# Random subspaces and expected decrease in derivative-free optimization

#### Clément W. Royer (Université Paris Dauphine-PSL)

Workshop Bayesian Optimization and related applications

June 20, 2024



# Transcontinental effort

#### Joint work with Warren Hare (UBC) & Lindon Roberts (U. of Sydney)



- Direct search based on probabilistic descent in reduced spaces
   L. Roberts and C. W. Royer, SIAM J. Optimization, 2023.
- Expected decrease for derivative-free algorithms using random subspaces
   W. Hare, L. Roberts and C. W. Royer, under review, 2024.

- Derivative-free algorithm
- 2 Reduced subspace approach
- 3 Numerics with subspaces
- 4 Subspace dimensions

### Derivative-free algorithm

- 2 Reduced subspace approach
- 3 Numerics with subspaces
- Subspace dimensions

```
minimize<sub>x \in \mathbb{R}^n</sub> f(x).
```

#### Assumptions

- f bounded below;
- f continuously differentiable (nonconvex).

#### Blackbox/Derivative-free optimization

- Derivatives unavailable for algorithmic use.
- Only access to values of f.

### My goal

Develop algorithms with controlled

- Number of calls to f;
- Dependency on *n*.

### My goal

Develop algorithms with controlled

- Number of calls to f;
- Dependency on *n*.

#### Complexity bound

Given  $\epsilon \in (0, 1)$  and, bound the number of function evaluations needed by a method to reach x such that

 $\|\nabla f(\boldsymbol{x})\| \leq \epsilon,$ 

deterministically or in expectation/probability.

### My goal

Develop algorithms with controlled

- Number of calls to f;
- Dependency on *n*.

#### Complexity bound

Given  $\epsilon \in (0, 1)$  and, bound the number of function evaluations needed by a method to reach x such that

 $\|\nabla f(\boldsymbol{x})\| \leq \epsilon,$ 

deterministically or in expectation/probability.

Focus: dependency w.r.t. n.

#### Main algorithmic families

- Direct search: Explore the space through selected directions.
- Model based: Build a surrogate for the objective function.

### Choosing a family for a 2pm talk

- Direct search simpler to explain.
- All results have a model-based counterpart.



Inputs:  $\mathbf{x}_0 \in \mathbb{R}^n$ ,  $\delta_0 > 0$ . Iteration k: Given  $(\mathbf{x}_k, \delta_k)$ ,

• Choose a set  $\mathcal{D}_k \subset \mathbb{R}^n$  of *m* vectors.

Inputs:  $\mathbf{x}_0 \in \mathbb{R}^n$ ,  $\delta_0 > 0$ . Iteration k: Given  $(\mathbf{x}_k, \delta_k)$ ,

- Choose a set  $\mathcal{D}_k \subset \mathbb{R}^n$  of *m* vectors.
- If  $\exists \ \boldsymbol{d}_k \in \mathcal{D}_k$  such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set  $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \delta_k \boldsymbol{d}_k$ ,  $\delta_{k+1} := 2\delta_k$ .

Inputs:  $\mathbf{x}_0 \in \mathbb{R}^n$ ,  $\delta_0 > 0$ . Iteration k: Given  $(\mathbf{x}_k, \delta_k)$ ,

- Choose a set  $\mathcal{D}_k \subset \mathbb{R}^n$  of *m* vectors.
- If  $\exists \mathbf{d}_k \in \mathcal{D}_k$  such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set 
$$\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$$
,  $\delta_{k+1} := 2\delta_k$ .  
Otherwise, set  $\mathbf{x}_{k+1} := \mathbf{x}_k$ ,  $\delta_{k+1} := \delta_k/2$ .

Inputs:  $\mathbf{x}_0 \in \mathbb{R}^n$ ,  $\delta_0 > 0$ . Iteration k: Given  $(\mathbf{x}_k, \delta_k)$ ,

- Choose a set  $\mathcal{D}_k \subset \mathbb{R}^n$  of *m* vectors.
- If  $\exists \mathbf{d}_k \in \mathcal{D}_k$  such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set 
$$\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$$
,  $\delta_{k+1} := 2\delta_k$ .  
Otherwise, set  $\mathbf{x}_{k+1} := \mathbf{x}_k$ ,  $\delta_{k+1} := \delta_k/2$ .

Inputs:  $\mathbf{x}_0 \in \mathbb{R}^n$ ,  $\delta_0 > 0$ . Iteration k: Given  $(\mathbf{x}_k, \delta_k)$ ,

- Choose a set  $\mathcal{D}_k \subset \mathbb{R}^n$  of *m* vectors.
- If  $\exists \ \boldsymbol{d}_k \in \mathcal{D}_k$  such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set  $\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$ ,  $\delta_{k+1} := 2\delta_k$ . • Otherwise, set  $\mathbf{x}_{k+1} := \mathbf{x}_k$ ,  $\delta_{k+1} := \delta_k/2$ .

#### Which vectors should we use?

### A measure of set quality

The set  $\mathcal{D}_k$  is called  $\kappa$ -descent for f at  $\boldsymbol{x}_k$  if

$$\max_{\boldsymbol{d}\in\mathcal{D}_k}\frac{-\boldsymbol{d}^{\mathrm{T}}\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\nabla f(\boldsymbol{x}_k)\|} \geq \kappa \in (0,1].$$

### A measure of set quality

The set  $\mathcal{D}_k$  is called  $\kappa$ -descent for f at  $\mathbf{x}_k$  if

$$\max_{\boldsymbol{d}\in\mathcal{D}_k}\frac{-\boldsymbol{d}^{\mathrm{T}}\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\nabla f(\boldsymbol{x}_k)\|} \geq \kappa \in (0,1].$$

• Guaranteed when  $\mathcal{D}_k$  is a Positive Spanning Set (PSS);

• 
$$\mathcal{D}_k \text{ PSS} \Rightarrow |\mathcal{D}_k| \ge n+1;$$
  
• Ex)  $\mathcal{D}_{\oplus} := \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_n \}$  is always  $\frac{1}{\sqrt{n}}$ -descent.

# Complexity of deterministic direct search

**Assumption:** For every k,  $\mathcal{D}_k$  is  $\kappa$ -descent and contains m unit directions.

Theorem (Vicente '12)

Let  $\epsilon \in (0, 1)$  and  $N_{\epsilon}$  be the number of function evaluations needed to reach  $\mathbf{x}_k$  such that  $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$ . Then,

 $N_{\epsilon} \leq \mathcal{O}\left(m \kappa^{-2} \epsilon^{-2}\right).$ 

# Complexity of deterministic direct search

Assumption: For every k,  $D_k$  is  $\kappa$ -descent and contains m unit directions.

Theorem (Vicente '12)

Let  $\epsilon \in (0, 1)$  and  $N_{\epsilon}$  be the number of function evaluations needed to reach  $\mathbf{x}_k$  such that  $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$ . Then,

 $N_{\epsilon} \leq \mathcal{O}\left(m \kappa^{-2} \epsilon^{-2}\right).$ 

- Unit norm can be replaced by bounded norm.
- Choosing  $\mathcal{D}_k = \mathcal{D}_{\oplus}$ , one has  $\kappa = \frac{1}{\sqrt{n}}$ , m = 2n, and the bound becomes

$$N_{\epsilon} \leq \mathcal{O}\left(n^2 \epsilon^{-2}\right).$$

 $\Rightarrow$ Best possible dependency w.r.t. *n* for deterministic direct-search algorithms.

# Randomizing direct search

### Classical direct search

- Set  $\mathcal{D}_k \subset \mathbb{R}^n$ ,  $|\mathcal{D}_k| = m$ , cm $(\mathcal{D}_k) \ge \kappa$ ;
- Complexity:

$$\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).$$

- m depends on n ( $m \ge n+1$ ).
- $\kappa$  depends on *n* (approximate  $\nabla f(\boldsymbol{x}_k) \in \mathbb{R}^n$ ).

# Randomizing direct search

#### Classical direct search

- Set  $\mathcal{D}_k \subset \mathbb{R}^n$ ,  $|\mathcal{D}_k| = m$ , cm $(\mathcal{D}_k) \ge \kappa$ ;
- Complexity:

$$\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).$$

- m depends on n ( $m \ge n+1$ ).
- $\kappa$  depends on n (approximate  $\nabla f(\boldsymbol{x}_k) \in \mathbb{R}^n$ ).

### My original thought

- Generate directions in random subspaces of  $\mathbb{R}^n$ ;
- Use results from dimensionality reduction;
- Remove all dependencies on n!

# Randomizing direct search

### Classical direct search

- Set  $\mathcal{D}_k \subset \mathbb{R}^n$ ,  $|\mathcal{D}_k| = m$ , cm $(\mathcal{D}_k) \ge \kappa$ ;
- Complexity:

$$\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).$$

- m depends on n ( $m \ge n+1$ ).
- $\kappa$  depends on n (approximate  $\nabla f(\boldsymbol{x}_k) \in \mathbb{R}^n$ ).

### My original thought

- Generate directions in random subspaces of  $\mathbb{R}^n$ ;
- Use results from dimensionality reduction;
- Remove all dependencies on n!

Spoiler alert: You can only *reduce* the dependency on *n*.

#### Our approach

- Consider a random subspace of dimension  $r \leq n$ ;
- Use a PSS to approximate the projected gradient in the subspace;
- Guarantee sufficient gradient information in probability.

### What it brings us

- Use random directions.
- Possibly less than n.
- Possibly unbounded.

# Not the only game in town (1/2)

Probabilistic descent (Gratton et al '15)

- Use directions  $[\boldsymbol{d} \boldsymbol{d}]$  with  $\boldsymbol{d} \sim \mathcal{U}(\mathbb{S}^{n-1})$ .
- Complexity improves from  $\mathcal{O}(n^2 \epsilon^{-2})$  to  $\mathcal{O}(n \epsilon^{-2})$  (m = 2).

• Limited to one distribution.

# Not the only game in town (1/2)

Probabilistic descent (Gratton et al '15)

- Use directions  $[\boldsymbol{d} \boldsymbol{d}]$  with  $\boldsymbol{d} \sim \mathcal{U}(\mathbb{S}^{n-1})$ .
- Complexity improves from  $\mathcal{O}(n^2 \epsilon^{-2})$  to  $\mathcal{O}(n \epsilon^{-2})$  (m = 2).
- Limited to one distribution.

Gaussian smoothing approach: Draw  $\boldsymbol{d} \sim \mathcal{N}(0, \boldsymbol{I})$  and use

$$\frac{f(\boldsymbol{x}+\delta\boldsymbol{d})-f(\boldsymbol{x})}{\delta}\boldsymbol{d} \quad \text{or} \quad \frac{f(\boldsymbol{x}+\delta\boldsymbol{d})-f(\boldsymbol{x}-\delta\boldsymbol{d})}{\delta}\boldsymbol{d}.$$

Random gradient-free method (Nesterov and Spokoiny 2017), **Stochastic three-point method (Bergou et al, 2020)**.

- Also achieve  $\mathcal{O}(n\epsilon^{-2})$  bound.
- Use one-dimensional subspace based on Gaussian vectors.
- Use fixed or decreasing stepsizes.

### Zeroth-order (Kozak et al '21, '22)

- Estimate directional derivatives directly.
- Use orthogonal random directions  $\boldsymbol{Q} \in \mathbb{R}^{n \times r}$ ,  $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{Q} = \boldsymbol{I}$ .
- Complexity results for convex/PL functions.

### Zeroth-order (Kozak et al '21, '22)

- Estimate directional derivatives directly.
- Use orthogonal random directions  $\boldsymbol{Q} \in \mathbb{R}^{n \times r}$ ,  $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{Q} = \boldsymbol{I}$ .
- Complexity results for convex/PL functions.

#### Our approach

- General, subspace-based framework.
- Inspiration: Model-based methods (Cartis and Roberts '23, Dzahini and Wild '22a).

### Derivative-free algorithm

- 2 Reduced subspace approach
  - 3 Numerics with subspaces
  - Subspace dimensions

Inputs:  $\mathbf{x}_0 \in \mathbb{R}^n$ ,  $\delta_0 > 0$ . Iteration k: Given  $(\mathbf{x}_k, \delta_k)$ ,

- Choose  $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$  at random.
- Choose  $\mathcal{D}_k \subset \mathbb{R}^r$  having *m* vectors.
- If  $\exists \ \boldsymbol{d}_k \in \mathcal{D}_k$  such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k\|^2,$$

set  $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \delta_k \boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k, \ \delta_{k+1} := 2\delta_k.$ 

• Otherwise, set  $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k$ ,  $\delta_{k+1} := \delta_k/2$ .

#### New polling sets

$$\left\{ \boldsymbol{P}_{k}^{\mathrm{T}}\boldsymbol{d} \mid \boldsymbol{d} \in \mathcal{D}_{k} \right\} \subset \mathbb{R}^{n}.$$

- $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$ : Maps onto *r*-dimensional subspace;
- $\mathcal{D}_k$ : Direction set in  $\mathbb{R}^r$ .

#### What do we want?

- Preserve information while applying  $\boldsymbol{P}_k / \boldsymbol{P}_k^{\mathrm{T}}$ .
- Approximate  $-\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)$  using  $\mathcal{D}_k$ .

 $P_k$  is  $(\eta, \sigma, P_{max})$ -well aligned for  $(f, x_k)$  if

$$\begin{cases} \|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\| \geq \eta \|\nabla f(\boldsymbol{x}_k)\|,\\ \sigma_{\min}(\boldsymbol{P}_k) \geq \sigma,\\ \sigma_{\max}(\boldsymbol{P}_k) \leq P_{\max}. \end{cases}$$

 $P_k$  is  $(\eta, \sigma, P_{max})$ -well aligned for  $(f, x_k)$  if

$$\begin{cases} \|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\| \geq \eta \|\nabla f(\boldsymbol{x}_k)\| \\ \sigma_{\min}(\boldsymbol{P}_k) \geq \sigma, \\ \sigma_{\max}(\boldsymbol{P}_k) \leq P_{\max}. \end{cases}$$

*Ex*)  $\mathbf{P}_k = \mathbf{I}_n \in \mathbb{R}^{n \times n}$  is (1, 1, 1)-well aligned.

 $P_k$  is  $(\eta, \sigma, P_{max})$ -well aligned for  $(f, x_k)$  if

$$\left\{ \begin{array}{ll} \|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\| \geq \eta \|\nabla f(\boldsymbol{x}_k)\|,\\ \sigma_{\min}(\boldsymbol{P}_k) \geq \sigma,\\ \sigma_{\max}(\boldsymbol{P}_k) \leq P_{\max}. \end{array} \right.$$

Ex) 
$$\boldsymbol{P}_k = \boldsymbol{I}_n \in \mathbb{R}^{n \times n}$$
 is  $(1, 1, 1)$ -well aligned.

#### Probabilistic version

 $\{P_k\}$  is  $(q, \eta, \sigma, P_{max})$ -well aligned if:

$$\begin{split} \mathbb{P}\left(\boldsymbol{P}_0\;(q,\eta,\sigma,\boldsymbol{P}_{\max})\text{-well aligned}\;\right) &\geq q\\ \forall k\geq 1, \quad \mathbb{P}\left((q,\eta,\sigma,\boldsymbol{P}_{\max})\text{-well aligned}\;\mid\boldsymbol{P}_0,\mathcal{D}_0,\ldots,\boldsymbol{P}_{k-1},\mathcal{D}_{k-1}\right) &\geq q, \end{split}$$

# Probabilistic properties for $\mathcal{D}_k$

#### Deterministic descent

The set  $\mathcal{D}_k$  is  $(\kappa, d_{\max})$ -descent for  $(f, \boldsymbol{x}_k)$  if

$$\begin{aligned} \max_{\boldsymbol{d}\in\mathcal{D}_k} \frac{-\boldsymbol{d}^{\mathrm{T}}\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)\|} \geq \kappa, \\ \forall \boldsymbol{d}\in\mathcal{D}_k, \quad \boldsymbol{d}_{\max}^{-1}\leq \|\boldsymbol{d}\|\leq d_{\max} \end{aligned}$$

•

# Probabilistic properties for $\mathcal{D}_k$

#### Deterministic descent

The set  $\mathcal{D}_k$  is  $(\kappa, d_{\max})$ -descent for  $(f, \boldsymbol{x}_k)$  if

$$\begin{cases} \max_{\boldsymbol{d}\in\mathcal{D}_k} \frac{-\boldsymbol{d}^{\mathrm{T}}\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)\|} \geq \kappa, \\ \forall \boldsymbol{d}\in\mathcal{D}_k, \quad \boldsymbol{d}_{\mathsf{max}}^{-1} \leq \|\boldsymbol{d}\| \leq \boldsymbol{d}_{\mathsf{max}} \end{cases} \end{cases}$$

Ex) 
$$D_{\oplus} = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_n \}$$
 is  $(\frac{1}{\sqrt{n}}, 1)$ -descent.

#### Deterministic descent

The set  $\mathcal{D}_k$  is  $(\kappa, d_{\max})$ -descent for  $(f, \boldsymbol{x}_k)$  if

$$\begin{cases} \max_{\boldsymbol{d}\in\mathcal{D}_k} \frac{-\boldsymbol{d}^{\mathrm{T}}\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\|} \geq \kappa, \\ \forall \boldsymbol{d}\in\mathcal{D}_k, \quad \boldsymbol{d}_{\mathsf{max}}^{-1} \leq \|\boldsymbol{d}\| \leq d_{\mathsf{max}} \end{cases}$$

Ex) 
$$D_{\oplus} = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_n \}$$
 is  $(\frac{1}{\sqrt{n}}, 1)$ -descent.

#### Probabilistic descent sets

 $\{\mathcal{D}_k\}$  is  $(p, \kappa, d_{\max})$ -descent if:

$$\mathbb{P}\left(\mathcal{D}_{0}\left(\kappa, d_{\mathsf{max}}\right) \text{-descent } \mid \boldsymbol{P}_{0}\right) \geq p$$

 $\forall k \geq 1, \quad \mathbb{P}\left(\mathcal{D}_k \ (\kappa, d_{\mathsf{max}}) \text{-descent} \ \mid \boldsymbol{P}_0, \mathcal{D}_0, \dots, \boldsymbol{P}_{k-1}, \mathcal{D}_{k-1}, \boldsymbol{P}_k\right) \ \geq \ \boldsymbol{p},$ 

### Theorem (Roberts, R. '23)

Assume:

- $\{\mathcal{D}_k\}$   $(p, \kappa, d_{\max})$ -descent,  $|\mathcal{D}_k| = m$ ;
- $\{\boldsymbol{P}_k\}$   $(\boldsymbol{q}, \eta, \sigma, \boldsymbol{P}_{\max})$ -well aligned,  $p\boldsymbol{q} > \frac{1}{2}$ .

Let  $N_{\epsilon}$  the number of function evaluations needed to have  $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$ .

$$\mathbb{P}\left(N_{\epsilon} \leq \mathcal{O}\left(\frac{m\phi\epsilon^{-2}}{2pq-1}\right)\right) \geq 1 - \exp\left(-\mathcal{O}\left(\frac{2pq-1}{pq}\phi\epsilon^{-2}\right)\right)$$

where  $\phi=\textit{d}_{\max}^8\kappa^{-2}\eta^{-2}\sigma^{-2}\textit{P}_{\max}^4.$ 

### Theorem (Roberts, R. '23)

Assume:

- $\{\mathcal{D}_k\}$   $(p, \kappa, d_{\max})$ -descent,  $|\mathcal{D}_k| = m$ ;
- $\{\boldsymbol{P}_k\}$   $(\boldsymbol{q}, \eta, \sigma, \boldsymbol{P}_{\max})$ -well aligned,  $p\boldsymbol{q} > \frac{1}{2}$ .

Let  $N_{\epsilon}$  the number of function evaluations needed to have  $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$ .

$$\mathbb{P}\left(N_{\epsilon} \leq \mathcal{O}\left(\frac{m\phi\epsilon^{-2}}{2pq-1}\right)\right) \geq 1 - \exp\left(-\mathcal{O}\left(\frac{2pq-1}{pq}\phi\epsilon^{-2}\right)\right).$$

where  $\phi = d_{\max}^8 \kappa^{-2} \eta^{-2} \sigma^{-2} P_{\max}^4$ .

### Does this bound depend on *n*?

$$m\phi\epsilon^{-2} = m\,d_{\max}^8\,\kappa^{-2}\eta^{-2}\sigma^{-2}P_{\max}^4\epsilon^{-2}.$$

$$m\phi\epsilon^{-2} = m\,d_{\max}^8\,\kappa^{-2}\eta^{-2}\sigma^{-2}P_{\max}^4\epsilon^{-2}.$$

#### Best directions in subspaces

• 
$$\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r \}$$
 in  $\mathbb{R}^r$ ;

• 
$$\kappa = \frac{1}{\sqrt{r}}, m = 2r, d_{\max} = 1.$$

$$\Rightarrow$$
 With  $r = \mathcal{O}(1)$ ,  $m d_{\max}^8 \kappa^{-2} = \mathcal{O}(1)!$ 

$$m\phi\epsilon^{-2} = \mathcal{O}(1) \eta^{-2} \sigma^{-2} P_{\max}^4 \epsilon^{-2}.$$

#### Best directions in subspaces

• 
$$\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r \}$$
 in  $\mathbb{R}^r$ ;

• 
$$\kappa = \frac{1}{\sqrt{r}}, m = 2r, d_{\max} = 1.$$

$$\Rightarrow$$
 With  $r = \mathcal{O}(1)$ ,  $m d_{\max}^8 \kappa^{-2} = \mathcal{O}(1)!$ 

### Best subspaces?

| ${oldsymbol{\mathcal{P}}}_k$ | $\sigma$                                   | P <sub>max</sub>     |
|------------------------------|--------------------------------------------|----------------------|
| Gaussian                     | $\Theta(\sqrt{n/r})$                       | $\Theta(\sqrt{n/r})$ |
| Hashing                      | $\Theta(\sqrt{n/r})$ (Dzahini & Wild '22b) | $\sqrt{n}$           |
| Orthogonal                   | $\sqrt{n/r}$                               | $\sqrt{n/r}$ .       |
|                              |                                            |                      |

 $\Rightarrow$  Even with r = O(1) and  $\eta = O(1)$ ,  $\eta^{-2}\sigma^{-2}P_{max}^4 = O(n)!$ 

$$m\phi\epsilon^{-2} = \mathcal{O}(1)\mathcal{O}(n)\epsilon^{-2}.$$

#### Best directions in subspaces

• 
$$\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r \}$$
 in  $\mathbb{R}^r$ ;

• 
$$\kappa = \frac{1}{\sqrt{r}}, m = 2r, d_{\max} = 1.$$

$$\Rightarrow$$
 With  $r = \mathcal{O}(1)$ ,  $m d_{\max}^8 \kappa^{-2} = \mathcal{O}(1)!$ 

### Best subspaces?

| $\boldsymbol{P}_k$ | $\sigma$                                   | P <sub>max</sub>     |
|--------------------|--------------------------------------------|----------------------|
| Gaussian           | $\Theta(\sqrt{n/r})$                       | $\Theta(\sqrt{n/r})$ |
| Hashing            | $\Theta(\sqrt{n/r})$ (Dzahini & Wild '22b) | $\sqrt{n}$           |
| Orthogonal         | $\sqrt{n/r}$                               | $\sqrt{n/r}$ .       |
|                    |                                            | •                    |

 $\Rightarrow$  Even with r = O(1) and  $\eta = O(1)$ ,  $\eta^{-2}\sigma^{-2}P_{\max}^4 = O(n)!$ 

- Can compute steps in *r*-dim. subspaces, r = O(1).
- Reduced evaluation cost per iteration.
- Complexity:  $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)!$

- 1 Derivative-free algorithm
- 2 Reduced subspace approach
- O Numerics with subspaces
  - 4 Subspace dimensions

### Benchmark:

- Medium-scale test set (90 CUTEst problems of dimension  $\approx$  100);
- Large-scale test set (28 CUTEst problems of dimension  $\approx$  1000). Budget: 200(n + 1) evaluations.

### Comparison:

- Deterministic DS with  $\mathcal{D}_k = \mathcal{D}_{\oplus}$  or  $\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\sum_{i=1}^n \boldsymbol{e}_i \};$
- Probabilistic direct search with 2 uniform directions;
- Stochastic Three Point;
- Probabilistic direct search with Gaussian/Hashing/Orthogonal *P<sub>k</sub>* matrices + 2 directions in the subspace.

Goal: Satisfy  $f(\mathbf{x}_k) - f_{opt} \leq 0.1(f(\mathbf{x}_0) - f_{opt})$ .

# Comparison of all methods



Left: Medium scale; Right: Large scale.

- Operating in random subspaces works!
- But always a (hidden) dependency on n!

### Gaussian matrices and subspace dimensions



Left: Medium scale; Right: Large scale.

#### Numerically

- Sketches of dimension > 1 may improve things...
- ...but in general opposite (Gaussian) directions work best!

### The package

- https://github.com/lindonroberts/directsearch
- Python code + paper experiments.
- pip install directsearch

#### The package

- https://github.com/lindonroberts/directsearch
- Python code + paper experiments.
- pip install directsearch

#### Recent use at Meta:



#### **Olivier Teytaud**

Admin · 23 janvier · ③

In progress: adding https://github.com/lindonroberts/ directsearch inside Nevergrad. In particular there is an excellent stochastic direct search method. I don't know exactly the algorithm (yet). Thanks guys for this excellent code!

...

- Derivative-free algorithm
- 2 Reduced subspace approach
- 3 Numerics with subspaces
- 4 Subspace dimensions

#### If you want to scale up...

- Can compute steps in *r*-dim. subspaces, r = O(1);
- Reduced evaluation cost per iteration;
- Overall complexity:  $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)!$

#### Numerically

- Subspaces of dimension r > 1 may be good...
- ...but in general opposite Gaussian directions (r = 1) are better!

## Warren: "But *why* does this work?"

### Why do 1-dim. subspaces give best performance?

# Warren: "But *why* does this work?"

### Why do 1-dim. subspaces give best performance?

#### Our approach: Expected decrease guarantees

• Use Taylor approximation to focus on linear functions

$$f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) \leq \nabla f(\mathbf{x})^{\mathrm{T}}\mathbf{v} + \frac{L}{2} \|\mathbf{v}\|^{2}$$

- Generate *v* in a random subspace.
- Analyze expected value of linear term:

$$\mathbb{E}_{\boldsymbol{v}}\left[ 
abla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{v} 
ight].$$

# Warren: "But *why* does this work?"

### Why do 1-dim. subspaces give best performance?

#### Our approach: Expected decrease guarantees

• Use Taylor approximation to focus on linear functions

$$f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) \leq \nabla f(\mathbf{x})^{\mathrm{T}}\mathbf{v} + \frac{L}{2} \|\mathbf{v}\|^{2}$$

- Generate *v* in a random subspace.
- Analyze expected value of linear term:

$$\mathbb{E}_{\boldsymbol{v}}\left[ 
abla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{v} 
ight].$$

• Equivalently, consider random  $oldsymbol{g} \in \mathbb{R}^n$ , deterministic  $oldsymbol{v}$ :

 $\mathbb{E}_{\boldsymbol{g}}\left[\boldsymbol{g}^{\mathrm{T}}\boldsymbol{v}\right].$ 

### Key result (Hare, Roberts, R. '22)

Let  $\boldsymbol{g} \in \mathbb{S}^{n-1}$ ,  $\boldsymbol{P} \in \mathbb{R}^{r \times n}$  and  $\mathcal{D} = \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r\}$ . Then, the expected decrease ratio

$$\frac{\mathbb{E}\left[\min_{\boldsymbol{d}\in\mathcal{D}}\boldsymbol{g}^{\mathrm{T}}\boldsymbol{P}^{\mathrm{T}}\boldsymbol{d}\right]}{2r}$$

is minimized at r = 1.

#### Side notes

• Key quantity:

$$\mathbb{E}_{\boldsymbol{u}\sim\mathcal{U}(\mathbb{S}^{n-1})}\left[\max_{1\leq i\leq r}|[\boldsymbol{u}]_i|\right].$$

- Exact values hard to find in the literature!
- r = 1: best "bang for your buck".

# Numerical validation

#### Setup

- Monte-Carlo approximations of expected decrease.
- Quadratic functions with a random linear term  $\mathbf{x} \mapsto \mathbf{g}^{\mathrm{T}}\mathbf{x} + \frac{L}{2} \|\mathbf{x}\|^2$ .
- Normalization by the number of function evaluations.



### Our findings

- Probabilistic analysis/subspace viewpoint.
- Good complexity  $(\mathcal{O}(n))$ .
- Low dimension provably better on average.

### Our findings

- Probabilistic analysis/subspace viewpoint.
- Good complexity  $(\mathcal{O}(n))$ .
- Low dimension provably better on average.

### Going further

- Model-based algorithms (done for linear models).
- Stochastic/Noisy function values.

#### References

- Direct search based on probabilistic descent in reduced spaces
   L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
- Expected decrease for derivative-free algorithms using random subspaces
   W. Hare, L. Roberts and C. W. Royer, Technical report arXiv:2308.04734v2, 2024.

#### References

- Direct search based on probabilistic descent in reduced spaces
   L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
- Expected decrease for derivative-free algorithms using random subspaces
   W. Hare, L. Roberts and C. W. Royer, Technical report arXiv:2308.04734v2, 2024.

Merci! clement.royer@lamsade.dauphine.fr