
Full-low evaluation methods for bound and linearly
constrained derivative-free optimization

Clément W. Royer

ISMP - July 26, 2024

C. W. Royer Full-Low DFO ISMP 2024 1



Academic family business

Oumaima Sohab (Lehigh⇒Meta AI) Luis Nunes Vicente (Lehigh)

Story
Extend unconstrained method to linear constraints;
Nice numerical findings!
Some theoretical guarantees.
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Problem setup

minimize
x∈Rn

f(x) s.t. x ∈ F := {x ∈ Rn | Ax = b, ℓ ≤ AI x ≤ u} .

with A ∈ Rm×n full row-rank, ℓ, u ∈ RmI , ℓ < u.

DFO setup
f may have a derivative...
...but we cannot use it in algorithms!

Our constraints
QUAK constraints (Le Digabel, Wild ’24).
Unrelaxable⇒ Feasible methods!
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DFO and bound/linear constraints

Sample (biased) bibliography
Model-based methods (Powell ’09, Gratton et al ’11, Curtis et al ’24).
Derivative-free line search (Lucidi/Sciandrone ’02,
Lucidi/Sciandrone/Tseng ’02, Brilli et al ’24).
Direct search (Abramson et al ’08, Audet/Le Digabel/Peyrega ’15,
Kolda et al ’03, Kolda et al ’06, Gratton et al ’19, Dzahini et al ’24).
More in (Audet, Hare ’17, Larson/Menickelly/Wild ’22)!

Our approach:
Extend the Full-Low Eval framework to handle linear constraints.
A. S. Berahas, O. Sohab, L. N. Vicente, Full-low evaluation methods for derivative-free
optimization, Optim. Methods Softw., 2022.
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The full-low evaluation framework

Inputs: x0 ∈ Rn, α0 > 0, t0 ∈ {Full-Eval, Low-Eval}.
For k = 0, 1, 2, . . .

If tk = Full-Eval, compute (xk+1, αk+1, tk+1) through a Full-Eval
iteration.
Otherwise, compute (xk+1, αk+1, tk+1) through a Low-Eval iteration.

Full-Eval: Most expensive procedure, typically better for smooth
problems.
Low-Eval: Least expensive procedure, well-suited for
nonsmoothness/noise.

Feasible version
Feasible starting point.
Both steps must preserve feasibility.
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A Full-Eval iteration: Projected gradient-type iteration

gk: Finite-difference gradient approximation;
pk: Gradient-related direction.

Full-Eval iteration(xk, αk):
Compute x̄k = PF [xk + pk].
Find βk ∈ {1, 12 ,

1
4 , . . . } such that

f(xk + βk(x̄k − xk)) ≤ f(xk) + c βkg
T
k (x̄k − xk).

with c ∈ (0, 1).
Set xk+1 = xk + βk(x̄k − xk).
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A Low-Eval iteration: Direct search

Forcing function ρ (typically ρ(α) = α2.
Generators of tangent cones for F .

Low-Eval iteration(xk, αk):
Compute Dk ⊂ Rn feasible directions.
If ∃dk ∈ Dk such that xk + αkdk ∈ F

f(xk + αkdk) ≤ f(xk)− ρ(αk),

set xk+1 = xk + αkdk and αk+1 = min(2αk, αmax).
Otherwise set xk+1 = xk and αk = αk/2.
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Detour: Tangent cones

Simplify: F = {l ≤ x ≤ u}.

Nearby constraints
The indexes

Iu(x, α) = {i : |ui − [x]i| ≤ α}
Il(x, α) = {i : |li − [x]i| ≤ α}

define the nearby constraints at x ∈ F given α > 0.

α
x α x
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Detour: tangent cones (2)

Approximate normal cone N(x, α): Positive span of

{ei}i∈Iu(x,α) ∪ {−ei}i∈Il(x,α) .

Approximate tangent cone T (x, α): polar of N(x, α).

x

N(x, α)

T (x, α)

T (x, α)

N(x, α)

x
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Algorithm
Inputs: x0 ∈ F , α0 > 0, t0 = Full-Eval, γ ∈ [0,∞].
For k = 0, 1, 2, . . .

tk = Full-Eval:

Compute x̄k = PF [xk + pk].
Find βk ∈ {1, 1

2 ,
1
4 , . . . } such that

f(xk + βk(x̄k − xk)) ≤ f(xk) + c βkg
T
k (x̄k − xk).

If βk ≥ γαk, set xk+1 = xk + βk(x̄k − xk), αk+1 = αk and
tk+1 = Full-Eval. Otherwise set xk+1 = xk, αk+1 = αk and
tk+1 = Low-Eval.

tk = Low-Eval:

Compute Dk ⊂ Rn feasible directions.
If ∃dk ∈ Dk such that xk + αkdk ∈ F and

f(xk + αkdk) ≤ f(xk)− ρ(αk),

set xk+1 = xk + αkdk, αk+1 = 2αk, tk+1 = Low-Eval.
Otherwise set xk+1 = xk, αk = αk/2.
Choose tk+1 depending on tk−1, . . . , tk−log1/2(βk).
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Switching procedure

From Full-Eval to Low-Eval
Switch to Low-Eval when βk < γαk.
γ = 0: Only Full-Eval.
γ = ∞: Only Low-Eval.

From Low-Eval to Full-Eval
log1/2(βk): Number of backtracks in the last Full-Eval iteration.
Switch to Full-Eval after log1/2(βk) unsuccessful Low-Eval
iterations.
γ = 0: No Low-Eval steps.
γ = ∞: Regular Low-Eval algorithm.
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Implementation

Full-Eval step
Use finite-difference BFGS direction: pk = −Hk gk.
Line-search condition:

f(xk+βk(PF [xk + pk]−xk)) ≤ f(xk)+10−8βk g
T
k (PF [xk + pk]−xk).

Per-step cost: n−m evaluations (Ax = b ∈ Rm) + line search.

Low-Eval step
Accept first point that satisfies

f(xk + αkdk) ≤ f(xk)−min{10−5, 10−5α2
k}.

Probabilistic feasible descent:
Use random directions in unconstrained subspaces!
Use random subsets of tangent cone generators otherwise.

Per-step cost: Number of generators.
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Low-Eval directions: Illustration for bound constraints

In Ck: Random subset of generators.

In Sk: Random one-dimensional subspace [d − d].

xkSk = ∅

Ck

C. W. Royer Full-Low DFO ISMP 2024 15



Low-Eval directions: Illustration for bound constraints

In Ck: Random subset of generators.

In Sk: Random one-dimensional subspace [d − d].

xk

Sk

Ck = ∅

C. W. Royer Full-Low DFO ISMP 2024 15



Low-Eval directions: Illustration for bound constraints

In Ck: Random subset of generators.
In Sk: Random one-dimensional subspace [d − d].

xk

Sk

Ck

C. W. Royer Full-Low DFO ISMP 2024 15



Comparison (MATLAB)

Us
ConstFLE: Full-Low framework with γ = 1.
ConstBFGS: Full-Eval steps only (γ = 0).
dspfd: Low-Eval steps only (γ = ∞).

Them
NOMAD (Montréal team!): MATLAB implementation,
no search step, progressive barrier for non-bound constraints.
patternsearch: Toolbox function, uses tangent cone generators.

Budget: 100(n+ 1) evaluations.
Criterion: f(x0)− f(xk) ≥ τ(f(x0)− fbest) (τ = 10−3).
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Smooth bound-constrained problems

41 CUTEst problems with bounds.
Dimensions: 2 ≤ n ≤ 20.
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Smooth linearly-constrained problems

40 CUTEst problems with at least one linear inequality constraint.
Dimensions: 2 ≤ n ≤ 15, 1 ≤ mI ≤ 2000.
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Nonsmooth linearly-constrained problems

52 nonsmooth problems with linear inequality constraints.
CUTEst problems+nonsmooth penalty terms for some constraints.
Dimensions: 2 ≤ n ≤ 20, 1 ≤ mI ≤ 15.
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Nonsmooth problems and linear inequalities

22 nonsmooth problems (Lukšan, Vleck ’00) with at least one linear
inequality constraint.
Dimensions: 2 ≤ n ≤ 20, 1 ≤ mI ≤ 15.
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Takeaways

Unconstrained takeaways (Berahas et al ’22)

Full-Eval steps good for smooth problems.
Low-Eval steps good for nonsmooth problems.

Linearly constrained takeaways

Full-Eval steps good for bounds (and linear equalities).
Low-Eval steps good for linear inequalities.
Nonsmoothness: We should have used structure!
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Algorithm (again)
Inputs: x0 ∈ F , α0 > 0, t0 = Full-Eval, γ ∈ [0,∞].
For k = 0, 1, 2, . . .

tk = Full-Eval:
Compute x̄k = PF [xk + pk].
Find βk ∈ {1, 1

2 ,
1
4 , . . . } such that

f(xk + βk(x̄k − xk)) ≤ f(xk) + c βkg
T
k (x̄k − xk).

If βk ≥ γαk, set xk+1 = xk + βk(x̄k − xk), αk+1 = αk and
tk+1 = Full-Eval. Otherwise set xk+1 = xk, αk+1 = αk and
tk+1 = Low-Eval.

tk = Low-Eval:
Compute Dk ⊂ Rn feasible directions.
If ∃dk ∈ Dk such that xk + αkdk ∈ F

f(xk + αkdk) ≤ f(xk)− ρ(αk),

set xk+1 = xk + αkdk, αk+1 = 2αk, tk+1 = Low-Eval.
Otherwise set xk+1 = xk, αk = αk/2.
Choose tk+1 depending on tk−1, . . . , tk−log1/2(βk).
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Theory: Smooth setting

Assumptions (problem)

f bounded below.
∇f Lipschitz continuous.

Convergence metric: ∥q(x)∥, q(x) := PF [x−∇f(x)]− x.

Assumptions (algorithm)

Accurate gradient estimate gk

∥gk −∇f(xk)∥ ≤ ug∥qgk∥, qgk := PF [xk − gk]− xk.

Can be satisfied in finite time.
Descent-type direction:

pk = −gk ⇒ −gTk q
g
k ≥ ∥qgk∥

2.

More general conditions possible.
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Convergence in the smooth setting

Theorem
The method reaches xK such that

∥q(xK)∥ = ∥PF [xk −∇q(xk)]− xk∥ ≤ ϵ

in at most O(ϵ−2) successful Full-Eval steps.

Proof: Classical backtracking line search (if γ = 0, projected gradient
proof!).
Limitations: No function evaluation count.
On par with unconstrained case (Berahas et al ’22).
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Theory: nonsmooth setting

Assumptions (problem)

f bounded below.
f locally Lipschitz continuous.

Convergence metric: f◦(x; d) = lim sup y→x, y∈F
t↓0, y+td∈F

f(y+td)−f(y)
t .

Assumptions (algorithm)

Full-Eval steps satisfy ∥qgk∥ ≥ ϵg > 0.
{xk} bounded.

C. W. Royer Full-Low DFO ISMP 2024 26



Theory: nonsmooth setting

Assumptions (problem)

f bounded below.
f locally Lipschitz continuous.

Convergence metric: f◦(x; d) = lim sup y→x, y∈F
t↓0, y+td∈F

f(y+td)−f(y)
t .

Assumptions (algorithm)

Full-Eval steps satisfy ∥qgk∥ ≥ ϵg > 0.
{xk} bounded.

C. W. Royer Full-Low DFO ISMP 2024 26



Convergence in the nonsmooth setting

Theorem
There exists a subsequence of unsuccessful Low-Eval iterations K such
that

limk∈K xk = x∗ ∈ F .
f◦(x∗; d) ≥ 0 for any refining direction d

d ∈ R =

{
lim
k∈K

dk
∥dk∥

, dk ∈ Dk∀k ∈ K
}
.

Get stationarity with density assumptions on R.
Results purely based on Low-Eval steps behavior (if γ = ∞,
direct-search proof!)
Again matches the unconstrained setting.
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Summary

Full-low framework⇒linear constraints
Full steps for smoothness⇒ bound constraints?
Low-eval steps for nonsmoothness/noise ⇒ linear inequalities?

Our results and more
One implementation⇒ Many possible variants!
Good numerics⇒ Still room for improvement.
Theoretical support⇒ Stronger guarantees based on switching.

C. W. Royer Full-Low DFO ISMP 2024 28



That’s it!

References
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O. Sohab, PhD Thesis, defended July 9, 2024.
Code: https://github.com/sohaboumaima/FLE

Thank you!
clement.royer@lamsade.dauphine.fr
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