A derivative-free algorithm resilient to straggler function evaluations

Clément W. Royer

Based on joint works with W. Hare, G. Jarry-Bolduc, S. Kerleau

Derivative-Free Optimization Symposium - Padova, June 24, 2024

- New wing in construction \Rightarrow 2024.
- Others renovated in order: B, P, C+D, A.
- Expected year of completion: 2027.

Our task: Allocate office space during the renovation process.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet~\sim$ 20 hyperparameters defining the model.
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet \sim$ 20 hyperparameters defining the model.
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

- Cannot differentiate (easily) within Gurobi
 ⇒ Derivative-free algorithms!
- Solving time depends on hyperparameters (3-48 hours for a feasible point!)
 - \Rightarrow Limited benefits of parallelism.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet \sim$ 20 hyperparameters defining the model.
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

- Cannot differentiate (easily) within Gurobi
 ⇒ Derivative-free algorithms!
- Solving time depends on hyperparameters (3-48 hours for a feasible point!)
 - \Rightarrow Limited benefits of parallelism.
- Department chair wants weekly updates/new tests
 - \Rightarrow Need to give up on some tests.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet \sim$ 20 hyperparameters defining the model.
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

- Cannot differentiate (easily) within Gurobi
 ⇒ Derivative-free algorithms!
- Solving time depends on hyperparameters (3-48 hours for a feasible point!)
 - \Rightarrow Limited benefits of parallelism.
- Department chair wants weekly updates/new tests
 - \Rightarrow Need to give up on some tests.

Our model for the Dauphine problem

- Huge integer LP, solved via Gurobi.
- $\bullet~\sim$ 20 hyperparameters defining the model.
- Parallel runs on the department server.

Sub-task: Optimize hyperparameters.

Problem challenges

- Cannot differentiate (easily) within Gurobi
 ⇒ Derivative-free algorithms!
- Solving time depends on hyperparameters (3-48 hours for a feasible point!)
 - \Rightarrow Limited benefits of parallelism.
- Department chair wants weekly updates/new tests
 - \Rightarrow Need to give up on some tests.

Can we cook up an algorithm adapted to this setting?

Formal problem and algorithm

2 Building and using PkSS

3 Conclusion

Formal problem and algorithm

2 Building and using PkSS

3 Conclusion

• f bounded below, nonconvex, $C^{1,1}$ (for analysis).

- f bounded below, nonconvex, $C^{1,1}$ (for analysis).
- Derivatives unavailable for algorithmic use.

- f bounded below, nonconvex, $C^{1,1}$ (for analysis).
- Derivatives unavailable for algorithmic use.
- Parallel evaluations of *f* allowed.

- f bounded below, nonconvex, $C^{1,1}$ (for analysis).
- Derivatives unavailable for algorithmic use.
- Parallel evaluations of *f* allowed.
- Evaluations can take unusually long⇒Stragglers.

A (simplified) direct-search framework

Inputs: $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$. Iteration *i*: Given (x_i, α_i) ,

• Choose a set $\mathcal{D}_i \subset \mathbb{R}^n$ of m (nonzero) vectors.

• If $\exists d_i \in \mathcal{D}_i$ such that

$$f(x_i + \alpha_i d_i) < f(x_i) - \alpha_i^2 \|d_i\|^2$$

set
$$x_{i+1} := x_i + \alpha_i d_i$$
, $\alpha_{i+1} := 2\alpha_i$.

• Otherwise, set
$$x_{i+1} := x_i$$
, $\alpha_{i+1} := \alpha_i/2$.

A (simplified) direct-search framework

Inputs: $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$. Iteration *i*: Given (x_i, α_i) ,

• Choose a set $\mathcal{D}_i \subset \mathbb{R}^n$ of m (nonzero) vectors.

• If $\exists d_i \in \mathcal{D}_i$ such that

$$f(x_i + \alpha_i d_i) < f(x_i) - \alpha_i^2 \|d_i\|^2$$

set
$$x_{i+1} := x_i + \alpha_i d_i$$
, $\alpha_{i+1} := 2\alpha_i$.

• Otherwise, set
$$x_{i+1} := x_i$$
, $\alpha_{i+1} := \alpha_i/2$.

- **Key**: Choice of \mathcal{D}_i .
- Parallel version: Works as long as all directions in D_i have been polled when $x_{i+1} = x_i$.

Usual tool: Positive spanning sets (PSS)

• $\mathcal{D} \subset \mathbb{R}^n$ PSS if it spans \mathbb{R}^n by nonnegative linear combinations $\Rightarrow |\mathcal{D}| \ge n+1.$

Usual tool: Positive spanning sets (PSS)

• $\mathcal{D} \subset \mathbb{R}^n$ PSS if it spans \mathbb{R}^n by nonnegative linear combinations $\Rightarrow |\mathcal{D}| \ge n+1.$

• \mathcal{D} positive basis if no proper subset of \mathcal{D} is a PSS $\Rightarrow n+1 \le |\mathcal{D}| \le 2n.$

Usual tool: Positive spanning sets (PSS)

- $\mathcal{D} \subset \mathbb{R}^n$ PSS if it spans \mathbb{R}^n by nonnegative linear combinations $\Rightarrow |\mathcal{D}| \ge n+1.$
- \mathcal{D} positive basis if no proper subset of \mathcal{D} is a PSS $\Rightarrow n+1 \le |\mathcal{D}| \le 2n.$

Cosine measure

• For any $\mathcal{D} \subset \mathbb{R}^n$, the cosine measure of \mathcal{D} is

$$\operatorname{cm}(\mathcal{D}) := \min_{v \neq 0} \max_{d \in \mathcal{D}} \frac{v^{\mathrm{T}}d}{\|v\| \|d\|}.$$

• $\mathcal{D} \mathsf{PSS} \iff \mathsf{cm}(\mathcal{D}) > 0.$

Theorem: Complexity of direct search

Apply direct search with $D_i = D \ \forall i, D \text{ PSS}$. Then the method satisfies

 $\min_{0\leq i\leq J} \|\nabla f(x_i)\|\leq \epsilon$

in at most

$$J = \mathcal{O}\left(|\mathcal{D}|\operatorname{cm}(\mathcal{D})^{-2}\epsilon^{-2}\right)$$

function evaluations.

Theorem: Complexity of direct search

Apply direct search with $D_i = D \ \forall i, D \text{ PSS}$. Then the method satisfies

 $\min_{0\leq i\leq J} \|\nabla f(x_i)\| \leq \epsilon$

in at most

$$J = \mathcal{O}\left(|\mathcal{D}|\operatorname{cm}(\mathcal{D})^{-2}\epsilon^{-2}\right)$$

function evaluations.

Typical values

•
$$|\mathcal{D}| = \mathcal{O}(n).$$

• $cm(\mathcal{D}) = \mathcal{O}(n^a), a \in \{-0.5, -1\}.$

Inputs: $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$. Iteration *i*: Given (x_i, α_i) ,

- Choose a set $\mathcal{D}_i \subset \mathbb{R}^n$ of m (nonzero) vectors.
- If $\exists d_i \in \mathcal{D}_i$ such that

$$f(x_i + \alpha_i d_i) < f(x_i) - \alpha_i^2 \|d_i\|^2$$

set
$$x_{i+1} := x_i + \alpha_i d_i$$
, $\alpha_{i+1} := 2\alpha_i$.

• Otherwise, set
$$x_{i+1} := x_i$$
, $\alpha_{i+1} := \alpha_i/2$.

Inputs: $x_0 \in \mathbb{R}^n$, $\alpha_0 > 0$. **Iteration** *i*: Given (x_i, α_i) ,

- Choose a set $\mathcal{D}_i \subset \mathbb{R}^n$ of m (nonzero) vectors.
- If $\exists d_i \in \mathcal{D}_i \setminus \mathcal{S}_i$ such that

$$f(x_i + \alpha_i d_i) < f(x_i) - \alpha_i^2 \|d_i\|^2$$

set
$$x_{i+1} := x_i + \alpha_i d_i$$
, $\alpha_{i+1} := 2\alpha_i$.

• Otherwise, set
$$x_{i+1} := x_i$$
, $\alpha_{i+1} := \alpha_i/2$.

Straggler model: At every iteration i,

- $\exists S_i \subset D_i$ of straggler directions (*f* much longer to evaluate).
- S_i unknown before evaluations launched!
- Evaluations in S_i cannot be used in analyzing the method.

A new PSS property

Positive k-spanning sets (PkSS), $k \ge 1$

• $\mathcal{D} \subset \mathbb{R}^n \mathsf{P}k\mathsf{SS}$ if any $\mathcal{N} \subset \mathcal{D}$ with $|\mathcal{N}| = |\mathcal{D}| - k + 1$ is a PSS.

A new PSS property

Positive k-spanning sets (PkSS), $k \ge 1$

- $\mathcal{D} \subset \mathbb{R}^n \mathsf{P}k\mathsf{SS}$ if any $\mathcal{N} \subset \mathcal{D}$ with $|\mathcal{N}| = |\mathcal{D}| k + 1$ is a PSS.
- \mathcal{D} positive k-basis if no proper subset of \mathcal{D} is a PkSS.

Positive k-spanning sets (PkSS), $k \ge 1$

- $\mathcal{D} \subset \mathbb{R}^n \mathsf{P}k\mathsf{SS}$ if any $\mathcal{N} \subset \mathcal{D}$ with $|\mathcal{N}| = |\mathcal{D}| k + 1$ is a PSS.
- \mathcal{D} positive k-basis if no proper subset of \mathcal{D} is a PkSS.
- Definition inherited from D. A. Marcus ('81, '84).
- k = 1: PSS/Positive basis.
- $\mathcal{D} \mathsf{P}k\mathsf{SS} \Rightarrow |\mathcal{D}| \ge \max\{k, n+2k-1\}.$

A new cosine measure (Hare, Jarry-Bolduc, Kerleau, R. '24)

The *k*-cosine measure

• For any $\mathcal{D} \subset \mathbb{R}^n$, the *k*-cosine measure of \mathcal{D} is

$$\mathsf{cm}_k(\mathcal{D}) := \min_{\substack{v
eq 0 \ |\mathcal{N}| = k}} \max_{\substack{\mathcal{N} \subset \mathcal{D} \ d \in \mathcal{N}}} \max_{\substack{d \in \mathcal{N} \ ||v|| \|d\|}} rac{v^{\mathrm{T}}d}{\|v\|\|d\|}.$$

•
$$\mathcal{D} \mathsf{P}k\mathsf{SS} \iff \mathsf{cm}_k(\mathcal{D}) > 0.$$

A new cosine measure (Hare, Jarry-Bolduc, Kerleau, R. '24)

The *k*-cosine measure

• For any $\mathcal{D} \subset \mathbb{R}^n$, the *k*-cosine measure of \mathcal{D} is

$$\mathsf{cm}_k(\mathcal{D}) := \min_{v
eq 0} \max_{\substack{\mathcal{N} \subset \mathcal{D} \ |\mathcal{N}| = k}} \max_{\substack{d \in \mathcal{N} \ |\mathcal{V}| \|d\|}} rac{v^{\mathrm{T}}d}{\|v\|\|d\|}.$$

•
$$\mathcal{D} \mathsf{P}k\mathsf{SS} \iff \mathsf{cm}_k(\mathcal{D}) > 0.$$

Properties

• Equivalent definition:

$$\operatorname{cm}_k(\mathcal{D}) = \min_{\substack{\mathcal{N} \subset \mathcal{D} \\ |\mathcal{N}| = |\mathcal{D}| - k + 1}} \operatorname{cm}(\mathcal{N}).$$

• For any \mathcal{D} (not necessarily PkSS !),

$$\mathsf{cm}(\mathcal{D}) \geq \cdots \geq \mathsf{cm}_{|\mathcal{D}|-1}(\mathcal{D}) \geq \mathsf{cm}_{|\mathcal{D}|}(\mathcal{D}).$$

Complexity of direct search

Theorem

- Apply direct search with $\mathcal{D}_i = \mathcal{D} \ \forall i, \ \mathcal{D} \ \mathsf{P}k\mathsf{SS}.$
- Suppose less than k stragglers per iteration: $|S_i| \le k 1 \ \forall i$.

Then the method satisfies

$$\min_{0\leq i\leq J} \|\nabla f(x_i)\| \leq \epsilon$$

in at most

$$J = \mathcal{O}\left(|\mathcal{D}|\operatorname{cm}_k(\mathcal{D})^{-2}\epsilon^{-2}\right)$$

function evaluations.

Complexity of direct search

Theorem

- Apply direct search with $\mathcal{D}_i = \mathcal{D} \ \forall i, \ \mathcal{D} \ \mathsf{P}k\mathsf{SS}.$
- Suppose less than k stragglers per iteration: $|S_i| \le k 1 \ \forall i$.

Then the method satisfies

$$\min_{0\leq i\leq J} \|\nabla f(x_i)\| \leq \epsilon$$

in at most

$$J = \mathcal{O}\left(|\mathcal{D}|\operatorname{cm}_k(\mathcal{D})^{-2}\epsilon^{-2}\right)$$

function evaluations.

Typical values?

•
$$|\mathcal{D}| \geq \mathcal{O}(n+k).$$

•
$$\operatorname{cm}_k(\mathcal{D}) = \mathcal{O}(?)$$

Formal problem and algorithm

2 Building and using PkSS

3 Conclusion

Produce PkSS in practice (1/2)

Our baseline: Maximal (coordinate) positive basis

- $\mathcal{D}_{\oplus} := \{e_1, \dots, e_n, -e_1, \dots, -e_n\}$, with $\{e_l\}_l$ coordinate basis vectors.
- βD_{\oplus} : multiply all vectors by real β .

Produce PkSS in practice (1/2)

Our baseline: Maximal (coordinate) positive basis

- $\mathcal{D}_{\oplus} := \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\}$, with $\{e_l\}_l$ coordinate basis vectors.
- βD_{\oplus} : multiply all vectors by real β .

First proposal: Duplicate vectors

Let β_1, \ldots, β_k be k distinct positive real numbers. The set

$$\mathcal{D}_{\oplus}^{\beta_{1:k}} := \bigcup_{j=1}^{k} \beta_j \mathcal{D}_{\oplus}$$

is a PkSS with $\operatorname{cm}_k(\mathcal{D}_{\oplus}^{\beta_{1:k}}) = \operatorname{cm}(\mathcal{D}_{\oplus}) = \frac{1}{\sqrt{n}}$.

Produce PkSS in practice (1/2)

Our baseline: Maximal (coordinate) positive basis

- $\mathcal{D}_{\oplus} := \{e_1, \ldots, e_n, -e_1, \ldots, -e_n\}$, with $\{e_l\}_l$ coordinate basis vectors.
- $\beta \mathcal{D}_{\oplus}$: multiply all vectors by real β .

First proposal: Duplicate vectors

Let β_1, \ldots, β_k be k distinct positive real numbers. The set

$$\mathcal{D}_{\oplus}^{\beta_{1:k}} := \bigcup_{j=1}^{k} \beta_j \mathcal{D}_{\oplus}$$

is a PkSS with $\operatorname{cm}_k(\mathcal{D}_{\oplus}^{\beta_{1:k}}) = \operatorname{cm}(\mathcal{D}_{\oplus}) = \frac{1}{\sqrt{n}}$.

- Easy construction, even yields a positive k-basis!
- Lacks diversity, redundancy if coupled with line search.

Produce PkSS in practice (2/2)

Our baseline: Minimal (coordinate) positive basis

• $\mathcal{D}_{n+1} := \{e_1, \dots, e_n, -\sum_{l=1}^n e_l\}$, with $\{e_l\}$ coordinate basis vectors.

• $R\mathcal{D}_{n+1}$: Apply Rotation matrix $R \in \mathbb{R}^{n \times n}$ to all vectors.

Produce PkSS in practice (2/2)

Our baseline: Minimal (coordinate) positive basis

•
$$\mathcal{D}_{n+1} := \{e_1, \dots, e_n, -\sum_{l=1}^n e_l\}$$
, with $\{e_l\}$ coordinate basis vectors.

• $R\mathcal{D}_{n+1}$: Apply Rotation matrix $R \in \mathbb{R}^{n \times n}$ to all vectors.

Second proposal: Rotate vectors

Let R_1, \ldots, R_k be k distinct positive real numbers. The set

$$\mathcal{D}_{n+1}^{R_{1:k}} := \bigcup_{j=1}^{k} R_j \mathcal{D}_{n+1}$$

is a PkSS with
$$\operatorname{cm}_k(\mathcal{D}_{n+1}^{R_{1:k}}) \ge \operatorname{cm}(\mathcal{D}_{n+1}) = \frac{1}{\sqrt{n^2 + 2(n-1)\sqrt{n}}}$$

Produce PkSS in practice (2/2)

Our baseline: Minimal (coordinate) positive basis

•
$$\mathcal{D}_{n+1} := \{e_1, \dots, e_n, -\sum_{l=1}^n e_l\}$$
, with $\{e_l\}$ coordinate basis vectors.

• $R\mathcal{D}_{n+1}$: Apply Rotation matrix $R \in \mathbb{R}^{n \times n}$ to all vectors.

Second proposal: Rotate vectors

Let R_1, \ldots, R_k be k distinct positive real numbers. The set

$$\mathcal{D}_{n+1}^{R_{1:k}} := \bigcup_{j=1}^{k} R_j \mathcal{D}_{n+1}$$

is a PkSS with $\operatorname{cm}_k(\mathcal{D}_{n+1}^{R_{1:k}}) \ge \operatorname{cm}(\mathcal{D}_{n+1}) = \frac{1}{\sqrt{n^2 + 2(n-1)\sqrt{n}}}$. Includes:

- Positive *k*-bases/P*k*SS with duplicates.
- PkSS with no duplicates but not positive k-bases.
- Positive k-basis with no duplicates!

Robust linear regression (Carmon et al '17)

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \frac{1}{2n} \sum_{i=1}^{2n} \phi(a_i^{\mathrm{T}} x - b_i), \quad \phi(t) = \frac{t^2}{1 + t^2}.$$

• a_i i.i.d Gaussian, $b_i = a_i^T z + 3u_1 + u_2$, $\{z, u_1\}$ Gaussian, u_2 Bernoulli.

Comparison: Direct search with PSS/P2SS, one straggler/iteration.

$$\begin{array}{c|ccc} \mathcal{D} & |\mathcal{D}| & \mathrm{cm}_{?} \\ \hline \mathcal{D}_{\oplus} & 2n & \mathrm{cm} = \frac{1}{\sqrt{n}} \\ \mathcal{D}_{\oplus}^{1,2} & 4n & \mathrm{cm}_{2} = \frac{1}{\sqrt{n}} \\ \mathcal{D}_{n+1} & n+1 & \mathrm{cm} = \frac{1}{\sqrt{n^{2}+2(n-1)\sqrt{n}}} \\ \mathcal{D}_{n+1}^{l_{n}, -l_{n}} & 2n+2 & \mathrm{cm}_{2} = \frac{1}{\sqrt{n^{2}+2(n-1)\sqrt{n}}}. \end{array}$$

Results in dimension 10

- P2SSs can outperform PSSs with stragglers!
- On 100 runs, $\mathcal{D}_{n+1}^{I_n, -I_n}$ gives best results.

DFO with stragglers

- Resilient notion of PSS.
- Convergent algorithm.
- Numerical proof of concept.

References

- W. Hare, G. Jarry-Bolduc, S. Kerleau and C. W. Royer. Using orthogonally structured positive bases for constructing positive k-spanning sets with cosine measure guarantees, Lin. Alg. Appl. 680:183-207, 2024.
- S. Kerleau and C. W. Royer.

A derivative-free algorithm resilient to straggler function evaluations, Working paper.

Opening for discussions

- About PkSS:
 - Upper bounds on the size of positive k-bases? (Nontrivial!)
 - Best PkSS in terms of ℓ -cosine measure?
 - Connections to strongly connected graphs and neighborly polytopes (!)

Opening for discussions

About PkSS:

- Upper bounds on the size of positive k-bases? (Nontrivial!)
- Best PkSS in terms of ℓ -cosine measure?
- Connections to strongly connected graphs and neighborly polytopes (!)
- Beyond PkSS:
 - Poisedness equivalent to the PkSS property?
 - Other fun use cases?

Opening for discussions

About PkSS:

- Upper bounds on the size of positive k-bases? (Nontrivial!)
- Best PkSS in terms of ℓ -cosine measure?
- Connections to strongly connected graphs and neighborly polytopes (!)

Beyond PkSS:

- Poisedness equivalent to the PkSS property?
- Other fun use cases?

Grazie mille!

clement.royer@lamsade.dauphine.fr