Survey of Problems, Questions,
and Conjectures

We here collect unsolved problems, questions, and conjectures mentioned in
this book. For terminology and background, we refer to the pages indicated.

1 (page 41). Is NP#£P?
2 (page 42). Is P=NPnco-NP?

3 (page 65). The Hirsch conjecture: A d-dimensional polytope with m facets
has diameter at most m — d.

4 (page 161). Is there an O(nm)-time algorithm for finding a maximum flow?

5 (page 232). Berge [1982b] posed the following conjecture generalizing the
Gallai-Milgram theorem. Let D = (V, A) be a digraph and let k € Z,.. Then
for each path collection P partitioning V' and minimizing

(1) > min{|[VP|, k},
PepP

there exist disjoint stable sets C, ..., C in D such that each P € P intersects
min{|V P|, k} of them. This was proved by Saks [1986] for acyclic graphs.

6 (page 403). The following open problem was mentioned by Fulkerson
[1971b): Let A and B be families of subsets of a set S and let w € Z%.

What is the maximum number k of common transversals 77, ..., T} of A and
B such that
(2) XT1+...+XTkSw?

7 (page 459). Can the weighted matching problem be formulated as a linear
programming problem of size bounded by a polynomial in the size of the
graph, by extending the set of variables? That is, is the matching polytope
of a graph G = (V, E) equal to the projection of some polytope {z | Az < b}
with A and b having size bounded by a polynomial in |V|+ |E|?

8 (pages 472,646). The 5-flow conjecture of Tutte [1954al:
(3) (?) each bridgeless graph has a nowhere-zero 5-flow. (?)
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(A nowhere-zero k-flow is a flow over Zj in some orientation of the graph,
taking value 0 nowhere.)

9 (pages 472,498,645,1426). The 4-flow conjecture of Tutte [1966]:

(4) (?7) each bridgeless graph without Petersen graph minor has a
nowhere-zero 4-flow. (?)

This implies the four-colour theorem. For cubic graphs, (4) was proved by
Robertson, Seymour, and Thomas [1997], Sanders, Seymour, and Thomas
[2000], and Sanders and Thomas [2000].

Seymour [1981c] showed that the 4-flow conjecture is equivalent to the
following more general conjecture, also due to Tutte [1966]:

(5) (?) each bridgeless matroid without F7, M*(K5), or M (P1p) mi-
nor has a nowhere-zero flow over GF(4). (?7)

Here Py denotes the Petersen graph.

10 (page 472). The 3-flow conjecture (W.T. Tutte, 1972 (cf. Bondy and Murty
[1976], Unsolved problem 48)):

(6) (?) each 4-edge-connected graph has a nowhere-zero 3-flow. (?)

11 (page 473). The weak 3-flow conjecture of Jaeger [1988]:

(7) (?) there exists a number k such that each k-edge-connected graph
has a nowhere-zero 3-flow. (7)

12 (page 473). The following circular flow conjecture of Jaeger [1984] gener-
alizes both the 3-flow and the 5-flow conjecture:

(8) (?7) for each k > 1, any 4k-connected graph has an orientation
such that in each vertex, the indegree and the outdegree differ by
an integer multiple of 2k + 1. (7)

13 (pages 475,645). The generalized Fulkerson conjecture of Seymour [1979al:

(9) () ()] = [3X(G2)] (7)

for each graph G. (Here x'*(G) denotes the fractional edge-colouring number
of G, and Gy the graph obtained from G by replacing each edge by two
parallel edges.) This is equivalent to the conjecture that

(10) (?) for each k-graph G there exists a family of 2k perfect match-
ings, covering each edge precisely twice. (7)

(A k-graph is a k-regular graph G = (V, F) with |6(U)| > k for each odd-size

subset U of V)
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14 (pages 476,645). Fulkerson [1971a] asked if in each bridgeless cubic graph
there exist 6 perfect matchings, covering each edge precisely twice (the Fulk-
erson conjecture). It is a special case of Seymour’s generalized Fulkerson
conjecture.

15 (page 476). Berge [1979a] conjectures that the edges of any bridgeless
cubic graph can be covered by 5 perfect matchings. (This would follow from
the Fulkerson conjecture.)

16 (page 476). Gol’dberg [1973] and Seymour [1979a] conjecture that for each
(not necessarily simple) graph G one has

(11) (7) X'(G) < max{A(G) +1,[x""(G)]}. ()
An equivalent conjecture was stated by Andersen [1977].

17 (page 476). Seymour [1981c] conjectures the following generalization of
the four-colour theorem:

(12) (?) each planar k-graph is k-edge-colourable. (?)

For k = 3, this is equivalent to the four-colour theorem. For k = 4 and k = 5,
it was derived from the case k = 3 by Guenin [2002b].

18 (pages 476,644). Lovész [1987] conjectures more generally:

(13) (?) each k-graph without Petersen graph minor is k-edge-colour-
able. (?)

This is equivalent to stating that the incidence vectors of perfect matchings
in a graph without Petersen graph minor, form a Hilbert base.

19 (page 481). The following question was asked by Vizing [1968]: Is there a
simple planar graph of maximum degree 6 and with edge-colouring number
77

20 (page 481). Vizing [1965a] asked if a minimum edge-colouring of a graph
can be obtained from an arbitrary edge-colouring by iteratively swapping
colours on a colour-alternating path or circuit and deleting empty colours.

21 (page 482). Vizing [1976] conjectures that the list-edge-colouring number
of any graph is equal to its edge-colouring number.

(The list-edge-colouring number x'(G) of a graph G = (V, E) is the mini-
mum number k such that for each choice of sets L. for e € E with |L.| = k,
one can select [, € L, for e € E such that for any two incident edges e, f one
has o # I.)

22 (page 482). Behzad [1965] and Vizing [1968] conjecture that the total
colouring number of a simple graph G is at most A(G)+2. (The total colouring
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number of a graph G = (V, E) is a colouring of V U E such that each colour
consists of a stable set and a matching, vertex-disjoint.)

23 (page 482). More generally, Vizing [1968] conjectures that the total colour-
ing number of a graph G is at most A(G) + p(G) + 1, where u(G) is the
maximum edge multiplicity of G.

24 (pages 497,645). Seymour [1979b] conjectures that each even integer vector
in the circuit cone of a graph is a nonnegative integer combination of incidence
vectors of circuits.

25 (pages 497,645,1427). A special case of this is the circuit double cover
conjecture (asked by Szekeres [1973] and conjectured by Seymour [1979b]):
each bridgeless graph has circuits such that each edge is covered by precisely
two of them.

Jamshy and Tarsi [1989] proved that the circuit double cover conjecture
is equivalent to a generalization to matroids:

(14) (?) each bridgeless binary matroid without F~ minor has a circuit
double cover. (?)

26 (page 509). Is the system of T-join constraints totally dual quarter-
integral?

27 (page 517). L. Lovész asked for the complexity of the following problem:
given a graph G = (V| E), vertices s,t € V, and a length function [ : E — Q
such that each circuit has nonnegative length, find a shortest odd s — ¢ path.

28 (page 545). What is the complexity of deciding if a given graph has a
2-factor without circuits of length at most 47

29 (page 545). What is the complexity of finding a maximum-weight 2-factor
without circuits of length at most 37

30 (page 646). Tarsi [1986] mentioned the following strengthening of the
circuit double cover conjecture:

(15) (?) in each bridgeless graph there exists a family of at most 5
cycles covering each edge precisely twice. (?)

31 (page 657). Is the dual of any algebraic matroid again algebraic?

32 (page 892). A special case of a question asked by A. Frank (cf. Schrijver
[1979b], Frank [1995]) amounts to the following:

(16) (?) Let G = (V, E) be an undirected graph and let s € V. Suppose
that for each vertex t # s, there exist k internally vertex-disjoint
s—t paths. Then G has k spanning trees such that for each vertex
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t # s, the s — t paths in these trees are internally vertex-disjoint.
()
(The spanning trees need not be edge-disjoint — otherwise G = K3 would
form a counterexample.) For k = 2, (16) was proved by Itai and Rodeh [1984,
1988], and for k = 3 by Cheriyan and Maheshwari [1988] and Zehavi and Itai
[1989].

33 (page 962). Can a maximum number of disjoint directed cut covers in a
directed graph be found in polynomial time?

34 (page 962). Woodall [1978a,1978b] conjectures (Woodall’s conjecture):

(17) (?) In a digraph, the minimum size of a directed cut is equal to
the maximum number of disjoint directed cut covers. (7)

35 (page 985). Let G = (V, E) be a complete undirected graph, and consider
the system

(18) 0<z,<1 foreach edge e,
x(d(v)) =2 for each vertex v,
z(6(U)) > 2foreach U CV with ) AU # V.

Let ! : E — R, be alength function. Is the minimum length of a Hamiltonian
circuit at most 4 times the minimum value of Iz over (18)?

36 (page 990). Padberg and Grotschel [1985] conjecture that the diameter of
the symmetric traveling salesman polytope of a complete graph is at most 2.

37 (page 1076). Frank [1994a] conjectures:

(19) (?7) Let D = (V,A) be a simple acyclic directed graph. Then
the minimum size of a k-vertex-connector for D is equal to the
maximum of ), max{0,k — deg™(v)} and ) .\, max{0,k —
deg™(0)}. (7)

(A k-vertex-connector for D is a set of (new) arcs whose addition to D makes
it k-vertex-connected.)

38 (page 1087). Hadwiger’s conjecture (Hadwiger [1943]): If x(G) > k, then
G contains K}, as a minor.

Hadwiger’s conjecture is trivial for £k = 1,2,3, was shown by Hadwiger
[1943] for k = 4 (also by Dirac [1952]), is equivalent to the four-colour theorem
for k =5 (by a theorem of Wagner [1937a]), and was derived from the four-
colour theorem for k = 6 by Robertson, Seymour, and Thomas [1993]. For
k > 7, the conjecture is unsettled.

39 (page 1099). Chvatal [1973a] asked if for each fixed t, the stable set prob-
lem for graphs for which the stable set polytope arises from P(G) by at most
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t rounds of cutting planes, is polynomial-time solvable. Here P(G) is the
polytope determined by the nonnegativity and clique inequalities.

40 (page 1099). Chvétal [1975b] conjectures that there is no polynomial p(n)
such that for each graph G with n vertices we can obtain the inequality
(V) < a(G) from the system defining Q(G) by adding at most p(n) cutting
planes. Here Q(G) is the polytope determined by the nonnegativity and edge
inequalities. (This conjecture would be implied by NP+#co-NP.)

41 (page 1105). Gydrfas [1987] conjectures that there exists a function g :
Zy — Zy4 such that x(G) < g(w(@)) for each graph G without odd holes.

42 (page 1107). Can perfection of a graph be tested in polynomial time?

43 (page 1131). Berge [1982a] conjectures the following. A directed graph D =
(V, A) is called a-diperfect if for every induced subgraph D’ = (V' A") and
each maximume-size stable set S in D’ there is a partition of V' into directed

paths each intersecting S in exactly one vertex. Then for each directed graph
D:

(20) (?) D is a-diperfect if and only if D has no induced subgraph C
whose underlying undirected graph is a chordless odd circuit of
length > 5, say with vertices vy, ...,vo541 (in order) such that
each of vy, ve, U3, V4, Ve, Vs, . . ., Vo, is a source or a sink. (?)

44 (page 1170). Is ¥(C),) = O(C,,) for each odd n?

45 (page 1170). Can Haemers’ bound n(G) on the Shannon capacity of a
graph G be computed in polynomial time?

46 (page 1187). Is every t-perfect graph strongly t-perfect?

Here a graph is t-perfect if its stable set polytope is determined by the
nonnegativity, edge, and odd circuit constraints. It is strongly t-perfect if this
system is totally dual integral.

47 (page 1195). T-perfection is closed under taking induced subgraphs and
under contracting all edges in 0(v) where v is a vertex not contained in a
triangle. What are the minimally non-t-perfect graphs under this operation?

48 (page 1242). For any k, let f(k) be the smallest number such that
in any f(k)-connected undirected graph, for any choice of distinct ver-
tices s1,t1,..., Sk, tx there exist vertex-disjoint s — t1, ..., Sr — tx paths.
Thomassen [1980] conjectures that f(k) = 2k + 2 for k > 2.

49 (page 1242). For any k, let g(k) be the smallest number such that
in any g(k)-edge-connected undirected graph, for any choice of vertices
S1,t1,-- ., Sk, ti, there exist edge-disjoint s1 —t1, ..., s —tx paths. Thomassen
[1980] conjectures that g(k) = k if k is odd and g(k) = k4 1 if k is even.
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50 (page 1243). What is the complexity of the k arc-disjoint paths problem
in directed planar graphs, for any fixed k£ > 27 This is even unknown for
k = 2, also if we restrict ourselves to two opposite nets.

51 (page 1274). Karzanov [1991] conjectures that if the nets in a multiflow
problem form two disjoint triangles and if the capacities and demands are
integer and satisfy the Euler condition, then the existence of a fractional
multiflow implies the existence of a half-integer multiflow.

52 (page 1274). The previous conjecture implies that for each graph H =
(T, R) without three disjoint edges, there is an integer k such that for each
graph G = (V,E) with V D T and any ¢: F — Z; and d: R — Z, if there
is a feasible multiflow, then there exists a %—integer multiflow.

53 (page 1276). Okamura [1998] conjectures the following. Let G = (V, E) be
an l-edge-connected graph (for some ). Let H = (T, R) be a ‘demand’ graph,
with 7" C V, such that dgr(U) < [ for each U C V. Then the edge-disjoint
paths problem has a half-integer solution.

54 (page 1293). Is each Mader matroid a gammoid?
55 (page 1294). Is each Mader matroid linear?

56 (page 1299). Is the undirected edge-disjoint paths problem for planar
graphs polynomial-time solvable if all terminals are on the outer boundary?
Is it NP-complete?

57 (page 1310). Is the integer multiflow problem polynomial-time solvable if
the graph and the nets form a planar graph such that the nets are spanned
by a fixed number of faces?

58 (page 1310). Pfeiffer [1990] raised the question if the edge-disjoint paths
problem has a half-integer solution if the graph G + H (the union of the
supply graph and the demand graph) is embeddable in the torus and there
exists a quarter-integer solution.

59 (page 1320). Let G = (V, E) be a planar bipartite graph and let ¢ be a
vertex on the outer boundary. Do there exist disjoint cuts C4,...,C), such
that any pair s,t of vertices with s and ¢ on the outer boundary, or with
s = q, is separated by distg(s,t) cuts?

60 (page 1345). Fu and Goddyn [1999] asked: Is the class of graphs for which
the incidence vectors of cuts form a Hilbert base, closed under taking minors?

61 (page 1382). Fiiredi, Kahn, and Seymour [1993] conjecture that for each
hypergraph H = (V,€) and each w : & — R, there exists a matching M C &
such that
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1 *
(21) 2 (FI =14 g)wF) 2 vy (),
FeM
where v (H) is the maximum weight w'y of a fractional matching y : £ —
R..
62 (pages 1387,1408). Seymour [1981a] conjectures:
(22) (?) a binary hypergraph is ideal if and only if it has no O(Kj3),
b(O(Ks)), or Fr minor. (?)

63 (page 1392). Seymour [1990b] asked the following. Suppose that H =
(V,€) is a hypergraph without J,, minor (n > 3). Let [, w : V — Z be such
that

(23) T(HY) - 7(b(H)") > Tw.
Is there a minor H' of H and I",w’ : VH' — {0, 1} such that
) (H)) ) > 1

and such that 7((H')*") < 7(H") and 7(b(H")!") < 7(b(H)})?
Here, for each n > 3: J,, := the hypergraph with vertex set {1,...,n} and
edges {2,...,n}, {1,2},...,{1,n}.

64 (page 1392). Seymour [1990b] also asked the following. Let H = (V, &) be
a nonideal hypergraph. Is the minimum of 7(H') over all parallelizations and
minors H' of H with 7*(H') < 7(H’) attained by a minor of H?

65 (page 1395). Cornuéjols and Novick [1994] conjecture that there are only
finitely many minimally nonideal hypergraphs H with rni(H) > 2 and
T(H) > 2.

66 (page 1396). Ding [1993] asked whether there exists a number ¢ such that
each minimally nonideal hypergraph H satisfies i, (H) <t or 7(H) < t.

(The above conjecture of Cornuéjols and Novick [1994] implies a positive
answer to this question.)

67 (page 1396). Ding [1993] conjectures that for each fixed k > 2, each
minor-minimal hypergraph H with 7,(H) < k-7(H), contains some .J,, minor
(n > 3) or satisfies the regularity conditions of Lehman’s theorems (Theorem
78.4 and 78.5).

68 (page 1401). Conforti and Cornuéjols [1993] conjecture:

(

(25) (?) a hypergraph is Mengerian if and only if it is packing. (7)

69 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture:
)

(26 (?7) each minimally nonideal hypergraph H with rp, (H)7(H) =

|[VH|+ 1 is minimally nonpacking. (?)
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70 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture that
7(H) = 2 for each ideal minimally nonpacking hypergraph H.

71 (page 1404). Seymour [1981a] conjectures that T5q is the unique minor-
minimal binary ideal hypergraph H with the property vo(H) < 27(H).

Here the hypergraph T3( arises as follows. Replace each edge of the Pe-
tersen graph by a path of length 2, making the graph G. Let T := VG \ {v},
where v is an arbitrary vertex of v of degree 3. Let £ be the collection of
T-joins. Then T3y := (EG,E).

72 (page 1405). P.D. Seymour (personal communication 1975) conjectures
that for each ideal hypergraph H there exists an integer k such that vy (H) =
k- 7(H) and such that k = 2¢ for some i. He also asks if k = 4 would do in
all cases.

73 (page 1405). Seymour [1979a] conjectures that for each ideal hypergraph
H, the g.c.d. of those k with v, (H) =k - 7(H) is equal to 1 or 2.

74 (page 1409). Is the following true for binary hypergraphs H:

(27) (?) v(HY) = 7(HY) for each w : V — Z, with w(B) even for all
B e b(H) <= jun(HY)=71(H") foreach w:V — Z; <=
H has no O(Ks3), b(O(Ks)), Fr, or Ty minor. (?)

Here T35 is the hypergraph of VPqg-joins in the Petersen graph Pig.

75 (page 1421). Seymour [1981a] conjectures that for any binary matroid M:
(28) (?) M is 1-cycling <= M is 1-flowing <= M has no AG(3,2),

Ty, or T4, minor. (7)

Here Ty is the binary matroid represented by the 11 vectors in {0,1}% with
precisely 3 or 5 ones. Moreover, AG(3,2) is the matroid with 8 elements
obtained from the 3-dimensional affine geometry over GF(2).
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