Minimum Eigenvalue Routines and Nonconvex Optimization

Clément W. Royer

SIAM Conference on Applied Linear Algebra - May 16, 2024

Welcome to this mini-symposium!

Negative eigenvalues and nonconvex optimization

- Motivation: Interest for nonconvex problems in data science.
- Tool: Second-order derivatives (matrices).
- Question: Use of eigenvalues.

Welcome to this mini-symposium!

Negative eigenvalues and nonconvex optimization

- Motivation: Interest for nonconvex problems in data science.
- Tool: Second-order derivatives (matrices).
- Question: Use of eigenvalues.

This talk

- Quick introduction to the topic;
- One result on minimum eigenvalue estimation.

Setup

Optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

$f \in \mathcal{C}^{2}$, bounded below, nonconvex.

Key property
If $x^{*} \in \operatorname{argmin}_{x} f(x)$, then

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f\left(x^{*}\right) \succeq 0 .
$$

Setup

Optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

$f \in \mathcal{C}^{2}$, bounded below, nonconvex.

Key property
If $x^{*} \in \operatorname{argmin}_{x} f(x)$, then

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f\left(x^{*}\right) \succeq 0 .
$$

Setup

Optimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

$f \in \mathcal{C}^{2}$, bounded below, nonconvex.

Key property
If $x^{*} \in \operatorname{argmin}_{x} f(x)$, then

$$
\nabla f\left(x^{*}\right)=0, \quad \nabla^{2} f\left(x^{*}\right) \succeq 0
$$

Corollary
If $\exists d$ such that $d^{\mathrm{T}} \nabla^{2} f(x) d<0$ (negative curvature direction), then x cannot be a minimum.

Nonconvexity and minima

Solutions of $\min _{x \in \mathbb{R}^{n}} f(x)$

- For convex functions, $\nabla f\left(x^{*}\right)=0 \Rightarrow x$ global minimum of f.
- Not true for general nonconvex functions.
- True if $\nabla^{2} f\left(x^{*}\right) \succeq 0$ for some problems.

Nonconvexity and minima

Solutions of $\min _{x \in \mathbb{R}^{n}} f(x)$

- For convex functions, $\nabla f\left(x^{*}\right)=0 \Rightarrow x$ global minimum of f.
- Not true for general nonconvex functions.
- True if $\nabla^{2} f\left(x^{*}\right) \succeq 0$ for some problems.

A tool: Landscape analysis

- Look at points for which $\nabla f(x)=0$;
- Use (especially) Hessian eigenvalues to assess the nature of these points!

Iskander's talk will focus on landscape!

From convergence to complexity

Worst-case complexity

Given $\epsilon \in(0,1)$, bound the worst-case cost of an algorithm to find x such that

$$
\|\nabla f(x)\| \leq \epsilon, \quad \lambda_{\min }\left(\nabla^{2} f(x)\right) \geq-\epsilon
$$

Cost: Number of iterations, derivative evaluations, etc.

From convergence to complexity

Worst-case complexity

Given $\epsilon \in(0,1)$, bound the worst-case cost of an algorithm to find x such that

$$
\|\nabla f(x)\| \leq \epsilon, \quad \lambda_{\min }\left(\nabla^{2} f(x)\right) \geq-\epsilon
$$

Cost: Number of iterations, derivative evaluations, etc.

Good complexity results

- Small dependencies in ϵ.
- Few accesses to $\nabla^{2} f(x)$ or $\nabla^{2} f(x) v$.

Such bounds will appear in Sadok's talk!

Local convergence

- Close enough to a solution;
- For gradient-based methods, can be slowed on ill-conditioned problems.

Hessian eigenvalues and convergence

Local convergence

- Close enough to a solution;
- For gradient-based methods, can be slowed on ill-conditioned problems.

What about Hessians and eigenvalues?

- Using Hessians accounts for conditioning.
- Small eigenvalues make analysis more tricky.

See Irène's talk for more!

What l'd like to talk about

- Estimating a minimum (Hessian) matrix eigenvalue...
- Estimating a minimum (Hessian) matrix eigenvalue...
- ...using randomized techniques...
- Estimating a minimum (Hessian) matrix eigenvalue...
- ...using randomized techniques...
- ...for the indefinite setting.
- Estimating a minimum (Hessian) matrix eigenvalue...
- ...using randomized techniques...
- ...for the indefinite setting.
- Disclaimer: Guarantees are in exact arithmetic.
- Nice part: Randomness is pretty mild.
- Takeaway: You can use conjugate gradient for that!

Problem setup

In the background: $\min _{x \in \mathbb{R}^{n}} f(x)$

- Optimization procedure: $\left\{x_{k}\right\}_{k \in \mathbb{N}}$
- Would like to know if $\nabla^{2} f\left(x_{k}\right)$ has negative eigenvalues.
- For complexity: Sufficiently negative eigenvalues matter!

Problem setup

In the background: $\min _{x \in \mathbb{R}^{n}} f(x)$

- Optimization procedure: $\left\{x_{k}\right\}_{k \in \mathbb{N}}$
- Would like to know if $\nabla^{2} f\left(x_{k}\right)$ has negative eigenvalues.
- For complexity: Sufficiently negative eigenvalues matter!

A first problem

Given $A=A^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ and $\epsilon>0$,
(1) Either find a d such that $d^{\mathrm{T}} A d \leq-\epsilon\|d\|^{2}$,
(2) Or determine that $\lambda_{\text {min }}(A)>-\epsilon$.

Problem setup

In the background: $\min _{x \in \mathbb{R}^{n}} f(x)$

- Optimization procedure: $\left\{x_{k}\right\}_{k \in \mathbb{N}}$
- Would like to know if $\nabla^{2} f\left(x_{k}\right)$ has negative eigenvalues.
- For complexity: Sufficiently negative eigenvalues matter!

A first problem

Given $A=A^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ and $\epsilon>0$,
(1) Either find a d such that $d^{\mathrm{T}} A d \leq-\epsilon\|d\|^{2}$,
(2) Or determine that $\lambda_{\text {min }}(A)>-\epsilon$.

So...computing $\lambda_{\text {min }}(A)$?

The real problem

An approximate problem
Given $A=A^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ and $\epsilon>0$,
(1) Either find a d such that $d^{\mathrm{T}} A d \leq-\frac{1}{2} \epsilon\|d\|^{2}$,
(2) Or determine that $\lambda_{\min }(A)>-\epsilon$.

An approximate problem

Given $A=A^{\mathrm{T}} \in \mathbb{R}^{n \times n}$ and $\epsilon>0$,
(1) Either find a d such that $d^{\mathrm{T}} A d \leq-\frac{1}{2} \epsilon\|d\|^{2}$,
(2) Or determine that $\lambda_{\text {min }}(A)>-\epsilon$.

- No need for exact calculation of $\lambda_{\text {min }}(A)$.
- Enough for optimization purposes.
- Probabilistic guarantee \Rightarrow cheaper algorithms.

Minimum eigenvalue oracle

Definition

- Inputs: $A \in \mathbb{R}^{n \times n}$ symmetric, $\epsilon>0$.
- Outputs:
(1) Either $\left(d, d^{\mathrm{T}} A d\right)$ such that $d^{\mathrm{T}} A d \leq-\frac{\epsilon}{2}\|d\|^{2}$
(2) Or certificate that $\lambda_{\text {min }}(A)>-\epsilon$.

Minimum eigenvalue oracle

Definition

- Inputs: $A \in \mathbb{R}^{n \times n}$ symmetric, $\epsilon>0$.
- Outputs:
(1) Either $\left(d, d^{\mathrm{T}} A d\right)$ such that $d^{\mathrm{T}} A d \leq-\frac{\epsilon}{2}\|d\|^{2}$
(2) Or certificate that $\lambda_{\min }(A)>-\epsilon$.

Basic example: Exact eigenvalue calculation

- Output: $\lambda_{\text {min }}(A)$ and $d_{\text {min }}$ such that $A d_{\text {min }}=\lambda_{\text {min }} d_{\text {min }}$ if $\lambda_{\text {min }}(A) \leq-\epsilon$.
- Certificate: Deterministic.
- Cost: Exact eigenvalue/Full matrix calculation.
- Krylov subspaces

$$
\mathcal{K}_{j}(A, b)=\operatorname{span}\left(b, A b, \ldots, A^{j-1} b\right)
$$

- Krylov subspaces

$$
\mathcal{K}_{j}(A, b)=\operatorname{span}\left(b, A b, \ldots, A^{j-1} b\right)
$$

- Power method:

$$
d_{j+1}=A d_{j}, \quad d_{0}=b
$$

- Krylov subspaces

$$
\mathcal{K}_{j}(A, b)=\operatorname{span}\left(b, A b, \ldots, A^{j-1} b\right)
$$

- Power method:

$$
d_{j+1}=A d_{j}, \quad d_{0}=b
$$

- Lanczos method:

$$
d_{j+1} \in \underset{d \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\frac{1}{2} d^{\mathrm{T}} A d \quad \text { s.t. } \quad\|d\|=1, d \in \mathcal{K}_{j}(A, b)\right\}, \quad d_{0}=b .
$$

- Krylov subspaces

$$
\mathcal{K}_{j}(A, b)=\operatorname{span}\left(b, A b, \ldots, A^{j-1} b\right)
$$

- Power method:

$$
d_{j+1}=A d_{j}, \quad d_{0}=b
$$

- Lanczos method:

$$
d_{j+1} \in \underset{d \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\frac{1}{2} d^{\mathrm{T}} A d \quad \text { s.t. } \quad\|d\|=1, d \in \mathcal{K}_{j}(A, b)\right\}, \quad d_{0}=b .
$$

- If $A \succ 0$ and $b \sim \mathcal{U}\left(\mathbb{S}^{n-1}\right)$ can provide probabilistic guarantees for Power and Lanczos methods (1990s papers).
- Krylov subspaces

$$
\mathcal{K}_{j}(A, b)=\operatorname{span}\left(b, A b, \ldots, A^{j-1} b\right)
$$

- Power method:

$$
d_{j+1}=A d_{j}, \quad d_{0}=b
$$

- Lanczos method:

$$
d_{j+1} \in \underset{d \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\frac{1}{2} d^{\mathrm{T}} A d \quad \text { s.t. } \quad\|d\|=1, d \in \mathcal{K}_{j}(A, b)\right\}, \quad d_{0}=b .
$$

- If $A \succ 0$ and $b \sim \mathcal{U}\left(\mathbb{S}^{n-1}\right)$ can provide probabilistic guarantees for Power and Lanczos methods (1990s papers).
- Actually true when A is indefinite!

Theorem (From Kuczyński \& Woźniakowski '92)

Let $A \in \mathbb{R}^{n \times n}$ symmetric with $\|A\| \leq M, \delta, \epsilon \in[0,1)$. Apply Lanczos to A and $b \sim \mathcal{U}\left(\mathbb{S}^{n-1}\right)$. Then, after

$$
J=\min \left\{n,\left\lceil\frac{\ln \left(3 n / \delta^{2}\right)}{2} \sqrt{\frac{M}{\epsilon}}\right\rceil\right\} \quad \text { iterations }
$$

- Either $d_{J+1}^{T} A d d_{J+1} \leq-\frac{\epsilon}{2}$
- Or Lanczos certifies with probability at least $1-\delta$ that $A \succ-\epsilon I$.

Krylov-based methods (2/2)

Theorem (From Kuczyński \& Woźniakowski '92)

Let $A \in \mathbb{R}^{n \times n}$ symmetric with $\|A\| \leq M, \delta, \epsilon \in[0,1)$. Apply Lanczos to A and $b \sim \mathcal{U}\left(\mathbb{S}^{n-1}\right)$. Then, after

$$
J=\min \left\{n,\left\lceil\frac{\ln \left(3 n / \delta^{2}\right)}{2} \sqrt{\frac{M}{\epsilon}}\right\rceil\right\} \quad \text { iterations, }
$$

- Either $d_{J+1}^{T} A d_{J+1} \leq-\frac{\epsilon}{2}$
- Or Lanczos certifies with probability at least $1-\delta$ that $A \succ-\epsilon I$.
- Proof: Apply 1992 result to $M I-A \succ 0+u s e ~ K r y l o v ~ s u b s p a c e ~$ invariance

$$
\mathcal{K}_{j}(A, b)=\mathcal{K}_{j}(A+\gamma l, b) \quad \forall \gamma \in \mathbb{R}
$$

- For power method, bound worsens to $\frac{M}{\epsilon}$.

Conjugate gradient

Goal: Solve $A x=b$, where $A=A^{\mathrm{T}} \succ 0$.

Conjugate gradient method

Init: Set $x_{0}=0_{\mathbb{R}^{n}}, r_{0}=-b, p_{0}=b$.
For $j=0,1,2, \ldots$

- if $p_{j}^{T} A p_{j} \leq 0$ terminate.
- Compute $x_{j+1}=x_{j}+\frac{\left\|r_{j}\right\|^{2}}{p_{j}^{\mathrm{T}} A p_{j}} p_{j}$ and $r_{j+1}=A x_{j+1}+b$.
- Set $p_{j+1}=-r_{j+1}+\frac{\left\|r_{j+1}\right\|^{2}}{\left\|r_{j}\right\|^{2}} p_{j}$.
- Only requires $v \mapsto A v$ ("matrix-free").
- Terminate in $\leq n$ iterations in exact arithmetic when $H \succ 0$.
- Iteration j performed as long as $p_{j}^{T} A p_{j}>0$.

From Lanczos to CG

- CG and Lanczos work on the same Krylov subspaces.
- Negative curvature detected at the same iteration.
- CG and Lanczos work on the same Krylov subspaces.
- Negative curvature detected at the same iteration.

Theorem (R., O'Neill, Wright '20)

Given \bar{A}, b, let j be the smallest integer such that $\left.\bar{A}\right|_{\mathcal{K}_{j}(\bar{A}, b)} \nsucc 0$. Then,

- $d_{j+1}^{\mathrm{T}} \bar{A} d_{j+1} \leq 0$ (d_{j+1} Lanczos iterate);
- CG terminates due to $p_{j}^{\mathrm{T}} \bar{A} p_{j} \leq 0$ (p_{j} CG direction).

Theorem (R., O'Neill, Wright 2020)

Let $A \in \mathbb{R}^{n \times n}$ symmetric with $\|A\| \leq M, \delta, \epsilon \in[0,1)$, and CG be applied to

$$
\left(A+\frac{\epsilon}{2} I\right) y=b \quad \text { with } \quad b \sim \mathcal{U}\left(\mathbb{S}^{n-1}\right)
$$

Then, after

$$
J=\min \left\{n,\left\lceil\frac{\ln \left(3 n / \delta^{2}\right)}{2} \sqrt{\frac{M}{\epsilon}}\right\rceil\right\} \quad \text { iterations, }
$$

- Either CG finds negative curvature explicitly: $p_{J}^{\mathrm{T}}\left(A+\frac{\epsilon}{2} I\right) p_{J} \leq 0$;
- Or it certifies with probability at least $1-\delta$ that $A \succ-\epsilon I$.

What we have: CG routine to compute negative curvature directions.
What it brings us in optimization:

- Probabilistic certificate of second-order stationarity:

$$
\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon, \quad \lambda_{\min }\left(\nabla^{2} f\left(x_{k}\right)\right) \geq-\epsilon
$$

What we have: CG routine to compute negative curvature directions.
What it brings us in optimization:

- Probabilistic certificate of second-order stationarity:

$$
\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon, \quad \lambda_{\min }\left(\nabla^{2} f\left(x_{k}\right)\right) \geq-\epsilon
$$

- High-probability complexity bound $\mathcal{O}\left(\epsilon^{-7 / 2}\right)$.

What we have: CG routine to compute negative curvature directions.
What it brings us in optimization:

- Probabilistic certificate of second-order stationarity:

$$
\left\|\nabla f\left(x_{k}\right)\right\| \leq \epsilon, \quad \lambda_{\min }\left(\nabla^{2} f\left(x_{k}\right)\right) \geq-\epsilon
$$

- High-probability complexity bound $\mathcal{O}\left(\epsilon^{-7 / 2}\right)$.
- In practice: Only called once per algorithmic run.

Concluding with references

- Y. Carmon, J. C. Duchi, O. Hinder and A. Sidford, Accelerated methods for nonconvex optimization, SIAM Journal on Optimization, 2018.
- F. E. Curtis, D. P. Robinson, C. W. Royer and S. J. Wright, Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization, SIAM Journal on Optimization, 2021.
- J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start, SIAM Journal on Matrix Analysis and Applications, 1992.
- C. W. Royer, M. O'Neill and S. J. Wright, A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization, Mathematical Programming, 2020.
- J. A. Tropp, Randomized block Krylov methods for approximating extreme eigenvalues, Numerische Mathematik, 2022.

Concluding with references

- Y. Carmon, J. C. Duchi, O. Hinder and A. Sidford, Accelerated methods for nonconvex optimization, SIAM Journal on Optimization, 2018.
- F. E. Curtis, D. P. Robinson, C. W. Royer and S. J. Wright, Trust-region Newton-CG with strong second-order complexity guarantees for nonconvex optimization, SIAM Journal on Optimization, 2021.
- J. Kuczyński and H. Woźniakowski, Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start, SIAM Journal on Matrix Analysis and Applications, 1992.
- C. W. Royer, M. O'Neill and S. J. Wright, A Newton-CG algorithm with complexity guarantees for smooth unconstrained optimization, Mathematical Programming, 2020.
- J. A. Tropp, Randomized block Krylov methods for approximating extreme eigenvalues, Numerische Mathematik, 2022.

Thank you!

clement.royer@lamsade.dauphine.fr

