Full-low evaluation methods for bound and linearly constrained derivative-free optimization

Clément W. Royer

ISMP - July 26, 2024

Academic family business

Oumaima Sohab (Lehigh⇒Meta AI) Luis Nunes Vicente (Lehigh)

Oumaima Sohab (Lehigh⇒Meta AI) Luis Nunes Vicente (Lehigh)

Story

- **•** Extend unconstrained method to linear constraints;
- Nice numerical findings!
- Some theoretical guarantees.

1 [Full-low framework](#page-3-0)

- [Numerical results](#page-22-0)
- [Theoretical analysis](#page-33-0)

minimize $f(x)$ s.t. $x \in \mathcal{F} := \{x \in \mathbb{R}^n \mid Ax = b, \ell \leq A_\mathcal{I} x \leq u\}.$

with $A \in \mathbb{R}^{m \times n}$ full row-rank, $\ell, u \in \overline{\mathbb{R}}^{m_{\mathcal{I}}}, \; \ell < u.$

minimize $f(x)$ s.t. $x \in \mathcal{F} := \{x \in \mathbb{R}^n \mid Ax = b, \ell \leq A_\mathcal{I} x \leq u\}.$

with $A \in \mathbb{R}^{m \times n}$ full row-rank, $\ell, u \in \overline{\mathbb{R}}^{m_{\mathcal{I}}}, \; \ell < u.$

DFO setup

- \bullet f may have a derivative...
- ...but we cannot use it in algorithms!

minimize $f(x)$ s.t. $x \in \mathcal{F} := \{x \in \mathbb{R}^n \mid Ax = b, \ell \leq A_\mathcal{I} x \leq u\}.$

with $A \in \mathbb{R}^{m \times n}$ full row-rank, $\ell, u \in \overline{\mathbb{R}}^{m_{\mathcal{I}}}, \; \ell < u.$

DFO setup

- \bullet f may have a derivative...
- ...but we cannot use it in algorithms!

Our constraints

- QUAK constraints (Le Digabel, Wild '24).
- Unrelaxable⇒ Feasible methods!

Sample (biased) bibliography

- Model-based methods (Powell '09, Gratton et al '11, Curtis et al '24).
- Derivative-free line search (Lucidi/Sciandrone '02, Lucidi/Sciandrone/Tseng '02, Brilli et al '24).
- Direct search (Abramson et al '08, Audet/Le Digabel/Peyrega '15, Kolda et al '03, Kolda et al '06, Gratton et al '19, Dzahini et al '24).
- More in (Audet, Hare '17, Larson/Menickelly/Wild '22)!

Sample (biased) bibliography

- Model-based methods (Powell '09, Gratton et al '11, Curtis et al '24).
- Derivative-free line search (Lucidi/Sciandrone '02, Lucidi/Sciandrone/Tseng '02, Brilli et al '24).
- Direct search (Abramson et al '08, Audet/Le Digabel/Peyrega '15, Kolda et al '03, Kolda et al '06, Gratton et al '19, Dzahini et al '24).
- More in (Audet, Hare '17, Larson/Menickelly/Wild '22)!

Our approach: Extend the Full-Low Eval framework to handle linear constraints. A. S. Berahas, O. Sohab, L. N. Vicente, Full-low evaluation methods for derivative-free optimization, Optim. Methods Softw., 2022.

The full-low evaluation framework

Inputs: $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$, $t_0 \in \{\text{Full-Fval}, \text{Low-Eval}\}.$ For $k = 0, 1, 2, ...$

- If $t_k =$ Full-Eval, compute $(x_{k+1}, \alpha_{k+1}, t_{k+1})$ through a Full-Eval iteration.
- Otherwise, compute $(x_{k+1}, \alpha_{k+1}, t_{k+1})$ through a Low-Eval iteration.

The full-low evaluation framework

Inputs: $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$, $t_0 \in \{\text{Full-Fval}, \text{Low-Eval}\}.$ For $k = 0, 1, 2, ...$

- If t_k = Full-Eval, compute $(x_{k+1}, \alpha_{k+1}, t_{k+1})$ through a Full-Eval iteration.
- Otherwise, compute $(x_{k+1}, \alpha_{k+1}, t_{k+1})$ through a Low-Eval iteration.
- Full-Eval: Most expensive procedure, typically better for smooth problems.
- Low-Eval: Least expensive procedure, well-suited for nonsmoothness/noise.

The full-low evaluation framework

Inputs: $x_0 \in \mathcal{F}$, $\alpha_0 > 0$, $t_0 \in \{\text{Full-Eval}, \text{Low-Eval}\}.$ For $k = 0, 1, 2, ...$

- If t_k = Full-Eval, compute $(x_{k+1}, \alpha_{k+1}, t_{k+1})$ through a Full-Eval iteration.
- Otherwise, compute $(x_{k+1}, \alpha_{k+1}, t_{k+1})$ through a Low-Eval iteration.
- Full-Eval: Most expensive procedure, typically better for smooth problems.
- Low-Eval: Least expensive procedure, well-suited for nonsmoothness/noise.

Feasible version

- Feasible starting point.
- Both steps must preserve feasibility.
- \bullet q_k : Finite-difference gradient approximation;
- \bullet p_k : Gradient-related direction.
- \bullet q_k : Finite-difference gradient approximation;
- \bullet p_k : Gradient-related direction.

Full-Eval iteration (x_k, α_k) :

• Compute
$$
\bar{x}_k = P_{\mathcal{F}}[x_k + p_k]
$$
.

Find $\beta_k \in \{1, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{4}$ $\frac{1}{4}, \dots \}$ such that

$$
f(x_k + \beta_k(\bar{x}_k - x_k)) \le f(x_k) + c \beta_k g_k^{\mathrm{T}}(\bar{x}_k - x_k).
$$

with $c \in (0,1)$.

• Set
$$
x_{k+1} = x_k + \beta_k(\bar{x}_k - x_k)
$$
.

A Low-Eval iteration: Direct search

- Forcing function ρ (typically $\rho(\alpha)=\alpha^2.$
- Generators of tangent cones for F .

A Low-Eval iteration: Direct search

- Forcing function ρ (typically $\rho(\alpha)=\alpha^2.$
- Generators of tangent cones for \mathcal{F} .

Low-Eval iteration (x_k, α_k) :

- Compute $D_k \subset \mathbb{R}^n$ feasible directions.
- If $\exists d_k \in D_k$ such that $x_k + \alpha_k d_k \in \mathcal{F}$

$$
f(x_k + \alpha_k d_k) \le f(x_k) - \rho(\alpha_k),
$$

set $x_{k+1} = x_k + \alpha_k d_k$ and $\alpha_{k+1} = \min(2\alpha_k, \alpha_{\max})$.

• Otherwise set $x_{k+1} = x_k$ and $\alpha_k = \alpha_k/2$.

Detour: Tangent cones

• Simplify:
$$
\mathcal{F} = \{l \leq x \leq u\}.
$$

Nearby constraints

The indexes

$$
I_u(x, \alpha) = \{i : |u_i - [x]_i| \le \alpha\}
$$

$$
I_l(x, \alpha) = \{i : |l_i - [x]_i| \le \alpha\}
$$

define the nearby constraints at $x \in \mathcal{F}$ given $\alpha > 0$.

• Approximate normal cone $N(x, \alpha)$: Positive span of

$$
\{e_i\}_{i\in I_u(x,\alpha)}\cup\{-e_i\}_{i\in I_l(x,\alpha)}.
$$

• Approximate tangent cone $T(x, \alpha)$: polar of $N(x, \alpha)$.

Algorithm

Inputs: $x_0 \in \mathcal{F}$, $\alpha_0 > 0$, $t_0 = \text{Full-Eval}$, $\gamma \in [0, \infty]$. For $k = 0, 1, 2, ...$

 \bullet t_k = Full-Eval:

$$
\bullet \ \ t_k = \texttt{Low-Eval:}
$$

Algorithm

Inputs: $x_0 \in \mathcal{F}$, $\alpha_0 > 0$, $t_0 = \text{Full-Eval}$, $\gamma \in [0, \infty]$. For $k = 0, 1, 2, ...$

- \bullet t_k = Full-Eval:
	- Compute $\bar{x}_k = P_{\mathcal{F}} [x_k + p_k]$.
	- Find $\beta_k \in \{1, \frac{1}{2}, \frac{1}{4}, \dots\}$ such that

$$
f(x_k + \beta_k(\bar{x}_k - x_k)) \le f(x_k) + c \beta_k g_k^{\mathrm{T}}(\bar{x}_k - x_k).
$$

- If $\beta_k \geq \gamma \alpha_k$, set $x_{k+1} = x_k + \beta_k(\bar{x}_k x_k)$, $\alpha_{k+1} = \alpha_k$ and t_{k+1} = Full-Eval. Otherwise set $x_{k+1} = x_k$, $\alpha_{k+1} = \alpha_k$ and $t_{k+1} =$ Low-Eval.
- \bullet $t_k =$ Low-Eval:

Algorithm

Inputs: $x_0 \in \mathcal{F}$, $\alpha_0 > 0$, $t_0 = \text{Full-Eval}$, $\gamma \in [0, \infty]$. For $k = 0, 1, 2, ...$

- \bullet t_k = Full-Eval:
	- Compute $\bar{x}_k = P_{\mathcal{F}} [x_k + p_k]$.
	- Find $\beta_k \in \{1, \frac{1}{2}, \frac{1}{4}, \dots\}$ such that

$$
f(x_k + \beta_k(\bar{x}_k - x_k)) \le f(x_k) + c \beta_k g_k^{\mathrm{T}}(\bar{x}_k - x_k).
$$

- If $\beta_k \geq \gamma \alpha_k$, set $x_{k+1} = x_k + \beta_k(\bar{x}_k x_k)$, $\alpha_{k+1} = \alpha_k$ and t_{k+1} = Full-Eval. Otherwise set $x_{k+1} = x_k$, $\alpha_{k+1} = \alpha_k$ and $t_{k+1} =$ Low-Eval.
- \bullet $t_k =$ Low-Eval:
	- Compute $D_k \subset \mathbb{R}^n$ feasible directions.
	- If $\exists d_k \in D_k$ such that $x_k + \alpha_k d_k \in \mathcal{F}$ and

$$
f(x_k + \alpha_k d_k) \le f(x_k) - \rho(\alpha_k),
$$

set $x_{k+1} = x_k + \alpha_k d_k$, $\alpha_{k+1} = 2\alpha_k$, $t_{k+1} =$ Low-Eval.

• Otherwise set $x_{k+1} = x_k$, $\alpha_k = \alpha_k/2$. Choose t_{k+1} depending on $t_{k-1}, \ldots, t_{k-\log_{1/2}(\beta_k)}$.

From Full-Eval to Low-Eval

- Switch to Low-Eval when $\beta_k < \gamma \alpha_k$.
- $\bullet \ \gamma = 0$: Only Full-Eval.
- $\gamma = \infty$: Only Low-Eval.

From Low-Eval to Full-Eval

- $\log_{1/2}(\beta_k)$: Number of backtracks in the last Fu11-Eva1 iteration.
- Switch to Fu11–Eva1 after $\log_{1/2}(\beta_k)$ unsuccessful Low–Eva1 iterations.
- $\gamma = 0$: No Low-Eval steps.
- $\gamma = \infty$: Regular Low-Eval algorithm.

[Full-low framework](#page-3-0)

- 2 [Numerical results](#page-22-0)
	- [Theoretical analysis](#page-33-0)

Full-Eval step

- Use finite-difference BFGS direction: $p_k = -H_k q_k$.
- **o** Line-search condition:

 $f(x_k+\beta_k(P_{\mathcal{F}}[x_k+p_k]-x_k)) \le f(x_k)+10^{-8}\beta_k g_k^{\mathrm{T}}(P_{\mathcal{F}}[x_k+p_k]-x_k).$

Per-step cost: $n - m$ evaluations $(Ax = b \in \mathbb{R}^m)$ + line search.

Low-Eval step

• Accept first point that satisfies

$$
f(x_k + \alpha_k d_k) \le f(x_k) - \min\{10^{-5}, 10^{-5} \alpha_k^2\}.
$$

• Probabilistic feasible descent:

- Use random directions in unconstrained subspaces!
- Use random subsets of tangent cone generators otherwise.

Per-step cost: Number of generators.

Low-Eval directions: Illustration for bound constraints

• In C_k : Random subset of generators.

Low-Eval directions: Illustration for bound constraints

Low-Eval directions: Illustration for bound constraints

- In C_k : Random subset of generators.
- In S_k : Random one-dimensional subspace $[d d]$.

Comparison (MATLAB)

- **ConstFLE: Full-Low framework with** $\gamma = 1$.
- **ConstBFGS: Full-Eval steps only (** $\gamma = 0$).
- dspfd: Low-Eval steps only $(\gamma = \infty)$.

Them

- NOMAD (Montréal team!): MATLAB implementation, no search step, progressive barrier for non-bound constraints.
- patternsearch: Toolbox function, uses tangent cone generators.

\n- **Budget**:
$$
100(n + 1)
$$
 evaluations.
\n- **Criterion**: $f(x_0) - f(x_k) \geq \tau(f(x_0) - f_{best})$ $(\tau = 10^{-3})$.
\n

Smooth bound-constrained problems

- 41 CUTEst problems with bounds.
- Dimensions: $2 \le n \le 20$.

Smooth linearly-constrained problems

- 40 CUTEst problems with at least one linear inequality constraint.
- Dimensions: $2 \leq n \leq 15$, $1 \leq m_I \leq 2000$.

Nonsmooth linearly-constrained problems

- 52 nonsmooth problems with linear inequality constraints.
- CUTEst problems+nonsmooth penalty terms for some constraints.
- Dimensions: $2 \le n \le 20$, $1 \le m_I \le 15$.

Nonsmooth problems and linear inequalities

- 22 nonsmooth problems (Lukšan, Vleck '00) with at least one linear inequality constraint.
- Dimensions: $2 \le n \le 20$, $1 \le m_I \le 15$.

Unconstrained takeaways (Berahas et al '22)

- Full-Eval steps good for smooth problems.
- Low-Eval steps good for nonsmooth problems.

Linearly constrained takeaways

- Full-Eval steps good for bounds (and linear equalities).
- Low-Eval steps good for linear inequalities.
- Nonsmoothness: We should have used structure!

[Full-low framework](#page-3-0)

[Numerical results](#page-22-0)

3 [Theoretical analysis](#page-33-0)

Algorithm (again)

Inputs: $x_0 \in \mathcal{F}$, $\alpha_0 > 0$, $t_0 = \text{Full-Eval}$, $\gamma \in [0, \infty]$. For $k = 0, 1, 2, ...$

- \bullet t_k = Full-Eval:
	- Compute $\bar{x}_k = P_{\mathcal{F}} [x_k + p_k]$.
	- Find $\beta_k \in \{1, \frac{1}{2}, \frac{1}{4}, \dots\}$ such that

 $f(x_k + \beta_k(\bar{x}_k - x_k)) \leq f(x_k) + c \beta_k g_k^{\mathrm{T}}(\bar{x}_k - x_k).$

• If $\beta_k \geq \gamma \alpha_k$, set $x_{k+1} = x_k + \beta_k(\bar{x}_k - x_k)$, $\alpha_{k+1} = \alpha_k$ and t_{k+1} = Full-Eval. Otherwise set $x_{k+1} = x_k$, $\alpha_{k+1} = \alpha_k$ and $t_{k+1} =$ Low-Eval.

 \bullet $t_k =$ Low-Eval:

- Compute $D_k \subset \mathbb{R}^n$ feasible directions.
- If $\exists d_k \in D_k$ such that $x_k + \alpha_k d_k \in \mathcal{F}$

 $f(x_k + \alpha_k d_k) \leq f(x_k) - \rho(\alpha_k),$

set $x_{k+1} = x_k + \alpha_k d_k$, $\alpha_{k+1} = 2\alpha_k$, $t_{k+1} =$ Low-Eval.

• Otherwise set $x_{k+1} = x_k$, $\alpha_k = \alpha_k/2$. Choose t_{k+1} depending on $t_{k-1}, \ldots, t_{k-\log_{1/2}(\beta_k)}$.

Theory: Smooth setting

Assumptions (problem)

- \bullet f bounded below.
- $\bullet \nabla f$ Lipschitz continuous.

Convergence metric: $||q(x)||$, $q(x) := P_{\mathcal{F}} [x - \nabla f(x)] - x$.

Theory: Smooth setting

Assumptions (problem)

- \bullet f bounded below.
- \bullet ∇f Lipschitz continuous.

Convergence metric: $||q(x)||$, $q(x) := P_{\mathcal{F}} [x - \nabla f(x)] - x$.

Assumptions (algorithm)

• Accurate gradient estimate q_k

$$
||g_k - \nabla f(x_k)|| \leq u_g ||q_k^g||,
$$
 $q_k^g := P_{\mathcal{F}} [x_k - g_k] - x_k.$

Can be satisfied in finite time.

• Descent-type direction:

$$
p_k = -g_k \quad \Rightarrow \quad -g_k^{\mathrm{T}} q_k^g \ge ||q_k^g||^2.
$$

More general conditions possible.

Theorem

The method reaches x_K such that

$$
||q(x_K)|| = ||P_{\mathcal{F}}[x_k - \nabla q(x_k)] - x_k|| \le \epsilon
$$

in at most $\mathcal{O}(\epsilon^{-2})$ successful Fu11-Eva1 steps.

Theorem

The method reaches x_K such that

$$
||q(x_K)|| = ||P_{\mathcal{F}}[x_k - \nabla q(x_k)] - x_k|| \le \epsilon
$$

in at most $\mathcal{O}(\epsilon^{-2})$ successful Fu11-Eva1 steps.

- Proof: Classical backtracking line search (if $\gamma = 0$, projected gradient proof!).
- **.** Limitations: No function evaluation count.
- On par with unconstrained case (Berahas et al '22).

Assumptions (problem)

- \bullet f bounded below.
- \bullet f locally Lipschitz continuous.

Convergence metric: $f^{\circ}(x; d) = \limsup_{y \to x, y \in \mathcal{F}}$ t↓0, y+td∈F $f(y+td)-f(y)$ $\frac{t_j-f(y)}{t}$.

Assumptions (problem)

- \bullet f bounded below.
- \bullet f locally Lipschitz continuous.

Convergence metric: $f^{\circ}(x; d) = \limsup_{y \to x, y \in \mathcal{F}}$ t↓0, y+td∈F $f(y+td)-f(y)$ $\frac{t_j-f(y)}{t}$.

Assumptions (algorithm)

- Full-Eval steps satisfy $\|q_k^g\|$ $\left\| \frac{g}{k} \right\| \geq \epsilon_g > 0.$
- ${x_k}$ bounded.

Theorem

There exists a subsequence of unsuccessful Low-Eval iterations K such that

- \bullet lim_{k∈K} $x_k = x_* \in \mathcal{F}$.
- $f^{\circ}(x_{*}; d) \ge 0$ for any refining direction d

$$
d \in \mathcal{R} = \left\{ \lim_{k \in \mathcal{K}} \frac{d_k}{\|d_k\|}, d_k \in D_k \forall k \in \mathcal{K} \right\}.
$$

Theorem

There exists a subsequence of unsuccessful Low-Eval iterations K such that

- \bullet lim_{k∈K} $x_k = x_* \in \mathcal{F}$.
- $f^{\circ}(x_{*}; d) \ge 0$ for any refining direction d

$$
d \in \mathcal{R} = \left\{ \lim_{k \in \mathcal{K}} \frac{d_k}{\|d_k\|}, d_k \in D_k \forall k \in \mathcal{K} \right\}.
$$

- Get stationarity with density assumptions on \mathcal{R} .
- Results purely based on Low-Eval steps behavior (if $\gamma = \infty$, direct-search proof!)
- Again matches the unconstrained setting.

Full-low framework⇒linear constraints

- Full steps for smoothness⇒ bound constraints?
- Low-eval steps for nonsmoothness/noise \Rightarrow linear inequalities?

Our results and more

- One implementation⇒ Many possible variants!
- Good numerics⇒ Still room for improvement.
- Theoretical support⇒ Stronger guarantees based on switching.

References

- Full-low evaluation methods for bound and linearly constrained derivative-free optimization C. W. Royer, O. Sohab, L. N. Vicente Accepted in Computational Optimization and Applications last week!
- Full-low evaluation methods for derivative-free optimization O. Sohab, PhD Thesis, defended July 9, 2024.
- Code: <https://github.com/sohaboumaima/FLE>

References

- Full-low evaluation methods for bound and linearly constrained derivative-free optimization C. W. Royer, O. Sohab, L. N. Vicente Accepted in Computational Optimization and Applications last week!
- Full-low evaluation methods for derivative-free optimization O. Sohab, PhD Thesis, defended July 9, 2024.
- Code: <https://github.com/sohaboumaima/FLE>

Thank you! clement.royer@lamsade.dauphine.fr