket a.
These values are in IAM. Notice that they come from a different bucket than
that considered in Litwin et al. [1996]. The latter was the first bucket to receive
the request. The change produces the image whose extent is closer to the actual
one in many cases. The search for key c = 60 in the file in Figure 1(b) illustrates
one such case.

Algorithm A2
if j > i′ then i′ := j − 1, n′ := a + 1;
if n′ ≥ 2i′ then n′ = 0, i′ := i′ + 1;

9. GALOIS FIELD CALCULATIONS

Our GF has 2 f elements, f = 1, 2 . . . , called symbols. Whenever the size 2 f

of a GF matters, we write the field as GF(2 f ). Each symbol in GF(2 f ) is a bit-
string of length f . One symbol is zero, written as 0, and consists of f zero-bits.
Another is the one symbol, written as 1, with f −1 bits 0 followed by bit 1.
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Table V. Logarithms for GF(256)

El. Log El. Log El. Log El. Log El. Log El. Log El. Log El. Log
— — 10 4 20 5 30 29 40 6 50 54 60 30 70 202
1 0 11 100 21 138 31 181 41 191 51 208 61 66 71 94
2 1 12 224 22 101 32 194 42 139 52 148 62 182 72 155
3 25 13 14 23 47 33 125 43 98 53 206 63 163 73 159
4 2 14 52 24 225 34 106 44 102 54 143 64 195 74 10
5 50 15 141 25 36 35 39 45 221 55 150 65 72 75 21
6 6 16 239 26 15 36 249 46 48 56 219 66 126 76 121
7 198 17 129 27 33 37 185 47 253 57 189 67 110 77 43
8 3 18 28 28 53 38 201 48 226 58 241 68 107 78 78
9 223 19 193 29 147 39 154 49 152 59 210 69 58 79 212
A 51 1a 105 2a 142 3a 9 4a 37 5a 19 6a 40 7a 229
B 238 1b 248 2b 218 3b 120 4b 179 5b 92 6b 84 7b 172
C 27 1c 200 2c 240 3c 77 4c 16 5c 131 6c 250 7c 115
D 104 1d 8 2d 18 3d 228 4d 145 5d 56 6d 133 7d 243
E 199 1e 76 2e 130 3e 114 4e 34 5e 70 6e 186 7e 167
F 75 1f 113 2f 69 3f 166 4f 136 5f 64 6f 61 7f 87
80 7 90 227 a0 55 b0 242 c0 31 D0 08 e0 203 F0 79
81 112 91 165 a1 63 b1 86 c1 45 D1 161 e1 89 F1 174
82 192 92 153 a2 209 b2 211 c2 67 D2 59 e2 95 F2 213
83 247 93 119 a3 91 b3 171 c3 216 D3 82 e3 176 F3 233
84 140 94 38 a4 149 b4 20 c4 183 D4 41 e4 156 F4 230
85 128 95 184 a5 188 b5 42 c5 123 D5 157 e5 169 F5 231
86 99 96 180 a6 207 b6 93 c6 164 D6 85 e6 160 F6 173
87 13 97 124 a7 205 b7 158 c7 118 D7 170 e7 81 F7 232
88 103 98 17 a8 144 b8 132 c8 196 D8 251 e8 11 F8 116
89 74 99 68 a9 135 b9 60 c9 23 D9 96 e9 245 F9 214
8a 222 9a 146 aa 151 Ba 57 ca 73 da 134 ea 22 fa 244
8b 237 9b 217 ab 178 Bb 83 cb 236 db 177 eb 235 fb 234
8c 49 9c 35 ac 220 Bc 71 cc 127 dc 187 ec 122 fc 168
8d 197 9d 32 ad 252 Bd 109 cd 12 dd 204 ed 117 fd 80
8e 254 9e 137 ae 190 Be 65 ce 111 de 62 ee 44 fe 88
8f 24 9f 46 af 97 Bf 162 cf 246 df 90 ef 215 ff 175

Symbols can be added (+), multiplied (·), subtracted (−) and divided (/). These
operations in a GF possess the usual properties of their analogues in the field
of real or complex numbers, including the properties of 0 and 1. As usual, we
may omit the multiplication symbol.

Initially, we elaborated on the LH∗
RS scheme for f = 4 [Litwin and Schwarz

2000]. First experiments showed that f = 8 was more efficient. The reason was
the (8-bit) byte and word-oriented structure of current computers [Liungström
2000]. Later, the choice of f = 16 turned out to be even more practical and
became our final choice, see Section 5. For didactic purposes, we discuss our
parity calculus nevertheless for f = 8, that is, for GF(28) = GF(256). The
reason is the sizes of the tables and matrices involved. We call this GF F .
The symbols of F are all the byte values. F thus has 256 symbols which are
0, 1 . . . 255 in decimal notation, or 0, 1 . . . ff in hexadecimal notation. We use the
latter in Table V and often in our examples.
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The addition and the subtraction in any of our GF(2 f ) are the same.
These are the bit-wise XOR (Exclusive-OR) operation on f -bit bytes or words.
That is

a + b = a − b = b − a = a ⊕ b = a XOR b.

The XOR operation is widely available, for example, as the Λ operator in C
and Java, that is, a XOR b = a Λ b. The multiplication and division are more
involved. There are different methods for their calculus. We use a variant of the
log/antilog table calculus [Litwin and Schwarz 2000; McWilliams and Sloane
1997].

The calculus exploits the existence of primitive elements in every GF. If α is
primitive, then any element ξ �= 0 is αi for some integer power i, 0 ≤ i < 2 f −1.
We call i the logarithm of ξ and write i = logα(ξ ). Table V tabulates the nonzero
GF(28) elements and their logarithms for α = 2. Likewise, ξ = αi is then the
antilogarithm of i, and we write ξ = antilog (i).

The successive powers αi for any i, including i ≥ 2 f − 1, form a cyclic group
of order 2 f − 1 with αi = αi′

exactly if i′ = i mod 2 f − 1. Using the logarithms
and the antilogarithms, we can calculate multiplication and division through
the following formulas. They apply to symbols ξ, ψ �= 0. If one of the symbols is
0, then the product is obviously 0. The addition and subtraction in the formulas
is the usual one of integers:

ξ ·ψ = antilog(log(ξ ) + log(ψ) mod (2 f − 1)),
ξ/ψ = antilog(log(ξ ) − log(ψ) + 2 f − 1 mod (2 f − 1)).

To implement these formulas, we store symbols as char type (byte long) for
GF(28) and as short integers (2-bytes long) for GF(216). This way, we use them
as offsets into arrays. We store the logarithms and antilogarithms in two arrays.
The logarithm array log has 2 f entries. Its offsets are symbols 0x00 . . . 0xff, and
entry i contains log(i), an unsigned integer. Since element 0 has no logarithm,
that entry is a dummy value such as 0xffffffff. Table V shows the logarithms
for F .

Our multiplication algorithm applies the antilogarithm to sums of loga-
rithms modulo 2 f −1. To avoid the modulus calculation, we use all possible sums
of logarithms as offsets. The resulting antilog array then stores antilog[i] =
antilog(i mod (2 f − 1)) for entries i = 0, 1, 2 . . . , 2(2 f − 2). We double
the size of the antilog array in this way to avoid the modulus calculus for
the multiplication. This speeds up both encoding and decoding times. We
could similarly avoid the modulo operation for the division as well. In our
scheme, however, division is rare and the savings seem too minute to jus-
tify the additional storage (128KB for our final choice of f = 16). Figure 14
gives the pseudo-code generating our log and antilog multiplication table
(Table V). Figure 13 shows our final multiplication algorithm. We call them
respectively log and antilog arrays. The following example illustrates their
use.
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Fig. 13. Galois Field multiplication algorithm.

Fig. 14. Calculus of tables log and antilog for GF(2 f ).

Example 7.

45 · 1 + 49 · 1a + 41 · 3b + 41 · ff
= 45 + antilog(log(49) + log(1a)) + antilog(log(41) + log(3b))

+ antilog(log(41) + log(ff))
= 45 + antilog(152 + 105) + antilog(191 + 120) + antilog(191 + 175)
= 45 + antilog(257) + antilog(311) + antilog(191 + 175)
= 45 + antilog(2) + antilog(56) + antilog(111)
= 45 + 04 + 5d + ce
= d2

The first equality uses our multiplication formula but for the first term. We
use the logarithm array log to look up the logarithms. For the second term, the
logarithms of 49 and 1a are 152 and 105 (in decimal), respectively (Table V).
We add these up as integers to obtain 257. This value is not in Table V, but
antilog[257]= 4, since logarithms repeat the cycle of mod (2 f − 1) that yields
here 255. The last equation sums up four addends in the Galois field which in
binary are 0100 0101, 0000 0100, 0101 1101, and 1100 1110. Their sum is the
XOR of these bit strings, yielding 1101 0010 = d2.
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To illustrate the division, we calculate 1a / 49 in the same GF. The logarithm
of 1a is 105, the logarithm of 49 is 152. The integer difference is –47. We add
255, obtain 208, hence read antilog[208]. According to Table V it contains 51
(in hex) which is the final result.

10. ERASURE CORRECTION

LEMMA FOR SECTION 3.2. Let m be the current group size, and m′ be the generic
group size. Denote the generic parity matrix with G′. Form a matrix G, as in
Section 3.2, from the first m rows of G′, but leaving out the resulting zero columns
m + 1, . . . m′. Then we obtain the same encoding and decoding whether we use
G and the first m data buckets, or whether we use G′ and m data buckets but
with all but the first m′ data buckets virtual zero buckets.

PROOF. Consider that for the current group size m < m′. There are m′ − m
dummy data records, padding each record group to size m′. Let a be the vector of
m′ symbols with the same offset in the data records of the group. The rightmost
m′ − m coefficients of a are all zero. We can write a = (b | o), where b is an
m-dimensional vector and o is the m′ − m dimensional zero vector. We split G′

similarly by writing

G′ =
(

G0

G1

)
.

Here G0 is a matrix with m rows, and G1 is a matrix with m′ − m rows. We
have u = a · G = b · G0 + o · G1 = b · G0. Thus, we only use the first m
coefficients of each row for encoding.

Assume now that some data records are unavailable in a record group, but
m records among m + k data and parity records in the group remain available.
We can now decode all the m data records of the group as follows. We assemble
the symbols with offset l from the m available records in a vector bl . The order
of the coordinates of bl is the order of columns in G. Similarly, let xl denote the
word consisting of m data symbols with the same offset l from m data records
in the same order. Some of the values in xl are from the unavailable buckets
and thus unknown. Our goal is to calculate x from b.

To achieve this, we form an m′ by m′ matrix H′ with, at the left, the m columns
of G′ corresponding to the available data or parity records, and then the m′ −m
unit vectors formed by the column from the I portion of G′ corresponding to the
dummy data buckets. This gives H′ a specific form

H′ =
(

H O
Y I

)
.

Here, H is an m by m matrix, Y an m′ − m by m matrix, O the m by m′ − m
zero matrix, and I is the m′ − m by m′ − m identity matrix. Let (xl | 0) and (bl |
0) be the m′ dimensional vector consisting of the m coordinates of xl and bl ,
respectively, and m′ − m zero coefficients.

(x|o)

(
H O
Y I

)
= (b|o).
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That is,

xA = b.

According to a well-known theorem of linear algebra, for matrices of this
form det(H′) = det(H) · det(I) = det(H). So H is invertible since H′ is. The last
equation tells us that we only need to invert the m-by-m matrix H. This is
precisely the desired submatrix H cut out from the generic one. This concludes
our proof.

11. ADDITIONAL LH∗
RS FILE MANIPULATIONS

We now describe the operations on the LH∗
RS file that were yet not presented, as

less relevant to the high-availability or less frequent. These are file creation and
removal, key search, nonkey search (scan), record delete, and bucket merge.

11.1 File Creation and Removal

The client creates an LH∗
RS file F as an empty data bucket 0. File creation

sets the parameters m and K . The latter is typically set to K = 1. The SDDS
manager at bucket 0 becomes the coordinator for F . The coordinator initializes
the file state to (i = 1, n = 0). The coordinator also creates K empty parity
buckets to be used by the first m data buckets which will form the first bucket
group. The coordinator stores column i of P with the ith parity bucket with the
exception of the first parity bucket (using P′ to generate these columns). There
is no degraded mode for the file creation operation. Notice, however, that the
operation fails if no K + 1 available servers are to be found.

If the application requests the removal of the file, the client sends the request
to the coordinator. The coordinator acknowledges the operation to the client. It
also forwards the removal message to all data and parity buckets. Every node
acknowledges it. The unresponsive servers enter an error list to be dealt with
beyond the scope of our scheme.

11.2 Key Search

In normal mode, the client of LH∗
RS searches for a key using the LH∗ key search

as presented in Section 2.1.2. The client or the forwarding server triggers the
degraded mode if it encounters an unavailable bucket, called a1. It then passes
the control to the coordinator. The coordinator starts the recovery of bucket a1.
It also uses the LH∗ file state parameters to calculate the address of the correct
bucket for the record, call it bucket a2. If a2 = a1, the coordinator also starts the
record recovery. If a2 �= a1, and bucket a2 was not found to be unavailable during
the probing phase of the bucket a1 recovery, then the coordinator forwards c to
bucket a2. If bucket a2 is available, it replies to the LH∗

RS client as in the normal
mode, including the IAM. If the coordinator finds it unavailable and the bucket
is not yet recovered, for example, is in another group than bucket a1, then the
coordinator starts the recovery of bucket a2 as well. In addition, it performs
record recovery.
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11.3 Scan

A scan returns all records in the file that satisfy a certain query, Q , in their non-
key fields. A client performing a scan sends Q to all buckets in the propagation
phase. Each server executes Q and sends back the results during the termina-
tion phase. The termination can be probabilistic or deterministic [Litwin et al.
1996]. The choice is up to the application.

Scan Propagation. The client sends Q to all the data buckets in its im-
age, using unicast or broadcast when possible. Unicast messages only reach
the buckets in the client image. LH∗

RS then applies the following LH∗ scan
propagation algorithm in the normal mode. The client sends Q with the mes-
sage level j ′ attached. This is the presumed level j of the recipient bucket,
according to the client image. Each recipient bucket executes Algorithm A4. A4
forwards Q recursively to all the buckets that are beyond the client image. Any
of these must result, perhaps recursively through its parents, also beyond the
image, in a split of exactly one of the buckets in the image.

Algorithm A4: Scan Propagation
The client executes:
n′ = split pointer of client.
i′ = level of client.
for a = 0, . . . 2i′+n′ do :

if (a < 2i′ and n′ ≤ a) then j ′ = i′ else j ′ = i′ + 1.
send (Q, j′) to a.

Each bucket a executes upon receiving (Q , j ′):
j = level of a.
while ( j ′ < j ) do:

j ′ = j + 1;
forward (Q , j ′) to bucket a + 2 j ′−1.

In normal mode, Algorithm A4 guarantees that the scan message arrives at
every bucket exactly once [Litwin et al. 1996]. We detect unavailable buckets
and enter degraded mode in the termination phase.

Example 8. Assume that the file consists of 12 buckets 0, 1, . . . 11. The file
state is n = 4 and i = 3. Assume also that the client still has the initial image
(n′, i′) = (0, 0). According to this image, only bucket 0 exists. The client sends
only one message (Q , 0) to bucket 0. Bucket 0 sends messages (Q , 1) to bucket 1,
(Q , 2) to bucket 2, (Q , 3) to bucket 4, and (Q , 4) to bucket 8. Bucket 1 receives
the message from bucket 0 and sends (Q , 2) to bucket 3, (Q , 3) to bucket 5,
(Q , 4) to bucket 9. Bucket 2 sends (Q , 3) to 6 and (Q , 4) to 11. Bucket 3 receives
(Q , 2) and forwards with level 3 to bucket 7 and with level 4 to bucket 11. The
remaining buckets receive messages with a message level equal to their own
level and do not forward.

Scan Termination. A bucket responds to a scan with probabilistic termi-
nation only if it has a relevant record. The client assumes that the scan has
successfully terminated if no message arrives after a timeout, following the last
reply. A scan with probabilistic termination does not have the degraded mode.
The operation cannot always discover the unavailable buckets.
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In deterministic termination mode, every data bucket sends at least its level
j . The client can then calculate whether all existing buckets have responded.
For this purpose, the client maintains a list L with every j received. It also
maintains the count N ′ of replies received. The client terminates Q normally
if and only if it eventually meets one of the termination conditions

(i) All levels j in L are equal, and N ′ = 2 j .
(ii) There are two levels from consecutive buckets in the list such that ja−1 =

ja + 1 and N ′ = 2ja + ja.

Each condition determines, in fact, the actual file size N and compares N ′ to
N . Condition (i) applies if the split pointer n is 0. Condition (ii) corresponds to
n > 0 and, in fact, determines n as a fulfilling ja−1 = ja + 1. The conditions
on N ′ test that the all N buckets are answered. Otherwise, the client waits for
further replies.

A scan with deterministic termination enters degraded mode when the client
does not meet the termination conditions within a timeout period. The client
sends the scan request and the addresses in L to the coordinator. From the
addresses and the file state, the coordinator determines unavailable buckets.
These may be in different groups. If no catastrophic loss has occurred in a
group, the coordinator initiates all recoveries as in Section 4.1. Once they are
all completed, the coordinator sends the scan to the recovered data buckets.
The client waits until the scan completes in this way. Whether the termination
is normal or degraded, the client finally updates its image and perhaps the
location data.

Example 9. For change, we consider now a file in state (n, i) = (0, 3), hence
with 8 buckets 0, 1 . . . 7. The record group size is m = 4, and the intended
availability level K is K = 1. The client image is (n′, i′) = (2, 2). Accordingly,
the bucket knows of buckets 0, 1, 2, 3, 4, and 5. The client issues a scan Q with
the deterministic termination. It got replies with bucket levels j from buckets
0, 1, 2, 4, 5, and 6. None of the termination conditions are met. Condition (i) fails
because, among others, j0 > j4. Likewise, condition (ii) cannot become true until
bucket 3 replies. The client waits for further replies.

Assume now that no bucket replied within the timeout. The client alerts the
coordinator and sends Q and the addresses in list L = {0, 1, 2, 4, 5, 6}. Based
on the file state and L, the coordinator determines that buckets 3 and 7 are
unavailable. Since the loss is not catastrophic (for m = 4 and k = 1 in each
group concerned), the coordinator now launches recovery of buckets 3 and 7.
Once this has succeeded, the coordinator sends the scan to these buckets. Each
of them finally sends its reply with its ja, perhaps some records, and its (new)
address. The client adjusts its image to (n′, i′) = (0, 3) and refreshes the location
data for buckets 3 and 7.

11.4 Delete

In the normal mode, the client performs the delete of record c as for LH∗. In
addition, the correct bucket sends the �-record, the rank r of the deleted record,
and key c to the k parity buckets. Each bucket confirms the reception and
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removes key c. If c is the last actual key in the list, then the parity bucket
deletes the entire parity record r. Otherwise, it adjusts the B-field of the parity
record to reflect that there is no more record c in the record group.

The data bucket communicates with the parity buckets using the 1PC or the
2PC. The latter is as for an insert, except for the inverse result of the key c test.
As for the insert for k > 1, the parity buckets keep also the �-record till the
commit message. More generally, the degraded mode for a delete is analogous
to that of an insert.

11.5 Merge

Deletions may decrease the number of records in a bucket under an optional
threshold b′ � b, e.g., 0.4 b. The bucket reports this to the coordinator. The
coordinator may start a bucket merge operation. The merge removes the last
data bucket in the file, provided the file has at least two data buckets. It moves
the records in this bucket back to its parent bucket that has created it during
its split. The operation increases the load of the file.

In the normal mode, for n > 0, the merge starts with setting the split pointer
n to n := n− 1. For n = 0, it sets n = 2i=1 − 1. Next, it moves the data records of
bucket n+2i (the last in the file), back into bucket n (the parent bucket). There,
each record gets a new rank, following consecutively the ranks of the records
already in the bucket. The merge finally removes the last data bucket of the
file that is now empty. For n = 0 and i > 0, it decreases i to i = i − 1.

If n is set to 0, the merge may also decrease K by one. This happens if N
decreases to a value that previously caused K to increase. Since merges are
rare, and merges that decrease K are even more rare, we omit discussion of the
algorithm for this case.

The merge also updates the k parity buckets. This undoes the result of a
split. The number of parity buckets in the bucket group can remain the same.
If the removed data bucket was the only one in its group, then all the k parity
buckets for this group are also deleted. The merge commits the parity updates
using 1PC or 2PC. It does it similarly to what we have discussed for splits.

As for the other operations, the degraded mode for a merge starts when any
of the buckets involved does not reply. The sender, other than the coordinator
itself, alerts the latter. The various cases with which we encountered similar
to those already discussed. Likewise, the 2PC termination algorithms in the
degraded mode are similar to those for an insert or a delete. As for the split,
every bucket involved reports any unavailability. We omit the details.

12. PERFORMANCE ANALYSIS

We analyze here formally the storage and messaging costs. We deal with the
dominant factors only. This shows the typical performance of our scheme and its
good behavior in practice. The storage overhead for parity data, in particular,
appears about the best possible. We conclude with examples showing how to
use the outcome for practical design choices.
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12.1 Storage Occupancy

The file load factor α is the ratio of the number of data records in the file over
the capacity of the file buckets. The average load factor αd of the LH∗

RS data
buckets is that of LH∗. Under the typical assumptions (uniform hashing, few
overflow records . . . ), we have αd = ln(2) ≈ 0.7. Data records in LH∗

RS may be
slightly larger than in LH∗, since it may be convenient to store the rank with
them.

The parity overhead should be about k/m in practice. This is the minimal
possible overhead for k-available record or bucket group. Notice that parity
records are slightly larger than data buckets since they contain additional fields.
If we neglect these aspects, then the load factor of a bucket group is typically

αg=αd/(1 + k/m).

The average load factor α f of the file depends on its state. As long as the file
availability level K ′ is the intended one K , we have α f = αg , provided N 	 m,
so that the influence of the last group is negligible. The last group contains
possibly less than m data buckets,. If K ′ = K − 1, that is, if the file is in the
process of scaling to a higher availability level, then α f depends on the split
pointer n and file level i as follows:

α f ≈ αd ((2i − n)/(1+(K − 1)/m) + 2n/(1 + K /m))/(2i + n).

There are indeed 2n buckets in the groups with k = K and (2i − n) bucket
in the groups whose k = K ′. Again, we neglect the possible impact of the last
group. If α g (k) denotes α g for given k, we have

αg (K ′+1) < α f < αg (K ′).

In other words, α f is then slightly lower than α g (K ′). It decreases progres-
sively until it reaches its lower bound for K ′, reaching it for n = 2i+1 − 1. Then,
if n = 0 again, K ′ increases to K , and α f is α g (K ′) again.

The increase in availability should in practice, concern, relatively few N
values of an LH∗

RS file. The practical choice of N1 should indeed be N1 	 1.
For any intended availability level K and of group size m, the load factor of the
scaling LH∗

RS file should be therefore, in practice, about constant and equal to
α g (K ). This is the highest possible load factor for the availability level K and
αd . We thus achieve the highest possible α f for any technique added upon an
LH∗ file to make it K-available.

Our file availability grows incrementally to level K +1. Among the data buck-
ets, only those up to the last one, split and those newly created since the split
pointer was reset to zero have this higher availability. This strategy induces a
storage occupancy penalty with respect to best α f (K ) as long as the file does not
reach the new level. The worst case for K -available LH∗

RS is then, in practice,
α f (K + 1). This value is, in our case, still close to the best for (K + 1)-available
file. It does not seem possible to achieve a better evolution of α f for our type of
an incremental availability increase strategy.

The record group size m limits the record and bucket recovery times. If this
time is of lesser concern than the storage occupancy, one can set m to a larger
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value, for example, 64, 128, 256. . . Then, all k values needed in practice should
remain negligible with respect to m, and N 	 1. The parity overhead becomes
negligible as well. The formula for α f becomes α f ≈ αd/(1 + k/min (N , m)). It
converges rapidly to αd , while N scales up especially for the practical choices of
Ni for the scalable availability. We obtain high availability at almost no storage
occupancy cost.

Observe that for given α f and the resulting acceptable parity storage over-
head, the choice of a larger m benefits the availability. While choosing for an
α f some m1 and k1 leads to the k1-available file, the choice of m2 = lm1 allows
for k2 = lk1 which provides l more times available file. However, the obvious
penalty is about l times greater messaging cost for bucket recovery since m
buckets have to be read. Fortunately, this does not mean that the recovery time
also increases l times as we will see. Hence, the trade-off can be worthy in
practice.

Example 10. We now illustrate the practical consequences of the above
analysis. Assume m = 8. The parity overhead is then (only) about 12.5% for the
1-availability of the group, 25% for its 2-availability and so on.

We also choose uncontrolled scalable availability with N1 = 16. We thus
have 1-available file, up to N = 16 buckets. We can expect α f = αg (1) ≈ 0.62
which is the best for this availability level, given the load factor αd of the data
buckets. When N := 16, we set K := 2. The file remains still only 1-available
until it scales to N = 32 buckets. In the meantime, α f decreases monotonically
to ≈ 0.56. At N = 32, K ′ reaches K , and the file becomes 2-available. Then,
α f becomes again the best for the availability level and remains so until the
file reaches N = 256. It stays optimal for a fourteen times longer period than
when the availability transition was in progress and the file load was below the
optimal one of α g (1). Then, we have K := 3, and so both.

Assume now a file that has currently N = 32 buckets and is growing up to
N = 256, hence it is 2-available. The file tolerates the unavailability of buckets
8 and 9 and, separately, that of bucket 10. However, unavailability of buckets
8–10 is catastrophic. Consider then rather the choice of m = N1 = 16 for the
file starting with K = 2. The storage overhead remains the same, hence is α f .
Now, the file tolerates that unavailability as well, even that of up to any four
buckets among 1 to 16.

Consider further the choice of m = 256 and of N1 = 8. Then, K ′ = 1 until N =
16, K ′ = 2 until N = 128, then K ′ = 3 and so on. For N = 8, α f = αd/(11/8) ≈
0.62. For N = 9, it drops to αd/(11/4) ≈ 0.56. It increases monotonically again
to α f αd/(11/8) for N16 when the file becomes 2-available. Next, it continues to
increase towards α f = αd/(12/64) ≈ 0.68 for N = 64. For N = 65, it decreases
again to α f = αd/(13/64) ≈ 0.67. Next, it increases back to 0.68 for N = 128
when the file becomes 3-available. It continues towards almost 0.7 when N
scales. And so on, with α f about constantly equal to almost 0.7 for all practical
file sizes. The file has to reach N = 23k+1 buckets to become k-available. For
instance, it has to scale to a quite sizable 32M buckets to reach k = 8. The file
still keeps the parity overhead k/m, rather negligible since it is under 3%.
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Table VI. Messaging Costs of an LH∗
RS File

Manipulation Normal Mode (N) Degraded Mode (D)
Bucket Recovery (B) B ≈ (3 + 2m + 3k) + αd bm + αd b(l − 1) + 1 Not Applicable
Record Rec. (R) R ≈ 2 or 2(m − 1) Not Applicable
Search (S) SN ≈ 2 SD ≈ SN + R
Insert (I ) IN ≈ 4 or 2 + 3k ID ≈ 1 + IN + B
Delete (D) DN ≈ 2 or 1 + 3k DD ≈ 1 + DN + B
Scan (C) CN ≈ 1 + N CD ≈ CN + l (1 + B1)
Split (L) LN ≈ 1 + 0.5αd b(2IN = 1) LD ≈ LN + B
Merge (M ) MN = LN MD ≈ MN + B

12.2 Messaging

We calculate the messaging cost of a record manipulation as the number of
(logical) messages exchanged between the SDDS clients and servers to accom-
plish the operation. This performance measure has the advantage of being
independent of various practical factors such as network, CPU performance,
communication protocol, flow control strategy, bulk messaging policy and so
forth. We consider one message per-record sent or received, or a request for a
service, or a reply carrying no record. We assume reliable messaging. In par-
ticular, we consider that the network level handles message acknowledgments
unless this is part of the SDDS layer, for example, for the synchronous update of
the parity buckets. The sender considers a node unavailable if it cannot deliver
its message.

Table VI shows the typical messaging costs of an LH∗
RS file operation for both

normal and degraded mode. The expressions for the latter may refer to the costs
for the normal mode. We present the formulas for the dominant cost component.
Their derivation is quite easy, hence we only give an overview. More in depth
formulas such as those for average costs, seem difficult to derive. Their analysis
remains an open issue. Notice however that the analysis of the messaging costs
for LH∗ in [Litwin et al. 1996] applies to the messaging costs of LH∗

RS data
buckets alone in normal mode.

To evaluate bucket recovery cost in this way, we follow the scheme in Sec-
tion 4.1. A client encountering an unavailable bucket sends a message to the
coordinator. The coordinator responds by scanning the bucket group, receiving
acknowledgments of survivors, selecting spares, receiving acknowledgments
from them, and selecting the recovery manager. This gives us a maximum
of 3 + 2m + 3l setup messages (if l buckets have failed). Next, the recovery
manager reads m buckets filled on average with αb records each. It dispatches
the result to l−1 spares, using one message per-record, since we assume re-
liable delivery. We also assume that, typically, the coordinator finds only the
unavailable data buckets. Otherwise the recovery cost is higher as we recover
parity buckets in 2nd step, reading the m data buckets. Finally, the recovery
manager informs the coordinator.

For record recovery, the coordinator forwards the client request to an un-
available parity bucket. That looks for the rank of the record. If the record does
not exist, two messages follow, to the coordinator and to the client. Otherwise,
2(m−1) messages are typically, and at most, necessary to recover the record.
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The other costs formulas are straightforward. The formulas for the insert
and delete consider the use of 1PC or 2PC. We do not provide the formulas
for the updates. The cost of a blind update is that of an insert. The cost of a
conditional update is that of a key search, plus the cost of the blind one. Notice
however that because of the specific 2PC, the messages of an update to k > 1
parity buckets are sequential. The values of SN , IN , DN , and CN do not consider
any forwarding to reach the correct bucket. The calculus of CN considers the
propagation by multicast. We also assume that l unavailable buckets found are
each in a different group. The coefficient B1 denotes the recovery cost of a single
bucket. Several formulas can obviously be simplified without noticeable loss of
precision in practice. Some factors should be typically largely dominant, the B
costs especially.

The parity management does not impact the normal search costs. In contrast,
the parity overhead of the normal updating operations is substantial. For k = 1,
it doubles IN and DN costs with respect to those of LH∗. For k > 1, it is sub-
stantially more than the costs for manipulating the data buckets alone as in
LH∗. Already for k = 2, it implies IN = DN = 8. Each time we increment k, an
insert or delete incurs three more messages.

The parity overhead is similarly substantial for split and merge operations
as it depends on IN . The overhead of related updates is linearly dependent on k.
Through k and the scalable availability strategy, it is also indirectly dependant
on N . For the uncontrolled availability, the dependence is of the order of
O(logN1 N ). A rather large N1 should suffice in practice, usually, at least
N1 = 16. Thus this dependence should little affect the scalability of the file.

The messaging costs of recovery operations are linearly dependent on m and
l . The bucket recovery also depends linearly on b. While increasing m benefits
α f , it proportionally affects the recovery. To offset the incidence at B, one may
possibly decrease b accordingly. This increases CN for the same records, since N
increases accordingly. This does not mean, however, that the scan time increases
as well. In practice, it should often decrease.

13. VARIANTS

There are several ways to enhance the basic scheme with additional capabil-
ities or to amend the design choices so as to favor specific capabilities at the
expense of others. We now discuss a few such variations, potentially attractive
to some applications. We show the advantages, but also the price to pay for
them, with respect to the basic scheme. First, we address the messaging of the
parity records. Next, we discuss on-demand tuning of the availability level and
of the group size. We also discuss a variant where the data bucket nodes share
the load of the parity records. We recall that in the basic scheme, the parity and
data records are at separate nodes. The sharing substantially decreases the to-
tal number of nodes necessary for a larger file. Finally, we consider alternative
coding schemes.

13.1 Parity Messaging

Often an update changes only a small part of the existing data record. For
instance, this is the case with a relational database where an update concerns
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usually one or a few attributes among many. For such applications, the �-record
would consist mainly of zeros except for a few symbols. If we compress the
�-record and no longer have to transmit these zeroes explicitly, our messages
should be noticeably smaller.

Furthermore, in the basic scheme, the data bucket manages its messag-
ing to every parity bucket. It also manages the rank that it sends along with
the �-record. An alternative design sends the �-record only to the first parity
bucket, and without a rank. The first parity bucket assigns the rank. It is also
in charge of the updates to the k − 1 other parity buckets, if there are any,
using 1PC or 2PC. The drawback of the variant design is that updating needs
two rounds of messages; the advantage is simpler parity management at the
data buckets. The 1PC suffices for the dialog between the data bucket and the
first parity bucket. The management of the ranks also becomes transparent to
the data buckets, as well as the scalable availability. The parity subsystem is
more autonomous. An arbitrary 0-available SDDS scheme can be more easily
generalized to a highly-available scheme.

Finally, it is also possible to avoid the commit ordering during 2PC for up-
dates. It suffices to add to each parity record the commit state field which we
call S. The field has the binary value sl per lth data bucket in the group. When
a parity bucket p gets the commit message from this bucket, it sets sl to sl = sl
XOR 1. If bucket p alerts the coordinator because of lack of a commit message,
the coordinator probes all other available parity buckets for their sl . The parity
update is done if and only if any bucket p′ probed had sp′

l �= sp
l . Recall that the

update is posted to all or none of the available parity buckets that are not in
the ready-to-commit state during the probing. The coordinator synchronizes the
parity buckets accordingly, using the �-record in the differential file of bucket
p. The advantage is a faster commit process since the data bucket may send
messages in parallel. The disadvantage is an additional field to manage, only
necessary for updates.

13.2 Availability Tuning

We can add to the basic data record manipulations the operations over the
parity management. First, we may wish to be able to decrease or increase the
availability level K of the file. Such availability tuning could perhaps reflect
past experience. It differs from scalable availability, where splits change k in-
crementally. To decrease K , we drop, in one operation, the last parity bucket(s)
of every bucket group. Vice versa, to increase the availability, we add the parity
bucket(s) and records to every group. The parity overhead decreases or increases
accordingly as well as the cost of updates.

More precisely, to decrease the availability of a group from k > 1 to k − 1,
it suffices to delete the kth parity bucket in the group. The parity records
in the remaining buckets do not need to be recomputed. Notice that this is
not true for some of the alternative coding schemes we discuss in the following.
This reorganization may be trivially set up in parallel for the entire file. As
the client might not have all the data buckets in its image, it may use as the
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basis the scan operation discussed previously. Alternatively, it may simply send
the query to the coordinator. The need being rare, there is no danger of a hot
spot.

To add a parity bucket to a group requires a new node for it, with (k + 1)
column of Q (or P). Next, one should read all the data records in the group and
calculate the new parity records as if each data record was an insert. Various
strategies exist to efficiently read data buckets in parallel. Their efficiency re-
mains for further study. As noted previously, it is easy to set up the operation in
parallel for all the groups in the file. Also, as noted, the existing parity records
do not need the recalculation, unlike other candidate coding schemes for LH∗

RS
that we investigate later.

Adding a parity bucket operation can be concurrent with normal data bucket
updates. Some synchronization is, however, necessary for the new bucket. For
instance, the data buckets may be made aware of the existence of this bucket
before it requests the first data records. As a result, they will start sending the
�-record for each update coming afterwards. Next, the new bucket may create
its parity records in their rank order. Then the bucket encodes any incoming
�-record it did not request. This, provided it already has created the parity
record, hence it processed its rank. It disregards any other �-record. In both
cases, it commits the �-record. The parity record will include the disregarded
�-record when the bucket will encode the data records with that rank, then
also requesting the �-record.

13.3 Group Size Tuning

We recall that the group size m for LH∗
RS is a power of two. The group size tuning

may double or halve m synchronously for the entire file one or more times. The
doubling merges two successive groups, which we will call left and right, that
become a single group of 2m buckets. The first left-group starts with bucket
0. Typically the merged groups each have k parity buckets. Seldom the right
group will have an availability level of k −1 when the split pointer is in the left
group and the file is changing its availability level. We discuss the former case
only. The generalization to the latter and to the entire file is trivial.

The operation reuses the k buckets of the left group as the parity buckets
for the new group. Each of the k − 1 columns of the parity matrices P and Q
for the parity buckets other than the first one is, however, now provided with
2m elements instead of top m only as previously. The parity for the new group
is computed in these buckets as if all the data records in the right group were
reinserted to the file. There are a number of ways to perform this operation
efficiently that remain for further study. It is easy to see, however, that, for the
first new parity bucket, a faster computation may consist simply in XORing
rank-wise the B-field of each record with that of the parity record in the first
bucket of the right group, and unioning their key lists. Once the merge ends,
the former parity buckets of the right group are discarded.

In contrast, the group size halving splits each group into two. The existing
k parity buckets become those of the new left group. The right group gets k
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new empty parity buckets. In both sets of parity buckets, the columns of P or
Q need only the top m elements. Afterwards, each record of the right group is
read. It is then encoded into the existing buckets as if it was deleted, that is, its
key is removed from the key list of its parity records and its nonkey data are
XORed to the B-fields of these records. At in the same time, it is encoded into
the new parity buckets as if it was just inserted into the file. Again, there are
a number of ways to implement the group size halving efficiently that remain
open for study.

13.4 Parity Load Balancing

In the basic scheme, the data and parity buckets are at separate nodes. A
parity bucket also sustains the updating processing load up to m times that
of the update load of a data bucket as all the data buckets in the group may
get updated simultaneously. The scheme requires about Nk/m nodes for the
parity buckets, in addition to N data bucket nodes. This number scales out
with the file. In practice, for a larger file, for example, on N = 1K data nodes
with m = 16 and K = 2, this leads to 128 parity nodes. These parity nodes do
not carry any load for queries. On the other hand, the update load on a parity
bucket is about 16 times that of a data bucket. If there are intensive burst of
updates, the parity nodes could form a bottleneck that slows down commits.
This argues against using larger m. Besides, some user may be troubled with
the sheer number of additional nodes.

The following variant decreases the storage and processing load of the par-
ity records on the nodes supporting them. This happens provided that k ≤ m
which seems a practical assumption. It also balances the load so that the parity
records are located mostly on data bucket nodes. This reduces the number of ad-
ditional nodes needed for the parity records to m at most. The variant works as
follows.

Consider the ith parity record in the record group with rank r, i = 0, 1 . . . k −
1. Assume that for each (data) bucket group, there is a parity bucket group of
m buckets, numbered 0, 1 . . . m − 1, of capacity kb/m records each. Store each
parity record in parity bucket j = (r + i) mod m. Do it as the primary record, or
an overflow one if needed, as usual. Place the m parity buckets of the first group,
that is, containing data buckets 0, . . . , m−1, on the nodes of the data buckets of
its immediately right group, that is, with data buckets m, . . . , 2m−1. Place the
parity records of this group on the nodes of its (immediately) left group. Repeat
for any next groups while the file scales out.

The result is that each parity record of a record group is in a different parity
bucket. Thus, if we no longer can access a parity bucket, then we lose access to a
single parity record per group. This is the key requirement to the k-availability
for the basic scheme. The LH∗

RS file remains, consequently, K available. The
parity storage overhead, that is, the parity bucket size at a node, decreases
now uniformly by factor m/k. In our example, it divides by 8. The update load
on a parity bucket also becomes twice that of a data bucket. In general, the total
processing and storage load is about balanced over the data nodes for both the
updates and searches.
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The file needs, at most, m additional nodes for the parity records. This hap-
pens when the last group is the left one and the last file bucket N − 1 is its
last one. When this bucket is the last in a right group, the overhead is zero. On
average over N , the file needs m/2 additional nodes. The number of additional
nodes becomes a constant and a parameter, independent of the file size. The
total number of nodes for the file becomes N + m at worst. For a larger file, the
difference with respect to the basic scheme is substantial. In our example, the
number of additional nodes drops from 128 to 8 at most and 4 on average. In
other words, it reduces from 12.5% to less than 1% at worst. For our N = 1K ,
it drops, in fact, to zero since the last group is the right one. The file remains
2-available.

Partitioning should usually also shrink the recovery time. The recovery op-
eration can now occur in parallel at each parity bucket. The time for decoding
the data records in the l unavailable data buckets is then close to l /m fraction of
the basic one. In our previous example, the time to decode a double unavailabil-
ity decreases accordingly 8 times. The total recovery time would not decrease
that much. There are other phases of the recovery process whose time remains
basically unchanged. The available data records still have to be sent to the
buckets performing the operation, the decoded records have to be sent to the
spare and inserted there, and so on. A deeper design and performance analysis
of the scheme remain to be done.

Notice finally, that if n > 1 nodes, possibly spares may participate in the
recovery calculus, then the idea described above previously of partitioning a
parity bucket onto the n nodes may be usefully applied to speed up the recovery
phase. The partitioning would become dynamically the first step of the recovery
process. As discussed, this would decrease the calculus time by a factor possibly
reaching l/n. The overall recovery time may improve as well. The gain may be
substantial for large buckets and n 	 1.

13.5 Alternative Erasure Correcting Codes

In principle, we can retain the basic LH∗
RS architecture with a different era-

sure correcting code. The interest in these codes stems first from the interest
in higher availability RAID [Hellerstein et al. 1994; Schwarz and Burkhard
1996; Burkhard and Menon 1993; Blaum et al. 1993; Blaum et al. 1995; Blomer
et al. 1995; Schwabe and Sutherland 1996]. Proposals for high-availability stor-
age systems [Cooley et al. 2003; Zin et al. 2003] (encompassing thousands of
disks for applications such as large email servers [Manasse 2002]), massive
downloads over the World Wide Web [Byers et al. 1998; Byers et al. 1999], and
globally distributed storage [Anderson and Kubiatowicz 2002; Weather-Spoon
and Kubiatowicz 2002] maintain constant interest in new erasure correcting
codes. These may compare favorably with generalized Reed-Solomon codes. (In
addition, decoding Reed-Solomon codes has made great strides [Sudan 1997;
Guruswami and Sudan 1999], but we use them only for erasure correction for
which classic linear algebra seems best.) Nevertheless, one has to be careful to
carry over the conclusions about the fitness of a code to LH∗

RS. Our scheme is,
indeed, largely different from these applications. It favors smaller group sizes
(to limit communication costs during recovery), utilizes main memory (hence
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is sensitive to parity overhead), can recover small units (the individual record),
has scalable availability, and so forth.

We will now discuss replacing our code with other erasure correcting codes
within the scope of our scheme. Certain codes allow a trade-off with performance
factors. Typically, a variant can offer faster calculus than our scheme at the
expense of parity storage overhead or limitations on the maximum value of k.
For the sake of comparison, we first list a number of necessary and desirable
properties for a code. Next, we discuss how our code fits them. Finally, we use
the framework for the analysis.

The design Properties for an Erasure Correcting Code for LH∗
RS include the

following:

(1) Systematic code. The code words consist of data symbols concatenated with
parity symbols. This means that the application data remains unchanged
and that the parity symbols are stored separately.

(2) Linear code. We can use �-records when we update, insert or delete a single
data record. Otherwise, after a change, we would have to access all data
records and recalculate all parity from them.

(3) Minimal, or near-minimal, parity storage overhead.
(4) Fast encoding and decoding.
(5) Constant bucket group size, independent of the availability level.

Notice that it is property (2) that also allows us to compress the delta
record by only transmitting nonzero symbols and their location within the delta
record.

Our codes (as defined in Section 3) fulfill all these properties. They are sys-
tematic and linear. They have minimal possible overhead for parity data within
a group of any size. This is a consequence of being Maximum Distance Separable
(MDS). Since the parity matrix contains a column of ones, record reconstruction
in the most important case (a single data record unavailability) proceeds at the
highest speed possible. As long as k = 1, any update incurs the minimal parity
update cost for the same reason. In addition, for any k, updates to a group’s
first data bucket will also result in XORing because of the row of ones in the
parity matrix. Finally, we can use the logarithmic matrices.

Our performance results (Section 5) show that the update performance at the
second, third, and so on, parity buckets is adequate. We recall that, for GF(216),
the slow down was 10% for the 2nd parity bucket and an additional 7 % for
the 3rd one, with respect to the 1st bucket only (Table III). It is impossible to
improve the parity matrix further by introducing additional one-coefficients to
avoid GF multiplication (we omit the proof of this statement). Next, a bucket
group can be extended to a total of n = 257 or n = 65, 537, depending upon
whether we use the Galois field with 28 or 216 elements. Up to these bounds,
we can freely choose m and k, subject to m + k = n, in particular, we can keep
m constant. An additional nice property is that small changes in a data record
result in small changes in the parity records. In particular, if a single bit is
changed, then a single parity symbol only in each parity record changes (except
for the first parity record where only a single bit changes).
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Fig. 15. Convolutional array code.

Candidate codes are two-dimensional codes in which the parity symbols are
the XOR of symbols in lines in one or more directions. One type is the convo-
lutional array codes that we discuss now. We address some others later in this
section. The convolutional codes were developed originally for tapes, adding
parity tracks with parity records to the data tracks with data records
[Prusinkiewicz and Budkowski 1976; Patel 1985; Fuja et al. 1986]. Figure 15
shows an example with m = 3 data records and k = 3 parity records. The data
records form the three left-most columns, that is, a0, a1, . . . , b0, b1, . . . , c0, c1, . . .

Data record symbols with indices higher than the length of the data record are
zero; in our figure, this applies to a6, a7, and so on. The next three columns
numbered K = 0, 1, 2 contain the parity records. The record in parity col-
umn 0 contains the XOR of the data records along a line of slope 0, that is,
a horizontal line. Parity column 1 contains the XOR of data record symbols
aligned in a line of slope 1. The final column contains the XOR along a line of
slope 2.

The last two columns are longer than the data columns. They have an over-
hang of 2 and 4 symbols, respectively. In general, parity record or column K
has an overhang of K (m−1) symbols. A group with k parity records and m data
records of length L has a combined overhang of k(k − 1)(m − 1)/2 symbols so
that the parity overhead comes to k

m + k(k−1)(m−1)
2mL symbols. The first addend is

the minimal storage overhead of any MDS code. The second addend shows that
a convolutional array code with k > 1 is not MDS. The difference is, however,
typically not significant. For instance, choosing k = 5, m = 4, and L = 100 (the
record length in our experiments) adds only 5%.

The attractive property of a convolutional code in our context is its updating
and decoding speed. During an update, we change all parity records only by
XORing them with the �-record. We start at different positions in each parity
record, see Figure 15. The updates proceed at the fastest possible speed for all
data and parity buckets. Unlike our case, this is true only for the first parity
bucket and the first data bucket. Likewise, the decoding iterates by XORing and
shifting of records. This should be faster than our GF multiplications. Notice,
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Fig. 16. A codeword of B2(5) with a fictional row of zeroes added.

however, that writing a generic decoding algorithm for any m and k is more
difficult than for the RS code.

All things considered, these codes can replace RS codes in the LH∗
RS frame-

work, offering faster performance at the costs of larger parity overhead. Notice
that we can also reduce the parity overhead by using negative slopes at the
added expense of the decoding complexity (inversion of a matrix in the field of
Laurent series over GF(2)).

Block array codes are another type of codes that are MDS. They avoid the
overhang in the parity records. As an example, we sketch the code family Bk(p),
[Blaum et al. 1998], where k is the availability level and p is a prime, corre-
sponding to our m, that is, p ≥ k + m. Prime p is not a restriction since we may
introduce dummy symbols and data records.

In Figure 15 for instance, ai, bi, ci with i > 5 are dummy symbols. Next, in
Figure 16, we have chosen k = 2 and m = 3, hence p = 5. We encode first four
symbols from three data records a0, a1, . . . , b0, b1, . . . , and c0, c1, . . . The pattern
repeats, following symbols in groups of four symbols. We arrange the data and
parity records as the columns of a 4 by 5 matrix. For ease of presentation and
because slopes are generally defined for square matrices, we added a fictional
row of zeroes (which are not stored). We now require that the five symbols in
all rows and all lines of slope -1 in the resulting 5 by 5 matrix have parity zero.
The line in parentheses in Figure 15 is the third such line.

Block array codes are linear and systematic. As for our code, we update the
parity records using �-records. As the figure illustrates, we only use XORing.
In contrast to our code and to the convolutional array code, the calculus of
most parity symbols involves more than one �-record symbol. For example, the
updating of the 1st parity symbol in Figure 16 requires XORing of two symbols of
any �-record, for instance, the first and second symbol of the �-record if record
a0, a1, . . . changes. This results in between one and two times more XORing.
Decoding turns out to have about the same complexity as encoding for k = 2.
All this should translate into faster processing than for our code.

For k ≥ 3, we generalize by using k parity columns, increasing p if needed,
and requiring parity zero along additional slopes −2, −3, and so forth. In our
example, increasing k to 3 involves setting p to the next prime, which is 7, to
accommodate the additional parity column and adding a dummy data record
to each record group. We could use p = 7 also for k = 2, but this choice
slows down the encoding by adding terms to XOR in the parity expressions.
The main problem with Bk(p) for k > 2 is that the decoding algorithm be-
comes fundamentally more complicated than for k = 2. Judging from the
available literature, an implementation is not trivial, and we can guess that
even an optimized decoder should perform slower than our RS decoder, [Blaum
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et al. 1998]. All things considered, using Bk(p) does not seem a good choice for
k > 2.

The EvenOdd code, [Blaum et al. 1993, 1995, 1998], is a variant of B2(p)
that improves encoding and decoding. The idea is that the 1st parity column
is the usual parity, and the 2nd parity column is either the parity or its bi-
nary complement of all the diagonals of the data columns with the exception
of a special diagonal whose parity decides on the alternative to be used. The
experimental analysis in Schwarz [2003] showed that both encoding and de-
coding of EvenOdd are faster than for our fastest RS code. In the experiment,
EvenOdd repaired a double record erasure four times faster. The experiment
did not measure the network delay so that the actual performance advantage is
less pronounced. It is, therefore, attractive to consider a variant of LH∗

RS using
EvenOdd for k = 2. An alternative to EvenOdd is the Row-Diagonal Parity code
presented in Corbett et al. [2004].

EvenOdd can be generalized to k > 2, [Blaum et al. 1998]. For k = 3, one
obtains an MDS code with the same difficulties of decoding as for B3(p). For
k > 3, the result is known to not be MDS.

A final block-array code for k = 2 is X-code [Xu and Bruck 1999]. These have
zero parity only along the lines with slopes 1 and −1 and, as all block-array
codes, use only XORing for encoding and decoding. They too seem to be faster
than our code, but they cannot be generalized to higher values of k.

Low density parity check (LDPC) codes are systematic and linear codes that
use a large M × N parity matrix with only zero and one coefficients [Alon et al.
1995; Berrou and Glavieux 1996; Gallager 1963; Mackay and Neal 1997, 1999;
Mackay 2000]. We can use bits, bytes, words, or larger bit strings as symbols.
The weights, that is the number of ones in a parity matrix column or row are
always small, and often a constant. Recent research (e.g., Luby [1997], [Cooley
et al. 2003]) established the advantage of varying weights. We obtain the parity
symbols by multiplying the M -dimensional vector of data units with the parity
matrix. Thus, we generate a parity symbol by XORing w data units, where w
denotes the column weight.

Good LDPC codes use sparse matrix computation to calculate most parity
symbols, resulting in fast encoding. Fast decoders exist as well [Mackay 2000].
LDPC codes are not MDS, but good ones come close to being MDS. Speed and
closeness to MDS improve as the matrix size increases. The Digital Fountain
project used a Tornado (LDPC) code for M = 16000, with 11% additional storage
overhead at most [Byers et al. 1998]. Mackay [2000] gives a very fast decoding
LDPC with M = 10, 000.

There are several ways to apply sparse matrix codes to LH∗
RS. One is to

choose the byte as the data unit size and use chunks of M/m bytes per data
bucket. Each block of M bytes is distributed so the ith chunk is in ith bucket.
Successive chunks in a bucket come from successive blocks. The number of
chunks and their size determines the bucket length.

Currently, the best M values are large. A larger choice of m increases the
load on the parity record during the updates similar to the record groups using
our coding. This choice also increases recovery cost. However, the choice of the
m value is less critical as there is no m by m matrix inversion. Practical values
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of m appear to be m = 4, 8, 16, 32. If the application record is in Kbytes, then
a larger m allows for a few chunks per record or a single one. If the record
size is not a chunk multiple, then we pad the last bytes with zeros. One can
use �-records calculated over the chunk(s) of the updated data record to send
updates to the parity buckets since LDPC codes are linear.

If application data records consist of hundreds of bytes or smaller, then it
seems best to pack several records into a chunk. As typical updates address
only a single record at a time, we should use compressed �-records. Unlike our
code, however, an update will usually change more parity symbols than in the
compressed �-record. This obviously comparatively affects the encoding speed.

In both cases, the parity records would consists of full parity chunks of size
M/m+ε, where ε reflects the deviation from MDS, for example, the 11% quoted
previously. The padding, if any, introduces some additional overhead. The in-
cidence of all the discussed details on the performance of the LDPC coding
within LH∗

RS as well as further related design issues are open research prob-
lems. At this stage, all things considered, the attractiveness of LDPC codes is
their encoding and decoding speed which is close to the fastest possible, that
is, of the symbol-wise XORing of the data and parity symbols, like the first
parity record of our coding scheme [Byers et al. 1999]. Notice, however, that
encoding and decoding are only part of the processing cost in LH∗

RS parity man-
agement. The figures in Section 5 show that the difference in processing using
only the first parity bucket and the others is not that pronounced. Thus, the
speed-up resulting from replacing RS with a potentially faster code is limited.
Notice also that finding good LDPC codes for smaller M is an active research
area.

RAID Codes. The interest in RAID generated specialized erasure correct-
ing codes. One approach is XOR operations only, generating parity data for
a k-available disk array with typical values of k = 2 and k = 3, for example,
Hellerstein et al. [1994], Chee and Colbourn [2000], Cohen and Colbourn [2001].
For a larger k, the only RAID code known to us is based on the k-dimensional
cube. RAID codes are designed for a relatively large number of disks, for ex-
ample, more than 20 in the array. Each time we scale from k = 2 to k = 3
and beyond, we change the number of data disks. Implementing these chang-
ing group sizes would destroy the LH∗

RS architecture but could result in some
interesting scalable availability variant of LH∗.

For the sake of completeness, we finally mention other flavors of general-
ized RS codes used in erasure correction, but not suited for LH∗

RS. The Digital
Fountain project used a nonsystematic RS code in order to speed up the ma-
trix inversion during decoding. The Kohinoor project developed a specialized
RS code for group size n = 257 and k = 3 for a large disk array to support
an email server. Plank [1997] seemed to give a simpler and longer (and hence
better) generator matrix for an RS code, but Plank and Ding [2003] retracts
this statement.
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