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Part VIII: Hypergraphs

Hypergraphs form a framework in which many of the min-max relations discussed
before can be formulated. This is not to say that they all can be derived from general
hypergraph theory. Rather, hypergraph theory yields relations between different
min-max relations, for instance through the blocking and antiblocking relations of
hypergraphs and of polyhedra. Moreover, certain hereditary min-max relations can
be characterized by equivalent but weaker conditions. This can be helpful in proving
min-max relations for special classes of hypergraphs.
The material in this part is grouped by the hypergraph generalizations of four no-
tions that also played a central role in the earlier parts on graphs: matching, vertex
cover, edge cover, and stable set. Among the landmarks of this part are theorems of
Lehman on minimally nonideal hypergraphs and of Seymour characterizing binary
Mengerian hypergraphs.
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Chapter 77

Packing and blocking in
hypergraphs: elementary notions

Packing in hypergraphs asks for a maximum number of disjoint edges.
Blocking concerns the minimum number of vertices intersecting each edge.
In this chapter we give basic concepts of hypergraphs, in particular those
related to packing and blocking.

77.1. Elementary hypergraph terminology and notation

We start with some elementary definitions and notation on hypergraphs. A
hypergraph1 is a pair H = (V, E), where V is a finite set and E is a family of
subsets of V . Any element of V is called a vertex of H and any set in E an edge
of H. We sometimes denote the vertex set and the edge set of H by V H and
EH respectively. In our discussions, we can assume without loss of generality
that E is a collection of subsets (rather than a family, with multiplicities).

Graphs are special cases of hypergraphs: they are the hypergraphs that
have all its edges of size 2.

The E × V incidence matrix of H is the E × V matrix M with MF,v = 1
if v ∈ F and MF,v = 0 if v �∈ F (for v ∈ V , F ∈ E). For most of our pur-
poses, studying a hypergraph is equivalent to studying its incidence matrix.
Any result on hypergraphs is simultaneously a result on 0, 1 matrices, and
conversely. We will go back and forth between both interpretations and often
choose the most appropriate one.

The dual hypergraph H∗ of a hypergraph H = (V, E) is the hypergraph
with vertex set E and edges all sets {E ∈ E | v ∈ E} for v ∈ V . So the
incidence matrix of H∗ is the transpose of the incidence matrix of H.

For any hypergraph H = (V, E) we denote

(77.1) rmin(H) := min{|E| ∣
∣ E ∈ E} and rmax(H) := max{|E| ∣

∣ E ∈ E}.

1 Berge [1996] said that the name ‘hypergraph’ was invented in 1969 by J.-M. Pla, after
earlier attempts to call it ‘graphoid’ (e.g. Berge [1969]).
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77.2. Deletion, restriction, and contraction

We describe two operations on a hypergraph H = (V, E), deletion and con-
traction. Let v ∈ V , and define:

(77.2) E \ v := {E ∈ E | v �∈ E}, H \ v := (V \ {v}, E \ v),
E/v := {E \ {v} | E ∈ E}, H/v := (V \ {v}, E/v).

Replacing H by H \ v is called deleting v and replacing H by H/v is called
contracting v. We say that H ′ is a restriction of H if it arises by a series of
deletions, and a contraction of H if it arises by a series of contractions. The
restriction to U ⊆ V is H \ (V \ U).

Deletions and contractions commute in the ways one may expect: for
distinct u, v ∈ V one has

(77.3) (H/u)/v = (H/v)/u, (H \ u) \ v = (H \ v) \ u, and (H/u) \ v =
(H \ v)/u.

Deletion of an edge E means replacing E by E \ {E}. A hypergraph H ′

is called a minor of H, if H ′ arises from H by a series of deletions and
contractions of vertices, and deletions of edges that are not inclusionwise
minimal edges.

77.3. Duplication and parallelization

Let H = (V, E) be a hypergraph and let v ∈ V . Duplicating v means extending
V by a new vertex, v′ say, and replacing E by

(77.4) E ∪ {(E \ {v}) ∪ {v′} | v ∈ E ∈ E}.

A hypergraph obtained from H by a sequence of deletions and duplications
of vertices, is called a parallelization of H. If w : V → Z+, we denote by
Hw the result of deleting any vertex v with w(v) = 0, and duplicating any
vertex v w(v) − 1 times, if w(v) ≥ 2. So restrictions correspond to functions
w : V → {0, 1}. In a certain sense, contractions correspond to functions
w : V → {1, ∞}.

77.4. Clutters

For any hypergraph H = (V, E), define

(77.5) Hmin := (V, {F ∈ E | there is no E ∈ E with E ⊂ F}) and
H↑ := (V, {F ⊆ V | there is an E ∈ E with E ⊆ F}).

A hypergraph H = (V, E) is called a clutter if no two sets in E are contained
in each other2. So for any hypergraph, Hmin is a clutter.
2 The term ‘clutter’ was introduced by Edmonds and Fulkerson [1970].
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77.5. Packing and blocking

Let H = (V, E) be a hypergraph. The following notions generalize the corre-
sponding notions defined for graphs.

A vertex cover is a set of vertices intersecting each edge of H. A matching
is a collection of pairwise disjoint edges of H. Define

(77.6) τ(H) := the minimum size of a vertex cover in H,
ν(H) := the maximum size of a matching in H.

Determining these numbers is NP-complete, since determining τ(G) and (the
stability number) α(G) of a graph G = (V, E) is NP-complete (cf. Theorem
64.1), and since α(G) = ν(G∗).

We should note that replacing H by Hmin or H↑ does not change the
value of τ(H) or ν(H). So τ(H) = τ(H↑) = τ(Hmin) and ν(H) = ν(H↑) =
ν(Hmin).

There is the following straightforward inequality:

(77.7) ν(H) ≤ τ(H).

In the previous parts we met several classes of hypergraphs where equality
holds in (77.7), and the purpose of this and the coming chapters is to treat
them in a unifying and clarifying framework.

77.6. The blocker

For any hypergraph H = (V, E), the blocking hypergraph, or blocker, of H is
the hypergraph b(H) = (V, B) where B is the collection of all inclusionwise
minimal vertex covers of H. So b(H) is a clutter and

(77.8) τ(H) = rmin(b(H)).

Moreover, b(H)↑ is the collection of vertex covers.
The following important duality relation was noticed by Lawler [1966]

(also by Edmonds and Fulkerson [1970]):

Theorem 77.1. For any hypergraph H = (V, E), b(b(H)) = Hmin. In partic-
ular, if H is a clutter, then b(b(H)) = H.

Proof. It suffices to show b(b(H))↑ = H↑. If U ∈ H↑, then U intersects each
set in b(H). Hence U is a vertex cover of b(H), and so U ∈ b(b(H))↑.

Conversely, if U �∈ H↑, then V \U is a vertex cover of H. So V \U ∈ b(H).
Hence U is not a vertex cover of b(H). So U �∈ b(b(H))↑.

One may check that the operations of deletion and contraction interchange
when passing to the blocker. More precisely, for any vertex v of a hypergraph
H one has:

(77.9) b(H/v) = b(H) \ v and b(H \ v) = (b(H)/v)min.
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77.7. Fractional matchings and vertex covers

Let H = (V, E) be a hypergraph. A fractional vertex cover is a function
x : V → R+ satisfying

(77.10)
∑

v∈F

xv ≥ 1 for each F ∈ E .

A fractional matching is a function y : E → R+ satisfying

(77.11)
∑

F�v

yF ≤ 1 for each v ∈ V .

(Here and below, F ranges over the edges of H.) Let τ∗(H) denote the min-
imum size of a fractional vertex cover and let ν∗(H) denote the maximum
size of a fractional matching (where the size of a vector is the sum of its
components).

We can describe τ∗(H) and ν∗(H) by linear programs3:

(77.12) τ∗(H) = min{1Tx | x ∈ R
V
+, Mx ≥ 1},

where M is the E × V incidence matrix of H. Similarly,

(77.13) ν∗(H) = max{yT1 | y ∈ R
E
+, yTM ≤ 1T}.

As these linear programs are each others dual, this gives:

(77.14) ν∗(H) = τ∗(H).

77.8. k-matchings and k-vertex covers

There is an alternative interpretation of the parameters ν∗(H) and τ∗(H),
in terms of ‘k-vertex covers’ and ‘k-matchings’.

A k-vertex cover is a function x : V → Z+ such that

(77.15)
∑

v∈F

xv ≥ k for each F ∈ F .

Let τk(H) denote the minimum size of a k-vertex cover. Since (minimal) 1-
vertex covers are precisely the incidence vectors of the vertex covers, we have
τ1(H) = τ(H).

A k-matching is a function y : E → Z+ such that

(77.16)
∑

F�v

yF ≤ k for each v ∈ V .

Let νk(H) denote the maximum size of a k-matching in H. As 1-matchings
are the incidence vectors of the matchings, we have ν1(H) = ν(H).

Then for any k ∈ Z+:
3 1 stands for all-one column vectors of appropriate sizes.
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(77.17) νk(H) ≤ τk(H),

since for any k-vertex cover x and any k-matching y:

(77.18)
∑

F

yF ≤ 1
k

∑

F

yF

∑

v∈F

xv =
1
k

∑

v

xv

∑

F�v

yF ≤
∑

v

xv.

More extensively, one has for each k ≥ 1:

(77.19) ν(H) ≤ νk(H)
k

≤ ν∗(H) = τ∗(H) ≤ τk(H)
k

≤ τ(H).

The first two inequalities follow from the facts that if y is a 1-matching, then
k ·y is a k-matching, and that if y is a k-matching, then k−1 ·y is a fractional
matching. The last two inequalities are shown similarly.

We will investigate classes of hypergraphs where some or all of the in-
equalities in (77.19) are satisfied with equality. Obviously, if ν(H) = τ(H),
then all terms in (77.19) are equal.

ν∗(H) can be described in terms of the νk(H) (Lovász [1974]):

(77.20) ν∗(H) = max
k

νk(H)
k

= lim
k→∞

νk(H)
k

.

Here the left-hand side equality holds as the maximum in (77.13) is attained
by a rational optimum solution y. If k is the common denominator of the
components of y, then k · y is a k-matching, and hence k · ν∗(H) ≤ νk(H); so
equality follows by (77.19).

The right-hand side equality follows from Fekete’s lemma (Theorem 2.2),
using the fact that for all k, l ≥ 1:

(77.21) νk+l(H) ≥ νk(H) + νl(H),

since if y′ and y′′ are a k- and an l-matching respectively, then y′ + y′′ is a
k + l-matching.

Similarly we have:

(77.22) τ∗(H) = min
k

τk(H)
k

= lim
k→∞

τk(H)
k

,

using (77.12) and the fact that for all k, l ≥ 1:

(77.23) τk+l(H) ≤ τk(H) + τl(H).

77.9. Further results and notes

77.9a. Bottleneck extrema

Edmonds and Fulkerson [1970] showed that for any clutter H = (V, E), its blocker
(V, B) is the unique clutter with the property that for each f : V → R the following
equality holds:

(77.24) min
E∈E

max
x∈E

f(x) = max
B∈B

min
y∈B

f(y).
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(These extrema are called bottleneck extrema.) To see that the collection B of mini-
mal vertex covers of H has this property, let E ∈ E and x ∈ E attain the first min-
imum and first maximum. Then each F ∈ E contains a vertex z with f(z) ≥ f(x).
Hence {z ∈ V | f(z) ≥ f(x)} contains a set B in B. So f(x) ≤ miny∈B f(y).
This shows ≤ in (77.24). Moreover, for any B ∈ B, as E intersects B, we have
f(x) ≥ miny∈B f(y). This gives ≥ in (77.24).

To see that this property characterizes the blocker, let B be any clutter satisfying
(77.24) for each f : V → R. Then for each B ∈ B and E ∈ E we have B ∩ E �= ∅,
since otherwise we can define f such that f(x) < 0 for all x ∈ E and f(y) > 0 for
each y ∈ B, giving < in (77.24), a contradiction.

Finally, each vertex cover B of E contains a set in B. If not, we can define f
such that f(x) > 0 for each x ∈ B and f(y) < 0 for each y ∈ V \ B. Then we have
> in (77.24), again a contradiction.

77.9b. The ratio of τ and τ∗

The following theorem of Johnson [1974a] and Lovász [1975c] bounds τ(H) in terms
of τ∗(H) and the maximum degree of H. (The degree of a vertex v is the number
of edges containing v. The maximum degree of H is the maximum of the degrees of
its vertices.) The method is similar to that of Theorem 64.13.

Theorem 77.2. For any hypergraph H = (V, E) of maximum degree d one has:

(77.25) τ(H) ≤ (1 + ln d)τ∗(H).

Proof. Iteratively choose vertices v1, v2, . . ., where, for each i = 1, 2, . . . , vertex vi

is chosen such that it is contained in a maximum number of edges not intersecting
{v1, . . . , vi−1}. We stop if the set {v1, . . . , vk} of chosen vertices is a vertex cover.
So τ(H) ≤ k.

For each i = 1, . . . , k, let di be the number of edges containing vi but not
intersecting {v1, . . . , vi−1}. For each F ∈ E , define

(77.26) yF :=
1
di

,

where i is the smallest index with vi ∈ F . Then

(77.27)
∑

F∈E
yF =

k∑

i=1

di
1
di

= k,

and hence

(77.28) τ(H) ≤
∑

F∈E
yF .

We next show that (1+ln d)−1 ·y is a fractional matching. To this end, consider
any vertex v. Let F1, . . . , Ft be the edges of H containing v, in the order by which
they are intersected by v1, . . . , vk. Then for each j = 1, . . . , t, we have

(77.29) yFj ≤ 1
t − j + 1

.
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For let i be the smallest index with vi ∈ Fj . So yFj = 1/di. Moreover, di ≥ t−j +1,
since v is contained in at least t − j + 1 edges not intersected by {v1, . . . , vi−1}.
This proves (77.29).

Hence

(77.30)
t∑

j=1

yFj ≤
t∑

j=1

1
t − j + 1

=
t∑

j=1

1
j

≤ 1 + ln t ≤ 1 + ln d.

As this holds for each vertex v, (1 + ln d)−1 · y is a fractional matching.
This implies

(77.31) τ(H) ≤
∑

F∈E
yF ≤ (1 + ln d)ν∗(H) = (1 + ln d)τ∗(H),

as required.

(Related work can be found in Balas [1984].)
The proof shows that one can find a vertex cover of size less than (1 + ln d)τ∗,

by iteratively selecting a vertex of maximum degree and deleting it.
The proof method of Theorem 67.17 gives that for any hypergraph H = (V, E):

(77.32) τ∗(H) = lim
k→∞

k
√

τ(Hk),

where Hk is the hypergraph on V k with edges all sets E1×· · ·×Ek with E1, . . . , Ek ∈
E .

77.9c. Further notes

Füredi, Kahn, and Seymour [1993] showed that each hypergraph H = (V, E) has a
matching M ⊆ E such that

(77.33)
∑

F∈M
(|F | − 1 +

1
|F | ) ≥ ν∗(H).

In particular, for any hypergraph H:

(77.34) ν(H) ≥ rmax

r2
max − rmax + 1

ν∗(H),

where rmax := rmax(H) (the maximum edge size of H). (For uniform hypergraphs
H (that is, all edges of H have the same size), this was proved by Füredi [1981]
(confirming a conjecture of L. Lovász (cf. Füredi [1988])).)

Füredi, Kahn, and Seymour [1993] conjecture the following weighted extension
of (77.33):

(77.35) (?) For each hypergraph H = (V, E) and each w : E → R+, there exists
a matching M ⊆ E such that

∑

F∈M

(|F | − 1 +
1

|F |
)
w(F ) ≥ ν∗

w(H),
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where ν∗
w(H) is the maximum weight wTy of a fractional matching y : E → R+.

Füredi, Kahn, and Seymour [1993] proved this conjecture for uniform hypergraphs,
and also for hypergraphs H with ν(H) = 1.

Related work on the relations between fractional and integer packing and cov-
ering was reported by Chvátal [1979], Dobson [1982], Fisher and Wolsey [1982],
Aharoni, Erdős, and Linial [1985,1988], Raghavan [1988], Feige [1996,1998], and
Slav́ık [1996,1997].

Lovász [1975b] showed that for each choice of ν, τ ∈ Z+ and r ∈ Q+ satisfying
1 ≤ ν ≤ r ≤ τ and r > 1, there exists a hypergraph H with ν(H) = ν, τ∗(H) = r,
and ν(H) = ν. Chung, Füredi, Garey, and Graham [1988] showed that for each
rational number r, there exists a 3-uniform hypergraph H with τ∗(H) ≡ r (mod
1). (For each 2-uniform hypergraph (= graph) H, τ∗(H) belongs to 1

2Z (cf. Section
64.6).)

Saks [1986] studied the behaviour of the parameters τ and ν under taking unions
of edges and vertex covers.

The hypergraph analogue of matching augmenting paths in graphs was studied
by Edmonds [1962].

Seymour [1977a] gave a forbidden minor characterization of those clutters H
that come from an undirected graph G = (V, E) and s, t ∈ V , by taking as edges
of H all edge sets of s − t paths. (Related work can be found in Novick and Sebő
[1995].)

Determining the vertex cover number τ(H) of a hypergraph H is equivalent
to the set covering problem. In Section 82.6b we give further references for this
problem. Determining the matching number ν(H) of H is equivalent to the vertex
packing (equivalently, the set packing) problem. In Section 64.9e we gave further
references for this problem.

Connectivity augmentation for hypergraphs was studied by Bang-Jensen and
Jackson [1999], Benczúr [1999], Benczúr and Frank [1999], Cheng [1999], and Szigeti
[1999].

The problems of finding a maximum-size matching and a minimum-size vertex
cover in a hypergraph are equivalent to finding a maximum-size stable set in a
graph and a minimum-size edge cover in a hypergraph. For references to general
methods for these problems, we refer to Sections 64.9e and 82.6b, respectively.

Extensions of Gallai’s theorem (Theorem 19.1) to hypergraphs were given by
Tuza [1991], and generalizations of Kőnig’s and Hall’s theorems to hypergraphs by
Aharoni and Haxell [2000] and Aharoni, Berger, and Ziv [2002].

Surveys on packing and covering in hypergraphs were given by Berge [1973b,
1973c,1978a,1979b,1989a], Schrijver [1979b], Füredi [1988], and Cornuéjols [2001].
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Ideal hypergraphs

Ideal hypergraphs are those hypergraphs for which the convex hull of the
vertex covers is given by the edge inequalities. They therefore form a class
of hypergraphs where polyhedral methods apply. Since the relations of
blocking hypergraphs and of blocking polyhedra coincide in this case, the
class of ideal hypergraphs is closed under taking blockers.
The class of ideal hypergraphs is also closed under taking minors. A charac-
terization of ideal hypergraphs in terms of forbidden minors is not known,
but a theorem of Lehman gives powerful properties of minimally nonideal
hypergraphs.

78.1. Ideal hypergraphs

For any hypergraph H = (V, E), let PH be the set of all fractional vertex
covers; that is, PH is the solution set of

(78.1) (i) xv ≥ 0 for v ∈ V ,
(ii) x(F ) ≥ 1 for F ∈ E .

A hypergraph H = (V, E) is called ideal if PH is integer4. Obviously, H is
ideal ⇐⇒ Hmin is ideal ⇐⇒ H↑ is ideal.

Note that each integer vertex of PH is a 0,1 vector, and hence the incidence
vector of some vertex cover of H. So H is ideal if and only if (78.1) determines
the up hull of the incidence vectors of the vertex covers of H. By Theorem
5.19, H is ideal if and only if the convex hull of the incidence vectors of the
vertex covers of H is determined by

(78.2) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) x(F ) ≥ 1 for F ∈ E .

By the theory of blocking polyhedra (cf. Theorem 5.8), H is ideal if and
only if each vertex of the polyhedron determined by
4 Alternatively, such hypergraphs are called Fulkersonian, or said to satisfy the length-

width inequality or the width-length inequality, or to have the max-flow min-cut property,
the Q+-max-flow min-cut property, shortly the MFMC property or the Q+-MFMC
property. Sakarovitch [1975,1976] used the term quasi-balanced.
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(78.3) (i) xv ≥ 0 for v ∈ V ,
(ii) x(B) ≥ 1 for B ∈ b(H)

is integer — that is, is the incidence vector of an edge of H. This gives the
following important theorem of Fulkerson [1970b,1971a]:

Theorem 78.1. A hypergraph H is ideal ⇐⇒ its blocker b(H) is ideal.

Proof. See above.

The class of ideal hypergraphs is also closed under taking minors (Lehman
[1965,1979]):

Theorem 78.2. Any minor of an ideal hypergraph is ideal again.

Proof. Let H = (V, E) be ideal and let v ∈ V . Choose x ∈ PH/v. Let x̃ ∈ R
V

be defined by x̃u := xu for u ∈ V \ {v} and x̃v := 0. Then x̃ ∈ PH . Hence x̃
is a convex combination of integer vectors z in PH . Each of these vectors z
satisfies zv = 0. Hence we obtain x as a convex combination of integer vectors
in PH/v.

Next choose x ∈ PH\v. Now let x̃ ∈ R
V be defined by x̃u := xu for

u ∈ V \ {v} and x̃v := 1. Then x̃ ∈ PH . Hence x̃ is a convex combination of
integer vectors z in PH . Now deleting the vth component from any such z, we
obtain an integer vector in PH\v. Hence we obtain x as a convex combination
of integer vectors in PH\v.

78.2. Characterizations of ideal hypergraphs

We will give several characterizations of ideal hypergraphs — albeit not by
forbidden minors, since such a characterization is not known.

In the present section we discuss some equivalent properties each char-
acterizing ideality. In Section 78.4, we show Lehman’s theorem, which gives
properties of minimally nonideal hypergraphs. From this, some further char-
acterizations of ideality will be derived.

The definition of ideal hypergraph can be stated equivalently as:

(78.4) H is ideal if and only if for each w : V → R+, the minimum of
wTx over (78.1) is attained by an integer vector x.

As we can restrict ourselves to rational-valued w, and hence to integer-valued
w, we have equivalently:

(78.5) H is ideal if and only if for each w : V → Z+, the minimum of
wTx over (78.1) is attained by an integer vector x.

We can formulate this in terms of the ‘parallelization’ Hw (defined in Section
77.3). To this end, it is good to observe that, for any ‘weight’ function w :
V → Z+:
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(78.6) τ(Hw) = the minimum weight of a vertex cover of H

and

(78.7) ν(Hw) = the maximum number t of edges E1, . . . , Et of H such
that each v ∈ V is in at most w(v) of the Ei.

The values of τ∗(Hw) and ν∗(Hw) can be described by dual linear programs:

(78.8) τ∗(Hw) = min{wTx | x ∈ R
V
+, Mx ≥ 1}

= min{yT1 | y ∈ R
E
+, yTM ≤ wT} = ν∗(Hw),

where M is the E × V incidence matrix of H. So we have:

(78.9) H is ideal if and only if τ∗(Hw) = τ(Hw) for each w : V → Z+.

The following further characterizations were found5:

Theorem 78.3. For any hypergraph H = (V, E) the following are equivalent:

(78.10) (i) H is ideal, that is τ∗(H ′) = τ(H ′) for each parallelization H ′

of H;
(ii) τ∗(H ′) is an integer for each parallelization H ′ of H;
(iii) b(H) is ideal;
(iv) τ∗(b(H)′) is an integer for each parallelization b(H)′ of b(H);
(v) PH and Pb(H) form a pair of blocking polyhedra;
(vi) τ(Hw)τ(b(H)l) ≤ wTl for all w, l : V → Z+.

Proof. The implications (i)⇒(ii) and (iii)⇒(iv) are trivial. The equivalences
(i) ⇐⇒ (iii) ⇐⇒ (v) were shown above.

The implication (ii)⇒(i) is shown as follows6. We must show that (ii)
implies that each vertex x∗ of the polyhedron PH defined by (78.1) is integer.
Suppose not. Choose v ∈ V with x∗

v not integer. As x∗ is a vertex, there is
a weight function w : V → R+ such that the minimum of wTx over PH is
attained uniquely by x∗. By scaling, we can assume that w is integer and
that for w̃ := w + χv, also the minimum of w̃Tx over PH is attained at x∗.
So wTx∗ and w̃Tx∗ are integers (by (ii)), and hence x∗

v = w̃Tx∗ − wTx∗ is an
integer, contradicting our assumption.

This proves (ii)⇒(i) and similarly (iv)⇒(iii). So conditions (i), (ii), (iii),
(iv), and (v) are equivalent. We finally consider condition (vi).

Necessity of (vi) can be seen as follows. Choose w, l : V → Z+. Let
α := τ(Hw) = τ∗(Hw) and β := τ(b(H)l) = τ∗(b(H)l). So w(B) ≥ α for each
edge B of b(H) (= minimal vertex cover of H), and hence α−1 · w(B) ≥ 1
5 (i)⇔(vi)⇔(iii) was shown by Lehman [1965,1979], (i)⇔(v) by Fulkerson [1970b,1971a],

and (i)⇔(ii) and (iii)⇔(iv) by Lovász [1977b].
Lehman called condition (i) the max-flow min-cut property, and condition (vi) the

width-length inequality (motivated by work of Moore and Shannon [1956] who proved
this inequality for the width (minimum cut-capacity) and length (shortest path) of a
network).

6 It also follows directly from general polyhedral theory (Theorem 5.18).



1386 Chapter 78. Ideal hypergraphs

for each edge of b(H). So α−1 · w ∈ Pb(H). Similarly, β−1 · l belongs to PH .
As Pb(H) is the blocking polyhedron of PH , we have (α−1 · w)T(β−1 · l) ≥ 1,
that is wTl ≥ αβ, as required.

To see sufficiency of (vi), suppose that PH has a noninteger vertex x∗.
Then there is a hyperplane separating x∗ from the integer vectors in PH . So
there is a y ∈ Q

V
+ with yTx∗ < 1 while yTx ≥ 1 for each integer vector x in

PH . Let α > 0 and β > 0 be such that w := α · y and l := β · x∗ are integer
vectors. As yTx ≥ 1 for each integer vector x in PH , we have wTx ≥ α for
each integer vector x in PH , and so w(B) ≥ α for each vertex cover B of
H; that is τ(Hw) ≥ α. Since x∗ belongs to PH , we have that x∗(F ) ≥ 1 for
each F ∈ E , and hence l(F ) ≥ β for each F ∈ E ; that is τ(b(H)l) ≥ β. This
implies

(78.11) τ(Hw)τ(b(H)l) ≥ αβ > αβ · yTx∗ = wTl,

contradicting (vi).

78.3. Minimally nonideal hypergraphs

A hypergraph H = (V, E) is called minimally nonideal if H is nonideal and
each proper minor of H is ideal. In particular, H is a clutter.

So being ideal can be characterized by not having a minimally nonideal
hypergraph as a minor. Since the class of ideal hypergraphs is closed un-
der taking the blocker, the blocker of any minimally nonideal hypergraph is
minimally nonideal again.

There turn out to be infinitely many minimally nonideal hypergraphs.
Known examples are7:

(78.12) (i) for each n ≥ 3: Jn := the hypergraph with vertex set {1, . . . , n}
and edges {2, . . . , n}, {1, 2}, . . . , {1, n};

(ii) the odd circuits C2k+1 and their blockers b(C2k+1) (k ≥ 1);
(iii) F7 := the hypergraph with vertex set the points of the projec-

tive plane of order 2, and edges all lines (the Fano hypergraph)8;
(iv) O(K5) := the hypergraph with vertex set EK5 and edges all

odd circuits of K5, and its blocker b(O(K5)) (having edges the
complements of the nonempty cuts of K5);

(v) the hypergraph with vertex set EK5 and edges all triangles of
K5, and its blocker;

7 Examples (i), (ii), (iii) were given by Lehman [1965,1979], example (iv) by Seymour
[1977b], examples (v) and (vi) by Cornuéjols and Novick [1994], example (vii) by P.D.
Seymour (cf. Ding [1993]), C3

5 and C4
7 by Lehman [1965,1979] (they are the blockers of

the circuits C5 and C7), C3
8 by Cornuéjols and Novick [1994] and Ding [1993], C5

9 and
C6
11 by Qi [1989], and the other Ck

n by Cornuéjols and Novick [1994].
8 Equivalently, V F7 = {1, . . . , 7} and EF7 = {{i, i + 1, i + 3} | i = 1, . . . , 7}, taking

addition mod 7.
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(vi) the hypergraph with vertex set EK5 and edges the comple-
ments of maximum-size cuts, and its blocker;

(vii) the hypergraph D8 with vertex set {1, . . . , 8} and edges {1, 2,
6}, {2, 3, 5}, {3, 4, 8}, {4, 5, 7}, {2, 5, 6}, {1, 6, 7}, {4, 7, 8}, and
{1, 3, 8}, and its blocker b(D8);

(viii) the hypergraphs C3
5 , C3

8 , C3
11, C3

14, C3
17, C4

7 , C4
11, C5

9 , C6
11, C7

13
(where Ck

n has vertex set V Cn and edges all consecutive k-
tuples from V Cn), and their blockers.

Note that b(F7) = F7 and b(Jn) = Jn for each n. The hypergraphs given
in (viii) are all the minimally nonideal hypergraphs of the form Ck

n with
k ≥ 3. This was proved by Cornuéjols and Novick [1994], who also gave
several thousands of other minimally nonideal hypergraphs. A ‘catalogue’ of
minimally nonideal hypergraphs was given by Lütolf and Margot [1998].

Seymour [1981a]9 conjectures that O(K5), b(O(K5)), and F7 are the only
binary minimally nonideal hypergraphs (see Chapter 80).

We saw in Section 75.5 that O(K5) is the unique minimally nonideal hy-
pergraph among the hypergraphs obtained from a signed graph G = (V, E, Σ)
by taking EG as vertex set and the circuits C in G with |C ∩Σ| odd as edges.

To see that F7 is nonideal, the vector x : V F7 → R+ defined by xv := 1
3

for each v ∈ V F7, is a fractional vertex cover of size 7
3 , but F7 has no vertex

cover of size ≤ 7
3 . Moreover, F7 is minimally nonideal: if we contract any

vertex v ∈ V F7, we obtain the hypergraph Q6 isomorphic to the hypergraph
O(K4) (the hypergraph with vertex set EK4 and edges all triangles). As this
is a proper minor of O(K5), it is ideal. Since b(F7) = F7, also deleting any
vertex of F7 results in an ideal hypergraph.

78.4. Properties of minimally nonideal hypergraphs:
Lehman’s theorem

A full list of minimally nonideal hypergraphs is not known, but the following
theorems of Lehman [1990] show that minimally nonideal hypergraphs dif-
ferent from Jn (n ≥ 3) are remarkably regular (shorter proofs were given by
Padberg [1993] and Seymour [1990b] — we follow the latter):

Theorem 78.4. Let H = (V, E) be a minimally nonideal hypergraph with
H �= Jn for n := |V |. Then PH has a unique noninteger vertex, namely
r−1 ·1, where r := rmin(H). Moreover, H has precisely n edges of size r, and
each vertex of H is contained in precisely r of them.

Proof. Let x be a noninteger vertex of PH . Then

(78.13) 0 < xv < 1 for each v ∈ V .
9 Seymour [1981a] said that this conjecture was presented in Seymour [1977b], but the

latter paper presents the three hypergraphs only as minimally nonideal hypergraphs.
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For suppose first that xv = 0. Then x|V \ {v} is a noninteger vertex of PH/v,
contradicting the minimality of H. Similarly, if xv = 1, then x|V \ {v} is
a noninteger vertex of PH\v, again contradicting the minimality of H. This
proves (78.13).

Let F be the collection of sets F ∈ E having equality for x in (78.1)(ii).
As x is a vertex, F has dimension n. (Here and below, the dimension of
a collection of subsets of V , is the dimension of the collection of incidence
vectors of these subsets.) Let Fv and F \ v be the collections of sets in F
containing v and not containing v, respectively. Then

(78.14) (i) For each F ∈ F and v ∈ V \ F : dim(F \ v) ≤ n − |F |;
(ii) for each F ∈ F and v ∈ F : dim(Fv) ≤ n − |F | + 1.

To see (i), choose F ∈ F and v ∈ V \ F . Since H \ v is ideal, x|V \ {v} is a
convex combination of incidence vectors of vertex covers of H \ v. For each
u ∈ F , since xu > 0, there is a vertex cover Bu of H\v having positive scalar in
this convex decomposition and with u ∈ Bu. So Bu ∩F = {u} (as x(F ) = 1).
Hence the incidence vectors χBu for u ∈ F are linearly independent. This
implies that the vectors χBu − x for u ∈ F have dimension at least |F | − 1.
As each of these vectors is orthogonal to χF ′

for each F ′ ∈ F \ v, we have
dim(F \ v) ≤ (n − 1) − (|F | − 1) = n − |F |, proving (78.14)(i).

We prove (ii) similarly. Choose F ∈ F and v ∈ F . Define z := (1−xv)−1 ·
x|V \ {v}. Then z ∈ PH/v, since x(F ′ \ {v}) ≥ 1 − xv for each F ′ ∈ F .
Hence, since H/v is ideal, z is a convex combination of incidence vectors
of vertex covers of H/v. For each u ∈ F \ {v}, since zu > 0, there is a
vertex cover Bu of H/v having positive scalar in this convex decomposition
and with u ∈ Bu. So Bu ∩ F = {u} (since z(F \ {v}) = 1). Hence the
incidence vectors χBu for u ∈ F \ {v} are linearly independent. This implies
that the vectors χBu − x for u ∈ F have affine dimension at least |F | − 1.
As each of these vectors is orthogonal to χF ′

for each F ′ ∈ Fv, we have
dim(Fv) ≤ (n − 1) − (|F \ {v}| − 1) = n − |F | + 1, proving (78.14)(ii).

Now (78.14)(i) implies:

(78.15) |F| = n and |F \ v| = n − |F | for each v ∈ V and F ∈ F \ v.

Indeed, let F ′ be a subcollection of F of dimension and size n. By (78.14)(i),
|F ′ \ v| ≤ n − |F | for each v ∈ V and each F ∈ F \ v. Let U be the set of
v ∈ V not covered by all sets in F ′. Then:

(78.16) n =
∑

F∈F ′
1 =

∑

F∈F ′

∑

v∈V \F

1
n − |F | =

∑

v∈U

∑

F∈F ′\v

1
n − |F |

≤
∑

v∈U

∑

F∈F ′\v

1
|F ′ \ v| =

∑

v∈U

1 = |U | ≤ n.

So we have equality throughout; that is, U = V and |F ′ \ v| = n − |F | for
each v ∈ V and each F ∈ F ′ \ v.
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We deduce that F ′ = F . For suppose that there exists an F ∈ F \ F ′.
Then there is an F ′ ∈ F ′ such that F ′′ := (F ′ \ {F ′}) ∪ {F} has dimension
n. Choose v ∈ F \ F ′ and F ′′ ∈ F ′′ \ v. So F ′′ �= F and hence F ′′ ∈ F ′ \ v.
Hence |F ′′ \ v| = n − |F ′′| = |F ′ \ v|, contradicting the fact that v ∈ F \ F ′.
Concluding, F ′ = F and we have (78.15).

(78.15) and (78.14)(ii) imply:

(78.17) |F | + |F ′| ≤ n + 1 for any two distinct F, F ′ ∈ F .

For choose v ∈ F ′ \ F . Then

(78.18) n = |F| = |F \v|+|Fv| ≤ n−|F |+n−|F ′|+1 = 2n−|F |−|F ′|+1,

implying (78.17).
Let G be the graph on V where distinct u, v ∈ V are adjacent if there

is an F ∈ F with u, v �∈ F . So by (78.15), |F \ u| = |F \ v| for adjacent
u, v. Hence, if G is connected, then |F \ v| is independent of v, and hence by
(78.15), all sets in F have the same size, p say. Hence x = p−1 · 1 and p ≥ r
(as r is the minimum size of the sets in E). On the other hand, the inequality
x(E) ≥ 1 for any minimum-size E ∈ E , gives that r ≥ p. So p = r, and the
theorem follows.

So we can assume that G is not connected. Then there exists a partition
of V into nonempty sets V1, V2 with V1 ⊆ F or V2 ⊆ F for each F ∈ F .
Let Fi be the collection of sets F ∈ F with Vi ⊆ F (for i = 1, 2). So F1, F2
partition F . By (78.17) we can assume that F1 ⊆ {V1} (since |V1|+ |V2| = n).
Then (78.17) gives moreover that F2 ⊆ {V2 ∪ {v} | v ∈ V1} (as |F| = n ≥ 3,
so F �= {V1, V2}). Since |F1| + |F2| = n, it follows that |V1| = n − 1, and
(V, F) = Jn. Since any subset of V is contained in or contains one of the sets
in F , we know that H = Jn, a contradiction.

This theorem implies:

Corollary 78.4a. Let H be a minimally nonideal hypergraph. Define n :=
|V H|, r := rmax(H), and s := τ(H). Then τ(H) − 1 < τ∗(H) < τ(H). If
moreover H �= Jn, then rs > n and τ∗(H) = n/r.

Proof. First assume that H = Jn. Then τ(H) = 2 and τ∗(H) = (2n −
3)/(n − 1) = 2 − 1

n−1 as one easily checks. So we can assume that H �= Jn.
Consider a pair x ∈ PH and y ∈ Pb(H) minimizing xTy. So xTy < 1 (since

PH and Pb(H) form no blocking pair of polyhedra). We can assume that x and
y are vertices of PH and Pb(H) respectively. Moreover, x and y are noninteger,
for if, say, x is integer, it is the incidence vector of a vertex cover of H, and
hence xTy ≥ 1, since y ∈ Pb(H).

As H and b(H) are minimally nonideal, we know by Theorem 78.4 that
x = r−1 · 1 and y = s−1 · 1. Then xTy < 1 implies rs > n.

Let z minimize 1T z over z ∈ PH , where z is a vertex of PH . So z is a
minimum-size vertex cover, and hence 1Tz = τ∗(H). If z is integer, then
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1Tz ≥ s > n/r. If z is noninteger, then z = r−1 · 1 by Theorem 78.4, and
hence 1Tz = n/r. So τ∗(H) = n/r.

As rs > n, we have n/r < s and so τ∗(H) < τ(H). Moreover, for any
v ∈ V H we have τ∗(H \ v) ≤ (n − 1)/r, since r−1 · 1V \{v} is a fractional
vertex cover of H. Hence

(78.19) τ∗(H) =
n

r
>

n − 1
r

≥ τ∗(H \ v) = τ(H \ v) ≥ τ(H) − 1,

as required.

Corollary 78.4a implies a number of further characterizations of ideal hy-
pergraphs, partly sharpening Theorem 78.3 (Lehman [1990], Padberg [1993],
Seymour [1990b]; the equivalence (i)⇔(iv) answers a question of P.D. Sey-
mour (personal communication 1976)):

Corollary 78.4b. For any hypergraph H = (V, E), the following are equiva-
lent:

(78.20) (i) H is ideal, that is, τ(Hw) = τ∗(Hw) for each w : V → Z+;
(ii) H ′ �= Jn (for all n ≥ 3) and τ(H ′)rmin(H ′) ≤ |V H ′|, for each

minor H ′ of H;
(iii) τ∗(H ′) ∈ Z for each minor H ′ of H;
(iv) τ(H ′) = τ∗(H ′) for each minor H ′ of H;
(v) τ(Hw) = τ∗(Hw) for each w : V → {0, 1, |V |}.

Proof. Condition (i) implies each of (ii)-(v), since ideality is closed under
taking minors and parallelization. The implication (iv)⇒(iii) is direct. The
implications (ii)⇒(i) and (iii)⇒(i) follow from Corollary 78.4a: if H is not
ideal, it has a minor H ′ that is minimally nonideal; then Corollary 78.4a
contradicts (ii) and (iii). So it suffices to show (v)⇒(iv).

Let (v) hold. Let H ′ be a minor obtained from H by contracting the
vertices in a set U and deleting the vertices in a set W . Define w(v) := 0 if
v ∈ W , w(v) := |V | if v ∈ U , and w(v) := 1 otherwise. We assume that τ(H ′)
is finite (so ∅ ∈ EH ′). We show

(78.21) τ(H ′) ≤ τ(Hw) = τ∗(Hw) ≤ τ∗(H ′),

which implies (iv).
We first show the first inequality in (78.21). If τ(H ′) ≥ |V |, then τ(H ′) ≥

|V H ′|, and hence each singleton is an edge of H ′. So τ(H ′) = |V H ′|, and
hence τ(Hw) ≥ |V H ′| = τ(H ′). So we can assume that τ(H ′) < |V |. Then
τ(H ′) ≤ τ(Hw), since otherwise τ(Hw) < |V |, and hence H has a vertex cover
B contained in V \ U with |B \ W | = τ(Hw). So τ(H ′) ≤ |B \ W | = τ(Hw).
This proves the first inequality in (78.21).

To see the second inequality, let x ∈ R
V \(U∪W ) be a minimum-size frac-

tional vertex cover of H ′. We can extend x to a fractional vertex cover x̃ ∈ R
V

of H by defining x̃v := 0 if v ∈ U and x̃v := 1 if v ∈ W . Then
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(78.22) τ∗(Hw) ≤ wTx̃ = 1Tx = τ∗(H ′).

Hence τ∗(Hw) ≤ τ∗(H ′), proving (78.21).

With Theorem 78.4 some more properties of minimally nonideal hyper-
graphs can be derived (Lehman [1990]), where J denotes an all-one matrix:

Theorem 78.5. Let H = (V, E) be a minimally nonideal hypergraph with
H �= Jn where n := |V |. Let r := rmin(H) and s = τ(H). Let F and C be the
collections of minimum-size edges of H and b(H) respectively. Let M and N
be the F ×V and C ×V incidence matrices of F and C respectively. Then the
rows of M can be ordered such that

(78.23) MNT = J + (rs − n)I = NTM.

Proof. For each B ∈ C we have:

(78.24)
∑

F∈F
|F ∩ B| = rs,

since |B| = s and since each v ∈ V is in exactly r sets in F (by Theorem
78.4).

As |F ∩ B| ≥ 1 for each F ∈ F , (78.24) gives:

(78.25) |F ∩ B| ≤ rs − n + 1 for each F ∈ F , and |F ∩ B| ≥ 2 for at least
one F ∈ F .

Choose for each B ∈ C a set FB ∈ F with |B ∩ FB | ≥ 2. Then

(78.26) for each v ∈ V there are at least rs − n + 1 sets B ∈ C with
v ∈ B ∩ FB .

To see this, consider H \ v and the vector x := r−1 · 1 in R
V \{v}. Then x

satisfies (78.1) for H \ v. As H \ v is ideal, there exist distinct B1, . . . , Bm ∈
b(H) and λ1, . . . , λm > 0 with

(78.27) x ≥
m∑

i=1

λiχ
Bi\{v} and

m∑

i=1

λi = 1.

We can assume that v ∈ Bi ∈ C holds for i = 1, . . . , k, and v �∈ Bi or Bi �∈ C
for i > k. So |Bi \ {v}| ≥ s for i > k. Then (78.27) implies

(78.28)
n − 1

r
= xT1 ≥

m∑

i=1

λi|Bi \ {v}| ≥
k∑

i=1

λi(s − 1) +
m∑

i=k+1

λis

= s −
k∑

i=1

λi ≥ s − k

r
,

since λi ≤ 1/r for each i, by (78.27). (78.28) implies k ≥ rs − n + 1. Now
for each i ≤ k, we have v ∈ FBi

, since otherwise x(FBi
) = 1, implying

|Bi ∩ FBi
| = 1 (by (78.27)), a contradiction. So we have (78.26).

This implies
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(78.29) n(rs − n + 1) ≥
∑

B∈C
|B ∩ FB |

=
∑

v∈V

(number of B ∈ C with v ∈ B ∩ FB) ≥ n(rs − n + 1),

and hence we have equality throughout. So for each B ∈ C we have |B∩FB | =
rs − n + 1 and |B ∩ F | = 1 for each F ∈ F with F �= FB . By symmetry we
have, for each F ∈ F , that |B ∩ F | = 1 for all but one B ∈ C, which has
|B∩F | = rs−n+1. So the set of pairs (B, F ) with |B∩F | = rs−n+1 forms
a perfect matching covering C and F . Hence we can reorder the rows of M
such that MNT = J + (rs − n)I. In particular, M and N are nonsingular.

This implies

(78.30) MNTMNT = (J + (rs − n)I)(J + (rs − n)I)
= (n + 2(rs − n))J + (rs − n)2I = rsJ + (rs − n)(J + (rs − n)I)
= MJNT + (rs − n)MNT = M(J + (rs − n)I)NT.

So NTM = J + (rs − n)I (as M and N are nonsingular).

Notes. Seymour [1990b] asked the following related questions. Suppose that H =
(V, E) is a hypergraph without Jn minor (n ≥ 3). Let l, w : V → Z+ be such that

(78.31) τ(Hw) · τ(b(H)l) > lTw.

Is there a minor H ′ of H and l′, w′ : V H ′ → {0, 1} such that

(78.32) τ((H ′)w′
) · τ(b(H ′)l′) > l′Tw′

and such that τ((H ′)w′
) ≤ τ(Hw) and τ(b(H ′)l′) ≤ τ(b(H)l)?

A second question of Seymour is: Let H = (V, E) be a nonideal hypergraph. Is
the minimum of τ(H ′) over all parallelizations and minors H ′ of H with τ∗(H ′) <
τ(H ′) attained by a minor of H?

78.4a. Application of Lehman’s theorem: Guenin’s theorem

Lehman’s theorem can be used as a tool in proving the characterization of Guenin
[1998a,2001a] of weakly bipartite graphs (Corollary 75.4a). We follow the derivation
as given in Schrijver [2002a].

Recall that a signed graph G = (V, E, Σ) is called weakly bipartite if each vertex
of the polyhedron (in R

E) determined by:

(78.33) (i) xe ≥ 0 for each edge e,
(ii) x(C) ≥ 1 for each odd circuit C,

is integer, that is, the incidence vector of an odd circuit cover. Equivalently, if the
hypergraph with vertex set E and edge set all odd circuits of G, is ideal.

Again, let odd-K5 be the signed graph (V K5, EK5, EK5). Then:

Theorem 78.6 (Guenin’s theorem). A signed graph is weakly bipartite if and only
if it has no odd-K5 minor.
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Proof. Necessity follows from the fact that weak bipartition is closed under taking
minors and that odd-K5 is not weakly bipartite.

To see sufficiency, let G = (V, E, Σ) be a minimally non-weakly bipartite signed
graph (minimal under taking minors). We show that G = (V, E, Σ) contains an
odd-K5 minor. Note that the operations of deletion and contraction in the signed
graph G correspond to deletion and contraction in the hypergraph defined above.

Let n := |E|, let r be the minimum size of an odd circuit, and let s be the
minimum size of an odd circuit cover. Let M (N , respectively) be the matrix whose
rows are the incidence vectors of the minimum-size odd circuits (minimum-size odd
circuit covers, respectively). By Lehman’s theorem (Theorem 78.5), we know that
both M and N have precisely n rows, that rs > n, and that the rows of M can be
ordered such that

(78.34) MNT = J + (rs − n)I = NTM.

This implies that we can index the minimum-size odd circuits as C1, . . . , Cn and
the minimum-size odd circuit covers as B1, . . . , Bn in such a way that for all i, j =
1, . . . , n:

(78.35) |Ci ∩ Bj | = 1 if i �= j and |Ci ∩ Bj | = q if i = j,

where q := rs − n + 1. Since q = |C1 ∩ B1| is odd and ≥ 2 (as rs > n), we have
q ≥ 3.

The fact that NTM = J + (rs − n)I is equivalent to:

(78.36) (i) for each e ∈ E there are precisely q indices i with e ∈ Ci ∩ Bi,

(ii) for all distinct e, f ∈ E there is precisely one index i with e ∈ Bi

and f ∈ Ci.

Then for all distinct i, j = 1, . . . , n:

(78.37) the only odd circuits contained in Ci ∪Cj are Ci and Cj ; the only odd
circuit covers contained in Bi ∪ Bj are Bi and Bj .

For let C be an odd circuit contained in Ci ∪ Cj . Then Ci�Cj�C contains an odd
circuit, C′ say. This implies that C ∪ C′ ⊆ Ci ∪ Cj and C ∩ C′ ⊆ Ci ∩ Cj (for if
e ∈ C ∩ C′, then e �∈ Ci�Cj). Hence |C| + |C′| ≤ |Ci| + |Cj |. So also C and C′

are minimum-size odd circuits and C ∪ C′ = Ci ∪ Cj . As |Ci ∩ Bi| ≥ 3 we have
|C ∩ Bi| ≥ 2 or |C′ ∩ Bi| ≥ 2. Therefore, C or C′ is equal to Ci, and the other is
equal to Cj . The proof for odd circuit covers is analogous. This shows (78.37).

We now construct an odd-K5 minor. Fix an edge e ∈ E, with ends v1 and v2,
say. By (78.36)(i) we can assume that e is contained in Ci ∩ Bi for i = 1, . . . , q.
Then, by (78.36):

(78.38) any two sets among C1 \ {e}, . . . , Cq \ {e}, B1 \ {e}, . . . , Bq \ {e} are
disjoint, except that |(Ci \ {e}) ∩ (Bi \ {e})| = q − 1 for i = 1, . . . , q.

To see this, choose distinct i, j = 1, . . . , q. Then Ci ∩ Bj = {e}, as |Ci ∩ Bj | = 1.
Moreover, Ci ∩ Cj = {e}, for suppose f ∈ Ci ∩ Cj with f �= e. Then f ∈ Ci ∩ Cj

and e ∈ Bi ∩ Bj , contradicting (78.36)(ii). One similarly shows that Bi ∩ Bj = {e}.
This proves (78.38).

(78.37) implies:
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(78.39) V Ci ∩ V Cj = {v1, v2} for distinct i, j = 1, . . . , q.

Otherwise (Ci ∪ Cj) \ {e} contains a path P from v1 to v2 different from Ci \ {e}
and Cj \ {e}. By (78.37), (Ci ∪ Cj) \ {e} contains no odd circuit. Hence P and
Ci \ {e} have the same parity (with respect to Σ), and so P ∪ {e} is an odd circuit
in Ci ∪ Cj , contradicting (78.37). This proves (78.39).

Since Bi�Σ is a cut for each i = 1, 2, 3, there exist U1, U2, U3 ⊆ V such that

(78.40) δ(Ui) = Bj�Bk = (Bj ∪ Bk) \ {e}
for all distinct i, j, k ∈ {1, 2, 3}. As e �∈ Bj�Bk, we can assume v1, v2 �∈ Ui. Also

(78.41) Ui induces a connected subgraph of G.

If not, there is a K ⊆ Ui such that δ(K) is a nonempty proper subset of δ(Ui).
Then Bj�δ(K) is an odd circuit cover contained in Bj ∪ Bk, distinct from Bj and
Bk, contradicting (78.37).

By (78.40), δ(U1�U2�U3) = δ(U1)�δ(U2)�δ(U3) = ∅, and hence U1�U2�U3

=∅ (as G is connected). So there exist pairwise disjoint sets V1, V2, V3 of vertices
with Ui = Vj ∪ Vk for all distinct i, j, k ∈ {1, 2, 3}. Define V0 := V \ (V1 ∪ V2 ∪ V3).

(78.38) and (78.40) imply that δ(Uj)∩δ(Uk) = Bi \{e} for distinct i, j, k. Hence
Bi \ {e} is the set of edges connecting either Vi and V0, or Vj and Vk. So any edge
not in (B1 ∪ B2 ∪ B3) \ {e} is spanned by one of the sets V0, V1, V2, V3.

Let {i, j, k} = {1, 2, 3}. Since Ci contains no edge in (Bj ∪ Bk) \ {e} = δ(Ui),
the set V Ci is disjoint from Ui = Vj ∪ Vk. As |Ci ∩ Bi| ≥ 3 we know that V Ci

intersects Vi.
We can reset Σ to an equivalent signing

(78.42) Σ := B1�B2�B3�δ(V0).

So Σ consists of e and all edges connecting distinct sets among V1, V2, V3. For each
i = 1, 2, 3 and k = 1, 2, let ei,k be the first edge along the path Ci \{e} that belongs
to Bi, when starting from vertex vk. So both ei,1 and ei,2 connect V0 and Vi.

Let H be the minor of G obtained by deleting all edges except those in C1 ∪
C2 ∪ C3 and those spanned by V1 ∪ V2 ∪ V3, and contracting all remaining edges
that are not in Σ ∪ {ei,k | i = 1, 2, 3; k = 1, 2}.

H can be described as follows. H contains the edge e, connecting the vertices
v1 and v2 to which v1 and v2 are contracted (we have v1 �= v2 by (78.39)). For each
i = 1, 2, 3, the part of the path Ci \ {e} that is between ei,1 and ei,2 belongs to one
contracted vertex of H, call it zi. This vertex zi is adjacent to v1 and v2 by the
edges ei,1 and ei,2. For each i = 1, 2, 3, Vi has been contracted to zi and a number
of other vertices, together forming the stable set Si (say) in H. Any further edge
of H connects Si and Sj for some distinct i, j ∈ {1, 2, 3}.

By (78.41), the subgraph of H induced by Si ∪ Sj is connected (for all distinct
i, j = 1, 2, 3). So by Lemma 75.4α, the graph H − v2 has an odd K4-subdivision
as subgraph, containing the edges v1z1, v1z2, and v1z3. As v2 is adjacent to v1, z1,
z2, and z3, it follows that H has an odd-K5 minor.

78.4b. Ideality is in co-NP

Seymour [1990b] showed (upon a suggestion of J. Edmonds) that Lehman’s theorem
(Theorem 78.5) implies that the question ‘Given a hypergraph, is it ideal?’ belongs
to co-NP.
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In this, we should be careful in the way the hypergraph (V, E) is given. In most
classes of examples, the number of edges is exponential in the number of vertices,
and we have no full list of all edges at hand. We can however assume that we have
an oracle telling us, for any subset U of V , if U contains an edge of H; that is, if
U ∈ H↑. This gives us a polynomial-time test if a subset belongs to Hmin, and also
a polynomial-time test if a subset B is a vertex cover (since B is a vertex cover if
and only if V \ B �∈ H↑). So if we have such an oracle for H, we can derive one for
its blocker b(H), and conversely.

Moreover, for any v ∈ V , an oracle for H gives oracles for H/v and H\v. Indeed,
for any U ⊆ V \ {v}: U ∈ (H/v)↑ ⇐⇒ U ∪ {v} ∈ H↑ and U ∈ (H \ v)↑ ⇐⇒ U ∈
H↑.

Now to certify that a hypergraph is nonideal, it is sufficient and possible to
specify either a minor H with H = Jn for n := |V H|, or a minor H together with
numbers r, s, edges F1, . . . , Fn, and vertex covers B1, . . . , Bn (where n := |V H|) of
H such that

(78.43) (i) rs > n,
(ii) |Fi| = r, |Bi| = s, and |Bi ∩ Fi| = rs − n + 1 for each i = 1, . . . , n;
(iii) each v ∈ V H is in precisely r of the Fi and in precisely s of the Bi.

This is possible by Theorem 65.2. If H = Jn, this can be tested easily with the
oracle. If H �= Jn, then the sets Fi (Bi respectively) can be taken to be minimal
edges of H (b(H) respectively); the oracle can tell us that they belong to H (b(H)
respectively).

It is also sufficient to certify nonideality: (78.43) implies that τ(H) ≥ s: a vertex
cover B of H intersects at most r|B| of the Fi, and hence r|B| ≥ n, implying |B| ≥ s
(since otherwise (s − 1)r ≥ n and hence rs − n + 1 > r, contradicting (78.43)(ii)).
Similarly, (78.43) implies that rmin(H) ≥ r. As rs > n, this implies that H is
nonideal.

78.5. Further results and notes

78.5a. Composition of clutters

Billera [1971] described the following composition of hypergraphs. Let H ′ = (V ′, E ′)
and H ′′ = (V ′′, E ′′) be hypergraphs with V ′ and V ′′ disjoint, and choose v ∈ V ′.
Let V := (V ′ \ {v}) ∪ V ′′, and define E by:

(78.44) E := {E′ ∈ E ′ | v �∈ E′} ∪ {(E′ \ {v}) ∪ E′′ | E′ ∈ E ′, v ∈ E′, E′′ ∈ E ′′}.

Let H = (V, E). Then H is ideal if and only if H ′ and H ′′ are ideal. (The ‘only if’
part was shown by Billera [1971] and the ‘if’ part by Bixby [1971].)

Related results were reported by Chopra [1995]. An extension of these results
to clutter amalgam was given by Nobili and Sassano [1993a] (cf. Nobili and Sassano
[1993b]).

78.5b. Further notes

Cornuéjols and Novick [1994] conjecture that there are only finitely many minimally
nonideal hypergraphs H with rmin(H) > 2 and τ(H) > 2. This would confirm the
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question of Ding [1993] whether there exists a number t such that each minimally
nonideal hypergraph H satisfies rmin(H) ≤ t or τ(H) ≤ t.

Since by Lehman’s theorem, each minimally nonideal hypergraph H �= Jn sat-
isfies τ∗(H) = r−1τr(H) < τ(H), where r := rmin(H), the existence of such a t
would imply that the following property characterizes ideality of a hypergraph H:

(78.45) H contains no Jn minor (n ≥ 3) and satisfies τk(H ′) = k · τ(H ′) and
τk(b(H ′)) = k · τ(b(H ′)) for each minor H ′ of H and each k ≤ t.

Ding wondered if t = 3 would do.
Ding [1993] conjectures that for each fixed k ≥ 2, each minor-minimal hyper-

graph H with τk(H) < k · τ(H), contains some Jn minor (n ≥ 3) or satisfies the
regularity conditions of Lehman’s theorems (Theorem 78.4 and 78.5). Ding [1993]
proved this for k = 2: if H is minor-minimal with the property τ2 < 2τ and if H
has no Jn minor (n ≥ 3), then the minimum-size vertex covers form an odd circuit
on V H.

A {0, ±1} matrix M is called ideal if the polytope

(78.46) {x | 0 ≤ x ≤ 1, Mx ≥ 1 − b}
is integer, where b is the vector with bi equal to the number of −1’s in the ith row of
M . These matrices generalize the incidence matrices of ideal hypergraphs. Guenin
[1998b] and Nobili and Sassano [1995,1998] showed that they can be characterized
in terms of ideal hypergraphs.

Related work on ideal hypergraphs was reported by Novick and Sebő [1996]. A
survey on ideal hypergraphs was given by Cornuéjols and Guenin [2002b].



Chapter 79

Mengerian hypergraphs

Mengerian hypergraphs form a subclass of the ideal hypergraphs. They are
characterized by the total dual integrality of the edge inequalities (where
ideal hypergraphs require only totally primal integrality). So Mengerian
hypergraphs satisfy min-max relations that are combinatorial at both op-
tima.
This chapter gives a few characterizations of Mengerity. No characterization
in terms of forbidden minors is known. In Chapter 80 we will give Seymour’s
forbidden minor characterization of binary Mengerian hypergraphs.

79.1. Mengerian hypergraphs

A hypergraph H = (V, E) is called Mengerian if ν(H ′) = τ(H ′) for each
parallelization H ′ of H.10 Equivalently:

(79.1) H is Mengerian ⇐⇒ system (78.1) is totally dual integral.

By (77.19) (or by the theory of total dual integrality), each Mengerian hyper-
graph is ideal. Like ideal hypergraphs, the class of Mengerian hypergraphs is
closed under taking minors:

Theorem 79.1. Any minor of a Mengerian hypergraph is Mengerian again.

Proof. As restriction is a special case of parallelization, any restriction of a
Mengerian hypergraph is again Mengerian. As for contraction, let H = (V, E)
be a Mengerian hypergraph and let v ∈ V and w : V \ {v} → Z+. Define
w′ : V → Z+ by w′(u) := w(u) if u ∈ V \ {v} and w′(v) := τ((H/v)w). Then

(79.2) τ((H/v)w) ≤ τ(Hw′
) = ν(Hw′

) ≤ ν((H/v)w).

So τ((H/v)w) = ν((H/v)w). Concluding, H/v is Mengerian.

Unlike ideal hypergraphs, the class of Mengerian hypergraphs is not closed
under taking blockers, as we shall see in Section 79.2.
10 Alternatively, such hypergraphs are said to have the Z+-max-flow min-cut property,

shortly the Z+-MFMC property.
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Theorem 78.3 implies some characterizations of Mengerian hypergraphs
(Lovász [1975a] showed (i)⇔(ii), and Lovász [1976c] (i)⇔(iii); the equivalence
(i)⇔(ii) also follows from a more general theorem of Hoffman [1974]):

Theorem 79.2. For any hypergraph H = (V, E), the following are equivalent:

(79.3) (i) H is Mengerian, that is, ν(H ′) = τ(H ′) for each parallelization
H ′ of H;

(ii) ν∗(H ′) = ν(H ′) for each parallelization H ′ of H;
(iii) ν2(H ′) = 2ν(H ′) for each parallelization H ′ of H.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Theorem 78.3, since
(79.3)(ii) implies that ν∗(H ′) is an integer and since ν∗(H ′) = τ∗(H ′). The
implications (ii)⇒(iii) follows from (77.19), since ν∗(H ′) ≥ 1

2ν2(H ′) ≥ ν(H ′).
So it suffices to prove (iii)⇒(ii).

First observe that for each w : V → Z+ and all j, k ∈ Z+ we have
νjk(Hw) = νk(Hjw). Hence, if (79.3)(iii) holds, then for each w : V → Z+
and each i:

(79.4) ν2i+1(Hw) = ν2(H2iw) = 2ν(H2iw) = 2ν2i(Hw).

So by induction on i we find that for all i:

(79.5) ν2i(Hw) = 2iν(Hw), that is,
ν2i(Hw)

2i
= ν(Hw).

As

(79.6) ν∗(Hw) = lim
k→∞

νk(Hw)
k

(by (77.20)), this gives (79.3)(ii).

Another characterization, in terms of the blocker, is:

Theorem 79.3. Let H = (V, E) be a hypergraph. Then the blocker b(H) of
H is Mengerian if and only if for each natural number k, each k-vertex cover
is the sum of k 1-vertex covers.

Proof. By definition, b(H) is Mengerian if and only if ν(b(H)l) = τ(b(H)l)
for each l : V → Z+. Now τ(b(H)l) is equal to the minimum value of l(E) for
E ∈ E (by Theorem 77.1). In other words, τ(b(H)l) is equal to the maximum
number k for which l is a k-vertex cover.

Moreover, ν(b(H)l) is equal to the maximum number k of vertex covers
B1, . . . , Bk with

(79.7) χB1 + · · · + χBk ≤ l.

So ν(b(H)l) = τ(b(H)l) for each l : V → Z+ if and only if for each k, each
k-vertex cover l is the sum of k 1-vertex covers.
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Note that the right-hand side of the equivalence in this theorem directly
implies, by definition of τk, that τk(H) = k ·τ(H) for each k; that is, τ∗(H) =
τ(H).

79.1a. Examples of Mengerian hypergraphs

Bipartite graphs. Let G = (V, E) be a bipartite graph. It is very easy to show that
ν2(G) = 2ν(G). (It amounts to the fact that each bipartite graph G of maximum
degree at most 2 has a matching of size at least 1

2 |EG|.)
Since the class of bipartite graphs is closed under parallelization, Theorem 79.2

gives ν(G) = τ(G); that is, the matching number of G is equal to the vertex cover
number of G. This is Kőnig’s matching theorem (Theorem 16.2).

Network flows. Let D = (V, A) be a directed graph and let s, t ∈ V . Let P be
the collection of arc sets of s− t paths. Consider the hypergraph H = (A, P). Then
b(H) is the hypergraph with edge set all inclusionwise minimal s − t cuts.

Now ν(b(H)) = τ(b(H)), since the minimum size k of an s − t path is equal
to the maximum number of pairwise disjoint s − t cuts. This is an easy result, by
considering the cuts δout(Vi) for i = 1, . . . , k, where Vi is the set of vertices at
distance < i from s.

Since the class of hypergraphs b(H) obtained in this way is closed under paral-
lelization (it corresponds to replacing arcs by paths), b(H) is Mengerian. Hence b(H)
is ideal, and hence H is ideal. That is, for each weight function w : A → Z+ we have
τ(Hw) = τ∗(Hw) = ν∗(Hw). This gives that the minimum weight of an s − t cut
is equal to the maximum of

∑
P∈P λP where λ : P → R+ with

∑
P∈P λP χP ≤ w.

That is, we have the max-flow min-cut theorem.
By Menger’s theorem, we even know that ν(H) = τ(H). As the class of these

hypergraphs is closed under parallelization (it corresponds to adding parallel arcs
to arcs), we know that H is Mengerian. By Theorem 79.2, to prove the existence of
an integer maximum flow, it suffices to show that ν2(H) = 2ν(H), since this class
of hypergraphs is closed under parallelization.

Arborescences. Let D = (V, A) be a directed graph and let r ∈ V . Recall that
a subset B of A is called an r-arborescence if (V, B) is a rooted tree with root r.
An r-cut is a set δin(U) of arcs, where U is a nonempty subset of V \ {r}. Let H
be the hypergraph with vertex set A and edges all r-arborescences. So the blocker
b(H) of H has edges all inclusionwise minimal r-cuts.

Since this class of hypergraphs is closed under parallelization, Edmonds’ dis-
joint arborescences theorem (Theorem 53.1b) implies that H is Mengerian. By the
optimum arborescence theorem (Theorem 52.3) also b(H) is Mengerian.

Directed cuts. Let D = (V, A) be a directed graph. Recall that a directed cut is
a set of arcs of the form δin(U) where U is a nonempty proper subset of V with
δout(U) = ∅. A directed cut cover is a set of arcs intersecting all directed cuts. Let
H be the hypergraph with vertex set A and edges all directed cuts. So the blocker
b(H) of H has edges all inclusionwise minimal directed cut covers.

One may show that ν2(H) = 2ν(H), as was done in the proof of the Luc-
chesi-Younger theorem (Theorem 55.2). Since again this class of hypergraphs is
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closed under parallelization, Theorem 79.2 implies that H is Mengerian. This is the
Lucchesi-Younger theorem.

So H is ideal, and hence also b(H) is ideal. The example of Figure 56.1 in
Section 56.1 shows that b(H) in general is not Mengerian.

79.2. Minimally non-Mengerian hypergraphs

By Theorem 79.1, the class of Mengerian hypergraphs is closed under taking
minors. It is not closed under taking blockers, since the hypergraph

(79.8) Q6 := O(K4)

(the hypergraph with vertex set EK4 and edges all triangles of K4) is
non-Mengerian, while its blocker is Mengerian: Q6 is non-Mengerian, since
ν(Q6) = 1 (K4 has no two edge-disjoint triangles), while τ(Q6) = 2 (no edge
is contained in all triangles). Its blocker H := b(Q6) has edges all comple-
ments of nonempty cuts of K4. To see that it is Mengerian, we show that
ν(H l) = τ(H l) for each ‘length’ function l : EK4 → Z+. Then τ(H l) is the
minimum length of a triangle in K4. To calculate ν(H l), observe that the
edges of H are the triangles and the perfect matchings of K4. Consider any
perfect matching M of K4 with l(e) > 0 for both edges e ∈ M . Then replac-
ing l by l − χM reduces τ(H l) by 1 and ν(H l) by at least 1. So inductively
we can assume that each perfect matching of K4 contains an edge e with
l(e) = 0. So l is 0 on all edges of a triangle, in which case τ(H l) = 0 ≤ ν(H l),
or on all edges of a star, in which case both τ(H l) and ν(H l) are equal to
the minimum length of the edges of the complementary triangle.

Call a hypergraph H = (V, E) minimally non-Mengerian if H is a non-
Mengerian hypergraph and each proper minor of H is Mengerian.

The hypergraph Q6 is minimally non-Mengerian. Indeed, choose a vertex
e of Q6. The restriction Q6 \ e has only two edges, and hence is trivially
Mengerian. The contraction Q6/e is isomorphic to b(Q6) \ e, and hence is
Mengerian, as we saw above.

In Section 80.5 we will see that Q6 is the only binary minimally nonideal
hypergraph (binary is defined in Chapter 80). We list this and other examples
of minimally non-Mengerian hypergraphs ((i) was given by Lovász [1974], and
(ii)-(vi) by Seymour [1977b]):

(79.9) (i) Q6 = O(K4), the hypergraph with vertex set EK4, and edges
all triangles;

(ii) any odd circuit;
(iii) the blocker of any odd circuit;
(iv) Jn for n ≥ 3 (cf. (78.12));
(v) the circuit on 1, 2, 3, 4, 5, 6, 7, 9 (in order) added with the edge

{3, 6, 9};
(vi) the blocker of the hypergraph in (v);
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(vii) the hypergraph with vertex set {0, 1, 2, 3} and edges {0, 1, 2},
{0, 1, 3}, {0, 2, 3}, and its blocker.

Example (vii) shows that a minimally non-Mengerian hypergraph H can
satisfy ν(H) = τ(H).

Notes. Seymour [1977b] conjectured that Q6 is the only minimally non-Mengerian
hypergraph with Mengerian blocker. However, the example of Figure 56.1 gives
a minimally non-Mengerian hypergraph on 9 vertices. Its blocker is Mengerian
(by the Lucchesi-Younger theorem). Two other examples of hypergraphs consisting
of directed cut covers in a directed graph were given by Cornuéjols and Guenin
[2002c] and yield two more minimally non-Mengerian hypergraphs with Mengerian
blockers.

Seymour [1977b] indicated by a construction that it might be hard to charac-
terize all minimally non-Mengerian hypergraphs.

79.3. Further results and notes

79.3a. Packing hypergraphs

A hypergraph H = (V, E) is called packing if ν(H ′) = τ(H ′) for each minor H ′ of
H. So we have for any hypergraph H (using Theorem 79.1 and Corollary 78.4b):

(79.10) H Mengerian ⇒ H packing ⇒ H ideal.

Q6 is an example which is ideal but not packing, but no example is known of a non-
Mengerian packing hypergraph. In fact, Conforti and Cornuéjols [1993] conjecture
that both concepts coincide. Cornuéjols, Guenin, and Margot [1998,2000] proved
this for dyadic hypergraphs, that is, hypergraphs H with |E ∩ B| ≤ 2 for each edge
E of Hmin and each edge B of b(H).

The definition of packing implies that it is closed under taking minors. Call
a hypergraph minimally nonpacking if it is nonpacking, but each proper minor is
packing. So it is a minor-minimal hypergraph satisfying ν < τ .

Cornuéjols, Guenin, and Margot [1998,2000] showed that if a hypergraph is
both minimally nonideal and minimally nonpacking, then H = Jn for some n ≥ 3
or rmin(H)τ(H) = |V H| + 1. They conjecture that, conversely, each minimally
nonideal hypergraph H with rmin(H)τ(H) = |V H| + 1 is minimally nonpacking.
By a computer program, this conjecture was verified for all hypergraphs with ≤ 14
vertices.

Another conjecture of Cornuéjols, Guenin, and Margot [1998,2000] is that
τ(H) = 2 for each ideal minimally nonpacking hypergraph H. This implies the
above conjecture of Conforti and Cornuéjols that each packing hypergraph is Men-
gerian. For suppose that H = (V, E) is packing and minimally non-Mengerian. Since
H is non-Mengerian, there is a w : V → Z+ with Hw nonpacking. Choose w with
w(V ) minimal. Then Hw is minimally nonpacking. So by the second conjecture,
τ(Hw) = 2. As H is packing, w(v) ≥ 2 for some v ∈ V . Now τ(Hw/v) ≥ τ(Hw) = 2.
Hence ν(Hw/v) ≥ 2. So there exist edges E1, E2 of H with χE1\{v} +χE2\{v} ≤ w.
Since w(v) ≥ 2, this implies χE1 +χE2 ≤ w, and hence ν(Hw) ≥ 2. This contradicts
the fact that Hw is minimally nonpacking.

For a survey, see Cornuéjols and Guenin [2002b].
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79.3b. Restrictions instead of parallelizations

It is tempting to conjecture that a hypergraph H is Mengerian if and only if ν(H ′) =
τ(H ′) for each restriction H ′ of H (instead of for each parallelization H ′ of H).
Similarly, one may speculate that H is ideal if and only if τ∗(H ′) = τ(H) for each
restriction H ′ of H. But these characterizations are not valid, as is shown by the
hypergraph of (79.9)(vii): then ν(H ′) = τ(H ′) for each restriction H ′ of H (as soon
as we delete any vertex we obtain a hypergraph with at most one edge); but H is
nonideal, since if we duplicate vertex 0, we obtain a hypergraph with τ = 2 and
τ∗ = 3

2 .
So in Theorem 78.3, we cannot restrict H ′ to restrictions of H instead of par-

allelizations. But the equivalence of (78.10)(i) and (ii) is maintained if we restrict
H ′ to restrictions of H:

Theorem 79.4. For any hypergraph, H = (V, E), the following are equivalent:

(79.11) (i) τ(H ′) = τ∗(H ′) for each restriction H ′ of H;
(ii) τ∗(H ′) is an integer for each restriction H ′ of H.

Proof. Since obviously (i)⇒(ii), we prove (ii)⇒(i). Choose a counterexample with
|V | smallest. Let x be a fractional vertex cover of size τ∗(H). Choose a vertex v
with xv > 0. As x|V \ {v} is a fractional vertex cover of H \ v, we know:

(79.12) τ∗(H \ v) ≤ x(V \ {v}) < x(V ) = τ∗(H).

As τ∗(H) and τ∗(H \ v) are integer, this implies that τ∗(H \ v) ≤ τ∗(H) − 1. By
the minimality of V we know τ∗(H \ v) = τ(H \ v). Therefore,

(79.13) τ(H) ≤ 1 + τ(H \ v) = 1 + τ∗(H \ v) ≤ τ∗(H),

and so τ(H) = τ∗(H).

As a direct consequence one has (Lovász [1974]):

Corollary 79.4a. For any hypergraph, H = (V, E), the following are equivalent:

(79.14) (i) τ(H ′) = ν(H ′) for each restriction H ′ of H;
(ii) ν∗(H ′) = ν(H ′) for each restriction H ′ of H.

Proof. Directly from Theorem 79.4.

(Lovász [1974] called hypergraphs with the properties (79.14) seminormal.)
Symmetry suggests the question if we can replace in Theorem 79.4 or Corollary

79.4a ‘restriction’ by ‘contraction’.

79.3c. Equivalences for k-matchings and k-vertex covers

Some of the equivalences in Theorems 78.3 and 79.2 can be generalized as follows
(Lovász [1977b] (k ≤ 2), Schrijver and Seymour [1979] (general k)).

Theorem 79.5. For any hypergraph H = (V, E) and any k ∈ Z+, the following are
equivalent:
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(79.15) (i) k · τ∗(H ′) = τk(H ′) for each parallelization H ′ of H;
(ii) k · τ∗(H ′) is an integer for each parallelization H ′ of H.

Proof. Similar to the proof of Theorem 78.3.

This implies a result proved by Schrijver and Seymour [1979] (just by adapting
the proof methods of Lovász [1975a] for the equivalence (i)⇔(ii) for k ≤ 2 and of
Lovász [1977b] for the equivalence (i)⇔(iii) for k = 1):

Corollary 79.5a. For any hypergraph H = (V, E) and any k ∈ Z+, the following
are equivalent:

(79.16) (i) νk(H ′) = τk(H ′) for each parallelization H ′ of H;
(ii) k · ν∗(H ′) = νk(H ′) for each parallelization H ′ of H;
(iii) ν2k(H ′) = 2νk(H ′) for each parallelization H ′ of H.

Proof. Similar to the proof of Theorem 79.2.

As an application, let G = (V, E) be an undirected graph. Then ν4(G) = 2ν2(G)
is not difficult to show. Since the class of graphs is closed under parallelization,
Corollary 79.5a implies that ν2(G) = τ2(G), which is Theorem 30.1.

79.3d. A general technique

The following general result (derived with a method given by Lovász [1976c]) gives
some more equivalences:

Theorem 79.6. Let H = (V, E) be a hypergraph and w : V → Z+. Let f : Z
V
+ −→

R+ satisfy

(79.17) (i) f(x + y) ≥ f(x) + f(y) for all x, y ∈ Z
V
+;

(ii) if u ≤ w, then f(u) ∈ Z+;
(iii) if x ≤ w + 1, then f(2x) = 2f(x);
(iv) f(χU ) > 0 for each U ∈ E.

Then τ(Hw) ≤ f(w).

Proof. By induction on 1Tw, the case where τ(Hw) = 0 being trivial. Assume
τ(Hw) > 0. That is, the support U of w contains an edge of H. Choose x ∈ Z

V
+

with w ≤ x ≤ w + χU such that f(x) = f(w) and such that 1Tx is as large as
possible. Then x �= w + χU , since f(w + χU ) ≥ f(w) + f(χU ) > f(w), by (i)
and (iv) (note that f is monotone by (i)). So xv < wv + 1 for some v ∈ U . By
the maximality of x we know that f(x + χv) > f(x). Moreover, by induction,
τ(Hw−χv

) ≤ f(w − χv), and hence

(79.18) τ(Hw) ≤ 1 + τ(Hw−χv

) ≤ 1 + f(w − χv) ≤ 1 + f(x − χv)
≤ 1+f(2x)−f(x+χv) = 1+2f(x)−f(x+χv) < 1+f(x) = 1+f(w),

and hence, since f(w) ∈ Z we have τ(Hw) ≤ f(w).

This gives the following equivalent form of Theorem 79.4:
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Corollary 79.6a. Let H = (V, E) be a hypergraph and let w ∈ Z
V
+ be such that

τ∗(Hx) ∈ Z for each x ≤ w. Then τ(Hw) = τ∗(Hw).

Proof. Define f(x) := τ∗(Hx) for x ∈ Z
V
+ and apply Theorem 79.6.

We also obtain a generalization of Theorem 79.2:

Corollary 79.6b. Let H = (V, E) be a hypergraph and let w ∈ Z
V
+ be such that

ν(Hx) = 1
2ν2(Hx) for each x ≤ w + 1. Then τ(Hw) = ν(Hw).

Proof. Define f(x) := ν(Hx) for x ∈ Z
V
+ and apply Theorem 79.6.

A special case of this is:

Corollary 79.6c. Let H = (V, E) be a hypergraph with ν2(Hw) = 2ν(Hw) for each
w : V → {0, 1, 2}. Then ν(H) = τ(H).

Proof. This follows by taking w = 1 in Corollary 79.6b.

This gives a generalization to arbitrary k (instead of k = 2), since if ν(H) =
1
k
νk(H) for some k ≥ 2, then ν(H) = 1

k−1νk−1(H). This follows from

(79.19) νk−1(H) ≤ νk(H) − ν(H) = k · ν(H) − ν(H) = (k − 1)ν(H).

Hence ν(H) = 1
2ν2(H).

Another consequence of Theorem 79.6 is:

Corollary 79.6d. For any hypergraph H = (V, E) and any k ∈ Z+, the following
are equivalent:

(79.20) (i) τk(H ′) = k · τ(H ′) for each restriction H ′ of H;
(ii) 1

k
τk(H ′) ∈ Z for each restriction H ′ of H.

Proof. Define f(x) := 1
k
τk(Hx) for x ∈ Z

V
+ and apply Theorem 79.6 to w = 1.

79.3e. Further notes

Seymour [1979a] gave the following example of an ideal hypergraph H with τ(H) �=
1
2ν2(H). Replace each edge of the Petersen graph by a path of length 2, making the
graph G. Let T := V G \ {v}, where v is an arbitrary vertex of v of degree 3. Let
E be the collection of T -joins. Let T30 := (EG, E). Then τ(H ′) = ν∗(H ′) for each
parallelization H ′ of T30, by Theorem 29.5. On the other hand, τ(T30) = 2 while
G has no T -joins J1, J2, J3, J4 containing each edge of G at most twice. Otherwise,
the sets J1�J2, J1�J3, and J1�J4 are cycles, together containing every edge of
G precisely twice. Hence their complements give a 3-edge-colouring of the Petersen
graph. This is not possible.

In this example, T30 is not only ideal, but also satisfies τ(b(T30)′) = 1
2ν2(b(T30)′)

for each parallelization b(T30)′ of b(T30) (by Corollary 29.2a). Seymour [1981a]
conjectures that T30 is the unique minor-minimal binary ideal hypergraph with the
property ν2 < 2τ .
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P.D. Seymour (personal communication 1975) conjectures that for each ideal
hypergraph H one has νk(H) = k · τ(H) where k is some power of 2. He also asks
if k = 4 would do in all cases. Moreover, Seymour [1979a] conjectures that for each
ideal hypergraph H, the g.c.d. of those k with νk(H) = k · τ(H) is equal to 1 or 2.

In Schrijver and Seymour [1979] it is shown that, for each hypergraph H there
is an integer k such that νk(H ′) = τk(H ′) for each parallelization H ′ of H.



Chapter 80

Binary hypergraphs

Several hypergraphs coming from graphs are binary. Binary hypergraphs
are hypergraphs such that the symmetric difference of any odd number of
edges contains an edge as subset.
Binary hypergraphs have a convenient algebraic structure, that enables
to handle packing and blocking problems better than for general hyper-
graphs. Key result of this chapter is Seymour’s characterization of binary
Mengerian hypergraphs.

80.1. Binary hypergraphs

A hypergraph H = (V, E) is called binary if

(80.1) for all odd s and E1, . . . , Es ∈ E there is an E ∈ E with E ⊆
E1� · · · �Es.

Trivially, for each binary hypergraph H = (V, E), the hypergraph Hmin is
again binary.

In previous chapters we have seen several examples of binary hypergraphs:
given an undirected graph G = (V, E), binary hypergraphs on E are formed
by the odd circuits, by the complements of cuts, by the s−t paths, by the s−t
cuts (given s, t ∈ V ), by the T -joins, by the T -cuts (given T ⊆ V ), and by
the paths that connect either s1 and t1, or s2 and t2 (given s1, t1, s2, t2 ∈ V ).

It is not difficult to show that the class of binary hypergraphs is closed
under taking minors, parallelizations, and blockers (see also Section 80.3 be-
low).

80.2. Binary hypergraphs and binary matroids

Binary hypergraphs have a strong linear algebraic structure over the field
GF(2), and are strongly related to binary matroids. It will be good to under-
stand these relations.

For a binary hypergraph H = (V, E), a cycle is the symmetric difference
of any number of edges of H. Call the cycle odd (even, respectively), if it is
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the symmetric difference of an odd (even, respectively) number of edges of
H.

The odd cycles of H form again a binary hypergraph, say H ′. By defi-
nition of binarity, the inclusionwise minimal edges of H ′ coincide with the
inclusionwise minimal edges of H. So from a packing and blocking point of
view there is no difference in considering any of the binary hypergraphs H,
H ′, or Hmin.

If ∅ �∈ E , there is no cycle that is both odd and even. The even cycles form
a subspace of the boolean space P(V ), and (if ∅ �∈ E) the odd cycles form a
cospace of it.

A clutter H = (V, E) is binary if and only if there is a binary matroid
M = (V, I) such that, for some B ⊆ V :

(80.2) E is equal to the collection of circuits C of M with |C ∩ B| odd.

The matroid M is unique and is equal to the binary matroid whose circuits
are the minimal nonempty cycles of H. The set B (generally) is not unique:
any set B qualifies for it if and only if |B ∩ E| is odd for each e ∈ E.

Another way of obtaining a binary hypergraph H from a binary matroid
M = (V, I) is by choosing a vertex v ∈ V , and taking as edges of H the
sets C \ {v} where C is a circuit of M containing v. This hypergraph will
be denoted by HM,v and is called a matroid port. Each binary clutter can be
obtained in this way.

80.3. The blocker of a binary hypergraph

The following is an important observation:

(80.3) The blocker b(H) of a binary hypergraph H = (V, E) is equal
to the collection of all inclusionwise minimal sets B satisfying
|B ∩ E| odd for each E ∈ E .

To see this, if |B ∩ E| is odd for each E ∈ E , then B is a vertex cover, and
hence it contains a set in b(H). Conversely, if B ∈ b(H), then |B ∩ E| is odd
for each E ∈ E . For suppose that |B ∩ E| is even. As B is a minimal vertex
cover, for each v ∈ B ∩ E there is an Ev ∈ E with Ev ∩ B = {v}. Then by
(80.1) the symmetric difference of E and the sets Ev for v ∈ B ∩ E contains
a set F ∈ E . Then F ∩ B = ∅, a contradiction.

This proves (80.3), which implies that:

(80.4) if H is binary, then b(H) is binary; if H is a clutter, then: H is
binary ⇐⇒ b(H) is binary.

The second statement follows from the fact that b(b(H)) = H if H is a clutter.
If H = HM,v for some binary matroid M and v ∈ V M , then the blocker

satisfies b(HM,v) = HM∗,v.
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80.3a. Further characterizations of binary clutters

Lehman [1964] and Seymour [1976b] gave further characterizations of binary clut-
ters. They showed that the following are equivalent for any clutter H = (V, E):

(80.5) (i) H is binary, that is, satisfies (80.1);
(ii) for all E1, E2, E3 ∈ E there is an E ∈ E with E ⊆ E1�E2�E3;
(iii) |B ∩ E| is odd for all E ∈ H and B ∈ b(H);
(iv) |B ∩ E| �= 2 for all E ∈ H and B ∈ b(H);
(v) H has no minor equal to P4 := ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}})

or to Jn for any n ≥ 3 (defined in (78.12)).

(The equivalence of (i) and (iii) was shown by Lehman [1964], the equivalence
of (i) and (ii) by A. Lehman (unpublished) and Seymour [1976b], and the other
equivalences by Seymour [1976b].)

80.4. On characterizing binary ideal hypergraphs

Since the class of binary ideal hypergraphs is closed under taking minors,
it can be characterized by specifying the collection of binary minimally non-
ideal hypergraphs. Seymour [1981a] offered the conjecture that this collection
consists precisely of O(K5), b(O(K5)), and F7 (see (78.12)).

This conjecture is still open. As we saw in Sections 75.5 and 78.4a, the
conjecture has been proved for the class of hypergraphs formed by the odd
circuits of signed graphs, by Guenin [1998a,2001a]. For this class, only O(K5)
is a forbidden minor, since b(O(K5)) and F7 do not arise in this way.

By Corollary 29.2b, the conjecture is also true for the class of hypergraphs
of T -joins since neither of the three proposed forbidden minors comes from
T -joins.

This was extended by Cornuéjols and Guenin [2002a] to binary hyper-
graphs without Q+

6 or Q+
7 minor. Here for any hypergraph H = (V, E), the

hypergraph H+ arises by adding a new vertex u to V and by taking as edges
all sets E ∪ {u} with E ∈ E . The hypergraph Q7 arises from Q+

6 by adding
as edges the perfect matchings of K4.

This implies that for any regular matroid M = (V, I) and any Σ ⊆ V ,
the collection of circuits C of M with |C ∩ Σ| odd, form a hypergraph for
which Seymour’s conjecture holds. Other cases where Seymour’s conjecture
holds were given by Guenin [2001c,2002c].

Adding an Eulerian condition. In Section 79.3e we saw that the following ideal
hypergraph H does not satisfy ν2(H) = 2τ(H). Let G be obtained from the Petersen
graph P10 by replacing each edge by a path of length 2. Let T := V G \ {v} for
some degree-3 vertex v of G. Let T30 be the hypergraph of T -joins on EG.

Seymour [1981a] conjectured that any binary ideal hypergraph H = (V, E) with-
out T30 minor satisfies 1

2ν2(H) = τ(H). If moreover all edges of b(H) have the same
parity, then ν(H) = τ(H). However, as A.M.H. Gerards and B. Guenin observed,
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the Petersen graph gives a simpler counterexample to the second conjecture: the hy-
pergraph T15 of V P10-joins in P10 is a binary ideal hypergraph without T30 minor
and having all edges of b(T15) odd, while ν(T15) = 2 < 3 = τ(T15). This suggests
the question if for each binary hypergraph H = (V, E):

(80.6) (?) ν(Hw) = τ(Hw) for each w : V → Z+ with w(B) even for all
B ∈ b(H) ⇐⇒ ν2(Hw) = 2τ(Hw) for each w : V → Z+ ⇐⇒ H has
no O(K5), b(O(K5)), F7, or T15 minor. (?)

80.5. Seymour’s characterization of binary Mengerian
hypergraphs

For binary Mengerian hypergraphs, the forbidden minors are known: Seymour
[1977b] showed that the only binary minimally non-Mengerian hypergraph is
Q6 = O(K4). In this section we give a proof based on Seymour [1977b] and
on the short proof by Guenin [2002a].

Theorem 80.1. A binary hypergraph is Mengerian if and only if it has no
Q6 minor.

Proof. We have seen necessity in Section 79.2. We prove sufficiency.
Call a hypergraph H = (V, E) critical if each vertex is contained in a vertex

cover of size τ(H). Call a subset of V a cycle if it is a symmetric difference
of edges, a k-cycle if it is a symmetric difference of k edges, an even cycle
if it is a k-cycle for some even k, and a circuit if it is a minimal nonempty
cycle. Call two vertices x, y parallel if {x, y} is a 2-cycle. By the definition of
binary hypergraph, for each cycle C and each edge E, the set C�E contains
an edge. Hence, if x and y are parallel, then for any inclusionwise minimal
edge F of H with x ∈ F , one has y �∈ F and (F \ {x})∪{y} is again an edge.
So any minimal vertex cover containing x also contains y.

To see sufficiency, it suffices to show that ν(H) = τ(H) for each binary
hypergraph without Q6 minor (since the class of binary hypergraphs without
Q6 minor is closed under parallelization). Choose a counterexample H =
(V, E) to this with |V | minimal. So H has no Q6 minor while ν(H) < τ(H).
Choose H moreover such that the number of pairs of parallel elements is as
large as possible.

Note that the minimality of V implies that H is critical (as any vertex
that belongs to no minimum-size vertex cover can be deleted to obtain a
smaller counterexample). Define τ := τ(H) and, for each v ∈ V define:

(80.7) βv := {B | B vertex cover, |B| = τ, v ∈ B}.

Define U to be the set of vertices u with βu inclusionwise minimal:

(80.8) U := {u | there is no v ∈ V with βv ⊂ βu}.
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So U is nonempty. Note that if u and v are parallel, then βu = βv. Let M be
the set of pairs of nonparallel elements u, v in U with βu = βv. Then:

(80.9) each element u ∈ U is contained in a pair in M .

Suppose not. By the minimality of V , ν(H \ u) = τ(H \ u) = τ − 1 (since
τ − 1 ≤ τ(H \ u) = ν(H \ u) ≤ ν(H) < τ). So V \ {u} contains a subset Y
that is the union of τ − 1 disjoint edges of H. So Y is a (τ − 1)-cycle.

Let K be the parallel class of u. By the minimality of V , ν(H/K) =
τ(H/K) ≥ τ . So V \K contains a collection F of disjoint edges of H/K with
|F| = τ . Then F partitions V \ K, since for each v ∈ V \ K there exists a
B ∈ βv \βu (since βv �⊆ βu, as u is contained in no pair in M , by assumption).
So u �∈ B, hence B∩K = ∅. As |B| = τ , B intersects each edge in F precisely
once. Hence F covers v. Concluding, F partitions V \ K.

This implies that V \ K is contained in some τ -cycle L. So L�Y is a
(2τ − 1)-cycle, and hence contains a minimal edge E of H. As K is a parallel
class, |E ∩ K| ≤ 1. If E ∩ K = ∅ let E′ := E; if E ∩ K �= ∅, let E′ :=
(E \ K) ∪ {u}. Then E′ is disjoint from Y , so ν(H) ≥ τ , contradicting our
assumption. This proves (80.9).

Next:

(80.10) each pair e ∈ M contains a vertex u such that H has edges
E1, . . . , Eτ with E1∩E2 = {u} and with E1\{u}, E2\{u}, E3, . . . ,
Eτ partitioning V \ e.

Indeed, let e = {u, v} be such that u has at least as many parallel elements as
v has. Let H̃ be obtained from H by deleting v and adding an extra parallel
element to u (that is, we duplicate u). This increases the number of pairs
of parallel elements. So, by the choice of H, ν(H̃) = τ(H̃). Moreover, since
βu = βv, we have that τ(H̃) = τ and H̃ is critical. So V H̃ can be partitioned
into τ edges of H̃. This gives (80.10).

A consequence of (80.10) is that V \ e is a τ -cycle of H. Hence

(80.11) e�f is an even cycle of H, for all e, f ∈ M ,

since e�f = (V \ e)�(V \ f).
Now fix a pair e ∈ M , and let u, E1, . . . , Eτ be as in (80.10). Then

(80.12) E1�E2 contains no edge E of H,

since otherwise replacing E1 and E2 by E and E1�E2�E would show ν(H) ≥
τ .

Let H ′ be a smallest minor of H such that H ′ = H\Y/X for some disjoint
subsets X, Y of E1�E2 and such that, defining C := (E1�E2) \ (X ∪ Y ):

(80.13) (i) X ∪ Y is a union of circuits of H;
(ii) C is a cycle of H ′;
(iii) C ∪ {u} contains an edge of H ′;
(iv) τ(H ′) ≥ τ ;
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(v) each edge E of H ′ contained in C ∪ {u} satisfies τ(H ′ \ E) ≤
τ − 2.

Such an H ′ exists, since H has these properties. Then:

Claim 1. C is a circuit of H ′.

Proof of Claim 1. Suppose that C is not a circuit of H ′. Then, as C is a
cycle, C can be partitioned into two nonempty cycles C1 and C2 of H ′. By
(80.12), C1 and C2 are even cycles.

Define

(80.14) H1 := H ′/C2.

We show that H1 satisfies (80.13)(i)-(iv).
To see (80.13)(i) for H1, X ∪ Y ∪ C2 is a union of cycles of H, since

C2 = C ′ \ (X ∪ Y ) for some cycle C ′ of H. To see (80.13)(ii) for H1, C1 is a
cycle of H ′, hence also of H1. To see (80.13)(iii) for H1, C ∪ {u} contains an
edge of H ′, hence C1 ∪ {u} = (C ∪ {u}) \ C2 contains an edge of H1. To see
(80.13)(iv) for H1, we have τ(H ′/C2) ≥ τ(H ′) ≥ τ .

So H1 satisfies (80.13)(i)-(iv). Hence, by the minimality of H ′, H1 has an
edge E ⊆ C1 ∪{u} with τ(H1 \E) ≥ τ − 1. Define P := E \ {u}, Q = C1 \E,
and

(80.15) H2 := H ′ \ P/Q.

We show that H2 satisfies (80.13), which contradicts the minimality of H ′.
To see (80.13)(i) for H2, X ∪ Y ∪ C1 is a union of circuits of H, since C1 =
C ′ \ (X ∪ Y ) for some cycle C ′ of H. To see (80.13)(ii) for H2, C2 is a cycle
of H ′, hence also of H2. To see (80.13)(iii) for H2, E = E′ \ C2 for some
edge E′ of H ′. Then E′�C1 contains an edge E′′ of H ′. Then E′′ ∩ P = ∅,
since E′�C1 is disjoint from P (as P ⊆ E′ ∩ C1). So E′′ \ Q = E′′ \ C1 ⊆
(E′�C1) \ C1 ⊆ C2 ∪ {u}. This proves (80.13)(iii) for H2.

To see (80.13)(iv) for H2, suppose to the contrary that B is a minimum-
size vertex cover of H2 of size ≤ τ − 1. Then B intersects each of E3, . . . , Eτ

at least once, and hence does not intersect C2 (as |B ∩ C2| is even). So B is
a vertex cover of H2/C2. As C2 ∪ {u} contains an edge of H2, we also know
that u ∈ B. So B \ {u} is a vertex cover of H2/C2 \ {u} = H ′ \E/(C2 ∪Q) =
H1\E/Q, and hence of H1\E. This contradicts the fact that τ(H1\E) ≥ τ−1.
So H2 satisfies (80.13)(iv).

To see (80.13)(v) for H2, let F be an edge of H2 contained in C2 ∪ {u}.
As H2 = H ′ \ P/Q, there exists a Q′ ⊆ Q such that F ∪ Q′ is an edge of H ′.

Suppose that Q′ �= Q. Choose r ∈ Q \ Q′. Let B be a vertex cover of H
of size τ containing r. Then B intersects each of E3, . . . , Eτ at least once. As
r ∈ B, B intersects E1�E2 at least once, hence at least twice (as E1�E2 is
an even cycle). Hence, as |B| = τ , u �∈ B and B intersects each Ei in precisely
one element. Moreover, B is disjoint from C2 ∪ X ∪ Y , as this last set is a
union of circuits of H, implying that if B intersects C2 ∪X ∪Y at least once,
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then at least twice; since r �∈ C2 ∪X ∪Y , this is not possible. So B is a vertex
cover of H1. Hence B ∩ E �= ∅. So B contains a second element in C1, say s.
As F ∪ Q′ ∪ X contains an edge of H, it intersects B. So s ∈ Q′. This would
mean that B is disjoint from E, a contradiction.

So Q′ = Q. Then R := F ∪ P = (F ∪ Q)�C1 contains an edge of H ′. By
(80.13)(v), H ′ \ R has a vertex cover B of size τ − 2. As B intersects each of
E3, . . . , Eτ , B is disjoint from Q. So B is a vertex cover of H ′\R/Q = H2\F ,
proving τ(H2 \ F ) ≤ τ − 2. So H2 satisfies (80.13)(v), contradicting the
minimality of H ′. End of Proof of Claim 1

By (80.13)(ii)(iii), H ′ has edges F1, F2 with F1 ∩ F2 = {u} and F1 ∪ F2 =
C ∪ {u}. By (80.13)(v), there exist vertex covers B1 and B2 of H ′ with
|Bi \ Fi| ≤ τ − 2. So B1 ∩ F2 = B2 ∩ F1 = {u}. Then

(80.16) H ′ has an edge F3 disjoint from (B1 \ F1) ∪ (B2 \ F2) ∪ {u}.

Otherwise, the latter set contains a minimal vertex cover B of H ′. Now each
Bi intersects each of the edges E3, . . . , Eτ precisely once. So B intersects
each of these Ei at most twice, hence precisely once. Therefore |B| ≤ τ − 1,
contradicting (80.13)(iv). This proves (80.16).

Choose F3 in (80.16) with F3 \ C minimal. Let H ′′ arise from H ′ by
deleting all vertices not in F1 ∪F2 ∪F3. Then τ(H ′′) ≥ 2, since F1 ∩F2 ∩F3 =
{u}∩F3 = ∅. Moreover, ν(H ′′) = 1, for suppose that H ′′ has disjoint edges F
and F ′, with u �∈ F . By the minimality of F3\C we know that F \C = F3\C.
So F ′ ⊆ C∪{u}. But then, since C is a circuit, F ′ = F1 or F ′ = F2 (otherwise
F ′�F1 is a nonempty cycle properly contained in C). However, F intersects
B1 and B2, hence F intersects B1 ∩ F1 and B2 ∩ F2, and hence it intersects
F1 and F2, a contradiction. So ν(H ′′) = 1 < τ(H ′′).

The minimality of H implies H ′′ = H ′ = H and τ = 2. The equality τ = 2
implies that U = V and M forms a perfect matching on V : if v ∈ V \U , then
βu ⊂ βv for some u ∈ U , and hence (using (80.9)) any minimum-size vertex
cover containing u has at least three elements — a contradiction, since τ = 2;
similarly, if u ∈ V would be in two pairs in M , there is a minimum-size vertex
cover of size ≥ 3 — again a contradiction.

Also, V \ e = E1�E2 = F1�F2, whence it is a circuit (by Claim 1). As
any two pairs from M form an even cycle (by (80.11)), we know |V \ e| = 4.
So |V | = 6, |M | = 3, giving H = Q6.

Notes. Tseng and Truemper [1986] gave a decomposition theorem for binary Men-
gerian hypergraphs. It implies that the property of being Mengerian belongs to
NP for binary hypergraphs. Shorter proofs of the decomposition result were given
by Bixby and Rajan [1989] and Truemper [1987]. The latter paper also gives
polynomial-time algorithms for testing Mengerity of a binary hypergraph and for
finding a minimum-weight vertex cover and a maximum packing of edges subject to
a weight function in binary Mengerian hypergraphs. A description of this algorithm
was given in Bixby and Cunningham [1995]. Also Hartvigsen and Wagner [1988]
gave a polynomial-time algorithm to test Mengerity of a binary hypergraph.
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More background can be found in the book of Truemper [1992].

80.5a. Applications of Seymour’s theorem

We describe a number of applications of Theorem 80.1, some of which we have seen
in previous parts of this book. Except for those in the first two applications below,
the theorems are due to Seymour [1977b].

s − t cuts. Let G = (V, E) be a graph and let s, t ∈ V . The collection of s − t cuts
forms a binary hypergraph on E, without Q6 minor. Hence Theorem 80.1 implies
the edge-disjoint version of (the easy) Theorem 6.1: the maximum number of edge-
disjoint s−t cuts is equal to the minimum length of an s−t path (the max-potential
min-work theorem).

s − t paths. Let G = (V, E) be a graph and let s, t ∈ V . The collection of s − t
paths forms a binary hypergraph on E, without Q6 minor. Hence Theorem 80.1
implies the edge-disjoint undirected version of Menger’s theorem (Corollary 9.1b):
the maximum number of edge-disjoint s − t paths is equal to the minimum size of
an s − t cut.

T -cuts. Let G = (V, E) be a graph and let T ⊆ V . The collection of T -cuts
forms a binary hypergraph on E. If it is Q6, then G = K4 and T = V K4. Hence
Theorem 80.1 implies Corollary 29.9a: If K4, V K4 is not a minor of G, T (in the
sense of Section 29.11b), then the minimum size of a T -join is equal to the maximum
number of disjoint T -cuts.

T -joins. Let G = (V, E) be a graph and let T ⊆ V . The collection of T -joins
forms a binary hypergraph on E. If it is Q6, then G = K2,3 and T = V K2,3 \ {u},
where u is a vertex of degree 3. Hence Theorem 80.1 implies Theorem 29.10: If
K2,3, V K2,3 \ {u} is not a minor of G, T (in the sense of Section 29.11b), then the
minimum size of a T -cut is equal to the maximum number of disjoint T -joins.

s1

s2

t1

t2

Figure 80.1
s1 and t1, and s2 and t2, have distance 2, but there exist no two disjoint
cuts each separating both s1 and t1, and s2 and t2.
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s1 − t1 and s2 − t2 cuts. Let G = (V, E) be a graph and let s1, t1, s2, t2 ∈ V .
The collection of cuts that separate both s1 and t1, and s2 and t2 forms a binary
hypergraph on E. If it is Q6, then G is the graph in Figure 80.1 up to permuting
indices and exchanging s1 and t1. Hence Theorem 80.1 implies Theorem 71.4: if G
has no subgraph contractible to the graph in Figure 80.1 up to permuting indices
and exchanging s1 and t1, then the minimum length of a path connecting either
s1 and t1, or s2 and t2 is equal to the maximum number of pairwise disjoint cuts
each separating both s1 and t1, and s2 and t2. (Here we assume that the subgraph
contains the si, ti, and that these vertices are contracted to the vertices indicated
by si and ti in the figure.)

s1

s2 t1

t2

Figure 80.2
The maximum total value of a 2-commodity flow (subject to capacity 1)
is equal to 2, but the maximum total value of an integer 2-commodity
flow is equal to 1.

s1 − t1 and s2 − t2 paths. Let G = (V, E) be a graph and let s1, t1, s2, t2 ∈ V .
The collection of paths that connect either s1 and t1, or s2 and t2 forms a binary
hypergraph on E. If it is Q6, then it is the graph of Figure 80.2 up to exchanging
s1 and t1, and s2 and t2. Hence Theorem 80.1 implies Theorem 71.2: If G has no
subgraph contractible to the graph of Figure 80.2 up to exchanging s1 and t1, and
s2 and t2, then the maximum number of edge-disjoint paths, each connecting either
s1 and t1, or s2 and t2, is equal to the minimum size of a cut separating both s1

and t1, and s2 and t2.

Odd circuits. Let G = (V, E, Σ) be a signed graph; that is G = (V, E) is an
undirected graph and Σ ⊆ E. Call a circuit C odd if |C ∩ Σ| is odd. The collection
of odd circuits forms a binary hypergraph on E. If it is Q6, then G = (V, E, Σ) is
the odd-K4; that is, V = V K4 and E = Σ = EK4. Hence Theorem 80.1 implies
Corollary 75.3a: if G = (V, E, Σ) has no odd-K4 minor, then the maximum number
of edge-disjoint odd circuits is equal to the minimum size of an odd circuit cover.
In other words, if G = (V, E, Σ) has no odd-K4 minor, then G is strongly bipartite.

Odd circuit covers. Let G = (V, E, Σ) be a signed graph. The collection of
inclusionwise minimal odd circuit covers forms a binary hypergraph on E. If it is
Q6, then G = K2

3 and Σ = ∆, where ∆ is a triangle in K2
3 . Here K2

3 is the graph with
three vertices, each pair of which connected by two parallel edges. Hence Theorem
80.1 implies: if G = (V, E, Σ) has no (V K2

3 , EK2
3 , ∆) as minor, then the maximum

number of edge-disjoint odd circuit covers is equal to the minimum length of an
odd circuit.
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Notes. Gan and Johnson [1989] developed a framework that includes the above
examples on T -joins, T -cuts, odd circuits, and odd circuit covers, and derived al-
gorithms for the corresponding optimization problems.

80.6. Mengerian matroids

Seymour’s characterization of binary Mengerian hypergraphs implies a full
characterization of matroids that have the corresponding matroidal Menge-
rian property. In this case, we need not restrict the characterization to binary
matroids, since binarity of the matroid follows from the Mengerian property.

Again, for any matroid M = (V, I) and any v ∈ V , let HM,v be the
hypergraph on V \ {v} with edges all sets C \ {v}, where C is a circuit of M
containing v. Call M Mengerian if HM,v is a Mengerian hypergraph for each
v ∈ V .

Theorem 80.1 implies the following conjecture of Th. Chang of the late
1960s (cf. Seymour [1977b]):

Corollary 80.1a. A matroid is Mengerian if and only if it is binary and has
no F ∗

7 minor.

Proof. As the 2-uniform matroid U2
4 on 4 elements and F ∗

7 are not Mengerian
(since HM,v = K3 or HM,v = Q6 for these matroids), necessity follows (using
the fact that each matroid without U2

4 minor is binary (Theorem 39.4)). To
see sufficiency, observe that, if M = (V, I) is a binary matroid, then for each
v ∈ V , the hypergraph HM.v is binary, and that if M contains no F ∗

7 minor (in
the matroidal sense), then HM,v contains no Q6 minor (in the hypergraphical
sense).

Notes. As was outlined by Seymour [1980a,1981a] and Bixby [1982], there is an
easier direct proof of this corollary, based on the fact that binary matroids without
F ∗

7 minor can be decomposed into regular matroids (coming from totally unimodu-
lar matrices) and copies of F7. (This follows from the ‘splitter theorem’ of Seymour
[1980a].)

Mengerity of regular matroids follows from the total unimodularity of the matrix
representing the matroid, as was shown by Gallai [1959b] (and also by Minty [1966]
(an alternative proof was given by Fulkerson [1968])).

Bixby [1982] described that this decomposition gives a polynomial-time algo-
rithm finding the optima in Corollary 80.1a. For background we refer to the book
of Truemper [1992].

80.6a. Oriented matroids

Matroids generalize undirected graphs, and one may ask for an extension of ma-
troid theory to include directed structures, in order to investigate the max-flow
min-cut theorem in greater generality. Bland and Las Vergnas [1978] and Folkman
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and Lawrence [1978], following work of Minty [1966], Fulkerson [1968], Rockafellar
[1969], and Lawrence [1975], developed a theory of oriented matroids. It may be
seen as the abstraction of a linear subspace of R

n; the abstraction of any vector is
a {0, +1, −1} vector, having 0, +1, or −1 in the positions where the original vector
has a zero, positive, or negative entry, respectively. If we have a digraph D = (V, A)
and we take as {0, +1, −1} vectors all x ∈ {0, ±1}A for which there is an undirected
circuit C with xa = 1 for forward arcs a of C, xa = −1 for backward arcs a of C,
and xa = 0 for all other arcs a, then we obtain an oriented matroid. Again, one
may define the Mengerian property for oriented matroids; its characterization by
excluded minors is unsolved.

More on oriented matroids can be found in Bachem and Kern [1992] and
Björner, Las Vergnas, Sturmfels, White, and Ziegler [1993].

A different approach to extending Menger’s theorem to matroids was given by
Tutte [1965b] — see Section 41.5a.

80.7. Further results and notes

80.7a. τ2(H) = 2τ (H) for binary hypergraphs H

Lovász [1975a] showed:

Theorem 80.2. τ2(H) = 2τ(H) for each binary hypergraph H.

Proof. Let x be a minimum-size 2-vertex cover of H. Let U := {v ∈ V | xv = 0}
and W := {v ∈ V | xv = 2}. Let H ′ := H/U \ W and V ′ := V \ (U ∪ W ). Then H ′

is binary and each edge of H ′ has size at least 2, since for any edge F of H ′ there
is an edge E of H with E ∩ W = ∅ and E \ U = F . Then |F | = x(E) ≥ 2.

As rmax(H ′) ≥ 2, for each v ∈ V ′ there is a B ∈ b(H ′) with v �∈ B. Consider
now the cospace

(80.17) C := {B ⊆ V ′ ∣∣ |B ∩ F | is odd for each edge F of H ′}.

Then for each v ∈ V ′ there is a B ∈ C with v �∈ B. As C is a cospace, it follows
that v is in at most half of the sets in C. As this is true for each v ∈ V ′, C contains
a set B of size at most 1

2 |V ′|. Then W ∪ B is a vertex cover of H of size at most
1
2x(V ) = 1

2τ2(H). So τ(H) ≤ 1
2τ2(H) as required.

Lovász [1975a] showed more generally:

Theorem 80.3. Let H = (V, E) be a hypergraph such that

(80.18) if X, Y, Z ∈ E, y ∈ (X ∩ Y ) \ Z and z ∈ (X ∩ Z) \ Y , then there is an
F ∈ E satisfying F ⊆ (X ∪ Y ∪ Z) \ {y, z}.

Then τ2(H) = 2τ(H).

Proof. Consider a counterexample with |V | minimal. Let x be a minimum-size
2-vertex cover of H. Then

(80.19) xv = 1 for each v ∈ V .
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For if xv = 0, then x|V \{v} is a 2-vertex cover of H/v, and hence, since H/v again
satisfies (80.18):

(80.20) 2τ(H) ≤ 2τ(H/v) = τ2(H/v) ≤ x(V \ {v}) = x(V ) = τ2(H),

contradicting the fact that H is a counterexample. Similarly, if xv = 2, then x|V \{v}
is a 2-vertex cover of H \ v, and hence, since H \ v again satisfies (80.18):

(80.21) 2τ(H) ≤ 2τ(H\v)+2 = τ2(H\v)+2 ≤ x(V \{v})+2 = x(V ) = τ2(H),

again contradicting the fact that H is a counterexample.
This proves (80.19). Hence |E| ≥ 2 for each E ∈ E and we must show that

there is a vertex cover of size ≤ 1
2 |V |. By the minimality of x, there is an edge X

of size 2 (otherwise we can reset xv := 0 for some v ∈ V ), say X = {y, z}. Then
τ2(H \ {y, z}) ≤ |V | − 2 = τ2(H) − 2, and so, by the minimality of |V |:
(80.22) τ(H \ {y, z}) = 1

2τ2(H \ {y, z}) ≤ 1
2τ2(H) − 1 < τ(H) − 1,

and hence τ(H \ {y, z}) ≤ τ(H) − 2. Let U ⊆ V \ {y, z} be a minimum-size vertex
cover of H \ {y, z}. Since U ∪ {y} and U ∪ {z} are not vertex covers of H (since
τ(H) ≥ |U | + 2), there are edges Y and Z in H disjoint from U ∪ {z} and U ∪ {y}
respectively. As U ∪{y, z} does intersect all edges, we know y ∈ Y and z ∈ Z. Then
X, Y, Z contradict (80.18).

Condition (80.18) is closed under taking minors. The hypergraph ({1, 2}, {{1},
{2}, {1, 2}}) is the unique minor-minimal hypergraph violating (80.18).

80.7b. Application: T -joins and T -cuts

Let G = (V, E) be an undirected graph and let T ⊆ V with |T | even. Let C be
the collection of T -cuts. Then H = (E, C) is a binary hypergraph, and its blocker
consists of the minimal T -joins.

We will derive

(80.23) ν2(H) = 2τ(H), and ν(H) = τ(H) if G is bipartite,

from general hypergraph theory and from the result that

(80.24) ν2(H) = 2ν(H) if G is bipartite

(Seymour [1981d]).
We first give Seymour’s proof of (80.24). Let U1, . . . , Ut be subsets of V with

each |Ui ∩ T | odd such that each edge of G is in at most two of the δ(Ui) and such
that t = ν2(H). Such Ui exist by the definition of ν2(H). Choose them such that

(80.25)
t∑

i=1

|Ui||V \ Ui|

is as small as possible. Then the Ui are cross-free, that is, for all i, j = 1, . . . , t one
has

(80.26) Ui ⊆ Uj or Uj ⊆ Ui or Ui ∩ Uj = ∅ or Ui ∪ Uj = V .
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If this would not hold, we can replace Ui and Uj either by Ui ∩ Uj and Ui ∪ Uj (if
|Ui ∩Uj ∩T | is odd) or by Ui \Uj and Uj \Ui (otherwise), therewith decreasing the
sum (80.25) — a contradiction.

So (80.26) holds. By symmetry, we can assume that |Ui| ≤ |V \Ui| for each i. If
each Ui is a singleton, then the Ui form a 2-stable set in the subgraph G[T ] induced
by T , and hence G[T ] has a stable set of size at least 1

2 t (as G[T ] is bipartite). This
implies ν(H) ≥ 1

2ν2(H).
If some Ui is a singleton and Ui = Uj for some j �= i, we can contract δ(Ui)

and obtain a bipartite graph G′ = (V ′, E′) and T ′ ⊆ V ′, and a 2-packing of T ′-cuts
of G′ of size t − 2. Hence, inductively, G′ has a packing of T -cuts of size at least
1
2 (t − 2). With δ(Ui) this gives a packing of T cuts in G, of size at least 1

2 t.
So we can assume that each singleton occurs at most once among the Ui and that

not each Ui is a singleton. Then we can assume that U1 is a minimal nonsingleton
set among the Ui. Let U2, . . . , Ur be the sets properly contained in U1. So U2, . . . , Ur

are singletons from T ∩ U1. Hence r − 1 ≤ |T ∩ U1|. As |T ∩ U1| is odd and G is
bipartite, there is a stable set S ⊆ T ∩ Ui with 2|S| ≥ |T ∩ Ui| + 1 ≥ r. Replacing
U1, . . . , Ur by twice the singletons from S, gives a 2-packing of t T -cuts with smaller
sum (80.25) — a contradiction. This proves (80.24).

Now (80.24) implies:

(80.27) ν4(H) = 2ν2(H) for any graph G.

Indeed, replace each edge by a path of length 2, thus obtaining the bipartite graph
G′ = (V ′, E′), with T ⊆ V ′. Let H ′ be the corresponding hypergraph of T -cuts.
Then by (80.24):

(80.28) ν4(H) = ν2(H ′) = 2ν(H ′) = 2ν2(H),

which is (80.27).
As the class of hypergraphs H obtained in this way from graphs is closed under

parallelization (since it corresponds to replacing edges by paths), Corollary 79.5a
then implies ν2(H) = τ2(H). Hence, with Theorem 80.2 we obtain ν2(H) = 2τ(H),
and, using (80.24), we have (80.23).

80.7c. Box-integrality of k · PH

A polyhedron P is called box-integer if for all c, d ∈ Z
V , the polytope

(80.29) P ∩ {x ∈ R
V | d ≤ x ≤ c}

is integer. Gerards and Laurent [1995] showed that the following are equivalent for
any binary hypergraph H = (V, E), where PH is defined by (78.1):

(80.30) (i) k · PH is box-integer for each k ≥ 1;
(ii) k · PH is box-integer for some k ≥ 2;
(iii) H has no Q6 or b(Q6)+ minor.

As in Section 80.4, the hypergraph H+ arises from a hypergraph H = (V, E) by
adding a new vertex, u say, and taking as edges all sets F ∪ {u} for F ∈ E .

This characterization extends results of Laurent and Poljak [1995b] for the
bipartite subgraph polytope.
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Matroids and multiflows

Corollary 80.1a gives a forbidden minor characterization of matroids for
which the corresponding generalization of the integer max-flow min-cut
theorem holds. Seymour [1981a] showed that several theorems on multi-
flows can be generalized similarly to the level of matroids. We give a survey
of these results, without proofs.

81.1. Multiflows in matroids

Let M = (E, I) be a matroid, let R ⊆ E, and let c : E → R+. Let CR be the
collection of circuits C of M with |C ∩ R| = 1.

The multiflow problem in M asks for a function y : CR → R+ satisfying

(81.1)
∑

C ∈ CR

e ∈ C

yC ≥ ce if e ∈ R,

∑

C ∈ CR

e ∈ C

yC ≤ ce if e ∈ E \ R.

We call any y satisfying (81.1) a multiflow in M (relative to R and c). So R
plays the role of the ‘demand edges’, and E \R the role of the ‘supply edges’.

The corresponding cut condition is:

(81.2) (cut condition) c(D ∩ R) ≤ c(D \ R) for each cocircuit D of M .

This condition is necessary for the existence of a multiflow y, since

(81.3) c(D∩R) ≤
∑

C∈CR

yC |C ∩D∩R| ≤
∑

C∈CR

yC |C ∩D \R| ≤ c(D \R).

Here we use that |C ∩ D| �= 1 for any circuit C and cocircuit D, implying
|C ∩ D ∩ R| ≤ |C ∩ D \ R| if |C ∩ R| = 1.

In this terminology, Corollary 80.1a can be formulated as:

(81.4) for each R ⊆ E with |R| = 1 and each c : E → Z+, the cut
condition implies the existence of an integer multiflow ⇐⇒ M
has no U2

4 or F ∗
7 minor.
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So Corollary 80.1a concerns integer 1-commodity flows in a matroid.
Let k ∈ Z+. Seymour [1981a] called a matroid M = (V, I) k-flowing if

(81.5) for each R ⊆ E with |R| ≤ k and for each c : E → R+, the cut
condition implies the existence of a multiflow y.

The matroid is integer k-flowing if for integer c we can take y integer.
As was the case for multiflows in graphs, the following Euler condition

(for c : E → Z+) will turn out to be helpful:

(81.6) (Euler condition) c(D) is even for each cocircuit D.

M is called k-cycling if

(81.7) for each R ⊆ E with |R| ≤ k and for each c : E → Z+, the cut
and Euler condition implies the existence of an integer multiflow
y.

For each k, there are the following direct implications:

(81.8) integer k-flowing =⇒ k-cycling =⇒ k-flowing.

As Seymour [1981a] showed, for each fixed k ≥ 2 the concepts of k-cycling
and k-flowing are equivalent.

M is called ∞-flowing, integer ∞-flowing, ∞-cycling, respectively, if M
is k-flowing, integer k-flowing, k-cycling, respectively, for each k. Seymour
[1981a] showed that the concepts of 4-flowing, 4-cycling, ∞-flowing, and ∞-
flowing are equivalent.

We will now discuss Seymour’s results in some greater detail.

81.2. Integer k-flowing

By definition, a matroid is integer 1-flowing if and only if M is Mengerian
(Section 80.6). Corollary 80.1a therefore characterizes integer 1-flowing ma-
troids, by forbidding U2

4 and F ∗
7 as minors.

Also for other values of k, a forbidden minor characterization of binary
integer k-flowing matroids is known. In fact, Seymour [1981a] proved that
for binary matroids, the concepts of integer ∞-flowing and integer 2-flowing
coincide:

Theorem 81.1. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.9) (i) M is integer ∞-flowing, that is, for each R ⊆ E and each
c : E → Z+, the cut condition implies the existence of an
integer multiflow;

(ii) M is integer 2-flowing, that is, for each R ⊆ E with |R| ≤ 2
and each c : E → Z+, the cut condition implies the existence
of an integer multiflow;
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(iii) M has no M(K4) minor.

Restricted to graphic and cographic matroids, this bears upon series-
parallel graphs.

In Theorem 81.1, the implications (i)⇒(ii)⇒(iii) are easy. The proof of
(iii)⇒(i) is based on showing that each binary matroid without M(K4) minor
can be decomposed into matroids with at most 3 elements.

81.3. 1-flowing and 1-cycling

As before, for any matroid M = (V, I) and any v ∈ V , let HM,v be the
hypergraph on V \ {v} with edges all sets C \ {v}, where C is a circuit of M
containing v (like in Section 80.6). Then M is 1-flowing if and only if HM,v

is ideal for each v ∈ V (cf. Chapter 78). Since no forbidden minor charac-
terization of ideal hypergraphs is known, we cannot infer a characterization
of 1-flowing matroids. While the latter characterization yet might be easier
to prove, no such characterization is known. Similarly, no characterization
of 1-cycling matroids is known. Seymour [1981a] conjectures that for binary
matroids both concepts are equivalent; in fact, that for any binary matroid
M :

(81.10) (?) M is 1-cycling ⇐⇒ M is 1-flowing ⇐⇒ M has no AG(3,2),
T11, or T ∗

11 minor. (?)

Here T11 is the binary matroid represented by the 11 vectors in {0, 1}5 with
precisely 3 or 5 ones. Moreover, AG(3,2) is the matroid with 8 elements,
obtained from the 3-dimensional affine geometry over GF(2); equivalently,
AG(3,2) is the binary matroid represented by the columns of the matrix11:

(81.11)







1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0







.

The second equivalence in conjecture (81.10) is a consequence of Seymour’s
conjecture that O(K5), b(O(K5)), and F7 are the only binary minimally
nonideal hypergraphs.

81.4. 2-flowing and 2-cycling

The next theorem of Seymour [1981a] lifts Hu’s 2-commodity flow theorem
to matroids. It shows that for binary matroids, the concepts of 2-flowing and
2-cycling coincide.
11 Seymour [1981a] used the notation AG(2,3) instead of the (more standard) AG(3,2) (for

the 3-dimensional affine geometry over GF(2)).
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Theorem 81.2. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.12) (i) M is 2-cycling, that is, for each R ⊆ E with |R| ≤ 2 and each
c : E → Z+, the Euler and cut conditions imply the existence
of an integer multiflow;

(ii) M is 2-flowing, that is, for each R ⊆ E with |R| ≤ 2 and
each c : E → R+, the cut condition implies the existence of a
multiflow;

(iii) M has no AG(3,2) or S8 minor.

Here S8 is the binary matroid represented by the columns of the matrix

(81.13)







1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 1







.

Since AG(3,2) and S8 are self-dual, this describes a self-dual property. These
matroids are nongraphic and (hence) noncographic. For graphic matroids,
Theorem 81.2 amounts to the results on 2-commodity flows described in
Chapter 71. For cographic matroids, it amounts to the theorem mentioned
in the Notes at the end of Section 71.3.

In Theorem 81.2, the implications (i)⇒(ii)⇒(iii) are easy. The proof of
(iii)⇒(i) is based on showing that each binary matroid without AG(3,2) or
S8 minor can be decomposed into regular matroids and copies of F7 and F ∗

7 .

81.5. 3-flowing and 3-cycling

Also the concepts of 3-flowing and 3-cycling are equivalent, as follows from
the following characterization, again of Seymour [1981a]:

Theorem 81.3. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.14) (i) M is 3-cycling, that is, for each R ⊆ E with |R| ≤ 3 and each
c : E → Z+, the Euler and cut conditions imply the existence
of an integer multiflow;

(ii) M is 3-flowing, that is, for each R ⊆ E with |R| ≤ 3 and
each c : E → R+, the cut condition implies the existence of a
multiflow;

(iii) M has no F7, R10, or M(H6) minor.

Here H6 is the graph obtained from K3,3 by adding in each colour class
one additional edge.
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For graphic matroids, Theorem 81.3 gives a theorem on 3-commodity
flows. For cographic matroids, this gives nothing new compared with Theorem
81.4 below.

In Theorem 81.3, the implications (i)⇒(ii)⇒(iii) are easy. The proof of
(iii)⇒(i) is based on showing that each binary matroid without F7, R10, or
M(H6) minor, can be decomposed into cographic matroids and copies of
M(K5).

81.6. 4-flowing, 4-cycling, ∞-flowing, and ∞-cycling

Trivially, one has the implications:

(81.15) ∞-cycling =⇒ ∞-flowing =⇒ 4-flowing.

Seymour [1981a] showed that these implications can be reversed for binary
matroids, and gave the following characterization:

Theorem 81.4. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.16) (i) M is ∞-cycling, that is, for each R ⊆ E and each c : E → Z+,
the Euler and cut conditions imply the existence of an integer
multiflow;

(ii) M is ∞-flowing, that is, is for each R ⊆ E and each c : E →
R+, the cut condition implies the existence of a multiflow;

(iii) M is 4-flowing, that is, for each R ⊆ E with |R| ≤ 4 and
each c : E → R+, the cut condition implies the existence of a
multiflow;

(iv) M has no F7, R10, or M(K5) minor.

The matroid R10 is the matroid on EK5 with all minimally nonempty
even cycles of K5 as circuits. (Equivalently, the circuits of R10 are the even
circuits of K5 and their complements.) An alternative characterization is that
R10 is the binary matroid represented by all vectors in {0, 1}5 with precisely
three 1’s. So R10 arises from T11 by deleting one element.

For graphic matroids, Theorem 81.4 implies Corollary 75.4d on multiflows
if the underlying graph added with the demand edges has no K5 minor. For
cographic matroids, this gives Theorem 29.2 that in bipartite graphs the
minimum-size of a T -join is equal to the maximum number of disjoint T -
cuts.

In Theorem 81.4, the implications (i)⇒(ii)⇒(iii)⇒(iv) are easy. The proof
of (iv)⇒(i) is based on showing that each binary matroid without F7, R10,
or M(K5) minor can be decomposed into cographic matroids and copies of
F ∗

7 and of M(V8) (Figure 3.2).
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Notes. Schwärzler and Sebő [1993] extended Theorem 81.4 so as to include
Karzanov’s Theorem 72.5 that characterizes when the K2,3-metric condition suf-
fices for the existence of a multiflow. Related work can also be found in Marcus and
Sebő [2001].

81.7. The circuit cone and cycle polytope of a matroid

Circuits in matroids generalize both circuits and cuts in graphs. Hence study-
ing the cone generated by the circuits in a matroid, bears on the circuit cone
of a graph considered in Section 29.7 (sums of circuits) and on the cut cone
of a graph considered in Section 75.7.

Studying the circuit cone of a matroid relates to multiflows, as it concerns
the question under which conditions equality holds in the inequalities (81.1).

Let M = (E, I) be a matroid. The circuit cone is the convex cone gen-
erated by the incidence vectors of the circuits. Each vector x in the circuit
cone satisfies:

(81.17) xe ≥ 0 for e ∈ E,
xf ≤ x(D \ {f}) for each cocircuit D and each f ∈ D.

Indeed, if x = χC for some circuit C, then

(81.18) x(D \ {f}) =
∑

C∈C
|(C ∩ D) \ {f}| ≥

∑

C∈C
|C ∩ {f}| = xf ,

since C ∩ D �= {f}.
Seymour [1981a] says that M has the sums of circuits property if the

circuit cone is determined by (81.17). He derived from Theorem 81.4 the
following characterization of this property:

Corollary 81.4a. For any matroid M the following are equivalent:

(81.19) (i) M has the sums of circuits property;
(ii) M is binary and ∞-flowing;
(iii) M is binary and has no F ∗

7 , R10, or M∗(K5) minor.

Since none of these forbidden minors are graphic, this generalizes Corol-
lary 29.2f (due to Seymour [1979b]). For cographic matroids, this generalizes
Corollary 75.4e.

The derivation of Corollary 81.4a from Theorem 81.4 is similar to the
derivation of Corollary 75.4e from Corollary 75.4d.

The cycle polytope of a binary matroid M = (E, I) is the convex hull of
the incidence vectors of cycles. (A cycle is the disjoint union of circuits.)

For each x in the cycle polytope the following is necessary:

(81.20) 0 ≤ xe ≤ 1 for each e ∈ E,
x(F ) − x(D \ F ) ≤ |F | − 1 for each cocircuit D and each

F ⊆ D with |F | odd.
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Barahona and Grötschel [1986] showed that Corollary 81.4a gives (in fact, is
equivalent to) the following cycle polytope result:

Corollary 81.4b. For any binary matroid M the following are equivalent:

(81.21) (i) the cycle polytope of M is determined by (81.20);
(ii) M is ∞-flowing;
(iii) M has no F ∗

7 , R10, or M∗(K5) minor.

The derivation of this from Corollary 81.4a is similar to the derivation of
Corollary 75.4f from Corollary 75.4e.

Barahona and Grötschel [1986] characterized adjacency and facets of the
cycle polytope of matroids with the sums of circuits property. Grötschel and
Truemper [1989] gave an alternative proof of Corollary 81.4b.

81.8. The circuit space and circuit lattice of a matroid

The circuit space and the circuit lattice of M = (E, I) are the linear space
and the lattice, respectively, generated by the incidence vectors of the circuits
of M .

Barahona and Grötschel [1986] showed that for any matroid M = (E, I),
a vector x ∈ R

E belongs to the circuit space of M if and only if

(81.22) xe = 0 if e is a bridge; xe = xf if e and f are in series.

The proof is based on an idea of Seymour [1981a]. Necessity being direct,
we prove sufficiency, by induction on |E|. We may assume that M has no
bridges. For each series class P of M , the vector 1E\P belongs to the circuit
space of M \ P . (Here 1X denotes the all-one vector in R

X .) This follows by
induction, as M \ P has no bridges. Hence 1E − χP belongs to the circuit
space of M . As this is true for each series class P , we have the theorem.

Now let M be binary. Then each vector x in the circuit lattice satisfies
(81.22) and the Euler condition:

(81.23) x(D) is even for each cocircuit D.

Lovász and Seress [1993] showed that for any binary matroid M this is enough
to characterize the circuit lattice if and only if M∗ has no restriction that
is a binary sum of copies of the Fano matroid F7. In particular, if M has
no F ∗

7 minor, then the circuit lattice is characterized by (81.22) and (81.23).
(Further work on this in Goddyn [1993], Lovász and Seress [1995], and Fleiner,
Hochstättler, Laurent, and Loebl [1999].)

81.9. Nonnegative integer sums of circuits

A necessary condition that a vector x is a nonnegative integer combination
of incidence vectors of circuits is that x is integer and satisfies the Euler
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condition (81.23). This is not sufficient, as is shown by the cycle matroid
M(P10) of the Petersen graph P10 (which is graphic, and hence has the
sums of circuits property): choose a perfect matching N in P10 and let x be
2 on the edges of N , and 1 on the other edges.

Fu and Goddyn [1999] characterized when this necessary condition is suf-
ficient, thus proving a conjecture of Seymour [1981a]:

Theorem 81.5. For any matroid M = (E, I) the following are equivalent:

(81.24) (i) each vector x ∈ Z
E
+ satisfying (81.17) and (81.23) is a nonneg-

ative integer combination of incidence vectors of circuits;
(ii) M is binary and has no F ∗

7 , R10, M∗(K5), or M(P10) minor.

For graphic matroids, this reduces to Theorem 29.4 of Alspach, Goddyn,
and Zhang [1994], and for cographic matroids, results on the cut cone men-
tioned in Section 75.7.

The proof of Theorem 81.5 is by decomposing any matroid satisfying
(81.24)(ii) into graphic matroids without M(P10) minor (to which Theorem
29.4 applies), and copies of F7 and M∗(V8) (cf. Figure 3.2).

Goddyn [1993] conjectured (more strongly than Theorem 81.5) that for
each matroid without P10 minor, the circuits form a Hilbert base. However,
Laurent [1996b] showed that this is not true for M∗(K6).

A survey on this type of problems was given by Goddyn [1993].

81.10. Nowhere-zero flows and circuit double covers in
matroids

Let M = (E, I) be a binary matroid. A flow over GF(4) is a function f : E →
GF(4) with f(D) = 0 for each cocircuit D of M . The flow is nowhere-zero
if f(e) �= 0 for each e ∈ E. By linear algebra, each flow over GF(4) can be
decomposed as a sum of vectors α · χC , where α ∈ GF(4) and C is a circuit.

Seymour [1981c] proved that the 4-flow conjecture of Tutte [1966] (‘each
bridgeless graph without a Petersen graph minor has a nowhere-zero 4-flow’
— see Section 28.4) is equivalent to the following stronger conjecture, also
given by Tutte [1966]:

(81.25) (?) each bridgeless matroid without F ∗
7 , M∗(K5), or M(P10) mi-

nor has a nowhere-zero flow over GF(4). (?)

For graphic matroids, this clearly includes the 4-flow conjecture. For co-
graphic matroids, the existence of a nowhere-zero flow over GF(4) is equiv-
alent to the 4-vertex-colourability of the underlying graph G. By the four-
colour theorem and Wagner’s theorem (cf. Section 64.3b), any graph without
K5 minor is 4-vertex-colourable — so conjecture (81.25) includes this.

The existence of a nowhere-zero 4-flow is equivalent to the existence of
three cycles (= disjoint unions of circuits) that cover each e ∈ E precisely
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twice. Indeed, for each nonzero z ∈ GF(4), let Cz := {e ∈ E | f(e) �= z}.
Then the Cz are cycles as required, and the construction can be reversed.

Weaker is the concept of a circuit double cover in a binary matroid, which
is a family of circuits covering each element precisely twice. Trivially, each
bridgeless cographic matroid has a circuit double cover (just take all stars in
the corresponding (loopless) graph). The circuit double cover conjecture (cf.
Sections 29.8 and 38.8) asserts that also each bridgeless graphic matroid has
a circuit double cover. Jamshy and Tarsi [1989] proved that this conjecture
is equivalent to a generalization to matroids:

(81.26) (?) each bridgeless binary matroid without F ∗
7 minor has a circuit

double cover. (?)

The property of having a circuit double cover need not be closed under taking
deletions. So (81.26) gives no necessary and sufficient conditions. One may
not relax the condition in (81.26) to requiring that M is binary and 2 belongs
both to the circuit lattice and to the circuit cone, as is shown by the matroid
whose circuits are the even-size cuts of K12 (M. Laurent (cf. Goddyn [1993])).
This matroid M has an F ∗

7 minor, and hence does not contradict (81.26).
What has been proved by Jamshy and Tarsi [1989] is:

(81.27) each bridgeless binary matroid without F ∗
7 minor has a family of

circuits covering each element precisely four times.

This extends the corresponding result for graphic matroids of Bermond, Jack-
son, and Jaeger [1983].

More on nowhere-zero flows and circuit covers in matroids can be found
in Tarsi [1985,1986], Jamshy, Raspaud, and Tarsi [1987], and Jamshy and
Tarsi [1989].



Chapter 82

Covering and antiblocking in
hypergraphs

In this chapter we study the notions of stable set and edge cover in hyper-
graphs. These concepts are dual to those of matching and vertex cover, by
taking the dual hypergraph. Yet, the way we study them is not dual: the
classes of hypergraphs considered are closed under operations performed on
the vertex set (like contraction), while when dualizing the results obtained
above, would lead to operations on the edge set.
So, although several of the concepts considered in this chapter are just the
duals of concepts considered before, we do not dualize the way we studied
them above.
As it will turn out, the antiblocking analogues corresponding to the block-
ing concepts of ideal and Mengerian hypergraphs, all boil down to perfect
graph theory.

82.1. Elementary concepts

Let H = (V, E) be a hypergraph. A subset S of V is called stable if |F ∩S| ≤ 1
for each F ∈ E . An edge cover is a collection of edges covering V . So a stable
set of H can be considered as a matching of the dual hypergraph H∗, and an
edge cover of H as a vertex cover of H∗.

For any hypergraph H = (V, E), define

(82.1) α(H) := the maximum size of a stable set in H,
ρ(H) := the minimum size of an edge cover in H.

Determining these numbers is NP-complete, since finding a maximum-size
stable set or a minimum-size vertex cover in a graph can be easily reduced
to it.

There is the following straightforward inequality:

(82.2) α(H) ≤ ρ(H).

For any hypergraph H = (V, E), define

(82.3) Hmax := (V, {F ∈ E | there is no E ∈ E with E ⊃ F}) and
H↓ := (V, {F | there is an E ∈ E with E ⊇ F})
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So for any hypergraph, Hmax is a clutter. Moreover, we have α(H) =
α(Hmax) = α(H↓) and ρ(H) = ρ(Hmax) = ρ(H↓).

82.2. Fractional edge covers and stable sets

Let H = (V, E) be a hypergraph. A fractional stable set is a function x : V →
R+ satisfying

(82.4)
∑

v∈F

xv ≤ 1 for each F ∈ F .

A fractional edge cover is a function y : E → R+ satisfying

(82.5)
∑

F�v

yF ≥ 1 for each v ∈ V .

(Here and below, F ranges over the edges of H.) Let α∗(H) denote the
maximum size of a fractional stable set and let ρ∗(H) denote the minimum
size of a fractional edge cover (where the size of a vector is the sum of its
components).

So ρ∗(H) can be described as

(82.6) ρ∗(H) = min{yT1 | y ∈ R
E
+, yTM ≥ 1T},

where M is the E × V incidence matrix of H. Similarly,

(82.7) α∗(H) = max{1Tx | x ∈ R
V
+, Mx ≤ 1}.

As these represent dual linear programs, this gives:

(82.8) ρ∗(H) = α∗(H).

82.3. k-edge covers and k-stable sets

Like in the blocking case, there is an alternative interpretation of the pa-
rameters ρ∗(H) and α∗(H). A k-stable set is a function x : V → Z+ such
that

(82.9)
∑

v∈F

xv ≤ k for each F ∈ F .

Let αk(H) denote the maximum size of a k-stable set. As 1-stable sets are
precisely the incidence vectors of the stable sets, α1(H) = α(H).

A k-edge cover is a function y : E → Z+ such that

(82.10)
∑

F�v

yF ≥ k for each v ∈ V .



1430 Chapter 82. Covering and antiblocking in hypergraphs

Let ρk(H) denote the minimum size of a k-edge cover in H. The minimal 1-
edge covers are precisely the incidence vectors of the edge covers, and hence
ρ1(H) = ρ(H).

One easily checks that, for any k ∈ Z+:

(82.11) αk(H) ≤ ρk(H).

In fact, for each k ≥ 1:

(82.12) α(H) ≤ αk(H)
k

≤ α∗(H) = ρ∗(H) ≤ ρk(H)
k

≤ ρ(H).

Also one has (Lovász [1974]):

(82.13) ρ∗(H) = min
k

ρk(H)
k

= lim
k→∞

ρk(H)
k

.

Here the left-hand side equality holds as the minimum in (82.6) is attained
by a rational optimum solution y. The right-hand side equality follows from
Fekete’s lemma (Theorem 2.2), using the fact that for all k, l ≥ 1:

(82.14) ρk+l(H) ≤ ρk(H) + ρl(H),

since the sum of a k-edge cover and an l-edge cover is a k + l-edge cover.
Similarly we have:

(82.15) α∗(H) = max
k

αk(H)
k

= lim
k→∞

αk(H)
k

,

using (82.7) and the fact that for all k, l ≥ 1:

(82.16) αk+l(H) ≥ αk(H) + αl(H).

82.4. The antiblocker and conformality

For any hypergraph H = (V, E), the antiblocking hypergraph, or the an-
tiblocker, of H is the hypergraph a(H) with vertex set V and edges all in-
clusionwise maximal stable sets of H. So a(H) is a clutter, and α(H) =
rmax(a(H)) (=the maximum edge-size of a(H)).

In Section 77.6 we saw that for any clutter H we have b(b(H)) = H. A
similar duality phenomenon does not hold for antiblockers. For instance, for
the hypergraph H = K3 (with V := {1, 2, 3} and E := {{1, 2}, {1, 3}, {2, 3}})
one has a(H) = (V, {{1}, {2}, {3}}), and hence a(a(H)) = (V, {{1, 2, 3}}) �=
H.

However, by adding a further condition, we can restore this duality rela-
tion for the antiblocking operation. Call a hypergraph H = (V, E) conformal
if for each U ⊆ V :

(82.17) if each pair in U is contained in some edge of H, then U is con-
tained in some edge of H.
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So H is conformal ⇐⇒ Hmax is conformal ⇐⇒ H↓ is conformal. Moreover:

(82.18) H is conformal ⇐⇒ there exists a graph G on V such that Hmax

consists of the inclusionwise maximal cliques of G.

One may check that for each hypergraph H, the hypergraph a(H) is confor-
mal. Also:

Theorem 82.1. A hypergraph H is conformal if and only if a(a(H)) = Hmax.
In particular, if H is a conformal clutter, then a(a(H)) = H.

Proof. If H is conformal, there is a graph G on V such that Hmax is the
collection of inclusionwise maximal cliques of G. Then a(H) is the collection
of inclusionwise maximal stable sets of G. Hence a(a(H)) is the collection of
inclusionwise maximal cliques of G. So a(a(H)) = Hmax.

82.4a. Gilmore’s characterization of conformality

Conformality of hypergraphs has been characterized by Gilmore [1962] as follows:

Theorem 82.2. A hypergraph H = (V, E) is conformal if and only if V = ∪E and
for all E1, E2, E3 ∈ E there is an E ∈ E with

(82.19) E ⊇ (E1 ∩ E2) ∪ (E1 ∩ E3) ∪ (E2 ∩ E3).

Proof. Necessity follows from the definition of conformality, since any two vertices
in (E1 ∩ E2) ∪ (E1 ∩ E3) ∪ (E2 ∩ E3) are contained in some Ei.

To see sufficiency, suppose that the condition is satisfied, but that H is not
conformal. Let U be a minimal set such that any pair of vertices in U is contained
in some edge of H, but U is contained in no edge of H. So |U | ≥ 3. Choose distinct
u1, u2, u3 ∈ U and let Fi := U \{ui} for i = 1, 2, 3. By the minimality of U , each Fi

is contained in some edge, Ei say, of H. Now U = (F1 ∩F2)∪(F1 ∩F3)∪(F2 ∩F3) ⊆
(E1 ∩ E2) ∪ (E1 ∩ E3) ∪ (E2 ∩ E3). By the condition, the latter set is contained in
an edge of H, and hence also U is contained in an edge of H. This contradicts our
assumption.

As was noted by M. Conforti, Theorem 82.2 implies a polynomial-time test of
conformality of a hypergraph, if all maximal edges are given.

82.5. Perfect hypergraphs

We now define the antiblocking analogue of the blocking concept of ideal
hypergraph. A hypergraph H = (V, E) is called perfect, if

⋃ E = V and each
vertex of the polyhedron QH in R

V determined by:

(82.20) (i) xv ≥ 0 for v ∈ V ,
(ii) x(F ) ≤ 1 for F ∈ E
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is integer. (Lovász [1972c] called a hypergraph H normal if its dual H∗ is
perfect.)

We first observe:

Theorem 82.3. A perfect hypergraph is conformal.

Proof. Suppose that H = (V, E) is perfect but not conformal. Let U be a
minimal subset of V such that any two vertices are contained in an edge of
H, but U is contained in no edge of H. So |U | ≥ 3 and U \ {u} is contained
in an edge of H, for each u ∈ U . Define z : V → R+ by:

(82.21) z :=
1

|U | − 1
χU .

Then z belongs to QH , and hence z is a convex combination of integer vectors
in QH . However, each integer vector x satisfies x(U) ≤ 1 (since x(U \{u}) ≤ 1
for each u ∈ U and since |U | ≥ 3). As z(U) = |U |/(|U | − 1) > 1, this is a
contradiction.

Note that each integer vector in QH is a 0,1 vector, and hence is the
incidence vector of a stable set of H. So H is perfect if and only if QH is
the convex hull of the incidence vectors of stable sets of H. By the theory of
antiblocking polyhedra, this implies that if H is perfect, then each vertex of
the polytope Qa(H), by definition determined by

(82.22) (i) xv ≥ 0 for v ∈ V ,
(ii) x(S) ≤ 1 for S ∈ a(H),

is integer — hence a(H) is perfect.
We cannot simply reverse this implication: if H is the complete graph K3,

then H is not perfect (as 1
2 · 1 is a noninteger vertex of QH), but a(H) is

perfect: its edges are all singleton vertices of K3.
However, if we require H to be conformal, the duality is restored (Fulk-

erson [1971a,1972a]):

Corollary 82.3a. A hypergraph H is perfect ⇐⇒ H is conformal and its
antiblocker a(H) is perfect.

Proof. If H is perfect, then H is conformal by Theorem 82.3. Moreover,
a(H) is perfect, by the theory of antiblocking polyhedra.

Conversely, if a(H) is perfect, then a(a(H)) is perfect. As H is conformal,
H = a(a(H)), and hence H is perfect.

The following theorem implies that most of hypergraph theory related to
antiblocking boils down to the theory of perfect graphs (the ‘only if’ part is
due to Fulkerson [1972a] and the ‘if’ part to Lovász [1972c]):
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Corollary 82.3b. A hypergraph H = (V, E) is perfect if and only if Hmax

consists of the maximal cliques of some perfect graph G = (V, E).

Proof. To see necessity, as H is perfect, it is conformal, and hence Hmax

consists of the maximal cliques of some graph G = (V, E). Then G is a
perfect graph, by Corollary 65.2e.

To see sufficiency, if Hmax consists of the maximal cliques of a perfect
graph, then (82.20) has integer vertices (again by Corollary 65.2e) and hence
H is perfect.

Perfect hypergraphs can be characterized by a weaker, and also by
stronger, conditions than the definition. In the following corollary we collect
some of them (Fulkerson [1972a]: (iii)⇔(iv)⇔(v), Lovász [1972c]: (i)⇔(ii)⇔
(iv)⇔(vi), Lovász [1972a]: (i)⇔(viii), Berge [1973a]: (i)⇔(vii)).

Theorem 82.4. For any hypergraph H = (V, E) with
⋃ E = V the following

are equivalent, where M denotes the E × V incidence matrix of H:

(82.23) (i) Hmax consists of the maximal cliques of some perfect graph;
(ii) α(H ′) = ρ(H ′) for each contraction H ′ of H;
(iii) H is perfect, that is, {x ≥ 0 | Mx ≤ 1} is an integer polytope;
(iv) the system x ≥ 0, Mx ≤ 1 is totally dual integral;
(v) a(H) is perfect;
(vi) α∗(H ′) is an integer for each contraction H ′ of H;
(vii) ρ2(H ′) = 2ρ(H ′) for each contraction H ′ of H;
(viii) α(H ′)rmax(H ′) ≥ |V H ′| for each contraction H ′ of H.

Proof. The equivalence of (i) and (iii) is Corollary 82.3b. The equivalence
of (i), (iii), and (v) then follows from the perfect graph theorem (Corollary
65.2a). The implication (i)⇒(iv) follows from Corollary 65.2f. Since contrac-
tions of H correspond to taking induced subgraphs of G, the implication
(i)⇒(ii) is the definition of perfect graph. The implication (ii)⇒(viii) is di-
rect, as ρ(H ′)rmax(H ′) ≥ |V H ′| for any hypergraph H ′. The implications
(ii)⇒(vi) and (ii)⇒(vii) follow from (82.12). The implication (iv)⇒(iii) is
general polyhedral theory (Theorem 5.22).

So it suffices to show that each of (vi), (vii), and (viii) implies (i). We first
show that each of (vi), (vii), and (viii) implies that H is conformal.

Suppose that H is not conformal. Then there is a minimal subset U of V
such that each pair in U is covered by an edge of H, but U is not covered by
any edge of H. So |U | ≥ 3. Let H ′ be obtained from H by contracting V \U .

Then H ′ has a 2-edge cover of size 3 (taking U \ {u} for three vertices
u ∈ U), while ρ(H ′) ≥ 2, contradicting (vii). Moreover, α(H ′) = 1 and
rmax(H ′) = |U | − 1 < |U | = |V H ′|, contradicting (viii).

As U is contained in no edge of H, we know that α∗(H ′) ≥ |U |/(|U | − 1),
since (|U |−1)−1·1 is a fractional stable set of H ′. Also, α∗(H ′) ≤ |U |/(|U |−1),
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since for any fractional stable set x of H ′ we have x(U \ {u}) ≤ 1 for each
u ∈ U (as U \ {u} is contained in an edge of H), and hence

(82.24) x(U) =
1

|U | − 1

∑

u∈U

x(U \ {u}) ≤ |U |
|U | − 1

.

So α∗(H ′) is not an integer, contradicting (vi).
So each of (vi), (vii), and (viii) implies that H is conformal. Knowing

that H is conformal, let Hmax consist of the maximal cliques of a graph
G = (V, E). To show that H is perfect, it suffices to show that G is perfect if
(vi), (vii), or (viii) holds. This follows from Theorems 65.10, 65.11, and 65.2,
respectively (using that G is perfect if G is perfect, and that α∗(H) = χ∗(G)).

By definition, ‘perfect hypergraph’ is the antiblocking analogue of ‘ideal
hypergraph’. By Theorem 82.4, we know that the antiblocking analogue of
‘Mengerian hypergraph’ coincides with ‘perfect hypergraph’ (since (82.23)(iii)
and (iv) are equivalent). So perfect hypergraph theory reduces to perfect
graph theory, and minimally imperfect hypergraphs can be characterized with
the strong perfect graph theorem. We will not expand further on this but refer
to the chapters in Part VI on perfect graphs.

82.6. Further notes

82.6a. Some equivalences for the k-parameters

Let H = (V, E) be a hypergraph and let v ∈ V . Adding a serial vertex to v means
extending V by a new vertex v′ and replacing E by

(82.25) {E | v �∈ E ∈ E} ∪ {E ∪ {v′} | v ∈ E ∈ E}.

A hypergraph obtained from H by a sequence of contractions of vertices and adding
serial vertices, is called a serialization of H. If w : V → Z+ indicates the size of the
final series classes of the vertices, we denote the serialization by Hw. So contractions
are special cases of serializations and correspond to functions w : V → {0, 1}. In a
certain sense, also restrictions are special cases of parallelizations and correspond
to functions w : V → {1, ∞}.

Theorem 82.5. For any hypergraph H = (V, E) with ∪E = V and any k ∈ Z+, the
following are equivalent:

(82.26) (i) k · α∗(H ′) = αk(H ′) for each serialization H ′ of H;
(ii) k · α∗(H ′) is an integer for each serialization H ′ of H.

Proof. Similar to the proof of Theorem 78.3.

This is used in proving:
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Theorem 82.6. For any hypergraph H = (V, E) with ∪E = V and any k ∈ Z+, the
following are equivalent:

(82.27) (i) ρk(H ′) = αk(H ′) for each serialization H ′ of H;
(ii) k · ρ∗(H ′) = ρk(H ′) for each serialization H ′ of H;
(iii) ρ2k(H ′) = 2ρk(H ′) for each serialization H ′ of H.

Proof. Similar to the proof of Theorem 79.2.

Are Theorems 82.5 and 82.6 maintained if serializations are replaced by just
contractions? As we will see, this is the case for k = 2 and k = 3 but not for general
k.

As for k = 2, Lovász [1977b] showed:

Theorem 82.7. For any hypergraph H = (V, E) with ∪E = V the following are
equivalent:

(82.28) (i) α∗(H ′) = 1
2α2(H ′) for each contraction H ′ of H;

(ii) α∗(H ′) ∈ 1
2Z for each contraction H ′ of H.

Proof. The implication (i)⇒(ii) is trivial. To see the reverse implication, we can
assume that (ii) holds and that α∗(H ′) = 1

2α2(H ′) for each contraction H ′ �= H of
H, while α∗(H) > 1

2α2(H).
Since α∗(H) > 1

2α2(H) and α∗(H) ∈ 1
2Z, we know α∗(H) ≥ 1

2α2(H) + 1
2 . Let

x be a fractional stable set of H of size α∗(H). Then for each v ∈ V , x|V \ {v} is a
fractional stable set of H/v, and so

(82.29) x(V \ {v}) ≤ α∗(H/v) = 1
2α2(H/v) ≤ 1

2α2(H) ≤ α∗(H) − 1
2 = x(V ) −

1
2 .

So xv ≥ 1
2 for each v ∈ V . Hence |F | ≤ 2 for each F ∈ E . So H is (essentially)

a graph, and hence α2(H) = ρ2(H) (by Corollary 30.9a). This implies α2(H) =
1
2α∗(H).

As a consequence one has (Lovász [1975a]: (i)⇔(ii)):

Corollary 82.7a. For any hypergraph H = (V, E) with ∪E = V the following are
equivalent:

(82.30) (i) α2(H ′) = ρ2(H ′) for each contraction H ′ of H;
(ii) 2α∗(H ′) = ρ2(H ′) for each contraction H ′ of H;
(iii) ρ6(H ′) = 3ρ2(H ′) for each contraction H ′ of H.

Proof. The equivalence of (i) and (ii) follows directly from Theorem 82.7. Also the
implication (i)⇒(iii) is direct, since α2(H) ≤ 1

3ρ6(H) ≤ ρ2(H) for any hypergraph
H.

To see (iii)⇒(i), let H = (V, E) be a counterexample with |V | minimal. So
ρ2(H ′) = α2(H ′) for each contraction H ′ �= H of H, and ρ6(H) = 3ρ2(H). If each
edge of H has size at most 2, then ρ2(H) = α2(H), by Corollary 30.9a. So H has
an edge F of size at least 3. Choose distinct v1, v2, v3 ∈ F . Then for each i = 1, 2, 3
we have;

(82.31) ρ2(H/vi) = α2(H/vi) ≤ α2(H) < ρ2(H).
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Hence ρ2(H/vi) ≤ ρ2(H) − 1.
For i = 1, 2, 3, let yi be a 2-edge cover of H/vi of size ρ2(H/vi). Then y1 + y2 +

y3 + 2χ{F} is a 6-edge cover of H of size

(82.32) ρ2(H/v1) + ρ2(H/v2) + ρ(H/v3) + 2 ≤ 3(ρ2(H) − 1) + 2 < 3ρ2(H).

This contradicts the fact that ρ6(H) = 3ρ2(H).

Lovász [1977b] showed that Theorem 82.7 also holds if we replace 2 by 3:

Theorem 82.8. For any hypergraph H = (V, E) with ∪E = V the following are
equivalent:

(82.33) (i) α∗(H ′) = 1
3α3(H ′) for each contraction H ′ of H;

(ii) α∗(H ′) ∈ 1
3Z for each contraction H ′ of H.

Proof. The implication (i)⇒(ii) being direct, we prove (ii)⇒(i). Let H = (V, E)
be a counterexample with |V | minimal. So α∗(H) ∈ 1

3Z, α∗(H) > 1
3α3(H), and

α∗(H ′) = 1
3α3(H ′) for each contraction H ′ �= H of H. So α∗(H) ≥ 1

3α3(H) + 1
3 .

Let x be a fractional stable set of H with x(V ) = α∗(H). Then for each v ∈ V ,
x|V \ {v} is a fractional stable set of H/v, and hence:

(82.34) x(V \ {v}) ≤ α∗(H/v) = 1
3α3(H/v) ≤ 1

3α3(H) ≤ α∗(H) − 1
3

= x(V ) − 1
3 .

So xv ≥ 1
3 for each v ∈ V . Therefore, |F | ≤ 3 for each F ∈ E . Let U be the union

of the edges of H of size 3. Then xv = 1
3 for each v ∈ U .

Let W := V \ U . Then the edges of H contained in W form a bipartite graph.
Otherwise, it contains an odd circuit C, and then H ′ := H/(V \ V C) satisfies
α∗(H ′) = 1

2 |V C|. So α∗(H ′) does not belong to 1
3Z, a contradiction.

Let N be the set of vertices w in W for which there is a u ∈ U with {u, w} ∈ E .
Since x is a maximum-size fractional stable set of H and since xv = 1

3 for each v ∈ U ,
we know that x|W attains the maximum in the linear program of maximizing z(W )
over z ∈ R

W satisfying

(82.35) 0 ≤ z(v) ≤ 1 for each v ∈ V ,
z(v) ≤ 2

3 for each v ∈ N ,
z(u) + z(v) ≤ 1 for each edge {u, v} ⊆ W of H.

Since the constraint matrix of this LP-problem is totally unimodular and since
the right-hand side is 1

3 -integer, there is a 1
3 -integer optimum solution z. We can

assume that x|W = z. So x ∈ 1
3Z

V , implying that 3x is a 3-stable set. Hence
α3(H) ≥ 3α∗(H), contradicting our assumption.

This implies (Lovász [1977b]):

Corollary 82.8a. For any hypergraph H = (V, E) with ∪E = V the following are
equivalent:

(82.36) (i) α3(H ′) = ρ3(H ′) for each contraction H ′ of H;
(ii) 3α∗(H ′) = ρ3(H ′) for each contraction H ′ of H.
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Proof. Directly from Theorem 82.8.

Lovász [1977b] raised the question if in these results 3 can be replaced by
any arbitrary integer k. However, Schrijver and Seymour [1979] gave the following
example of a hypergraph H = (V, E) satisfying α60(H) < ρ60(H) while 60α∗(H ′) =
ρ60(H ′) for each contraction H ′ of H:

(82.37) V := {1, 2, 3, 4, 5, 6, 7}, E := {V \ {1, 2}, V \ {1, 3}, V \ {1, 4}, V \
{2, 3}, V \ {2, 4}, V \ {3, 4}, V \ {5}, V \ {6}, V \ {7}}.

To see that ρ60(H ′) = 60α∗(H ′) for each contraction H ′ of H, observe that if we
contract two of the vertices 1, 2, 3, 4 or one of the vertices 5, 6, 7, there is an edge
covering all vertices, and α = ρ follows. So by symmetry it suffices to show that
ρ60(H ′) = 60α∗(H ′) for H ′ := H and for H ′ := H/1.

The fractional stable set x of H/1 defined by x := 1
5 ·1 shows that α∗(H/1) ≥ 6

5 .
Then the 5-edge cover y of H/1 defined by: y(V \ {1, i}) := 1 for i = 2, . . . , 7,
and y(E) := 0 for any other edge E of H/1, shows that ρ5(H/1) ≤ 6. Hence
ρ60(H/1) ≤ 12ρ5(H/1) ≤ 72 ≤ 60α∗(H/1).

Finally we consider H. Let x be the fractional stable set defined by:

(82.38) x(1) := x(2) := x(3) := x(4) := 1
8 , x(5) := x(6) := x(7) := 1

4 ,

and let y be the fractional edge cover defined by:

(82.39) y(V \ {i, j}) := 1
12 for all 1 ≤ i < j ≤ 4 and y(V \ {i}) := 1

4 for
i = 5, 6, 7.

So x(V ) = 5
4 = y(E). Hence α∗(H) = 5

4 . However, x is the only fractional stable
set of size 5

4 . Indeed, for any fractional stable set x of size 5
4 one has x({i, j}) ≥ 1

4
for all 1 ≤ i < j ≤ 4 and x({i}) ≥ 1

4 for all 5 ≤ i ≤ 7. So x({5, 6, 7}) ≥ 3
4 , hence

x({1, 2, 3, 4}) ≤ 1
2 . Therefore, x({i}) = 1

4 for all 5 ≤ i ≤ 7 and x({i, j}) = 1
4 for all

1 ≤ i < j ≤ 4. This gives x({i}) = 1
8 for each 1 ≤ i ≤ 4.

As 60x �∈ Z, this shows that α60(H) < 60α∗(H).

82.6b. Further notes

The complete graphs show that ρ(H) cannot be bounded in terms of α(H). Ding,
Seymour, and Winkler [1994] showed that for each fixed k, ρ(H) is bounded by
a polynomial in α(H) if we restrict H to hypergraphs not having the complete
graph on k vertices as partial subhypergraph. Here, apartial subhypergraph arises
by deleting edges and contracting vertices.

A {0, ±1} matrix M is perfect if the polytope

(82.40) {x | 0 ≤ x ≤ 1, Mx ≤ 1 − b}
is integer, where b is the vector with bi equal to the number of −1’s in the ith row
of M . These matrices generalize the incidence matrices of perfect hypergraphs and
were studied by Conforti, Cornuéjols, and de Francesco [1997] (who gave a char-
acterization in terms of perfect graphs), Boros and Čepek [1997], Guenin [1998b],
and Tamura [2000].

An extension of the equivalence of (iii) and (iv) in Theorem 82.4 was proved by
Korach [1982]: Let M1 and M2 be integer matrices such that each row of M2 is a
nonnegative linear combination of rows of M1. Consider the system
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(82.41) M1x ≥ 0, M2x ≤ 1.

Then (82.41) is TDI if and only if M1x ≥ 0 is TDI and (82.41) determines an
integer polyhedron.

The intersection of the polyhedra made by perfect and ideal hypergraphs was
investigated by Sebő [1998]. Related results were given by Shepherd [1994a] and
Gasparyan [1998]. Monma and Trotter [1979] gave an alternative proof of the rela-
tion between perfect graphs and perfect hypergraphs.

Determining the stable set number α(H) of a hypergraph H is equivalent to the
vertex packing problem (equivalently, the set packing problem). In Section 64.9e
we gave further references for this problem. Determining the edge cover number
ρ(H) of H amounts to the set covering problem. This NP-complete problem is
studied by Lawler [1966], Roth [1969], Lemke, Salkin, and Spielberg [1971], Thiriez
[1971], Balas and Padberg [1972,1975a], Garfinkel and Nemhauser [1972b] (sur-
vey), Even [1973], Guha [1973], Salkin and Koncal [1973], Christofides and Kor-
man [1974], Fulkerson, Nemhauser, and Trotter [1974], Johnson [1974a], Gondran
and Laurière [1975], Lovász [1975c], Etcheberry [1977], Chvátal [1979], Padberg
[1979], Avis [1980a], Balas [1980], Balas and Ho [1980], Baker [1981], Bar-Yehuda
and Even [1981], Ho [1982], Hochbaum [1982,1983b], Lifschitz and Pittel [1983],
Vasko and Wilson [1984a,1984b], Beasley [1987,1990], Bertolazzi and Sassano [1987,
1988], Balas and Ng [1989a,1989b], Cornuéjols and Sassano [1989], Feo and Re-
sende [1989], Nobili and Sassano [1989,1992], Sassano [1989], Fisher and Kedia
[1990], Karmarkar, Resende, and Ramakrishnan [1991], El-Darzi and Mitra [1992],
Goldschmidt, Hochbaum, and Yu [1993], Khuller, Vishkin, and Young [1993,1994],
Lorena and Lopes [1994], Mannino and Sassano [1995], Halldórsson [1995,1996],
Caprara, Fischetti, and Toth [1996,1999], Feige [1996,1998], Duh and Fürer [1997],
Bar-Yehuda [2000], Halperin [2000,2002], and Holmerin [2002].

The related set partitioning problem was investigated by Garfinkel and Nemhau-
ser [1969], Michaud [1972], Marsten [1973], Nemhauser, Trotter, and Nauss [1973],
Gondran and Laurière [1974], Balas and Padberg [1975a,1975b,1976], Balas [1977],
Nemhauser and Weber [1979], Johnson [1980], Hwang, Sun, and Yao [1985], John
[1988], Fisher and Kedia [1990], El-Darzi and Mitra [1992], and Sherali and Lee
[1996].



Chapter 83

Balanced and unimodular
hypergraphs

In the preceding chapters we investigated conditions under which τ(H) =
ν(H) or α(H) = ρ(H) holds for all hypergraphs H obtained by deleting
or multiplying vertices of some hypergraph. Although these parameters
transfer to each other by taking the dual hypergraph, the study was un-
symmetric as we considered only deleting or multiplying of vertices, not of
edges. In the applications, generally the number of edges is exponentially
large in the number of vertices.
In the present chapter we study hypergraphs for which these equalities
hold in a symmetric fashion. This leads to the classes of balanced and
unimodular matrices.

83.1. Balanced hypergraphs

A 0,1 matrix M is called balanced if M has no submatrix which is the inci-
dence matrix of an odd circuit. A hypergraph H is balanced if its incidence
matrix is balanced.

Another way of characterizing balancedness of a hypergraph H = (V, E)
is by the associated bipartite graph G with colour classes V and E , and v ∈ V
and F ∈ E adjacent if and only if v ∈ F :

(83.1) H is balanced ⇐⇒ the length of each chordless circuit in G is a
multiple of 4.

The class of balanced hypergraphs is closed under taking ‘partial subhy-
pergraphs’. A partial hypergraph of a hypergraph H is a hypergraph (V, E ′)
with E ′ ⊆ E . A partial subhypergraph of H is a contraction of a partial hyper-
graph of H. So the incidence matrices of partial subhypergraphs of H arise by
deleting rows and columns of the incidence matrix of H. In this terminology,

(83.2) a hypergraph H is balanced ⇐⇒ H has no odd circuit as partial
subhypergraph.

Trivially, the dual of a balanced hypergraph is again balanced. Also, the class
of balanced hypergraphs is closed under contractions and restrictions. More
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generally, it is closed under parallelization and serialization. Hence also the
class of blockers of balanced hypergraphs is closed under parallelization and
serialization.

Note that for graphs (that is, hypergraphs with each edge of size 2),
balancedness coincides with bipartiteness.

In a deep theorem, Conforti, Cornuéjols, and Rao [1999] showed that bal-
ancedness of a hypergraph can be tested in polynomial time. The method is
based on decomposition of balanced matrices into totally unimodular matri-
ces. An outline of the method was given by Conforti and Cornuéjols [1990].
Related work is reported in Conforti, Cornuéjols, and Rao [1995].

83.2. Characterizations of balanced hypergraphs

Balanced hypergraphs can be characterized in several ways in terms of poly-
hedra and optimization, as in the following theorem. As before, the hyper-
graphs b(H) and a(H) denote the blocker and antiblocker of H, respectively.
(Berge and Las Vergnas [1970] proved (i)⇔(ii)⇔(iii) and Berge [1972] proved
(i)⇔(iv). Given the equivalence of (i) and (iii), the pluperfect graph theorem
of Fulkerson [1971a] implies the equivalence of (i), (iii), and (v) (conjectured
by Berge [1969]), since balancedness is closed under parallelization.)

Theorem 83.1. For any hypergraph H = (V, E), the following are equivalent:

(83.3) (i) H is balanced;
(ii) ν(H ′) = τ(H ′) for each partial subhypergraph H ′ of H;
(iii) α(H ′) = ρ(H ′) for each partial subhypergraph H ′ of H;
(iv) ν(b(H ′)) = rmin(H ′) for each partial subhypergraph H ′ of H;
(v) ρ(a(H ′)) = rmax(H ′) for each partial subhypergraph H ′ of H.

Proof. Each of (ii), (iii), (iv), (v) implies (i), since if H is not balanced, it has
a partial subhypergraph that is an odd circuit. It is easy to see that none of
(ii)-(v) hold for any odd circuit. To show the reverse implications, it suffices
to derive from (i) that each of the equalities holds for H ′ = H, since the class
of balanced matrices is closed under taking partial subhypergraphs.

We first show (i)⇒(ii). Since the class of balanced hypergraphs is closed
under parallelization, by Theorem 79.2 it suffices to show that ν2(H) =
2ν(H). Let y : E → Z+ be a 2-matching of size ν2(H). Let M := {E ∈
E | y(E) = 2} and F := {E ∈ E | y(E) = 1}. The dual of the hypergraph
(V, F) is a graph G, added with some edges of size ≤ 1. Since H is balanced,
G is bipartite. Let N be the largest of the two colour classes of G. Then
|N | ≥ 1

2 |F|, and hence M ∪ N is a matching of size ≥ 1
2ν2(H).

This shows (i)⇒(ii). By taking the dual of H, we see (i)⇒(iii). By Theo-
rem 82.4, (iii) implies that the maximal edges of H are the maximal cliques of
some perfect graph G on V . Then χ(G) = ω(G) implies ρ(a(H)) = rmax(H).

We finally show (i)⇒(iv). We first show that
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(83.4) the vertex set V of a balanced hypergraph H = (V, E) can be
partitioned into two sets, each intersecting each edge of size ≥ 2.

The proof is by induction on |V |. Let E be the collection of pairs in E . Then
the graph G = (V, E) contains a vertex u such that any two neighbours of
u belong to the same component of G − u. (This is true for any graph. To
see it, we can assume that G is connected. Then choose an arbitrary vertex
v and let u be a vertex at maximum distance from v.)

By induction, we can partition V \{u} into two sets V1, V2 each intersecting
each edge F of H with |F \ {u}| ≥ 2. Now any two neighbours of u in G are
connected by a path in G − u of even length, since G is bipartite (as H
is balanced). Hence the neighbours belong either all to V1 or all to V2. By
symmetry, we can assume that they all belong to V1. Then V1, V2 ∪ {u} is a
partition as required. This shows (83.4).

To show (i)⇒(iv), we prove ν(b(H)) = rmin(H), that is, the maximum
number of disjoint vertex covers of H is equal to the minimum edge size
r. This is shown by induction on |E|. Choose F ∈ E and define E ′ := E \
{F}. Then, by induction, the hypergraph (V, E ′) has r disjoint vertex covers
B1, . . . , Br. We can assume that they partition V . Choose B1, . . . , Br such
that a maximum number of the Bi intersect F .

If each Bi intersects F we are done, so we may assume that B1 ∩ F = ∅.
As |F | ≥ r, we can assume that |B2 ∩ F | ≥ 2. Now apply (83.4) to the
contraction H ′ of H to B1 ∪ B2. Then rmin(H ′) ≥ 2. So, by (83.4), B1 ∪ B2
can be partitioned into two vertex covers of H ′, hence of H. Replacing B1, B2
by B′

1, B
′
2 gives a partition of V into vertex covers of H ′ thereby increasing

the number of them intersecting F . This contradicts our assumption.

Since the incidence matrix of a bipartite graph is balanced, Theorem
83.1 generalizes several theorems of Kőnig, like Kőnig’s matching theorem
(Theorem 16.2), the Kőnig-Rado edge cover theorem (Theorem 19.4), and
Kőnig’s edge-colouring theorem (Theorem 20.1).

Theorem 83.1 implies some more extensive characterizations (cf. Fulker-
son, Hoffman, and Oppenheim [1974], Berge [1980]):

Corollary 83.1a. For any hypergraph H = (V, E), the following are equiva-
lent:

(83.5) (i) H is balanced;
(ii) τ∗(H ′) ∈ Z for each partial subhypergraph H ′ of H;
(iii) each partial hypergraph of H is ideal;
(iv) each partial hypergraph of H is Mengerian;
(v) the blocker of each partial hypergraph of H is Mengerian;
(vi) α∗(H ′) ∈ Z for each partial subhypergraph H ′ of H;
(vii) each partial hypergraph of H is perfect.
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Proof. We know the implications (iv)⇒(iii) (Section 79.1), (iii)⇒(ii) (Corol-
lary 78.4b), (vii)⇒(vi) (Theorem 82.4), and (v)⇒(iii) (Theorem 78.1). Since
the class of balanced hypergraphs is closed under parallelization, (i)⇒(ii)
and (i)⇒(iii) in Theorem 83.1 give (i)⇒(iv) and (i)⇒(vii) in (83.5). Also
the class of blockers of balanced hypergraphs is closed under parallelization
(as the class of balanced matrices is closed under duplicating columns); so
(i)⇒(iv) in Theorem 83.1 gives (i)⇒(v) in (83.5).

So it suffices to show (ii)⇒(i) and (vi)⇒(i). Suppose that H is not bal-
anced. Let U ⊆ V and E ′ ⊆ E induce a partial subhypergraph that is an odd
circuit. We can assume that U = V and E ′ = E . Then 1

2 · 1 is a minimum-
size vertex cover and a maximum-size stable set of H, and hence τ∗(H) and
α∗(H) are noninteger.

These characterizations imply that certain linear programs have integer
optimum solutions (taking ∞ · 0 = 0):

Corollary 83.1b. For any {0, 1}-valued m × n matrix M , the following are
equivalent:

(83.6) (i) M is balanced;
(ii) ∀b ∈ {1, ∞}m ∀w ∈ {0, 1}n : min{yTb | y ≥ 0, yTM ≥ wT}

has an integer optimum solution y;
(iii) ∀b ∈ {1, ∞}m ∀w ∈ Z

n
+ : min{yTb | y ≥ 0, yTM ≥ wT} has

an integer optimum solution y;
(iv) ∀b ∈ Z

m
+ ∀w ∈ {0, 1}n : min{yTb | y ≥ 0, yTM ≥ wT} has an

integer optimum solution y;
(v) ∀b ∈ {1, ∞}m ∀w ∈ {0, 1}n : max{wTx | x ≥ 0, Mx ≤ b} has

an integer optimum solution x;
(vi) ∀b ∈ {1, ∞}m ∀w ∈ Z

n
+ : max{wTx | x ≥ 0, Mx ≤ b} has an

integer optimum solution x;
(vii) ∀b ∈ Z

m
+ ∀w ∈ {0, 1}n : max{wTx | x ≥ 0, Mx ≤ b} has an

integer optimum solution x;
(viii) ∀b ∈ {0, 1}m ∀w ∈ {1, ∞}n : min{wTx | x ≥ 0, Mx ≥ b} has

an integer optimum solution x;
(ix) ∀b ∈ Z

m
+ ∀w ∈ {1, ∞}n : min{wTx | x ≥ 0, Mx ≥ b} has an

integer optimum solution x.
(x) ∀b ∈ {0, 1}m ∀w ∈ Z

n
+ : min{wTx | x ≥ 0, Mx ≥ b} has an

integer optimum solution x;
(xi) ∀b ∈ {0, 1}m ∀w ∈ {1, ∞}n : max{yTb | y ≥ 0, yTM ≤ wT}

has an integer optimum solution y;
(xii) ∀b ∈ Z

m
+ ∀w ∈ {1, ∞}n : max{yTb | y ≥ 0, yTM ≤ wT} has

an integer optimum solution y;
(xiii) ∀b ∈ {0, 1}m ∀w ∈ Z

n
+ : max{yTb | y ≥ 0, yTM ≤ wT} has

an integer optimum solution y.
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Proof. Observe that each of (ii)-(vii) is equivalent to each of (viii)-(xiii),
respectively, after replacing M by MT. The implications (iii)⇒(ii)⇒(i),
(iv)⇒(ii), (vi)⇒(v)⇒(i), and (vii)⇒(v) are direct. Here we use that (ii) and
(v) are closed under taking submatrices, and that the incidence matrix of an
odd circuit does not satisfy (ii) and (v) for b = 1 and w = 1.

Finally, (i)⇒(iii) and (i)⇒(vi) follow from (83.5)(i)⇒(vii), (i)⇒(x) (hence
(i)⇒(iv)) follows from (83.5)(i)⇒(iii), and (i)⇒(xiii) (hence (i)⇒(vii)) follows
from (83.5)(i)⇒(iv).

Berge [1970] gave the following further characterization:

(83.7) a hypergraph is balanced ⇐⇒ each partial subhypergraph is
bicolourable,

where a hypergraph is bicolourable if its vertex set can be coloured with two
colours such that each edge of size at least 2 gets both colours. While ⇐ in
(83.7) is easy, ⇒ can be shown with the proof of (83.4).

More generally, Theorem 83.1 gives the following generalization of Theo-
rem 20.6 for bipartite graphs (Berge [1973b]):

Corollary 83.1c. Let H = (V, E) be a balanced hypergraph and let k ∈ Z+.
Then V can be partitioned into V1, . . . , Vk such that each E ∈ E is intersected
by min{k, |E|} of the Vi.

Proof. Choose F ∈ E . By induction on |E|, there is a partition V1, . . . , Vk

of V such that each E ∈ E with E �= F is intersected by min{k, |E|} of the
Vi. Choose the partition such that F is intersected by a maximum number
of the Vi. If F is not intersected by min{k, |F |} of the Vi, there exist Vi, Vj

with Vi ∩ F = ∅ and |Vj ∩ F | ≥ 2. The hypergraph H ′ obtained from H by
contracting V \ (Vi ∪ Vj) and after that deleting all edges of size ≤ 1, has
rmin(H ′) ≥ 2. Hence by Theorem 83.1, ν(b(H ′)) ≥ 2, that is Vi ∪ Vj can be
partitioned into two vertex covers V ′

i and V ′
j of H ′. Then replacing Vi, Vj by

V ′
i , V ′

j increases the number of intersections with F , a contradiction.

Another consequence was given by Conforti, Cornuéjols, Kapoor, and
Vušković [1996]. Call a matching M in a hypergraph H = (V, E) perfect if M
covers all vertices — that is, if M is a partition of V .

Corollary 83.1d. Let H = (V, E) be a balanced hypergraph. Then H has
a perfect matching if and only if there are no disjoint vertex sets B, R with
|B| > |R| and |B ∩ E| ≤ |R ∩ E| for each E ∈ E.

Proof. Necessity is easy, since if M is a perfect matching, then

(83.8) |B| =
∑

E∈M
|B ∩ E| ≤

∑

E∈M
|R ∩ E| = |R|.
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To see sufficiency, let M be the E × V incidence matrix of H. Suppose that
H has no perfect matching. Since {y ≥ 0 | yTM ≤ 1T} is an integer polytope
(by (83.6)(xii)), it implies that there is no vector y ≥ 0 with yTM = 1T.
Hence, by Farkas’ lemma, there is an x with Mx ≥ 0 and 1Tx < 0. We can
assume −1 ≤ x ≤ 1. Set z := 1 − x. Then 0 ≤ z ≤ 2, Mz ≤ M1, and
1Tz > 1T1. By (83.6)(vii), applied to the balanced matrix

(83.9)
(

I
M

)

,

we can assume that z is integer. Hence we can assume that x is integer and
−1 ≤ x ≤ 1. Then B := {v ∈ V | xv = −1} and R := {v ∈ V | xv = +1}
contradict the condition of the corollary.

A combinatorial proof of this theorem was given by Huck and Triesch
[2002].

83.2a. Totally balanced matrices

A 0, 1 matrix is called totally balanced if it has no submatrix that is the incidence
matrix of a circuit of length at least 3. Obviously, each totally balanced matrix is
balanced.

Totally balanced matrices have several nice properties so as to apply ‘perfect
elimination’ and ‘greedy’ methods when solving optimization problems. They might
be considered as the bipartite analogue of chordal graphs.

Call a bipartite graph totally balanced (or chordal bipartite) if it has no chordless
circuit of length at least 6. So a 0, 1 matrix is totally balanced if and only if the
associated bipartite graph is totally balanced. (The bipartite graph associated to
an m × n matrix M is the bipartite graph with colour classes {u1, . . . , um} and
{v1, . . . , vn}, where ui and vj are adjacent if and only if Mi,j �= 0.)

The first important property of totally balanced matrices was found by Golumbic
and Goss [1978]. Call an entry Mi0,j0 of a {0, 1}-valued m × n matrix M simplicial
if

(83.10) (i) Mi0,j0 = 1,
(ii) for all i = 1, . . . , m and j = 1, . . . , n: if Mi0,j = Mi,j0 = 1, then

Mi,j = 1.

Theorem 83.2. Each nonzero totally balanced matrix M has a simplicial entry.

Proof. Let G = (V, E) be the bipartite graph associated to M , with colour classes
U and W . To prove that M has a simplicial entry, we must show that G has an
edge uw such that each vertex in N(u) is adjacent to each vertex in N(w).

We can assume that G is not a complete bipartite graph, since otherwise M
trivially has a simplicial entry. Choose an inclusionwise maximal nonempty set
X ⊆ V such that

(83.11) the subgraph G[X] of G induced by X is connected and G has an edge
disjoint from X ∪ N(X).
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Such a set X exists, since X := {u} satisfies (83.11) for any vertex u that is isolated
or (if no isolated vertices exist) any vertex u ∈ U nonadjacent to at least one vertex
in W .

Define Z := V \ (X ∪ N(X)). The maximality of X gives:

(83.12) each vertex y in N(X) is adjacent to one of the ends of any edge
contained in Z,

since otherwise we can add y to X without violating (83.11), contradicting the
maximality of X.

Also we have:

(83.13) each vertex in N(X) ∩ U is adjacent to each vertex in N(X) ∩ W .

For choose y ∈ N(X) ∩ U and z ∈ N(X) ∩ W . Let uw be an edge in Z, with u ∈ U
and w ∈ W . As G[X] is connected, there is a path P in G[X] connecting N(y) and
N(z). Choose P shortest. Then y, P, z, u, w, y is a circuit of length at least 6 in G.
Hence it has a chord. It cannot connect {u, w} and P , since u, w �∈ N(X). So it is
a chord of the path y, P, z. Since P is shortest, it follows that y and z are adjacent.
This proves (83.13).

Now by induction we know that Z contains an edge uw such that N({u, w})∩Z
induces a complete bipartite graph. Then (83.12) and (83.13) imply that N({u, w})
induces a complete bipartite graph.

Most of the properties of totally balanced matrices (including that described
in the theorem above, which however is used in the proof) follow from the next
theorem, saying that the rows and columns of a totally balanced matrix can be
permuted such that it has no submatrix

(83.14)
(

1 1
1 0

)

(in this order). Following Lubiw [1982], we call such a matrix Γ -free. In other words,
M is Γ -free if for all row indices i < i′ and column indices j < j′ one has

(83.15) if Mi,j = Mi′,j = Mi,j′ = 1, then Mi′,j′ = 1.

The following was shown by Hoffman, Kolen, and Sakarovitch [1985] and Lubiw
[1982]:

Theorem 83.3. The rows and columns of a totally balanced matrix M can be
permuted such that the matrix becomes Γ -free.

Proof. We apply induction on the number of nonzero entries of M . If M is all-zero,
the theorem is trivial. So we can assume that M has at least one nonzero entry. By
Theorem 83.2, M has a simplicial entry Mi0,j0 .

Reset Mi0,j0 to 0, to obtain matrix M̃ . Then M̃ is again totally balanced. For
suppose that M̃ has a submatrix C that is the incidence matrix of a circuit of length
≥ 3. Since M is totally balanced, C contains the entry M̃i0,j0 . Row i0 has two 1’s
in C and column j0 has two 1’s in C. Hence, by (83.10), C has a row with three
1’s, a contradiction.

So M̃ is totally balanced again. By induction, we can permute the rows and
columns of M̃ such that it becomes Γ -free. We can assume that entry M̃i0,j0 of M̃
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has moved to position i0, j0. We can also assume that among all valid permutations,
we have chosen one which minimizes i0 + j0. Then

(83.16) Mi,j0 = 0 for each i < i0 and Mi0,j = 0 for each j < j0.

For suppose that Mi,j0 = 1 for some i < i0. By the minimality of i0 + j0, we cannot
exchange rows i0 and i0 − 1 of M̃ without violating Γ -freeness. Hence there exist
j, j′ with j < j′ with Mi0,j = Mi0,j′ = 1 and Mi0−1,j = 1, Mi0−1,j′ = 0. Since
Mi0,j = Mi0,j′ = 1 and Mi,j0 = 1 we know by (83.10) that Mi,j = Mi,j′ = 1.

So i �= i0 − 1 and hence i < i0 − 1. But then Mi,j = Mi,j′ = Mi0−1,j = 1 while
Mi0−1,j′ = 0, contradicting the Γ -freeness of M̃ .

This proves (83.16). Then resetting the (i0, j0)th entry to its original value 1,
the matrix remains Γ -free (by (83.10) and (83.16)).

Call a hypergraph H = (V, E) totally balanced if its incidence matrix is totally
balanced. Call two sets X and Y comparable if X ⊆ Y or Y ⊆ X. Then (Brouwer
and Kolen [1980], Anstee and Farber [1984]):

Corollary 83.3a. Each totally balanced hypergraph H = (V, E) with V �= ∅, has a
vertex v such that any two edges containing v are comparable.

Proof. By Theorem 83.3, we can assume that the incidence matrix M of H is
Γ -free. Then the vertex of H corresponding to the first column of M is as required.

Other consequences of Theorem 83.3 are algorithmic. It gives a good characteri-
zation of total balancedness. In fact, the method gives a polynomial-time algorithm
to test total balancedness: we iteratively find a simplicial entry and set it to 0. If we
succeed in this until the matrix is all-zero, the original matrix is totally balanced,
and otherwise not.

Lubiw [1982] gave the following simple algorithm to permute the rows and
columns of a totally balanced matrix such that it becomes Γ -free. Iteratively, choose
a column j such that the supports of the rows with a 1 in column j form a chain,
and remove column j. The order in which we remove the columns, gives the permu-
tation of the columns. Next order the rows lexicographically (reading from right to
left). The final matrix is Γ -free. (Hoffman, Kolen, and Sakarovitch [1985] gave an
O(nm2)-time algorithm to transform a totally balanced m × n matrix to a Γ -free
matrix, speeded up by Paige and Tarjan [1987] and Spinrad [1993].)

Also, if A is a nonsingular matrix whose support is totally balanced, then we can
solve a system Ax = b of linear equalities with Gaussian elimination, by repeatedly
choosing a simplicial entry and pivoting on it. If we create no 0’s ‘by accident’,
then we can keep pivoting on simplicial entries throughout the process (since then
we never change any zero entry to nonzero). So if the initial matrix is sparse, it
remains sparse during the Gaussian elimination.

Lubiw [1982], Farber [1984], and Hoffman, Kolen, and Sakarovitch [1985] gave
polynomial-time algorithms for optimization problems over a totally balanced ma-
trix.

Call a hypergraph H = (V, E) a tree-hypergraph if V is the vertex set of a
tree T and each edge E ∈ E of H induces a subtree of T . Lehel [1985] showed
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that a hypergraph H is totally balanced if and only if each contraction of H is a
tree-hypergraph.

Lubiw [1982] showed that for any totally balanced hypergraph H = (V, E), its
intersection matrix (the {0, 1}-valued E × E matrix N with NE,E′ = 1 if and only
if E ∩ E′ �= ∅) is totally balanced.

Chvátal [1993] pointed out that a bipartite graph is totally balanced (≡ chordal
bipartite) if and only if its complementary graph is perfectly orderable (cf. Hoàng
[1996a]). More results on totally balanced matrices are reported by Golumbic [1980],
Lubiw [1982,1987], Anstee and Farber [1984], and Dragan and Voloshin [1996], and
applications by Tamir [1987].

83.2b. Examples of balanced hypergraphs

A graph G = (V, E) is balanced if and only if it is bipartite. This follows directly
from the definition of balancedness.

A second example was given by Frank [1977]. Let D = (V, A) be a rooted tree.
Let P1, . . . , Pm and Q1, . . . , Qn be directed paths in D. Define the m×n matrix M
by:

(83.17) Mi,j :=
{

1 if V Pi ∩ V Qj �= ∅,
0 otherwise,

for i = 1, . . . , m and j = 1, . . . , n. Then M is a balanced matrix, as one easily
checks. M need not be totally unimodular, as example (83.22) below shows. As
Lubiw [1982] observed, these matrices are even totally balanced. The fact that for
the corresponding hypergraphs α(H) = ρ(H) and (equivalently) ν(H) = τ(H) hold
was shown by Meir and Moon [1975]. Related results can be found in Slater [1977].

A third example was given by Giles [1978a]. Let G = (V, E) be an (undirected)
tree. For each a : V → Z+, define

(83.18) Uv := {u ∈ V | distG(v, u) ≤ av}.

Then (V, {Uv | v ∈ V }) is a balanced hypergraph. Lubiw [1982] showed that these
hypergraphs are in fact totally balanced.

83.2c. Balanced 0, ±1 matrices

Truemper [1982] extended the concept of balancedness to 0, ±1 matrices: A 0, ±1
matrix is balanced if in each square submatrix with precisely two nonzeros in each
row and in each column, the sum of the entries is a multiple of 4.

Most of the results described above for balanced 0, 1 matrices, can be extended
to 0, ±1 matrices. Conforti and Cornuéjols [1995b] showed that for any balanced
0, ±1 matrix M the following systems are TDI, and hence determine an integer
polytope:

(83.19) 0 ≤ x ≤ 1, Mx ≤ 1 − b,

and

(83.20) 0 ≤ x ≤ 1, Mx ≥ 1 − b,
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where b is the vector with bi equal to the number of negative entries in the ith row
of M . So balanced matrices are both perfect and ideal. By requiring this for each
submatrix, each of this characterizes balancedness.

Conforti and Cornuéjols [1995b] also proved a bicolouring theorem extending
Corollary 83.1c:

(83.21) the columns of a balanced 0, ±1 matrix M can be split into two sets
such that each row of M with at least two nonzeros, has nonzero entries
of the same sign in both sets, or of opposite signs in one of the two
sets.

Again, by requiring this for each submatrix, this characterizes balancedness.
Finally, the decomposition results and algorithms for balanced 0, 1 matrices

were extended to 0, ±1 matrices by Conforti, Cornuéjols, Kapoor, and Vušković
[1994,2001a,2001b]. For surveys, see Conforti, Cornuéjols, Kapoor, Vušković, and
Rao [1994], Conforti and Cornuéjols [2001], and Cornuéjols [2001].

83.3. Unimodular hypergraphs

A hypergraph H = (V, E) is called unimodular if its incidence matrix M is
totally unimodular; that is, each square submatrix of M has determinant 0,
+1, or −1.

Since the incidence matrix of an odd circuit has determinant ±2, each
unimodular hypergraph is balanced. Not every balanced hypergraph is uni-
modular, as is shown by the hypergraph with incidence matrix

(83.22)







1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1







.

Trivially, the dual of a unimodular hypergraph is again unimodular. Also,
contracting vertices and deleting edges maintain unimodularity of a hyper-
graph.

For graphs (that is, hypergraphs with each edge of size 2), the concept of
unimodular coincides with bipartite.

Characterizations of totally unimodular matrices imply corresponding
characterizations of unimodular hypergraphs. We describe some of them in
the following theorem. (The equivalence of (i)-(vii) is due to Hoffman and
Kruskal [1956], characterization (viii) to Ghouila-Houri [1962b], characteri-
zation (ix) to Camion [1963,1965], and characterization (x) to R.E. Gomory
(cf. Camion [1965]).)

For the proof we refer to Chapter 19 of Schrijver [1986b].

Theorem 83.4. Let H = (V, E) be a hypergraph, with incidence matrix M .
Then the following are equivalent:
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(83.23) (i) H is unimodular, that is, each square submatrix of M has de-
terminant in {0, ±1};

(ii) for each b ∈ Z
E
+, the polyhedron {x ≥ 0 | Mx ≤ b} is integer;

(iii) for each b ∈ R
E
+, the system x ≥ 0, Mx ≤ b is totally dual

integral;
(iv) for each b ∈ Z

E
+, the polyhedron {x ≥ 0 | Mx ≥ b} is integer;

(v) for each b ∈ R
E
+, the system x ≥ 0, Mx ≥ b is totally dual

integral;
(vi) for all a, b ∈ Z

E and c, d ∈ Z
V , the polyhedron {x | c ≤ x ≤

d, a ≤ Mx ≤ b} is integer;
(vii) for all a, b ∈ R

E and c, d ∈ R
V , the system c ≤ x ≤ d, a ≤

Mx ≤ b is totally dual integral;
(viii) each U ⊆ V can be partitioned into sets U1 and U2 such that

each E ∈ E satisfies
∣
∣|E ∩ U1| − |E ∩ U2|

∣
∣ ≤ 1;

(ix) the sum of the entries in any square submatrix of M with even
row and column sums, is divisible by 4;

(x) no square submatrix of M has determinant ±2.

Proof. See Chapter 19 of Schrijver [1986b].

This implies a characterization similar to Corollary 83.1b:

Corollary 83.4a. For any {0, 1}-valued m × n matrix M , the following are
equivalent:

(83.24) (i) M is totally unimodular;
(ii) ∀b ∈ Z

m
+ ∀w ∈ Z

n
+ : min{yTb | y ≥ 0, yTM ≥ wT} has an

integer optimum solution y;
(iii) ∀b ∈ Z

m
+ ∀w ∈ Z

n
+ : max{wTx | x ≥ 0, Mx ≤ b} has an

integer optimum solution x;
(iv) ∀b ∈ Z

m
+ ∀w ∈ Z

n
+ : max{yTb | y ≥ 0, yTM ≤ wT} has an

integer optimum solution y;
(v) ∀b ∈ Z

m
+ ∀w ∈ Z

n
+ : min{wTx | x ≥ 0, Mx ≥ b} has an integer

optimum solution x.

Proof. From Theorem 83.4.

Unimodular hypergraphs have the following property stronger than was
shown for balanced hypergraphs in Corollary 83.1c:

Theorem 83.5. Let H = (V, E) be a unimodular matrix and let k ∈ Z+ with
k ≥ 1. Then V can be partitioned into sets V1, . . . , Vk such that

(83.25)
⌊ |E|

k

⌋ ≤ |E ∩ Vi| ≤ ⌈ |E|
k

⌉

for each E ∈ E and each i = 1, . . . , k.
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Proof. Choose F ∈ E . By induction, there is a partition V1, . . . , Vk as required
for the hypergraph H ′ := (V, E \ {F}). Choose the partition with

(83.26)
k∑

i=1

|F ∩ Vi|2

as small as possible. Suppose that (83.25) does not hold for E := F . Then
there exist i and j such that

(83.27) |F ∩ Vi| ≥ |F ∩ Vj | + 2.

Consider the contraction of H to Vi ∪Vj . By (83.23)(viii), we can split Vi ∪Vj

into V ′
i and V ′

j such that
∣
∣|E∩V ′

i |−|E∩V ′
j |∣∣ ≤ 1 for each E ∈ E . So replacing

Vi, Vj by V ′
i , V ′

j gives again a valid partition, but decreases the sum (83.26),
a contradiction.

A basic theorem of Seymour [1980a] states that each totally unimodu-
lar matrix can be decomposed into network matrices, their transposes, and
two special 5 × 5 matrices. As J. Edmonds noted, it yields a polynomial-
time test of total unimodularity of matrices, and hence of unimodularity of
hypergraphs — Bixby [1982], Schrijver [1986b], and Truemper [1990,1992]
described implementations.

83.3a. Further notes

Truemper and Chandrasekaran [1978] proved the following characterization, that
includes the polyhedral characterizations of both the balanced and the totally uni-
modular matrices. For any pair of an {0, 1}-valued m × n matrix A and a vector
b ∈ Z

n
+, the following are equivalent:

(83.28) (i) the polyhedron {x ≥ 0 | A′x ≤ d′} is integer for each row submatrix
A′ of A and each integer vector d′ with 0 ≤ d′ ≤ b′, where b′ is the
part of b corresponding to A′;

(ii) A has no square submatrix M with the following properties: det M =
±2, each entry of M−1 is ± 1

2 , and M1 ≤ 2b′, where b′ is the part
of b corresponding to M .

For b = 1 this characterizes balanced matrices. For b sufficiently large, it character-
izes total unimodularity. Related results can be found in Conforti, Cornuéjols, and
Truemper [1994] and Conforti, Cornuéjols, and Zambelli [2002a].

Conforti and Rao [1992c] reduced testing if a hypergraph is balanced, to testing
if some derived hypergraphs are perfect. Conforti and Rao [1993] gave a polynomial-
time algorithm to test if a given hypergraph H is balanced, provided that any two
edges of H intersect in at most one vertex. Related results can be found in Lubiw
[1988] and Conforti and Rao [1989,1992d].

Berge and Hoffman [1978] gave a formula for the minimum number of stable
vertex covers needed to cover the vertex set of a unimodular hypergraph. Dahlhaus,
Kratochvil, Manuel, and Miller [1997] described a polynomial-time algorithm to find
a maximum number of disjoint vertex covers of a balanced hypergraph.
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Conforti and Cornuéjols [1995a] applied balanced matrices to logic problems.
Conforti, Cornuéjols, and Vušković [1999] gave a linear-time algorithm to find a
chordless circuit in a bipartite graph of length ≡ 0 (mod 4).



Survey of Problems, Questions,
and Conjectures

We here collect unsolved problems, questions, and conjectures mentioned in
this book. For terminology and background, we refer to the pages indicated.

1 (page 41). Is NP�=P?

2 (page 42). Is P=NP∩co-NP?

3 (page 65). The Hirsch conjecture: A d-dimensional polytope with m facets
has diameter at most m − d.

4 (page 161). Is there an O(nm)-time algorithm for finding a maximum flow?

5 (page 232). Berge [1982b] posed the following conjecture generalizing the
Gallai-Milgram theorem. Let D = (V, A) be a digraph and let k ∈ Z+. Then
for each path collection P partitioning V and minimizing

(1)
∑

P∈P
min{|V P |, k},

there exist disjoint stable sets C1, . . . , Ck in D such that each P ∈ P intersects
min{|V P |, k} of them. This was proved by Saks [1986] for acyclic graphs.

6 (page 403). The following open problem was mentioned by Fulkerson
[1971b]: Let A and B be families of subsets of a set S and let w ∈ Z

S
+.

What is the maximum number k of common transversals T1, . . . , Tk of A and
B such that

(2) χT1 + · · · + χTk ≤ w?

7 (page 459). Can the weighted matching problem be formulated as a linear
programming problem of size bounded by a polynomial in the size of the
graph, by extending the set of variables? That is, is the matching polytope
of a graph G = (V, E) equal to the projection of some polytope {x | Ax ≤ b}
with A and b having size bounded by a polynomial in |V | + |E|?
8 (pages 472,646). The 5-flow conjecture of Tutte [1954a]:

(3) (?) each bridgeless graph has a nowhere-zero 5-flow. (?)
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(A nowhere-zero k-flow is a flow over Zk in some orientation of the graph,
taking value 0 nowhere.)

9 (pages 472,498,645,1426). The 4-flow conjecture of Tutte [1966]:

(4) (?) each bridgeless graph without Petersen graph minor has a
nowhere-zero 4-flow. (?)

This implies the four-colour theorem. For cubic graphs, (4) was proved by
Robertson, Seymour, and Thomas [1997], Sanders, Seymour, and Thomas
[2000], and Sanders and Thomas [2000].

Seymour [1981c] showed that the 4-flow conjecture is equivalent to the
following more general conjecture, also due to Tutte [1966]:

(5) (?) each bridgeless matroid without F ∗
7 , M∗(K5), or M(P10) mi-

nor has a nowhere-zero flow over GF(4). (?)

Here P10 denotes the Petersen graph.

10 (page 472). The 3-flow conjecture (W.T. Tutte, 1972 (cf. Bondy and Murty
[1976], Unsolved problem 48)):

(6) (?) each 4-edge-connected graph has a nowhere-zero 3-flow. (?)

11 (page 473). The weak 3-flow conjecture of Jaeger [1988]:

(7) (?) there exists a number k such that each k-edge-connected graph
has a nowhere-zero 3-flow. (?)

12 (page 473). The following circular flow conjecture of Jaeger [1984] gener-
alizes both the 3-flow and the 5-flow conjecture:

(8) (?) for each k ≥ 1, any 4k-connected graph has an orientation
such that in each vertex, the indegree and the outdegree differ by
an integer multiple of 2k + 1. (?)

13 (pages 475,645). The generalized Fulkerson conjecture of Seymour [1979a]:

(9) (?) �χ′∗(G)� = � 1
2χ′(G2)� (?)

for each graph G. (Here χ′∗(G) denotes the fractional edge-colouring number
of G, and G2 the graph obtained from G by replacing each edge by two
parallel edges.) This is equivalent to the conjecture that

(10) (?) for each k-graph G there exists a family of 2k perfect match-
ings, covering each edge precisely twice. (?)

(A k-graph is a k-regular graph G = (V, E) with |δ(U)| ≥ k for each odd-size
subset U of V .)
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14 (pages 476,645). Fulkerson [1971a] asked if in each bridgeless cubic graph
there exist 6 perfect matchings, covering each edge precisely twice (the Fulk-
erson conjecture). It is a special case of Seymour’s generalized Fulkerson
conjecture.

15 (page 476). Berge [1979a] conjectures that the edges of any bridgeless
cubic graph can be covered by 5 perfect matchings. (This would follow from
the Fulkerson conjecture.)

16 (page 476). Gol’dberg [1973] and Seymour [1979a] conjecture that for each
(not necessarily simple) graph G one has

(11) (?) χ′(G) ≤ max{∆(G) + 1, �χ′∗(G)�}. (?)

An equivalent conjecture was stated by Andersen [1977].

17 (page 476). Seymour [1981c] conjectures the following generalization of
the four-colour theorem:

(12) (?) each planar k-graph is k-edge-colourable. (?)

For k = 3, this is equivalent to the four-colour theorem. For k = 4 and k = 5,
it was derived from the case k = 3 by Guenin [2002b].

18 (pages 476,644). Lovász [1987] conjectures more generally:

(13) (?) each k-graph without Petersen graph minor is k-edge-colour-
able. (?)

This is equivalent to stating that the incidence vectors of perfect matchings
in a graph without Petersen graph minor, form a Hilbert base.

19 (page 481). The following question was asked by Vizing [1968]: Is there a
simple planar graph of maximum degree 6 and with edge-colouring number
7?

20 (page 481). Vizing [1965a] asked if a minimum edge-colouring of a graph
can be obtained from an arbitrary edge-colouring by iteratively swapping
colours on a colour-alternating path or circuit and deleting empty colours.

21 (page 482). Vizing [1976] conjectures that the list-edge-colouring number
of any graph is equal to its edge-colouring number.

(The list-edge-colouring number χl(G) of a graph G = (V, E) is the mini-
mum number k such that for each choice of sets Le for e ∈ E with |Le| = k,
one can select le ∈ Le for e ∈ E such that for any two incident edges e, f one
has le �= lf .)

22 (page 482). Behzad [1965] and Vizing [1968] conjecture that the total
colouring number of a simple graph G is at most ∆(G)+2. (The total colouring
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number of a graph G = (V, E) is a colouring of V ∪ E such that each colour
consists of a stable set and a matching, vertex-disjoint.)

23 (page 482). More generally, Vizing [1968] conjectures that the total colour-
ing number of a graph G is at most ∆(G) + µ(G) + 1, where µ(G) is the
maximum edge multiplicity of G.

24 (pages 497,645). Seymour [1979b] conjectures that each even integer vector
in the circuit cone of a graph is a nonnegative integer combination of incidence
vectors of circuits.

25 (pages 497,645,1427). A special case of this is the circuit double cover
conjecture (asked by Szekeres [1973] and conjectured by Seymour [1979b]):
each bridgeless graph has circuits such that each edge is covered by precisely
two of them.

Jamshy and Tarsi [1989] proved that the circuit double cover conjecture
is equivalent to a generalization to matroids:

(14) (?) each bridgeless binary matroid without F ∗
7 minor has a circuit

double cover. (?)

26 (page 509). Is the system of T -join constraints totally dual quarter-
integral?

27 (page 517). L. Lovász asked for the complexity of the following problem:
given a graph G = (V, E), vertices s, t ∈ V , and a length function l : E → Q

such that each circuit has nonnegative length, find a shortest odd s − t path.

28 (page 545). What is the complexity of deciding if a given graph has a
2-factor without circuits of length at most 4?

29 (page 545). What is the complexity of finding a maximum-weight 2-factor
without circuits of length at most 3?

30 (page 646). Tarsi [1986] mentioned the following strengthening of the
circuit double cover conjecture:

(15) (?) in each bridgeless graph there exists a family of at most 5
cycles covering each edge precisely twice. (?)

31 (page 657). Is the dual of any algebraic matroid again algebraic?

32 (page 892). A special case of a question asked by A. Frank (cf. Schrijver
[1979b], Frank [1995]) amounts to the following:

(16) (?) Let G = (V, E) be an undirected graph and let s ∈ V . Suppose
that for each vertex t �= s, there exist k internally vertex-disjoint
s−t paths. Then G has k spanning trees such that for each vertex
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t �= s, the s − t paths in these trees are internally vertex-disjoint.
(?)

(The spanning trees need not be edge-disjoint — otherwise G = K3 would
form a counterexample.) For k = 2, (16) was proved by Itai and Rodeh [1984,
1988], and for k = 3 by Cheriyan and Maheshwari [1988] and Zehavi and Itai
[1989].

33 (page 962). Can a maximum number of disjoint directed cut covers in a
directed graph be found in polynomial time?

34 (page 962). Woodall [1978a,1978b] conjectures (Woodall’s conjecture):

(17) (?) In a digraph, the minimum size of a directed cut is equal to
the maximum number of disjoint directed cut covers. (?)

35 (page 985). Let G = (V, E) be a complete undirected graph, and consider
the system

(18) 0 ≤ xe ≤ 1 for each edge e,
x(δ(v)) = 2 for each vertex v,
x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V .

Let l : E → R+ be a length function. Is the minimum length of a Hamiltonian
circuit at most 4

3 times the minimum value of lTx over (18)?

36 (page 990). Padberg and Grötschel [1985] conjecture that the diameter of
the symmetric traveling salesman polytope of a complete graph is at most 2.

37 (page 1076). Frank [1994a] conjectures:

(19) (?) Let D = (V, A) be a simple acyclic directed graph. Then
the minimum size of a k-vertex-connector for D is equal to the
maximum of

∑
v∈V max{0, k − degin(v)} and

∑
v∈V max{0, k −

degout(v)}. (?)

(A k-vertex-connector for D is a set of (new) arcs whose addition to D makes
it k-vertex-connected.)

38 (page 1087). Hadwiger’s conjecture (Hadwiger [1943]): If χ(G) ≥ k, then
G contains Kk as a minor.

Hadwiger’s conjecture is trivial for k = 1, 2, 3, was shown by Hadwiger
[1943] for k = 4 (also by Dirac [1952]), is equivalent to the four-colour theorem
for k = 5 (by a theorem of Wagner [1937a]), and was derived from the four-
colour theorem for k = 6 by Robertson, Seymour, and Thomas [1993]. For
k ≥ 7, the conjecture is unsettled.

39 (page 1099). Chvátal [1973a] asked if for each fixed t, the stable set prob-
lem for graphs for which the stable set polytope arises from P (G) by at most
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t rounds of cutting planes, is polynomial-time solvable. Here P (G) is the
polytope determined by the nonnegativity and clique inequalities.

40 (page 1099). Chvátal [1975b] conjectures that there is no polynomial p(n)
such that for each graph G with n vertices we can obtain the inequality
x(V ) ≤ α(G) from the system defining Q(G) by adding at most p(n) cutting
planes. Here Q(G) is the polytope determined by the nonnegativity and edge
inequalities. (This conjecture would be implied by NP�=co-NP.)

41 (page 1105). Gyárfás [1987] conjectures that there exists a function g :
Z+ → Z+ such that χ(G) ≤ g(ω(G)) for each graph G without odd holes.

42 (page 1107). Can perfection of a graph be tested in polynomial time?

43 (page 1131). Berge [1982a] conjectures the following. A directed graph D =
(V, A) is called α-diperfect if for every induced subgraph D′ = (V ′, A′) and
each maximum-size stable set S in D′ there is a partition of V ′ into directed
paths each intersecting S in exactly one vertex. Then for each directed graph
D:

(20) (?) D is α-diperfect if and only if D has no induced subgraph C
whose underlying undirected graph is a chordless odd circuit of
length ≥ 5, say with vertices v1, . . . , v2k+1 (in order) such that
each of v1, v2, v3, v4, v6, v8, . . . , v2k is a source or a sink. (?)

44 (page 1170). Is ϑ(Cn) = Θ(Cn) for each odd n?

45 (page 1170). Can Haemers’ bound η(G) on the Shannon capacity of a
graph G be computed in polynomial time?

46 (page 1187). Is every t-perfect graph strongly t-perfect?
Here a graph is t-perfect if its stable set polytope is determined by the

nonnegativity, edge, and odd circuit constraints. It is strongly t-perfect if this
system is totally dual integral.

47 (page 1195). T-perfection is closed under taking induced subgraphs and
under contracting all edges in δ(v) where v is a vertex not contained in a
triangle. What are the minimally non-t-perfect graphs under this operation?

48 (page 1242). For any k, let f(k) be the smallest number such that
in any f(k)-connected undirected graph, for any choice of distinct ver-
tices s1, t1, . . . , sk, tk there exist vertex-disjoint s1 − t1, . . . , sk − tk paths.
Thomassen [1980] conjectures that f(k) = 2k + 2 for k ≥ 2.

49 (page 1242). For any k, let g(k) be the smallest number such that
in any g(k)-edge-connected undirected graph, for any choice of vertices
s1, t1, . . . , sk, tk there exist edge-disjoint s1−t1, . . . , sk −tk paths. Thomassen
[1980] conjectures that g(k) = k if k is odd and g(k) = k + 1 if k is even.
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50 (page 1243). What is the complexity of the k arc-disjoint paths problem
in directed planar graphs, for any fixed k ≥ 2? This is even unknown for
k = 2, also if we restrict ourselves to two opposite nets.

51 (page 1274). Karzanov [1991] conjectures that if the nets in a multiflow
problem form two disjoint triangles and if the capacities and demands are
integer and satisfy the Euler condition, then the existence of a fractional
multiflow implies the existence of a half-integer multiflow.

52 (page 1274). The previous conjecture implies that for each graph H =
(T, R) without three disjoint edges, there is an integer k such that for each
graph G = (V, E) with V ⊇ T and any c : E → Z+ and d : R → Z+, if there
is a feasible multiflow, then there exists a 1

k -integer multiflow.

53 (page 1276). Okamura [1998] conjectures the following. Let G = (V, E) be
an l-edge-connected graph (for some l). Let H = (T, R) be a ‘demand’ graph,
with T ⊆ V , such that dR(U) ≤ l for each U ⊆ V . Then the edge-disjoint
paths problem has a half-integer solution.

54 (page 1293). Is each Mader matroid a gammoid?

55 (page 1294). Is each Mader matroid linear?

56 (page 1299). Is the undirected edge-disjoint paths problem for planar
graphs polynomial-time solvable if all terminals are on the outer boundary?
Is it NP-complete?

57 (page 1310). Is the integer multiflow problem polynomial-time solvable if
the graph and the nets form a planar graph such that the nets are spanned
by a fixed number of faces?

58 (page 1310). Pfeiffer [1990] raised the question if the edge-disjoint paths
problem has a half-integer solution if the graph G + H (the union of the
supply graph and the demand graph) is embeddable in the torus and there
exists a quarter-integer solution.

59 (page 1320). Let G = (V, E) be a planar bipartite graph and let q be a
vertex on the outer boundary. Do there exist disjoint cuts C1, . . . , Cp such
that any pair s, t of vertices with s and t on the outer boundary, or with
s = q, is separated by distG(s, t) cuts?

60 (page 1345). Fu and Goddyn [1999] asked: Is the class of graphs for which
the incidence vectors of cuts form a Hilbert base, closed under taking minors?

61 (page 1382). Füredi, Kahn, and Seymour [1993] conjecture that for each
hypergraph H = (V, E) and each w : E → R+, there exists a matching M ⊆ E
such that
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(21)
∑

F∈M

(|F | − 1 +
1

|F |
)
w(F ) ≥ ν∗

w(H),

where ν∗
w(H) is the maximum weight wTy of a fractional matching y : E →

R+.

62 (pages 1387,1408). Seymour [1981a] conjectures:

(22) (?) a binary hypergraph is ideal if and only if it has no O(K5),
b(O(K5)), or F7 minor. (?)

63 (page 1392). Seymour [1990b] asked the following. Suppose that H =
(V, E) is a hypergraph without Jn minor (n ≥ 3). Let l, w : V → Z+ be such
that

(23) τ(Hw) · τ(b(H)l) > lTw.

Is there a minor H ′ of H and l′, w′ : V H ′ → {0, 1} such that

(24) τ((H ′)w′
) · τ(b(H ′)l′) > l′Tw′

and such that τ((H ′)w′
) ≤ τ(Hw) and τ(b(H ′)l′) ≤ τ(b(H)l)?

Here, for each n ≥ 3: Jn := the hypergraph with vertex set {1, . . . , n} and
edges {2, . . . , n}, {1, 2}, . . . , {1, n}.

64 (page 1392). Seymour [1990b] also asked the following. Let H = (V, E) be
a nonideal hypergraph. Is the minimum of τ(H ′) over all parallelizations and
minors H ′ of H with τ∗(H ′) < τ(H ′) attained by a minor of H?

65 (page 1395). Cornuéjols and Novick [1994] conjecture that there are only
finitely many minimally nonideal hypergraphs H with rmin(H) > 2 and
τ(H) > 2.

66 (page 1396). Ding [1993] asked whether there exists a number t such that
each minimally nonideal hypergraph H satisfies rmin(H) ≤ t or τ(H) ≤ t.

(The above conjecture of Cornuéjols and Novick [1994] implies a positive
answer to this question.)

67 (page 1396). Ding [1993] conjectures that for each fixed k ≥ 2, each
minor-minimal hypergraph H with τk(H) < k ·τ(H), contains some Jn minor
(n ≥ 3) or satisfies the regularity conditions of Lehman’s theorems (Theorem
78.4 and 78.5).

68 (page 1401). Conforti and Cornuéjols [1993] conjecture:

(25) (?) a hypergraph is Mengerian if and only if it is packing. (?)

69 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture:

(26) (?) each minimally nonideal hypergraph H with rmin(H)τ(H) =
|V H| + 1 is minimally nonpacking. (?)
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70 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture that
τ(H) = 2 for each ideal minimally nonpacking hypergraph H.

71 (page 1404). Seymour [1981a] conjectures that T30 is the unique minor-
minimal binary ideal hypergraph H with the property ν2(H) < 2τ(H).

Here the hypergraph T30 arises as follows. Replace each edge of the Pe-
tersen graph by a path of length 2, making the graph G. Let T := V G \ {v},
where v is an arbitrary vertex of v of degree 3. Let E be the collection of
T -joins. Then T30 := (EG, E).

72 (page 1405). P.D. Seymour (personal communication 1975) conjectures
that for each ideal hypergraph H there exists an integer k such that νk(H) =
k · τ(H) and such that k = 2i for some i. He also asks if k = 4 would do in
all cases.

73 (page 1405). Seymour [1979a] conjectures that for each ideal hypergraph
H, the g.c.d. of those k with νk(H) = k · τ(H) is equal to 1 or 2.

74 (page 1409). Is the following true for binary hypergraphs H:

(27) (?) ν(Hw) = τ(Hw) for each w : V → Z+ with w(B) even for all
B ∈ b(H) ⇐⇒ 1

2ν2(Hw) = τ(Hw) for each w : V → Z+ ⇐⇒
H has no O(K5), b(O(K5)), F7, or T15 minor. (?)

Here T15 is the hypergraph of V P10-joins in the Petersen graph P10.

75 (page 1421). Seymour [1981a] conjectures that for any binary matroid M :

(28) (?) M is 1-cycling ⇐⇒ M is 1-flowing ⇐⇒ M has no AG(3,2),
T11, or T ∗

11 minor. (?)

Here T11 is the binary matroid represented by the 11 vectors in {0, 1}5 with
precisely 3 or 5 ones. Moreover, AG(3,2) is the matroid with 8 elements
obtained from the 3-dimensional affine geometry over GF(2).
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