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Motivation: Dauphine’s Nouveau Campus

New wing in construction⇒ 2024.
Others renovated in order: B, P, C+D, A.
Expected year of completion: 2027.

Our task: Allocate office space during the renovation process.
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Motivation: Dauphine’s Nouveau Campus (’ed)

Our model for the Dauphine problem
Huge integer LP, solved via Gurobi.
∼ 20 hyperparameters defining the model.
Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

Cannot differentiate (easily) within Gurobi
⇒ Derivative-free algorithms!

Solving time depends on hyperparameters (3-48 hours for a feasible
point!)
⇒ Limited benefits of parallelism.
Department chair wants weekly updates/new tests
⇒ Need to give up on some tests.

Can we cook up an algorithm adapted to this setting?
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Outline

1 Formal problem and algorithm

2 Building and using PkSS

3 Conclusion
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Optimization problem

minimizex∈Rn f (x).

f bounded below, nonconvex, C1,1 (for analysis).

Derivatives unavailable for algorithmic use.
Parallel evaluations of f allowed.
Evaluations can take unusually long⇒Stragglers.
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A (simplified) direct-search framework

Inputs: x0 ∈ Rn, α0 > 0.
Iteration i : Given (xi , αi ),

Choose a set Di ⊂ Rn of m (nonzero) vectors.
If ∃ di ∈ Di such that

f (xi + αi di ) < f (xi )− α2
i ∥di∥2

set xi+1 := xi + αidi , αi+1 := 2αi .
Otherwise, set xi+1 := xi , αi+1 := αi/2.

Key: Choice of Di .
Parallel version: Works as long as all directions in Di have been
polled when xi+1 = xi .
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Classical direct-search theory

Usual tool: Positive spanning sets (PSS)

D ⊂ Rn PSS if it spans Rn by nonnegative linear combinations
⇒ |D| ≥ n + 1.

D positive basis if no proper subset of D is a PSS
⇒ n + 1 ≤ |D| ≤ 2n.

Cosine measure
For any D ⊂ Rn, the cosine measure of D is

cm(D) := min
v ̸=0

max
d∈D

vTd
∥v∥∥d∥ .

D PSS ⇐⇒ cm(D) > 0.
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Classical direct-search theory (’ed)

Theorem: Complexity of direct search
Apply direct search with Di = D ∀i , D PSS. Then the method satisfies

min
0≤i≤J

∥∇f (xi )∥ ≤ ϵ

in at most
J = O

(
|D| cm(D)−2ϵ−2)

function evaluations.

Typical values
|D| = O(n).
cm(D) = O(na), a ∈ {−0.5,−1}.
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Direct search and stragglers

Inputs: x0 ∈ Rn, α0 > 0.
Iteration i : Given (xi , αi ),

Choose a set Di ⊂ Rn of m (nonzero) vectors.
If ∃ di ∈ Di such that

f (xi + αi di ) < f (xi )− α2
i ∥di∥2

set xi+1 := xi + αidi , αi+1 := 2αi .
Otherwise, set xi+1 := xi , αi+1 := αi/2.

Straggler model: At every iteration i ,
∃Si ⊂ Di of straggler directions (f much longer to evaluate).
Si unknown before evaluations launched!
Evaluations in Si cannot be used in analyzing the method.
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A new PSS property

Positive k-spanning sets (PkSS), k ≥ 1

D ⊂ Rn PkSS if any N ⊂ D with |N | = |D| − k + 1 is a PSS.

D positive k-basis if no proper subset of D is a PkSS.

Definition inherited from D. A. Marcus (’81, ’84).
k = 1: PSS/Positive basis.
D PkSS ⇒ |D| ≥ max{k, n + 2k − 1}.
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A new cosine measure (Hare, Jarry-Bolduc, Kerleau, R. ’24)

The k-cosine measure
For any D ⊂ Rn, the k-cosine measure of D is

cmk(D) := min
v ̸=0

max
N⊂D
|N|=k

max
d∈N

vTd
∥v∥∥d∥ .

D PkSS ⇐⇒ cmk(D) > 0.

Properties
Equivalent definition:

cmk(D) = min
N⊂D

|N|=|D|−k+1

cm(N ).

For any D (not necessarily PkSS !),

cm(D) ≥ · · · ≥ cm|D|−1(D) ≥ cm|D|(D).
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Complexity of direct search

Theorem
Apply direct search with Di = D ∀i , D PkSS.
Suppose less than k stragglers per iteration: |Si | ≤ k − 1 ∀i .

Then the method satisfies

min
0≤i≤J

∥∇f (xi )∥ ≤ ϵ

in at most
J = O

(
|D| cmk(D)−2ϵ−2)

function evaluations.

Typical values?
|D| ≥ O(n + k).
cmk(D) = O(?).
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Produce PkSS in practice (1/2)

Our baseline: Maximal (coordinate) positive basis

D⊕ := {e1, . . . , en,−e1, . . . ,−en}, with {el}l coordinate basis vectors.
βD⊕: multiply all vectors by real β.

First proposal: Duplicate vectors
Let β1, . . . , βk be k distinct positive real numbers. The set

Dβ1:k
⊕ :=

k⋃
j=1

βjD⊕

is a PkSS with cmk(Dβ1:k
⊕ ) = cm(D⊕) =

1√
n
.

Easy construction, even yields a positive k-basis!
Lacks diversity, redundancy if coupled with line search.
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Produce PkSS in practice (2/2)

Our baseline: Minimal (coordinate) positive basis

Dn+1 := {e1, . . . , en,−
∑n

l=1 el}, with {el} coordinate basis vectors.
RDn+1: Apply Rotation matrix R ∈ Rn×n

to all vectors.

Second proposal: Rotate vectors
Let R1, . . . ,Rk be k distinct positive real numbers. The set

DR1:k
n+1 :=

k⋃
j=1

RjDn+1

is a PkSS with cmk(DR1:k
n+1)≥ cm(Dn+1) =

1√
n2+2(n−1)

√
n
.

Includes:
Positive k-bases/PkSS with duplicates.
PkSS with no duplicates but not positive k-bases.
Positive k-basis with no duplicates!
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Robust linear regression (Carmon et al ’17)

minimize
x∈Rn

1
2n

2n∑
i=1

ϕ(aT
i x − bi ), ϕ(t) =

t2

1 + t2
.

ai i.i.d Gaussian, bi = aT
i z + 3u1 + u2, {z , u1} Gaussian, u2 Bernoulli.

Comparison: Direct search with PSS/P2SS, one straggler/iteration.

D |D| cm?

D⊕ 2n cm = 1√
n

D1,2
⊕ 4n cm2 = 1√

n

Dn+1 n + 1 cm = 1√
n2+2(n−1)

√
n

DIn,−In
n+1 2n + 2 cm2 = 1√

n2+2(n−1)
√
n
.
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Results in dimension 10

P2SSs can outperform PSSs with stragglers!
On 100 runs, DIn,−In

n+1 gives best results.
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Summing up

DFO with stragglers
Resilient notion of PSS.
Convergent algorithm.
Numerical proof of concept.
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Opening for discussions

About PkSS:
Upper bounds on the size of positive k-bases? (Nontrivial!)
Best PkSS in terms of ℓ-cosine measure?
Connections to strongly connected graphs and neighborly polytopes (!)

Beyond PkSS:

Poisedness equivalent to the PkSS property?
Other fun use cases?

Grazie mille!
clement.royer@lamsade.dauphine.fr
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