Random subspaces and expected decrease in derivative-free optimization

Clément W. Royer (Université Paris Dauphine-PSL)

Workshop Bayesian Optimization and related applications

June 20, 2024

Transcontinental effort

Joint work with Warren Hare (UBC) & Lindon Roberts (U. of Sydney)

- Direct search based on probabilistic descent in reduced spaces
 L. Roberts and C. W. Royer, SIAM J. Optimization, 2023.
- Expected decrease for derivative-free algorithms using random subspaces
 W. Hare, L. Roberts and C. W. Royer, under review, 2024.

- Derivative-free algorithm
- 2 Reduced subspace approach
- 3 Numerics with subspaces
- 4 Subspace dimensions

Derivative-free algorithm

- 2 Reduced subspace approach
- 3 Numerics with subspaces
- Subspace dimensions

```
minimize<sub>x \in \mathbb{R}^n</sub> f(x).
```

Assumptions

- f bounded below;
- f continuously differentiable (nonconvex).

Blackbox/Derivative-free optimization

- Derivatives unavailable for algorithmic use.
- Only access to values of f.

My goal

Develop algorithms with controlled

- Number of calls to f;
- Dependency on *n*.

My goal

Develop algorithms with controlled

- Number of calls to f;
- Dependency on *n*.

Complexity bound

Given $\epsilon \in (0, 1)$ and, bound the number of function evaluations needed by a method to reach x such that

 $\|\nabla f(\boldsymbol{x})\| \leq \epsilon,$

deterministically or in expectation/probability.

My goal

Develop algorithms with controlled

- Number of calls to f;
- Dependency on *n*.

Complexity bound

Given $\epsilon \in (0, 1)$ and, bound the number of function evaluations needed by a method to reach x such that

 $\|\nabla f(\boldsymbol{x})\| \leq \epsilon,$

deterministically or in expectation/probability.

Focus: dependency w.r.t. n.

Main algorithmic families

- Direct search: Explore the space through selected directions.
- Model based: Build a surrogate for the objective function.

Choosing a family for a 2pm talk

- Direct search simpler to explain.
- All results have a model-based counterpart.

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (\mathbf{x}_k, δ_k) ,

• Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of *m* vectors.

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (\mathbf{x}_k, δ_k) ,

- Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of *m* vectors.
- If $\exists \ \boldsymbol{d}_k \in \mathcal{D}_k$ such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \delta_k \boldsymbol{d}_k$, $\delta_{k+1} := 2\delta_k$.

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (\mathbf{x}_k, δ_k) ,

- Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of *m* vectors.
- If $\exists \mathbf{d}_k \in \mathcal{D}_k$ such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set
$$\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$$
, $\delta_{k+1} := 2\delta_k$.
Otherwise, set $\mathbf{x}_{k+1} := \mathbf{x}_k$, $\delta_{k+1} := \delta_k/2$.

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (\mathbf{x}_k, δ_k) ,

- Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of *m* vectors.
- If $\exists \mathbf{d}_k \in \mathcal{D}_k$ such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set
$$\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$$
, $\delta_{k+1} := 2\delta_k$.
Otherwise, set $\mathbf{x}_{k+1} := \mathbf{x}_k$, $\delta_{k+1} := \delta_k/2$.

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (\mathbf{x}_k, δ_k) ,

- Choose a set $\mathcal{D}_k \subset \mathbb{R}^n$ of *m* vectors.
- If $\exists \ \boldsymbol{d}_k \in \mathcal{D}_k$ such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{d}_k\|^2$$

set $\mathbf{x}_{k+1} := \mathbf{x}_k + \delta_k \mathbf{d}_k$, $\delta_{k+1} := 2\delta_k$. • Otherwise, set $\mathbf{x}_{k+1} := \mathbf{x}_k$, $\delta_{k+1} := \delta_k/2$.

Which vectors should we use?

A measure of set quality

The set \mathcal{D}_k is called κ -descent for f at \boldsymbol{x}_k if

$$\max_{\boldsymbol{d}\in\mathcal{D}_k}\frac{-\boldsymbol{d}^{\mathrm{T}}\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\nabla f(\boldsymbol{x}_k)\|} \geq \kappa \in (0,1].$$

A measure of set quality

The set \mathcal{D}_k is called κ -descent for f at \mathbf{x}_k if

$$\max_{\boldsymbol{d}\in\mathcal{D}_k}\frac{-\boldsymbol{d}^{\mathrm{T}}\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\nabla f(\boldsymbol{x}_k)\|} \geq \kappa \in (0,1].$$

• Guaranteed when \mathcal{D}_k is a Positive Spanning Set (PSS);

•
$$\mathcal{D}_k \text{ PSS} \Rightarrow |\mathcal{D}_k| \ge n+1;$$

• Ex) $\mathcal{D}_{\oplus} := \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_n \}$ is always $\frac{1}{\sqrt{n}}$ -descent.

Complexity of deterministic direct search

Assumption: For every k, \mathcal{D}_k is κ -descent and contains m unit directions.

Theorem (Vicente '12)

Let $\epsilon \in (0, 1)$ and N_{ϵ} be the number of function evaluations needed to reach \mathbf{x}_k such that $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$. Then,

 $N_{\epsilon} \leq \mathcal{O}\left(m \kappa^{-2} \epsilon^{-2}\right).$

Complexity of deterministic direct search

Assumption: For every k, D_k is κ -descent and contains m unit directions.

Theorem (Vicente '12)

Let $\epsilon \in (0, 1)$ and N_{ϵ} be the number of function evaluations needed to reach \mathbf{x}_k such that $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$. Then,

 $N_{\epsilon} \leq \mathcal{O}\left(m \kappa^{-2} \epsilon^{-2}\right).$

- Unit norm can be replaced by bounded norm.
- Choosing $\mathcal{D}_k = \mathcal{D}_{\oplus}$, one has $\kappa = \frac{1}{\sqrt{n}}$, m = 2n, and the bound becomes

$$N_{\epsilon} \leq \mathcal{O}\left(n^2 \epsilon^{-2}\right).$$

 \Rightarrow Best possible dependency w.r.t. *n* for deterministic direct-search algorithms.

Randomizing direct search

Classical direct search

- Set $\mathcal{D}_k \subset \mathbb{R}^n$, $|\mathcal{D}_k| = m$, cm $(\mathcal{D}_k) \ge \kappa$;
- Complexity:

$$\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).$$

- m depends on n ($m \ge n+1$).
- κ depends on *n* (approximate $\nabla f(\boldsymbol{x}_k) \in \mathbb{R}^n$).

Randomizing direct search

Classical direct search

- Set $\mathcal{D}_k \subset \mathbb{R}^n$, $|\mathcal{D}_k| = m$, cm $(\mathcal{D}_k) \ge \kappa$;
- Complexity:

$$\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).$$

- m depends on n ($m \ge n+1$).
- κ depends on n (approximate $\nabla f(\boldsymbol{x}_k) \in \mathbb{R}^n$).

My original thought

- Generate directions in random subspaces of \mathbb{R}^n ;
- Use results from dimensionality reduction;
- Remove all dependencies on n!

Randomizing direct search

Classical direct search

- Set $\mathcal{D}_k \subset \mathbb{R}^n$, $|\mathcal{D}_k| = m$, cm $(\mathcal{D}_k) \ge \kappa$;
- Complexity:

$$\mathcal{O}(m\kappa^{-2}\epsilon^{-2}).$$

- m depends on n ($m \ge n+1$).
- κ depends on n (approximate $\nabla f(\boldsymbol{x}_k) \in \mathbb{R}^n$).

My original thought

- Generate directions in random subspaces of \mathbb{R}^n ;
- Use results from dimensionality reduction;
- Remove all dependencies on n!

Spoiler alert: You can only *reduce* the dependency on *n*.

Our approach

- Consider a random subspace of dimension $r \leq n$;
- Use a PSS to approximate the projected gradient in the subspace;
- Guarantee sufficient gradient information in probability.

What it brings us

- Use random directions.
- Possibly less than n.
- Possibly unbounded.

Not the only game in town (1/2)

Probabilistic descent (Gratton et al '15)

- Use directions $[\boldsymbol{d} \boldsymbol{d}]$ with $\boldsymbol{d} \sim \mathcal{U}(\mathbb{S}^{n-1})$.
- Complexity improves from $\mathcal{O}(n^2 \epsilon^{-2})$ to $\mathcal{O}(n \epsilon^{-2})$ (m = 2).

• Limited to one distribution.

Not the only game in town (1/2)

Probabilistic descent (Gratton et al '15)

- Use directions $[\boldsymbol{d} \boldsymbol{d}]$ with $\boldsymbol{d} \sim \mathcal{U}(\mathbb{S}^{n-1})$.
- Complexity improves from $\mathcal{O}(n^2 \epsilon^{-2})$ to $\mathcal{O}(n \epsilon^{-2})$ (m = 2).
- Limited to one distribution.

Gaussian smoothing approach: Draw $\boldsymbol{d} \sim \mathcal{N}(0, \boldsymbol{I})$ and use

$$\frac{f(\boldsymbol{x}+\delta\boldsymbol{d})-f(\boldsymbol{x})}{\delta}\boldsymbol{d} \quad \text{or} \quad \frac{f(\boldsymbol{x}+\delta\boldsymbol{d})-f(\boldsymbol{x}-\delta\boldsymbol{d})}{\delta}\boldsymbol{d}.$$

Random gradient-free method (Nesterov and Spokoiny 2017), **Stochastic three-point method (Bergou et al, 2020)**.

- Also achieve $\mathcal{O}(n\epsilon^{-2})$ bound.
- Use one-dimensional subspace based on Gaussian vectors.
- Use fixed or decreasing stepsizes.

Zeroth-order (Kozak et al '21, '22)

- Estimate directional derivatives directly.
- Use orthogonal random directions $\boldsymbol{Q} \in \mathbb{R}^{n \times r}$, $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{Q} = \boldsymbol{I}$.
- Complexity results for convex/PL functions.

Zeroth-order (Kozak et al '21, '22)

- Estimate directional derivatives directly.
- Use orthogonal random directions $\boldsymbol{Q} \in \mathbb{R}^{n \times r}$, $\boldsymbol{Q}^{\mathrm{T}} \boldsymbol{Q} = \boldsymbol{I}$.
- Complexity results for convex/PL functions.

Our approach

- General, subspace-based framework.
- Inspiration: Model-based methods (Cartis and Roberts '23, Dzahini and Wild '22a).

Derivative-free algorithm

- 2 Reduced subspace approach
 - 3 Numerics with subspaces
 - Subspace dimensions

Inputs: $\mathbf{x}_0 \in \mathbb{R}^n$, $\delta_0 > 0$. Iteration k: Given (\mathbf{x}_k, δ_k) ,

- Choose $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$ at random.
- Choose $\mathcal{D}_k \subset \mathbb{R}^r$ having *m* vectors.
- If $\exists \ \boldsymbol{d}_k \in \mathcal{D}_k$ such that

$$f(\boldsymbol{x}_k + \delta_k \boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k) < f(\boldsymbol{x}_k) - \delta_k^2 \|\boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k\|^2,$$

set $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \delta_k \boldsymbol{P}_k^{\mathrm{T}} \boldsymbol{d}_k, \ \delta_{k+1} := 2\delta_k.$

• Otherwise, set $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k$, $\delta_{k+1} := \delta_k/2$.

New polling sets

$$\left\{ \boldsymbol{P}_{k}^{\mathrm{T}}\boldsymbol{d} \mid \boldsymbol{d} \in \mathcal{D}_{k} \right\} \subset \mathbb{R}^{n}.$$

- $\boldsymbol{P}_k \in \mathbb{R}^{r \times n}$: Maps onto *r*-dimensional subspace;
- \mathcal{D}_k : Direction set in \mathbb{R}^r .

What do we want?

- Preserve information while applying $\boldsymbol{P}_k / \boldsymbol{P}_k^{\mathrm{T}}$.
- Approximate $-\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)$ using \mathcal{D}_k .

 P_k is (η, σ, P_{max}) -well aligned for (f, x_k) if

$$\begin{cases} \|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\| \geq \eta \|\nabla f(\boldsymbol{x}_k)\|,\\ \sigma_{\min}(\boldsymbol{P}_k) \geq \sigma,\\ \sigma_{\max}(\boldsymbol{P}_k) \leq P_{\max}. \end{cases}$$

 P_k is (η, σ, P_{max}) -well aligned for (f, x_k) if

$$\begin{cases} \|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\| \geq \eta \|\nabla f(\boldsymbol{x}_k)\| \\ \sigma_{\min}(\boldsymbol{P}_k) \geq \sigma, \\ \sigma_{\max}(\boldsymbol{P}_k) \leq P_{\max}. \end{cases}$$

Ex) $\mathbf{P}_k = \mathbf{I}_n \in \mathbb{R}^{n \times n}$ is (1, 1, 1)-well aligned.

 P_k is (η, σ, P_{max}) -well aligned for (f, x_k) if

$$\left\{ \begin{array}{ll} \|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\| \geq \eta \|\nabla f(\boldsymbol{x}_k)\|,\\ \sigma_{\min}(\boldsymbol{P}_k) \geq \sigma,\\ \sigma_{\max}(\boldsymbol{P}_k) \leq P_{\max}. \end{array} \right.$$

Ex)
$$\boldsymbol{P}_k = \boldsymbol{I}_n \in \mathbb{R}^{n \times n}$$
 is $(1, 1, 1)$ -well aligned.

Probabilistic version

 $\{P_k\}$ is $(q, \eta, \sigma, P_{max})$ -well aligned if:

$$\begin{split} \mathbb{P}\left(\boldsymbol{P}_0\;(q,\eta,\sigma,\boldsymbol{P}_{\max})\text{-well aligned}\;\right) &\geq q\\ \forall k\geq 1, \quad \mathbb{P}\left((q,\eta,\sigma,\boldsymbol{P}_{\max})\text{-well aligned}\;\mid\boldsymbol{P}_0,\mathcal{D}_0,\ldots,\boldsymbol{P}_{k-1},\mathcal{D}_{k-1}\right) &\geq q, \end{split}$$

Probabilistic properties for \mathcal{D}_k

Deterministic descent

The set \mathcal{D}_k is (κ, d_{\max}) -descent for (f, \boldsymbol{x}_k) if

$$\begin{aligned} \max_{\boldsymbol{d}\in\mathcal{D}_k} \frac{-\boldsymbol{d}^{\mathrm{T}}\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)\|} \geq \kappa, \\ \forall \boldsymbol{d}\in\mathcal{D}_k, \quad \boldsymbol{d}_{\max}^{-1}\leq \|\boldsymbol{d}\|\leq d_{\max} \end{aligned}$$

•

Probabilistic properties for \mathcal{D}_k

Deterministic descent

The set \mathcal{D}_k is (κ, d_{\max}) -descent for (f, \boldsymbol{x}_k) if

$$\begin{cases} \max_{\boldsymbol{d}\in\mathcal{D}_k} \frac{-\boldsymbol{d}^{\mathrm{T}}\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\boldsymbol{P}_k\nabla f(\boldsymbol{x}_k)\|} \geq \kappa, \\ \forall \boldsymbol{d}\in\mathcal{D}_k, \quad \boldsymbol{d}_{\mathsf{max}}^{-1} \leq \|\boldsymbol{d}\| \leq \boldsymbol{d}_{\mathsf{max}} \end{cases} \end{cases}$$

Ex)
$$D_{\oplus} = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_n \}$$
 is $(\frac{1}{\sqrt{n}}, 1)$ -descent.

Deterministic descent

The set \mathcal{D}_k is (κ, d_{\max}) -descent for (f, \boldsymbol{x}_k) if

$$\begin{cases} \max_{\boldsymbol{d}\in\mathcal{D}_k} \frac{-\boldsymbol{d}^{\mathrm{T}}\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)}{\|\boldsymbol{d}\|\|\boldsymbol{P}_k \nabla f(\boldsymbol{x}_k)\|} \geq \kappa, \\ \forall \boldsymbol{d}\in\mathcal{D}_k, \quad \boldsymbol{d}_{\mathsf{max}}^{-1} \leq \|\boldsymbol{d}\| \leq d_{\mathsf{max}} \end{cases}$$

Ex)
$$D_{\oplus} = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_n \}$$
 is $(\frac{1}{\sqrt{n}}, 1)$ -descent.

Probabilistic descent sets

 $\{\mathcal{D}_k\}$ is (p, κ, d_{\max}) -descent if:

$$\mathbb{P}\left(\mathcal{D}_{0}\left(\kappa, d_{\mathsf{max}}\right) \text{-descent } \mid \boldsymbol{P}_{0}\right) \geq p$$

 $\forall k \geq 1, \quad \mathbb{P}\left(\mathcal{D}_k \ (\kappa, d_{\mathsf{max}}) \text{-descent} \ \mid \boldsymbol{P}_0, \mathcal{D}_0, \dots, \boldsymbol{P}_{k-1}, \mathcal{D}_{k-1}, \boldsymbol{P}_k\right) \ \geq \ \boldsymbol{p},$

Theorem (Roberts, R. '23)

Assume:

- $\{\mathcal{D}_k\}$ (p, κ, d_{\max}) -descent, $|\mathcal{D}_k| = m$;
- $\{\boldsymbol{P}_k\}$ $(\boldsymbol{q}, \eta, \sigma, \boldsymbol{P}_{\max})$ -well aligned, $p\boldsymbol{q} > \frac{1}{2}$.

Let N_{ϵ} the number of function evaluations needed to have $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$.

$$\mathbb{P}\left(N_{\epsilon} \leq \mathcal{O}\left(\frac{m\phi\epsilon^{-2}}{2pq-1}\right)\right) \geq 1 - \exp\left(-\mathcal{O}\left(\frac{2pq-1}{pq}\phi\epsilon^{-2}\right)\right)$$

where $\phi=\textit{d}_{\max}^8\kappa^{-2}\eta^{-2}\sigma^{-2}\textit{P}_{\max}^4.$

Theorem (Roberts, R. '23)

Assume:

- $\{\mathcal{D}_k\}$ (p, κ, d_{\max}) -descent, $|\mathcal{D}_k| = m$;
- $\{\boldsymbol{P}_k\}$ $(\boldsymbol{q}, \eta, \sigma, \boldsymbol{P}_{\max})$ -well aligned, $p\boldsymbol{q} > \frac{1}{2}$.

Let N_{ϵ} the number of function evaluations needed to have $\|\nabla f(\mathbf{x}_k)\| \leq \epsilon$.

$$\mathbb{P}\left(N_{\epsilon} \leq \mathcal{O}\left(\frac{m\phi\epsilon^{-2}}{2pq-1}\right)\right) \geq 1 - \exp\left(-\mathcal{O}\left(\frac{2pq-1}{pq}\phi\epsilon^{-2}\right)\right).$$

where $\phi = d_{\max}^8 \kappa^{-2} \eta^{-2} \sigma^{-2} P_{\max}^4$.

Does this bound depend on *n*?

$$m\phi\epsilon^{-2} = m\,d_{\max}^8\,\kappa^{-2}\eta^{-2}\sigma^{-2}P_{\max}^4\epsilon^{-2}.$$

$$m\phi\epsilon^{-2} = m\,d_{\max}^8\,\kappa^{-2}\eta^{-2}\sigma^{-2}P_{\max}^4\epsilon^{-2}.$$

Best directions in subspaces

•
$$\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r \}$$
 in \mathbb{R}^r ;

•
$$\kappa = \frac{1}{\sqrt{r}}, m = 2r, d_{\max} = 1.$$

$$\Rightarrow$$
 With $r = \mathcal{O}(1)$, $m d_{\max}^8 \kappa^{-2} = \mathcal{O}(1)!$

$$m\phi\epsilon^{-2} = \mathcal{O}(1) \eta^{-2} \sigma^{-2} P_{\max}^4 \epsilon^{-2}.$$

Best directions in subspaces

•
$$\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r \}$$
 in \mathbb{R}^r ;

•
$$\kappa = \frac{1}{\sqrt{r}}, m = 2r, d_{\max} = 1.$$

$$\Rightarrow$$
 With $r = \mathcal{O}(1)$, $m d_{\max}^8 \kappa^{-2} = \mathcal{O}(1)!$

Best subspaces?

${oldsymbol{\mathcal{P}}}_k$	σ	P _{max}
Gaussian	$\Theta(\sqrt{n/r})$	$\Theta(\sqrt{n/r})$
Hashing	$\Theta(\sqrt{n/r})$ (Dzahini & Wild '22b)	\sqrt{n}
Orthogonal	$\sqrt{n/r}$	$\sqrt{n/r}$.

 \Rightarrow Even with r = O(1) and $\eta = O(1)$, $\eta^{-2}\sigma^{-2}P_{max}^4 = O(n)!$

$$m\phi\epsilon^{-2} = \mathcal{O}(1)\mathcal{O}(n)\epsilon^{-2}.$$

Best directions in subspaces

•
$$\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r \}$$
 in \mathbb{R}^r ;

•
$$\kappa = \frac{1}{\sqrt{r}}, m = 2r, d_{\max} = 1.$$

$$\Rightarrow$$
 With $r = \mathcal{O}(1)$, $m d_{\max}^8 \kappa^{-2} = \mathcal{O}(1)!$

Best subspaces?

\boldsymbol{P}_k	σ	P _{max}
Gaussian	$\Theta(\sqrt{n/r})$	$\Theta(\sqrt{n/r})$
Hashing	$\Theta(\sqrt{n/r})$ (Dzahini & Wild '22b)	\sqrt{n}
Orthogonal	$\sqrt{n/r}$	$\sqrt{n/r}$.
		•

 \Rightarrow Even with r = O(1) and $\eta = O(1)$, $\eta^{-2}\sigma^{-2}P_{\max}^4 = O(n)!$

- Can compute steps in *r*-dim. subspaces, r = O(1).
- Reduced evaluation cost per iteration.
- Complexity: $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)!$

- 1 Derivative-free algorithm
- 2 Reduced subspace approach
- O Numerics with subspaces
 - 4 Subspace dimensions

Benchmark:

- Medium-scale test set (90 CUTEst problems of dimension \approx 100);
- Large-scale test set (28 CUTEst problems of dimension \approx 1000). Budget: 200(n + 1) evaluations.

Comparison:

- Deterministic DS with $\mathcal{D}_k = \mathcal{D}_{\oplus}$ or $\mathcal{D}_k = \{ \boldsymbol{e}_1, \dots, \boldsymbol{e}_n, -\sum_{i=1}^n \boldsymbol{e}_i \};$
- Probabilistic direct search with 2 uniform directions;
- Stochastic Three Point;
- Probabilistic direct search with Gaussian/Hashing/Orthogonal *P_k* matrices + 2 directions in the subspace.

Goal: Satisfy $f(\mathbf{x}_k) - f_{opt} \leq 0.1(f(\mathbf{x}_0) - f_{opt})$.

Comparison of all methods

Left: Medium scale; Right: Large scale.

- Operating in random subspaces works!
- But always a (hidden) dependency on n!

Gaussian matrices and subspace dimensions

Left: Medium scale; Right: Large scale.

Numerically

- Sketches of dimension > 1 may improve things...
- ...but in general opposite (Gaussian) directions work best!

The package

- https://github.com/lindonroberts/directsearch
- Python code + paper experiments.
- pip install directsearch

The package

- https://github.com/lindonroberts/directsearch
- Python code + paper experiments.
- pip install directsearch

Recent use at Meta:

Olivier Teytaud

Admin · 23 janvier · ③

In progress: adding https://github.com/lindonroberts/ directsearch inside Nevergrad. In particular there is an excellent stochastic direct search method. I don't know exactly the algorithm (yet). Thanks guys for this excellent code!

...

- Derivative-free algorithm
- 2 Reduced subspace approach
- 3 Numerics with subspaces
- 4 Subspace dimensions

If you want to scale up...

- Can compute steps in *r*-dim. subspaces, r = O(1);
- Reduced evaluation cost per iteration;
- Overall complexity: $\mathcal{O}(n^2) \Rightarrow \mathcal{O}(n)!$

Numerically

- Subspaces of dimension r > 1 may be good...
- ...but in general opposite Gaussian directions (r = 1) are better!

Warren: "But *why* does this work?"

Why do 1-dim. subspaces give best performance?

Warren: "But *why* does this work?"

Why do 1-dim. subspaces give best performance?

Our approach: Expected decrease guarantees

• Use Taylor approximation to focus on linear functions

$$f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) \leq \nabla f(\mathbf{x})^{\mathrm{T}}\mathbf{v} + \frac{L}{2} \|\mathbf{v}\|^{2}$$

- Generate *v* in a random subspace.
- Analyze expected value of linear term:

$$\mathbb{E}_{\boldsymbol{v}}\left[
abla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{v}
ight].$$

Warren: "But *why* does this work?"

Why do 1-dim. subspaces give best performance?

Our approach: Expected decrease guarantees

• Use Taylor approximation to focus on linear functions

$$f(\mathbf{x} + \mathbf{v}) - f(\mathbf{x}) \leq \nabla f(\mathbf{x})^{\mathrm{T}}\mathbf{v} + \frac{L}{2} \|\mathbf{v}\|^{2}$$

- Generate *v* in a random subspace.
- Analyze expected value of linear term:

$$\mathbb{E}_{\boldsymbol{v}}\left[
abla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{v}
ight].$$

• Equivalently, consider random $oldsymbol{g} \in \mathbb{R}^n$, deterministic $oldsymbol{v}$:

 $\mathbb{E}_{\boldsymbol{g}}\left[\boldsymbol{g}^{\mathrm{T}}\boldsymbol{v}\right].$

Key result (Hare, Roberts, R. '22)

Let $\boldsymbol{g} \in \mathbb{S}^{n-1}$, $\boldsymbol{P} \in \mathbb{R}^{r \times n}$ and $\mathcal{D} = \{\boldsymbol{e}_1, \dots, \boldsymbol{e}_r, -\boldsymbol{e}_1, \dots, -\boldsymbol{e}_r\}$. Then, the expected decrease ratio

$$\frac{\mathbb{E}\left[\min_{\boldsymbol{d}\in\mathcal{D}}\boldsymbol{g}^{\mathrm{T}}\boldsymbol{P}^{\mathrm{T}}\boldsymbol{d}\right]}{2r}$$

is minimized at r = 1.

Side notes

• Key quantity:

$$\mathbb{E}_{\boldsymbol{u}\sim\mathcal{U}(\mathbb{S}^{n-1})}\left[\max_{1\leq i\leq r}|[\boldsymbol{u}]_i|\right].$$

- Exact values hard to find in the literature!
- r = 1: best "bang for your buck".

Numerical validation

Setup

- Monte-Carlo approximations of expected decrease.
- Quadratic functions with a random linear term $\mathbf{x} \mapsto \mathbf{g}^{\mathrm{T}}\mathbf{x} + \frac{L}{2} \|\mathbf{x}\|^2$.
- Normalization by the number of function evaluations.

Our findings

- Probabilistic analysis/subspace viewpoint.
- Good complexity $(\mathcal{O}(n))$.
- Low dimension provably better on average.

Our findings

- Probabilistic analysis/subspace viewpoint.
- Good complexity $(\mathcal{O}(n))$.
- Low dimension provably better on average.

Going further

- Model-based algorithms (done for linear models).
- Stochastic/Noisy function values.

References

- Direct search based on probabilistic descent in reduced spaces
 L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
- Expected decrease for derivative-free algorithms using random subspaces
 W. Hare, L. Roberts and C. W. Royer, Technical report arXiv:2308.04734v2, 2024.

References

- Direct search based on probabilistic descent in reduced spaces
 L. Roberts and C. W. Royer, SIAM J. Optim. 33(4):3057-3082, 2023.
- Expected decrease for derivative-free algorithms using random subspaces
 W. Hare, L. Roberts and C. W. Royer, Technical report arXiv:2308.04734v2, 2024.

Merci! clement.royer@lamsade.dauphine.fr