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Part VII: Multiflows and Disjoint Paths

The problem of finding a maximum flow from one source s to one sink t in a
directed graph is highly tractable. There is a very efficient algorithm, which outputs
an integer maximum flow if all capacities are integer. Moreover, the maximum
flow value is equal to the minimum capacity of a cut separating s and t. If all
capacities are equal to 1, the problem reduces to finding arc-disjoint paths. Some
direct transformations give similar results for vertex capacities, for vertex-disjoint
paths, and for undirected graphs.
Often in practice however, one is not interested in connecting only one pair of source
and sink by a flow or by paths, but several pairs of sources and sinks simultaneously.
One may think of a large communication or transportation network, where several
messages or goods must be transmitted all at the same time over the same network,
between different pairs of terminals. Also railway circulation with different types
of rolling stock gives a multicommodity flow problem. A recent application is the
design of very large-scale integrated (VLSI) circuits, where several pairs of pins must
be interconnected by wires on a chip, in such a way that the wires follow a given
grid and that the wires connecting different pairs of pins do not intersect each other.
This leads to the area of multicommodity flows (briefly: multiflows) and disjoint
paths. Most polyhedral and polynomial-time methods for 1-commodity flows and
paths do not extend to multicommodity flows and paths. Yet a number of cases can
be solved efficiently, in particular when the terminals have a special structure or
when the graph is planar or, more generally, can be embedded in a specific surface.
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Chapter 70

Multiflows and disjoint paths

We discuss basic, general facts and terminology on multiflows and disjoint
paths. In particular, we study general interrelations between fractional mul-
tiflows, integer multiflows, disjoint paths, the ‘cut condition’, and the ‘Euler
condition’.

70.1. Directed multiflow problems

Given two directed graphs, a supply digraphD = (V,A) and a demand digraph
H = (T,R) with T ⊆ V , a multiflow is a function f on R where fr is an s− t
flow in D for each r = (s, t) ∈ R.1 In this context, each pair in R is called a
net, and each vertex covered by R is called a terminal.

For k := |R|, we also speak of a k-commodity flow. Occasionally, we will
list the nets as (s1, t1), . . . , (sk, tk). Then for r = (si, ti) we denote fr also by
fi. The indices 1, . . . , k are called the commodities.

The value of f is the function φ : R → R+ where φr is the value of fr.
The total value, or (if no confusion may arise) just the value, is

∑
r∈R φr.

Given a ‘capacity’ function c : A → R+, we say that a multiflow f is
subject to c if

(70.1)
∑

r∈R

fr(a) ≤ c(a)

for each arc a.
The multiflow problem or k-commodity flow problem (for k := |R|) is:

(70.2) given: a supply digraph D = (V,A), a demand digraph H =
(T,R) with T ⊆ V , a capacity function c : A → R+, and a
demand function d : R→ R+,

find: a multiflow subject to c of value d.

Given c and d, a multiflow subject to c of value d is called a feasible multiflow,
or just a multiflow if no confusion is expected to arise. We call the problem
feasible if there exists a feasible multiflow.
1 Throughout, we use the terms ‘multicommodity flow’ and ‘multiflow’ as synonyms.
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If we require each fr to be an integer flow, the problem is called the inte-
ger multiflow problem or the integer k-commodity flow problem. Similarly for
half-integer, quarter-integer, etc. For clarity, we sometimes add the adjective
fractional if no integrality is required.

Related is the maximum-value multiflow problem or maximum-value k-
commodity flow problem:

(70.3) given: a supply digraph D = (V,A), a demand digraph H =
(T,R) with T ⊆ V , and a capacity function c : A→ R+,

find: a multiflow subject to c, of maximum total value.

Again we add integer (half-integer, etc) if we require the fr to be integer
(half-integer, etc.).

We can reduce a multiflow problem with demands d1, . . . , dk to a maxi-
mum-value multiflow problem, by extending the graph by an arc from a new
vertex s′

i to si of capacity di (for i = 1, . . . , k). Then the multiflow problem in
the original graph is feasible if and only if the maximization problem in the
new graph, with nets (s′

i, ti), has maximum total value equal to d1 + · · ·+dk.

70.2. Undirected multiflow problems

The problems described above have a natural analogue for undirected graphs.
Let be given two undirected graphs, a supply graph G = (V,E) and a demand
graph H = (T,R) with T ⊆ V . Again, each pair in R is called a net, and each
vertex covered by R is called a terminal.

For s, t ∈ V , a function f : E → R+ is called an s− t flow if there exists
an orientation (V,A) of G such that f is an s− t flow in D.

A multiflow is a function f on R such that fr is an s − t flow for each
r = st ∈ R. For k := |R|, the multiflow is also called a k-commodity flow.
Again, occasionally we will list the nets as {s1, t1}, . . . , {sk, tk}.

The value of a multiflow f is the function φ : R → R+ where φr is the
value of fr. The total value, or just the value, is

∑
r∈R φr.

Given a capacity function c : E → R+, we say that a multiflow f is subject
to c if

(70.4)
∑

r∈R

fr(e) ≤ c(e)

for each edge e. Note that generally for each r = st ∈ R, there is a different
orientation Dr of G that makes fr into an s− t flow in Dr. So in (70.4), the
sum of the flows through both orientations of a given edge e are bounded
above by c(e).

In this way we obtain the undirected multiflow problem or undirected k-
commodity flow problem, and the undirected maximum-value multiflow prob-
lem or undirected maximum-value k-commodity flow problem. Again, we add
integer (half-integer, etc.) if we require the fr to be integer (half-integer, etc.)
flows. We skip the adjective ‘undirected’ if it is clear from the context.
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70.3. Disjoint paths problems

If all capacities and demands are equal to 1, the integer multiflow problem is
equivalent to the (k) arc- or edge-disjoint paths problem:

(70.5) given: a directed (or undirected) graph D = (V,A) and pairs
(s1, t1), . . . , (sk, tk) of vertices of G,

find: arc- (or edge-)disjoint paths P1, . . . , Pk where Pi is an si−ti
path (i = 1, . . . , k).

For undirected graphs, the pairs si, ti need not be ordered.
A fractional solution (half-integer solution respectively) of the arc- or

edge-disjoint paths problem is a fractional (half-integer respectively) multi-
flow for all capacities and demands 1.

Related is the (vertex-)disjoint paths problem (or k (vertex-)disjoint paths
problem):

(70.6) given: a (directed or undirected) graph D = (V,A) and pairs
(s1, t1), . . . , (sk, tk) of vertices of G,

find: vertex-disjoint paths P1, . . . , Pk where Pi is an si − ti path
(i = 1, . . . , k).

70.4. Reductions

Above we mentioned two versions of the multiflow problem: directed and
undirected, and four versions of the disjoint paths problem: directed vertex-
disjoint, directed arc-disjoint, undirected vertex-disjoint, and undirected edge-
disjoint. There are a number of constructions that reduce versions among
them.

First, the undirected edge-disjoint paths problem can be reduced to the
undirected vertex-disjoint paths problem by replacing the graph by its line
graph. Similarly, the directed arc-disjoint paths problem can be reduced to
the directed vertex-disjoint paths problem by replacing the digraph by its line
digraph.

Conversely, the directed vertex-disjoint paths problem can be reduced to
the directed arc-disjoint paths problem by replacing each vertex

(70.7) by .

So far, these reductions do not maintain planarity.
The undirected vertex-disjoint paths problem can be reduced to the di-

rected vertex-disjoint paths problem by replacing each edge
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(70.8) by .

Trivially, this construction maintains planarity.
Finally, there is the following reduction of the undirected edge-disjoint

paths problem to the directed arc-disjoint paths problem: replace each edge

(70.9) by .

This reduction also applies to (integer, half-integer, fractional) multiflow
problems. Again, this construction maintains planarity.

We represent these reductions in the following diagram, where a double
arrow means a reduction maintaining planarity:

(70.10)
undirected edge-disjoint −→ undirected vertex-disjoint

⇓ ⇓
directed arc-disjoint ←→ directed vertex-disjoint

Notes. These reductions maintain the set of nets and the demand values. Even,
Itai, and Shamir [1975,1976] gave an interesting construction reducing the directed
arc-disjoint paths problem to the undirected edge-disjoint paths problem. It reduces
the directed arc-disjoint paths problem with k commodities of demands d1, . . . , dk

in a digraph D = (V, A), to the undirected edge-disjoint paths problem with k
commodities of demands d1 + |A|, . . . , dk + |A|. The construction does not maintain
planarity.

70.5. Complexity of the disjoint paths problem

In Section 70.6 we shall see that the fractional multiflow problem is solvable
in strongly polynomial time, since it is a linear programming problem.

The integer multiflow problem is NP-complete, even the disjoint paths
problem is NP-complete, in any mode (directed/undirected, vertex/edge-
disjoint), even for planar graphs. In some cases, however, the problem is
polynomial-time solvable if we fix the number k of commodities. We survey
the complexity results in the following table:
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directed undirected
arc-disjoint vertex-disjoint edge-disjoint vertex-disjoint

general NP-complete2 NP-complete2 NP-complete3 NP-complete2

planar NP-complete4 NP-complete5 NP-complete4 NP-complete5

for fixed k:
general NP-complete6 NP-complete6 polynomial-time7 polynomial-time7

planar ?8 polynomial-time9 polynomial-time7 polynomial-time7

Complexity of the k disjoint paths problem

By the reduction described at the end of Section 70.1, the NP-completeness
of the integer multiflow and disjoint paths problems implies that also the cor-
responding maximization problems are NP-complete.

70.6. Complexity of the fractional multiflow problem

The fractional multiflow problem can easily be described as one of solving a
system of linear inequalities in the variables fi(a) for i = 1, . . . , k and a ∈ A.
The constraints are the flow conservation laws and the demand constraint for
each flow fi separately, together with the capacity constraints (70.1). There-
fore, the fractional multiflow problem can be solved in polynomial time with
any polynomial-time linear programming algorithm. Tardos [1986] showed
that the fractional multiflow problem is solvable in strongly polynomial time,
2 D.E. Knuth, 1974 (cf. Karp [1975]), who proved the NP-completeness of the undirected

vertex-disjoint version. It implies the NP-completeness of the directed vertex-disjoint
case (by reduction (70.8)), which in turn implies the NP-completeness of the directed
arc-disjoint version (by reduction (70.7)). Even, Itai, and Shamir [1975,1976] showed
that the directed arc-disjoint paths problem is NP-complete even if the digraph is acyclic
and s2 = · · · = sk and t2 = · · · = tk.

3 Even, Itai, and Shamir [1975,1976] — NP-complete even if |{{s1, t1}, . . . , {sk, tk}}| = 2;
equivalently, the integer 2-commodity flow problem is NP-complete even if all capacities
are 1.

4 Kramer and van Leeuwen [1984], who proved the NP-completeness of the planar undi-
rected edge-disjoint paths problem, implying the NP-completeness of the planar directed
arc-disjoint paths problem, by reduction (70.9). Kramer and van Leeuwen showed NP-
completeness even if the graphs are restricted to rectangular grids.

5 Lynch [1975], who proved the NP-completeness of the planar undirected vertex-disjoint
paths problem. It implies the NP-completeness of the planar directed vertex-disjoint
paths problem, by reduction (70.8). The problems remain NP-complete for cubic planar
graphs (Richards [1984]), and also if the graph together with the nets is planar and
cubic (Middendorf and Pfeiffer [1993]).

6 Fortune, Hopcroft, and Wyllie [1980] — NP-complete even for k = 2 opposite nets (s, t)
and (t, s).

7 Robertson and Seymour [1995], who proved the polynomial-time solvability of the k
vertex-disjoint paths problem in undirected graphs, for any fixed k. By replacing a
graph by its line graph, it implies the polynomial-time solvability of the k edge-disjoint
paths problem in undirected graphs, for any fixed k.

8 unknown also if k = 2 and the two nets are opposite.
9 Schrijver [1994a].
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by proving that any linear programming problem with {0,±1} constraint
matrix is solvable in strongly polynomial time.

Onaga [1970] gave the following good characterization for the feasibility of
the fractional multiflow problem, which can be derived (as Iri [1971] observed)
from Farkas’ lemma (distl(s, t) denotes the length of a shortest s − t path
with respect to a length function l):

Theorem 70.1. The (directed or undirected) fractional multiflow problem
(70.2) has a solution if and only if

(70.11)
k∑

i=1

di · distl(si, ti) ≤
∑

a∈A

l(a)c(a)

for each length function l : A→ Z+.

Proof. For i = 1, . . . , k, let Pi denote the collection of arc sets of si − ti
paths. Then there is a feasible multiflow if and only if there exist λi,P ≥ 0
(for i = 1, . . . , k and P ∈ Pi), such that

(70.12)
∑

P∈Pi

λi,P = di for i = 1, . . . , k,

k∑

i=1

∑

P∈Pi

λi,Pχ
P (a) ≤ c(a) for a ∈ A.

By Farkas’ lemma, this is equivalent to: for all b1, . . . , bk ∈ R and l : A→ R+,
if

(70.13) bi ≤
∑

a∈P

l(a) for i = 1, . . . , k and P ∈ Pi,

then

(70.14)
k∑

i=1

bidi ≤
∑

a∈A

l(a)c(a).

Now we may assume that each bi is chosen maximal such that it satisfies
(70.13). Then bi is equal to the minimum of

∑
a∈P l(a) taken over all P ∈ Pi,

that is, to distl(si, ti). Hence the condition is equivalent to (70.11).

(Onaga and Kakusho [1971] gave an alternative proof. If we restrict l to {0, 1}-
valued functions, we obtain a necessary condition (a ‘multicut condition’),
as was observed by Naniwada [1969], who raised the question if the above
theorem may hold.)

A min-max relation for the maximum-value multiflow problem can be
derived similarly from LP-duality (cf. Lomonosov [1978a]):

Theorem 70.2. Let D = (V,A) be a directed or undirected graph, let
(s1, t1), . . . , (sk, tk) be nets, and let c : A→ R+ be a capacity function. Then
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the maximum total value of a multiflow subject to c is equal to the minimum
value of

∑
a∈A l(a)c(a) taken over all l : A→ R+ satisfying

(70.15) distl(si, ti) ≥ 1 for each i = 1, . . . , k.

Proof. Let P denote the collection of arc sets of paths running from si to ti
for some i = 1, . . . , k. Then the maximum total value of a multiflow is equal
to the maximum of

∑
P∈P λP , where λP ≥ 0 for P ∈ P, such that

(70.16)
∑

P∈P
λPχ

P (a) ≤ c(a) for a ∈ A.

By LP-duality, this value is equal to the minimum value of
∑

a∈A l(a)c(a)
where l : A→ R+ such that

(70.17)
∑

a∈P

l(a) ≥ 1 for each P ∈ P.

As (70.17) is equivalent to (70.15), we have the theorem.

70.7. The cut condition for directed graphs

In Theorem 70.1 we saw a good characterization for the feasibility of the
fractional multiflow problem. In some cases, it can be replaced by a weaker
condition, the cut condition:

(70.18) c(δout
A (U)) ≥ d(δout

R (U)) for each U ⊆ V .

The cut condition indeed is a direct consequence of condition (70.14)
described in Theorem 70.1. For define l(a) := 1 if a ∈ δout(U), and l(a) := 0
otherwise. Then (70.11) implies:

(70.19) c(δout
A (U)) =

∑

a∈A

l(a)c(a) ≥
k∑

i=1

di · distl(si, ti) ≥ d(δout
R (U)).

However, the cut condition is in general not sufficient, even not in the two
simple cases given in Figure 70.1.

For directed graphs, the cut condition is known to be sufficient for the
existence of a fractional multiflow only if s1 = · · · = sk or t1 = · · · = tk (this
follows from the (one-commodity) max-flow min-cut theorem). In a sense,
this is the only case:

Theorem 70.3. Let H = (T,R) be a demand digraph, where R contains no
loops. Then for each supply digraph D = (V,A) with V ⊇ T , the cut condition
(70.18) is sufficient for the existence of a fractional multiflow if and only if
all arcs of H have a common head, or they all have a common tail.

Proof. Let R = {(s1, t1), . . . , (sk, tk)}.
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s1

t2

s2 = t1 s2 = t1s1 = t2

Figure 70.1
Two digraphs where the cut condition holds, but no fractional
multiflow exists (taking all capacities and demands equal to 1). The
nonexistence of a fractional multiflow can be shown with Theorem 70.1,
by taking l(a) := 1 for each arc a.

To see sufficiency, by symmetry we can assume that s1 = · · · = sk. Let
s := s1, and let t be a new vertex. For i = 1, . . . , k, add a new arc (ti, t),
with capacity di. Then, by the max-flow min-cut theorem, the cut condition
implies that the extended graph has an s−t flow of value d1+· · ·+dk, subject
to the capacity. Restricted to the original graph, we can decompose the flow
into a feasible k-commodity flow of values d1, . . . , dk.

To see necessity, if the condition is not met, then there exist nets (si, ti)
and (sj , tj) with si 	= sj and ti 	= tj . We can assume that i = 1, j = 2.
Then {s1, t2} is disjoint from {s2, t1}, and then the second example in Figure
70.1 can be adapted to obtain an example with net set R, and where the cut
condition holds but no fractional multiflow exists.

As for maximizing the total value of a multiflow, in a directed triangle,
with as nets the opposites of all arcs and all capacities equal to 1, the maxi-
mum total value is 3

2 , while the minimum capacity of an arc set disconnecting
all nets is 2.

70.8. The cut condition for undirected graphs

Similarly, one can formulate the cut condition in the undirected case:

(70.20) c(δE(U)) ≥ d(δR(U)) for each U ⊆ V .

In the special case of the edge-disjoint paths problem (where all capacities
and demands are equal to 1), the cut condition amounts to:

(70.21) dE(U) ≥ dR(U) for each U ⊆ V .

As was observed by Tang [1965], in the undirected case the cut condition
is equivalent to the ‘disconnecting set condition’:

(70.22) c(F ) ≥ d(discR(F )) for each F ⊆ E,
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where discR(F ) denotes the family of nets st where s and t are in different
components of G− F .

Indeed, trivially, the cut condition is implied by (70.22). To see the reverse
implication, let K be the set of components of G−F . Then the cut condition
implies

(70.23) c(F ) ≥ 1
2

∑

K∈K
c(δE(K)) ≥ 1

2

∑

K∈K
d(δR(K)) = d(discR(F )),

which is (70.22).

s4 t4

t3 = s1

t1 = s2

t2 = s3

Figure 70.2
An undirected graph where the cut condition holds, but no
fractional multiflow exists (taking all capacities and demands equal
to 1). This last can be shown with Theorem 70.1, by taking l(e) := 1
for each edge e.

Figure 70.2 shows that, also in the undirected case, the cut condition is
not sufficient10. Hu [1963] showed that, in the undirected case, if k = 2, then
the cut condition is sufficient for the existence of a fractional multiflow. This
is Hu’s 2-commodity flow theorem (Theorem 71.1b). In Section 70.11, we will
list more cases where the cut condition is sufficient for the existence of a
fractional multiflow.

Hu’s 2-commodity flow theorem implies the max-biflow min-cut theorem
(Corollary 71.1d): in the undirected case with k = 2, the maximum value of a
2-commodity flow is equal to the minimum capacity of a cut separating both
s1 and t1 and s2 and t2.
10 Hakimi [1962b] and Tang [1962] claimed erroneously to give proofs that the cut condition

is sufficient for any number k of commodities. According to Hu [1963], a counterexample
was first found by L.R. Ford, Jr.

A strengthening of the cut condition that Hu [1964] claimed to be necessary (and
conjectured to be sufficient) for the existence of a fractional multiflow, was shown to be
not necessary by Tang [1965].
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A similar ‘maximum-triflow min-cut theorem’ does not hold, even not if
the three nets form a triangle: take K1,3 and all pairs of end vertices as nets,
all capacities being 1; then the minimum number of edges disconnecting each
commodity is equal to 2, while the maximum total value of a fractional
multiflow is equal to 3

2 (example of Ford and Fulkerson [1954,1956b]).
Anyway, if the nets form a triangle, finding a minimum-size set of edges

disconnecting each net, is NP-complete (Dahlhaus, Johnson, Papadimitriou,
Seymour, and Yannakakis [1992,1994]).

It will be useful to note that the cut condition only needs to be required
for cuts with both sides connected (if G is connected):

Theorem 70.4. Let G = (V,E) an H = (T,R) be a supply and demand
graph, with G connected. Let c : E → R+ and d : R → R+. If the cut
condition (70.20) is violated, then it is violated by some U ⊆ V for which
both G[U ] and G[V \ U ] are connected.

Proof. Let U violate the cut condition; that is, c(δE(U)) < d(δR(U)). Choose
U such that |δE(U)| is as small as possible. We show that G[U ] and G[V \U ]
are connected. By symmetry, it suffices to show that G[U ] is connected. Let
K1, . . . ,Kt be the components of G[U ]. Suppose t ≥ 2. Then

(70.24)
t∑

j=1

c(δE(Kj)) = c(δE(U)) < d(δR(U)) ≤
t∑

j=1

d(δR(Kj)).

So c(δE(Kj)) < d(δR(Kj)) for at least one j. As |δE(Kj)| < |δE(U)| (by the
connectivity of G), this contradicts the minimality of |δE(U)|.

Notes. Călinescu, Fernandes, and Reed [1998] gave a polynomial-time approxima-
tion algorithm for finding a minimum multicut in an unweighted graph of bounded
degree and bounded ‘tree-width’. More on the minimum multicut problem can
be found in Klein, Agrawal, Ravi, and Rao [1990], Garg, Vazirani, and Yannakakis
[1993a,1993b,1996,1997], Tardos and Vazirani [1993], Klein, Rao, Agrawal, and Ravi
[1995], and Naor and Zosin [1997,2001].

70.9. Relations between fractional, half-integer, and
integer solutions

There are the following implications for the multiflow problem:

(70.25) ∃ integer multiflow =⇒ ∃ half-integer multiflow =⇒ ∃ fractional
multiflow.

As the existence of a fractional multiflow can be tested in strongly polynomial
time, it yields a useful necessary condition for the existence of an integer
multiflow.
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s1

t1s2

t2

Figure 70.3
There is a half-integer, but no integer multiflow (where all ca-
pacities and demands are 1).

As has been discussed in Chapter 10, for 1-commodity flow problems with
integer capacities, we can turn all implications around in (70.25). For general
multiflow problems, however, this is not the case. For undirected graphs,
Figure 70.3 shows that a half-integer multiflow does not imply the existence
of an integer multiflow (for integer capacities and demands). Middendorf and
Pfeiffer [1993] showed that the half-integer multiflow problem in undirected
graphs is NP-complete, even if all capacities and demands are equal to 1.

For undirected 2-commodity flows, Hu [1963] showed that the existence
of a fractional multiflow implies the existence of a half-integer multiflow, if
all capacities and demands are integer. Figure 70.3 shows that an integer
multiflow need not exist. In fact, the undirected integer 2-commodity flow
problem is NP-complete (Even, Itai, and Shamir [1975,1976]).

Hu’s theorem prompted Jewell [1967] to conjecture that if a k-commodity
flow problem with integer capacities and demands has a fractional solution,
then it has a 1/p-integer solution for some p ≤ k. More strongly, Seymour
[1981d] conjectured that a fractional multiflow implies the existence of a half-
integer multiflow (for integer capacities and demands).

This was disproved by a series of examples of Lomonosov [1985], which
even imply that there is no integer p such that each undirected 3-commodity
flow problem has a 1/p-integer solution when it has a fractional solution (for
integer capacities and demands). A simplified version of Lomonosov’s example
is given in Figure 70.4. It consists of an integer-capacitated 3-commodity flow
problem with demands 1, 2k, and 2k, such that each feasible multiflow has
1
2k among its values.

A simpler counterexample to Seymour’s conjecture was given by Pfeiffer
[1990] — see Figure 70.5, showing that a quarter-integer multiflow need not
imply the existence of a half-integer multiflow (for integer capacities and
demands).

With construction (70.9) we obtain similar results for directed graphs.
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v0
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Figure 70.4

A feasible integer-capacitated 3-commodity flow problem with demands
1, 2k, and 2k, such that each feasible multiflow has 1

2k
among its values.

The nets are the pairs s1t1, s2t2, and s3t3. The graph consists of a circuit C of
length 4k, with vertices v1, . . . , v4k (in order), vertices s2 and t3 adjacent to each
vi with i even, a vertex s3 adjacent to each vi with i odd, a vertex a adjacent to t3
and to each vi with i odd and 0 < i < 2k, a vertex b adjacent to t3 and to each vi

with i odd and 2k < i < 4k, and a vertex t2 adjacent to a and b. Set s1 := v0 := v4k

and t1 := v2k. Let P and Q be the paths v0, v1, . . . , v2k and v4k, v4k−1, . . . , v2k,
respectively.

Edges t2a and t2b have capacity k, and edge bt3 capacity 2k−1. All other edges
have capacity 1. Let d(s1t1) := 1 and d(s2t2) := d(s3t3) := 2k.

To see that there exists a feasible multiflow, reset (temporarily) the capacities
of at3 and bt3 to 0 and 2k respectively. Then a feasible multiflow (f1, f2, f3) is given
as follows. Flow f1 consists of the incidence vector of path Q. Flow f2 takes value
1 on the edges t3vi for i = 2k + 2, 2k + 4, . . . , 4k − 2, on avi for i = 1, 3, . . . , 2k − 1,
and on s2vi for i = 2, 4, . . . , 4k, value 1

2 on the edges of P , and on t3v0 and t3v2k,
value k on t3b, t2a, and t2b, and value 0 on all other edges. Flow f3 takes value
1 on t3vi for i = 2, 4, . . . , 2k − 2, on s3vi for i = 1, 3, . . . , 4k − 1, and on bvi for
i = 2k +1, 2k +3, . . . , 4k −1, value 1

2 on the edges of P , and on t3v0 and t3v2k, and
value k on bt3. By symmetry, also after resetting the capacities of at3 and bt3 to 2k
and 0 respectively, there exists a feasible solution. Hence also the original capacity
function (which is a convex combination of the modified capacity functions) has a
feasible solution.

To see that any feasible multiflow contains a value 1
2k

, note that the s1 − t1
flow can only use edges on the circuit C: each edge leaving C is in a tight cut
(= a cut having equality in the cut condition) not separating s1 and t1 (consider
the cuts determined by {s2}, {s3}, and {t2, t3, a, b}). So in any feasible multiflow,
the s1 − t1 flow f1 is a convex combination of the incidence vectors of P and
Q. Consider now the cut determined by U := {t2, s3, a, v1, v3, . . . , v2k−1}. It has
capacity 4k + 1 and demand 4k, it does not split s1 and t1, and contains all edges
of P . Hence the capacity left for f1 is at most 1. As P has length 2k, it implies that
f1 can send a flow of value at most 1

2k
along P . Similarly, the cut determined by
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U := {t2, s3, b, v2k+1, v2k+3, . . . , v4k−1} has capacity 6k − 1 and demand 4k, it does
not split s1 and t1, and contains all edges of Q. Hence the capacity left for f1 is at
most 2k −1. As Q has length 2k, it implies that f1 can send a flow of value at most
1 − 1

2k
along Q. Concluding, f1 sends 1

2k
flow along P and 1 − 1

2k
flow along Q.

1 122 33 4 455 66

7

7

Figure 70.5

There is a quarter-integer, but no half-integer multiflow. The 7 nets are
indicated by indices 1, . . . , 7 at the terminals. All capacities and demands are equal
to 1.

In fact, there is a unique fractional multiflow. Since the distance between the
terminals in any net is 2 and since there are 14 edges, any multiflow uses the capacity
of each edge fully, and each of the flows is a convex combination of incidence vectors
of paths of length 2. Also, the edges incident with any vertex v of degree 2 can only
be used by the nets that have a terminal at v.

Let β be the fraction of flow for net 7 that traverses the leftmost vertex. For
i = 1, . . . , 6, let αi be the fraction of flow for net i that traverses the topmost
vertex. Then α2 + α3 = 1 and α1 + α3 = 1, and hence α1 = α2. So β + α1 + α2 = 2
and β + (1 − α1) + (1 − α2) = 1, hence α1 + α2 = 1 + β = 2 − β. So β = 1

2 and
α1 = α2 = 3

4 .

70.10. The Euler condition

In some cases adding the following Euler condition turns out to be of help:

(70.26) c(δE(v)) + d(δR(v)) is even, for each vertex v.

In case all capacities and demands are equal to 1, that is, for the edge-disjoint
paths problem, the Euler condition is equivalent to
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(70.27) the graph G+H = (V,E ∪R) is Eulerian

(taking multiplicities into account).
If k = 2 and the capacities and demands are integer and satisfy the

Euler condition, then the cut condition implies the existence of an integer
multiflow. This result, also due to Rothschild and Whinston [1966a], implies
Hu’s 2-commodity flow theorem, as mentioned in Section 70.8 (by multiplying
all capacities and demands by 2, so as to achieve the Euler condition).

We will see several other cases where the existence of a half-integer mul-
tiflow, together with the Euler condition, implies the existence of an integer
multiflow. But it is not sufficient in general, as otherwise a quarter-integer
multiflow would always imply the existence of a half-integer multiflow (by
multiplying all capacities and demands by 2), and to this we saw the coun-
terexample of Pfeiffer [1990] in Figure 70.511. The NP-completeness of the
half-integer multiflow problem, with all capacities and demands equal to 1
(Middendorf and Pfeiffer [1993]), implies that the edge-disjoint paths problem
is NP-complete even if the Euler condition holds.

Fractional and integer multiflows for digraphs. As for the directed case, Fig-
ure 70.5 implies with construction (70.9) that a quarter-integer multiflow does not
imply the existence of a half-integer multiflow. The graph in Figure 70.6 (Hurkens,
Schrijver, and Tardos [1988]) shows that a half-integer multiflow does not imply
the existence of an integer multiflow, even if the directed analogue of the Euler
condition holds (the graph obtained from the supply digraph and the reverse of the
demand digraph is an Eulerian digraph). Note that in Figure 70.6 the union D +H
of D and H is planar.

70.11. Survey of cases where a good characterization
has been found

Let G = (V,E) be an undirected graph and let R = {s1t1, . . . , sktk} be a
family of nets. Let c : E → R+ be a capacity function and let d1, . . . , dk be
demands (so d(siti) := di).

In the following cases of the undirected multiflow problem, the cut con-
dition has been proved to imply the existence of a fractional multiflow; if
moreover the capacities and demands are integer, there is a half-integer mul-
tiflow; if moreover the Euler condition holds, there is an integer solution12:

(70.28) (i) if there exist two vertices u, v such that each siti intersects uv
(Hu [1963], E.A. Dinits — see Corollary 71.1b),

11 A more complicated (planar) example satisfying the Euler condition and where a half-
integer but no integer multiflow exists, was given by Hurkens, Schrijver, and Tardos
[1988]. Earlier, a nonplanar example with these properties was given by P.D. Seymour
(personal communication).

12 For graphs G = (V, E) and H = (T, R), G+H is the graph (V ∪T, E ∪R), where E ∪R
is the disjoint union (as families).
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Figure 70.6
A directed example where the Euler condition holds, with
D + H is planar, and where a half-integer, but no integer
multiflow exists. All capacities and demands are 1. The half-integer
multiflow is indicated by the indices of the nets: index i at arc a means
fi(a) = 1

2 .

(ii) if |{s1, t1, . . . , sk, tk}| ≤ 4 or s1t1, . . . , sktk form a five-circuit
(Papernov [1976], Lomonosov [1976,1985], Seymour [1980c] —
see Section 72.1),

(iii) if G + H has no K5 minor, in particular if G + H is planar
(Seymour [1981a] — see Sections 74.2 and 75.6),

(iv) if G is planar and there exist two faces F1 and F2 such that for
each i = 1, . . . , k: si, ti ∈ bd(F1) or si, ti ∈ bd(F2) (Okamura
and Seymour [1981], Okamura [1983] — see Theorems 74.1 and
74.4),

(v) if G is planar and has a vertex r on the outer boundary such
that for each i either both si and ti are on the outer boundary,
or r ∈ {si, ti} (Okamura [1983] — Theorem 74.5).

(vi) if G is planar and has two bounded faces F1 and F2 such
that s1, . . . , sk occur clockwise around bd(F1) and t1, . . . , tk
occur clockwise around bd(F2) (Schrijver [1989b] — cf. Sec-
tion 74.3b).

Here bd(F ) denotes the boundary of F .
In particular, in each of these cases, if the capacities and demands are

integer and satisfy the Euler condition, the existence of a fractional multi-
flow implies the existence of an integer multiflow. Next to the cases listed
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in (70.28), this property has been proved in the following cases (extending
(70.28)(ii) and (iv)):

(70.29) (i) if |{s1, t1, . . . , sk, tk}| ≤ 5 (Karzanov [1987a] — see Section
72.2a),

(ii) if G is planar and there exist faces F1, F2, F3 such that for each
i = 1, . . . , k there is a j ∈ {1, 2, 3} such that si, ti ∈ bd(Fj)
(Karzanov [1994b] — see Section 74.3c).

This in particular implies that if the capacities and demands are integer and
there exists a fractional multiflow, then there exists a half-integer multiflow.

In the following case (extending (70.29)(ii)), it has been proved that if
c and d are integer and a fractional multiflow exists, then a quarter-integer
multiflow exists; if moreover the Euler condition holds, then a half-integer
solution exists:

(70.30) if G is planar and there are four faces such that each net is
spanned by one of these faces (Karzanov [1995] — see Section
74.3c).

(We say that a pair of vertices is spanned by a face F if it is spanned by the
boundary of F .)

In Section 73.1c we shall see that an integer multiflow can be found in
polynomial time also if the nets form a triangle (no Euler condition is re-
quired).

70.12. Relation between the cut condition and fractional
cut packing

As was noted by Karzanov [1984] and Seymour [1979b], if the cut condition
is sufficient for the existence of a fractional multiflow, one can derive an
interesting polarity relation between multiflows and fractional packing of cuts.

Let G = (V,E) and H = (V,R) be graphs. Consider the cone K in
R

R × R
E generated by the vectors13

(70.31) (χr;χEP ) for r ∈ R and r-path P in G,
(0;χe) for e ∈ E.

Here EP denotes the set of edges of P . For any r = st ∈ R, an r-path is a
path connecting s and t. χr and χe denote the rth and eth unit base vectors
in R

R and R
E , respectively.

For any c : E → R+ and d : R→ R+, the existence of a feasible multiflow
subject to c and of value d is equivalent to the fact that (d; c) belongs to K.
So we have that the property:

13 We write (x; y) for
(

x
y

)
.
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(70.32) for each c : E → R+ and d : R → R+, the cut condition implies
the existence of a feasible multiflow,

is equivalent to the fact that K consists of all vectors (d; c) ∈ R
R × R

E

satisfying:

(70.33) d(δR(U)) ≤ c(δE(U)) for U ⊆ V ,
dr ≥ 0 for r ∈ R,
ce ≥ 0 for e ∈ E.

Let K∗ be the polar cone of K (cf. Section 5.7). Then (70.32) is equivalent
to −K∗ being generated by the vectors:

(70.34) (−χδR(U);χδE(U)) for U ⊆ V ,
(χr;0) for r ∈ R,
(0;χe) for e ∈ E.

Also, by definition of K, −K∗ consists of all vectors (m; l) ∈ R
R ×R

E satis-
fying:

(70.35) mr + l(EP ) ≥ 0 for r ∈ R and r-path P in G,
le ≥ 0 for e ∈ E.

This implies the following theorem relating the cut condition to distances
and fractional packings of cuts:

Theorem 70.5. Let G = (V,E) and H = (V,R) be supply and demand
graphs. Then for each c : E → R+ and d : R→ R+, the cut condition implies
the existence of a feasible fractional multiflow if and only if for each length
function l : E → R+ there exist λU ≥ 0 for U ⊆ V such that

(70.36)
∑

U

λUχ
δE(U) ≤ l

and

(70.37) distl(s, t) =
∑

U

λUχ
δR(U)(r),

for each r = st ∈ R. Here distl(s, t) denotes the minimum length of an s− t
path in G, with respect to l.

Proof. As we saw above, (70.32) is equivalent to the fact that −K∗ is gener-
ated by the vectors (70.34). It is equivalent to: each (m; l) ∈ R

R × R
E satis-

fying (70.35) is a nonnegative combination of vectors (70.34). Since (χr;0) is
one of the vectors (70.34), we can restrict the (m; l) to those for which mr is
smallest so as to satisfy (70.35). That is, we can assume thatmr = −distl(s, t)
where r = st. Hence (70.32) is equivalent to: for each l : E → R+, the vector
(−distl; l) is a nonnegative combination of vectors (70.34). This is equivalent
to the condition stated in the theorem.
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This is based on interpreting feasibility of multiflows in terms of cones. We
next consider an interpretation of the maximization of multiflows in terms of
polyhedra.

Let P be the collection of r-paths for all r ∈ R. Let B be the collection
of subsets of E that intersect each path in P.

Consider the inequality system:

(70.38) xe ≥ 0 for e ∈ E,
x(EP ) ≥ 1 for P ∈ P.

Then by the theory of blocking polyhedra:

Theorem 70.6. The up hull of the incidence vectors of the sets in B is
determined by (70.38) if and only if the up hull of the incidence vectors of
paths in P is determined by

(70.39) xe ≥ 0 for e ∈ E,
x(B) ≥ 1 for B ∈ B.

Proof. Directly from the theory of blocking polyhedra.

In terms of flows this is equivalent to:

Corollary 70.6a. Let G = (V,E) and H = (V,R) be supply and demand
graphs. For each c : E → R+, the maximum total value of a multiflow subject
to c is equal to the minimum capacity of a set in B if and only if for each
length function l : E → R+ satisfying distl(s, t) ≥ 1 for each r = st ∈ R,
there exist λB ≥ 0 for B ∈ B such that

(70.40)
∑

B∈B
λB = 1 and

∑

B∈B
λBχ

B ≤ l.

Proof. The first statement is equivalent to the fact that the up hull of the
incidence vectors of sets in B is determined by (70.38). The second statement
is equivalent to the fact that the up hull of the incidence vectors of paths in
P is determined by (70.39). The equivalence is stated by Theorem 70.6.

70.12a. Sufficiency of the cut condition sometimes implies an
integer multiflow

As was also noted by Karzanov [1984,1987a] and Seymour [1979b], in certain col-
lections of graphs+nets, if the cut condition implies the existence of a fractional
multiflow, we can derive integrality of solutions. This can be made explicit as fol-
lows.

Consider an Eulerian graph G = (V, E), and let e and f be distinct edges
incident with a vertex v of degree ≥ 4. We describe the operation of separating e
and f at v: introduce a new vertex v′, rejoin half of the edges incident with v to
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v′, such that e remains incident with v and f becomes incident with v′, and add
1
2 degE(v) − 2 parallel edges connecting v and v′.

Call any graph G′ arising in this way a splitting of G separating e and f at v.
Note that, if G′ = (V ′, E′) denotes the new graph, then degE′(v) = degE′(v′) =
degE(v) − 2.

Let I be a collection of pairs (G, R) of an Eulerian graph G = (V, E) and a
subset R of E, with the following property:

(70.41) for each (G, R) ∈ I, for each vertex v of G of degree at least 4 with
degE\R(v) > degR(v), and for each two edges e and f of G incident
with v, not both in R, I contains a pair (G′, R′) where G′ is a splitting
of G separating e and f at v, and where R′ is the set of edges arising
from R by this splitting.

As examples we can take for I the set of all pairs (G, R) consisting of an Eulerian
graph G = (V, E) and R ⊆ E such that one of the following holds (the first four
examples follow from the fact that for each fixed graph H = (T, R), the class of
pairs (G, R) with G = (V, E) Eulerian and R ⊆ E satisfies (70.41)):

(70.42) (i) R consists of two parallel classes of edges;
(ii) there are two vertices intersecting all edges in R;
(iii) R covers at most four vertices;
(iv) the edges in R form a pentagon, with parallel edges added;
(v) (V, E) is planar;
(vi) (V, E \ R) is planar, such that all vertices covered by R are on the

outer boundary of (V, E \ R);
(vii) (V, E \ R) is planar, such that it has two faces with the property

that each edge in R is spanned by one of these faces.

As we shall see in later chapters, in each of these cases the premise, and hence the
conclusion, of the following theorem hold. The theorem applies to the multiflow
problem with supply graph (V, E \R) and demand graph (V, R), with all capacities
and demands equal to 1 (so to the edge-disjoint paths problem):

Theorem 70.7. Let I satisfy (70.41) and have the property that for each (G, R) ∈
I, the cut condition implies the existence of a fractional multiflow. Then, for each
(G, R) ∈ I, the cut condition implies the existence of an integer multiflow.

Proof. Consider a counterexample (G, R) ∈ I with

(70.43)
∑

v∈V

2degG(v)

minimal. So the cut condition holds, and hence there is a fractional multiflow. It
implies that there is a collection C of circuits in G, each intersecting R in exactly
one edge, and, for each C ∈ C, there is a λC > 0 such that for each edge e:

(70.44)
∑

C∈C
λCχC(e) ≤ 1,

with equality if e ∈ R. Here we consider circuits as edge sets.
Note that:
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(70.45) for each C ∈ C and each U ⊆ V with |δR(U)| = |δE\R(U)|, if U splits
at least one edge of C, then U splits the edge in C ∩R and exactly one
edge in C \ R.

(Here U splits e if e ∈ δ(U).) This follows from the fact that if U splits an edge in
C, then it splits at least one edge in C \ R, and hence

(70.46) |δR(U)| =
∑

C

λCχC(δR(U)) ≤
∑

C

λCχC(δE\R(U)) ≤ |δE\R(U)|.

Here we use |C ∩ δR(U)| ≤ |C ∩ δE\R(U)|, since |C ∩ δR(U)| ≤ 1 and |C ∩ δE(U)|
is even. Equality throughout in (70.46) implies (70.45).

Now it suffices to show that

(70.47) for any two C, D ∈ C, if (C \ R) ∩ (D \ R) �= ∅, then C \ R = D \ R.

That this is sufficient follows from the following. (70.47) implies that for each par-
allel class in R consisting of (say) µ edges connecting s and t, there are at least µ
different s − t paths among the C \ R for C ∈ C. Since they are edge-disjoint (by
(70.47)), there exists an obvious integer solution.

To prove (70.47), suppose to the contrary that C \R and D \R have an edge in
common and that C \R �= D \R. Then (possibly after exchanging C and D), there
is a vertex v on the paths made by C \ R and D \ R such that C \ R and D \ R
have an edge f incident with v in common and such that C \ R contains another
edge, e say, incident with v with e �∈ D. Let g be the edge in D incident with v and
satisfying g �= f . So g �= e. Possibly g ∈ R.

So v has degree at least 4. Moreover, degE\R(v) > degR(v), by (70.45), since
C contains two edges in E \ R incident with v. Let G′ = (V ′, E′) be a splitting
of e and g at v with (G′, R′) ∈ I, where R′ is the set of edges arising from R by
this splitting. By symmetry, we can assume that, in G′, edge f is incident with v′.
(We leave open which of e and g is incident with v′.) Then (G′, R′) has no integer
multiflow, as it would give an integer multiflow in (G, R) (by contracting the new
edges). Hence, as for G′ the sum (70.43) is reduced, the cut condition is violated
for (G′, R′). Let U ⊆ V ′ violate the cut condition. That is, |δR′(U)| > |δE′\R′(U)|.
Then, as G′ is Eulerian, |δR′(U)| ≥ |δE′\R′(U)| + 2. Also, U separates v and v′,
since otherwise it would give a cut violating the cut condition for G, R. So we can
assume that v ∈ U and v′ �∈ U . Hence U ⊆ V .

Let G′ have γ parallel edges connecting v and v′. So degE′(v′) = 2γ + 2. Let
α := degR′(v′). Then:

(70.48) |δR(U)| ≤ |δE\R(U)| = |δE′\R′(U ∪ {v′})|
≤ |δE′\R′(U)| + degE′\R′(v′) − 2γ

= |δE′\R′(U)| + degE′(v′) − 2γ − degR′(v′) = |δE′\R′(U)| + 2 − α
≤ |δR′(U)| − α ≤ |δR(U)|.

Hence we have equality throughout. In particular, |δR(U)| = |δE\R(U)| (as the first
inequality is an equality), U splits all edges in E \ R that become incident in G′

with v′ (as the second inequality becomes equality), and U splits no edge in R
that becomes incident in G′ with v′ (as the last inequality becomes equality). In
particular, U splits f .

Now one of e and g is (in G′) incident with v′. If e is incident with v′, then U
splits e, and we have a contradiction with (70.45) for circuit C. If g is incident with
v′, then if g ∈ E \ R, U splits g, and if g ∈ R, U does not split g; in both cases we
have a contradiction with (70.45) for circuit D.
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70.12b. The cut condition and integer multiflows in directed
graphs

Nagamochi and Ibaraki [1989] showed that for directed graphs, if the cut condi-
tion implies the existence of a fractional multiflow, and if this holds in a certain
hereditary way, then it implies the existence of an integer multiflow:

Theorem 70.8. Let D = (V, A) and H = (V, R) be a supply and demand digraph,
respectively. Suppose that for each c : A → Z+ and d : R → Z+, the cut condition
implies the existence of a fractional multiflow. Then it implies the existence of an
integer multiflow.

Proof. Let c and d be such that the cut condition holds, but no integer multiflow
exists. Choose such c, d with c(A) + d(R) minimal. By assumption, there exists a
fractional multiflow (fr : A → R+ | r ∈ R). Then for each a ∈ A we have

(70.49) c(a) =
∑

r∈R

fr(a),

for otherwise we have, for any U ⊆ V with a ∈ δout
A (U):

(70.50) c(δout
A (U)) =

∑

a∈δout
A

(U)

c(a) >
∑

a∈δout
A

(U)

∑

r∈R

fr(a) ≥
∑

r∈δout
R

(U)

d(r)

= d(δout
R (U)).

Hence (by integrality of c and d), we can replace c(a) by c(a) − 1 without violating
the cut condition, and obtain a smaller counterexample — a contradiction.

This proves (70.49). It implies that the directed analogue of the Euler condition
holds, since for any vertex v:

(70.51) c(δout
A (v)) − c(δin

A (v)) =
∑

r∈R

(fr(δout
A (v)) − fr(δin

A (v)))

= d(δout
R (v)) − d(δin

R (v)).

The latter equality holds as each fr is a flow.
Now consider any r′ ∈ R with d(r′) ≥ 1, say r′ = (s, t). Replacing d(r′) by

d(r′)−1, the cut condition is maintained. Hence (by the minimality of c, d) there is
an integer multiflow (f ′

r | r ∈ R) satisfying the new demands. Consider the capacity
function

(70.52) c′ := c −
∑

r∈R

f ′
r.

By (70.51), there is at least one s − t path traversing only arcs a with c′(a) ≥ 1.
Hence we can increase f ′

r′ along this path by 1, to obtain an integer multiflow
satisfying the original demands.
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70.13. Further results and notes

70.13a. Fixing the number of commodities in undirected graphs

Robertson and Seymour [1995] showed that for each fixed k, the k vertex-disjoint
paths problem in undirected graphs is polynomial-time solvable.14 Describing the
algorithm would require more space than fits within the limits of this book. The
methods are quite different in nature from the more polyhedral methods discussed
here, and are based on the deep graph minors techniques developed by Robertson
and Seymour. For an outline of the disjoint paths algorithm, see Robertson and
Seymour [1990].

The running time of Robertson and Seymour’s algorithm is bounded by O(n3)
(where the constant depends (heavily) on k). It implies a polynomial-time algorithm
for the k edge-disjoint paths problem for fixed k, by considering the line graph.

More generally, Robertson and Seymour gave for each fixed k an O(n3)-time
algorithm for the vertex-disjoint trees problem:

(70.53) given: a graph G = (V, E) and subsets W1, . . . , Wp of V ,
find: vertex-disjoint subtrees T1, . . . , Tp in G such that Ti spans Wi,

for i = 1, . . . , p,

taking k := |W1 ∪ · · · ∪ Wp|.
For planar graphs, Reed, Robertson, Schrijver, and Seymour [1993] gave a

linear-time algorithm for the disjoint trees problem, fixing |W1∪· · ·∪Wp|. Moreover,
Schrijver [1991c] showed that for each fixed q, there is a polynomial-time algorithm
for the disjoint trees problem in planar graphs such that W1 ∪ · · · ∪ Wp can be
covered by the boundary of at most q faces. The method is based on enumerat-
ing homotopy classes (see Section 76.7a), and here the degree of the polynomial
depends on q.

Sebő [1993c] showed that for each fixed k, if G + H is planar and |V H| ≤ k,
then the integer multiflow problem is polynomial-time solvable. (The demands and
capacities can be arbitrarily large, so there is no reduction to the edge-disjoint paths
problem for a fixed number of paths.) Sebő showed this by proving a more general
result on the complexity of packing T -cuts for fixed |T |.

Related is the following. For any k, let f(k) be the smallest number such that
in any f(k)-connected graph, any instance of the k vertex-disjoint paths problem
has a solution. Jung [1970] showed that f(k) ≤ 23k (a larger bound was shown by
Larman and Mani [1970]). Thomassen [1980] proved f(2) = 6 and conjectures that
f(k) = 2k + 2 for k ≥ 2.

For any k, let g(k) be the smallest number such that in each g(k)-edge-connected
graph, any instance of the k edge-disjoint paths problem has a solution. This
value is finite — in fact, g(k) ≤ 2k, since a 2k-edge-connected graph has k edge-
disjoint spanning trees (by the Tutte-Nash-Williams disjoint trees theorem (Corol-
lary 51.1a)). These trees contain k edge-disjoint paths as required.

Trivially g(k) ≥ k. Moreover, for even k one has g(k) ≥ k + 1, as is shown
by replacing each edge of the circuit C2k by 1

2k parallel edges, taking as nets the

14 The correctness of the algorithm depends on a lemma proved in the preprint Robertson
and Seymour [1992], which did not appear yet.
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k pairs of opposite vertices. Cypher [1980] and Thomassen [1980] conjecture that
g(k) = k if k is odd and g(k) = k + 1 if k is even.

It is known that g(2) = 3 (as follows from a result of Dinits and Karzanov [1979]
and Seymour [1980b] (see Section 71.4a)), g(3) = 3 (Okamura [1984a]), g(4) = 5
(Mader [1985], Hirata, Kubota, and Saito [1984], H. Enomoto and A. Saito (cf.
Hirata, Kubota, and Saito [1984])), g(k) ≤ k + 1 if k is odd, and g(k) ≤ k + 2 if k
is even (Huck [1991]).

Earlier, partial results were obtained by Cypher [1980] showing that g(k) ≤ k+2
for k ≤ 5, Hirata, Kubota, and Saito [1984] showing that g(k) ≤ 2k − 3 if k ≥ 4,
and Okamura [1987,1988,1990]. Related results can be found in Enomoto and Saito
[1984] and Huck [1992]. See also the notes in Section 72.2b.

The corresponding result for directed graphs has been shown for any k — see
Section 70.13b.

70.13b. Fixing the number of commodities in directed graphs

For directed graphs, Fortune, Hopcroft, and Wyllie [1980] showed that deciding
if two given vertices of a digraph belong to a directed circuit, is NP-complete. It
implies that the arc-disjoint paths problem is NP-complete for k = 2 commodities,
even if the nets are ‘opposite’ (that is, s2 = t1 and t2 = s1). It also implies that the
directed vertex-disjoint paths problem is NP-complete (as the arc-disjoint problem
can be reduced to vertex-disjoint by considering the line digraph).

Shiloach [1979a] observed that Edmonds’ disjoint arborescences theorem im-
plies that in any k-arc-connected digraph the k arc-disjoint problem always has a
solution. (This can be shown by adding a new vertex r and new arcs (r, si) for each
beginning terminal si. As the original digraph is k-arc-connected, by Edmonds’ dis-
joint arborescences theorem (Corollary 53.1b) the new digraph has k arc-disjoint
r-arborescences. They contain paths as required.)

If we restrict ourselves to planar digraphs, then for each fixed k, the k vertex-
disjoint paths problem is polynomial-time solvable (Schrijver [1994a]). The method
is based again on enumerating homotopy types of paths. (The polynomial-time
solvability for k = 2 opposite nets (requiring only internally vertex-disjoint paths),
was shown by Seymour [1991].)

It can be extended to the polynomial-time solvability, for any fixed q, of the
problem of finding vertex-disjoint rooted subarborescences in a planar graph, with
prescribed roots and terminals to be covered, provided that these roots and termi-
nals can be covered by the boundaries of at most q faces.

An open problem is the complexity of the k arc-disjoint paths problem in di-
rected planar graphs, for any fixed k ≥ 2. This is even unknown for k = 2, also if
we restrict ourselves to two opposite nets.

For acyclic digraphs, the k vertex-disjoint paths problem is polynomial-time
solvable for each fixed k. This was shown by Fortune, Hopcroft, and Wyllie [1980]
(extending an earlier result for k = 2 of Perl and Shiloach [1978]) — see Section
70.13c. By considering line digraphs, it implies the polynomial-time solvability of
the k arc-disjoint paths problem in acyclic digraphs for each fixed k.
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70.13c. Disjoint paths in acyclic digraphs

Fortune, Hopcroft, and Wyllie [1980] showed that the vertex-disjoint paths problem
is NP-complete for digraphs, even when fixing the number of paths to k = 2.
Moreover, Even, Itai, and Shamir [1975,1976] showed that the arc-disjoint paths
problem in acyclic digraphs is NP-complete, even if the nets form two parallel
classes. By taking the line digraph, it implies that the vertex-disjoint paths problem
is NP-complete for acyclic digraphs. Vygen [1995] showed that the arc-disjoint
paths problem in acyclic digraphs remains NP-complete, even if the nets form three
parallel classes and the Euler condition holds; and also if the digraphs are restricted
to acyclic and planar.

On the other hand, Fortune, Hopcroft, and Wyllie [1980] proved that for each
fixed k, the k vertex-disjoint paths problem in acyclic digraphs can be solved in
polynomial time. (This was proved for k = 2 by Perl and Shiloach [1978].)

Theorem 70.9. For each fixed k, there exists a polynomial-time algorithm for the
k vertex-disjoint paths problem for acyclic digraphs.

Proof. Let D = (V, A) be an acyclic digraph and let (s1, t1), . . . , (sk, tk) be pairs
of vertices of D (the nets), all distinct. To solve the disjoint paths problem we may
assume that each si is a source of D and each ti is a sink of D.

Make an auxiliary digraph D′ = (V ′, A′) as follows. The vertex set V ′ consists
of all k-tuples (v1, . . . , vk) of distinct vertices of D. In D′ there is an arc from
(v1, . . . , vk) to (w1, . . . , wk) if and only if there exists an i ∈ {1, . . . , k} such that:

(70.54) (i) vj = wj for all j �= i;
(ii) (vi, wi) is an arc of D;
(iii) for each j �= i there is no directed path in D from vj to vi.

Now the following holds:

(70.55) D contains vertex-disjoint directed paths P1, . . . , Pk such that Pi runs
from si to ti (i = 1, . . . , k) ⇐⇒ D′ contains a directed path P from
(s1, . . . , sk) to (t1, . . . , tk).

To see =⇒, let Pi follow the vertices vi,0, vi,1, . . . , vi,pi for i = 1, . . . , k. So
vi,0 = si and vi,pi = ti for each i. Choose j1, . . . , jk such that 0 ≤ ji ≤ pi for each
i and such that:

(70.56) (i) D′ contains a directed path from (s1, . . . , sk) to (v1,j1 , . . . , vk,jk ),
(ii) j1 + · · · + jk is as large as possible.

Let I := {i | ji < pi}. If I = ∅ we are done, so assume I �= ∅. Then by the
definition of D′ and the maximality of j1 + · · · + jk there exists for each i ∈ I an
i′ �= i such that there is a directed path in D from vi′,ji′ to vi,ji . Since ti′ is a
sink we know that vi′,ji′ �= ti′ and that hence i′ belongs to I. So each vertex in
{vi,ji | i ∈ I} is end vertex of a directed path in D starting at another vertex in
{vi,ji | i ∈ I}. This contradicts the fact that D is acyclic.

To see ⇐= in (70.55), let P be a directed path from (s1, . . . , sk) to (t1, . . . , tk)
in D′. Let P follow the vertices (v1,j , . . . , vk,j) for j = 0, . . . , p. So vi,0 = si and
vi,p = ti for i = 1, . . . , k. For each i = 1, . . . , k, let Pi be the path in D following
vi,j for j = 0, . . . , p, taking repeated vertices only once. So Pi is a directed path
from si to ti.
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Then P1, . . . , Pk are vertex-disjoint. For suppose that P1 and P2 (say) have a
vertex in common. That is v1,j = v2,j′ for some j �= j′. Without loss of generality,
j < j′ and v1,j �= v1,j+1. By definition of D′, there is no directed path in D from
v2,j to v1,j . However, this contradicts the facts that v1,j = v2,j′ and that there
exists a directed path in D from v2,j to v2,j′ .

One can derive from Theorem 70.9 that for fixed k also the k arc-disjoint paths
problem is solvable in polynomial time for acyclic digraphs (by considering the line
digraph).

Similarly to the proof of Theorem 70.9, one can prove that for each fixed k,
the following problem is solvable in polynomial time: given an acyclic digraph D =
(V, A), pairs (s1, t1), . . . , (sk, tk) of vertices, and subsets A1, . . . , Ak of A, find arc-
disjoint directed paths P1, . . . , Pk, where Pi runs from si to ti and traverses only
arcs in Ai (i = 1, . . . , k).

Thomassen [1985] characterized the solvability of the 2 vertex-disjoint paths
problem for acyclic digraphs, similarly to characterization (71.26). (Metzlar [1993]
gave a generalization.)

70.13d. A column generation technique for multiflows

The (fractional) multiflow problem is a linear programming problem, and hence
can be solved with linear programming techniques (in strongly polynomial time).
Ford and Fulkerson [1958a] suggested a different LP-formulation of the multiflow
problem, and a column generation technique to solve it with the simplex method.

As we saw in Section 70.1, the multiflow (feasibility) problem can be reduced
to the maximum-value multiflow problem. This is equivalent to the following LP-
problem. Let D = (V, A) be a digraph, let (s1, t1), . . . , (sk, tk) be nets, and let
c : A → R+ be a capacity function. Let P denote the collection of all si − ti paths
for all i = 1, . . . , k (taken as arc sets). Then the maximum-value multiflow problem
can be formulated as:

(70.57) maximize
∑

P∈P
zP

subject to (i) zP ≥ 0 (P ∈ P).
(ii)

∑

P∈P
zP χP (a) ≤ c(a) (a ∈ A).

This is a linear programming problem with an exponential number of variables. Ford
and Fulkerson [1958a] showed that this large number of variables can be avoided
when solving the problem with the simplex method. The variables can be handled
implicitly by using a column generation technique as follows.

When solving (70.57) with the simplex method we first should add a slack
variable za for each a ∈ A. Let M denote the A × P matrix with the incidence
vectors of all paths in P as its columns and let w be the vector in R

P × R
E with

wP := 1 for P ∈ P and wa := 0 for a ∈ A. Then (70.57) is equivalent to:

(70.58)
maximize wTz
subject to [M I]z = c,

z ≥ 0.
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If we solve (70.58) with the simplex method, each simplex tableau is completely
determined by the set of variables in the current base. So it is determined by subsets
P ′ of P and A′ of A, giving the indices of variables in the base. This is enough to
know implicitly the whole tableau. Note that |P ′| + |A′| = |A|. So although the
tableau is exponentially large, it can be represented in a concise way.

Let B be the matrix consisting of those columns of [M I] corresponding to P ′

and A′. So the rows of B are indexed by A and the columns by P ′ ∪ A′. The basic
solution corresponding to B is easily computed: the vector B−1c gives the values
for zP if P ∈ P ′ and for za if a ∈ A′, while we set zP := 0 if P �∈ P ′ and za := 0 if
a �∈ A′. Initially, B = I, that is P ′ = ∅ and A′ = A, implying zP = 0 for all P ∈ P
and za = c(a) for all a ∈ A.

Now we describe pivoting (that is, finding variables leaving and entering the
base) and checking optimality. Interestingly, it turns out that this can be done by
solving a set of shortest path problems.

First consider the dual variable corresponding to an arc a. It has value (in the
current tableau):

(70.59) wT
BB−1χa − wa = wT

B(B−1)a,

where, as usual, wB denotes the part of vector w corresponding to B (that is,
corresponding to P ′ and A′) and where χa denotes the ath unit base vector in R

A

(which is the column corresponding to a in [M I]). Note that the columns of B−1

are indexed by A; then (B−1)a is the column corresponding to a. Note also that
wa = 0 by definition.

Similarly, the dual variable corresponding to a path P in P has value:

(70.60) wT
BB−1χP − wP =

( ∑

a∈P

wT
B(B−1)a

) − 1.

In order to pivot, we should find a negative dual variable. To this end, we first
check if (70.59) is negative for some arc a. If so, we choose such an arc a and
take za as the variable entering the base. Selecting the variable leaving the base
now belongs to the standard simplex routine. For that, we only have to consider
that part of the tableau corresponding to P ′, A′, and a. We select an element f
in P ′ ∪ A′ for which the quotient zf/(B−1)f,a has positive denominator and is as
small as possible. Then zf is the variable leaving the base.

Suppose next that (70.59) is nonnegative for each arc a. We consider wT
B(B−1)a

as the length l(a) of a. Then for any path P ,

(70.61)
∑

a∈P

wT
B(B−1)a

is equal to the length
∑

a∈P l(a) of P . Hence, finding a dual variable (70.60) of
negative value is the same as finding a path in P of length less than 1.

Such a path can be found by applying a shortest path algorithm: for each
i = 1, . . . , k, we find a shortest si−ti path (with respect to l). If each of these shortest
paths has length at least 1, we know that all dual variables have nonnegative value,
and hence the current basic solution is optimum.

If we find some si − ti path P of length less than 1, we choose zP as variable en-
tering the base. Again selecting a variable leaving the base is standard: we select an
element f in P ′ ∪A′ for which the quotient zf/(B−1χP )f has positive denominator
and is as small as possible.
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This describes pivoting. In order to avoid cycling and to guarantee termination,
a lexicographic rule can be incorporated for selecting the variable leaving the base
as usual. (This only requires ordering A.)

The length function l in the final tableau has the properties described in The-
orem 70.2.

70.13e. Approximate max-flow min-cut theorems for multiflows

In general, the cut condition is not sufficient for the existence of a feasible multiflow.
Leighton and Rao [1988,1999] gave an upper bound (only depending on the number
of vertices) on the relative error in case each pair of vertices forms a net, with all
demands equal.

Let G = (V, E) and H = (V, R) be a supply and a demand graph, and let
c : E → Z+ and d : R → Z+ be a capacity and a demand function. Let λ be the
maximum value for which there exists a multiflow subject to c of demand λ · d. By
the cut condition,

(70.62) λ ≤ µ := min
U

c(δE(U))
d(δR(U))

,

where the minimum is taken over all subsets U of V with d(δR(U)) > 0.
Leighton and Rao proved that if R is the collection of all pairs from V and d

is constant, then µ/λ = O(log n) where n := |V |. They also showed that O(log n)
is best possible, and that a set U attaining the minimum in (70.62) up to a factor
O(log n) can be found in polynomial time.

Klein, Agrawal, Ravi, and Rao [1990] (cf. Klein, Rao, Agrawal, and Ravi [1995])
showed that if H is any demand graph, then µ/λ = O(log C log D), where C and
D denote the sum of the capacities and demands, respectively. This was improved
to O(log n log D) by Tragoudas [1996], to O(log |R| log D) by Garg, Vazirani, and
Yannakakis [1993a,1996], and to O(log2 |R|) by Plotkin and Tardos [1993,1995].
These papers also give polynomial-time algorithms to find a subset U attaining the
minimum (70.62) up to the corresponding factor.

For planar graphs, Klein, Plotkin, and Rao [1993] gave a bound of O(log D),
improved to O(log |R|) by Plotkin and Tardos [1993,1995], and of O(1) if R consists
of all pairs of vertices.

More results on approximate multiflows are given by Raghavan and Thompson
[1987], Klein, Stein, and Tardos [1990], Shahrokhi and Matula [1990], Leighton,
Makedon, Plotkin, Stein, Tardos, and Tragoudas [1991,1995], Goldberg [1992],
Klein, Plotkin, and Rao [1993], Leong, Shor, and Stein [1993], Tardos and Vazi-
rani [1993], Awerbuch and Leighton [1994], Klein, Plotkin, Stein, and Tardos
[1994], Kamath and Palmon [1995], Linial, London, and Rabinovich [1995], Radzik
[1995,1997], Aumann and Rabani [1998], Garg and Könemann [1998], Fleischer
[1999a,2000a], Guruswami, Khanna, Rajaraman, Shepherd, and Yannakakis [1999],
Leighton and Rao [1999], Baveja and Srinivasan [2000], Srivastav and Stangier
[2000], Cheriyan, Karloff, and Rabani [2001], Fleischer and Wayne [2002], Günlük
[2002], Karakostas [2002], and Kolman and Scheideler [2002]. A survey is given by
Shmoys [1997]. Approximation algorithms for Steiner and directed multicuts are
given by Klein, Plotkin, Rao, and Tardos [1997].

For approximating minimum-cost multiflows, see Plotkin, Shmoys, and Tar-
dos [1991,1995], Kamath, Palmon, and Plotkin [1995], Karger and Plotkin [1995],
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Grigoriadis and Khachiyan [1996b,1996a], Garg and Könemann [1998], Goldberg,
Oldham, Plotkin, and Stein [1998], and Karakostas [2002].

The ‘quickest multicommodity flow problem’ was investigated by Fleischer and
Skutella [2002].

For surveys on approximation algorithms, see Shmoys [1995] and the book by
Vazirani [2001].

70.13f. Further notes

Ford and Fulkerson [1958a] designed a (non-polynomial-time) algorithm for the
fractional multiflow problem, based on the simplex method, with column gener-
ation — see Section 70.13d. Jewell [1958,1966] described a primal-dual simplex
method, Sakarovitch [1966] gave a labeling algorithm solving a sequence of one-
commodity flow problems after allocating the total capacity of each arc to each
net, and Saigal [1967] developed an algorithm based on an arc-circuit formulation,
using a column generation technique to handle the circuits. Dantzig-Wolfe decom-
position was applied to multiflow problems by Chen and DeWald [1974]. Kapoor
and Vaidya [1986,1996] and Kamath and Palmon [1995] study the complexity of
applying interior point algorithms to multiflows.

Grinold [1968,1969] described a primal-dual algorithm for the maximum-value
multiflow problem, based on allocating capacities to commodities and iteratively
adapt the allocation. A simplex-based algorithm for minimum-cost and maximum-
value multiflow problems was given by Hartman and Lasdon [1972]. Also Tomlin
[1966], Wollmer [1972], Dragan [1974], and Nagamochi, Fukushima, and Ibaraki
[1990] studied minimum-cost multiflows. A ‘partitioning’ algorithm for the multi-
flow problem was given by Grigoriadis and White [1972]. Related work was done
by Kennington [1977], Farvolden, Powell, and Lustig [1993], and Hadjiat, Maurras,
and Vaxes [2000]. Jarvis [1969] noticed the equivalence of vertex-arc and arc-chain
formulations of the multiflow problem.

Bellmore, Greenberg, and Jarvis [1970] and Jarvis and Tindall [1972] described
algorithms to find a minimum-capacity set disconnecting all nets in a directed
multiflow problem.

Swoveland [1973] studied a generalization of the multiflow problem, where upper
bounds can be prescribed for the sum of the flows of subsets of the nets on arcs.
Ferland [1974] and Klessig [1974] studied nonlinear costs.

Computational work on multiflows is reported by Minoux [1975], Ulrich [1975],
Helgason and Kennington [1977a], Kennington [1977,1978] (also minimum-cost),
Kennington and Shalaby [1977], Ali, Helgason, Kennington, and Lall [1980], Ken-
nington and Helgason [1980], Ali, Barnett, Farhangian, Kennington, Patty, Shetty,
McCarl, and Wong [1984], Saviozzi [1986], Boland and Mees [1990], Nagamochi,
Fukushima, and Ibaraki [1990], Barnhart [1993], Leong, Shor, and Stein [1993], Bi-
enstock and Günlük [1995], Barnhart, Hane, and Vance [1996], Castro and Nabona
[1996], Barnhart, Hane, and Vance [1997], McBride and Mamer [1997], McBride
[1998], and Frangioni and Gallo [1999].

Surveys on multiflows were given by Hu [1969], Frank and Frisch [1971], Assad
[1978], Kennington [1978], Phillips and Garcia-Diaz [1981], Gondran and Minoux
[1984], Bazaraa, Jarvis, and Sherali [1990], Ahuja, Magnanti, and Orlin [1993], and
Korte and Vygen [2000], on disjoint paths by Frank [1990e,1993a,1995], and on
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maximum-value multiflows by Karzanov [1991]. A bibliography on network opti-
mization, including multicommodity flows, was compiled by Golden and Magnanti
[1977].

70.13g. Historical notes on multicommodity flows

We review a few papers on multicommodity flows that are of historical interest.
In his monograph Mathematical Methods of Organizing and Planning Produc-

tion, Kantorovich [1939] introduced linear programming methods for the multicom-
modity flow problem, giving as example the problem of a railroad network on which
several connections have to be made simultaneously:

Let us mention still another problem of different character which, although it does
not lead directly to questions A, B, and C, can still be solved by our methods.
That is the choice of transportation routes.

B

A C
E

D

Let there be several points A, B, C, D, E (Fig. 1) which are connected to one
another by a railroad network. It is possible to make the shipments from B to
D by the shortest route BED, but it is also possible to use other routes as well:
namely BCD, BAD. Let there also be given a schedule of freight shipments; that
is, it is necessary to ship from A to B a certain number of carloads, from D to
C a certain number, and so on. The problem consists of the following. There is
given a maximum capacity for each route under the given conditions (it can of
course change under new methods of operation in transportation). It is necessary
to distribute the freight flows among the different routes in such a way as to
complete the necessary shipments with a minimum expenditure of fuel, under the
condition of minimizing the empty runs of freight cars and taking account of the
maximum capacities of the routes. As was already shown, this problem can also
be solved by our methods.

A problem analogous to the multicommodity flow problem, the multi-index trans-
portation problem, was considered by Motzkin [1952] and Schell [1955].

It was noted by Ford and Fulkerson [1954,1956b] that the max-flow min-cut
theorem does not extend to maximum multiflows:

It is worth pointing out that the minimal cut theorem is not true for networks
with several sources and corresponding sinks, where shipment is restricted to be
from a source to its sink.

Ford and Fulkerson give the example of the graph K1,3, with nets all pairs of vertices
of degree 1.

Robacker [1956a] observed that the following ‘decomposition theorem’ applies:
for a graph G = (V, E), nets {s1, t1}, . . . , {sk, tk}, and a capacity function c : E →
R+, the maximum total value of a multiflow subject to c is equal to
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(70.63) max
c1,...,ck

k∑

i=1

min
C∈Ci

ci(C).

Here the maximum ranges over all k-tuples of vectors c1, . . . , ck in R
E
+ with c1 +

· · · + ck = c. Moreover, Ci denotes the set of all si − ti cuts and ci(C) denotes the
capacity of cut C with respect to the capacity function ci.

So the theorem decomposes the maximum multicommodity flow problem into
k maximum single-commodity flow problems. The problem is reduced to finding
the optimum decomposition of the capacity function c into k functions c1, . . . , ck.
Robacker [1956a] remarked:

At present there are no computational techniques other than those of linear pro-
gramming for determining maximal flow through multicommodity networks. It
is hoped, however, that the decomposition theorem may lead to new methods as
did the minimum-cut, maximum-flow theorem for single-commodity networks.

Kalaba and Juncosa [1956] described applications of the multicommodity flow
problem to telecommunication networks. In particular they mention:

In a system such as the Western Union System, which has some 15 regional
switching centers all connected to each other, an optimal routing problem of this
type would have about 450 conditions and involve around 3000 variables. If solved
using the simplex method in its most general form, this would be at the threshhold
of the capacity of modern large-scale computers and would require several hours
for solution.

They express the expectation that developments in computer technology and possi-
ble extensions of the combinatorial methods for one-commodity flows, will improve
the situation greatly.

It turned out, however, that the combinatorial techniques that made the single-
commodity flow problem so tractable, do not extend to multicommodity flows.
Ford and Fulkerson [1958a] suggested a variant of the simplex method based on
a column-generation technique, where each simplex step consists of determining a
shortest path. Although they did not carry out computations, they expected that
their method is more practicable than the direct simplex method, at least in space
required. A primal-dual algorithm for multiflows was designed by Jewell [1958] (cf.
Jewell [1966]).

Hu [1963] gave a combinatorial algorithm for the 2-commodity flow problem,
but doubted whether it could be extended to general multicommodity flows:

Although the algorithm for constructing maximum bi-flow is very simple, it is un-
likely that similar techniques can be developed for constructing multicommodity
flows. The linear programming approach used by Ford and Fulkerson to construct
maximum multicommodity flows in a network is the only tool now available.

For remarks on the early history of multicommodity flows, see Jewell [1966].
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Two commodities

The integer 2-commodity flow problem is NP-complete, even if all capac-
ities are 1 (Even, Itai, and Shamir [1975,1976]). Equivalently, the edge-
disjoint paths problem in undirected graphs is NP-complete, even if the
nets form two parallel classes.
However, if we add the Euler condition, the problem has a good charac-
terization and can be solved in polynomial time. It is a generalization of
Hu’s 2-commodity flow theorem, stating that the cut condition implies the
existence of a half-integer multiflow (for integer capacities and demands).
This and related results form the topic of this chapter.
Except if stated otherwise, throughout this chapter G = (V, E) and H =
(T, R) denote the supply and demand graph, in the sense of Chapter 70.
The pairs in R are called the nets. If s1, t1, . . . , sk, tk are given, then R :=
{s1t1, . . . , sktk}. In fact, often in this chapter, k = 2, so R = {s1t1, s2t2}. If
demands d1, . . . , dk are given, then d(siti) = di. We denote G+H = (V, E∪
R), where the disjoint union of E and R is taken, respecting multiplicities.

71.1. The Rothschild-Whinston theorem and Hu’s
2-commodity flow theorem

It is a basic theorem of Hu [1963], that for 2-commodity flow problems in
undirected graphs, the cut condition implies the existence of a feasible 2-
commodity flow. Recall that the cut condition (in the undirected case) states
that

(71.1) c(δE(U)) ≥ d(δR(U))

for each U ⊆ V . This theorem, ‘Hu’s 2-commodity flow theorem’, will be
shown below as Corollary 71.1b.

Hu also showed that if moreover all capacities are integer, there is a half-
integer 2-commodity flow. Generally, an integer multiflow need not exist, as
is shown by Figure 70.3. In fact, the undirected integer 2-commodity flow
problem is NP-complete (Even, Itai, and Shamir [1975,1976]).

Rothschild and Whinston [1966a] extended Hu’s theorem by showing
that adding the Euler condition guarantees the existence of an integer 2-
commodity flow. We recall that the Euler condition states that
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(71.2) c(δE(v)) + d(δR(v)) is even for each v ∈ V .

Theorem 71.1 (Rothschild-Whinston theorem). Let G = (V,E) be a graph,
let {s1, t1} and {s2, t2} be pairs of vertices of G, and let c : E → Z+
and d1, d2 ∈ Z+ satisfy the Euler condition. Then there exists an integer
2-commodity flow subject to c and with value d1, d2 if and only if the cut
condition is satisfied.

Proof. Necessity being trivial, we show sufficiency. Suppose that the cut
condition holds. Orient the edges of G arbitrarily, yielding the digraph D =
(V,A). For any a ∈ A, we denote by c(a) the capacity of the underlying
undirected edge. For i = 1, 2, define pi : V → Z by

(71.3) pi := di · (χti − χsi).

s1

s2 t1

t2

Gs′ t′

Figure 71.1

Extend G by two new vertices, s′ and t′, and new edges s′s1 and t1t
′,

each of capacity d1, and new edges s′s2 and t2t′, each of capacity d2 (Figure
71.1). This gives the graph G′.

By the max-flow min-cut theorem, G′ contains an integer s′− t′ flow g of
value d1 + d2, since by the cut condition the minimum capacity of an s′ − t′
cut in G′ is equal to d1 + d2. By the Euler condition we can assume that
g(e) ≡ c(e) (mod 2) for each e ∈ E: the edges e with g(e) 	≡ c(e) (mod 2)
form an Eulerian graph; that is, each vertex is incident with an even number
of such edges. Hence we can add a unit flow along a circuit, so as to decrease
the number of such edges e.

Now in D, g gives a function g′ : A→ Z satisfying

(71.4) g′(a) ≡ c(a) (mod 2) and |g′(a)| ≤ c(a) for each a ∈ A, and
excessg′ = p1 + p2.

(Here excessg′(v) := g′(δin(v))− g′(δout(v)) for v ∈ V .)
Similarly, by extending G by two new vertices, s′′ and t′′, and new edges

s′′s1 and t1t
′′, each of capacity d1, and s′′t2 and s2t

′′, each of capacity d2
(Figure 71.2), we obtain a function g′′ : A→ Z satisfying
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s1

s2 t1

t2

G

s′′

t′′

Figure 71.2

(71.5) g′′(a) ≡ c(a) (mod 2) and |g′′(a)| ≤ c(a) for each a ∈ A, and
excessg′′ = p1 − p2.

Now define f1 := 1
2 (g′ + g′′) and f2 := 1

2 (g′ − g′′). Then f1 and f2 form a 2-
commodity flow as required. Indeed, since g′ ≡ c ≡ g′′ (mod 2), we know that
f1 and f2 are integer. Moreover, |f1(a)|+ |f2(a)| = 1

2 (|g′(a)|+ |g′′(a)|) ≤ c(a)
for each a ∈ A. Finally, excessfi = pi for i = 1, 2, as follows directly from
(71.4) and (71.5).

This method of proof was given by Rothschild and Whinston [1966a]
(similar proofs were given by Sakarovitch [1973] and Seymour [1978]).

A combinatorial form of Theorem 71.1 is:

Corollary 71.1a. Let G = (V,E) be a graph, let s1, t1, s2, t2 ∈ V , and let
d1, d2 ∈ Z+, such that each vertex v 	= s1, t1, s2, t2 has even degree, while
degG(si) ≡ degG(ti) ≡ di (mod 2) for i = 1, 2. Then there exist d1 s1 − t1
paths and d2 s2 − t2 paths, all edge-disjoint if and only if the cut condition
(70.21) is satisfied.

Proof. Directly from Theorem 71.1 by taking all capacities equal to 1.

Conversely, Theorem 71.1 follows from Corollary 71.1a by replacing each
edge e by c(e) parallel edges.

Theorem 71.1 also implies a half-integer 2-commodity flow theorem, given
by Hu [1963]15:

Corollary 71.1b (Hu’s 2-commodity flow theorem). Let G = (V,E) be a
graph, let s1, t1 and s2, t2 be pairs of vertices of G, let c : E → R+, and
15 Hakimi [1962b] gave an erroneous proof of this theorem.
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let d1, d2 ∈ R+. Then there exists a 2-commodity flow subject to c and with
value d1, d2 if and only if the cut condition is satisfied. If all capacities and
demands are integer, then we can take the flow half-integer.

Proof. By continuity and compactness, we can assume that c and the di

are rational-valued, and hence, by scaling, even-integer-valued. So the Euler
condition holds. Let the cut condition be satisfied. Then Theorem 71.1 gives
the existence of a 2-commodity flow.

If c and the di are integer-valued, multiplying them by 2 and applying
Theorem 71.1 gives an integer 2-commodity flow, and hence a half-integer
multiflow for the original c and di.

Notes. The proof of Theorem 71.1 yields a strongly polynomial-time algorithm to
find a feasible integer 2-commodity flow if the Euler condition holds, of the same
time order as that of finding a maximum one-commodity integer flow. It implies
a strongly polynomial-time algorithm to find a half-integer 2-commodity flow, for
integer capacities and demands.

Also Cherkasskĭı [1973] gave a strongly polynomial-time (O(n2m)) algorithm to
find a feasible half-integer 2-commodity flow. Hu [1963] gave a combinatorial algo-
rithm, which Itai [1978] showed to have a strongly polynomial-time implementation
(O(n3)). A similar algorithm was described by Arinal [1969].

71.1a. Nash-Williams’ proof of the Rothschild-Whinston theorem

An alternative simple proof of the Rothschild-Whinston theorem was given by
C.St.J.A. Nash-Williams (cf. Lovász [1979a] p. 289). We give the proof for the
equivalent Corollary 71.1a. As necessity is easy, we show sufficiency.

By Menger’s theorem (undirected version), G has d1+d2 edge-disjoint {s1, s2}−
{t1, t2} paths such that di of them start at si, and di of them end at ti, for i = 1, 2.
(But the paths starting at s1 may end at t2, and those starting at s2 may end at
t1.) Hence G has an orientation D = (V, A) with (V, A ∪ B) Eulerian, where B
consists of di parallel arcs from ti to si, for i = 1, 2.

Then Menger’s theorem (directed version) implies that D has d1 arc-disjoint
directed s1 − t1 paths. Indeed, consider any U ⊆ V with s1 ∈ U , t1 �∈ U . We show
dout

A (U) ≥ d1. As (V, A ∪ B) is Eulerian, we have

(71.6) dout
A (U) + dout

B (U) = dout
A∪B(U) = din

A∪B(U) = din
A (U) + din

B (U).

If dout
B (U) = 0, this gives dout

A (U) ≥ din
B (U) ≥ d1. If dout

B (U) > 0, then t2 ∈ U ,
s2 �∈ U , hence din

B (U) = d1 and dout
B (U) = d2. So

(71.7) dout
A (U) = 1

2 (dout
A (U) + din

A (U) + d1 − d2) = 1
2 (dE(U) + d1 − d2) ≥ d1,

since dE(U) ≥ d1 + d2.
So D contains d1 arc-disjoint s1 − t1 paths. Now delete from (V, A ∪ B) all arcs

occurring in these paths, and delete the d1 parallel arcs from t1 to s1. We are left
with an Eulerian digraph, and hence the d2 parallel arcs from t2 to s2 belong to d2

arc-disjoint directed circuits. This gives the d2 paths from s2 to t2 as required.
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71.2. Consequences

E.A. Dinits (cf. Adel’son-Vel’skĭı, Dinits, and Karzanov [1975]) observed that
Hu’s 2-commodity flow theorem and the Rothschild-Whinston theorem im-
ply:

Corollary 71.1c. Let G = (V,E) be an undirected graph and let {s1, t1}, . . . ,
{sk, tk} be pairs of vertices, such that there exist a two vertices intersecting
each {si, ti}. Let c : E → R+ and d1, . . . , dk ∈ R+. Then the cut condition
implies the existence of a feasible multiflow. If c and the di are integer, there
exists a half-integer multiflow. If moreover the Euler condition holds, there
exists an integer multiflow.

Proof. We can assume that si = s for i = 1, . . . , l, and that ti = t′ for
i = l + 1, . . . , k. Let t and s′ be two new vertices. For each i = 1, . . . , l, add
a new edge connecting ti and t, of capacity di. For each i = l+ 1, . . . , k, add
a new edge connecting s′ and si, of capacity di. This makes the graph H.
Define d := d1 + · · ·+ dl and d′ := dl+1 + · · ·+ dk.

Then the cut condition for G implies that each cut δH(U) in H has ca-
pacity at least d + d′ if it is both s − t and s′ − t′ separating; at least d if
it separates s and t; and at least d′ if it separates s′ and t′. Hence, by Hu’s
2-commodity flow theorem, H has a feasible 2-commodity flow. Restriction
to G gives a feasible multiflow.

The last two statement of this corollary follow similarly.

Another consequence of Theorem 71.1 is what Hu called the max-biflow
min-cut theorem16:

Corollary 71.1d (max-biflow min-cut theorem). Let G = (V,E) be a graph,
let {s1, t1} and {s2, t2} be pairs of vertices, and let c : E → R+. Then the
maximum total value M of a 2-commodity flow subject to c is equal to the
minimum capacity m of a cut which is both s1 − t1 and s2 − t2 separating.
If c is integer, the maximum is attained by a half-integer multiflow. If c is
integer and c(δ(v)) is even for each vertex v 	= s1, t1, s2, t2, the maximum is
attained by an integer multiflow.

Proof. By continuity, compactness, and scaling, we can assume that c is
integer and that c(δ(v)) is even for each v 	= s1, t1, s2, t2. By replacing edges
by parallel edges, we can assume that c(e) = 1 for each e ∈ E. So M is equal
to the maximum number of edge-disjoint paths, each connecting either s1
and t1, or s2 and t2. As trivially M ≤ m, it suffices to prove M ≥ m. We can
assume that m > 0.
16 due to Hu [1963] and (the last statement) to Rajagopalan [1994] (who also showed a

hole in the proof by Sakarovitch [1973] of this); it sharpens a result of Rothschild and
Whinston [1966b], who required that c(δ(v)) is even for all vertices v.
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First assume that degG(s1) ≡ degG(t1) (mod 2) and (hence) degG(s2) ≡
degG(t2) (mod 2). For i = 1, 2, let mi be the minimum size of an si − ti cut.
We show that

(71.8) there exists d1, d2 ∈ Z+ such that d1 ≤ m1, d2 ≤ m2, d1+d2 = m,
d1 ≡ degG(s1) (mod 2), and d2 ≡ degG(s2) (mod 2).

To see this, note that m ≤ m1 + m2 (since the union of an s1 − t1 cut
and an s2 − t2 cut separates both s1 and t1, and s2 and t2), m1 ≤ m, and
m ≡ degG(s1) + degG(s2) (mod 2). As m > 0, by symmetry we may assume
that m2 > 0. If m1 ≡ degG(s1) (mod 2), then we can take d1 := m1 and
d2 := m −m1. If m1 	≡ degG(s1) (mod 2), then we can take d1 := m1 − 1
and d2 := m−m1 +1. Indeed, as m1 	≡ degG(s1) (mod 2), any minimum-size
s1 − t1 cut also separates s2 and t2. So m = m1. Hence d1 ≥ 0 (as m > 0)
and d2 = 1 ≤ m2 (as m2 > 0).

This shows (71.8). By Corollary 71.1a, there exist d1 s1− t1 paths and d2
s2 − t2 paths, any two of which are edge-disjoint. So M ≥ d1 + d2 = m.

Next assume that degG(s1) 	≡ degG(t1) (mod 2) and (hence) degG(s2) 	≡
degG(t2) (mod 2). By symmetry, we may assume that m is attained by a cut
with s1, s2 at one side and t1, t2 at the other side. So the size of any cut with
s1, t2 at one side and t1, s2 at the other side, has parity different from that of
m; hence its size is at least m+1. Therefore, adding a new edge connecting s2
and t1 increases the minimum m by 1. Moreover, the maximum M increases
by at most 1. In the new situation, the degrees of s1 and t1 have the same
parity, and similarly for s2 and t2. Hence the first part of this proof applies,
showing M ≥ m.

(An alternative proof was given by Lovász [1976b].)

s1

s2 t1

t2

Figure 71.3
The maximum total value of a 2-commodity flow (subject to capacity 1)
is equal to 2, but the maximum total value of an integer 2-commodity
flow is equal to 1.

The graph in Figure 71.3 shows that in the max-biflow min-cut theorem
(Corollary 71.1d) we cannot delete the parity conditions (example of Roth-
schild and Whinston [1966b]). This example is critical, as is shown by the
following result, which is a special case of a general hypergraph theorem of
Seymour [1977b] (Theorem 80.1).
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Theorem 71.2. Let G = (V,E) be a graph and s1, t1, s2, t2 ∈ V . Then for
each capacity function c : E → Z+, the maximum total value of an integer
2-commodity flow is equal to the minimum capacity of a cut separating both
s1 and t1, and s2 and t2, if and only if G has no subgraph contractible to the
graph of Figure 71.3, up to exchanging s1 and t1, and s2 and t2.

Here we assume that the subgraph contains the si and ti, and that these
vertices are contracted to the vertices indicated by si and ti in the figure. For
a proof, we refer to Section 80.5a.

A similar result for feasibility can be derived (Seymour [1981a]):

(71.9) Let G = (V,E) be a graph and s1, t1, s2, t2 ∈ V . Then for each
capacity function c : E → Z+ and each demands d1, d2 ∈ Z+, the
cut condition implies the existence of an integer multiflow if and
only if the graph of Figure 70.3 is not a minor of G.

We derive this result from Theorem 71.2. By taking c(e) large one can see
that the property described is closed under contractions of edges. As Figure
70.3 satisfies the cut condition but has no integer multiflow (for c = 1, d = 1),
we have necessity of the condition in (71.9).

To derive sufficiency from Theorem 71.2, let G have no subgraph con-
tractible to Figure 70.3 and let c : E → Z+ and d1, d2 ∈ Z+ satisfy the cut
condition. Let s′

1 and s′
2 be two new vertices, and let s′

1s1 and s′
2s2 be two

new edges, of capacity d1 and d2 respectively. Then the extended graph G′

has no subgraph contractible to the graph of Figure 71.3, with si replaced by
s′

i (i = 1, 2), up to exchanging s′
1 and t1, and s′

2 and t2. Also, the minimum
capacity of a cut in G′ separating both s′

1 and t1, and s′
2 and t2, is equal to

d1 + d2. Hence by Theorem 71.2, G′ has an integer multiflow of total value
d1 + d2. Restricted to G this gives a multiflow satisfying d1, d2.

Notes. For the case where G + H is planar, Lomonosov [1983] characterized for
fixed integer capacity function c, when the maximum and minimum in Theorem
71.2 are equal. He also showed that if G+H is planar, the maximum and minimum
differ by at most 1.

71.3. 2-commodity cut packing

By Theorem 70.5, Hu’s 2-commodity flow theorem implies that if G = (V,E)
is an undirected graph, s1, t1, s2, t2 ∈ V , and l : E → R+, then there exist
λU ≥ 0 for U ⊆ V such that

(71.10)
∑

U

λUχ
δE(U) ≤ l

and

(71.11) distl(si, ti) =
∑

U

λUχ
δR(U)(siti),
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for i = 1, 2, where R := {s1t1, s2t2}. (Here distl(s, t) is the distance of s and
t, taking l as length function.)

We shall see that if l is integer, we can take the λU half-integer. More
precisely, and more strongly:

(71.12) if l is integer such that each circuit in G has even length, then we
can take the λU integer.

This was proved by Seymour [1978]. Equivalently (by replacing each edge e
by a path of length l(e); distG(s, t) denotes the distance of s and t in G (for
length function 1)):

Theorem 71.3. Let G = (V,E) be a bipartite graph and let s1, t1, s2, t2 ∈ V .
Then there exist disjoint cuts such that si and ti are separated by distG(si, ti)
of these cuts, for i = 1, 2.

Proof. We may assume that G is connected. Denote d(u, v) := distG(u, v)
for u, v ∈ V . Define for each vertex v:

(71.13) ϕ(v) := 1
2 (d(s1, v) + d(s2, v)− d(s1, s2)),

ψ(v) := 1
2 (d(s1, v)− d(s2, v) + d(s1, s2)).

These numbers are nonnegative and integer, by the triangle inequality and
by the fact that each circuit in G has even length.

If u and v are adjacent vertices of G, then either ϕ(u) = ϕ(v) and |ψ(v)−
ψ(u)| = 1, or ψ(u) = ψ(v) and |ϕ(v)−ϕ(u)| = 1, since d(s1, v)−d(s1, u) = ±1
and d(s2, v)− d(s2, u) = ±1. Let Ai be the set of edges uv with ϕ(v) = i− 1
and ϕ(u) = i. Let Bi be the set of edges uv with ψ(v) = i− 1 and ψ(u) = i.
So the sets A1, A2, . . . , B1, B2, . . . are cuts partitioning E.

Now ϕ(s1) = ψ(s1) = 0 and ϕ(t1) + ψ(t1) = d(s1, t1). So there exist
d(s1, t1) cuts among A1, A2, . . . , B1, B2, . . . that separate s1 and t1.

Moreover

(71.14) |ϕ(t2)− ϕ(s2)|+ |ψ(t2)− ψ(s2)| =
1
2 |d(s1, t2)+d(s2, t2)−d(s1, s2)|+ 1

2 |d(s1, t2)−d(s2, t2)−d(s1, s2)|
= d(s2, t2).

This implies that there exist d(s2, t2) cuts among A1, A2, . . . , B1, B2, . . . that
separate s2 and t2.

A consequence of Theorem 71.3 is a min-max relation for the maximum
number of disjoint cuts that are both s1 − t1 and s2 − t2 separating, in a
bipartite graph (Seymour [1978]):

Corollary 71.3a. Let G = (V,E) be a bipartite graph and let s1, t1, s2, t2 ∈
V . Then the maximum number of disjoint cuts each separating both s1 and
t1, and s2 and t2, is equal to the minimum of distG(s1, t1) and distG(s2, t2).
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Proof. We may assume that G is connected. Let d(u, v) := distG(u, v) for
u, v ∈ V . Let k := min{d(s1, t1), d(s2, t2)}. Let C1, . . . , Ct be the cuts de-
scribed in Theorem 71.3. At least k of these cuts separate s1 and t1, and at
least k of these cuts separate s2 and t2. If Ci separates s1 and t1 and Cj

separates s2 and t2, then Ci ∪ Cj contains a cut separating both s1 and t1,
and s2 and t2. Thus by properly combining the Ci, we obtain k disjoint cuts
as required.

(To see this, we can assume that C1, . . . , Ck separate s1 and t1, and that
Cl+1, . . . , Cl+k separate s2 and t2, where 0 ≤ l ≤ k. Then each of the (disjoint)
sets C1 ∪Ck+1, . . . , Cl ∪Cl+k, Cl+1, . . . , Ck contains a cut separating both s1
and t1, and s2 and t2.)

Let G = (V,E) be a graph and let s1, t1, s2, t2 ∈ V . Let C be the collection
of all cuts that are both s1 − t1 and s2 − t2 separating. Consider a length
function l : E → R+. Corollary 70.6a applied to the max-biflow min-cut
theorem gives:

(71.15) min{distl(s1, t1),distl(s2, t2)} is equal to the maximum value of∑
C∈C y(C), where y : C → R+ is such that

∑
C∈C y(C)χC ≤ l.

Then Corollary 71.3a implies (Seymour [1978], Pevzner [1979b]):

Corollary 71.3b. If l is integer-valued, we can take y half-integer valued.

Proof. Replace each edge e by a path of length 2l(e). This makes the bipartite
graph H. Applying Corollary 71.3a to H does the rest.

Bipartiteness is necessary in Corollary 71.3a, since otherwise the graph
in Figure 71.4 (Seymour [1977b], cf. Hu [1973]) would yield a contradiction.
(This answers a question of Fulkerson [1971a].)

s1

s2

t1

t2

Figure 71.4
The minimum of the distances of s1 and t1 and of s2 and t2 is equal to
2, but there exist no two disjoint cuts each separating both s1 and t1,
and s2 and t2.
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From a more general hypergraph result of Seymour [1977b] (Theorem
80.1), it follows that Figure 71.4 is critical for the existence of an integer-
valued packing of cuts:

Theorem 71.4. Let G = (V,E) be a graph and let s1, t1, s2, t2 ∈ V . Then for
each l : E → Z+, the maximum in (71.15) is attained by an integer-valued y
if and only if G has no subgraph contractible to the graph in Figure 71.4, up
to permuting indices and permuting s1 and t1.

Again, we assume that the subgraph contains the si and ti, and that these
vertices are contracted to the vertices indicated by si and ti in the figure. For
a proof, we refer to Section 80.5a.

Notes. Seymour [1981a] showed the following related result: let G = (V, E) be a
bipartite graph, and choose s1, t1, s2, t2 ∈ V , with s1, s2 in one colour class and t1, t2
in the other. Choose odd integers d1 ≤ distG(s1, t1) and d2 ≤ distG(s2, t2) such that
d1 + d2 ≤ distG(s1, s2) + distG(t1, t2) and d1 + d2 ≤ distG(s1, t2) + distG(t1, s2).
Then there exist disjoint cuts, d1 of which separate s1 and t1 and not s2 and t2,
and d2 of which separate s2 and t2 and not s1 and t1.

Let S be a collection of nonempty proper subsets of a finite set T . Let G = (V, E)
be a graph with V ⊇ T . Let A be the collection of subsets U of V with U ∩ T ∈ S.

Consider any length function l : E → R+ and any d : S → R+. The multicut
analogue of the multiflow problem asks for a function y : A → R+ such that

(71.16)
∑

U∈A
y(U)χδE(U) ≤ l

and such that

(71.17)
∑

(y(U) | U ∈ A, U ∩ T = X) = d(X)

for each X ∈ S. A necessary condition for the existence of y is that

(71.18) distl(s, t) ≥
∑

(d(X) | X ∈ S, X splits s, t)

for all distinct s, t ∈ T . (Here X splits s, t if X contains precisely one of s, t.)
Karzanov [1984] showed that this condition is sufficient for each graph G and each
l if and only if S contains no three pairwise crossing sets. If moreover l and d are
integer, there is a half-integer y. If moreover l(C) is even for each circuit C and
both sides of (71.18) have the same parity for all s, t, then there is an integer y.
Karzanov [1984] also gave a polynomial-time greedy-type algorithm to find y.

As for the corresponding maximization problem, consider any length function
l : E → R+ and the problem

(71.19) min{lTx | x ∈ R
E
+ : x(δE(U)) ≥ 1 for each U ∈ A}.

By linear programming duality, this minimum is equal to the maximum value of

(71.20)
∑

U∈A
y(U),

where y : A → R+ satisfies (71.16). Karzanov [1984] showed the following. Let S
have the following property: for any three pairwise crossing sets A1, A2, A3 in S,
there exist γ1, γ2, γ3 ≥ 0 and z : S → R+ such that
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(71.21)
3∑

i=1

γi ≤
∑

U∈S
zU and

3∑

i=1

γiχ
δR(Ai) >

∑

U∈S
zUχδR(U),

where R := {st | s, t ∈ T, s �= t}. Then the maximum value of (71.20) is equal to
the minimum value of

(71.22)
∑

r∈R

β(r)distl(r),

where β : R → R+ satisfies β(δR(U)) ≥ 1 for each U ∈ S. (We write distl(r) for
distl(s, t) if r = st.) This specifies the above x : E → R+ as a function

(71.23) x =
∑

r∈R

β(r)χPr ,

where Pr is a shortest r-path with respect to l, since

(71.24) lTx =
∑

r∈R

β(r)l(Pr) and x(δE(U)) ≥
∑

r∈δR(U)

β(r) = β(δR(U)) ≥ 1

for each U ∈ S. (An r-path is a path connecting the vertices in r.) Again this
characterization is tight.

This has as special cases theorems on packing s − t cuts (Theorem 6.1), 2-
commodity cuts (Theorem 71.3), and T -cuts (Corollary 29.9a).

These cases are further characterized by the following result of Karzanov
[1985a]. Let T be a finite set and let S be a collection of nonempty proper subsets
of T such that (i) if U ∈ S, then T \U ∈ S, (ii) for each t ∈ T there is a U ∈ S with
t ∈ U and U \{t} �∈ S, (iii) for all distinct s, t ∈ T there is a U ∈ S separating s and
t. Let G be the complete graph on vertex set V with V ⊃ T and |V | ≥ |T |+2. Then
minimum (71.19) is attained by an integer optimum solution x for each l : E → R+

if and only if:

(71.25) (i) there exist s, t ∈ T such that each set in S contains exactly one
of s and t, and such that the collection of sets in S containing s,
is closed under unions and intersections,

or (ii) T = {s1, t1, s2, t2} and S = {{s1, s2}, {s1, t2}, {t1, s2}, {t1, t2}},
or (iii) S is equal to the collection of odd-size subsets of T , where |T | is

even.

71.4. Further results and notes

71.4a. Two disjoint paths in undirected graphs

The polynomial-time solvability of the 2 vertex-disjoint paths problem in undirected
graphs was shown by Seymour [1980b], Shiloach [1980b], and Thomassen [1980]. As
was observed by Seymour [1980b], this can be derived from the following charac-
terization of Seymour [1980b] and Thomassen [1980] (as usual, N(K) denotes the
set of vertices not in K adjacent to at least one vertex in K):

Theorem 71.5. Let G = (V, E) be a graph and let s1, t1, s2, t2 be distinct vertices.
Then G has disjoint paths P1 and P2, where Pi connects si and ti (i = 1, 2), if and
only if there is no subset U of V such that:
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(71.26) (i) s1, t1, s2, t2 ∈ U ,
(ii) |N(K)| ≤ 3 for each component K of G − U ;
(iii) the graph H obtained from G[U ] by adding, for each component K

of G − U and each distinct u, v ∈ N(K), an edge connecting u and
v, is planar, with s1, s2, t1, t2 in this order cyclically on the outer
boundary of H.

In fact, condition (ii) is superfluous. (Theorem 71.5 was proved for 4-connected
graphs by Jung [1970], generalizing Watkins [1968] who proved it for 4-connected
graph containing a subdivision of K5.)

The polynomial-time solvability of the 2 vertex-disjoint paths problem can
be derived by observing that we can reduce the problem if there is a K ⊆
V \ {s1, t1, s2, t2} with |N(K)| ≤ 3 (remove K and add edges as in (71.26)(iii)). So
we can assume that no such K exists. Hence, by the characterization, if no paths
as required exist, the graph should be planar with the terminals in the cyclic order
s1, s2, t1, t2 along the outer boundary — this can be tested in polynomial time.
(Khuller, Mitchell, and Vazirani [1992] gave a parallel implementation.)

A related result for the 2 edge-disjoint paths problem was given by Dinits and
Karzanov [1979] and Seymour [1980b]:

(71.27) Let G = (V, E) be a connected graph and let s1, t1, s2, t2 ∈ V . Then
G has edge-disjoint paths P1 and P2, where Pi connects si and ti

(i = 1, 2) if and only if the cut condition holds and there is no F ⊆ E
such that the graph G/F , obtained from G by contracting all edges
in F , is connected and planar and has maximum degree ≤ 3, while
s1, s2, t1, t2 are distinct, all have degree at most 2, and occur in this
order around the outer boundary of G/F .

This implies in particular that if G is 3-edge-connected, then the 2 edge-disjoint
paths problem has a solution, for any choice of two nets.

71.4b. A directed 2-commodity flow theorem

Frank [1989] observed that a directed version of the 2-commodity flow theorem
holds:

Theorem 71.6. Let D = (V, A) be as digraph, and let R consist of two parallel
classes of arcs, with (V, A∪R−1) Eulerian. Then the cut condition is necessary and
sufficient for the solvability of the arc-disjoint paths problem.

Proof. Let R consist of ki parallel arcs from si to ti, for i = 1, 2. With Menger’s
theorem, the cut condition implies that there exist k1 arc-disjoint s1 − t1 paths in
D. After deleting the arcs of these paths from D, the remainder has k2 arc-disjoint
s2 − t2 paths, as adding k2 parallel t2 − s2 arcs makes the remainder Eulerian.

This proof also gives a polynomial-time algorithm. We should note that in
the directed case, Eulericity is rather prohibitive: unlike in the undirected case we
cannot make a digraph Eulerian by some simple doubling argument.

Frank, Ibaraki, and Nagamochi [1995,1998] gave a characterization and poly-
nomial-time algorithm for the problem: given an Eulerian digraph D = (V, A) and
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s1, t1, s2, t2 ∈ V , find two arc-disjoint directed paths P1 and P2, where Pi connects
si and ti, in one way or the other (i = 1, 2). The characterization is analogous to
Theorem 71.5.

It implies a characterization and algorithm of Ibaraki and Poljak [1991] for the
3 arc-disjoint paths problem if the Euler condition holds. For let D = (V, A) be a
digraph, and let s1, t1, . . . , s3, t3 ∈ V , such that for R := {(s1, t1), (s2, t2), (s3, t3)},
the digraph (V, A ∪ R−1) is Eulerian. Extend D by four new vertices x1, y1, x2, y2

and arcs (t1, x2), (x2, s2), (t3, y1), (y1, s1), (t2, y2), (y2, x1), (x1, s3). Then the new
digraph is Eulerian. Moreover, it has arc-disjoint directed xi −yi paths (for i = 1, 2)
if and only if D has arc-disjoint si − ti paths (for i = 1, 2, 3).

71.4c. Kleitman, Martin-Löf, Rothschild, and Whinston’s theorem

Let G be an undirected graph. Suppose that we have four disjoint sets S1, T1, S2, T2

of vertices, and that we want to know the maximum number of edge-disjoint paths,
each connecting either S1 and T1, or S2 and T2. Generally it is not true that
the maximum number of such paths is equal to the minimum number of edges
intersecting each such path. This even is not the case if the graph is Eulerian, as
is shown by the graph in Figure 71.5 (cf. Rothschild and Whinston [1966b]). (One

S1 S1

S2

S2

T1 T1

T2

T2

Figure 71.5
The maximum number of edge-disjoint paths each connecting vertices
labeled Si and Ti for some i, is equal to 4, whereas the minimum size
of an edge set intersecting each such path is equal to 5. Note that the
graph is Eulerian.

could think of a proof method based on adding 4 new vertices s1, t1, s2, t2, adjacent,
by a large number of parallel edges, to all vertices in S1, T1, S2, T2 respectively,
and then applying Corollary 71.1d. But this procedure can create new paths, for
instance, from S1 to T1 via s2.)

However, if S1, T1, S2, T2 partition the vertex set, such a generalization holds,
as was shown by Kleitman, Martin-Löf, Rothschild, and Whinston [1970]. In fact,
they showed a more general result, that can be proved with the help of the following
theorem equivalent to (the edge-disjoint undirected version of) Menger’s theorem
(which is the special case where A and B are stars).

If G = (V, E) a graph and A, B ⊆ E, we say that a path connects A and B if it
traverses at least one edge in A and at least one edge in B.

Theorem 71.7. Let G = (V, E) be a graph and let A, B ⊆ E. Then the maximum
number of edge-disjoint paths each connecting A and B is equal to the minimum
number of edges intersecting each such path.
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Proof. We can assume that A ∩ B = ∅, since deleting any edge in A ∩ B reduces
both optima by 1.

Construct a new graph H as follows. Add two new vertices s and t. For each
edge e ∈ A ∪ B, put a new vertex ve on e, and connect it to s if e ∈ A and to t if
e ∈ B.

We apply Menger’s theorem to the s − t paths in H. Let Q1, . . . , Qk be a
maximum number of edge-disjoint s − t paths in H. Consider any of these paths
Qj . We can assume that the second vertex, va say, and the one but last vertex,
vb say, of Qj are the only two vertices on Qj that belong to {ve | e ∈ A ∪ B}
(otherwise we can shortcut Qj , since each vertex ve has degree 3). Replacing the
first two edges of Qj by edge a of G, and the last two edges of Qj by edge b of G,
we obtain a path Pj in G connecting A and B.

This gives k edge-disjoint paths in G each connecting A and B. By Menger’s
theorem, there exists a set D of k edges of H intersecting each s − t path. For
e ∈ A ∪ B, replacing (in D) any edge sve and any of the split-offs of e, by e, we
obtain a set C of at most k edges in G that intersects each path connecting A and
B. Indeed, consider any path P in G connecting A and B. We can assume that it
intersects A and B only at its ends. So we can transform P to an s − t path Q in
H, by deviating the end edges towards s and t. Then Q intersects D, implying that
P intersects C. This shows the theorem.

This implies the theorem of Kleitman, Martin-Löf, Rothschild, and Whinston
[1970]:

Corollary 71.7a. Let G = (V, E) be a graph, let S1, T1, . . . , Sk, Tk be subsets of V ,
with Si ∩ Ti = ∅ for i = 1, . . . , k, and define Ui := V − Si − Ti for i = 1, . . . , k.
If U1, . . . , Uk are disjoint, then the maximum number of edge-disjoint paths among
{P | ∃i : P is an Si −Ti path} is equal to the minimum number of edges intersecting
each such path.

Proof. We can assume that the Ui partition V , since we can add an extra pair
S0, T0 with S0 := V − U1 − · · · − Uk and T0 := ∅. We can also assume that, for any
i, no edge connects Si and Ti, since deleting it reduces both optima by 1.

Let R be the set of edges connecting distinct sets among U1, . . . , Uk. Then for
each i, any inclusionwise minimal Si − Ti path has its end edges in R and has no
other edges in R (since all internal vertices belong to Ui). Let A be the set of edges
e in R such that e is disjoint from an even number of S1, . . . , Sk, and let B := R−A.

The sets A and B have the following property. Let P be a path with only its
end edges in R. Then:

(71.28) P connects Si and Ti for some i if and only if P connects A and B.

With Theorem 71.7, this immediately proves the present corollary.
To prove (71.28), let u and w be the first and last vertex of P , let I be the set

of internal vertices of P , and let c and d be the first and last edge of P . Since only
the end edges of P are in R, we know by definition of R that there exists an i such
that each internal edge of P only meets Ui and such that u, v �∈ Ui. In other words,
I ⊆ Ui and u, w ∈ Si ∪ Ti.
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Consider any j �= i. As I ⊆ Ui and Ui ∩Uj = ∅, we know I ⊆ Sj ∪Tj . As no edge
connects Sj and Tj , either I ⊆ Sj and u, w ∈ Uj ∪Sj , or I ⊆ Tj and u, w ∈ Uj ∪Tj .
So c ∩ Sj = ∅ if and only if d ∩ Sj = ∅. Hence, by definition of A and B:

(71.29) P connects A and B ⇐⇒ precisely one of c∩Si and d∩Si is nonempty
⇐⇒ precisely one of u, w belongs to Si, the other belongs to Ti ⇐⇒
P connects Si and Ti.

So we have (71.28).

The proof method directly gives an algorithmic reduction to the (one-com-
modity) disjoint paths problem. (Kleitman [1971] and Kant [1974] describe other
methods.)

71.4d. Further notes

Itai and Zehavi [1984] showed that if G = (V, E) is a graph and s1, t1, s2, t2 ∈ V are
such that for i = 1, 2, there exist k edge-disjoint si −ti paths, then for each choice of
d1, d2 with d1+d2 = k, there exist d′

1 and d′
2 with d′

1+d′
2 = k, d1 ≤ d′

1 ≤ d1+1, and
a collection of edge-disjoint paths such that d′

i of them connect si and ti (i = 1, 2).
The integer 2-commodity flow problem is solvable in polynomial time if G + H

is planar — see Section 74.2b.
Rebman [1974] studied a generalization of totally unimodular matrices appro-

priate for 2-commodity flows.



Chapter 72

Three or more commodities

Hu’s 2-commodity theorem concerns multiflows where the demand graph
H consists of two edges — whatever the supply graph is. In this chapter
we consider to which extent Hu’s theorem can be generalized to other de-
mand graphs. That is, we study for which graphs H = (T, R) it is true
that for each graph G = (V, E) with V ⊇ T and each capacity and demand
functions the phenomena described in the previous chapter are maintained
(sufficiency of the cut condition, existence of a half-integer multiflow, suf-
ficiency of the Euler condition to obtain an integer multiflow).
Results of Papernov [1976], Lomonosov [1976,1985], and Seymour [1980c]
give an answer to this question: the graphs H are those containing neither
of the two graphs in Figure 72.1 below as a subgraph. These are exactly
the graphs H that are the union of two stars or are equal to K4 or C5 (up
to adding isolated vertices, loops, and parallel edges).
Except if stated otherwise, throughout this chapter G = (V, E) and H =
(T, R) denote the supply and demand graph, in the sense of Chapter 70.
The pairs in R are called the nets. If s1, t1, . . . , sk, tk are given, then R :=
{s1t1, . . . , sktk}. If demands d1, . . . , dk are given, then d(siti) = di. We
denote G + H = (V, E ∪ R), where the disjoint union of E and R is taken,
respecting multiplicities.

72.1. Demand graphs for which the cut condition is
sufficient

Consider for any graph H = (T,R) the following property:

(72.1) H has neither of the two graphs of Figure 72.1 as a subgraph.

Theorem 72.1. Let H = (T,R) be a simple graph without isolated vertices.
Then H satisfies (72.1) if and only if H = K4, or H = C5, or H is the union
of two stars.

Proof. Sufficiency is direct. Necessity is shown by induction on |R|. If all
degrees of H are at most 2, the theorem is easy. Assume now that H has a
vertex u of degree at least 3. For any edge e = uw incident with u, if H − e
is K4 or C5 (after deleting any isolated vertex), then H contains one of the
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(a) (b)

Figure 72.1

graphs in Figure 72.1. So H − e 	= K4 and H − e 	= C5. Hence, by induction,
there exist two vertices s, t such that each edge of H − e intersects {s, t}. If
u ∈ {s, t}, then H is the union of two stars. So we can assume that u 	∈ {s, t}.
Hence each neighbour v of u with v 	= w belongs to {s, t}. So u has degree 3,
and each edge f of H not incident with u connects two neighbours of u (as
any neighbour of u can serve as w). So H = K4.

The following theorem extends Theorem 71.1 and Corollary 71.1c, and
was proved by Lomonosov [1976,1985] and Seymour [1980c] for H = K4, and
by Lomonosov [1976,1985] for H = C5. The proof below is inspired by the
direct proof given by Frank [1990e]. (Here G + H is the graph (V,E ∪ R),
taking multiplicities of edges into account.)

Theorem 72.2. Let G = (V,E) and H = (T,R) be supply and demand
graphs, with T ⊆ V . Let H = (T,R) satisfy (72.1), with G + H Eulerian.
Then there exist edge-disjoint paths Pr (for r ∈ R) such that Pr connects the
vertices in r if and only if the cut condition holds.

Proof. Necessity being easy, we show sufficiency. Let G,H form a counterex-
ample with |E| + |R| minimal. Then G is connected. Also, there is no net
r ∈ R parallel to an edge e ∈ E, since otherwise deleting r and e would give
a smaller counterexample.

Call a subset U of V tight if dE(U) = dR(U).17 By the minimality of the
counterexample we have18

(72.2) for each pair of edges e and f incident with a vertex v there is a
tight set splitting both e and f .

Otherwise we can replace e = uv and f = wv by a new edge uw to obtain a
smaller counterexample.

Another observation is:19

17 As usual, dE(U) = |δE(U)| and dR(U) = |δR(U)|.
18 A set X splits a pair uv if X contains exactly one of u and v.
19 F [X, Y ] denotes the set of pairs xy in F with x ∈ X and y ∈ Y .
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(72.3) for each tight set X and each v ∈ V \ X we have |E[X, v]| −
|R[X, v]| ≤ 1

2 (degE(v)− degR(v)),

since, setting X ′ := X ∪{v} we have dE(X ′) = dE(X)+degE(v)−2|E[X, v]|
and dR(X ′) = dR(X) + degR(v) − 2|R[X, v]|. Then dE(X) = dR(X) and
dE(X ′) ≥ dR(X ′) give (72.3).

The following is also useful to observe:

(72.4) if X and Y are tight, and no net connects X \Y and Y \X, then
X ∩ Y and X ∪ Y are tight again, and no edge connects X \ Y
and Y \X.

To see this, consider:

(72.5) dR(X) + dR(Y ) = dE(X) + dE(Y )
= dE(X ∩ Y ) + dE(X ∪ Y ) + 2|E[X \ Y, Y \X]|
≥ dE(X ∩ Y ) + dE(X ∪ Y ) ≥ dR(X ∩ Y ) + dR(X ∪ Y )
= dR(X) + dR(Y ).

So we have equality throughout, proving (72.4).
This implies:

(72.6) let B be a set of vertices intersecting all nets, and let X and Y
be tight sets with X ∩ B = Y ∩ B. Then X ∩ Y and X ∪ Y are
tight.

Otherwise, by (72.4) there is a net connecting X \ Y and Y \X, and hence
not intersecting B, a contradiction.

We next show that for each terminal t:20

(72.7) degE(t) = degR(t).

Assume degE(t) > degR(t). Let X be the collection of inclusionwise maximal
tight subsets of V \{t}. For each edge or net p, let Xp denote the set of U ∈ X
splitting p.

We have |Xe| ≥ 2 for each edge e ∈ δE(t), since by (72.2), each pair of
edges incident with t is split by some U ∈ X , and since no tight set X splits
all edges incident with t simultaneously, as it would imply

(72.8) dE(X ∪ {t}) = dE(X)− degE(t) = dR(X)− degE(t)
< dR(X)− degR(t) ≤ dR(X ∪ {t}).

Also we have |Xr| ≤ 2 for each r ∈ δR(t), and we have |X | ≤ 4. Indeed, let
r = st. By (72.1), there exists a vertex u such that each net intersects B :=
{s, t, u}. Therefore, by (72.6), any two sets in X have a different intersection
with B (as otherwise their union is tight, contradicting their maximality). As
no set in X contains t, we have the required inequalities.

This gives with (72.3):
20 A terminal is a vertex covered by at least one net.
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(72.9) 2(degE(t)− degR(t)) ≤
∑

e∈δE(t)

|Xe| −
∑

r∈δR(t)

|Xr|

=
∑

U∈X
(|E[U, t]| − |R[U, t]|) ≤ 1

2 |X |(degE(t)− degR(t))

≤ 2(degE(t)− degR(t)).

Hence equality holds throughout in (72.9). So |X | = 4, |Xe| = 2 for each
e ∈ δE(t), and |Xr| = 2 for each r ∈ δR(t). Hence the Xe form a graph
on the vertex set X , such that any two of its edges intersect (by (72.2)),
but no vertex is in all edges (since no tight set splits all edges in δE(t)). So
there is a U ∈ X contained in no Xe; that is, E[U, t] = ∅. Since we have
equality in (72.3) (as we have equality throughout in (72.9)), it follows that
degE(t)− degR(t) = 0, that is, we have (72.7).

(72.7) implies that

(72.10) no two terminals s and t are adjacent,

since otherwise dE({s, t}) < degE(s) + degE(t) = degR(s) + degR(t) =
dR({s, t}), contradicting the cut condition.

Now choose st ∈ R. By (72.1), there is a vertex u 	∈ {s, t} such that each
commodity disjoint from st intersects u. We can assume that u is a terminal,
as otherwise s and t are the only terminals, in which case the theorem follows
from Menger’s theorem. Since, by (72.7), V \ {u} is tight, there exists a tight
subset Z which is inclusionwise minimal under the conditions that s, t ∈ Z
and u 	∈ Z.

Then s has a neighbour v ∈ Z. Otherwise we have

(72.11) dE(Z) = degE(s)+dE(Z \{s}) ≥ degR(s)+dR(Z \{s}) > dR(Z)

(as s, t ∈ Z), contradicting the tightness of Z.
Let Y be the collection of all inclusionwise maximal tight subsets of V \{v}

containing s. By (72.10), v is not a terminal. Hence, by (72.3), |E[Y, v]| ≤
1
2 degE(v) for each Y ∈ Y. Therefore, since (by (72.2)) each edge incident
with v is split by at least one Y ∈ Y, we have |Y| ≥ 3.

Then by (72.6), the sets in Y all have different intersections with {t, u}.
(By definition, each set in Y contains s.) Moreover, Y ∩ {t, u} 	= {t} for each
Y ∈ Y, since otherwise also Y ∩ Z is tight (by (72.6), as Z ∩ {t, u} = {t}),
contradicting the minimality of Z (note that v 	∈ Y ∩ Z).

So |Y| = 3 and the sets in Y intersect {t, u} in ∅, {u}, and {t, u}— denote
these sets by S, U , and W , respectively (cf. Figure 72.2).

By the maximality of S, U , and W , S ∪ U and U ∪ W are not tight.
Hence, by (72.4), there is a net γ connecting S \ U and U \ S, and a net δ
connecting W \ U and U \W . Then γ and δ intersect {s, t, u}. As s, t 	∈ γ
(since s, t ∈ S ∩ U) and u 	∈ S \ U , we know γ = uw for some w ∈ S \ U . As
s, u 	∈ δ (since s ∈ S ∩W and u 	∈ S ∪W ) and t 	∈ U \W , we know δ = tx for
some x ∈ U \W . As st and tx are disjoint from uw, each net disjoint from
uw contains t.
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S

W

U

s tu v

Figure 72.2

However, as edge sv connects W ∩ S and V \ (W ∪ S), by (72.4) (applied
to X := W and Y := V \ S), there is a net sa connecting these two sets.
Then a 	= u,w, t, and therefore sa is disjoint from u,w, t, a contradiction.

(a) (b)

Figure 72.3
Examples where the cut and Euler conditions hold, but no
fractional multiflow exists. The heavy lines are the nets and the
other lines the edges. All capacities and demands are equal to 1.

Theorem 72.2 also holds if H consists of three disjoint edges — see The-
orem 72.3. The examples in Figure 72.3 (from Papernov [1976]) show that
the condition on the demand graph H in Theorem 72.2 is close to tight.
This is made more precise in the following characterization implied by Theo-
rem 72.2 (the equivalence (i)⇔(iv)⇔(v) is due to Papernov [1976], the other
equivalences to Lomonosov [1976,1985] and (for K4) to Seymour [1980c]):

Corollary 72.2a. For each simple graph H = (T,R) without isolated ver-
tices, the following are equivalent:

(72.12) (i) for each graph G = (V,E) with V ⊇ T , and each c : E → R+
and d : R → R+, the cut condition implies the existence of a
fractional multiflow;
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(ii) for each graph G = (V,E) with V ⊇ T , and each c : E → Z+
and d : R → Z+, the cut condition implies the existence of a
half-integer multiflow;

(iii) for each graph G = (V,E) with V ⊇ T , and each c : E →
Z+ and d : R → Z+, the cut and Euler conditions imply the
existence of an integer multiflow;

(iv) H contains none of the graphs in Figure 72.1 as subgraph;
(v) H = K4, or H = C5, or H is the union of two stars.

Proof. The equivalence (iv)⇔(v) was shown in Theorem 72.1. The implica-
tions (iii)⇒(ii)⇒(i) are general multiflow theory, while (i)⇒(iv) follows from
the examples of Figure 72.3. The implication (iv)⇒(iii) follows from Theorem
72.2, by replacing each edge of G by c(e) parallel edges and each edge of H
by d(e) parallel edges.

Karzanov [1979b] gave a strongly polynomial-time algorithm finding a
half-integer multiflow as required if H satisfies (72.12)(iv) (or finding a cut
violating the cut condition).

72.2. Three commodities

An important case excluded by the theorems in the previous sections is that
of a demand graph consisting of three disjoint edges, with d = 1.

Theorem 72.3. Let G = (V,E) and H = (T,R) be graphs, with T ⊆ V ,
such that G+H is Eulerian and such that R consist of three disjoint edges.
Then there exist edge-disjoint paths Pr (for r ∈ R) such that Pr connects the
vertices in r if and only if the cut condition holds.

Proof. Let R = {r1, r2, r3}. Let G be a counterexample with a minimum
number of edges. Then G is connected, and each vertex of G has degree at
least two. Call U ⊆ V tight if dE(U) = dR(U). Also:

(72.13) dR(U) = 3 for each tight nonempty proper subset U of V .

To see this, let U be a counterexample with dE(U) smallest. Then G[U ] and
G−U are connected. (Otherwise we could replace U by one of the components
K of G[U ] or G − U , while dE(K) < dE(U).) Also, dR(U) = dE(U) ≥ 1 as
G is connected. So we can assume that r1 ∈ δR(U) and that V \ U spans
r2. Contract U to obtain graph G/U . As the cut condition remains to hold,
and as G/U is smaller than G (since |U | ≥ 2, as dE(v) ≥ 2 > dR(v) for
each v ∈ V ), G/U contains edge-disjoint paths Q1 and Q2 where Qi connects
(the contractions of) the vertices in ri (i = 1, 2). As G[U ] is connected, G[U ]
contains a path connecting the vertex in r1 ∩ U and the end of the edge in
δE(U) that is traversed by Q1. It follows that G contains two edge-disjoint
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paths P1 and P2 where Pi connects the vertices in ri (i = 1, 2). Removing
the edges of P1 and P2 from G, we are left with a graph with exactly two
vertices of odd degree, namely the vertices in the pair r3. Hence this graph
contains a path P3 connecting the vertices in r3. Then P1, P2, and P3 are as
required. This is a contradiction, proving (72.13).

Consider now any r = st ∈ R and any edge tu of G incident with t.
Let R′ := (R \ {st}) ∪ {su}. Let G′ = (V,E′) be the graph obtained from
G by deleting edge tu. If the cut condition holds for G′, R′, we obtain (by
induction) three paths in G′ that directly yields paths as required in G. So we
can assume that there is a subset U of V with dR′(U) > dE′(U) and t 	∈ U .
As G′ +H ′ is Eulerian, we know dR′(U) ≥ dE′(U) + 2. Then

(72.14) dR(U) ≥ dR′(U)− 1 ≥ dE′(U) + 1 ≥ dE(U) ≥ dR(U).

So we have equality throughout, and hence dE(U) = dR(U), and s 	∈ U ,
u ∈ U (otherwise dR′(U) ≥ dR(U)). So dR(U) ≤ 2, contradicting (72.13).

With Theorem 72.2, this implies the following characterization:

Corollary 72.3a. For any loopless graph H = (T,R) without isolated ver-
tices, the following are equivalent:

(72.15) (i) for each graph G = (V,E) with V ⊇ T satisfying the cut and
Euler condition (with respect to H), the edge-disjoint paths
problem has a solution;

(ii) T has two vertices intersecting all pairs in R, or |T | ≤ 4, or H
is C5 with parallel edges added, or R consists of three disjoint
edges;

(iii) H has no subgraph equal to , , , , or .

Proof. The implication (iii)⇒(ii) follows from Theorem 72.1. The implica-
tion (ii)⇒(i) follows from Theorems 72.2 and 72.3. The implication (i)⇒(iii)
follows from the examples in Figure 72.3, since from each of graphs given
in (iii) we can obtain or , by identifying some vertices. Then from the
examples in Figure 72.3 we can obtain examples for the graphs in (iii) by
adding two parallel edges between any pair of identified vertices.

Notes. For |R| = 3, Okamura [1984a] showed that the cut condition implies the
existence of a half-integer solution for the edge-disjoint paths problem. (This seems
not to follow from Theorem 72.3. On the other hand, having Okamura’s result,
to prove Theorem 72.3 it suffices to show that if the Euler condition holds and a
half-integer solution exists, there is an integer solution.)

This implies the following characterization, extending Corollary 72.3a.

Theorem 72.4. For any loopless graph H = (T, R) without isolated vertices, the
following are equivalent:
(72.16) (i) for each graph G = (V, E) with V ⊇ T satisfying the cut condition,

the edge-disjoint paths problem has a fractional solution;
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(ii) for each graph G = (V, E) with V ⊇ T satisfying the cut condition,
the edge-disjoint paths problem has a half-integer solution;

(iii) for each graph G = (V, E) with V ⊇ T satisfying the cut and Euler
condition, the edge-disjoint paths problem has a solution;

(iv) T has two vertices intersecting all pairs in R, or |T | ≤ 4, or H is
C5 with parallel edges added, or R consists of three disjoint pairs;

(v) H has no subgraph equal to , , , , or .

Figure 70.4 shows that there is no integer p such that if a 3-commodity problem,
with integer capacities and demands, has a fractional solution, then it has a 1/p-
integer solution. More precisely, for each integer k ≥ 2, there is a graph G = (V, E)
and a collection R of three disjoint pairs from V , such that for c : E → Z+ defined
by c(e) = 1 for each edge e and d : R → Z+ with values 1, 2k, 2k respectively, there
is a fractional multiflow, but each feasible solution has some of its values equal to
1/2k.

By doubling capacities and demands, one obtains an example of a 3-commodity
flow problem satisfying the Euler condition, where a fractional but no half-integer
multiflow exists. A variant of the example gives a 3-commodity flow problem satis-
fying the Euler condition, where a half-integer but no integer solution exists.

M. Middendorf and F. Pfeiffer (cf. Pfeiffer [1990]) showed that it is NP-complete
to decide if the edge-disjoint paths problem has a half-integer solution, even if the
nets consist of three disjoint parallel classes of edges. This implies a result of Vygen
[1995] that it is NP-complete to decide if the edge-disjoint paths problem has a
solution, even if the nets consist of three disjoint parallel classes of edges and the
Euler condition holds.

Let H6 be the graph obtained from K3,3 by adding in each of the two colour
class one new edge (cf. Figure 72.3(a)). Seymour [1981a] showed for each graph
G = (V, E):

(72.17) G has no H6 minor if and only if for each R ⊆ E with |R| ≤ 3 and
each c : E \ R → Z+ and d : R → Z+ satisfying the Euler condition,
the cut condition implies the existence of an integer multiflow (where
(V, E \ R) is the supply graph).

The proof is by showing that each 3-connected graph without H6 minor is K5 or
has no K5 minor, and hence can be decomposed into planar graphs and copies of
V8 (Wagner’s theorem (Theorem 3.3)).

72.2a. The K2,3-metric condition

Karzanov [1987a] showed that a strengthened form of the cut condition, the ‘K2,3-
metric condition’, is sufficient for having a fractional multiflow for a class of demand
graphs larger than described in Section 72.1.

This is described as follows. Let Γ be a graph and let V be a finite set. A metric
µ on V is called a Γ -metric if there is a function φ : V → V Γ with

(72.18) µ(u, v) = distΓ (φ(u), φ(v))

for all u, v ∈ V . (Here distΓ (x, y) denotes the distance of x and y in Γ .)
Γ -metrics give rise to the following necessary condition, the Γ -metric condition,

for the existence of a feasible fractional multiflow:
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(72.19)
∑

r=st∈R

d(r)µ(s, t) ≤
∑

e=uv∈E

c(e)µ(u, v) for each Γ -metric µ on V .

This is a specialization of condition (70.11). Since each cut gives a K2-metric, and
hence a K2,3-metric, condition (72.19) includes the cut condition.

Karzanov [1987a] showed:

Theorem 72.5. Let G = (V, E) be a graph and let H = (T, R) be a complete graph
with |T | = 5 and T ⊆ V . Let c : E → R+ and d : R → R+. Then there exists a
fractional multiflow if and only if the K2,3-metric condition holds. If moreover c
and d are integer, there is a half-integer multiflow. If moreover the Euler condition
holds, there is an integer multiflow.

Theorem 72.5 implies the following characterization:

Corollary 72.5a. For each simple graph H = (T, R) without isolated vertices, the
following are equivalent:

(72.20) (i) for each graph G = (V, E) with V ⊇ T , and each c : E → Z+

and d : R → Z+, the existence of a fractional solution implies the
existence of a half-integer solution;

(ii) for each graph G = (V, E) with V ⊇ T , and each c : E → Z+ and
d : R → Z+, the Euler condition and the existence of a fractional
solution imply the existence of an integer solution;

(iii) H has no three disjoint edges and no two disjoint triangles;
(iv) |V H| = 5, or H is the union of a triangle and a star, or H is the

union of two stars.

That (72.20)(iv) implies (72.20)(i) follows from Theorem 72.5, as we can replace
a star with center s by an edge sw, where w is a new vertex, with the construc-
tion of Dinits given in the proof of Corollary 71.1c. Conversely, (72.20)(i) implies
(72.20)(iii). It requires giving a counterexample if H consists of three disjoint edges,
and one if H consists of two disjoint triangles. If H consists of three disjoint edges,
a counterexample was given in Figure 70.4. If H consists of two disjoint triangles, a
counterexample follows (by doubling all capacities and demands) from Figure 72.4
(A.V. Karzanov, personal communication 2000), where c and d are integer, and
where a quarter-integer, but no half-integer solution exists.

Karzanov [1991] conjectures that if R consists of two disjoint triangles and c
and d are integer and satisfy the Euler condition, then the existence of a fractional
solution implies the existence of a half-integer solution21. This would imply that
for each fixed graph H = (T, R) the following equivalences holds:

(72.21) (?) there is an integer k such that for each graph G = (V, E) with
V ⊇ T and each c : E → Z+ and d : R → Z+, if there is a feasible
multiflow, then there exists a 1

k
-integer multiflow

⇐⇒ for each graph G = (V, E) with V ⊇ T and each c : E → Z+

and d : R → Z+, if there is a feasible multiflow, then there exists a
1
4 -integer multiflow
⇐⇒ H has no three disjoint edges. (?)

21 A proof of this was announced in Karzanov [1987a], but A.V. Karzanov communicated
to me that the proof failed.
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Figure 72.4
A quarter-integer multiflow exists, but no half-integer multi-
flow. The nets (indexed by 1, . . . , 6) are indicated by indices at ver-
tices. All capacities and demands are 1. The quarter-integer multiflow
is indicated by indices at the edges: k times index i at edge e means
fi(e) = k

4 .
The nonexistence of a half-integer multiflow can be seen as follows.
Give each of the (three) edges that connect terminals length 2, and any
other edge length 1. Then the distance between the two terminals in
any net is 4. Also, the sum of the lengths of the edges equals 24. So
any flow fi in a half-integer multiflow, can be decomposed as half of
the sum of two flows following si − ti paths Pi,1 and Pi,2 of length 4.
Moreover, on each edge, the capacity is fully used. Hence, each vertex v
of degree 3 not being a terminal, is traversed by three paths Pi,j , each
using a different pair of edges incident with v. One easily checks that
this is not possible.

Karzanov [1998d] studied the existence of an integer multiflow if the nets form a
disjoint union of a triangle and an edge.

72.2b. Six terminals

Okamura [1987] showed the following. Let G = (V, E) and H = (T, R) be a supply
and a demand graph. If |T | ≤ 6 and k := |R| is odd, and if moreover G has k
edge-disjoint s − t paths, for each st ∈ R, then there exists a family (Pr | r ∈ R) of
edge-disjoint paths in G, where Pr connects the ends of r (for r ∈ R). (For |T | ≤ 5
this was proved in Okamura [1984b].)

Okamura [1998] showed that if |T | ≤ 6 and G is l-edge-connected, where

(72.22) l := max
U⊆V

dR(U),
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then the edge-disjoint paths problem has a half-integer solution (that is, for each
r ∈ R there exist paths P ′

r and P ′′
r connecting the ends of r, such that each edge

of G is in at most two of the paths P ′
r, P

′′
r (over all r ∈ R)). She conjectures that

here the condition |T | ≤ 6 can be deleted.

72.3. Cut packing

By Theorem 70.5, Corollary 72.2a implies a fractional cut packing theorem.
A stronger (integer) version of it was proved by Karzanov [1985b], which
generalizes Theorem 71.3 (we follow the proof given in Schrijver [1991e]):

Theorem 72.6. Let G = (V,E) be a connected bipartite graph and let H =
(T,R) be a simple graph satisfying (72.1), with T ⊆ V . Then G has disjoint
cuts such that for each st ∈ R, distG(s, t) is equal to the number of these cuts
separating s and t.

Proof. Let G = (V,E) be a counterexample with |E| as small as possible.
Define d(u, v) := distG(u, v) for u, v ∈ V . We first show:

(72.23) for each nonempty cut C there exist a pair st ∈ R and an s − t
path P with |EP \ C| ≤ d(s, t)− 2.

If not, contract all edges in C, giving graph G′. Then for all st ∈ R we have

(72.24) d′(s′, t′) =
{
d(s, t)− 1 if C separates {s, t},
d(s, t) if C does not separate {s, t}.

(Here and below, v′ denotes the image of v in G, and d′ denotes the distance
function of G′.) As G is a smallest counterexample, G′ has disjoint cuts
C1, . . . , Ct such that d′(s′, t′) is equal to the number of cuts separating s′ and
t′, for each st ∈ R. Together with C this gives, in the original graph G, cuts
as required, by (72.24). This proves (72.23).

From (72.23) we derive:

(72.25) for all u,w ∈ V , there exists a pair st ∈ R such that {s, t} ∩
{u,w} = ∅ and such that

d(s, t) + d(u,w) ≥ d(s, w) + d(u, t) and
d(s, t) + d(u,w) ≥ d(s, u) + d(w, t).

To prove this, let X be the set of vertices that are on at least one shortest
u− w path.

First, suppose that X = V . By (72.23), there exist st ∈ R and an s − t
path P with |EP \ δ(u)| ≤ d(s, t)− 2. So P is a shortest s− t path traversing
u, and u 	= s, t. To see that w 	= s, t, suppose w = t, say. Then, as d(u,w) =
d(u, s) + d(s, w) (since s ∈ X),

(72.26) |EP \ δ(u)| = |EP | − 2 = d(s, u) + d(u, t)− 2
= d(s, u) + d(u,w)− 2 = 2d(s, u) + d(s, w)− 2 > d(s, w)− 2
= d(s, t)− 2,
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a contradiction. So {s, t} ∩ {u,w} = ∅. Moreover,

(72.27) d(s, t) + d(u,w) = d(s, t) + d(u, s) + d(s, w) ≥ d(s, w) + d(u, t).

One similarly shows the second inequality in (72.25).
Second, suppose that X 	= V . Let C := δ(X), and let G′ be the graph

obtained from G by contracting all edges in C. Then for each vertex x:

(72.28) d′(u′, x′) ≥ d(u, x)− 1 and d′(w′, x′) ≥ d(w, x)− 1.

To see the first inequality, let P be a u−x path in G with |EP \C| = d′(u′, x′).
Choose P with |EP ∩ C| smallest. If the first inequality does not hold, then
|EP ∩ C| ≥ 2. Then we can split P as P ′P ′′ such that |EP ′ ∩ C| = 2. Let
P ′ connect u and v. As |EP ′ ∩ C| = 2 and u ∈ X we know v ∈ X. Since P ′

is not fully contained in X, we know that |EP ′| ≥ d(u, v) + 2. Let Q be a
shortest u − v path in G. Then |EQ| = d(u, v) ≤ |EP ′| − 2, and Q is fully
contained in X. Let R be the concatenation QP ′′. Then |ER \C| ≤ |EP \C|
and |ER∩C| = |EP ∩C|−2, contradicting the minimality of |EP ∩C|. This
shows the first inequality in (72.28); the second inequality is proved similarly.

By (72.23), there exists st ∈ R such that d′(s′, t′) ≤ d(s, t) − 2. Then
(72.28) implies {s, t} ∩ {u,w} = ∅. Moreover, there exist a v ∈ X and a
shortest s′ − t′ path in G′ traversing v′. Hence

(72.29) d(s, t) + d(u,w) ≥ d′(s′, t′) + d(u,w) + 2
= d′(s′, v′) + d′(v′, t′) + d(u, v) + d(v, w) + 2
≥ d′(s′, v′) + d′(v′, t′) + d′(u′, v′) + d′(v′, w′) + 2
≥ d′(s′, w′) + d′(u′, t′) + 2 ≥ d(s, w) + d(u, t).

This gives the first inequality in (72.25); the second inequality is proved
similarly.

(72.25) implies that for each pair {u,w} of vertices of G there exists an
st ∈ R disjoint from {u,w}. So H is not the union of two stars, and hence
H = K4 or H = C5 (up to isolated vertices, which we can ignore).

If H = K4, let T = {r1, r2, r3, r4}. Then by (72.25):

(72.30) d(r1, r2) + d(r3, r4) ≥ d(r1, r3) + d(r2, r4) ≥ d(r1, r4) + d(r2, r3)
≥ d(r1, r2) + d(r3, r4).

Hence we have equality throughout, that is

(72.31) d(t, u) + d(v, w) = d(t, v) + d(u,w) for all distinct t, u, v, w ∈ T .

This implies that there exists a function φ : T → R+ such that d(u, v) =
φ(u) + φ(v) for each two distinct u, v ∈ T . (Indeed, let φ(v) := 1

2 (d(u, v) +
d(v, w) − d(u,w)) for arbitrary u,w with v 	= u 	= w 	= v. That this is
independent of the choice of u,w follows from (72.31).)

Since all vertices are distinct, d(u, v) > 0 for all distinct u, v ∈ T , and
so φ(v) > 0 for at least one v ∈ T . By (72.23), there exist st ∈ R and
an s − t path P such that |EP \ δ(v)| ≤ d(s, t) − 2. So P traverses v, and
|EP | = d(s, t) = φ(s) + φ(t). However,
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(72.32) |EP | ≥ d(s, v) + d(v, t) = φ(s) + 2φ(v) + φ(t) > φ(s) + φ(t),

a contradiction.
If H = C5, let T = {r1, . . . , r5} and R = {riri+1 | i = 1, . . . , 5}, taking

indices mod 5. Applying (72.25) to u := ri and w := ri+2, we obtain st =
ri+3ri+4 (as it is the unique pair in R disjoint from {u,w}), and hence

(72.33) d(ri, ri+2) + d(ri+3, ri+4) ≥ d(ri, ri+3) + d(ri+2, ri+4)
(i = 1, . . . , 5),

d(ri, ri+2) + d(ri+3, ri+4) ≥ d(ri, ri+4) + d(ri+2, ri+3)
(i = 1, . . . , 5).

Adding up these ten inequalities, we obtain the same sum at both sides of
the inequality sign. So we have equality in each of (72.33). This is equivalent
to (72.31), and we obtain a contradiction in the same way as above.

(a) (b)

Figure 72.5
The heavy lines are the edges of H, the other lines those of G. In both
cases, G has no disjoint cuts such that for any edge r in H, the distance
in G between the vertices in r is equal to the number of cuts separating
them.

We cannot delete condition (72.1) in Theorem 72.6, as is shown by the
examples given in Figure 72.5.

Notes. Karzanov [1985b] gave an O(n3) algorithm to find the cut packings of
Theorem 72.6 (also for the weighted case). Theorem 72.2 can also be derived from
Theorem 72.6, with the help of Theorems 70.5 and 70.7.

Karzanov [1990b] extended these cut packing results to packing K2,3-metrics
(cf. Section 72.2a):

(72.34) Let G = (V, E) be a bipartite graph and let T ⊆ V with |T | = 5. Then
there exist K2,3-metrics µ1, . . . , µk such that distG(u, v) ≥ µ1(u, v) +
· · · + µk(u, v) for all u, v ∈ V , with equality if u, v ∈ T .
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T -paths

We now go over to the problem of finding a maximum number of disjoint
paths whose ends are two different vertices in a given set T of vertices — the
T -paths. (So the nets are all pairs of distinct vertices in T .) Fundamental
theorems of Mader imply min-max relations for this.

73.1. Disjoint T -paths

Let G = (V,E) be a graph and let T ⊆ V . A path is called an T -path if its
ends are distinct vertices in T and no internal vertex belongs to T .

Mader [1978c] gave a min-max formula for the maximum number of in-
ternally vertex-disjoint T -paths. It generalizes the undirected, vertex-disjoint
version of Menger’s theorem (by taking |T | = 2) and the Tutte-Berge for-
mula (by adding to each vertex v of a graph G a copy v′ of v and an edge
vv′; taking for T the set of new vertices, the maximum number of internally
vertex-disjoint T -paths is equal to the matching number of G).

As in Schrijver [2001], we derive Mader’s theorem from a theorem of Gallai
[1961], which we derive (as Gallai did) from matching theory (the Tutte-Berge
formula):

Theorem 73.1 (Gallai’s disjoint T -paths theorem). Let G = (V,E) be an
undirected graph and let T ⊆ V . The maximum number of disjoint T -paths
is equal to the minimum value of

(73.1) |U |+
∑

K

� 12 |K ∩ T |�

taken over U ⊆ V , where K ranges over the components of G− U .

Proof. The maximum is at most the minimum, since for each U ⊆ V , each
T -path intersects U or has its ends in K∩T for some component K of G−U .

To see equality, let µ be equal to the minimum value of (73.1). Let the
graph G̃ = (Ṽ , Ẽ) arise from G by adding a disjoint copy G′ of G − T , and
making the copy v′ of each v ∈ V \ T adjacent to v and to all neighbours of
v in G. By the Tutte-Berge formula (Theorem 24.1), G̃ has a matching M of
size µ+ |V \ T |. To see this, we must prove that for any Ũ ⊆ Ṽ :
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(73.2) |Ũ |+
∑

K̃

� 12 |K̃|� ≥ µ+ |V \ T |,

where K̃ ranges over the components of G̃ − Ũ . Now if for some v ∈ V \ T
exactly one of v, v′ belongs to Ũ , then we can delete it from Ũ , thereby not
increasing the left-hand side of (73.2).

So we can assume that for each v ∈ V \ T , either v, v′ ∈ Ũ or v, v′ 	∈ Ũ .
Define U := Ũ ∩ V . Then each component K of G−U is equal to K̃ ∩ V for
some component K̃ of G̃− Ũ . Hence

(73.3) |Ũ |+
∑

K̃

� 12 |K̃|� = |U |+
∑

K

� 12 |K ∩ T |�+ |V \ T | ≥ µ+ |V \ T |,

where K ranges over the components of G− U . Thus we have (73.2).
So G̃ has a matching M of size µ + |V \ T |. Let N be the matching

{vv′ | v ∈ V \T} in G̃. As |M | = µ+ |V \T | = µ+ |N |, the union M ∪N has
at least µ components with more edges inM than inN . Each such component
is a path connecting two vertices in T . Then contracting the edges in N yields
µ disjoint T -paths in G.

We now derive Mader’s theorem. Let G = (V,E) be a graph and let S
be a collection of disjoint subsets of V . A path in G is called an S-path if it
connects two different sets in S and has no internal vertex in any set in S.
Denote T :=

⋃S.

Theorem 73.2 (Mader’s disjoint S-paths theorem). The maximum number
of disjoint S-paths is equal to the minimum value of

(73.4) |U0|+
n∑

i=1

� 12 |Bi|�,

taken over all partitions U0, . . . , Un of V such that each S-path intersects
U0 or traverses some edge spanned by some Ui. Here Bi denotes the set of
vertices in Ui that belong to T or have a neighbour in V \ (U0 ∪ Ui).

Proof. Let µ be the minimum value of (73.4). Trivially, the maximum num-
ber of disjoint S-paths is at most µ, since any S-path disjoint from U0 and
traversing an edge spanned by Ui, traverses at least two vertices in Bi.

Fixing V , choose a counterexample E, S minimizing

(73.5) |E| − |{{x, y} | x, y ∈ V,∃X,Y ∈ S : x ∈ X, y ∈ Y,X 	= Y }|.
Then each X ∈ S is a stable set of G, since deleting any edge e spanned by X
does not change the maximum and minimum value in Mader’s theorem (as
no S-path traverses e and as deleting e does not change any set Bi), while it
decreases (73.5).



Section 73.1. Disjoint T -paths 1281

If |X| = 1 for each X ∈ S, the theorem reduces to Gallai’s disjoint T -
paths theorem (Theorem 73.1): we can take for U0 any set U minimizing
(73.1), and for U1, . . . , Un the components of G− U .

So |X| ≥ 2 for some X ∈ S. Choose s ∈ X. Define

(73.6) S ′ := (S \ {X}) ∪ {X \ {s}, {s}}.
Replacing S by S ′ decreases (73.5), but it does not decrease the minimum
in Mader’s theorem (as each S-path is an S ′-path and as

⋃S ′ = T ). Hence
there exists a collection P of µ disjoint S ′-paths.

Necessarily, there is a path P0 ∈ P connecting s with another vertex in
X (otherwise P forms µ disjoint S-paths). Then all other paths in P are
S-paths. Let u be an internal vertex of P0 (u exists, since X is a stable set).
Define

(73.7) S ′′ := (S \ {X}) ∪ {X ∪ {u}}.
Replacing S by S ′′ decreases (73.5), but it does not decrease the minimum in
Mader’s theorem (as each S-path is an S ′′-path and as

⋃S ′′ ⊇ T ). So there
exists a collection Q of µ disjoint S ′′-paths. Choose Q such that Q uses a
minimal number of edges not used by P.

Necessarily, u is an end of some pathQ0 ∈ Q (otherwiseQ forms µ disjoint
S-paths). Then all other paths in Q are S-paths. As |P| = |Q| and as u is
not an end of any path in P, there exists an end r of some path P ∈ P that
is not an end of any path in Q.

Then P intersects some path in Q (otherwise (Q \ {Q0}) ∪ {P} would
form µ disjoint S-paths). So when following P starting from r, there is a first
vertex w that is on some path in Q, say on Q ∈ Q. Let Q be split at w into
subpaths Q′ and Q′′ say (possibly of length 0). Let P ′ be the r − w part of
P .

If EQ′ 	⊆ EP and EQ′′ 	⊆ EP , we may assume that r is not in the same
class of S ′′ as the end of Q′ is. Then after replacing part Q′′ of Q by P ′, Q
remains an S ′′-path disjoint from the other paths in Q. This contradicts our
minimality assumption on Q.

So we can assume that EQ′ ⊆ EP . If P 	= P0, then after resetting Q
to P , Q remains an S ′′-path disjoint from the other paths in Q. Again this
contradicts our minimality assumption on Q.

So P = P0, and hence (since EQ′ ⊆ EP ) we have Q = Q0. Then replacing
part Q′ of Q by P ′, we obtain µ disjoint S-paths as required.

(The case splitting finishing this proof is due to A. Frank (personal commu-
nication 2002).)

Theorem 73.2 is equivalent to the original form of Mader’s theorem on
internally vertex-disjoint T -paths (instead of fully disjoint S-paths), which
reads as follows.

For any graph G, let BG(U) denote the set of vertices in U having a
neighbour that is not in U .
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Corollary 73.2a (Mader’s internally disjoint T -paths theorem). Let G =
(V,E) be a graph and let T be a stable subset of V . Then the maximum
number of internally vertex-disjoint T -paths is equal to the minimum value
of

(73.8) |U0|+
n∑

i=1

� 12 |BG−U0(Ui)|�,

where U0, U1, . . . , Un partition V \ T such that each T -path intersects U0 or
traverses some edge spanned by some Ui.

Proof. Trivially, the maximum is not more than the minimum (since each
T -path not intersecting U0 traverses at least two vertices in some Ui, hence
it traverses at least two vertices in Ui that have a neighbour out of Ui ∪U0).

To see equality, we can assume that no two vertices in T have a common
neighbour v. Otherwise we can apply induction by deleting v, which reduces
both the maximum and the minimum by 1.

Now the present corollary follows from Theorem 73.2 applied to G − T
and the collection S := {N(s) | s ∈ T}.

Mader’s internally disjoint T -paths theorem in turn implies the edge-
disjoint version, proved by Mader [1978b]:

Corollary 73.2b (Mader’s edge-disjoint T -paths theorem). Let G = (V,E)
be a graph and let T ⊆ V . Then the maximum number of edge-disjoint T -
paths is equal to the minimum value of

(73.9) 1
2

( ∑

s∈T

dE(Xs)− κ
)
,

where the Xs are disjoint sets with s ∈ Xs (for s ∈ T ), and where κ denotes
the number of components K of the graph G−⋃

s∈T Xs with dE(K) odd.

Proof. Let t be the maximum number of edge-disjoint T -paths. It is easy to
see that t cannot exceed the minimum value of (73.9).

To see equality, first observe that, if G has an edge e such that by delet-
ing e, the maximum drops by 1, we can apply induction on |E|, since the
minimum drops by at most 1.

So we can assume that no such edge exists. We make an auxiliary graph
G′ = (V ′, E′) as follows. For each u ∈ V \ T , let Wu be a stable set of size
3t+ 1. For each edge e ∈ E, let ve be a new vertex. Let ve be adjacent to all
vertices in Wu if u ∈ e, and to s ∈ T if s ∈ e. This defines the graph G′ (with
vertex set V ′ = T ∪ {ve | e ∈ E} ∪

⋃
u∈V \T Wu).

Then t is equal to the maximum number of disjoint T -paths in G′. Hence,
by Corollary 73.2a, there exist disjoint subsets U0, . . . , Un of V ′ \T such that

(73.10) each T -path in G′ intersects U0 or traverses an edge spanned by
some Ui,
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and such that

(73.11) t ≥ |U0|+
n∑

i=1

� 12 |Bi|�,

where Bi is the set of vertices in Ui having a neighbour in V ′ \ (U0 ∪ Ui).
By our assumption that the maximum does not drop by deleting any edge

e, we know that U0 contains no vertex ve.
We may assume that |Bi| ≥ 2 for each i, since if |Bi| ≤ 1, we can delete

Ui, as no T -path in G′ avoiding U0 traverses any edge spanned by Ui. This
implies that |Bi| ≤ 3� 12 |Bi|�, and hence

(73.12) |U0|+
n∑

i=1

|Bi| ≤ 3(|U0|+
n∑

i=1

� 12 |Bi|�) < 3t+ 1.

So for each u ∈ V \ T , there exists a wu ∈Wu with wu 	∈ U0 ∪B1 ∪ · · · ∪Bn.
For u ∈ T , let wu := u.

For each i = 1, . . . , n, let Yi := {u ∈ V \ T | wu ∈ Ui} and let Ei be the
set of edges e ∈ E with ve ∈ Bi. Then

(73.13) δE(Yi) ⊆ Ei

for each i = 1, . . . , n. To see this, let e ∈ δE(Yi), with e = uv and u ∈ Yi and
v 	∈ Yi. Then u ∈ Yi implies wu ∈ Ui. Hence wu ∈ Ui \ Bi, implying ve ∈ Ui.
As v 	∈ Yi, we know wv 	∈ Ui. Hence ve has a neighbour out of U0 ∪ Ui, and
so ve ∈ Bi. Therefore, e ∈ Ei, proving (73.13).

Hence no edge of G connects two different Yi and Yj (since Ei ∩Ej = ∅).
Suppose now that G−Y1−· · ·−Yn contains a T -path P . Route P as a T -path
P ′ in G′, by replacing each edge of P by ve and any u ∈ V \ T by wu. Then
P ′ is disjoint from U0. So P ′ traverses an edge spanned by some Ui. Then
P ′ traverses a vertex wu ∈ Ui for some u ∈ V \ T . Hence P traverses Yi, a
contradiction.

For s ∈ T , let Xs be the set of vertices of G reachable in G−Y1−· · ·−Yn

from s. Then we have

(73.14) t ≥
n∑

i=1

� 12 |Ei|� ≥ 1
2

( ∑

s∈T

dE(Xs)− κ
)
,

where κ is the number of components K of G −⋃
s∈T Xs with dE(K) odd.

(This min-max formula was proved also in an unpublished manuscript of
Lomonosov [1978b].)

73.1a. Disjoint T -paths with the matroid matching algorithm

As Lovász [1980a] showed, Mader’s theorem can be derived from matroid matching
theory, and also a polynomial-time algorithm to find a maximum packing of T -
paths follows from it. We restrict ourselves to deriving polynomial-time solvability,
and consider the equivalent problem of finding a maximum packing of S-paths.
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Let G = (V, E) be a graph and let S1, . . . , Sk be disjoint subsets of V . Let
S := {S1, . . . , Sk} and T := S1 ∪ · · · ∪ Sk.

We can assume that each Si is a stable set. Consider the linear space (R2)V ,
considered as the set of functions x : V → R

2. For each edge e = uw of G, let Le

be the linear subspace of (R2)V given by:
(73.15) Le := {x ∈ (R2)V | x(v) = 0 for each v ∈ V \{u, w}, x(u)+x(w) = 0}.
So dim Le = 2.

Choose distinct 1-dimensional subspaces l1, . . . , lk of R
2. For each v ∈ V , let

Lv := li if v ∈ Si for some i, and Lv := {0} otherwise. Define
(73.16) Q := {x ∈ (R2)V | ∀v ∈ V : x(v) ∈ Lv}.

Let E be the collection of subspaces Le/Q (for e ∈ E) of (R2)V /Q. Then
dim(Le/Q) = 2 for each edge e, since e connects no two vertices in the same
Si (so Le ∩ Q = {0}).

For any F ⊆ E, let LF denote the corresponding collection of lines in E :
(73.17) LF := {Le/Q | e ∈ F}.

We show that for each F ⊆ E:
(73.18) LF is a matching if and only if F is a forest such that each component

of (V, F ) has at most two vertices in common with T , and at most one
with each Si.

Let X :=
∑

(Le | e ∈ F ). Then one easily checks that X consists of all x : V → R
2

with
∑

v∈K x(v) = 0 for each component K of (V, F ). So dim(X) = 2(|V | − κ),
where κ is the number of components of (V, F ). Also, dim(X ∩ Q) = 0 if and only
if each component of (V, F ) has at most two vertices in common with T , and at
most one with each Si. Now
(73.19) dim(LF ) = dim(X/Q) = dim(X) − dim(X ∩ Q) ≤ dim(X) ≤ 2|F |.
Hence LF is a matching if and only if dim(X) = 2|F | and dim(X ∩ Q) = 0. By the
previous this gives (73.18).

(73.18) then implies the following relation to S-paths:
(73.20) if G is connected, the maximum number of disjoint S-paths is equal

to ν(E) − |V | + |T |.
To see this, let t be the maximum number of disjoint S-paths. Let Π form a packing
of t S-paths and let F ′ be the set of edges contained in these paths. Extend F ′ to
a forest F such that each component of (V, F ) contains either a unique path in
Π or a unique vertex in T . Then F satisfies the condition given in (73.18), and
|F | = t + |V | − |T |. So LF forms a matching of size t + |V | − |T |, and hence
ν(E) ≥ t + |V | − |T |.

Conversely, let F ⊆ E be a matching of size ν(E). Then F = LF for some forest
F ⊆ E satisfying the condition in (73.18). Let t be the number of components of
(V, F ) intersecting T twice. Then deleting t edges from F , we obtain a forest such
that each component intersects T at most once. So |F | − t ≤ |V | − |T |, and hence
t ≥ ν(E) − |V | + |T |. This shows (73.20).

Theorem 43.4 implies with (73.20) the polynomial-time solvability of finding a
maximum packing of S-paths:
(73.21) Given a graph G = (V, E) and a collection S of disjoint subsets of V ,

a maximum number of disjoint S-paths can be found in polynomial
time.
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73.1b. Polynomial-time findability of edge-disjoint T -paths

J.C.M. Keijsper, R.A. Pendavingh, and L. Stougie (personal communication 2000)
showed that with the ellipsoid method one can derive from Mader’s edge-disjoint T -
paths theorem (Corollary 73.2b) that a maximum number of edge-disjoint T -paths
can be found in polynomial time.

To see this, let G = (V, E) be a graph and let T ⊆ V . Consider the polyhedron
P in R

E consisting of all x ∈ R
E satisfying

(73.22) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(U)) ≤ |δ(U)| − 1 for each U ⊆ V \ T with |δ(U)| odd,
(iii) x(δ(s)) ≤ x(δ(X)) for each s ∈ T and X ⊆ V

with X ∩ T = {s}.

These conditions can be tested in polynomial time: (i) is easy (one by one). To test
(ii), let G′ be the graph obtained from G by contracting T to one vertex. Moreover,
define T ′ := {v ∈ V G′ | degG′(v) odd}. Define a capacity function c by ce := 1−xe

for e ∈ E. Then (ii) is valid if and only if the minimum capacity of a T ′-cut in G′ is
at least 1. This can be tested in polynomial time (Corollary 29.6a). Finally, testing
(iii) amounts to finding a cut separating s and T \{s} of minimum capacity, taking
x as capacity function.

So by the ellipsoid method, we can optimize any linear function over P in
polynomial time. Now the maximum value λ of

(73.23) 1
2

∑

s∈T

x(δ(s))

over x ∈ P is equal to the maximum number µ of edge-disjoint T -paths in G.
The inequality λ ≥ µ follows from the fact that the incidence vectors of µ edge-

disjoint T -paths sum up to a vector x satisfying (73.22) and having (73.23) equal
to µ.

To see equality, by Corollary 73.2b there exist disjoint sets Xs (s ∈ T ) such
that s ∈ Xs and such that

(73.24) µ = 1
2

( ∑

s∈T

dE(Xs) − κ
)
,

where κ denotes the number of components K of the graph G′ := G − ⋃
s∈T Xs

with d(K) odd. This implies a dual solution of the linear program defining λ, of
value at most µ. Indeed, let x attain the maximum value of (73.23) over P . Let
W := V G′, let K be the collection of components of G′, and let F be the set of
edges connecting different sets Xs. Then

(73.25) 2λ =
∑

s∈T

x(δ(s)) ≤
∑

s∈T

x(δ(Xs)) = 2x(F ) + x(δ(W ))

= 2x(F ) +
∑

K∈K
x(δ(K)) ≤ 2|F | +

∑

K∈K
x(δ(K))

≤ 2|F | +
∑

K∈K
2� 1

2dE(K)� =
∑

s∈T

dE(Xs) − κ = 2µ.

Concluding, we have λ = µ.
This implies that µ can be determined in polynomial time. The paths can be

found explicitly by iteratively deleting edges if it does not reduce µ. Similarly, we
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can replace pairs of adjacent edges uv, vw by one edge uw, if it does not reduce µ.
We end up with a graph with µ edges spanned by T . Working our way back, we
find the required paths in the original graph.

This approach can be extended to obtain a strongly polynomial-time algorithm
for the capacitated case, where each edge e has an integer capacity c(e) and we
want to find a maximum number of T -paths such that each edge e is contained in
at most c(e) of them.

73.1c. A feasibility characterization for integer K3-flows

Seymour [1980b] showed that Corollary 73.2b also implies the following feasibility
characterization for integer K3-flows (we follow the formulation and proof given by
Frank [1990e]). The cut condition is applied to R = {s1s2, s1s3, s2s3} with demand
d(sisj) = di,j , and capacity 1:

Corollary 73.2c. Let G = (V, E) be a graph, let s1, s2, s3 ∈ V , and let d1,2, d1,3, d2,3

∈ Z+. Then there exists a collection of edge-disjoint paths such that di,j of them
connect si and sj (1 ≤ i < j ≤ 3), if and only if the cut condition holds and

(73.26) s(U1) + s(U2) + s(U3) ≥ κ

for each choice of disjoint sets U1, U2, U3 with si ∈ Ui (i = 1, 2, 3). Here s(X) :=
|δE(X)| − d(δR(X)) and κ is number of components K of G − U1 − U2 − U3 with
|δE(K)| odd.

Proof. Necessity is easy: we have

(73.27) d(δR(U1))+d(δR(U2))+d(δR(U3)) ≤ |δE(U1)|+|δE(U2)|+|δE(U3)|−κ,

since from any component K of G−U1 −U2 −U3 with |δE(K)| odd, we cannot use
all edges of δE(K).

Next we show sufficiency. We can assume that G is connected. For i = 1, 2, 3,
extend G by a new vertex ri and ki := degR(si) parallel edges connecting ri and
si. Let G′ = (V ′, E′) be the extended graph, and let T := {r1, r2, r3}. It suffices to
show that G′ has d1,2 + d1,3 + d2,3 = 1

2 (k1 + k2 + k3) edge-disjoint T -paths (since
then 1

2 (k1 + k2 − k3) = d1,2 of them connect r1 and r2; similarly for d1,3 and d2,3).
For this we can invoke Corollary 73.2b. Hence suppose to the contrary that there
exist three disjoint subsets X1, X2, X3 of V ′ with ri ∈ Xi (i = 1, 2, 3) such that

(73.28)
3∑

i=1

|δE′(Xi)| − κ < k1 + k2 + k3,

where κ denotes the number of components K of the graph G′ − X1 − X2 − X3

with dE′(K) odd.
We can assume that each Xi induces a connected subgraph of G′. For suppose

that L is a component of G′[X1] not containing r1. Let X ′
1 := X1 \ L, and let κ′

be the number of components K of G′ − X ′
1 − X2 − X3 with |δE′(K)| odd. Then

κ′ ≥ κ − |δE′(L)|, and hence

(73.29) |δE′(X ′
1)| = |δE′(X1)| − |δE′(L)| ≤ |δE′(X1)| − κ + κ′.
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So replacing X1 by X ′
1 preserves (73.28).

If si ∈ Xi for i = 1, 2, 3, then Ui := Xi \{ri} for i = 1, 2, 3 would violate (73.26).
So we can assume that s3 �∈ X3, and so X3 = {r3}.

Then we can assume that G−X1 −X2 −X3 has only one component. Otherwise
it has a component L not containing s3, and so L is not connected to X3. We can
assume that |E′[L, X1]| ≥ |E′[L, X2]|. Let X ′

1 := X1 ∪ L and let κ′ be the number
of components K of G′ − X ′

1 − X2 − X3 with |δE′(K)| odd. Then |δE′(X ′
1)| ≤

|δE′(X1)| − κ + κ′, and so replacing X1 by X ′
1 preserves (73.28).

So we may assume κ ≤ 1, and hence, as by parity the left-hand side in (73.28)
is even, we obtain the contradiction

(73.30) k1 + k2 + k3 ≥
3∑

i=1

|δE′(Xi)| − κ + 2 >

3∑

i=1

|δE′(Xi)| ≥ k1 + k2 + k3,

where the last inequality follows from the cut condition.

A polynomial-time algorithm to find a circuit traversing three prescribed ver-
tices in an undirected graph, was given by LaPaugh and Rivest [1978,1980].

73.2. Fractional packing of T -paths

If all vertices not in T have even degree, Mader’s edge-disjoint T -paths the-
orem (Corollary 73.2b) reduces to the following result of Cherkasskĭı [1977b]
and Lovász [1976b] (thus answering a question of Kupershtokh [1971]):

Corollary 73.2d. Let G = (V,E) be a graph and let T ⊆ V , with degG(v)
even for each v ∈ V \T . Then the maximum number of edge-disjoint T -paths
in G is equal to

(73.31) 1
2

∑

s∈T

γG(s).

Here γG(s) denotes the minimum size of a cut in G separating s and T \{s}.
Proof. Directly from Corollary 73.2b, since κ = 0.

This corollary has the following consequence on multiflows, also due to
Cherkasskĭı [1977b] (the fractional version was stated, with incorrect proof,
by Kupershtokh [1971]):

Corollary 73.2e. Let G = (V,E) be a graph, let T ⊆ V , and let c : E → R+
be a capacity function. Then the maximum total value of a multiflow for the
nets {st | s, t ∈ T, s 	= t} is equal to

(73.32) 1
2

∑

s∈T

γc(s),
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where γc(s) denotes the minimum capacity of a cut separating s and T \ {s}.
If all capacities are integer there is a half-integer maximum-value multiflow.
If moreover c(δ(v)) is even for each v ∈ V \T , there is an integer maximum-
value multiflow.

Proof. By continuity and compactness, we can assume that c is integer and
that c(δ(v)) is even for each v ∈ V \ T .

Replacing each edge e by c(e) parallel edges we obtain a graph to which
we can apply Corollary 73.2d. The paths obtained in the new graph give an
integer multiflow as required in the original graph.

Notes. Karzanov [1979a] gave an O(MF(n, m) · log |T |) algorithm to find a half-
integer maximum-value multiflow for integer c. (MF(n, m) is the time needed to find
a maximum flow in a digraph with n vertices and m arcs.) Ibaraki, Karzanov, and
Nagamochi [1998] extended this algorithm to obtain an integer solution if c(δE(v))
is even for each v ∈ V \ T . They also gave an extension to directed graphs.

Lovász [1976b] mentioned the following consequence of Corollary 73.2b:

(73.33) Let G = (V, E) be a graph and let c : E → Z+ be a capacity function
with c(δ(v)) even for each v ∈ V . Then for each u ∈ V , the maximum
number of circuits in G that traverse u, such that no edge e is in more
than c(e) of these circuits, is equal to half of the minimum capacity of
a family of edges meeting each circuit through u at least twice.

To prove this, let s1, . . . , sd be the neighbours of u. Replace u by d new vertices
u1, . . . , ud, and for each i = 1, . . . , d, add c(usi) parallel edges connecting ui and
si. Moreover, replace each edge e of G not containing u by c(e) parallel edges.
Then the assertion follows from Corollary 73.2b applied to the new graph and to
T := {u1, . . . , ud}.

73.2a. Direct proof of Corollary 73.2d

Let G, T form a counterexample with |V | + |E| as small as possible. Let µ be equal
to (73.31). Then:

(73.34) for any s ∈ T and any minimum-size cut δ(U) separating s and T \{s},
with U ∩ T = {s}, one has U = {s}.

To see this, suppose U �= {s}. Contract U to one vertex, s′ say, obtaining graph
G′. Let T ′ := (T \ {s}) ∪ {s′}. By the minimality of G, G′ contains µ′ edge-disjoint
T ′-paths, where µ′ equals (73.31) for G′, T ′. Each edge in δ(U) belongs to one of
these T ′-paths (as in G′ it is a minimum-size cut separating s′ and T ′ \ {s′}). Let
G′′ be the graph obtained from G by contracting V \U to one new vertex, u say. By
the minimality of δ(U), G′′ contains dE(U) edge-disjoint s − u paths (by Menger’s
theorem). By concatenation, we find µ′ edge-disjoint T -paths in G. As µ′ ≥ µ, this
contradicts the fact that G is a counterexample. This proves (73.34).

As G, T form a counterexample, there is at least one vertex v ∈ V \ T with at
least two different neighbours. Let uv and vw be two of the edges incident with v,
with u �= w. Replacing these two edges by one new edge uw, we obtain a graph G′′′.
As G is a counterexample, G′′′ has no µ edge-disjoint T -paths. As G′′′ is smaller
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than G, it is no counterexample, and so there is an s ∈ T with γG′′′(s) < γG(s).
Hence there is a U ⊆ V with U ∩ T = {s} and dG′′′(U) < γG(s). Then, by parity,
dG′′′(U) ≤ γG(s) − 2, and hence dG(U) ≤ γG(s). So by (73.34), U = {s}. Hence
dG(U) = dG′′′(U) < γG(s), a contradiction.

By similar methods one may prove an analogous result for directed graphs,
due to M.V. Lomonosov (cf. Karzanov [1979b]) and Frank [1989]: Given a digraph
D = (V, A) and T ⊆ V , call a directed path P an T -path if its end vertices are
distinct and belong to T , and no internal vertex of P belongs to T . Then, if D
is Eulerian, the maximum number of edge-disjoint T -paths in G is equal to the
minimum value of

(73.35)
∑

s∈T

dout
A (Xs),

taken over disjoint sets Xs ⊆ V with s ∈ Xs for s ∈ T .

73.3. Further results and notes

73.3a. Further notes on Mader’s theorem

In general it is not true that given any subset T of the vertex set of a graph, the
maximum number M of edge-disjoint T -paths is equal to the minimum size m of an
edge set intersecting each T -path: the complete bipartite graph Kt,n, with t odd and
T the colour class with t vertices, has M = 1

2n(t − 1) and m = n(t − 1). Mader’s
edge-disjoint T -paths theorem (Corollary 73.2b) implies the conjecture of Gallai
[1961] (cf. Lovász [1976b]) that M ≥ 1

2m for any graph. (Lovász [1976b] showed
that M ≥ 1

4m, and P.D. Seymour (personal communication 1977) that M ≥ 1
3m.)

For Eulerian graphs, Corollary 73.2d implies the sharper inequality

(73.36) M ≥ t

2(t − 1)
m,

where t := |T |. Indeed, for each s ∈ T , let Es be a minimum-size s − T \ s cut. Let
Et have the largest size among them. Then

⋃
s �=t Es intersects each T -path. Hence

(73.37) m ≤ ∣∣ ⋃

s �=t

Es

∣∣ ≤
∑

s �=t

|Es| ≤ (1 − 1
t
)
∑

s∈T

|Es| =
t − 1

t
2M.

This proves Gallai’s conjecture that M ≥ 1
2m for Eulerian graphs.

The graph which arises from the complete bipartite graph Kt,n by replacing each
edge by two parallel edges, with T the colour class with t elements, has M = tn
and m = 2(t − 1)n. So inequality (73.36) is sharp for Eulerian graphs.

Gallai [1961] derived, from matching theory, the following on edge-disjoint paths
with both ends in T (not necessarily distinct). Let G = (V, E) be a graph and
T ⊆ V . Call a path a weak T -path if it has length at least 1, and connects two (not
necessarily distinct) vertices in T , while no internal vertex belongs to T . For any
U ⊆ V , let KU denote the set of components of G−U . Then the maximum number
of edge-disjoint weak T -paths is equal to the minimum value of

(73.38) |E[U ]| +
∑

K∈KU

�dE(K)
2

�,
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over U with T ⊆ U ⊆ V . The maximum number of internally vertex-disjoint weak
T -paths is equal to the minimum value of

(73.39) |E[U ]| + |W \ U | +
∑

K∈KW

�dE(K)
2

�,

over U, W satisfying T ⊆ U ⊆ W ⊆ V .
A min-max relation and a polynomial-time algorithm for the minimum cost of

a maximum collection of edge-disjoint T -paths were given by Karzanov [1993,1997].
A corresponding polyhedron was described by Burlet and Karzanov [1998].

Nash-Williams [1961a] gave necessary and sufficient conditions for a graph G =
(V, E) and a function g : V → Z+ such that the edges of G can be partitioned into
(nonclosed) paths such that g(v) of these paths end at v, for each v ∈ V .

More on Mader’s theorem can be found in Mader [1989], and on Gallai’s theorem
in Mader [1980].

73.3b. A generalization of fractionally packing T -paths

The following theorem was announced by Karzanov and Lomonosov [1978] and
proved by Karzanov [1985d,1987d] and Lomonosov [1985] (the latter paper does
not consider the parity case). Taking H to be a complete graph we obtain Corollary
73.2d.

Theorem 73.3. Let G = (V, E) and H = (T, R) be graphs, where H is the comple-
ment of the line graph of some triangle-free graph H0. Let c : E → Z+ be a capacity
function. Then there exists a quarter-integer maximum-value multiflow. If H0 is
bipartite, there exists a half-integer maximum-value multiflow. If c(δ(v)) is even for
each v ∈ V \ T , there exists a half-integer maximum-value multiflow. If c(δ(v)) is
even for each v ∈ V and H0 is bipartite, there exists an integer maximum-value
multiflow.

(For the special case where H is the union of two complete bipartite graphs H ′

and H ′′ such that V H ′ ⊆ V H ′′ or such that H ′ = K2, Cherkasskĭı [1976] showed
that the maximum multiflow is attained by a half-integer multiflow (for integer
capacities).)

Related is the following characterization of the maximum value of a multiflow,
announced by Karzanov and Lomonosov [1978], and proved by Karzanov [1979b,
1985d,1987d] and Lomonosov [1985]:

Theorem 73.4. Let G = (V, E) and H = (T, R) be graphs, where H is the com-
plement of the line graph of some triangle-free graph. Let c : E → R+ be a capacity
function. Let U denote the collection of subsets U of V such that U ∩ T is a stable
set of H. Then the maximum total value of a multiflow subject to c is equal to the
minimum value of

(73.40)
∑

U

λUc(δG(U))

taken over λ : U → R+ satisfying

(73.41)
∑

U

λUχδR(U) ≥ 1R.
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It implies that if H is the complement of the line graph of some triangle-free
graph, then in Theorem 70.2 one can restrict the length functions l to nonnegative
combinations of cut functions. Karzanov and Pevzner [1979] showed that if H is
not the line graph of a triangle-free graph, then Theorem 73.4 does not hold for
some G, c.

Karzanov [1987b,1989] proved that for any graph H = (T, R):

(73.42) if there exists an integer k ≥ 1 such that for any graph G = (V, E)
with T ⊆ V and any c : E → Z+, there is a 1

k
-integer maximum-value

multiflow, then any three pairwise intersecting inclusionwise maximal
stable sets A, B, C of H satisfy A ∩ B = A ∩ C = B ∩ C.

Karzanov [1991] conjectured that the reverse implication holds and that k = 4
will do. (Karzanov [1987a] announced a proof of this, but the proof failed.) The
techniques of Karzanov [1987d] yield a strongly polynomial-time algorithm for the
problems in Theorems 73.3 and 73.4.

73.3c. Lockable collections

Let T be a set and let H = (T, R) be the complete graph on T . A collection A of
subsets of T is called lockable if for each (supply) graph G = (V, E) with V ⊇ T
and for each capacity function c : E → R+, there is a multiflow for demand graph
H such that

(73.43) for each U ∈ A, the sum of the flow values of those nets split by U
is equal to the minimum of c(δE(X)) taken over X ⊆ V satisfying
X ∩ T = U .

(Here U splits a pair of vertices if precisely one of them is in U .)
The following characterization of lockable collections was proved jointly by

Karzanov [1979b,1984] and Lomonosov [1985] (announced in Lomonosov [1979b]).
Recall that two subsets X, Y of T are called crossing if each of X ∩ Y , X \ Y ,
Y \ X, and T \ (X ∪ Y ) is nonempty. (The 1979 references did not consider the
Euler condition.) A short proof was given by Frank, Karzanov, and Sebő [1992,
1997].

(73.44) A collection A is lockable if and only if A contains no three pairwise
crossing sets. If A is lockable and c is integer, there is a half-integer
multiflow satisfying (73.43). If moreover c(δ(v)) is even for each v ∈
V \ T , there is an integer multiflow satisfying (73.43).

We show that this generalizes two results proved earlier. First we show that
Corollary 73.2d can be derived. Let G = (V, E) be a graph and let T ⊆ V be
such that each vertex v ∈ V \ T has even degree. Let A := {{v} | v ∈ T}. Then
A contains no three pairwise crossing sets, and hence (73.44) applies. Let c := 1.
By (73.44), there exists a collection P of edge-disjoint T -paths such that for each
v ∈ T , there are γG(v) paths in P with end vertex v. So |P| = 1

2

∑
v∈T γG(v), and

we have Corollary 73.2d.
Second we derive Theorem 72.2 for H = C5. Let G = (V, E) be a graph and

let H = (T, R) be the graph C5, with T ⊆ V . Let c : E → Z+ and d : R → Z+ be
a capacity and demand function satisfying the Euler and cut conditions. We show
that there is a feasible integer multiflow. To this end we can assume that
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(73.45) c(δE(v)) = d(δR(v)) for each v ∈ T .

If this is not the case, add an edge e = v′v, where v′ is a new vertex, define
c(e) := d(δR(v)), and replace v by v′ in H. This does not violate the Euler and cut
conditions.

Define

(73.46) A := {{v} | v ∈ T} ∪ {{u, v} | u, v ∈ T, u �= v, uv �∈ R}.

Then no three sets in A are pairwise crossing, and so (73.44) applies; that is, there
is an integer multiflow (xr | r ∈ R′) such that (73.43) holds, where

(73.47) R′ := {st ∈ T | s, t ∈ T, s �= t}.

. (So xr is an s− t flow in G for r = st ∈ R′.) We show that the value of xr is equal
to dr for each r ∈ R, and is equal to 0 for each r ∈ R′ \ R, as required.

Let br be the value of xr, for r ∈ R′. By (73.43) and the cut condition,

(73.48) b(δR′(U)) ≥ d(δR(U)) for each U ∈ A,

since there exists an X ⊆ V with X ∩ T = U and

(73.49) b(δR′(U)) = c(δE(X)) ≥ d(δR(X)) = d(δR(U)).

Moreover, equality holds if |U | = 1, since for v ∈ T we have b(δR′(v)) ≤ c(δE(v)) =
d(δR(v)), by (73.45). Now add up all inequalities (73.48) for those U ∈ A with
|U | = 1. Similarly, add up all inequalities (73.48) for those U ∈ A with |U | = 2.
Both sums have the same terms at the right-hand sides of the inequality sign. But
the first sum has more terms at the left-hand side than the second sum has. As the
first one has equality, the second one also has equality, and the terms are equal.
That is, equality holds in (73.48) for each U ∈ A. This implies that br = dr for
each r ∈ R and br = 0 for each r ∈ R′ \ R, as (73.48) yields a nonsingular system
of equations.

This shows Theorem 72.2 for the case H = C5. Lomonosov [1985] argued how
also the case H = K4 can be derived from (73.44).

Pevzner [1987] studied the maximum size of a collection of sets no three of which
are pairwise crossing. For a short proof, see Fleiner [2001b]. More on lockable col-
lections and related structures can be found in Ibaraki, Karzanov, and Nagamochi
[1998], Ilani, Korach, and Lomonosov [2000], and Ilani and Lomonosov [2000].

73.3d. Mader matroids

The exchange phenomenon for S-paths used in the proof of Mader’s disjoint S-paths
theorem (Theorem 73.2) gives rise to a matroid as follows.

Let G = (V, E) be an undirected graph and let S = {S1, . . . , Sk} be a collection
of disjoint subsets of V . Define T := S1 ∪ · · · ∪ Sk. Let I be the collection of all
subsets I of T with the property that there exists a collection P of disjoint S-paths
with I ⊆ ends(P). Here ends(P) denotes the set of ends of the paths in P.

Theorem 73.5. M = (T, I) is a matroid.

Proof. I trivially is nonempty and closed under taking subsets. To see that it gives
a matroid, we apply Theorem 39.1. For any collection R of paths, let ER denote
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the set of edges traversed by the paths in R. Choose I, J ∈ I with |I \ J | = 1 and
|J \ I| = 2. We show that I + j ∈ I for some j ∈ J \ I. The proof of this is by
induction on |EQ \ EP|, where P and Q are collections of disjoint S-paths with
I ⊆ ends(P) and J ⊆ ends(Q).

Let I \ J = {r}. Let r be an end of path P ∈ P, and let r belong to Si say. If
P is disjoint from all paths in Q, then J + r ⊆ ends(Q ∪ {P}), and hence I + j ∈ I
for each j ∈ J \ I.

If P intersects some path in Q, follow path P starting at r, until we meet, at
vertex v say, a path in Q, Q say. Let Q have ends s and t. Let Qs and Qt be the
s − v and t − v part of Q. By symmetry, we may assume that

(73.50) EQs �⊆ EP and t �∈ Si.

Indeed, if EQs �⊆ EP and EQt �⊆ EP , then by symmetry we can assume t �∈ Si (as
s �∈ Si or t �∈ Si). If EQs ⊆ EP or EQt ⊆ EP , then by symmetry we can assume
EQt ⊆ EP , hence EQs �⊆ EP (as Q �= P ) and t �∈ Si (as t is the other end of P
and as r ∈ Si). So we may assume (73.50).

Let Q′ be the path obtained by concatenating Qt and the v − r part of P . Then
Q′ is an S-path disjoint from all paths in Q \ {Q}. Define Q′ := (Q \ {Q}) ∪ {Q′}
and J ′ := J − s + r. So J ′ ⊆ ends(Q′). Hence J ′ ∈ I.

If s �∈ I, we are done, since then there is a j ∈ J \ I with I + j ⊆ J − s + r. If
s ∈ I, then J ′ \ I = J \ I, and we can apply the induction hypothesis, since

(73.51) |EQ′ \ EP| < |EQ \ EP|.
Hence, by induction, there is a j ∈ J \ I with I + j ∈ I as required.

We call a matroid M = (T, I) obtained in this way a Mader matroid. If k = 2,
we call the Mader matroid also a Menger matroid. The matching matroids (cf.
Section 39.4a) are the special case of Mader matroids where S = {{v} | v ∈ V }.

The question is how Mader matroids relate to known classes of matroids. The
class of gammoids seems close to Mader matroids. Hence the question:

(73.52) Is each Mader matroid a gammoid?

What can be proved is that each Menger matroid is a gammoid. More precisely:

Theorem 73.6. A matroid is a gammoid if and only if it is a contraction of a
Menger matroid.

Proof. To see necessity, each gammoid is the contraction of a transversal matroid
(Corollary 39.5a). Hence it suffices to show that each transversal matroid M =
(T, I) is a contraction of a Menger matroid. We can assume that the transversal
matroid is obtained from a bipartite graph G with colour classes S and T , such
that the independent sets of M are the subsets of T covered by some matching in
G, and such that G has a matching of size |S|. Let M ′ be the Menger matroid on
S ∪ T obtained from G by taking S := {S, T}. Then contracting S in M ′ gives M .
So M is the contraction of a Menger matroid.

To prove sufficiency, it suffices to show that each Menger matroid is a gammoid
(as the class of gammoids is closed under contractions). Let G = (V, E) be an
undirected graph and let S1 and S2 be disjoint subsets of V . Define S := {S1, S2}.
Let M be the Menger matroid obtained this way. So a subset B of S1 ∪S2 is a base
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of M if and only if there exists a maximum-size collection of disjoint S-paths in G
such that B is the set of ends of these paths. We can assume that neither S1 nor
S2 spans an edge of G (as it is not in any S-path).

Let D = (V, A) be the directed graph obtained from G by orienting each edge
incident with S1 away from S1 and by orienting each edge incident with S2 towards
S2, and by replacing each remaining edge e by two oppositely oriented arcs con-
necting the ends of e. So a subset B of S1 ∪ S2 is a base of M if and only if there
exists a maximum-size collection of disjoint directed paths in D from S1 to S2, such
that B is the set of ends of these paths.

Derive an undirected graph G̃ from D as follows. Replace each vertex v �∈ S1∪S2

by two vertices, v′ and v′′. For v ∈ S1 define v′ := v, and for v ∈ S2 define
v′′ := v. Replace each arc (u, v) of D by an edge u′v′′ of G̃. Moreover, for each
v ∈ V \ (S1 ∪ S2), make an edge v′v′′ of G̃. This makes the undirected graph G̃.
Then for any subset I of S1 ∪ S2 one has, by a well-known argument (cf. Theorem
39.5):

(73.53) D contains disjoint directed paths from S1 to S2, such that I is the
collection of the ends of these paths ⇐⇒ G̃ contains a matching N
which covers all vertices except those in (S1 ∪ S2) \ I.

So a subset B of S1 ∪ S2 is a base of M if and only if G̃ has a maximum-size
matching N which covers all vertices except those in (S1 ∪ S2) \ B. So M is the
matroid obtained from the matching matroid of G̃ by contracting all vertices in
V \(S1 ∪S2). As each matching matroid is a transversal matroid (cf. Section 39.4a),
this proves that each Menger matroid is the contraction of a transversal matroid,
and hence is a gammoid (Corollary 39.5a).

By the results in Section 39.4a, the class of gammoids is also equal to the class
of contractions of matching matroids. So contractions of Menger matroids and those
of matching matroids (two special cases of Mader matroids) coincide.

A question related to (73.52) is:

(73.54) Is each Mader matroid linear?

As gammoids are representable over all large enough fields, a positive answer to
question (73.52) implies a positive answer to question (73.54). The constructions
given in Section 73.1a suggest a positive answer to (73.54).

73.3e. Minimum-cost maximum-value multiflows

Karzanov [1979d] showed that if H is a complete graph and all capacities are integer,
there exists a half-integer minimum-cost maximum-value multiflow (and he gave a
pseudo-polynomial-time algorithm to find it). This can be directly extended to the
case where H is a complete multipartite graph.

A short proof, together with a strongly polynomial-time algorithm, was given
by Karzanov [1994a], where also the existence of a half-integer optimum dual solu-
tion was shown. Other algorithms (based on scaling) were given by Goldberg and
Karzanov [1997].

On the other hand, Karzanov [1987b] showed that if H = (T, R) is not a com-
plete multipartite graph (that is, H contains two intersecting inclusionwise maximal
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stable sets), then there is no fixed integer k such that for each graph G = (V, E)
with V ⊇ T and each integer capacity function and each cost function, there is a
1
k
-integer minimum-cost maximum-value multiflow.

73.3f. Further notes

Lomonosov [1985] (announced in Lomonosov [1979a]) gave a min-max formula for
the maximum total value of a multiflow if H is the union of two (not necessarily
disjoint) cliques.

Karzanov and Manoussakis [1996] showed: Let G = (V, E) and H = (T, R) be
graphs, with T ⊆ V , where H = K2,r, and where degG(v) is even for each v ∈ V \T .
For any T -path P , let α(P ) denote the distance in H between the ends of P . Then
the maximum value of

(73.55)
∑

P∈P
α(P ),

where P is a collection of edge-disjoint T -paths, is equal to the minimum value of

(73.56)
∑

u,v∈T

|E[Xu, Xv]| · distH(u, v),

where (Xu | u ∈ T ) is a partition of V with u ∈ Xu for u ∈ T . (As usual, E[X, Y ]
is the set of edges connecting X and Y .) Extensions and related results are given
by Karzanov [1998a,1998b,1998c].

Rothfarb and Frisch [1969] showed that the maximum total value of a 3-
commodity flow equals the minimum capacity of a set of edges disconnecting all
nets, if |V | = 3.

Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [1992,1994] show-
ed that it is NP-complete to find a minimal number of edges disconnecting any two
vertices among three given vertices in an undirected graph. Chopra and Rao [1991]
studied the corresponding polyhedron.
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Planar graphs

Finding disjoint paths in planar graphs is of interest not only for planar
communication or transportation networks, but especially also for the de-
sign of VLSI-circuits. The routing of the wires should follow certain chan-
nels on layers of the chip. On each layer, these channels form a planar
graph.
Even for planar graphs, disjoint paths problems are in general hard. How-
ever, for some special cases, polynomial-time algorithms and good char-
acterizations have been found. In this chapter we discuss some of these
cases.
Except if stated otherwise, throughout this chapter G = (V, E) and H =
(T, R) denote the supply and demand graph, in the sense of Chapter 70.
The pairs in R are called the nets. If s1, t1, . . . , sk, tk are given, then R :=
{s1t1, . . . , sktk}. If demands d1, . . . , dk are given, then d(siti) := di. We
denote G + H = (V, E ∪ R), where the disjoint union of E and R is taken,
respecting multiplicities.
Recall that the Euler condition states that G + H is Eulerian.

74.1. All nets spanned by one face: the
Okamura-Seymour theorem

The complexity of the edge-disjoint paths problem for planar graphs with all
nets on the outer boundary, is open. However, Okamura and Seymour [1981]
showed that if the Euler condition holds, the edge-disjoint paths problem is
polynomial-time solvable, and the cut condition is sufficient for solvability.
We follow their method of proof.

Theorem 74.1 (Okamura-Seymour theorem). Let G = (V,E) be a planar
graph and let H = (T,R) be a graph where T is the set of vertices of G
incident with the unbounded face of G. Let the Euler condition hold. Then
the edge-disjoint paths problem has a solution if and only if the cut condition
holds.

Proof. Necessity of the cut condition being trivial, we show sufficiency. The
cut condition implies that |R| ≤ |E| (assuming that each r ∈ R consists of
two distinct vertices), since
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(74.1) 2|R| =
∑

v∈V

degR(v) ≤
∑

v∈V

degE(v) = 2|E|.

So we can consider a counterexample with 2|E| − |R| minimal. Then

(74.2) G is 2-connected.

Indeed, if G is disconnected, we can deal with the components separately.
Suppose next that G is connected and has a cut vertex v. We may assume
that for no r = st ∈ R, the vertices s and t belong to different components of
G − v, since otherwise we can replace r by sv and vt, without violating the
Euler or cut condition. For any component K of G − v consider the graph
induced by K ∪ {v}. Again, the Euler and cut conditions hold (with respect
to those nets contained in K ∪ {v}). So by the minimality of 2|E| − |R|, we
know that paths as required exist in K ∪ {v}. As this is the case for each
component of G− v, we have paths as required in G. This proves (74.2).

Let C be the circuit formed by the outer boundary of G. If some r ∈ R
has the same ends as some edge e of G, we can delete e from G and r from
R, and obtain a smaller counterexample. So no such r exists.

Call a subset X of V tight if dE(X) = dR(X). Then

(74.3) there exists a tight subset X of V such that δE(X) intersects EC
in precisely two edges.

Indeed, if there is no tight set X with ∅ 	= X 	= V , we can choose an edge
e ∈ EC, and replace E and R by E \ {e} and R ∪ {e}. This does not violate
the cut condition, and hence would give a smaller counterexample.

So there exists a tight proper nonempty subset X of V . Choose X with
|δE(X)| minimal. Then G[X] and G − X are connected. For suppose that
(say) G[X] is not connected. Let K be a component of G[X]. Then

(74.4) |δE(K)|+ |δE(X \K)| ≥ |δR(K)|+ |δR(X \K)| ≥ |δR(X)|
= |δE(X)| = |δE(K)|+ |δE(X \K)|.

So K is tight, while |δE(K)| < |δE(X)|, contradicting the minimality as-
sumption. Hence G[X] and G−X are connected, implying (74.3).

Choose a set X as in (74.3) with |X| minimal. Let e be one of the two
edges in EC that belong to δE(X). Say e = uw with u 	∈ X and w ∈ X.

Since dR(X) = dE(X) ≥ 2, we know δR(X) 	= ∅. For each r ∈ δR(X), let
sr be the vertex in r ∩X, and tr the vertex in r \X. Choose r ∈ δR(X) such
that tr is as close as possible to u in the graph C −X.

Since sr and tr are nonadjacent, we know that {sr, tr} 	= {u,w}. So we
can choose v ∈ {u,w} \ {sr, tr}. Let R′ := (R \ {r}) ∪ {srv, vtr}. Trivially
the Euler condition is maintained. We show that also the cut condition is
maintained, yielding a contradiction as 2|E| − |R′| < 2|E| − |R| and as a
solution for R′ yields a solution for R.

To see that the cut condition is maintained, suppose to the contrary that
there is a Y ⊆ V satisfying
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(74.5) dE(Y ) < dR′(Y ).

By Theorem 70.4, we can take Y such that G[Y ] and G− Y are connected.
So δE(Y ) has two edges on C. By symmetry we can assume that tr 	∈ Y . By
the Euler condition, (74.5) implies dE(Y ) ≤ dR′(Y )− 2. So

(74.6) dR′(Y ) ≥ dE(Y ) + 2 ≥ dR(Y ) + 2 ≥ dR′(Y ).

Hence we have equality throughout. So δR′(Y ) contains both srv and vtr,
that is, sr, tr 	∈ Y and v ∈ Y . Moreover, dE(Y ) = dR(Y ).

By the choice of r, there is no pair r′ in R connecting X \ Y and Y \X
(since then tr′ ∈ Y \ X, and hence tr′ is closer than tr to u in C − X). So
(using Theorem 3.1)

(74.7) dR(X ∩ Y ) + dR(X ∪ Y ) = dR(X) + dR(Y ).

Moreover,

(74.8) dE(X ∩ Y ) + dE(X ∪ Y ) ≤ dE(X) + dE(Y ).

As the cut condition holds for X ∩ Y and X ∪ Y , we have equality in (74.8),
and therefore X ∩Y is tight. Since sr ∈ X \Y , we know |X ∩Y | < |X|. So by
the minimality of X we have X ∩ Y = ∅. So w 	∈ Y , hence u = v ∈ Y . Then
edge e = uw connects X \ Y and Y \X, contradicting equality in (74.8).

For multiflows, the Okamura-Seymour theorem implies the following re-
sult of H. Okamura (cf. note on p. 80 of Okamura and Seymour [1981]):

Corollary 74.1a. Let G = (V,E) be a planar graph, let R be a set of pairs
of vertices on the outer boundary of G, and let c : E → R+ and d : R→ R+.
Then there exists a feasible multiflow if and only if the cut condition holds.
If moreover c and d are integer, there is a half-integer multiflow.

Proof. By compactness, continuity, and scaling, we can assume that c and d
are integer. Replacing any edge e by 2c(e) parallel copies, and any pair r ∈ R
by 2d(r) parallel nets, we can apply the Okamura-Seymour theorem. The
paths in the new graph give the multiflow in the original graph as required.

Notes. The proof of Theorem 74.1 yields a polynomial-time algorithm for finding
the edge-disjoint paths, since we can determine a minimum-size cut containing e′

and e′′, for any pair of edges e′, e′′ on the outer boundary of G (by finding a shortest
path in the dual graph). Frank [1985] outlined that it in fact leads to an O(n3 log n)-
time algorithm. (As P.D. Seymour observed, also the splitting-off technique used
by Lins [1981] to prove Corollary 74.1b below yields a polynomial-time algorithm
to find paths as required.)
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74.1a. Complexity survey

Complexity survey for the disjoint paths problem in planar graphs with all ter-
minals on the outer boundary and satisfying the Euler condition (∗ indicates an
asymptotically best bound in the table):

O(n4) Hassin [1984] (also capacitated case)

O(n3 log n) Frank [1985] (also capacitated case)

O(n2 log∗ n) Matsumoto, Nishizeki, and Saito [1985]:
feasibility test (also capacitated case)

O(tn
√

log n) Matsumoto, Nishizeki, and Saito [1985]:
feasibility test (also capacitated case)

O(kn + n2√log n) Matsumoto, Nishizeki, and Saito [1985] (also
capacitated case)

∗ O(tn + n
√

t log n) Frederickson [1987b]: feasibility test (also
capacitated case)

O(n2) Becker and Mehlhorn [1986]

O(tn) Becker and Mehlhorn [1986]: feasibility test

O(n5/3(log log n)1/3) Kaufmann and Klär [1991]

O(kn + n
√

log n) Weihe [1993] (also capacitated case)

∗ O(n) Wagner and Weihe [1993,1995]

∗ O(kn)
Weihe [1997c] (using Klein, Rao, Rauch, and
Subramanian [1994], Henzinger, Klein, Rao, and
Subramanian [1997]): capacitated case

Here k := |R|, t is the number of vertices that belong to at least one pair in R, and
log∗ n is the minimum l such that log(l) n ≤ 1, where log(l) n is obtained from n by
taking l times the logarithm.

For sketches of the linear-time method of Wagner and Weihe [1993,1995], see
Wagner [1993] or Ripphausen-Lipa, Wagner, and Weihe [1995].
Research problem. Is the undirected edge-disjoint paths problem polynomial-
time solvable for planar graphs with all nets on the outer boundary? Is it NP-
complete?

74.1b. Graphs on the projective plane

The Okamura-Seymour theorem is equivalent to a theorem of Lins [1981] on Eu-
lerian graphs embedded in the projective plane. A closed curve in the projective
plane is called orientation-reversing if after one turn the meaning of ‘left’ and ‘right’
is flipped. If a graph is embedded in a space S, we identify G with its image in S.

Corollary 74.1b (Lins’ theorem). Let G = (V, E) be an Eulerian graph embedded
in the projective plane P 2. Then the maximum number of edge-disjoint orientation-
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reversing circuits in G is equal to the minimum number of intersections with G of
any orientation-reversing closed curve in P 2 \ V .

Proof. Since any two orientation-reversing closed curve in the projective plane
intersect, the maximum does not exceed the minimum. To see equality, let D be
an orientation-reversing closed curve in P 2 \ V having a minimum number, k say,
of intersections with G. Necessarily, any intersection of D with G is a crossing of
D and an edge of G. Let R be the set of edges of G intersected by D and let
G′ := (V, E \R). Then G′ is a planar graph, embedded in the open sphere obtained
from P 2 by deleting D. Each pair in R connects two vertices on the outer boundary
of G′. It suffices to show that G′ contains edge-disjoint paths Pr for r ∈ R, where Pr

connects the vertices in r. Then the Pr ∪{r} for r ∈ R form a set of k edge-disjoint
orientation-reversing circuits in G as required.

To show that the paths Pr exist, we can apply the Okamura-Seymour theorem.
To this end, we must test the cut condition for G′, R. Note that the pairs in R
can be ordered as r1, . . . , rk such that when following the boundary of P 2 \ D, in
one round we first meet r1, . . . , rk consecutively, and next we meet again r1, . . . , rk

consecutively.
Let X ⊆ V , with G′[X] and G′ − X connected, and with dR(X) > 0. Then

δE\R(X) contains exactly two edges on the outer boundary of G′. Hence we can
find an orientation-reversing closed curve in P 2 intersecting the edges of G′ in
δE\R(X) and those in R \ δR(X). Hence

(74.9) dE\R(X) + |R| − dR(X) ≥ k = |R|,
that is, dE\R(X) ≥ dR(X). So the cut condition holds for G′ and R.

In turn, the Okamura-Seymour theorem can be derived from Lins’ theorem.
To this end, we first show that in the Okamura-Seymour theorem one can make
a number of assumptions that do not restrict the generality. Let G = (V, E) be a
planar graph, and let R be a set of pairs of vertices on the outer boundary of G,
such that the Euler condition and the cut condition hold.

First one can assume that the pairs in R are disjoint: if r = st and r′ = st′ are
two pairs in R, we can add a new vertex s′ in the outer face, and a new edge s′s,
and reset r′ := s′t′. Second one may assume that any two pairs r = st, r′ = s′t′

in R are ‘crossing’ around the outer boundary of G; that is, s, s′, t, t′ occur in
this order cyclically around the outer boundary. If this is not the case, there exist
two pairs r = st and r′ = s′t′ such that s, s′, t′, t occur in this order cyclically
around the outer boundary and such that no vertex between s and s′ (along the
outer boundary) belongs to any pair in R. Now we can add three new vertices, q,
q′ and p, and edges qp, q′p, ps, ps′, and reset r := qt and r′ := q′t′ (Figure 74.1).

Let G′ = (V ′, E′) be the new graph, and let R′ be the new set of pairs. This
construction maintains the cut condition. To see this, let X ⊆ V ∪{q, q′, p}. Without
loss of generality, p ∈ X. Suppose dE′(X) < dR′(X). Then (using parity)

(74.10) dR′(X) − 2 ≥ dE′(X) ≥ dE(X ∩ V ) ≥ dR(X ∩ V ) ≥ dR′(X) − 2,

and hence we have equality throughout. In particular, none of the new edges belong
to δE′(X), and so s, s′, q, q′ ∈ X. But then dR(X ∩ V ) = dR′(X), a contradiction.

So the cut condition is maintained. Also, any edge-disjoint pair of a q − t path
P and a q′ − t′ path P ′ in G′ contains an edge-disjoint pair of an s − t path Q and
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s′s′

t′ t′

′

Figure 74.1

an s′ − t′ path Q′: if P traverses s and P ′ traverses s′, this is trivial; if P traverses
s′ and P ′ traverses s, then P and P ′ intersect necessarily in V (as the pairs s′t and
st′ cross), and hence we can exchange P and P ′ at this intersection to obtain Q
and Q′ as required.

As we can embed G′ such that q, q′, t, t′ occur in this order cyclically around
the outer boundary of G′, we have decreased the number of noncrossing pairs in R.
Repeating this we can assume that all pairs in R are crossing.

Now, assuming that G is embedded in R
2, we can embed R

2 in the projective
plane P 2. Then P 2\R

2 is a ‘cross-cap’ (Möbius strip). We can extend the embedding
of G to an embedding of the Eulerian graph G + H = (V, E ∪ R), by embedding
any r ∈ R as an edge over the cross-cap. (Since any two nets cross in R

2, they can
be drawn disjoint in P 2 \ R

2.)
We derive from Lins’ theorem that G + H has |R| edge-disjoint orientation-

reversing circuits: this gives paths as required for the Okamura-Seymour theorem,
as each of the circuits must contain at least one edge traversing the cross-cap,
and hence at least one edge in R. As there are |R| circuits, each contains exactly
one edge in R, and so deleting the edges in R we obtain paths as required in the
Okamura-Seymour theorem.

In order to apply Lins’ theorem, we must show that each orientation-reversing
closed curve D in P 2 \ V has at least |R| intersections with G + H. To show this,
we can assume that D traverses any face of G + H at most once (otherwise we
can shortcut D). As D is orientation-reversing, it traverses the cross-cap an odd
number of times. Between any two traversals of D over the cross-cap, we can reroute
D (in R

2) such that instead of intersecting edges of G, it intersects edges in R, in
such a way that the number of new intersections with R is not more than the
number of deleted intersections with E (this follows from the cut condition in the
Okamura-Seymour theorem). Doing this between any two traversals of the cross-
cap, we obtain an orientation-reversing closed curve only intersecting edges in R.
As each of the edges in R must be intersected (since D is orientation-reversing), we
see that D has at least |R| intersections with G+H. This shows that we can apply
Lins’ theorem.
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74.1c. If only inner vertices satisfy the Euler condition

Frank [1985] showed an interesting extension of the Okamura-Seymour theorem,
to the case where the parity condition is only required for the vertices not on the
outer boundary. The proof amounts to appropriately pairing those vertices v on
the outer boundary for which degE(v) + degR(v) is odd. To this end, Frank first
showed the following ‘pairing lemma’. We say that a pair u, v of vertices of a circuit
C crosses a pair e, f of edges of C, if u and v are in different components of the
graph C − e − f .

For any set X let
(

X
2

)
denote the collection of unordered pairs from X. A pairing

of a set is a partition into pairs.

Lemma 74.2α (pairing lemma). Let C = (V, E) be a circuit with |V | even, and
let s :

(
E
2

) → Z be such that, for each x ∈ (
E
2

)
, s(x) has the same parity as the size

of any of the two components of C − x. Then V has a pairing M such that each
x ∈ (

E
2

)
is crossed by at most s(x) pairs in M if and only if

(74.11)
∑

x∈B
s(x) ≥ 1

2q

for each collection B consisting of disjoint pairs in
(

E
2

)
. Here q denotes the number

of odd components of the graph G obtained from the complete graph on V by deleting
all edges crossing at least one pair in B.

Proof. For any x ∈ (
E
2

)
and any R ⊆ (

V
2

)
, let crR(x) denote the number of pairs

in R crossing x.
Necessity of the condition is easy: if M as required exists, let N ⊆ M be the

set of those pairs in M leaving at least one odd component of G. Since each odd
component of G is left by at least one pair in N , we have |N | ≥ 1

2q. On the other
hand, each pair in N crosses at least one pair in B, and so

(74.12) 1
2q ≤ |N | ≤

∑

x∈B
crN (x) ≤

∑

x∈B
s(x),

proving (74.11).
To see sufficiency, first assume that s(x) > 0 for each x ∈ (

E
2

)
. Let M be any

of the two perfect matchings in C. Then for any x ∈ (
E
2

)
, crM (x) is at most 2 and

has the same parity as s(x); therefore crM (x) ≤ s(x).
Hence we can assume that there is a y ∈ (

E
2

)
with s(y) = 0. Let K be a

component of C − y. Among all such y, K, choose y, K such that K is smallest. Let
V ′ := V \K, let u and w be the end vertices of the path C−K, and let C′ = (V ′, E′)
be the circuit obtained from C − K by adding the new edge f = uw. As s(y) is
even, both K and V ′ have even size. Let N be the unique perfect matching in the
path C[K].

For each x ∈ (
E′
2

)
, define s′(x) by: s′(x) := s(x) if f �∈ x, and

(74.13) s′(x) :=
min{min{s({e, g}) | g ∈ E \ E′, g �∈ N}, min{s({e, g}) − 1 | g ∈ N}}

if x = {e, f}. Trivially, s′(x) has the same parity as any component of C′ − x for
each x ∈ (

E′
2

)
.

We show that condition (74.11) holds for the smaller structure. That is, for any
collection B′ of disjoint pairs in

(
E′
2

)
one has
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(74.14)
∑

x∈B′
s′(x) ≥ 1

2q′,

where q′ is the number of odd components of the graph G′ obtained from the
complete graph on V ′ by deleting all edges crossing at least one pair in B′.

If f �∈ x for each x ∈ B′, let B := B′. Then (74.14) follows from (74.11), as
s′(x) = s(x) for each x ∈ B and as q′ = q.

If f ∈ x for some x ∈ B′, this x is unique. Let z = {e, g} ∈ (
E
2

)
attain the

minimum in (74.13). If g �∈ N , let B := (B′ \ {x}) ∪ {z}. Again (74.14) follows from
(74.11), as q′ = q.

If g ∈ N , let B := (B′ \{x})∪{y, z}. Then q = q′ +2 (as each component of G is
a component of G′ or is one of the odd components of C[K] − g). Also s′(a) = s(a)
for each a ∈ B′ \{x}, while s(z) = s′(x)−1 and s(y) = 0. Hence by (74.11) we have
(74.14).

Hence, by (74.14), there exists a pairing M ′ of V ′ such that for each x ∈ (
E′
2

)
,

crM′(x) ≤ s′(x). Then M := N ∪M ′ is a pairing of V . We show that crM (z) ≤ s(z)
for each z ∈ (

E
2

)
. If z ∈ (

E′
2

)
, then crM (z) = crM′(z) ≤ s′(z) = s(z). If z �∈ (

E′
2

)
,

let z = {e, g} with g ∈ E \ E′. If e ∈ E′, let x := {e, f}. If g �∈ N , then crM (z) =
crM′(x) ≤ s′(x) ≤ s(z). If g ∈ N , then crM (z) = crM′(x) + 1 ≤ s′(x) + 1 ≤ s(z).
Finally, if e ∈ E \ E′, then crM (z) = crN (z) ≤ s(z), since, by the choice of y, s(z)
is positive and has the same parity as crN (z), while crN (z) ≤ 2.

The proof gives a polynomial-time algorithm to find the pairing: iteratively one
finds a pair x with s(x) = 0 and applies the reduction described in the proof; if no
pair x with s(x) = 0 exists, one takes any perfect matching in C.

The pairing lemma implies (Frank [1985]):

Theorem 74.2. Let G = (V, E) be a planar graph such that each vertex not on
the outer boundary has even degree. Let R be a set of pairs of vertices on the outer
boundary of G. Then there exist edge-disjoint paths Pr for r ∈ R, where Pr connects
the vertices in r, if and only if

(74.15)
l∑

j=1

(dE(Xj) − dR(Xj)) ≥ 1
2q

for each collection of subsets X1, . . . , Xl. Here q denotes the number of components
K of G′ := G − δE(X1) − · · · − δE(Xl) with dE(K) + dR(K) odd.

Proof. Call a vertex v or a subset X of V odd if degE(v)−degR(v) or dE(X)−dR(X)
is odd.

Necessity of (74.15) is easy: let E′ be the set of edges not used by the Pr. Then
for any set X, dE′(X) ≤ dE(X) − dR(X), while on the other hand dE′(X) ≥ 1 if
X is odd. Thus at least 1

2q edges from
⋃

j δE(Xj) belong to E′. So

(74.16) 1
2q ≤ ∣∣ ⋃

j

δE′(Xj)
∣∣ ≤

∑

j

dE′(Xj) ≤
∑

j

(dE(Xj) − dR(Xj));

that is, we have (74.15).
Sufficiency follows from the pairing lemma (Lemma 74.2α) and the Okamura-

Seymour theorem. Indeed, let v1, . . . , v2n be the odd vertices, in cyclic order along
the outer boundary. Let C be the circuit with vertices v1, . . . , v2n and edges vi−1vi

for i = 1, . . . , 2n, setting v0 := v2n. For each pair x of edges e, e′ of C, define
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(74.17) s(x) := min{dE(U) − dR(U) | U ⊆ V, δF (U) = {e, e′}}.

Then s satisfies the conditions described in the pairing lemma. Indeed, the parity
condition is easily checked. To see (74.11), let B be a collection of disjoint pairs from
EC. For each x ∈ B, let Ux attain the minimum (74.17). Let G′ := G−⋃

x∈B δE(Ux).
Let H be the graph obtained from the complete graph on V C by deleting all edges
crossed by at least one pair in B. Then for each component K of G′ one has: the
odd vertices in K are contained in some component of H (since K ∩ V C ⊆ Ux

or K ∩ V C ⊆ V \ Ux for each x ∈ B; so no two vertices in K ∩ V C cross any x
in B). Hence the number of odd components of G′ is at least the number of odd
components of H. So the condition in the pairing lemma follows from condition
(74.15).

Applying the pairing lemma, we obtain a matching M of the odd vertices with
dM (U) ≤ dE(U) − dR(U) for each U ⊆ V . Also we have that degE(v) + degR(v) +
degM (v) is even for each v ∈ V . So for R′ := R ∪ M , we can apply the Okamura-
Seymour theorem, to obtain in G for each r = st ∈ R′ an s − t path Pr, such that
the Pr are edge-disjoint. Restriction to R gives paths as required.

In the theorem one can assume that l ≤ |E|, since for each edge e of G we need
at most one Xi splitting e. So the theorem is a good characterization.

As the pairing lemma is polynomial-time constructive, one can find edge-disjoint
paths as required if the condition is met — similarly for the capacitated case. Frank
[1985] showed that under the conditions of Theorem 74.2, the edge-disjoint paths
problem, and its capacitated version, can be solved in O(n3 log n) time. Also Becker
and Mehlhorn [1986] showed that this problem is polynomial-time solvable, and
they gave a time bound of O(tn + T (n)), where T (n) is the time needed to solve a
problem where the Euler condition holds, and where t is the number of vertices on
the outer boundary. Weihe [1999] finally gave a linear-time algorithm.

The special case where G is a rectangular grid was solved by Frank [1982c],
showing that condition (74.15) can be simplified in this case.

74.1d. Distances and cut packing

With planar duality one may derive another, dual result of the Okamura-Seymour
theorem, that relates distances to packings of cuts in planar graphs (Hurkens, Schrij-
ver, and Tardos [1988]):

Corollary 74.2a. Any planar bipartite graph G contains disjoint cuts such that
any two vertices s, t on the outer boundary of G are separated by distG(s, t) of these
cuts.

Proof. Let X be the set of pairs e, e′ of edges along the outer boundary of G such
that if e = st and e′ = s′t′ where s, t, s′, t′ occur in this order cyclically around the
outer boundary, then

(74.18) distG(s, s′) + distG(t, t′) − distG(s, t′) − distG(s′, t) = 2.

(Note that for any e, e′, the left-hand side equals 0 or 2, by the triangle inequality,
and by the fact that each s − s′ path intersect each t − t′ path.)
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We say that a pair e, e′ of edges along the outer boundary crosses a pair u, v
of vertices along the outer boundary if any u − v path along the outer boundary
traverses exactly one of e and e′. We show that for any two vertices u, v on the
outer boundary of G:

(74.19) distG(u, v) = number of pairs in X that cross u, v.

To see this, assume that v1, . . . , vn are the vertices of G cyclically along the outer
boundary, and let u = vn and v = vk. Then (setting v0 := vn):

(74.20) number of pairs in X that cross u, v

= 1
2

k∑

i=1

n∑

j=k+1

(distG(vi−1, vj−1) + distG(vi, vj) − distG(vi−1, vj)

−distG(vi, vj−1)) =

1
2

k∑

i=1

(
distG(vi−1, vk) − distG(vi−1, vn) + distG(vi, vn) − distG(vi, vk)

)

= 1
2distG(v0, vk) + 1

2distG(vk, vn) = distG(u, v)

(by cancellation).
This shows (74.19), which implies that it suffices to show that we can find

disjoint cuts Cπ for π ∈ X , such that Cπ intersects the outer boundary of G in the
two edges in π. To show that these cuts exist, we can apply the Okamura-Seymour
theorem to a modification of the planar dual graph G∗ of G. Indeed, we must show
that there exist edge-disjoint circuits Dπ in G∗, for π ∈ X , such that Dπ traverses
the two edges of G∗ dual to the edges of G in π. The existence of these circuits
follows from the Okamura-Seymour theorem applied to the graph G′ obtained from
G∗ by deleting the vertex of G∗ dual to the unbounded face of G, and all edges
incident with it. Let R be the set of pairs of vertices of G′ that are ends of pairs of
edges dual to π ∈ X . Then (74.19) implies that the cut condition holds, and that
paths in G′, and hence circuits in G∗, as required exist.

This corollary is related to the Okamura-Seymour theorem by two different
forms of duality: by planar duality and by polarity. As for planar duality, this is
shown in the proof of this corollary. For polarity, this can be seen with Theorem
70.5, which gives that there exist λU ∈ R+ for U ⊆ V such that

(74.21)
∑

U

λUχδR(U)(r) ≥ distG(s, t) for each r = st ∈ R and
∑

U

λUχδE(U)(e) ≤ 1 for each e ∈ E.

Now Corollary 74.2a asserts that the λU can be taken integer if G is bipartite.

74.1e. Linear algebra and distance realizability

As for the results on distances and cut packings discussed in Section 74.1d, the
following further observations were made by Hurkens, Schrijver, and Tardos [1988].
Let C = (V, E) be a circuit with n vertices and n edges, say:

(74.22) V = {v1, . . . , vn}, E = {e1 = v0v1, . . . , en = vn−1vn},
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where v0 := vn. Again, let
(

V
2

)
and

(
E
2

)
denote the sets of unordered pairs of distinct

elements from V and E, respectively. Let M be the
(

V
2

) × (
E
2

)
matrix given by:

(74.23) M{vi,vj},{eg,eh} :=
{

1 if {vi, vj} and {eg, eh} cross,
0 otherwise,

where {vi, vj} and {eg, eh} are said to cross if vi and vj belong to different compo-
nents of the graph C − eg − eh. Then the matrix M is nonsingular, with

(
E
2

) × (
V
2

)

inverse N given by:

(74.24) N{eg,eh},{vi,vj} :=






+ 1
2 if {i, j} = {g, h} or {i, j} = {g − 1, h − 1},

− 1
2 if {i, j} = {g, h − 1} or {i, j} = {g − 1, h},
0 otherwise.

To see

(74.25) N = M−1,

choose {eg, eh}, {ea, eb} ∈ (
E
2

)
. Then

(74.26) (NM){eg,eh},{ea,eb} = 1
2M{vg,vh},{ea,eb} + 1

2M{vg−1,vh−1},{ea,eb} −
1
2M{vg,vh−1},{ea,eb} − 1

2M{vg−1,vh},{ea,eb}.

If {g, h} = {a, b}, then it is easy to see that this last expression is equal to 1. If
{g, h} �= {a, b}, then without loss of generality g �∈ {a, b}. Then

(74.27) M{vg,vh},{ea,eb} = M{vg−1,vh},{ea,eb} and
M{vg,vh−1},{ea,eb} = M{vg−1,vh−1},{ea,eb},

which implies that (74.26) equals 0. This proves (74.25). (It can be shown that
| det M | = 2(n−1

2 ).)
(74.25) implies that for any function d :

(
V
2

) → R there is a unique b :
(

E
2

) → R

such that

(74.28) d({vi, vj}) =
∑

(b({eg, eh}) | {eg, eh} ∈ (
E
2

)
where {eg, eh} crosses

{vi, vj}).

Indeed, (74.28) is equivalent to: d = Mb. Hence b := Nd is the unique b satisfying
(74.28).

This can be applied to d = distG for some bipartite planar graph G = (V ′, E′)
with C = (V, E) being the outer boundary of G. Consider the collection X of pairs
of edges on the outer boundary of G defined in the proof of Corollary 74.2a. (X is a
partition of E into pairs.) Then the uniqueness of b in (74.28) yields that X is the
unique collection of pairs of edges on the boundary of G with the property that for
any two vertices s, t on the outer boundary of G, the distance distG(s, t) is equal
to the number of pairs in X crossing {s, t}.

Another consequence of (74.25) is as follows. Consider again the circuit C =
(V, E) given by (74.22). Call a function m :

(
V
2

) → R+ realizable as the distance
function of a planar graph with boundary C, or briefly realizable, if there exists a
planar graph G = (V ′, E′), with V ′ ⊇ V , E′ ⊇ E such that v1, . . . , vn occur in this
order cyclically around the outer boundary, and a length function l : E′ → R+ such
that for all s, t ∈ V , m({s, t}) = distG(s, t). Then

(74.29) a function m :
(

V
2

) → R+ is realizable if and only if for all i, j = 1, . . . , n
we have

m({vi, vj}) + m({vi−1, vj−1}) ≥ m({vi, vj−1}) + m({vi−1, vj}),
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setting m({vi, vi}) := 0 for all i.
Necessity of the condition is trivial, since any vi − vj path in G crosses any

vi−1 − vj−1 path in G. To see sufficiency, we construct a graph G as follows. Let
w1, . . . , wn be points on the unit circle, in this cyclic order. Set w0 := wn. Add all
line-segments wgwh (g, h = 1, . . . , n; g �= h). The figure now forms a planar graph
H, with vertices the points that are on two or more of these line segments. Let H∗

be the dual graph. Put a new point vi on the edge of H∗ dual to the edge wiwi+1

of H (i = 0, . . . , n − 1). Next delete the vertex of H∗ dual to the outer face of H
and delete all edges incident with it. This makes the graph G = (V ′, E′).

Let d := Nm. By the condition given in (74.29), d ≥ 0. For each edge e of G,
define l(e) := d({eg, eh}) if e is dual to an edge of H which is on the line segment
wgwh. Using the fact that Md = m it is easy to see that this gives a realization as
required.

Also the ‘pairing lemma’ (Lemma 74.2α) can be interpreted in terms of the
matrix M : it characterizes when there exists an x :

(
V
2

) → Z+ with x(δ(v)) odd for
each v ∈ V and with xTM ≤ s for some given s :

(
E
2

) → Z+.

74.1f. Directed planar graphs with all terminals on the outer
boundary

It was observed by Diaz and de Ghellinck [1972] that if the supply graph is
directed and planar, and all terminals are on the outer boundary in the order
s1, . . . , sk, tk, . . . , t1, then the integer multicommodity flow problem is solvable in
polynomial time, and the cut condition suffices. This follows by a reduction to a
minimum-cost circulation problem: add arcs from ti to si for i = 1, . . . , k.

Related, and more difficult, is the following result of Nagamochi and Ibaraki
[1990]. Let the supply digraph D = (V, A) be planar and acyclic, and let the demand
digraph H = (T, R) have all terminals on the outer boundary of D. Then for each
c : A → Z+ and d : R → Z+ satisfying the directed analogue of the Euler condition
(that is, (V, A ∪ R−1) is Eulerian), if there is a fractional multiflow, there is an
integer multiflow.

Nagamochi and Ibaraki also gave a polynomial-time algorithm to find the in-
teger multiflow. Moreover, they extended the results to the case where the set of
vertices that violate the Euler condition, all lie on the outer boundary of D, in such
a way that the vertices v with c(δout

A (v)) − d(δin
R (v)) > c(δin

A (v)) − d(δout
R (v)) can

be separated (on the outer boundary of D) by two vertices from those vertices v
where the opposite strict inequality holds.

74.2. G + H planar

Seymour [1981d] gave another tractable case of the planar edge-disjoint paths
problem if the Euler condition holds: the case where the graph together with
all its nets (taken as edges) is a planar graph; that is, if G = (V,E) and
H = (V,R) are graphs with

(74.30) G+H := (V,E ∪R)
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planar (where E ∪ R is the disjoint union, respecting multiplicities in E
and R). This case can be handled with the help of matching theory (more
specifically, minimum-size T -joins and disjoint T -cuts).

Theorem 74.3. Let G = (V,E) and H = (V,R) be supply and demand
graphs with G+H planar and Eulerian. Then the edge-disjoint paths problem
has a solution if and only if the cut condition holds.

Proof. Necessity being trivial, we show sufficiency. Let the cut condition be
satisfied. Consider the dual graph (G+H)∗ of G+H. Let R∗ be the family of
edges of (G+H)∗ dual to those in R. Let T be the set of vertices of (G+H)∗

which are incident with an odd number of edges in R∗. So R∗ is a T -join in
(G+H)∗.

In fact, R∗ is a minimum-size T -join in (G+H)∗. For suppose not. Then
there exist E0 ⊆ E and R0 ⊆ R such that E∗

0∪R∗
0 is a T -join and |E0|+|R0| <

|R|. As E∗
0 ∪R∗

0 is a T -join, each vertex of (G+H)∗ is incident with an even
number of edges in

(74.31) (E∗
0 ∪R∗

0)�R∗ = E∗
0 ∪ (R \R0)∗.

Hence E0 ∪ (R \ R0) forms a cut in G + H. Since |E0| < |R \ R0|, this
contradicts the cut condition.

So R∗ is a minimum-size T -join in (G + H)∗. As (G + H)∗ is bipartite,
by Theorem 29.2, there exist disjoint cuts D1, . . . , Dt in (G+H)∗ such that
(i) each cut Dj intersects R∗ in exactly one element and (ii) each edge of R∗

is in exactly one of the Dj . Condition (i) implies that the dual Cj of each
Dj is a circuit in G+H containing exactly one edge in R. Hence the Cj give
edge-disjoint paths in G as required.

Notes. The reduction to matching theory given in this proof implies that feasibility
can be tested, and edge-disjoint paths can be found, in strongly polynomial time
(also for the capacitated case). Matsumoto, Nishizeki, and Saito [1986] showed that
feasibility can be tested in O(n3/2 log n) time, and edge-disjoint paths can be found
in O(n5/2 log n) time (also for the capacitated case). The latter bound was improved
by Barahona [1990] to O(n3/2 log n).

With the help of Wagner’s theorem (Theorem 3.3), Theorem 74.3 can be ex-
tended to the case where G + H has no K5 minor. We derive this result from
Guenin’s theorem in Section 75.6.

The fractional version of Theorem 74.3 was published in Seymour [1979b].

74.2a. Distances and cut packing

By Theorem 70.5, Theorem 74.3 implies that if G = (V, E) and H = (V, R) are
graphs with G+H planar, then there is a fractional packing of cuts in G such that
for any r = st ∈ R, s and t are separated by distG(s, t) of these cuts. A.V. Karzanov
(personal communication 1986) observed that in fact from a theorem of Seymour
[1979b] the existence of a half-integer packing can be derived. More generally:
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(74.32) Let G = (V, E) and H = (V, R) be graphs with G bipartite and G+H
planar. Then there exist disjoint cuts in G such that for each r = st ∈
R, s and t are separated by distG(s, t) of these cuts.

This can be derived from Theorem 29.3 above (of Seymour [1979b]), saying:

(74.33) Let G = (V, E) be a planar graph and let p : E → Z+. Then p is
a nonnegative integer sum of incidence vectors of circuits of G if and
only if p(δ(v)) is even for each v ∈ V and p(e) ≤ p(D \ {e}) for each
cut D of G and each e ∈ D.

Applying planar duality, (74.33) becomes:

(74.34) Let G = (V, E) be a planar graph and let p : E → Z+. Then p is a
nonnegative integer sum of incidence vectors of cuts of G if and only
if p(C) is even for each circuit C of G and p(e) ≤ p(C \ {e}) for each
circuit C of G and each e ∈ C.

(Here we consider circuits as edge sets.) We apply this to the graph G+H, where G
is bipartite and G + H is planar. Define p(e) := 1 for e ∈ E and p(r) := distG(s, t)
for r = st ∈ R. Then p(C) is even for each circuit C of G+H and p(e) ≤ p(C \{e})
for each circuit of G + H and each e ∈ E. (The latter property is trivial if e ∈ E.
If e = st ∈ R, we can replace any occurrence of an r in C \ {e} with r = uv ∈ R,
by a shortest u − v path in G. This does not increase p(C \ {e}). Repeating this,
we can assume that C ∩ R = {e}, and so C \ {e} is an s − t path in G, implying
p(e) = distG(s, t) ≤ |C \ {e}| = p(C \ {e}).)

Therefore, by (74.34), p is a nonnegative integer sum of incidence vectors of
cuts of G + H. By definition of p, this gives edge-disjoint cuts in G as required in
(74.32).

74.2b. Deleting the Euler condition if G + H is planar

Middendorf and Pfeiffer [1993] showed that if G + H is planar (but not necessarily
Eulerian), then the edge-disjoint paths problem is NP-complete. (With construction
(70.9), it implies the same result for the directed case.) In fact they showed that if
G + H is planar and cubic, then the edge-disjoint paths problem is NP-complete.
Hence, also the vertex-disjoint paths problem is NP-complete if G+H is planar and
cubic. (Assuming P �=NP, this disproves a conjecture of Schrijver [1990b].) Midden-
dorf and Pfeiffer [1990b,1993] showed that, on the other hand, if G + H is planar
and the edges of H belong to a bounded number of faces of G, then the edge-disjoint
paths problem is polynomial-time solvable.

Middendorf and Pfeiffer [1990b,1993] also presented a counterexample to a con-
jecture of A. Frank (cf. Sebő [1988a]) that if G+H is planar, then the edge-disjoint
paths problem has a solution if and only if G contains a fractional packing of paths
as required and of a T ′-join, where T ′ is the set of vertices having odd degree in
G + H.

Korach and Penn [1992] showed that if G + H is planar and the cut condition
holds, then there is an ‘almost complete’ packing of paths as required: there is at
most one edge in R on each bounded face of G such that leaving out these edges
from R, the problem has a solution. A generalization of this was given by Frank and
Szigeti [1995]. (Related work can be found in Granot and Penn [1992,1993,1996].)

Seymour [1981d] also showed the following:



1310 Chapter 74. Planar graphs

(74.35) Let G = (V, E) and H = (V, R) be supply and demand graphs such
that G + H is planar and such that R consists of two classes of par-
allel edges. Then there exist edge-disjoint paths if and only if the cut
condition holds and we cannot contract edges of G to obtain a graph
G′ with at most four vertices in which the corresponding edge-disjoint
paths do not exist.

Frank [1990d] observed that the latter condition can be formulated as:

(74.36) dE∪R(X ∩ Y ) is even for any two tight sets X, Y ⊆ V ,

which Frank called the intersection criterion. (A subset X of Y is called tight if
dE(X) = dR(X).)

The intersection criterion is a necessary condition for the existence of edge-
disjoint paths: if paths as required exists, then for each tight X all edges in δE(X)
are used by these paths; hence if X and Y are tight, all edges in δE(X ∩ Y ) are
used; hence dE(X ∩ Y ) ≡ dR(X ∩ Y ) (mod 2), that is, dE∪R(X ∩ Y ) is even.

In other words, Frank observed that (74.35) is equivalent to:

(74.37) Let G = (V, E) and H = (V, R) be graphs such that G+H is planar and
such that R consists of two classes of parallel edges. Then there exist
edge-disjoint paths if and only if the cut condition and the intersection
criterion hold.

This was extended by Frank [1990d] to:

(74.38) Let G = (V, E) and H = (V, R) be graphs such that G + H is planar
and such that the edges of H are on at most two of the faces of G.
Then there exist edge-disjoint paths if and only if the cut condition
and the intersection criterion hold.

Lomonosov [1983] proved a maximization version of (74.35), which Frank [1990e]
showed to follow from (74.35). Korach and Penn [1993] gave an O(n

√
log n)-time

algorithm for the edge-disjoint paths problem if G + H is planar and H consists of
two parallel classes of nets.

Sebő [1993c] showed that for each fixed k, if G + H is planar and |V H| ≤ k,
then the integer multiflow problem is polynomial-time solvable. (The demands can
be arbitrarily large, so there is no reduction to the edge-disjoint paths problem for
a fixed number of paths. It was shown for k = 3 by Korach [1982].) Sebő showed
this by proving a more general result on the complexity of packing T -cuts for fixed
|T |.

It is an open question if one may relax this condition to H being spanned by a
fixed number of faces of G. (For demand d = 1 this was shown by Middendorf and
Pfeiffer, as mentioned above.)

Pfeiffer [1990] raised the question if the edge-disjoint paths problem has a half-
integer solution if G + H is embeddable in the torus and there is a quarter-integer
solution. He gave the example of Figure 70.5 with 8 vertices to show that this
generally does not hold if G + H is embeddable in the double torus.

Pfeiffer [1994] showed that the half-integer multiflow problem is NP-complete
if G + H is apex. (An apex graph is a graph having a vertex whose deletion makes
the graph planar.) Pfeiffer also showed that the half-integer multiflow problem is
NP-complete if the supply and demand digraphs form a directed planar graph.
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74.3. Okamura’s theorem

Okamura [1983] gave the following extension of the Okamura-Seymour theo-
rem. We follow the proof found in 1984 by G. Tardos (cf. Frank [1990e]). The
first half of the proof below is similar to the proof of the Okamura-Seymour
theorem (Theorem 74.1).

Theorem 74.4 (Okamura’s theorem). Let G = (V,E) be a planar graph and
let F1 and F2 be two of its faces. Let R be a set of pairs of vertices of G
such that each r = st ∈ R satisfies s, t ∈ bd(F1) or s, t ∈ bd(F2). Let the
Euler condition hold. Then the edge-disjoint paths problem has a solution if
and only if the cut condition holds.

Proof. Necessity of the cut condition being trivial, we show sufficiency. The
cut condition implies that |R| ≤ |E| (assuming that each r ∈ R consists of
two distinct vertices), since

(74.39) 2|R| =
∑

v∈V

degR(v) ≤
∑

v∈V

degE(v) = 2|E|.

So we can consider a counterexample with 2|E| − |R| minimal. Then

(74.40) G is 2-connected.

Indeed, if G is disconnected, we can deal with the components separately.
Suppose next that G is connected and has a cut vertex v. We may assume
that for no r = st ∈ R, the vertices s and t belong to different components of
G − v, since otherwise we can replace r by sv and vt, without violating the
Euler or cut condition. For any component K of G − v consider the graph
induced by K ∪ {v}. Again, the Euler and cut conditions hold (with respect
to those nets contained in K ∪ {v}). So by the minimality of 2|E| − |R| we
know that paths as required exist in K ∪ {v}. As this is the case for each
component of G− v, we have paths as required in G. This proves (74.40).

If some r ∈ R is parallel to an edge of G we can delete this edge from
G, and r from R, to obtain a smaller counterexample. Hence such r, e do not
exist.

Call a subset X of V tight if dE(X) = dR(X). Let C1 and C2 be the
circuits forming the boundaries of F1 and F2 respectively. Then

(74.41) Each tight set X with |δE(X) ∩ EC1| = 2 intersects V C2.

For suppose that X ∩V C2 = ∅. Choose such a set X with |X| minimal. Let e
be one of the two edges in δE(X)∩EC1. Say e = uw with u 	∈ X and w ∈ X.

Since dR(X) = dE(X) ≥ 2, we know δR(X) 	= ∅. For each r ∈ δR(X), let
sr be the vertex in r ∩X, and tr the vertex in r \X. Choose r ∈ δR(X) such
that tr is as close as possible to u in the graph C1 −X.

Since {u,w} 	= {sr, tr}, we can choose v ∈ {u,w} with v 	∈ {sr, tr}. Let
R′ := (R \ {r}) ∪ {srv, vtr}. Trivially the Euler condition is maintained. We
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prove that also the cut condition is maintained, which is a contradiction as
2|E| − |R′| < 2|E| − |R| and as a solution for R′ yields a solution for R.

To see that the cut condition is maintained, suppose to the contrary that
there is a Y ⊆ V satisfying

(74.42) dE(Y ) < dR′(Y ).

By Theorem 70.4, we can take Y such that G[Y ] and G− Y are connected.
By symmetry we can assume that tr 	∈ Y . By the Euler condition, (74.42)
implies dE(Y ) ≤ dR′(Y )− 2. So

(74.43) dR′(Y ) ≥ dE(Y ) + 2 ≥ dR(Y ) + 2 ≥ dR′(Y ).

Hence we have equality throughout. So δR′(Y ) contains both srv and vtr,
that is, sr, tr 	∈ Y and v ∈ Y . Moreover, dE(Y ) = dR(Y ).

As Y and V \ Y intersect V C1 and as G[Y ] and G − Y are connected,
we know |δE(Y ) ∩ EC1| = 2. By the choice of r, there is no pair r′ in R
connecting X \ Y and Y \X (otherwise, tr′ ∈ Y \X and hence tr′ would be
closer than tr to u in C1 −X). So (using Theorem 3.1)

(74.44) dR(X ∩ Y ) + dR(X ∪ Y ) = dR(X) + dR(Y ).

Moreover,

(74.45) dE(X ∩ Y ) + dE(X ∪ Y ) ≤ dE(X) + dE(Y ).

As the cut condition holds for X ∩Y and X ∪Y , we have equality in (74.45),
and therefore X ∩Y is tight. Since sr ∈ X \Y , we know |X ∩Y | < |X|. So by
the minimality of X we have X ∩ Y = ∅. So w 	∈ Y , hence u = v ∈ Y . Then
edge e = uw connects X \ Y and Y \ X, contradicting equality in (74.45).
This proves (74.41).

Now choose r = st ∈ R. By symmetry of F1 and F2, we may assume
that s, t ∈ V C1. Let P and Q be the two s− t paths along C1. Deleting the
edges of P from G and r from R, must violate the cut condition (as the Euler
condition is maintained, and as for the new data there is no solution, since
with P it gives a solution for the original data). So |δE\EP (K)| < |δR\{r}(K)|
for some K ⊆ V , with G[K] and G−K connected (by Theorem 70.4 taking
c := χE\EP and d := χR\{r}). Since G[K] and G − K are connected, and
using (74.41), |δE(K) ∩ ECi| = 2 for i = 1, 2. Moreover, K is tight, δE(K)
contains two edges of P , and K does not split r. So we may assume that
s, t 	∈ K. Similarly, there is a tight subset L of V such that |δE(L)∩ECi| = 2
for i = 1, 2, such that δE(L) contains two edges of Q, and such that s, t 	∈ L.

As each of K, V \K, L, and V \ L intersects V C2, each s− t path in G
intersects K ∪ L (since K contains a path from V P to V C2 and L contains
a path from V Q to V C2). Hence we can partition V \ (K ∪ L) into sets M
and N , with s ∈M , t ∈ N , and E[M,N ] = ∅. (Here and below, E[X,Y ] and
R[X,Y ] denote the set of pairs xy in E and R respectively with x ∈ X and
y ∈ Y .)
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We can assume by symmetry that R[M,K ∩ L] = ∅. For suppose that
R[M,K ∩ L] 	= ∅ and R[N,K ∩ L] 	= ∅. Since K ∩ L does not intersect V C1,
it would follow that both M and N intersect V C2. However, this implies
K ∩ L = ∅, and hence R[M,K ∩ L] = ∅.

Then we have the contradiction

(74.46) dR(K) + dR(L) = dE(K) + dE(L)
= (dE(K ∪M) + |E[M,K]| − |E[M,L \K]| − |E[M,N ]|)
+(dE(L ∪M) + |E[M,L]| − |E[M,K \ L]| − |E[M,N ]|)
≥ dE(K ∪M) + dE(L ∪M) ≥ dR(K ∪M) + dR(L ∪M)
= (dR(K)− |R[M,K]|+ |R[M,L \K]|+ |R[M,N ]|)
+ (dR(L)− |R[M,L]|+ |R[M,K \ L]|+ |R[M,N ]|)
> dR(K) + dR(L).

This follows from a straightforward count of edges, and from the facts that
E[M,L \K] ⊆ E[M,L], E[M,K \ L] ⊆ E[M,K], E[M,N ] = ∅, R[M,K] =
R[M,K \ L] (as R[M,K ∩ L] = ∅), R[M,L] = R[M,L \K] (similarly), and
R[M,N ] 	= ∅ (as st ∈ R[M,N ]).

Notes. Suzuki, Nishizeki, and Saito [1985b,1989] gave an O(kn + nt1 · SP+(n))-
time algorithm for finding the edge-disjoint paths in this case (similarly for the
capacitated case), where k := |R|, t1 is the number of vertices on the boundary of
F1, and SP+(n) is any upper bound on the time needed to find a shortest path in
a planar n-vertex graph with nonnegative edge lengths.

The example of Figure 70.2 shows that Okamura’s theorem cannot be extended
to more than two selected faces, and also is not maintained if we allow ‘mixed pairs’;
that is, nets that connect the two selected faces. Under certain conditions one can
allow such pairs — see (74.55) and (76.50) below.

74.3a. Distances and cut packing

By Theorem 70.5, Okamura’s theorem implies that for any planar graph G = (V, E)
and any choice of two faces F1 and F2, there is a fractional packing of cuts such that
any two vertices s, t that are either both incident with F1 or both incident with F2,
are separated by distG(s, t) of these cuts. In fact, there is a half-integer packing, as
follows from the following result of Schrijver [1989a], generalizing Corollary 74.2a:

(74.47) Let G = (V, E) be a bipartite planar graph and let F1 and F2 be two of
its faces. Then there exist edge-disjoint cuts such that any two vertices
s, t with s, t ∈ bd(F1) or s, t ∈ bd(F2) are separated by distG(s, t) of
these cuts.

Karzanov [1990a] gave an alternative proof of this, yielding a strongly polynomial-
time algorithm for finding the cuts, also for the weighted case (that is, for length
function l : E → Z+ with l(C) even for each circuit C of G, finding an integer
packing of cuts).
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74.3b. The Klein bottle

In Schrijver [1989b] the following relation between Okamura’s theorem and graphs
embedded in the Klein bottle is given. It generalizes the relation between the Oka-
mura-Seymour theorem and graphs embedded in the projective plane, as described
in Section 74.1b.

We can represent the Klein bottle as obtained from the 2-sphere by adding two
cross-caps. A closed curve C on the Klein bottle is called orientation preserving if
after one turn of C the meaning of ‘left’ and ‘right’ is unchanged. Otherwise, it is
called orientation-reversing.

Thus a closed curve is orientation-preserving if and only if it traverses the cross-
caps an even number of times. It is orientation-reversing if and only if it traverses
the cross-caps an odd number of times. So, if G = (V, E) is a graph embedded in the
Klein bottle, there is a subset R of E such that a circuit in G is orientation-reversing
if and only if it traverses the edges in R an odd number of times.

Let G = (V, E) be a graph embedded in the Klein bottle. Define

(74.48) C := collection of orientation-reversing circuits in G;
D := collection of edge sets intersecting each orientation-reversing cir-
cuit of G.

(Here we take circuits as edge sets.)
In Schrijver [1989b], the following is derived from (74.47):

(74.49) Let G = (V, E) be a bipartite graph embedded in the Klein bottle.
Then the minimum length of an orientation-reversing circuit in G is
equal to the maximum number of disjoint sets in D.

(In fact it suffices to require, instead of bipartiteness, that each face of G is sur-
rounded by an even number of edges.)

(74.49) implies that the up hull of the incidence vectors of sets in C is determined
by:

(74.50) xe ≥ 0 for e ∈ E,
x(D) ≥ 1 for D ∈ D.

This follows from the fact that for any l : E → Z+ \ {0}, the minimum value of

(74.51)
∑

e∈E

l(e)xe

over (74.50) is achieved by an integer vector x. To see this, we may assume that
l(e) is even for each e ∈ E. Now replace each edge e of G by a path of length
l(e). We obtain a bipartite graph G′. Let C′ be a minimum-length orientation-
reversing circuit in G′. By (74.49), there exist disjoint edge sets D′

1, . . . , D
′
t in G′

each intersecting all orientation-reversing circuits in G′, such that t is equal to the
number of edges in C′. Let C, D1, . . . , Dt be the edge sets in G corresponding to
C′, D′

1, . . . , D
′
t. So D1, . . . , Dt ∈ D. Then

(74.52)
∑

e∈E

l(e)χC(e) = t =
t∑

i=1

1 and
t∑

i=1

χDi ≤ l.
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So D1, . . . , Dt give a dual solution to minimizing (74.51) over (74.50) of value t,
and hence x := χC is an optimum solution.

So the vertices of the polyhedron determined by (74.50) are incidence vectors
of orientation-reversing circuits. By the theory of blocking polyhedra, this implies
that the up hull of the incidence vectors of the sets in D is determined by:

(74.53) xe ≥ 0 for e ∈ E,
x(C) ≥ 1 for C ∈ C.

From this the following stronger property has been derived in Schrijver [1989b],
generalizing Lins’ theorem (Corollary 74.1b):

(74.54) Let G = (V, E) be an Eulerian graph embedded in the Klein bot-
tle. Then the maximum number of edge-disjoint orientation-reversing
circuits is equal to the minimum number of edges intersecting all
orientation-reversing circuits.

This result cannot be extended to compact surfaces with more than two cross-caps,
as we can embed K5 in such a surface in such a way that the orientation-reversing
circuits are exactly the odd-size circuits of K5. Then the maximum number of edge-
disjoint orientation-reversing circuits is equal to 2, while at least 4 edges are needed
to intersect all orientation-reversing circuits.

From (74.54) one can derive Okamura’s theorem (Theorem 74.4) and also an-
other disjoint paths theorem for planar graphs (Schrijver [1989b]):

(74.55) Let G = (V, E) be a planar graph, and let H = (V, R) be a graph,
with R = {s1t1, . . . , sktk}, such that G has two bounded faces F1 and
F2 with the property that s1, . . . , sk occur in clockwise order along
bd(F1) and t1, . . . , tk occur in clockwise order along bd(F2). Let G+H
be Eulerian. Then there exist edge-disjoint paths Pr, where Pr is an
r-path for r ∈ R, if and only if the cut condition holds.

(Here G+H is the graph (V, E ∪R), taking multiplicities of edges into account. An
r-path is a path connecting the vertices in r.) To see this, we can extend the plane
to a Klein bottle, by adding a cylinder between the boundaries of F1 and F2. (That
is, we first make the plane to a sphere, next take out the interiors of the faces F1

and F2, and then add the cylinder, in such a way that we obtain a nonorientable
surface.) By the condition on the orders of the si and ti along the boundaries of F1

and F2, we can extend the embedding of G to an embedding of G + H in the Klein
bottle, by embedding the edges siti over the cylinder. Then a circuit in G + H is
orientation-reversing if and only if it contains an odd number of edges in R. So it
suffices to show that G + H contains k orientation-reversing circuits.

By (74.54) one must show that each set D of edges of G + H intersecting
all orientation-reversing circuits has size at least k. We may assume that D is a
minimal set of edges in G+H intersecting all orientation-reversing circuits in G+H.
This implies that for each circuit C of G + H, |D ∩ C| is odd if and only if C is
orientation-reversing. (Indeed, for each e ∈ D ∩ C there is an orientation-reversing
circuit Ce disjoint from D \ {e} (by the minimality of D). As Ce intersects D we
know e ∈ Ce. Hence the symmetric difference X of C and the Ce for e ∈ D ∩ C
is disjoint from D. So X contains no orientation-reversing circuit. Therefore, X is
the symmetric difference of an even number of orientation-reversing circuits. So C
is orientation-reversing if and only if |D ∩ C| is odd.)
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In particular, |D ∩ C| is even for each circuit C in G. So D ∩ E is a cut δE(X)
in G. Then for each i = 1, . . . , k:

(74.56) if X does not separate si and ti, then siti ∈ D.

Indeed, if X does not separate si and ti, then there is an si − ti path P in G
containing an even number of edges in D. As P ∪ {siti} is an orientation-reversing
circuit, it intersects D an odd number of times, and hence siti ∈ D.

(74.56) implies |D ∩ R| ≥ |R \ δR(X)|. Hence

(74.57) |D| = |D ∩ E| + |D ∩ R| ≥ |δE(X)| + |R \ δR(X)| ≥ |R| = k,

since |δE(X)| ≥ |δR(X)| by the cut condition. So |D| ≥ k as required.
One can similarly derive Okamura’s theorem. First one may assume, with-

out loss of generality, that R = {s1t1, . . . , sktk} such that s1, . . . , sl, t1, . . . , tl oc-
cur cyclically around bd(F1) and sl+1, . . . , sk, tl+1, . . . , tk occur cyclically around
bd(F2). This can be achieved with the construction described in Section 74.1b (cf.
Figure 74.1).

Now we can obtain a Klein bottle by adding a cross-cap in the interior of F1

and a cross-cap in the interior of F2 (assuming that G is embedded in the 2-sphere).
We can extend the embedding of G to an embedding of G + H, by adding edges
siti for i = 1, . . . , l over the first cross-cap, and adding edges siti for i = l+1, . . . , k
over the second cross-cap. Applying (74.54), we obtain Okamura’s theorem.

74.3c. Commodities spanned by three or more faces

Karzanov [1994c,1994b] showed that Okamura’s theorem and the dual cut packing
result (74.47) can be extended in a certain way to planar graphs where the nets are
on three or more faces. These results can be compared to those in Section 72.2a.

We repeat the definition of Γ -metric. Let Γ be a graph, and let V be a finite
set. A metric µ on V is called a Γ -metric if there is a function φ : V → V Γ with

(74.58) µ(u, v) = distΓ (φ(u), φ(v))

for all u, v ∈ V . (Here distΓ (x, y) denotes the distance of x and y in Γ .)
The Γ -metric condition, a necessary condition for the existence of a feasible

multiflow in a supply graph G = (V, E) with demand graph H = (V, R), capacities
c : E → R+ and demands d : R → R+, reads:

(74.59)
∑

r=st∈R

d(r)µ(s, t) ≤
∑

e=uv∈E

c(e)µ(u, v) for each Γ -metric µ on V .

The K2,3-metric condition generalizes the cut condition.
For the edge-disjoint paths problem, Karzanov [1994b] showed that for extend-

ing Okamura’s theorem to three faces, adding the K2,3-metric condition suffices:

(74.60) Let G = (V, E) be a planar graph, let F1, F2, and F3 be three of its
faces, and let H = (V, R) be a graph such that for each r = st ∈ R
there is an i = 1, 2, 3 with s and t on the boundary of Fi. Let G + H
be Eulerian. Then there exist edge-disjoint paths Pr for r ∈ R, where
Pr connects the vertices in r, if and only if the K2,3-metric condition
holds.
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In particular, if a fractional solution exists, then an integer solution exists.
Karzanov [1994b] derived (74.60) from a dual result on packing cuts and K2,3-

metrics, proved in Karzanov [1994c]:

(74.61) Let G = (V, E) be a bipartite planar graph and let F be a set of
three of its faces. Then there exist K2,3-metrics µ1, . . . , µk such that
distG(u, v) ≥ µ1(u, v) + · · · + µk(u, v) for all u, v ∈ V , with equality if
there is an F ∈ F with both u and v incident with F .

Sebő [1993a] showed that a related result on surfaces with three cross-caps also
holds (in the same way as the results on the Klein bottle above relate to Okamura’s
theorem (Theorem 74.4)). Let S be the compact surface with three cross-caps. Let
G = (V, E) be a graph embedded in S, and consider the system:

(74.62) xe ≥ 0 for each e ∈ E,
x(C) ≥ 1 for each orientation-reversing circuit C.

Sebő showed that the polyhedron determined by (74.62) has half-integer vertices
only. Moreover, if Z denotes the set of minimal {0, 1

2 , 1} solutions of (74.62), then
the system

(74.63) xe ≥ 0 for each e ∈ E,
zTx ≥ 1 for each 0,1 vector z ∈ Z,
2zTx ≥ 2 for each z ∈ Z

(which determines the blocking polyhedron of (74.62)) is totally dual half-integral.
More strongly, for each c : E → Z+ with c(C) even for each circuit C of G, the dual
of minimizing cTx over (74.63) has an integer optimum solution.

From this, Sebő derived a result related to (74.61), in the same was as (74.54)
is related to Okamura’s theorem (Theorem 74.4):

(74.64) Let G = (V, E) be a bipartite planar graph and let F1, F2, F3 be three
of its faces, with F1 and F2 bounded. Let s1, . . . , sk occur clockwise
along bd(F1) and let t1, . . . , tk occur clockwise along bd(F2). Then
there exist K2,3-metrics µ1, . . . , µk such that distG(u, v) ≥ µ1(u, v) +
· · ·+µk(u, v) for all u, v ∈ V , with equality if there is an i with u = si,
v = ti, or if both u and v are incident with F3.

For the extension of (74.61) to four or more faces, there is not a finite collection
G of graphs such that in (74.60) and (74.61) one can consider Γ -metrics for Γ in
G. However, for four faces, Karzanov [1994c] proved:

(74.65) Let G = (V, E) be a bipartite planar graph and let F be a set of four of
its faces. Then there exists a collection of metrics µ1, . . . , µk such that
each µi is a Γ -metric for some bipartite planar graph Γ with four faces,
and such that distG(u, v) ≥ µ1(u, v) + · · · + µk(u, v) for all u, v ∈ V ,
with equality if there is an F ∈ F with both u and v incident with F .

This implies, with the usual polarity argument, that if G = (V, E) is a planar graph,
F a set of four of its faces, H = (V, R) a graph such that for each r = st ∈ F there
is an F ∈ F with s and t incident with F , c : E → R+, and d : R → R+, then there
is a feasible multiflow if and only if the Γ -metric condition (74.59) holds for each
planar bipartite graph Γ with four faces.
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Figure 74.2
An example of a planar graph where each commodity is
spanned by one of the four 4-sided faces and where there
exists a half-integer, but no integer multiflow, while the Eu-
ler condition holds. The nets are indicated by pairs of indices at the
vertices. All capacities and demands are 1. The half-integer multiflow
is obtained by putting, for each index i, a flow of value 1

2 along each
of the two paths along the boundary of the (unique) face incident with
both vertices i.

However, if G + H is Eulerian, an integer solution (for c = 1, d = 1) need
not exist, as is shown in Karzanov [1994b]. In fact, Karzanov gave an example
where G + H is Eulerian and where a half-integer solution exists, but no integer
solution (Figure 74.2). Karzanov [1995] however showed that if c and d are integer
and satisfy the Euler condition, then the existence of a fractional multiflow implies
the existence of a half-integer multiflow. Hence, if c and d are integer (but not
necessarily satisfy the Euler condition), then the existence of a fractional multiflow
implies the existence of a quarter-integer multiflow.

Karzanov [1994c] showed that (74.65) cannot be extended to a set F of five
faces by adding Γ -metrics for planar bipartite graphs Γ with five faces.

74.4. Further results and notes

74.4a. Another theorem of Okamura

Next to Theorem 74.4 (‘Okamura’s theorem’), Okamura [1983] gave another gener-
alization of the Okamura-Seymour theorem:

Theorem 74.5. Let G = (V, E) be a planar graph. Let R be a set of nets such that
there is a vertex q on the outer boundary of G with the property that each net is
spanned by the outer boundary of G or it contains q. Let the Euler condition hold.
Then the edge-disjoint paths problem has a solution if and only if the cut condition
holds.
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Proof. Necessity being trivial, we show sufficiency. As in the proof of Theorem 74.4
we consider a counterexample with 2|E| − |R| minimal. It again implies that G is
2-connected, and that no r ∈ R is parallel to an edge of G. Moreover, R contains at
least one pair r with q �∈ r, as otherwise the theorem follows easily from Menger’s
theorem.

Let C be the circuit formed by the outer boundary of G. Consider any pair
g = xy in R with q �∈ g (so x, y ∈ V C), such that the x − y path P along C
not containing q, is as short as possible. Deleting the edges in P from G, and net
g from R, the cut condition is not maintained (as otherwise we have a smaller
counterexample). As in the proof of Theorem 74.4 it implies that there exists a
tight X with x, y �∈ X and such that X intersects C in a subpath of P . Choose X
with |X| minimal. Note that by the choice of g, X spans no pair in R.

If δR(X) contains no pair r = st with both ends on C, it contains only pairs
qv with v ∈ X. Hence we can contract X to one vertex and obtain a smaller
counterexample (note that |X| ≥ 2, since any net in δR(X) is equal to qv ∈ R for
some v ∈ X with v �∈ V C).

So we can assume that δR(X) contains a pair with both ends on C. Let e be
one of the (two) edges in EC that belong to δE(X). We choose e such that there
is a pair r = st in δR(X) such that s, t ∈ V C and such that the s − t path along C
containing e does not traverse q except possibly at its ends. Let e = uw with u �∈ X
and w ∈ X. For each r ∈ δR(X), let sr be the vertex in r ∩ X, and tr the vertex
in r \ X. Since q �∈ X, we know that each such tr is on C. Choose r ∈ δR(X) such
that sr belongs to V C, such that the sr − tr path along C containing e does not
traverse q except possibly at its ends, and such that tr is as close as possible to u
when following C − X. By the choice of e, such an r exists.

Since sr and tr are nonadjacent, we know that {sr, tr} �= {u, w}. So we can
choose v ∈ {u, w} with v �∈ {sr, tr}. Let R′ := (R \ {r}) ∪ {srv, vtr}. Trivially the
Euler condition is maintained. We show that also the cut condition is maintained,
contradicting the minimality of the counterexample.

To see that the cut condition is maintained, suppose to the contrary that there
is a Y ⊆ V satisfying

(74.66) dE(Y ) < dR′(Y ).

By Theorem 70.4, we can assume that G[Y ] and G−Y are connected. By symmetry
we can assume that tr �∈ Y . By the Euler condition, (74.66) implies dE(Y ) ≤
dR′(Y ) − 2. So

(74.67) dR′(Y ) ≥ dE(Y ) + 2 ≥ dR(Y ) + 2 ≥ dR′(Y ).

Hence we have equality throughout. So δR′(Y ) contains both srv and vtr, that is,
sr, tr �∈ Y and v ∈ Y . Moreover, dE(Y ) = dR(Y ).

By the choice of r, there is no pair in R connecting X \ Y and Y \ X. So (using
Theorem 3.1)

(74.68) dR(X ∩ Y ) + dR(X ∪ Y ) = dR(X) + dR(Y ).

Moreover,

(74.69) dE(X ∩ Y ) + dE(X ∪ Y ) ≤ dE(X) + dE(Y ).

As the cut condition holds for X ∩ Y and X ∪ Y , we have equality in (74.69), and
therefore dE(X ∩ Y ) = dR(X ∩ Y ). Since sr ∈ X \ Y , we know |X ∩ Y | < |X|. So
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by the minimality of X we have X ∩ Y = ∅. So w �∈ Y , hence u = v ∈ Y . Then
edge e = uw connects X \ Y and Y \ X, contradicting equality in (74.69).

Suzuki, Nishizeki, and Saito [1985a,1985b] gave an O(t2n + n · SP+(n))-time
algorithm for finding the edge-disjoint paths in this case (similarly for the capac-
itated case), where t is the number of vertices on the outer boundary, and where
SP+(n) is any upper bound on the time needed to find a shortest path in a planar
n-vertex graph with nonnegative edge lengths.

With Theorem 70.5, Theorem 74.5 implies that for any planar graph G = (V, E)
and any vertex q on the outer boundary, there is a fractional cut packing such that
any pair s, t of vertices, with s, t both on the outer boundary or s = q, is separated
by distG(s, t) of these cuts. It seems to be open if the corresponding integer packing
theorem for bipartite planar graphs holds.

74.4b. Some other planar cases where the cut condition is
sufficient

It was announced by Gerards [1993] that if G = (V, E) is a bipartite planar graph
and s, t ∈ V , then there exist disjoint cuts such that for each u, v ∈ V with u, v
both on the outer boundary, or with u = s, v = t, the distance of u and v is equal
to the number of cuts separating u and v. By Theorem 70.5, this implies that the
cut condition implies the existence of a fractional multiflow, if each net is spanned
by the outer boundary or is equal to some fixed pair {s, t} of vertices.

Gerards [1993] also announced that if G is a graph embedded in the Möbius
strip, and if {s1, t1}, . . . , {sk, tk} are nets such that the terminals are either in the or-
der s1, . . . , sk, t1, . . . , tk along the boundary, or in the order or s1, . . . , sk, tk, . . . , t1,
then the cut condition and the Euler condition imply the existence of an integer
multiflow.

74.4c. Vertex-disjoint paths in planar graphs

Let G = (V, E) be a planar graph, embedded in the plane R
2 and let {s1, t1}, . . . ,

{sk,tk} be disjoint pairs of vertices (the ‘nets’). Robertson and Seymour [1986]
observed that there is an easy greedy-type algorithm for the vertex-disjoint paths
problem if all vertices s1, t1, . . . , sk, tk belong to the outer boundary of G. That is,
there exists a polynomial-time algorithm for the following problem:

(74.70) given: a planar graph G = (V, E) and disjoint pairs {s1, t1}, . . . ,
{sk, tk} of vertices on the outer boundary of G,

find: vertex-disjoint paths P1, . . . , Pk in G, where Pi connects si and
ti (i = 1, . . . , k).

We describe the simple intuitive idea of the method. (Pinter [1983] attributed this
idea to C.P. Hsu (1982), and applied it to the vertex-disjoint paths problem in
rectangular grids.)

We say that two disjoint pairs {s, t} and {s′, t′} cross (around G) if there exist
no disjoint curves in the unbounded face, connecting s and t, and connecting s′ and
t′. The following noncrossing condition is a necessary condition for (74.70) to have
a solution:
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(74.71) No two distinct nets {si, ti}, {sj , tj} cross.

The noncrossing condition implies that there exists an i such that at least one of
the two si − ti paths along bd(F ) contains no sj or tj for j �= i: just choose i
such that the shortest si − ti path along the outer boundary is shortest among all
i = 1, . . . , k.

Without loss of generality, i = k. Let Q be a shortest sk − tk path along the
outer boundary. Let G′ := G − V Q. Next solve the vertex-disjoint paths problem
for input G′, {s1, t1}, . . . , {sk−1, tk−1}. If this gives a solution P1, . . . , Pk−1, then
P1, . . . , Pk−1, Q forms a solution to the original problem (trivially).

If the reduced problem turns out to have no solution, then the original problem
also has no solution. This follows from the fact that if P1, . . . , Pk−1, Pk would be
a solution to the original problem, we may assume without loss of generality that
Pk = Q, since we can ‘push’ Pk ‘against’ the outer boundary. Hence P1, . . . , Pk−1

would form a solution to the reduced problem. This intuitive idea is the basis of a
polynomial-time algorithm for problem (74.70):

Theorem 74.6. The vertex-disjoint paths problem is polynomial-time solvable for
planar graphs with all terminals on the outer boundary.

Proof. See above.

Linear-time implementations were given by Suzuki, Akama, and Nishizeki
[1988c,1990] and Liao and Sarrafzadeh [1991].

The method implies moreover a characterization by means of a cut condition for
the existence of a solution to (74.70). A simple closed curve C in R

2 is by definition
a one-to-one continuous function from the unit circle to R

2. We will identify the
function C with its image.

We say that C separates the pair {s, t} if each curve connecting s and t intersects
C. (In particular, if s or t is on C.) Now the following cut condition clearly is
necessary for the existence of a solution to the vertex-disjoint paths problem in
planar graphs:

(74.72) each simple closed curve in R
2 intersects G at least as often as it

separates pairs {s1, t1}, . . . , {sk, tk}.

Robertson and Seymour [1986] showed with the method above:

Theorem 74.7. Let G = (V, E) be a planar graph embedded in R
2 and let

{s1, t1}, . . . , {sk, tk} be pairs of vertices on the outer boundary of G. Then there
exist vertex-disjoint paths P1, . . . , Pk where Pi connects si and ti (i = 1, . . . , k) if
and only if the noncrossing condition (74.71) and the cut condition (74.72) hold.

Proof. Necessity of the conditions is trivial. We show sufficiency by induction on k,
the case k = 0 being trivial. Let k ≥ 1 and let (74.71) and (74.72) be satisfied. Sup-
pose that paths P1, . . . , Pk as required do not exist. Trivially, {s1, t1}, . . . , {sk, tk}
are disjoint (otherwise there would exist a simple closed curve C with |C ∩ G| = 1
and intersecting two nets, thus violating the cut condition).

We may assume that G is connected, as we can decompose G into its compo-
nents. (If some si and ti would belong to different components, there trivially exists
a closed curve C violating the cut condition.) We can also assume that there is no
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cut vertex v such that G− v has a component K containing no terminal (otherwise
we could delete K from G without violating the cut condition).

Now there exists an i and a simple si − ti path Pi such that Pi follows the
outer boundary and traverses no other terminals than si and ti. We can assume
that i = k. Let G′ := G − V Pk.

Then G′ contains no vertex-disjoint si − ti paths (i = 1, . . . , k − 1), since other-
wise G contains vertex-disjoint si − ti paths (i = 1, . . . , k). Hence, by the induction
hypothesis, there exists a simple closed curve C with |C ∩ G′| smaller than the
number of pairs {s1, t1}, . . . , {sk−1, tk−1} separated by C.

We can assume that C traverses the unbounded face of G′ exactly once and
that it intersects G only in vertices of G. We choose C such that it has a minimum
number of intersections with Pk. Then C intersects Pk at most once. If C does not
intersect Pk, then |C ∩ G| = |C ∩ G′|, and C violates the cut condition also for G.
If C intersects Pk, then |C ∩ G| = |C ∩ G′| + 1 and C separates sk and tk, and so
again C violates the cut condition for G.

It is easy to extend the algorithm and Theorem 74.7 to the directed case, and
also to the following vertex-disjoint trees problem:

(74.73) given: a planar graph G = (V, E) and sets S1, . . . , Sk of vertices on
the outer boundary of G,

find: vertex-disjoint subtrees T1, . . . , Tk of G such that Ti covers Si

(i = 1, . . . , k).

More generally, with similar techniques, Ding, Schrijver, and Seymour [1992]
generalized Theorem 74.7 (and the polynomial-time algorithm) as follows.

Theorem 74.8. Let D = (V, A) be a directed planar graph, let B be a family of
ordered pairs of vertices on the outer boundary of D (with s �= t if (s, t) ∈ B), for
each b ∈ B let Ab ⊆ A, and let H be a set of unordered pairs from B. Then there
exist paths Pb for b ∈ B such that:

(74.74) (i) for b = (s, t) ∈ B, Pb is a directed s − t path in (V, Ab),
(ii) Pb and Pc are vertex-disjoint for each {b, c} ∈ H,

if and only if the following two conditions hold: the ‘noncrossing condition’:

(74.75) if {(r, s), (t, u)} ∈ H, then (r, s) and (t, u) are disjoint and do not
cross,

and the ‘cut condition’:

(74.76) for each curve C starting and ending in the unbounded face and not
intersecting any s, t with (s, t) ∈ B and for each choice of b1, . . . , bn ∈
B satisfying:
• {bj , bj+1} ∈ H for j = 1, . . . , n − 1,
• f, x1, . . . , xn, l, yn, . . . , y1 are all distinct and occur in this order

clockwise around the outer boundary, where xj and yj are such that
bj = (xj , yj) or bj = (yj , xj), and where f and l denote the first and
last point of intersection of C with D,

there exist distinct points p1, . . . , pn traversed by C in this order such
that for each j = 1, . . . , n:
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• pi is on the image of D in R
2, if bj = (xj , yj), then some arc in Abj

is entering C at pj from the left and some arc in Abj is leaving C
at pj from the right,

• if bj = (yj , xj), then some arc in Abj is entering C at pj from the
right and some arc in Abj is leaving C at pj from the left.

(The points pi can be vertices of D or be on arcs of D.)
Theorem 74.8 implies an even more general characterization and algorithm for

disjoint rooted subarborescences. Let D = (V, A) be a planar digraph, let B be a
collection of ordered pairs (r, S) where r is a vertex on the outer boundary of D,
and S is a set of vertices on the outer boundary of D with r �∈ S. For each b ∈ B, let
Ab ⊆ A, and let H be a set of unordered pairs from B. Then Theorem 74.8 implies
necessary and sufficient conditions for the existence of rooted subarborescences Tb

in D (for b ∈ B), with the property that

(74.77) (i) for b = (r, S) ∈ B, Tb is rooted at r, covers S, and is contained in
Ab,

(ii) Tb and Tc are vertex-disjoint for each {b, c} ∈ H.

The reduction to Theorem 74.8 is by replacing each pair (r, S) in B by the pairs (r, s)
for s ∈ S, and reset H to all pairs {(r, s), (r′, s′)} coming from pairs {(r, S), (r′, S′)}
in the original H.

Notes. Suzuki, Akama, and Nishizeki [1988c,1990] and Liao and Sarrafzadeh [1991]
gave linear-time algorithms for problem (74.73). For a description, see also Wagner
[1993].

Theorem 74.6 implies that the vertex-disjoint paths problem is polynomial-time
solvable for outerplanar graphs. This was generalized to series-parallel graphs by
Korach and Tal [1993].

Takahashi, Suzuki, and Nishizeki [1992] gave an O(n log n)-time algorithm to
find pairwise noncrossing paths of minimum total length, connecting prescribed
terminals in a planar graph with all terminals on two specified face boundaries.

74.4d. Grid graphs

Grid graphs form a class of planar graphs that are of special interest for disjoint
paths problem, as they arise in the design of VLSI-circuits, in particular in routing
the wires on the layers of a chip.

Any finite subgraph of the 2-dimensional rectangular grid is called a grid graph.
So its vertex set is a finite subset of Z

2, and any two adjacent vertices have Euclidean
distance 1. (It is not required conversely that any two vertices at Euclidean distance
1 are adjacent; so the subgraph need not be an induced subgraph.)

Kramer and van Leeuwen [1984] showed that both the vertex-disjoint and the
edge-disjoint paths problems are NP-complete even when restricted to grid graphs.
Pinter [1983] showed that the vertex-disjoint paths problem remains NP-complete
for grid graphs in which all faces are bounded by a rectangle (including a square).

A rectangular grid is a grid graph whose outer boundary is a rectangle and
whose bounded faces all are unit squares. The channel routing problem is the vertex-
disjoint paths problem in a rectangular grid, where all nets connect a vertex on



1324 Chapter 74. Planar graphs

the upper horizontal border with one on the lower horizontal border. A criterion
for the feasibility of the channel routing problem was given by Dolev, Karplus,
Siegel, Strong, and Ullman [1981], while Rivest, Baratz, and Miller [1981] gave a
heuristic algorithm approximating the minimal height of the rectangle, given the
positions of the terminals (cf. Preparata and Lipski [1984] and Mehlhorn, Preparata,
and Sarrafzadeh [1986]). A linear-time algorithm for channel-routing, allowing also
multiterminal nets, was given by Greenberg and Maley [1992].

The feasibility criterion was extended by Pinter [1983] to switchboxes, which are
rectangular grids in which the terminals can be anywhere along the outer boundary.
For the vertex-disjoint paths problem in switchboxes, Pinter showed Theorem 74.7
and described the corresponding greedy-type algorithm. He attributes the idea to
C.P. Hsu (1982).

Algorithms for the edge-disjoint paths problem in a switchbox were given by
Frank [1982c] (O(n log n)) and Mehlhorn and Preparata [1986] (O(u log u), where
u is the circumference of the rectangle — note that this is sufficient to specify the
graph). Frank also showed that solvability only depends on horizontal and vertical
cuts.

A generalized switchbox is a grid graph with all bounded faces being unit squares.
Nishizeki, Saito, and Suzuki [1985] gave an O(n2)-time algorithm for routing in gen-
eralized switchboxes for which any two vertices on the outer boundary are connected
by a path with at most one bend; all terminals are on the outer boundary. They also
showed that in this case one may restrict the cuts to those that are either horizontal
or vertical, if the global Euler condition holds. (A correction and generalization was
given by Lai and Sprague [1987].)

Kaufmann and Mehlhorn [1986] described an O(n log2 n + q2)-time algorithm
for the edge-disjoint paths problem in a generalized switchbox, with all terminals on
the outer boundary. Here q denotes the number of vertices v with degG(v)+degH(v)
odd. So if the Euler condition holds, the time bound is O(n log2 n).

Kaufmann and Mehlhorn [1986] also showed that in a generalized switchbox
satisfying the Euler condition and such that no vertex is end point of more than
two curves, the cut condition holds whenever it holds for all 1-bend cuts. (A cut is
called a 1-bend cut if it is the set of edges crossed by the union of some horizontal
and some vertical halfline with one common end vertex.)

Kaufmann and Klär [1993] gave an O(u log2 u)-time algorithm for generalized
switchboxes, whose outer boundary is simple and has no ‘rectilinearly visible cor-
ners’. (Two corners p and q of the outer boundary are called rectilinearly visible
if the (unique) rectangle of which p and q are opposite vertices, has a nonempty
interior and intersects the outer boundary only in p and q.)

Wagner and Weihe [1993,1995] showed that for such problems, if G + H is
Eulerian, then there is even a linear-time algorithm, even for general planar graphs.
(This improves earlier results of Becker and Mehlhorn [1986] and Kaufmann [1990].)

If G is a rectangle with one rectangular hole, and all nets join two vertices either
on the outer rectangle or on the inner rectangle, and if the Euler condition holds,
Suzuki, Ishiguro, and Nishizeki [1990] gave a linear-time algorithm. Related results
are given in Frank, Nishizeki, Saito, Suzuki, and Tardos [1992].

Takahashi, Suzuki, and Nishizeki [1993] gave a polynomial-time algorithm for
the minimum-length ‘noncrossing’ paths problem in certain grid graphs.
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The problem of finding edge-disjoint trees connecting specified sets of vertices
on the outer boundary of a rectangle is NP-complete (Sarrafzadeh [1987b]). More
on channel routing can be found in Preparata and Sarrafzadeh [1985], Sarrafzadeh
and Preparata [1985], Mehlhorn, Preparata, and Sarrafzadeh [1986], Sarrafzadeh
[1987a], Formann, Wagner, and Wagner [1991,1993], Greenberg and Shih [1995,
1996], and Chan and Chin [1997,2000]. Surveys on disjoint paths problems in grid
graphs are given by Kaufmann and Mehlhorn [1990] and in the book by Lengauer
[1990].

74.4e. Further notes

The Lucchesi-Younger theorem (Theorem 55.2) implies the following. Let D =
(V, A) and H = (V, R) be digraphs with D acyclic and (V, A ∪ R) planar. Then D
has arc-disjoint paths Pr for r ∈ R, where Pr runs from s to t if r = (s, t), if and
only if for each B ⊆ A:

(74.78) |B| ≥ number of r = (s, t) ∈ R such that B intersects each s − t path
in D.

Trivially, this condition is necessary. The derivation of sufficiency from the Lucchesi-
Younger theorem is as follows. Consider the planar digraph Q = (V, A ∪ R−1). We
need to show that if (74.78) holds for each B ⊆ A, then Q contains |R| arc-disjoint
directed circuits. Equivalently, the planar dual Q∗ contains |R| disjoint directed
cuts. Applying the Lucchesi-Younger theorem to Q∗ yields for Q that we should
show that (74.78) implies that each set C of arcs of Q intersecting each directed
circuit of Q has size at least |R|. Set B := C ∩A and R′ := C−1 ∩R. Then for each
r = (s, t) ∈ R \ R′, each s − t path in D intersects B. So by (74.78), |B| ≥ |R \ R′|,
and hence |C| = |B| + |R′| ≥ |R|.

Similarly the polynomial-time solvability of the corresponding arc-disjoint paths
problem follows (using Theorem 55.7).

Korte, Prömel, and Steger [1990] showed that the edge-disjoint trees problem
is NP-complete, even if we ask for two disjoint trees in a planar graph, where the
trees should cover two prescribed sets of vertices.

Surveys on linear-time methods for disjoint paths problems in planar graphs
were given by Wagner [1993] and Ripphausen-Lipa, Wagner, and Weihe [1995]. For
extensions to nets spanned by a fixed number of faces, see Section 76.7a.



Chapter 75

Cuts, odd circuits, and
multiflows

Minimum-size cuts in a graph are well under control from an algorithmic
point of view, as we saw in Parts I and V. Finding a maximum-size cut is
however an NP-complete problem.
The complement of a maximum-size cut is a minimum-size odd circuit
cover — a set of edges intersecting all odd circuits. By duality, this relates
to maximum collections of edge-disjoint odd circuits. This in turn relates
to multiflows.
Weakly bipartite graphs are those graphs where the polyhedral approach
works. It makes that the maximum cut problem is polynomial-time solvable
for these graphs.
Key result in this chapter is a theorem of Guenin characterizing weakly bi-
partite graphs, and its extension by Geelen and Guenin to evenly bipartite
graphs. These results turn out to unify several multiflow and odd circuit
packing theorems.

75.1. Weakly and strongly bipartite graphs

Let G = (V,E) be an undirected graph. Call a subset B of E bipartite if
(V,B) is bipartite; equivalently, if B does not contain the edge set of any odd
circuit; equivalently, if B is contained in some cut C. So finding a maximum-
size bipartite set of edges is equivalent to finding a maximum-size cut, and
hence it is NP-complete (cf. Section 75.1a).

The bipartite subgraph polytope Pbipartite subgraph(G) of G is the convex
hull of the incidence vectors (in R

E) of bipartite subsets B of E:

(75.1) Pbipartite subgraph(G) := conv.hull{χB | B ⊆ E bipartite}.
Any vector x in the bipartite subgraph polytope satisfies

(75.2) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(C) ≤ |C| − 1 for each odd circuit C.

In general, these constraints are not enough to determine the bipartite sub-
graph polytope: for the complete graph K5, the vector x with xe = 2

3 for
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each edge e satisfies (75.2), but does not belong to the bipartite subgraph
polytope (since the largest bipartite subgraph has 6 edges, while 10 · 2

3 > 6).
Following Grötschel and Pulleyblank [1981], a graph G is called weakly

bipartite if its bipartite subgraph polytope is determined by (75.2). An equiv-
alent characterization is in terms of odd circuit covers. An odd circuit cover in
an undirected graph G = (V,E) is a set of edges intersecting all odd circuits.
The odd circuit cover polytope is the convex hull of the incidence vectors of
odd circuit covers. It is contained in the polytope determined by

(75.3) 0 ≤ xe ≤ 1 for each e ∈ E,
x(C) ≥ 1 for each odd circuit C.

Then a graph is weakly bipartite if and only the odd circuit polytope is
determined by (75.3). This follows directly from the facts that a set of edges
is an odd circuit cover if and only if its complement is bipartite, and that x
satisfies (75.2) if and only if 1− x satisfies (75.3).

The relevance of weakly bipartite graphs comes from the fact that a
maximum-capacity cut in these graphs can be found in strongly polyno-
mial time, with the ellipsoid method, since the separation problem over the
polytopes (75.2) is polynomial-time solvable (cf. Section 5.11). Indeed, check-
ing (75.2) is equivalent to checking (75.3). One can check the constraints in
(75.3)(i) one by one, and so one may assume that 0 ≤ x ≤ 1. Next, consid-
ering x as length function, one checks if there is an odd circuit of length < 1
(like in Theorem 68.1). If so, we find a violated constraint. If not, x satisfies
(75.3).

Weakly bipartite graphs were characterized by Guenin [1998a,2001a],
proving a conjecture of Seymour [1981a]. This characterization also holds
for the more general structure of signed graphs, for which it is easier to prove
as it allows a finer contraction operation — see Sections 75.2 and 75.5. For
just undirected graphs the characterization can be formulated as follows.

Call a graph H an odd minor of a graph G if H arises from G by deleting
edges and vertices and by contracting all edges in a cut. The class of weakly
bipartite graphs is closed under taking odd minors. To see this, it is easily
seen that this class is closed under deleting edges and vertices. To see that it
is closed under contracting a cut, let G = (V,E) be a weakly bipartite graph,
let U ⊆ V and G′ = G/δ(U), and take x ∈ R

E′
, where E′ = E \ δ(U) is

the edge set of G′. Let x satisfy (75.3) with respect to G′. Define xe := 0 for
each e ∈ δ(U). Then the extended x satisfies (75.3) with respect to G. So the
extended x belongs to the odd circuit cover polytope of G, implying that the
original x belongs to the odd circuit cover polytope of G′.

Now Guenin’s characterization reads for undirected graphs:

(75.4) an undirected graph G is weakly bipartite ⇐⇒ K5 is not an
odd minor of G.
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Related is a characterization of those graphs for which (75.2) is totally
dual integral. These graphs are called strongly bipartite22. A general hyper-
graph theorem of Seymour [1977b] implies a characterization of strongly
bipartite graphs. They are precisely the graphs containing no odd K4-
subdivision — equivalently, the graphs not having K4 as odd minor. Again,
this is easier to handle in the context of signed graphs — see Section 75.4.

75.1a. NP-completeness of maximum cut

In this section we show (Karp [1972b]):

Theorem 75.1. Finding the maximum size of a cut in an undirected graph is
NP-complete.

Proof. We reduce the problem of finding the minimum size of a vertex cover in a
graph G = (V, E) to the maximum-size cut problem. This is sufficient, since the
first problem is NP-complete by Corollary 64.1a.

We can assume that G has no isolated vertices, since they will not occur in any
minimum-size vertex cover. Extend G by a new vertex u and, for each v ∈ V , by
degG(v)−1 parallel edges connecting v and u. Let G′ be the extended graph. Then

(75.5) the minimum size of a vertex cover in G is equal to 2|E| minus the
maximum size of a cut in G′.

To see this, we have for any U ⊆ V :

(75.6) |δG′(U)| = |δG(U)| +
∑

v∈U

(degG(v) − 1)

= 2|{e ∈ E | e intersects U}| − |U |.
Hence, if U is a minimum-size vertex cover of G, then |δG′(U)| = 2|E|−|U |, proving
≥ in (75.5).

To see the reverse inequality, choose a subset U of V that determines a
maximum-size cut δG′(U) in G′. Then U is a vertex cover of G. Otherwise, V \ U
spans an edge e of G. Then extending U by one of the ends of e increases (75.6), a
contradiction. So U is a vertex cover and |U | = 2|E|−|δG′(U)|, proving ≤ in (75.5).

75.1b. Planar graphs

Although we do not use these results in later sections, we first show that planar
graphs are weakly bipartite, as it gives an interesting relation with T -joins (Bara-
hona [1980]):

Theorem 75.2. A planar graph is weakly bipartite.

Proof. Consider the dual graph G∗ = (V ∗, E∗). An odd circuit in G corresponds
to an odd-size cut in G∗, that is, to a T -cut, where T is the set of vertices of G∗ of

22 A strongly bipartite graph need not be bipartite, as is shown by K3.



Section 75.2. Signed graphs 1329

odd degree. For G it means that an odd circuit cover in G corresponds to a set of
edges of G∗ containing a T -join. By Corollary 29.2b, the convex hull of these edge
sets in G∗ is determined by

(75.7) 0 ≤ x(e∗) ≤ 1 for e∗ ∈ E∗,
x(C) ≥ 1 for each T -cut C in G∗.

Hence the odd circuit cover polytope of G is determined by (75.3).

With the help of the decomposition theorem of Wagner [1937a] (Theorem 3.3),
this result can be extended to graphs without K5 minor (Fonlupt, Mahjoub, and
Uhry [1992]). We will however derive this from Guenin’s more general characteri-
zation of weakly bipartite graphs.

75.2. Signed graphs

Guenin’s characterization of weakly bipartite graph is valid, and easier to
prove, in the more general context of signed graphs. In this section we collect
some general terminology and facts on signed graphs.

A signed graph is a triple G = (V,E,Σ), where (V,E) is an undirected
graph and Σ ⊆ E. The graph (V,E) is called the underlying graph and Σ is
called a signing.

Call a set of edges, or a path, or a circuit odd (even, respectively) if it
contains an odd (even, respectively) number of edges in Σ. An odd circuit
cover is a set of edges intersecting all odd circuits.

It is easy to show that, for any undirected graph (V,E),

(75.8) Two signings Σ and Σ′ give the same collection of odd circuits
⇐⇒ Σ�Σ′ is a cut of (V,E).

If Σ�Σ′ is a cut, we call the two signed graphs, or the two signings,
equivalent. The following is an important observation: for any signed graph
G = (V,E,Σ),

(75.9) the collection of inclusionwise minimal odd circuit covers of G is
equal to the collection of inclusionwise minimal signings equiva-
lent to Σ.

Indeed, any signing Σ′ equivalent to Σ intersects each odd circuit in an
odd number of edges, and hence is an odd circuit cover. Conversely, any
inclusionwise minimal odd circuit cover B intersects each odd circuit C in an
odd number of edges: by the minimality of B, for each e ∈ B∩C there exists
an odd circuit Ce disjoint from B \ {e}. If |B ∩ C| is even, the symmetric
difference of C and the Ce gives an odd cycle disjoint from B, a contradiction.

(75.9) has several consequences. The inclusionwise minimal sets among
Σ�δ(U) (for U ⊆ V ) are precisely the inclusionwise minimal odd circuit
covers. For any two inclusionwise minimal odd circuit covers B1, B2 there
exists a subset U of V with
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(75.10) B1�B2 = δ(U)

(since B1 = Σ�δ(U1) and B2 = Σ�δ(U2) for some U1, U2 ⊆ V , hence
B1�B2 = δ(U1)�δ(U2) = δ(U1�U2)).

(75.9) also implies that for each inclusionwise minimal odd circuit cover
B of G, the set B�Σ is a cut. (We recall that, by definition, the empty set
is also a cut.)

We can define the concepts of deletion, contraction, subgraph, and minor
in a signed graph G = (V,E,Σ). Deleting an edge e means replacing G by
G− e := (V,E \ {e}, Σ \ {e}). Similarly, deleting a vertex v means deleting v
in V and deleting in E and Σ all edges incident with v.

Contracting a (nonloop) edge e means: if e 	∈ Σ, replacing G by G/e :=
(Ṽ , Ẽ, Σ), where (Ṽ , Ẽ) is obtained from (V,E) by contracting e; if e ∈ Σ,
choose v ∈ e, replace Σ by Σ�δ(v), and apply the previous operation. So the
operation of contraction is not uniquely defined, but the outcome is unique
up to equivalence of signings. This is sufficient for our purposes.

A subgraph of a signed graph is obtained by a series of deletions of vertices
and edges. A minor is obtained by a series of deletions of vertices and edges
and contractions of edges, and by replacing the signing by an equivalent
signing.

For any complete graph Kn, let odd-Kn be the signed graph

(75.11) odd-Kn := (V Kn, EKn, EKn).

A signed graph (V,E,Σ) is called an odd K4-subdivision if (V,E) is a subdi-
vision of K4 such that each triangle has become an odd circuit (with respect
to Σ). It is not difficult to show that:

(75.12) a signed graph contains an odd K4-subdivision if and only if it
has odd-K4 as minor.

75.3. Weakly, evenly, and strongly bipartite signed
graphs

In an obvious way, the notions of weakly and strongly bipartite graphs can
be lifted to signed graphs. A signed graph G = (V,E,Σ) is weakly bipartite
if each vertex of the polyhedron (in R

E) determined by:

(75.13) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(C) ≥ 1 for each odd circuit C,

is integer, that is, the incidence vector of an odd circuit cover.
System (75.13) gives rise to two stronger properties. First, a signed graph

is called strongly bipartite if (75.13) is totally dual integral. Equivalently,
for each function w : E → Z+ the minimum of wTx over (75.13) has integer
primal and dual optimum solutions. Or: for each weight function w : E → Z+,
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the minimum weight of an odd circuit cover is equal to the maximum size of
a family of odd circuits such that each edge e is in at most w(e) of them.

We also define an intermediate property (only seemingly intermediate,
since it will turn out to be equivalent to weakly bipartite). A signed graph
G = (V,E,Σ) is called evenly bipartite if for each w : E → Z+ with w(δ(v))
even for each v ∈ V , the minimum of wTx over (75.13) is attained by integer
primal and dual optimum solutions. Equivalently, for each weight function
w : E → Z+ with w(δ(v)) even for all v ∈ V , the minimum weight of an odd
circuit cover is equal to the maximum size of a family of odd circuits such
that each edge e is in at most w(e) of them.

There are the following direct implications:

(75.14) strongly bipartite =⇒ evenly bipartite =⇒ weakly bipartite.

It is easy to check that the classes of weakly, evenly, and strongly bipartite
signed graphs are closed under taking minors. So each class can be charac-
terized by forbidden minors.

Now a theorem of Seymour [1977b] implies that a signed graph G is
strongly bipartite if and only if it has no odd-K4 minor (Corollary 75.3a
below). Guenin [1998a,2001a] showed that G is weakly bipartite if and only
if it has no odd-K5 minor. This was sharpened by Geelen and Guenin [2001],
who proved that G is evenly bipartite if and only if G has no odd-K5 minor
(Corollary 75.4a below). So weakly and evenly bipartite are equivalent.

75.4. Characterizing strongly bipartite signed graphs

A general hypergraph theorem of Seymour [1977b] (Theorem 80.1) implies
a characterization of strongly bipartite signed graphs. This will be derived
from the following equivalent result, which we prove with a method of Geelen
and Guenin [2001]:

Theorem 75.3. In a signed graph G without odd-K4 minor, the maximum
number of edge-disjoint odd circuits is equal to the minimum size of an odd
circuit cover.

Proof. For any signed graph G = (V,E,Σ), let π(G) denote the minimum
size of an odd circuit cover and let µ(G) denote the maximum number of
edge-disjoint odd circuits. We must show µ(G) = π(G) for any signed graph
G without odd-K4 minor.

Suppose that this is not true. Choose a counterexample G = (V,E,Σ),
with π(G) minimum, |V | minimum, and |E| maximum, in this order of pri-
ority. Such a graph exists, since if there are more than π(G) parallel edges
connecting two vertices, we can contract them to obtain a counterexample
with |V | smaller.
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Define π := π(G). Fix an edge e = xy not contained in every minimum-
size odd circuit cover. By adding a parallel edge connecting x and y, we do
not change π(G) or |V |, but we increase |E|. Hence in the extended graph
there exist π edge-disjoint odd circuits. This means that in the original graph
G there exist odd circuits C1, . . . , Cπ with e ∈ C1 ∩ C2 and with C1 \ {e},
C2 . . . , Cπ disjoint. (Here we take circuits as edge sets.) We choose the Ci

with |C1 ∪ C2| minimal.
For i = 1, 2, let Pi be the x− y path Ci \ {e}, for i = 1, 2. (Also the paths

are taken as edge sets.) Then

(75.15) P1 ∪ P2 contains no odd circuit C.

Otherwise, replacing C1 and C2 by C and C1�C2�C gives π edge-disjoint
odd circuits, a contradiction.

Moreover, let x = v0, v1, . . . , vk = y be the common vertices of P1 and
P2, in the order on which they occur along P1. Then

(75.16) v0, v1, . . . , vk occur in this order also along P2.

Indeed, orient P1 and P2 from x to y. Then we create no directed circuit,
since otherwise there exist circuits C ′

1, C
′
2 ⊆ C1 ∪C2 with C ′

1 ∩C ′
2 = {e} and

|C ′
1∪C ′

2| < |C1∪C2|. Then C ′
1 and C ′

2 are odd (since otherwise C1�C ′
1 is odd,

and hence contains an odd circuit, contradicting (75.15)). This contradicts
the minimality of |C1 ∪ C2|.

Now choose j with 0 ≤ j ≤ k such that

(75.17) π(G− (P ∪ {e})) ≤ π − 2

for each vj − y path P in P1 ∪ P2 and such that j is as large as possible.
Such a j exists, as (75.17) holds for each x− y path P in P1 ∪P2 (otherwise,
G− (P ∪{e}) contains π−1 disjoint odd circuits; hence, with P ∪{e} it gives
π disjoint odd circuits in G as required).

Since π(G) = π we know π(G − {e}) ≥ π − 1, and hence j < k. By the
maximality of j, there is a vj+1 − y path R in P1 ∪ P2 such that

(75.18) π(G− (R ∪ {e})) ≥ π − 1.

Let Q1 and Q2 be the two vj − vj+1 paths in P1 ∪ P2. By (75.17) we know

(75.19) π(G− (Qi ∪R ∪ {e})) ≤ π − 2

for i = 1, 2. Hence for each i = 1, 2 there exists an inclusionwise minimal odd
circuit cover Bi with |Bi \ (Qi∪R∪{e})| ≤ π−2. So Bi contains one edge of
C3, . . . , Cπ each, and consists for the rest of edges in Qi∪R∪{e}. As C1∪C2
contains an odd circuit disjoint from Qi ∪R, we know e ∈ Bi.

Since B1 and B2 are minimal odd circuit covers, there exists a subset U
of V with

(75.20) B1�B2 = δ(U)
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and U disjoint from e (as e 	∈ B1�B2). So U is disjoint from all x− vj paths
and from the vj+1− y path R′ in P1 ∪P2 edge-disjoint from R (since B1 and
B2 are edge-disjoint from these paths).

As G has no odd-K4 minor, there is no path contained in U that connects
V Q1 and V Q2 and that consists only of edges out of B1. (It creates with
Q1, Q2, R′, e and any x− vj path in P1 ∪ P2 an odd K4-subdivision, as B1
can serve as a signing.) So U has a subset X such that V Q1 ∩ U ⊆ X and
X ∩ V Q2 = ∅ and such that each edge connecting X and U \X belongs to
B1. So δ(X) ⊆ B1 ∪ δ(U) ⊆ B1 ∪B2. Define

(75.21) B := B1�δ(X).

Then B is an odd circuit cover. We show that |B \ (R ∪ {e})| ≤ π − 2,
contradicting (75.18).

Since U ∩ V Q1 ⊆ X ⊆ U , we know that B1 ∩ Q1 ⊆ δ(U) ∩ Q1 ⊆ δ(X),
and hence B ∩ Q1 = ∅. Also B ∩ Q2 = ∅, as δ(X) contains no edge of Q2,
since X is disjoint from V Q2.

As δ(X) ⊆ B1 ∪ B2, we know that B ⊆ B1 ∪ B2. As |Bi ∩ Ch| = 1 for
each h = 3, . . . , π, this implies that |B ∩Ch| ≤ 2, and hence |B ∩Ch| = 1 (as
it is odd). So we have |B \ (R ∪ {e})| ≤ π − 2. This contradicts (75.18).

This theorem implies a characterization of strongly bipartite graphs:

Corollary 75.3a. A signed graph G is strongly bipartite if and only if G has
no odd-K4 minor.

Proof. Necessity follows from the fact that odd-K4 is not strongly bipartite.
To see sufficiency, let G = (V,E,Σ) be a signed graph without odd-K4 minor.
Let w : E → Z+. We must show that minimizing wTx over (75.13) has an
integer optimum dual solution.

Let G′ arise from G by replacing (in E and in Σ) any edge e by w(e) par-
allel edges. Then the minimum value of wTx over integer vectors x satisfying
(75.13) is equal to the minimum size of an odd circuit cover in G′. As G′ has
no odd-K4 minor, by Theorem 75.3 this is equal to the maximum number of
edge-disjoint odd circuits in G′. This gives an integer optimum dual solution
to minimizing wTx over (75.13).

To interpret this characterization for (nonsigned) undirected graphs, and
to get some subtleties straight, it is good to realize that for any undirected
graph G = (V,E) one has:

(75.22) the signed graph (V,E,E) has odd-K4 as minor ⇐⇒ the undi-
rected graph (V,E) has K4 as odd minor ⇐⇒ the undirected
graph (V,E) contains an odd K4-subdivision.

(Recall that an undirected graph H is an odd minor of an undirected graph
G if H arises from G by deleting edges and vertices and contracting all edges
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in some cut. A subdivision of K4 is called odd if each triangle of K4 becomes
an odd circuit.)

Hence:

Corollary 75.3b. An undirected graph is strongly bipartite if and only if it
contains no odd K4-subdivision as subgraph.

Proof. See above.

For multiflows, Seymour’s theorem implies (where we take (V,E \ R) as
supply graph and (V,R) as demand graph, and where c|E \ R and c|R are
the capacity and demand function, respectively):

Corollary 75.3c. Let G = (V,E) be a graph and let R ⊆ E be such that the
signed graph (V,E,R) has no odd-K4 minor. Then for each c : E → Z+, the
cut condition implies the existence of an integer multiflow.

Proof. Let c : E → Z+ satisfy the cut condition. So for each cut D we have
c(D ∩R) ≤ c(D \R). Hence for each cut D:

(75.23) c(D�R) = c(D \R) + c(R \D) ≥ c(D ∩R) + c(R \D) = c(R).

So R minimizes c(R) over all odd circuit covers. Therefore, as (V,E,R) has
no odd-K4 minor, by Corollary 75.3a, there exist odd circuits C1, . . . , Ck such
that each edge e is in at most c(e) of the Ci and such that k = c(R). Hence

(75.24)
k∑

i=1

|Ci ∩R| ≤ c(R) = k.

This implies, since each |Ci ∩ R| is odd, that |Ci ∩ R| = 1 for each i, and
hence we have equality in (75.24). This gives the required multiflow.

75.5. Characterizing weakly and evenly bipartite signed
graphs

Guenin [1998a,2001a] showed that odd-K5 is the only minor-minimal signed
graph that is not weakly bipartite (unique up to resigning). It proves a special
case of a hypergraph conjecture of Seymour [1977b] (cf. Section 78.3). We
prove Guenin’s theorem using shortenings of his proof found by Geelen and
Guenin [2001] (yielding a similar characterization of evenly bipartite graphs)
and Schrijver [2002a].

We use the following lemma on undirected graphs. (Recall that a K4-
subdivision is called odd if each triangle of K4 has become a circuit with an
odd number of edges.)
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Lemma 75.4α. Let G = (V,E) be a graph, let u be a vertex of G, and let v1,
v2, and v3 be three of its neighbours. Let S1, S2, and S3 be disjoint stable sets
in G, with vi ∈ Si for i = 1, 2, 3. Suppose that for all distinct i, j ∈ {1, 2, 3},
the subgraph induced by Si ∪ Sj contains a vi − vj path. Then G contains an
odd K4-subdivision containing the edges uv1, uv2, and uv3.

Proof. Consider a counterexample with |V |+ |E| minimal. So V = S1∪S2∪
S3 ∪ {u} and E consists of the edges uv1, uv2, and uv3, and of the edges
contained in the paths as described. Hence for distinct i, j, there is a unique
path Pi,j from vi to vj contained in Si ∪ Sj . Then

(75.25) for distinct i, j: Si ∪ Sj = V Pi,j .

For if (say) v ∈ S1 \ V P1,2, then v is only on P1,3, and hence has degree
2. Then we can contract the two edges incident with v to obtain a smaller
counterexample, a contradiction.

(75.25) implies |S1| = |S2| = |S3|. If |S1| = 1, G = K4 and we are done.
So we can assume that each |Si| ≥ 2. Hence each path Pi,j has length at least
3. Let v′

2 be the second vertex along P1,2, v′
3 the second vertex along P2,3,

and v′
1 the second vertex along P3,1. Contract the edges incident with u. The

new vertex u′ is adjacent to v′
1, v

′
2, and v′

3. For i = 1, 2, 3, let S′
i := Si \ {vi}.

So S′
i contains v′

i and is a stable set in the contracted graph G′. Moreover,

(75.26) for distinct i, j, S′
i ∪ S′

j contains a v′
i − v′

j path.

To prove this, we can assume i = 1, j = 2. By (75.25), since v′
1 ∈ S1, we

know that v′
1 is on P1,2. Since also v′

2 is on P1,2, S1 ∪ S2 contains a v′
1 − v′

2
path avoiding v1 and v2. This proves (75.26).

As G′ is smaller than G, G′ contains an odd K4-subdivision containing
u′v′

1, u
′v′

2, and u′v′
3. By decontracting we obtain an odd K4-subdivision in G

as required.

(The proof implies that the odd K4-subdivision found in fact is a bad K4-
subdivision (cf. Section 68.4).)

This lemma is used in the characterization of Geelen and Guenin [2001] of
evenly bipartite signed graphs. The following is the kernel of this characteri-
zation (a signed graph is called Eulerian if its underlying graph is Eulerian):

Theorem 75.4. In an Eulerian signed graph without odd-K5 minor, the
maximum number of edge-disjoint odd circuits is equal to the minimum size
of an odd circuit cover.

Proof. For any signed graph G = (V,E,Σ), let π(G) denote the minimum
size of an odd circuit cover and let µ(G) denote the maximum number of
edge-disjoint odd circuits. It suffices to show µ(G) = π(G) for any Eulerian
signed graph G without odd-K5 minor.

Suppose that this is not true. Choose a counterexample G = (V,E,Σ),
with π(G) minimum, |V | minimum, and |E| maximum, in this order of pri-
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ority. Such a graph exists, since if there are more than π(G) parallel edges
connecting two vertices, we can contract them to obtain a counterexample
with |V | smaller.

Fix an edge e = xy not contained in every minimum-size odd circuit
cover. By adding two parallel edges connecting x and y, we do not change
π(G) or |V |, but we increase |E|. Hence in the extended graph there exist
π(G) edge-disjoint odd circuits. This means that in the original graph G

(75.27) there exist odd circuits C1, . . . , Cπ(G) with e ∈ C1 ∩C2 ∩C3 and
with C1 \ {e}, C2 \ {e}, C3, C4, . . . , Cπ(G) disjoint

(describing circuits by edge sets). G,C1, . . . , Cπ(G) moreover satisfy:

(75.28) π(G−C) ≤ π(G)− 3 for each odd circuit C ⊆ C1 ∪C2 ∪C3 such
that ((C1 ∪ C2 ∪ C3) \ C) ∪ {e} contains an odd circuit.

Otherwise, by the minimality of π(G), G − C contains disjoint odd circuits
C ′

1, . . . , C
′
π(G)−2. Then E′ := E\(C∪C ′

1∪· · ·∪C ′
π(G)−2) contains an odd circuit

C ′′, since E is Eulerian and since G has a minimum-size odd circuit cover B
of size π(G); so, as B is an equivalent signing of G, |E′ ∩ B| is odd. Hence
C,C ′′, C ′

1, . . . , C
′
π(G)−2 form π(G) disjoint odd circuits in G, contradicting

our assumption. This proves (75.28).
We show that for signed Eulerian graphs G, conditions (75.27) and (75.28)

imply that G has an odd-K5 minor, which finishes the proof.
We delete our earlier minimality assumptions, and now choose a coun-

terexample to this with |E| minimal and (secondly) |C1 ∪C2 ∪C3| minimal.
Let Pi be the x − y path Ci \ {e} for i = 1, 2, 3 (describing paths by edge
sets). Then:

Claim 1. P1, P2, P3 are internally vertex-disjoint.

Proof of Claim 1. Suppose not. Define F := P1 ∪ P2 ∪ P3. We first show:

(75.29) F contains no odd circuit.

To see this, first observe that any Pi ∪ Pj contains no odd circuit, since
otherwise, for the third path Pk there exist π(G)− 2 disjoint odd circuits in
G− (Pk ∪ {e}), contradicting (75.28).

Hence there exists an inclusionwise minimal odd circuit cover B disjoint
from P1 ∪ P2. Then for each vertex v in V P3 that is also in V P1 ∪ V P2, the
x− v part of P3 has an even number of edges in B (as it forms with part of
P1 or P2 an even cycle). Hence between two contacts of P3 with V P1 ∪ V P2,
P3 has an even number of edges in B. This implies (75.29).

Orient the edges in C1 ∪ C2 ∪ C3 by orienting each Pi from x to y, and
by orienting edge e from y to x. Then

(75.30) F contains no directed circuit C,
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for otherwise F \C contains three edge-disjoint x− y paths. They yield odd
circuits C ′

1, C
′
2, C

′
3 avoiding C, with e ∈ C ′

1 ∩ C ′
2 ∩ C ′

3 and with C ′
1 \ {e},

C ′
2 \ {e}, C ′

3 \ {e} disjoint. This contradicts the minimality of C1 ∪ C2 ∪ C3.
So F is acyclic, and hence there exists a total order ≤ on V with s < t

for each arc (s, t) in F . So all vertices v in V P1 ∪V P2 ∪V P3 have x ≤ v ≤ y.
Then for each undirected x− y path P in F :

(75.31) P is a directed path ⇐⇒ (C1 ∪ C2 ∪ C3) \ P contains an odd
circuit.

To prove ⇒, let P be a directed path. Then there exists a directed x − y
path edge-disjoint from Q. Hence Q ∪ {e} is an odd circuit disjoint from
(C1 ∪ C2 ∪ C2) \ P .

To prove⇐, let C be an odd circuit in (C1∪C2∪C3)\P . Then C \{e} is
an x− y path Q edge-disjoint from P . If P is not directed, there is a vertex
v such that P traverses two arcs entering v. Now there exist precisely three
arcs (s, t) with s < v ≤ t. Hence P contains all three, and nothing is left for
Q, a contradiction.

This proves (75.31). So any circuit C qualifies for (75.28) if and only if it
is a directed circuit.

Let W be the set of vertices that are in at least two of the Pi. Since P1, P2,
and P3 are not internally vertex-disjoint by assumption, we know |W | ≥ 3.

Call a directed path in F a link if it connects two distinct vertices in W ,
while each internal vertex is not in W . Then:

(75.32) there exist vertices u, v and a u − v link Q such that u 	= x and
such that there is at least one directed u − v path edge-disjoint
from Q and such that each directed x− u path is a link.

To see this, first observe that there is a directed x− y path P traversing all
vertices in W . Indeed, for all s, t ∈ W with s < t, there is a directed s − t
path. This follows from the fact that at least two of the Pi leave s and at
least two of the Pi enter t, and that hence at least one of the Pi leaves s and
enters t.

Now to prove (75.32), let u be the smallest vertex in W with u 	= x. Then
each directed x− u path is a link. Let Q be a link leaving u which is not on
P . Taking for v the end vertex of Q, we obtain (75.32).

Let X be the set of edges that are on directed u− v paths 	= Q. We may
assume that if Ci intersects X, then Ci traverses both u and v. So X consists
of one or two u− v paths. Then

(75.33) (C1 ∪ C2 ∪ C3) \ (Q ∪ X) contains no arc leaving u or no arc
entering v.

Otherwise, by (75.32), F has three arcs leaving u and three arcs entering
v. So each Ci contains a u − v path, which hence is in Q ∪ X. This proves
(75.33).



1338 Chapter 75. Cuts, odd circuits, and multiflows

Consider G′ := G/Q and C ′
i := Ci \ (Q ∪X) for i = 1, 2, 3. Then (75.27)

is maintained for G′, C ′
1, C

′
2, C

′
3. Hence, by the minimality of C1 ∪ C2 ∪ C3,

there is a directed circuit C ′ in G′ with

(75.34) π(G′ − C ′) ≥ π(G′)− 2.

Now π(G′) ≥ π(G) (as this is true for any contraction of G). If C ′ is also a
directed circuit in G, we have π(G − C ′) ≤ π(G) − 3 by (75.28), and hence
G−C ′ has an odd circuit cover B of size ≤ π(G)− 3. By (75.27), B does not
intersect Q. Hence B is an odd circuit cover of G − C ′/Q = G′ − C ′ of size
≤ π(G)− 3, a contradiction.

So C ′ is not a directed circuit in G. Then C ′ ∪ Q forms a circuit in G,
and, by (75.33), it is a directed circuit. Hence C ′ contains a link R entering
u. As u ∈W , there is another link, S say, entering u.

Consider G′′ := (G − R)/S and C ′′
i := Ci \ (R ∪ S) for i = 1, 2, 3. Then

(75.27) is maintained. Moreover, π(G′′) ≥ π(G). For suppose that G′′ has an
odd circuit cover B of size π(G′′) ≤ π(G) − 1. By (75.27), |B| = π(G) − 2
(since it intersects each Ci in an odd number of edges), B does not intersect
Q, and contains e. Hence π((G − (R ∪ {e}))/Q) ≤ π(G) − 3. This implies
(since R ∪ {e} ⊆ C ′):

(75.35) π(G′−C ′) ≤ π(G′−(R∪{e})) = π(G−(R∪{e})/Q) ≤ π(G)−3,

contradicting (75.34). This proves that π(G′′) ≥ π(G).
Now, by the minimality of G,C1, C2, C3, (75.28) is not maintained. So

there is a directed circuit C ′′ in G′′ with π(G′′−C ′′) ≥ π(G)−2. Then C ′′∪S
contains an odd circuit of G, hence also C ′′ ∪R contains an odd circuit of G
(since R and S are parallel links). So (by (75.28) for G) π(G− (C ′′ ∪ R)) ≤
π(G) − 3. Hence G − (C ′′ ∪ R) has an odd circuit cover B of size π(G) − 3,
which by (75.27) is disjoint from F ∪ {e}. Then B is an odd circuit cover of
G − (C ′′ ∪ R)/S = G′′ − C ′′, and so π(G′′ − C ′′) ≤ π(G) − 3, contradicting
our assumption. End of Proof of Claim 1

Set π := π(G). Since by (75.28), for each i = 1, 2, 3, π(G − Ci) ≤ π − 3,
there is an inclusionwise minimal odd circuit cover Bi of G with |Bi \ Ci| ≤
π − 3. By (75.27), we know that Bi ∩ Pj = ∅ for j ≤ 3 with j 	= i, and that
|Bi∩Cj | = 1 for j ≥ 4. Since Bi intersects each of C1, C2, C3, we have e ∈ Bi.

By (75.10), there exist U1, U2, U3 ⊆ V such that

(75.36) Bj�Bk = δ(Ui)

for distinct i, j, k ∈ {1, 2, 3}. We can assume that each Ui is disjoint from
e, since e 	∈ Bj�Bk (as e ∈ Bj ∩ Bk). Moreover, we can assume that U3 =
U1�U2 — otherwise, just reset U3 := U1�U2. (This works, since δ(U1�U2) =
δ(U1)�δ(U2) = (B2�B3)�(B1�B3) = B1�B2.)

Define

(75.37) Si := Uj ∩ Uk
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for distinct i, j, k ∈ {1, 2, 3}. So S1, S2, S3 are disjoint and

(75.38) Ui = Sj ∪ Sk

for distinct i, j, k ∈ {1, 2, 3} (since U1�U2�U3 = ∅). Define

(75.39) S0 := V \ (S1 ∪ S2 ∪ S3).

Then

(75.40) each f ∈ E \ (B1 ∪B2 ∪B3) is spanned by S0, S1, S2, or S3.

Otherwise, f belongs to some δ(Ui), and hence to some Bj , by (75.36).
Moreover,

(75.41) V Pi ⊆ S0 ∪ Si

for each i ∈ {1, 2, 3}, since V Pi ∩ δ(Ui) = ∅ by (75.36) and since x, y 	∈ Ui.
We in fact have for each i ∈ {1, 2, 3}:

(75.42) Ci ⊆ Bi.

For suppose that f ∈ C1 \B1. Then G/f again satisfies (75.27) and (75.28),
for C ′

1 := C1 \ {f}, C ′
2 := C2, C ′

3 := C3. Indeed, each odd circuit C of G/f
contained in C ′

1 ∪ C ′
2 ∪ C ′

3 is equal to one of the C ′
i, and moreover

(75.43) π((G/f)− C ′
i) ≤ |Bi \ Ci| ≤ π(G)− 3 ≤ π(G/f)− 3.

This contradicts the minimality of |E|. So we have (75.42).
Similarly,

(75.44) each f ∈ E \ (B1 ∪B2 ∪B3) is spanned by V P1 ∪ V P2 ∪ V P3.

Otherwise, we can contract f to obtain a smaller example satisfying (75.27)
and (75.28) (by (75.43) for C ′

i := Ci).
Now let E′ be the set of edges in B1�B2�B3 that are in C1 ∪ C2 ∪ C3

or connect two distinct sets among S1, S2, S3. So C1 ∪ C2 ∪ C3 ⊆ E′. As
E′ ⊆ B1�B2�B3 and as B1�B2�B3 is a signing equivalent to Σ, it suffices
to show that the undirected graph G′ = (V,E′) has K5 as odd minor.

By definition of E′, for each i ∈ {1, 2, 3}:
(75.45) Si is a stable set of G′.

Moreover, for all distinct i, j ∈ {1, 2, 3},
(75.46) G′ has a path contained in Si ∪Sj and connecting V Pi and V Pj .

To see this, we may assume i = 1, j = 2. Suppose that no such path exists.
Then U3 (= S1∪S2) has a subset X such that S1∩V P1 ⊆ X and X∩V P2 = ∅
and such that no edge of G′ connects X and U3 \X. So

(75.47) δE′(X) ⊆ δ(U3).

Then

(75.48) δE(X) ⊆ B1 ∪B2 ∪B3.
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Indeed, let f ∈ δE(X) \ (B1 ∪ B2 ∪ B3). By (75.44), f is spanned by V P1 ∪
V P2 ∪ V P3. Moreover, by (75.40), as f is incident with X, f is spanned by
S1 or S2. So f is spanned by S1 ∩V P1 or by S2 ∩V P2, contradicting the fact
that f leaves X. This proves (75.48).

Define

(75.49) B := B1�δE(X).

Then B is an odd circuit cover of G. So |B| ≥ π. Since S1 ∩ V P1 ⊆ X
and P1 ⊆ B1, we know that P1 ⊆ δ(X), and so B is disjoint from P1. For
i = 2, 3, B is disjoint from Pi, as δ(X) contains no edge of Pi, since X is
disjoint from V Pi. Hence, as B ⊆ B1 ∪ B2 ∪ B3 by (75.48), we know that
|B ∩ Cj | ≥ 2 for some j = 4, . . . , π. Then |B ∩ Cj | ≥ 3. As |B1 ∩ Cj | = 1
and |B2 ∩ Cj | = 1, it follows that there exists an edge f ∈ B ∩ Cj with
f 	∈ B1 ∪ B2. So f ∈ δE(X), hence f ∈ B3, therefore f ∈ δ(U1) ∩ δ(U2),
and so f ∈ E′. Therefore, f ∈ δE′(X), and hence by (75.47), f ∈ δ(U3),
contradicting (75.36). This proves (75.46).

Consider the minor H of G′ obtained by contracting, for each i = 1, 2, 3,
V Ci \ {x, y} to one vertex, zi say. By Lemma 75.4α, H − y has an odd K4-
subdivision containing the edges xz1, xz2, and xz3. Since y is adjacent to x,
z1, z2, and z3, H has K5 as odd minor.

A consequence of this is a characterization of weakly and evenly bipar-
tite graphs. (The equivalence of (i) and (iii) is Guenin’s theorem (Guenin
[1998a,2001a]), and the equivalence with (ii) was found by Geelen and Guenin
[2001].)

Corollary 75.4a. For any signed graph G the following are equivalent:

(75.50) (i) G is weakly bipartite;
(ii) G is evenly bipartite;
(iii) G has no odd-K5 minor.

Proof. The implications (ii)⇒(i)⇒(iii) follow from (75.14) and from the facts
that weak bipartiteness is closed under taking minors and that odd-K5 is not
weakly bipartite.

The implication (iii)⇒(ii) follows from Theorem 75.4. Let G = (V,E,Σ)
be a signed graph without odd-K5 minor and let c : E → Z+ be such that
c(δ(v)) is even for each v ∈ V . We must show that the dual of minimizing
cTx over (75.13) has an integer optimum dual solution.

Let G′ arise from G by replacing (in E and in Σ) any edge e by c(e)
parallel edges. So G′ is Eulerian. Then the minimum value of cTx over integer
vectors x satisfying (75.13) is equal to the minimum size of an odd circuit
cover in G′. As G′ has no odd-K5 minor, by Theorem 75.4 this is equal to the
maximum number of edge-disjoint odd circuits in G′. This gives an integer
optimum dual solution to minimizing cTx over (75.13).
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For (nonsigned) undirected graphs, this characterization can be described
in terms of odd minors as follows. (Recall that an undirected graph H is an
odd minor of an undirected graph G if H arises from G by deleting edges
and vertices and contracting all edges in some cut.) Then for any undirected
graph G = (V,E):

(75.51) the signed graph (V,E,E) has odd-K5 as minor ⇐⇒ the undi-
rected graph (V,E) has K5 as odd minor.

(This is a simple exercise.) Hence:

Corollary 75.4b. An undirected graph G is weakly bipartite if and only if
K5 is not an odd minor of G.

Proof. See above.

Notes. Special cases of the equivalence of (i) and (iii) in Corollary 75.4a were shown
by Barahona [1980] (for planar graphs; cf. Theorem 75.2), Fonlupt, Mahjoub, and
Uhry [1992] (for graphs without K5 minor), Barahona [1983a] (for graphs G such
that G − u − v is bipartite for two of its vertices u, v), and Gerards [1992a] (for
graphs G such that G − v is planar with at most two odd faces, for some vertex v).

75.6. Applications to multiflows

Geelen and Guenin’s theorems also have consequences for multiflows (where
again we take (V,E \ R) as supply graph and (V,R) as demand graph, and
where c|E \R and c|R are the capacity and demand function, respectively):

Corollary 75.4c. Let G = (V,E) be a graph and let R ⊆ E be such that
the signed graph (V,E,R) has no odd-K5 minor. Then for each c : E → R+,
the cut condition implies the existence of a fractional multiflow. If moreover
c is integer, there is a half-integer multiflow. If moreover the Euler condition
holds, there is an integer multiflow.

Proof. By Corollary 75.4a, (V,E,R) is weakly bipartite. Let c satisfy the cut
condition. So for each cut D we have c(D ∩ R) ≤ c(D \ R). Hence for each
cut D:

(75.52) c(D�R) = c(D \R) + c(R \D) ≥ c(D ∩R) + c(R \D) = c(R).

So R minimizes c(R) over all odd circuit covers. Therefore, as (V,E,R) is
weakly bipartite, there exist odd circuits C1, . . . , Ck and λ1, . . . , λk > 0 with

(75.53)
k∑

i=1

λiχ
Ci ≤ c and

k∑

i=1

λi = c(R).

Hence
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(75.54)
k∑

i=1

λi|Ci ∩R| ≤ c(R) =
k∑

i=1

λi.

This implies, since each |Ci∩R| is odd, that |Ci∩R| = 1 for each i, and that
we have equality in (75.54). This gives the required multiflow.

The integrality results follow from Theorem 75.4.

This implies the following generalization of Theorem 74.3, due to Seymour
[1981a] (who derived it from Theorem 74.3 by using Wagner’s theorem on
the decomposition of K5-free graphs (Theorem 3.3)):

Corollary 75.4d. A graph G = (V,E) has no K5 minor if and only if for
each R ⊆ E and each c : E → R+, the cut condition implies the existence
of a multiflow. Moreover, if G has no K5 minor and c is integer, the cut
condition implies the existence of a half-integer multiflow. If moreover the
Euler condition holds, then it implies the existence of an integer multiflow.

Proof. Directly from Corollary 75.4c.

For planar graphs, these integrality results can be derived also from results
on packing T -cuts (Theorem 29.2), using duality like in Theorem 75.2 (cf.
Theorem 74.3).

75.7. The cut cone and the cut polytope

Let G = (V,E) be an undirected graph. Recall that a subset C of E is called
a cut if C = δ(U) for some U ⊆ V . The cut polytope Pcut(G) of G is the
convex hull of the incidence vectors (in R

E) of cuts in G:

(75.55) Pcut(G) := conv.hull{χC | C cut in G}.
As ∅ is a cut, the cut polytope contains the origin.

Since a set of edges is bipartite if and only if it is contained in a cut, the
bipartite subgraph polytope can be expressed in terms of the cut polytope:

(75.56) Pbipartite subgraph(G) = {x ∈ R
E
+ | ∃y ≥ x : y ∈ Pcut(G)}.

Any vector x in the cut polytope of G satisfies

(75.57) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(F )− x(C \ F ) ≤ |F | − 1 for each circuit C and

F ⊆ C with |F | odd.

A full characterization is known of those graphs for which (75.57) determines
the cut polytope: they are the graphs without K5 minor (Seymour [1981a],
Barahona [1983b]). This can be deduced from the characterization of weakly
bipartite graphs.
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This characterization can be formulated equivalently in terms of the cut
cone of a graph G = (V,E), which is the convex cone generated by the
incidence vectors of the cuts. Necessary conditions for its elements are:

(75.58) xe ≥ 0 for e ∈ E,
xf ≤ x(C \ {f}) for each circuit C and f ∈ C.

The graph K5 shows that these conditions generally are not sufficient: fix
distinct u, v ∈ V K5; then x := 2−χδ({u,v}) satisfies (75.58). However, x does
not belong to the cut cone of K5, since the incidence vector z of any cut
satisfies 2z(δ({u, v})) ≥ z(EK5).

K5 is the only minor-minimal example, as Seymour [1981a] showed:

Corollary 75.4e. The cut cone is determined by (75.58) if and only if G has
no K5 minor.

Proof. Necessity is shown by the example above, and by the closedness of
the property under taking minors. If G has the property, and we contract an
edge e, then any x satisfying (75.58) for G/e can be extended to a vector x
satisfying (75.58) for G by defining xe := 0. Then the extended x is in the
cut cone of G, and hence the original x is in the cut cone of G/e.

If we delete e, extend x satisfying (75.58) for G−e by defining xe to be the
distance in G− e between the end vertices of e, taking x as length function.
Again, the extended x is in the cut cone of G, and hence the original x is in
the cut cone of G− e. This shows necessity.

To see sufficiency, let G have no K5 minor. Let cTx ≥ 0 be a valid in-
equality for the cut cone. Define R := {e ∈ E | c(e) < 0}. Taking (V,E \ R)
as supply graph and (V,R) as demand graph, the cut condition holds for
capacity function c|E \ R and demand function −c|R. By Corollary 75.4d,
there exists a multiflow subject to c|E \R and of value −c|R. It means that
c is a nonnegative combination of vectors −χf + χC\{f} where C is a circuit
and f ∈ C, and of vectors χe where e ∈ E \R. Hence the inequality cTx ≥ 0
is a nonnegative linear combination of the inequalities (75.58).

Using the symmetry of the cut polytope (as observed by Barahona and
Grötschel [1986]), Corollary 75.4e has as a consequence (Barahona [1983b]):

Corollary 75.4f. The cut polytope of a graph G = (V,E) is determined by
(75.57) if and only if G has no K5 minor.

Proof. By Corollary 75.4e, it suffices to show that the cut polytope is deter-
mined by (75.57) if and only if the cut cone is determined by (75.58).

First assume that the cut polytope is determined by (75.57). Since the ori-
gin belongs to the cut polytope, the cut cone is determined by the inequalities
among (75.57) with right-hand side 0 — that is, by (75.58).

Conversely, assume that the cut cone is determined by (75.58). Then
(75.58) determines the cut polytope in the neighbourhood of the origin.
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Consider now any vertex χD of the cut polytope, where D is a cut of G.
For each x ∈ R

E , define x̃ ∈ R
E by:

(75.59) x̃e :=
{

1− xe if e ∈ D,
xe if e 	∈ D.

The function x → x̃ brings the cut polytope to itself (since D′�D is a cut
for any cut D′ and x̃ = χD′�D if x = χD′

), and χD to 0. Since the cut cone
is determined by (75.58), it implies that in the neighbourhood of χD, the cut
polytope is determined by the inequalities (75.58) applied to x̃:

(75.60) (i) x̃e ≥ 0 for e ∈ E,
(ii) x̃f ≤ x̃(C \ {f}) for each circuit C and f ∈ C.

Now inequality (75.60)(i) follows from (75.57)(i). To see inequality (75.60)(ii),
we first consider the case f 	∈ D. Define F := (C ∩ D) ∪ {f}. Then, using
(75.57)(ii), (75.60)(ii) follows from

(75.61) x̃f = xf = x(F )− x(C ∩D) ≤ x(C \ F )− x(C ∩D) + |F | − 1
= x̃(C \ F ) + x̃(C ∩D) = x̃(C \ {f}).

If f ∈ D, define F := (C ∩D) \ {f}. Then, again using (75.57)(ii), (75.60)(ii)
follows from

(75.62) x̃f = 1− xf = 1 + x(F )− x(C ∩D) ≤ x(C \F )− x(C ∩D) + |F |
= x(C \D) + xf − x(C ∩D) + |C ∩D| − 1 = x̃(C \ {f}).

Notes. By Corollary 75.4f, the cut polytope of any planar graph is determined by
(75.57). As cuts in planar graphs correspond to ∅-joins (≡ cycles) in the dual graph
(Orlova and Dorfman [1972]), one may also derive this from Corollary 29.2e on the
T -join polytope.

Hadlock [1975] showed in a similar way that a maximum-capacity cut in a planar
graph can be found in strongly polynomial time. Using the decomposition of graphs
without K5 minors into planar graphs and copies of V8 (Theorem 3.3), Barahona
[1983b] derived from this a combinatorial strongly polynomial-time algorithm to
find a maximum-capacity cut in graphs without K5 minor.

Poljak [1992] showed that for each graph G, the polytope determined by (75.2)
is the down hull of the polytope determined by (75.57).

Karzanov [1985b] showed that the separation problem for the cut cone is co-
NP-complete.

Barahona and Mahjoub [1986] showed that the separation problem over (75.57)
is polynomial-time solvable, hence any linear objective function can be optimized
over (75.57) in strongly polynomial time (with the ellipsoid method).

Integer decomposition. What about integer decomposition in the cut cone? A
theorem of Chvátal [1980] implies that it is NP-complete to decompose a given
metric as a nonnegative integer sum of incidence vectors of cuts. Let H be the
class of graphs such that each integer vector x in the cut cone with x(C) even for
each circuit C, is a nonnegative integer combination of incidence vectors of cuts.
(Equivalently, the incidence vectors of the cuts form a Hilbert base.)
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By (74.34), each planar graph belongs to H. This was extended (using Wagner’s
theorem (Theorem 3.3)) by Fu and Goddyn [1999] who showed that each graph
without K5 minor belongs to H.

Goddyn [1993] also conjectured that each graph not having the Petersen graph
as minor, belongs to H. However, Laurent [1996b] showed that K6 does not belong
to H. She also showed that all proper subgraphs of K6 belong to H. (More on this
can be found in Laburthe [1995] and in the survey by Goddyn [1993].)

Fu and Goddyn [1999] asked: is H closed under taking minors?

Metrics and hypermetrics. The following metric inequalities are valid for the
vectors in the cut cone of the complete graph KV on a vertex set V :

(75.63) (i) xuv ≥ 0 for distinct u, v ∈ V ,
(ii) xuv + xvw ≥ xuw for distinct u, v, w ∈ V .

The cone determined by these inequalities is called the metric cone.
Tylkin [1960,1962] (= M.M. Deza) introduced a stronger set of valid inequalities,

the hypermetric inequalities:

(75.64) (i) xuv ≥ 0 for distinct u, v ∈ V ,
(ii)

∑

u, v ∈ V
u �= v

cucvxuv ≤ 0 for each c : V → Z with c(V ) = 1.

These inequalities are valid for the vectors in the cut cone, since for each cut δ(U)
one has (setting x := χδ(U)):

(75.65)
∑

u, v ∈ V
u �= v

cucvxuv = 2
∑

u∈U

∑

v∈V \U

cucv = 2c(U)c(V \ U)

= 1
2 (c(U) + c(V \ U))2 − 1

2 (c(U) − c(V \ U))2

= 1
2 − 1

2 (c(U) − c(V \ U))2 ≤ 0,

since |c(U) − c(V \ U)| ≥ 1, as c(V ) = 1 and c is integer.
Hypermetric inequalities generalize the metric inequalities, since (75.63)(ii) is

equivalent to taking c := χu + χw − χv in (75.64)(ii).
The cone determined by (75.64) is called the hypermetric cone. Deza, Gr-

ishukhin, and Laurent [1993] showed that this cone is polyhedral (despite that
there are infinitely many inequalities in (75.64)(ii)).

Avis and Grishukhin [1993] showed that it is co-NP-complete to decide if a
given vector is in the hypermetric cone. Relations with the geometry of numbers
are given in Deza, Grishukhin, and Laurent [1995]. More on the metric cone can be
found in Avis [1980b,1980c], Grishukhin [1992], Laurent and Poljak [1992,1995b],
Lomonosov and Sebő [1993], and Laurent [1996a], and on metrics and hypermetrics
in the book by Deza and Laurent [1997].

75.8. The maximum cut problem and semidefinite
programming

The maximum-capacity cut problem has a natural semidefinite relaxation.
Let V be a finite set and denote
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(75.66) MV := the set of all symmetric positive semidefinite V × V ma-
trices M with Mv,v = 1 for each v ∈ V .

Let c : V × V → R+ be a ‘capacity’ function, with c(u, v) = c(v, u) for
all u, v ∈ V . Consider c as a capacity function on the complete graph KV

on V . Let C be the V × V matrix with (u, v)th entry equal to c(u, v). The
maximum-capacity cut problem asks for the maximum of

(75.67)
∑

u∈U

∑

v∈V \U

c(u, v).

Theorem 75.1 implies that this is an NP-complete problem.
A relaxation is to maximize

(75.68) 1
4TrC(J −M)

over M ∈MV . If we restrict M to matrices of rank 1 (so M = xxT for some
{−1,+1} vector x in R

V ), we have the maximum-capacity cut problem.
Goemans and Williamson [1994,1995b] showed the following surprising

bound (surprising also since the proof is very simple). Define

(75.69) α := min
0<φ≤π

φ

1− cosφ
2
π

= 0.87856....

(The latter estimate results from a numerical computation.)

Theorem 75.5. Let µ be the maximum capacity of a cut and let ν be the
maximum value of (75.68). Then

(75.70) αν ≤ µ ≤ ν.
Proof. The inequality µ ≤ ν was shown above. To see the first inequality,
let M maximize (75.68). As M is positive semidefinite, there exist vectors
xv ∈ R

n for v ∈ V such that xT
uxv = Mu,v for all u, v ∈ V . (Here n := |V |.)

So ‖xv‖ = 1 for each v ∈ V .
For any hyperplane H in R

n with 0 ∈ H, let D be the set of edges uv of
KV with u and v at different sides of H. Choosing H at random, the set D
is a cut, with probability 1. Any edge uv of KV is in D with probability

(75.71)
� (xu, xv)

π
.

(� (a, b) is the angle of a and b.) This follows from the fact that (75.71) is the
probability that xu and xv are at different sides of H.

So the expected value of the capacity of D is equal to

(75.72)
∑

uv∈EKV

� (xu, xv)
π

c(u, v).

Now if φ = � (xu, xv), then xT
uxv = cosφ. Hence, by definition of α,
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(75.73)
� (xu, xv)

π
=
φ

π
≥ 1

2α(1− cosφ) = 1
2α(1− xT

uxv).

Hence (75.72) is at least

(75.74)
∑

uv∈EKV

α · 1
2c(u, v)(1− xT

uxv) = 1
4αTrC(J −M) = αν.

Concluding, there exists a cut of capacity at least αν. So µ ≥ αν.

Since the separation problem overMV is solvable in polynomial time, in
a certain approximation model (cf. Grötschel, Lovász, and Schrijver [1988]),
with the ellipsoid method, one can optimize any linear objective function over
MV in strongly polynomial time, or rather approximate the optimum. Hence
the value of ν can be approximated in polynomial time. As Goemans and
Williamson [1994,1995b] pointed out, this gives a randomized polynomial-
time algorithm to find a cut of capacity at least αν ≥ 0.87856ν: choosing a
random hyperplaneH as above gives a random cut of expected capacity as re-
quired. By derandomization, such a cut can in fact be found deterministically
in polynomial-time (Mahajan and Ramesh [1995,1999]).

This approach also gives a relaxation (≡ superset) of the cut polytope.
Indeed, let G = (V,E) be an undirected graph. For any M ∈ MV , define
xM : E → R+ by:

(75.75) xM (e) := 1
2 (1−Mu,v)

for e = uv ∈ E. Then

(75.76) Pcut(G) ⊆ K := {xM |M ∈MV },
since for each cut δ(U), the matrix M given by

(75.77) M := (1− 2χU )(1− 2χU )T

belongs to MV and satisfies xM = χδ(U).
So K is a relaxation of the cut polytope. With the ellipsoid method,

one can optimize over MV , and hence over K in polynomial time. What
Goemans and Williamson’s theorem tells is that for nonnegative c : E →
R+, maximizing cTx over K has only a small relative error compared to
maximizing over Pcut(G). In other words:

(75.78) K ⊆ α−1 · Pbipartite subgraph(G).

Here we use that Pbipartite subgraph(G) is the down hull in R
E
+ of Pcut(G).

Feige and Schechtman [2001,2002] showed that for each ε > 0 there is a
graph for which the ratio of the semidefinite programming bound ν and the
maximum cut-size is no better than α+ ε.

Notes. Before Goemans and Williamson found their theorem, only a factor of 2 was
known to be achievable in polynomial time, by just taking c(E) as upper bound.
This gives a factor 2, since a random cut has expected capacity 1

2c(EKV ), as each
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edge has probability 1
2 to be in the random cut (Johnson and Lafuente [1970] and

Sahni and Gonzalez [1976]).
H̊astad [1997,2001] showed that if NP �=P, then there is no polynomial-time

algorithm that finds a cut of capacity more than 16
17 of the maximum cut-capacity

(cf. Trevisan, Sorkin, Sudan, and Williamson [1996,2000]).
Related work can be found in Bellare, Goldreich, and Sudan [1995,1998], Karloff

[1996,1999], Zwick [1999b], Alon and Sudakov [2000], and Alon, Sudakov, and Zwick
[2001,2002].

Earlier eigenvalue methods for the maximum cut problem include Poljak [1992]
and Delorme and Poljak [1993a,1993b,1993c].

Surveys on semidefinite methods for the maximum cut problem (and more gen-
erally in combinatorial optimization) are given by Goemans [1997], Reed [2001a],
and Laurent and Rendl [2002]. Alizadeh [1995] gives a survey of applying interior-
point methods to semidefinite programming in combinatorial optimization. More
on the semidefinite relaxation of the cut polytope can be found in Laurent and
Poljak [1995a,1996a,1996b]. Other approximation algorithms for the maximum cut
problem were given by Arora, Karger, and Karpinski [1995,1999], Fernandez de
la Vega [1996], Frieze and Kannan [1996,1999], Fernandez de la Vega and Kenyon
[1998,2001], Feige and Langberg [2001], and Halperin, Livnat, and Zwick [2002].

An extension of the semidefinite programming bound to 3-cuts was given by
Goemans and Williamson [2001]. For extensions to directed graphs, see Feige and
Goemans [1995], Matuura and Matsui [2001], and Lewin, Livnat, and Zwick [2002].

For a survey on approximation algorithms, see Shmoys [1995] and the book by
Vazirani [2001].

75.9. Further results and notes

75.9a. Cuts and stable sets

The vertex cover polytope of a graph G = (V, E) can be considered as a face of the
cut polytope of the graph G̃ = (Ṽ , Ẽ) obtained from G by adding one new vertex
u adjacent to all vertices of G. Since the stable set polytope can be expressed in
terms of the vertex cover polytope (as S is a stable set if and only if V \ S is a
vertex cover), this gives a relation between cuts and stable sets.

To see the relation between Pvertex cover(G) and Pcut(G̃), first note that each
x ∈ Pcut(G̃) satisfies

(75.79) x(T ) ≤ 2 for each triangle T ⊆ Ẽ.

Therefore, the set of vectors x in Pcut(G̃) satisfying

(75.80) x(T ) = 2 for each triangle T = {uv, uw, vw} containing u

(so vw is an edge of G), forms a face F of Pcut(G̃).
Now we project R

Ẽ on R
Ẽ\E by deleting the coordinates indexed by E. More-

over, we identify any edge uv in Ẽ \E with vertex v of G. This brings F one-to-one
to the vertex cover polytope of G.

More precisely, define a projection π : R
Ẽ → R

V by π(x)v := xuv for v ∈ V and
x ∈ R

Ẽ . Then:
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Theorem 75.6. π|F is a bijection between F and Pvertex cover(G).

Proof. First, π|F is injective, since if π(x) = π(y) for x, y ∈ F , then for each
v ∈ V , xuv = yuv. Hence, by (75.80), for each vw ∈ E, xvw = 2 − xuv − xuw =
2 − yuv − yuw = yvw. So x = y.

To see that π(F ) ⊆ Pvertex cover(G), let C be a cut in G̃ with χC ∈ F (that is,
χC is a vertex of F ). Then for each edge vw of G, precisely two of the edges uv,
uw, vw belong to C. Hence at least one of uv, uw belongs to C. So π(χC) is the
incidence vector of a vertex cover of G.

Conversely, to see Pvertex cover(G) ⊆ π(F ), let U be a vertex cover of G. So
U ⊆ V . Let C be the cut in G̃ determined by U . Then χC belongs to F , since for
each edge vw of G we have that precisely two of uv, uw, vw belong to C. Moreover,
π(χC) = χU , since for each v ∈ V : v ∈ U ⇐⇒ uv ∈ C.

The relation given in this theorem can be useful when we have a good descrip-
tion of the cut polytope for certain classes of graphs. The description then can
be transferred to the vertex cover polytope, hence to the stable set polytope, for
certain derived classes of graphs.

In particular, we can derive from Guenin’s theorem the t-perfection of graphs
without odd K4-subdivision (a consequence of Theorem 68.3 (Gerards and Schrijver
[1986])):

Theorem 75.7. A graph G without odd K4 subdivision as subgraph is t-perfect.

Proof. Let G = (V, E) be a graph without odd K4-subdivision as subgraph. By
(75.22), G has no K4 as odd minor. Let G̃ = (Ṽ , Ẽ) be the graph obtained from G
by adding a new vertex u, adjacent to all vertices in V .

Then G̃ has no K5 as odd minor. For suppose it has. Then by deleting the vertex
from the K5 to which u has been contracted (if any) we obtain a graph being K4

or K5. It implies that G has K4 as odd minor, a contradiction.
Now let y ∈ R

V satisfy

(75.81) 0 ≤ yv ≤ 1 for v ∈ V ,
yu + yv ≤ 1 for uv ∈ E,
y(V C) ≤ � 1

2 |V C|� for each odd circuit C.

Define x ∈ R
Ẽ by

(75.82) x(vw) := yv + yw for each edge vw of G,
x(uv) := 1 − yv for each v ∈ V .

Then x satisfies (75.2) with respect to G̃. Indeed, (75.2)(i) trivially holds. To see
(ii), we can restrict ourselves to chordless odd circuits C. If C traverses u, it is a
triangle containing u, and we have x(EC) = 2 = |V C| − 1. If C does not traverse
u, then x(EC) = 2y(V C) ≤ |V C| − 1.

So by Corollary 75.4a, x is a convex combination of incidence vectors of bipartite
subgraphs B:

(75.83) x =
∑

B

λBχB .
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Since x(C) = 2 for each triangle C containing u, those B with λB > 0 intersect
each such C in precisely two edges. Hence (since each circuit in G̃ is a symmetric
difference of triangles containing u) B intersects each circuit in an even number of
edges. So B is a cut δ(U) of G̃. We can assume that u �∈ U . Then V \ U is a stable
set of G, and

(75.84) y =
∑

U

λδ(U)χ
V \U

describes y as a convex combination of incidence vectors of stable sets.

It should be noted that the face F of the cut polytope described above is at
the same time a face of the (larger) bipartite subgraph polytope (while the cut
polytope need not be a face of the bipartite subgraph polytope). Indeed, also the
bipartite subgraph polytope satisfies (75.79). Moreover, any set B of edges having
even intersection with the triangle {uv, uw, vw} for each edge vw of G, has even
intersection with each circuit of G̃, as it is a binary sum of such triangles. So B is
a cut.

Laurent, Poljak, and Rendl [1997] showed how the set TH(G) (defined in Section
67.4a) can be derived as an affine image from the convex body K in Section 75.8.

75.9b. Further notes

Chvátal, Cook, and Hartmann [1989] showed that the Chvátal rank of system (75.2)
is at least 1

4 |V | − 1 for complete graphs G = (V, E).
Conforti and Gerards [2000] described (by forbidden odd minors) another class

of Eulerian graphs for which the maximum number of edge-disjoint odd circuits is
equal to the minimum size of an odd circuit cover.

Barahona [1983b] showed that the maximum-size cut problem is NP-complete
for apex graphs, that is graphs G having a vertex v with G − v planar. (More
strongly, Barahona proved NP-completeness if G − v is cubic and planar.)

Grötschel and Nemhauser [1984] showed that for each fixed k there is a
polynomial-time algorithm to solve the maximum-capacity cut problem for graphs
without odd circuits of length ≥ k.

Facets of the bipartite subgraph polytope were studied by Barahona, Grötschel,
and Mahjoub [1985] (cf. Gerards [1985]), and facets of the cut polytope and cut cone
by Barahona and Mahjoub [1986], De Simone [1989,1990], Deza and Laurent [1990,
1992a,1992b], Deza, Laurent, and Poljak [1992], and Laurent and Poljak [1996a].
Compositions in the bipartite subgraph polytope were given by Fonlupt, Mahjoub,
and Uhry [1992].

Conforti and Rao [1987] showed that a minimum-weight odd circuit cover can
be found in strongly polynomial time, if its weight is less than the minimum weight
of a nonempty cut.

For more geometric background on the cut cone and the cut polytope, see
the book by Deza and Laurent [1997]. Gerards [1990] gave a survey on signed
graphs without odd K4-subdivision. For more background on the relations between
odd circuits and multicommodity flows, see Sebő [1990a] and Gerards [1993]. For
surveys on maximum cut and the cut cone, see Deza, Grishukhin, and Laurent [1995]
(hypermetrics) and Poljak and Tuza [1995]. For related work, see Conforti, Rao, and
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Sassano [1990a,1990b], Jerrum and Sorkin [1993,1998], Feige and Goemans [1995],
Frieze and Jerrum [1995,1997], Ageev and Sviridenko [1999], Ageev, Hassin, and
Sviridenko [2001], Feige and Langberg [2001], Halperin and Zwick [2001a,2001b,
2002], Ye [2001], Han, Ye, and Zhang [2002], and Lewin, Livnat, and Zwick [2002].



Chapter 76

Homotopy and graphs on
surfaces

As we saw in Chapter 74, disjoint paths and multiflow problems are gen-
erally hard even for planar graphs. In some special cases, these problems
are polynomial-time solvable.
If we require the paths (or flows) to have certain homotopies, the range
of polynomial-time solvable problems can be extended. By enumerating
homotopies, it sometimes implies polynomial-time solvability for nonho-
motopic versions of the problems.
This can be extended to general surfaces and yield polyhedral characteri-
zations for circulations, flows, and paths of prescribed homotopies.

76.1. Graphs, curves, and their intersections:
terminology and notation

Let S be a compact surface. A closed curve on S is a continuous function
C : S1 → S, where S1 is the unit circle in C. It is simple if C is one-to-one.

Two closed curves C and C ′ are called freely homotopic, in notation C ∼
C ′, if there exists a continuous function bringing C to C ′; that is, a continuous
function Φ : S1× [0, 1]→ S with Φ(z, 0) = C(z) and Φ(z, 1) = C ′(z) for each
z ∈ S1.

For any pair of closed curves C,D on S, let cr(C,D) denote the number
of intersections of C and D, counting multiplicities:

(76.1) cr(C,D) := |{(w, z) ∈ S1 × S1 | C(w) = D(z)}|.
Moreover, mincr(C,D) denotes the minimum of cr(C ′, D′) where C ′ and D′

range over closed curves freely homotopic to C and D, respectively:

(76.2) mincr(C,D) := min{cr(C ′, D′) | C ′ ∼ C,D′ ∼ D}.
Similarly, cr(C) denotes the number of self-intersections of C:

(76.3) cr(C) := 1
2 |{(w, z) ∈ S1 × S1 | C(w) = C(z), w 	= z}|,

and mincr(C) denotes the minimum of cr(C ′) where C ′ ranges over all closed
curves freely homotopic to C:
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(76.4) mincr(C) := min{cr(C ′) | C ′ ∼ C}.
As is well-known, mincr(C,D) and mincr(C) are finite numbers.

Let G = (V,E) be an undirected graph embedded in S. We identify G
with its topological graph, and with its embedding in S.

For any closed curve D on S, cr(G,D) denotes the number of intersections
of G and D (counting multiplicities):

(76.5) cr(G,D) := |{z ∈ S1 | D(z) ∈ G}|.
Moreover, mincr(G,D) denotes the minimum of cr(G,D′) where D′ ranges
over all closed curves freely homotopic to D and not intersecting V :

(76.6) mincr(G,D) := min{cr(G,D′) | D′ is a closed curve in S \ V
freely homotopic to D}.

(It would seem more consistent with definition (76.2) if we would also allow
to shift G over S so as to obtain G′ and minimize cr(G′, D′), where G′ is
possibly not one-to-one mapped in S. However, Theorem 76.1 below implies
that this would not change the minimum value.)

We say that a closed curve C is in a graph G if C : S1 → G.

76.2. Making curves minimally crossing by Reidemeister
moves

The proof of Theorem 76.1 below is based on the following result of de Graaf
and Schrijver [1997b]. Let C1, . . . , Ck be closed curves on S. Call C1, . . . , Ck

minimally crossing if

(76.7) (i) cr(Ci) = mincr(Ci) for each i = 1, . . . , k;
(ii) cr(Ci, Cj) = mincr(Ci, Cj) for all i, j = 1, . . . , k with i 	= j.

Call C1, . . . , Ck regular if C1, . . . , Ck have only a finite number of (self-
)intersections, each being a crossing of only two curve parts. (That is, each
point of S traversed twice by the C1, . . . , Ck has a disk-neighbourhood on
which the curve parts are topologically homeomorphic to two crossing straight
lines.)

In de Graaf and Schrijver [1997b] the following was shown:

(76.8) Any regular system of closed curves on a compact surface S can
be transformed to a minimally crossing system by a series of
Reidemeister moves: replacing by (type 0 ); replacing
by (type I ); replacing by (type II ); replacing by

(type III ).

The pictures in (76.8) represent the intersection of the union of C1, . . . , Ck

with a closed disk on S — no other curve parts than those shown intersect
this disk.
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It is important to note that in (76.8) we do not allow to apply the op-
erations in the reverse direction — otherwise the result would follow quite
straightforwardly with the techniques of simplicial approximation, and would
not be powerful enough for our purposes. The Reidemeister moves given in
(76.8) do not increase the number of intersections.

76.3. Decomposing the edges of an Eulerian graph on a
surface

We first show a homotopic analogue of the theorems in previous chapters
relating distances and cut packings. It will be used to derive that the cut
condition is sufficient for the existence of a fractional packing of circuits of
prescribed homotopies in a graph on a surface (analogous to the line of proof
developed in Section 70.12).

A graph is called Eulerian if each vertex has even degree. (We do not
assume connectedness of the graph.) Moreover, decomposing the edges into
closed curves C1, . . . , Ck means that C1, . . . , Ck are closed curves in G such
that each edge is traversed by exactly one Ci, and by that Ci exactly once.

We now give the theorem, due to de Graaf and Schrijver [1997a], which
was proved for the projective plane by Lins [1981] (Corollary 74.1b above)
and for compact orientable surfaces by Schrijver [1991a].

Theorem 76.1. Let G = (V,E) be an Eulerian graph embedded in a com-
pact surface S. Then the edges of G can be decomposed into closed curves
C1, . . . , Ck such that

(76.9) mincr(G,D) =
k∑

i=1

mincr(Ci, D)

for each closed curve D on S.

Proof. First note that the inequality ≥ in (76.9) trivially holds, for any
decomposition of the edges into closed curves C1, . . . , Ck: by definition of
mincr(G,D), there exists a closed curve D′ ∼ D in S \V with mincr(G,D) =
cr(G,D′), and hence

(76.10) mincr(G,D) = cr(G,D′) =
k∑

i=1

cr(Ci, D
′) ≥

k∑

i=1

mincr(Ci, D).

The content of the theorem is that there exists a decomposition attaining
equality.

To prove this, we may assume that each vertex v of G has degree at most
4. If v would have a degree larger than 4, we can replace G in a neighbourhood
of v like
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by .

This modification does not change the value of mincr(G,D) for any D. More-
over, closed curves decomposing the edges of the modified graph satisfying
(76.9), directly yield closed curves decomposing the edges of the original
graph satisfying (76.9).

For any graph G embedded in S with each vertex having degree 2 or 4, we
define the straight decomposition of G as the regular system of closed curves
C1, . . . , Ck such that G = C1 ∪ · · · ∪ Ck. So each vertex of G of degree 4
represents a (self-)crossing of C1, . . . , Ck.

Up to some trivial operations, such a decomposition is unique, and con-
versely, it uniquely describes G. Moreover, any Reidemeister move applied to
C1, . . . , Ck carries over a modification of G. So we can speak of Reidemeister
moves applied to G. Then straightforwardly:

(76.11) if G′ arises from G by one Reidemeister move of type III, then
mincr(G′, D) = mincr(G,D) for each closed curve D.

Call any graph G = (V,E) that is a counterexample to the theorem
such that each vertex has degree at most 4 and such that it has a minimum
number of faces, a minimal counterexample. (A face is a connected component
of S \G.)

From (76.11) it directly follows that:

(76.12) if G′ arises from a minimal counterexample G by one Reidemeis-
ter move of type III, then G′ is a minimal counterexample again.

Moreover:

(76.13) if G is a minimal counterexample, then no Reidemeister move of
type 0, I or II can be applied to G.

For suppose that a Reidemeister move of type II can be applied to G. Then
G contains the following subconfiguration: . Replacing this by would
give a smaller counterexample (since the function mincr(G,D) does not
change by this operation), contradicting the minimality of G. One similarly
sees that no Reidemeister move of type I can be applied. No Reidemeister
move of type 0 can be applied, as otherwise we can delete the circuit to obtain
a smaller counterexample. This proves (76.13).

The proof now is finished by showing that the straight decomposition
C1, . . . , Ck of any minimal counterexample G satisfies (76.9) — contradicting
the fact that G is a counterexample.

Choose a closed curve D. We may assume that D,C1, . . . , Ck form a
regular system. By (76.8) we can apply Reidemeister moves so as to obtain
a minimally crossing system D′, C ′

1, . . . , C
′
k. Let G′ be the graph formed by

C ′
1, . . . , C

′
k.
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By (76.12) and (76.13) we did not apply Reidemeister moves of type 0, I
or II to C1, . . . , Ck. Hence, by (76.11), mincr(G′, D) = mincr(G,D). So

(76.14) mincr(G,D) = mincr(G′, D) = mincr(G′, D′) ≤ cr(G′, D′)

=
k∑

i=1

cr(C ′
i, D

′) =
k∑

i=1

mincr(C ′
i, D

′) =
k∑

i=1

mincr(Ci, D).

Since the converse inequality holds by (76.10), we have (76.9).

The theorem can be sharpened to include compact surfaces with holes,
just by replacing holes by handles.

76.4. A corollary on lengths of closed curves

Using surface duality we derive the following consequence of Theorem 76.1
(Schrijver [1991a], de Graaf and Schrijver [1997a]). If G is a graph embedded
in a surface S and C is a closed curve in G, then minlengthG(C) denotes the
minimum length of any closed curve C ′ ∼ C inG. Here the length lengthG(C ′)
of C ′ is the number of edges traversed by C ′, counting multiplicities. So

(76.15) minlengthG(C) = min{lengthG(C ′) | C ′ ∼ C,C ′ in G}.

Corollary 76.1a. Let G = (V,E) be a bipartite graph embedded in a compact
surface S and let C1, . . . , Ck be closed curves in G. Then there exist closed
curves D1, . . . , Dt in S \V such that each edge of G is crossed by exactly one
Dj and by this Dj only once, and such that

(76.16) minlengthG(Ci) =
t∑

j=1

mincr(Ci, Dj)

for each i = 1, . . . , k.

Proof. Let

(76.17) d := max{minlengthG(Ci) | i = 1, . . . , k}.
We can extend G to a bipartite graph L embedded in S, such that each
face of L is an open disk. By inserting d new vertices on each edge of L not
occurring in G, we obtain a bipartite graph H satisfying minlengthH(Ci) =
minlengthG(Ci) for each i = 1, . . . , k (since the new edges cannot be used to
obtain a closed curve shorter than minlengthG(Ci)).

Consider a surface dual graph H∗ of H. Then for each i = 1, . . . , k,

(76.18) mincr(H∗, Ci) = minlengthH(Ci) = minlengthG(Ci).

Since H is bipartite, H∗ is Eulerian. Hence by Theorem 76.1, the edges of
H∗ can be decomposed into closed curves D1, . . . , Dt such that
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(76.19) mincr(H∗, C) =
t∑

j=1

mincr(Dj , C)

for each closed curve C. With (76.18), this gives (76.16).

Notes. This proof also implies that we can replace C1, . . . , Ck by the set of all
closed curves on S if G is cellularly embedded (i.e., each face is an open disk) — in
that case we need not extend G to L and H.

It is not difficult to see that this also holds for not-cellularly embedded bipartite
graphs in the torus, since then there is essentially only one closed curve C in G to
consider.

This is not true for the double torus (a surface with two handles), as is shown
by the example of Figure 76.1 (from Schrijver [1991a]).

76.5. A homotopic circulation theorem

By linear programming duality (Farkas’ lemma) we derive from Corollary
76.1a the following ‘homotopic circulation theorem’ — a fractional packing
theorem for closed curves of given homotopies in a graph on a compact sur-
face.

Let G = (V,E) be a graph embedded in a compact surface S. For any
closed curve C in G define the vector trC in Z

E
+ by:

(76.20) trC(e) := number of times C traverses e,

for e ∈ E.
Let C0 be a closed curve on S. Call a function f : E → R a circulation

freely homotopic to C0 (of value 1) if f is a convex combination of functions
trC , where the C are closed curves in G freely homotopic to C0.

Corollary 76.1b (homotopic circulation theorem). Let G = (V,E) be an
undirected graph embedded in a compact surface S and let C1, . . . , Ck be
closed curves on S. Then there exist circulations f1, . . . , fk freely homotopic
to C1, . . . , Ck respectively, such that

(76.21) f1(e) + · · ·+ fk(e) ≤ 1

for each edge e, if and only if

(76.22) cr(G,D) ≥
k∑

i=1

mincr(Ci, D)

for each closed curve D in S \ V .

Proof. Necessity. First note that if f is a circulation freely homotopic to a
closed curve C0, then
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a

b

c

d

e

f

g

h

u

u

v w

x

x Q

R

Q′

R′

Figure 76.1
A not-cellularly embedded bipartite graph G in the double torus S for
which Corollary 76.1a is not true if we replace C1, . . . , Ck by all closed
curves on S. The double torus is obtained from the square by identifying
R and R′ and identifying Q and Q′ (so as to obtain the torus) and
next deleting the interiors of the two hexagons and identifying their
boundaries (so as to obtain the double torus).
For i = 0, 1, 2, . . . let Ci be the closed curve in G which, starting at v,
follows e and f once, and next follows i times the closed curve a, b, c, d.
Then minlengthG(Ci) = 4i+2. Suppose now that D1, . . . , Dt are closed
curves as described in Corollary 76.1a. Choose an arbitrary curve P
from v to w. Then Ci is homotopic to the closed curve C̃i obtained by,
starting at v, first following e and f , next following P , then following
i times the closed curve g, h, and finally following P back from w to v.
Hence for each i (where B is the closed curve from w to w following g
and h):

4i + 2 = minlengthG(Ci) =
t∑

j=1

mincr(Ci, Dj)

≤
t∑

j=1

cr(C̃i, Dj) =
t∑

j=1

(cr(C0, Dj)+2 ·cr(P, Dj)+ i ·cr(B, Dj))

=
t∑

j=1

(cr(C0, Dj) + 2 · cr(P, Dj)) + 2i.

As the first term in the last sum is independent of i, this is a contra-
diction.
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(76.23)
∑

e∈E

f(e)cr(e,D) ≥ mincr(C0, D).

for each closed curve D in S \V (denoting by cr(e,D) the number of times D
intersects edge e). This follows from the fact that (76.23) holds for f := trC

for each C freely homotopic to C0 as

(76.24)
∑

e∈E

trC(e)cr(e,D) = cr(C,D) ≥ mincr(C0, D),

and hence also for any convex combination of such functions.
Suppose now that there exist circulations f1, . . . , fk as required. Let D be

a closed curve in S \ V . Then, using (76.23):

(76.25) cr(G,D) =
∑

e∈E

cr(e,D) ≥
∑

e∈E

cr(e,D)
k∑

i=1

fi(e)

=
k∑

i=1

∑

e∈E

fi(e)cr(e,D) ≥
k∑

i=1

mincr(Ci, D).

Sufficiency. Suppose that (76.22) is satisfied for each closed curve D in S \V .
Let I := {1, . . . , k} and let K be the convex cone in R

I × R
E generated by

the vectors23

(76.26) (χi; trC) (i ∈ I;C closed curve in G with C ∼ Ci),
(0I ;χe) (e ∈ E).

Here χi denotes the ith unit base vector in R
I and χe denotes the eth unit

base vector in R
E . Moreover, 0I denotes the all-zero vector in R

I .
Although generally there are infinitely many vectors (76.26), K is finitely

generated. This can be seen by observing that, for each i ∈ I, we can restrict
the vectors (χi; trC) in the first line of (76.26) to those that are minimal with
respect to the usual partial order ≤ on Z

I
+ × Z

E
+ (with (x; y) ≤ (x′; y′) ⇐⇒

xi ≤ x′
i for all i ∈ I and ye ≤ y′

e for all e ∈ E). They form an ‘antichain’ in
Z

I
+ × Z

E
+ (i.e., a set of pairwise incomparable vectors). Since each antichain

in Z
I
+ × Z

E
+ is finite, K is finitely generated.

We must show that the vector (1I ;1E) belongs to K. Here 1I and 1E

denote the all-one vectors in R
I and R

E , respectively. By Farkas’ lemma, it
suffices to show that each vector (d; l) ∈ Q

I × Q
E having nonnegative inner

product with each of the vectors (76.26), also has nonnegative inner product
with (1I ;1E). Thus let (d; l) ∈ Q

I×Q
E have nonnegative inner product with

each vector among (76.26). This is equivalent to:

(76.27) (i) di +
∑

e∈E

l(e)trC(e) ≥ 0 (i ∈ I;C closed curve in G

with C ∼ Ci),
(ii) l(e) ≥ 0 (e ∈ E).

23 We write (x; y) for
(

x
y

)
.
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Suppose now that (d; l)T(1I ;1E) < 0. By increasing l slightly, we may assume
that l(e) > 0 for each e ∈ E. Next, by multiplying (d; l) appropriately, we
may assume that each entry in (d; l) is an even integer.

Let G′ be the graph arising from G by replacing each edge e of G by a
path of length l(e). That is, we insert l(e) − 1 new vertices on e. Then by
(76.27)(i),

(76.28) −di ≤ minlengthG′(Ci)

for each i ∈ I. Since G′ is bipartite, by Corollary 76.1a there exist closed
curves D1, . . . , Dt intersecting no vertex of G′ such that each edge of G′ is
intersected by exactly one Dj and only once by that Dj and such that

(76.29) minlengthG′(Ci) =
t∑

j=1

mincr(Ci, Dj)

for each i ∈ I. So

(76.30) l(e) =
t∑

j=1

cr(e,Dj)

for each edge e of G. Hence (76.22), (76.28) and (76.29) give

(76.31)
∑

e∈E

l(e) =
t∑

j=1

∑

e∈E

cr(e,Dj) =
t∑

j=1

cr(G,Dj)

≥
t∑

j=1

k∑

i=1

mincr(Ci, Dj) =
k∑

i=1

t∑

j=1

mincr(Ci, Dj)

=
k∑

i=1

minlengthG′(Ci) ≥ −
k∑

i=1

di.

So (d; l)T(1I ;1E) ≥ 0.

This corollary has an equivalent capacitated version. Let C0 be a closed
curve on S. Call a function f : E → R a circulation freely homotopic to C0 of
value d if f is a nonnegative linear combination of functions trC , where the
C are closed curves in G freely homotopic to C0 and where the scalars add
up to d.

Corollary 76.1c. Let G = (V,E) be an undirected graph embedded in a
compact surface S and let C1, . . . , Ck be closed curves on S. Let c : E → R+
and d1, . . . , dk ∈ R+. Then there exist circulations f1, . . . , fk freely homotopic
to C1, . . . , Ck respectively and of values d1, . . . , dk respectively, such that

(76.32)
k∑

i=1

fi(e) ≤ c(e)
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for each edge e if and only if

(76.33)
∑

e∈E

c(e)cr(e,D) ≥
k∑

i=1

di ·mincr(Ci, D)

for each closed curve D in S \ V .

Proof. Using the argument on the finite generation of the convex cone K in
the proof of Corollary 76.1b, we can assume that c and the di are rational,
and hence integer. Replace each edge e of G by c(e) parallel edges, and replace
any Ci by di copies of Ci. Then the present corollary follows from Corollary
76.1b.

Notes. Frank and Schrijver [1992] showed that if S is the torus and each Ci is a
simple closed curve, then there exist half-integer circulations in Corollary 76.1b —
that is, where the scalars of the trC are 1

2 (similarly, in Corollary 76.1c if c and the
di are integer). More generally, it is shown that there are integer circulations if the
following Euler condition holds:

(76.34) for each closed curve D in S \ V , the number of crossings of D with G
has the same parity as the number of crossings with C1, . . . , Ck.

This condition in particular implies that each vertex of G has even degree. This
result can be formulated equivalently as:

(76.35) Let G = (V, E) be a graph embedded in the torus S and let C1, . . . , Ck

be simple closed curves on S such that the Euler condition (76.34)
holds. Then G has edge-disjoint closed walks C′

1, . . . , C
′
k (each travers-

ing no edge more than once) with C′
i freely homotopic to Ci for

i = 1, . . . , k, if and only if condition (76.22) holds.

The C′
i need not be simple; they may have self-intersections at vertices. (See Schrij-

ver [1992] for a survey on disjoint circuits in graphs on the torus.)
Figures 76.2 and 76.3 show that we cannot delete in (76.35) the Euler condition

or the condition that the Ci are simple. Moreover, Figure 76.4 shows that (76.35)
does not extend to the double torus (a surface with two handles).

76.6. Homotopic paths in planar graphs with holes

As was shown in Schrijver [1991a], Corollary 76.1b gives a ‘homotopic flow-
cut theorem’, stating that a homotopic cut condition implies the existence of
a fractional solution for the planar edge-disjoint paths problem, if the paths
have prescribed homotopies in the surface obtained from the plane by deleting
the interiors of certain faces covering all terminals. (This answers a question
of C.St.J.A. Nash-Williams.)

Before formulating the result, we introduce some notation and termi-
nology. Fix some subset T of R

2. A curve in T is a continuous function
D : [0, 1]→ T . The points D(0) and D(1) are the end points of D.
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v

R

′

R′

C1

C2

Figure 76.2
A graph G and curves C1, C2 on the torus satisfying the cut condition
(76.22) (but not the Euler condition (76.34)), where G has no edge-
disjoint circuits C′

1 and C′
2 with C′

i freely homotopic to Ci (i = 1, 2).

v

R

′

R′

C1

Figure 76.3
A graph G and a nonsimple curve C1 on the torus satisfying the cut
condition (76.22) and the Euler condition (76.34), where G has no closed
curve C′

1 freely homotopic to C1 such that C′
1 traverses any edge of G

at most once.

Two curves D,D′ are called homotopic (in T ), denoted by D ∼ D′, if
there exists a continuous function Φ : [0, 1]× [0, 1]→ T with Φ(x, 0) = D(x),
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a

b

c

d

e

v

v

v

v

w

Q

R

Q′

R′

Figure 76.4
A graph G and curves C1, C2 on the double torus satisfying the cut
condition (76.22) and Euler condition (76.34), but where no integer
feasible circulations exist. The double torus is obtained from the square
by identifying R and R′ and identifying Q and Q′ (so as to obtain
the torus) and next deleting the interiors of the two hexagons and
identifying their boundaries (so as to obtain the double torus). The
graph G has two vertices, v and w, and four loops, a, b, c, d, at v,
and one loop, e, at w. Curve C1 follows the edges a and b, and curve
C2 follows the edges b and c — in the directions indicated. The cut
condition (76.22) and the Euler condition (76.34) hold, but G has no
edge-disjoint closed walks freely homotopic to C1 and C2 respectively.
(The cut condition follows from the existence of a fractional solution.)

Φ(x, 1) = D′(x), Φ(0, x) = D(0), Φ(1, x) = D(1) for each x ∈ [0, 1]. (It follows
that D(0) = D′(0) and D(1) = D′(1).)

If C and D are curves in T , then we denote:

(76.36) cr(C,D) := |{(x, y) ∈ [0, 1]× [0, 1] | C(x) = D(y)}|,
mincr(C,D) := min{cr(C ′, D′) | C ′ ∼ C,D′ ∼ D}.

Let G = (V,E) be a graph embedded in T . For any curve D in T and any
e ∈ E, let

(76.37) cr(e,D) := |{x ∈ [0, 1] | D(x) ∈ e}|,
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and

(76.38) cr(G,D) =
∑

e∈E

cr(e,D).

For any walk P in G, let trP be the vector in Z
E
+ defined by

(76.39) trP (e) := number of times P traverses e,

for e ∈ E. For any curve C in T , a flow homotopic to C (of value 1) is a
convex combination of functions trP where P is a walk in G being (as a
curve) homotopic to C in T .

Corollary 76.1d. Let G = (V,E) be a planar graph embedded in R
2. Let

F1, . . . , Fp be (the interiors of) some of the faces of G, including the un-
bounded face. Let T := R

2 \ (F1 ∪ · · · ∪ Fp). Let C1, . . . , Ck be curves in T
with ends points being vertices of G on the boundary of T . Then there exist
flows f1, . . . , fk homotopic to C1, . . . , Ck respectively, each of value 1, such
that

(76.40) f1(e) + · · ·+ fk(e) ≤ 1

for each edge e of G if and only if

(76.41) cr(G,D) ≥
k∑

i=1

mincr(Ci, D)

for each curve D in T \ V with end points on the boundary of T .

Proof. Necessity is shown similarly as in the proof of Corollary 76.1b. To see
sufficiency, let the condition hold. We construct a compact orientable surface
S. First embed R

2 in the 2-dimensional sphere S2. Next for each i = 1, . . . , k
make a handle Hi between the faces among F1, . . . , Fk incident with the end
points of Ci. This yields S.

Let G′ be the graph obtained from G by adding, for each i = 1, . . . , k,
an edge fi between the end points of Ci, by routing fi over Hi. This can be
done in such a way that the new edges do not intersect each other, and do
no intersect the edges of G. Each curve Ci now can be extended to a closed
curve C ′

i by adding fi.
We apply Corollary 76.1b to G′ and S. The circulations described in

Corollary 76.1b give flows as required in the present corollary. So it suffices
to check condition (76.22) for G′ and S. That is, for any closed curve D in
S \ V we must show

(76.42) cr(G′, D) ≥
k∑

i=1

mincr′(C ′
i, D).

Here mincr′ denotes the function mincr with respect to S. To show (76.42),
we distinguish three cases.
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Case 1: D is contained in T . Let y be some point on D, let z be some point
on the boundary of T with z 	∈ V , and let R be some curve in T connecting
z and y, such that R does not intersect V , and intersects G only a finite
number of times. For n ∈ Z+, let Qn be the curve from z to z which follows
R from z to y, then follows n times the closed curve D, and next returns from
y to z over R. Let r := cr(G,R). Let Dn be the closed curve that follows n
times D. Then for all n ∈ Z+,

(76.43) n ·
k∑

i=1

mincr′(C ′
i, D) =

k∑

i=1

mincr′(C ′
i, D

n) ≤
k∑

i=1

mincr(Ci, Qn)

≤ cr(G,Qn) = 2r + n · cr(G′, D).

Here the first equality is a general relation for curves on compact orientable
surfaces (see Proposition 5 in Schrijver [1991a]). The first inequality holds as
any curve homotopic to Qn is equal to a closed curve freely homotopic to Dn.
The second inequality follows from (76.41). The last equality follows from
the definition of Qn. Since (76.43) holds for each n, while r is fixed, we have
(76.42).

Case 2: D does not intersect T . Then

(76.44) cr(G′, D) =
k∑

i=1

cr(C ′
i, D) ≥

k∑

i=1

mincr′(C ′
i, D).

Case 3: D intersects both T and S \ T . Set H := S \ T . Then we can split
D into curves D1, D2, . . . , D2q, such that for odd i, Di is contained in T and
connects two points on the boundary of T , while for even i, Di is contained
in H, except for its end points. Then we have:

(76.45) cr(G′, D) =
q∑

j=1

cr(G,D2j−1) +
q∑

j=1

k∑

i=1

cr(fi, D2j)

≥
q∑

j=1

k∑

i=1

mincr(Ci, D2j−1) +
q∑

j=1

k∑

i=1

cr(fi, D2j)

=
k∑

i=1

q∑

j=1

(mincr(Ci, D2j−1) + cr(fi, D2j)) ≥
k∑

i=1

mincr′(C ′
i, D).

The first inequality follows from (76.41). The last inequality can be derived as
follows. Fix i = 1, . . . , k. Then there exist curves C̃i ∼ Ci and D̃2j−1 ∼ D2j−1

(j = 1, . . . , q) with mincr(Ci, D2j−1) = cr(C̃i, D̃2j−1) for j = 1, . . . , q. (This
can be derived, for instance, from (76.8).) Hence C̃i attains the minimum
simultaneously for all D2j−1. So

(76.46)
q∑

j=1

mincr(Ci, D2j−1) =
q∑

j=1

cr(C̃i, D̃2j−1).



1366 Chapter 76. Homotopy and graphs on surfaces

Hence, where D̃ is the concatenation of D̃1, D2, D̃3, D4, . . . , D̃2q−1, D2q, and
C̃ ′

i is the concatenation of C̃i and fi,

(76.47)
q∑

j=1

(mincr(Ci, D2j−1) + cr(fi, D2j))

=
q∑

j=1

(cr(C̃i, D̃2j−1) + cr(fi, D2j)) = cr(C̃ ′
i, D̃) ≥ mincr′(C ′

i, D),

proving the last inequality in (76.45).

Notes. Related is the following homotopic edge-disjoint paths problem:

(76.48) given: a planar graph G = (V, E), a subcollection F1, . . . , Fp of the
faces of G (including the unbounded face), curves C1, . . . , Ck in
T := R

2 \ (F1 ∪ · · · ∪ Fp), with end points in vertices of G on the
boundary of T ,

find: edge-disjoint walks P1, . . . , Pk, such that Pi traverses any edge at
most once and is homotopic to Ci in T (i = 1, . . . , k).

In this context, the faces F1, . . . , Fp are called the holes.
Clearly, the homotopic cut condition (76.41) is a necessary condition for the

feasibility of (76.48), while Figure 70.3 shows that it is generally not sufficient. By
Corollary 76.1d, it is equivalent to the existence of a fractional solution of (76.48).

We can add the following Euler condition (or local Euler condition):

(76.49) for each vertex v ∈ V , the degree of v in G has the same parity as the
number of times v is end point of the Ci (counting for 2 if Ci begins
and ends at v).

By the Okamura-Seymour theorem, if p = 1 the homotopic cut and local Euler
conditions are sufficient for the feasibility of (76.48). This was extended to p = 2
by van Hoesel and Schrijver [1990]:

(76.50) if p = 2 and the local Euler condition (76.49) holds, then the homotopic
edge-disjoint paths problem (76.48) has a solution if and only if the
homotopic cut condition (76.41) holds.

It implies that if p = 2, we can take the flows in Corollary 76.1d half-integer.
(76.50) cannot be extended to p = 3, as is shown by Figure 76.5. In fact,

Kaufmann and Maley [1993] showed that it is NP-complete to solve the homotopic
edge-disjoint paths problem even if the local Euler condition (76.49) holds and the
graph is a grid graph (with as holes all faces enclosed by more than four edges).

We can consider a stronger parity condition, the global Euler condition:

(76.51) cr(G, D) ≡
k∑

i=1

mincr(Ci, D) (mod 2) for each curve D in T \ V with

end points on bd(T ) and having no touchings with G.

Kaufmann and Mehlhorn [1992] showed that if G is a grid graph and the holes
are those faces enclosed by more than four edges, and if the global Euler condition
holds, then the homotopic edge-disjoint paths problem has a solution if and only if
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C1 C2

F1 F2

F3

Figure 76.5
This graph G with curves C1 and C2 satisfies the cut condition (76.41)
(as there is a fractional solution) and the (local) Euler condition, but G
has no edge-disjoint walks P1 ∼ C1 and P2 ∼ C2 (in R

2\(F1∪F2∪F3)).

the homotopic cut condition holds. Kaufmann and Mehlhorn also gave an O(n2)-
time algorithm to find the paths. This was improved to a linear-time algorithm by
Kaufmann [1987] and Kaufmann and Mehlhorn [1994].

Other types of grids, like the hexagonal and the octo-square grid, were con-
sidered by Kaufmann [1987]. A generalization to ‘straight-line planar graphs’ was
given by Schrijver [1991d]. A straight-line planar graph is a planar graph G such
that each edge is a straight line segment, where F1, . . . , Fp are such that for each
edge e of G and each vertex v on e, when extending the line segment forming e
slightly at v we arrive either in another edge of G or in one of the faces Fi. In this
case, if the global Euler condition holds, then the homotopic edge-disjoint paths
problem has a solution if and only if the homotopic cut condition holds. Moreover,
the problem is solvable in polynomial time in this case.

76.7. Vertex-disjoint paths and circuits of prescribed
homotopies

76.7a. Vertex-disjoint circuits of prescribed homotopies

As for the vertex-disjoint analogue of the results studied above, the existence of
vertex-disjoint circuits of prescribed homotopies in a graph on a compact surface
can be fully characterized.

Let G = (V, E) be a graph embedded in a compact surface S and let C1, . . . , Ck

be pairwise disjoint simple closed curves on S. We say that a closed curve D on a
surface S is doubly odd (with respect to G, C1, . . . , Ck), if D is the concatenation
of two closed curves D1 and D2, with common end point not on G, such that

(76.52) cr(G, Dj) �≡
k∑

i=1

mincr(Ci, Dj) (mod 2) for j = 1, 2.

Then the following was shown in Schrijver [1991b] (conjectured by L. Lovász and
P.D. Seymour):

Theorem 76.2. There exist disjoint circuits C′
1, . . . , C

′
k in G where C′

i is freely
homotopic to Ci (i = 1, . . . , k) if and only if for each closed curve D on S one has
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(76.53) cr(G, D) ≥
k∑

i=1

mincr(Ci, D),

with strict inequality if D is doubly odd.

We only show necessity of the condition. To that end, we can assume that
C1, . . . , Ck are disjoint circuits in G. Then the inequality follows from

(76.54) cr(G, D) ≥
k∑

i=1

cr(Ci, D) ≥
k∑

i=1

mincr(Ci, D).

Moreover, if D is doubly odd, let D1 and D2 be as above. Then:

(76.55) cr(G, D) = cr(G, D1) + cr(G, D2) >

k∑

i=1

(cr′(Ci, D1) + cr′(Ci, D2))

=
k∑

i=1

cr′(Ci, D) ≥
k∑

i=1

mincr(Ci, D).

Here cr′(C, D) counts the number of crossing (and not touchings) of C and D. The
strict inequality holds as

(76.56) cr(G, Dj) �≡
k∑

i=1

mincr(Ci, Dj) ≡
k∑

i=1

cr′(Ci, Dj) (mod 2)

for j = 1, 2.
For the proof of sufficiency, based on solving a system of linear inequalities in

integers, we refer to Schrijver [1991b]. The proof also implies a polynomial-time
algorithm to find disjoint circuits as required in Theorem 76.2.

For the torus, the condition in Theorem 76.2 on the strictness of the inequality
is superfluous, and the characterization can be formulated as:

(76.57) Let G be a graph embedded in the torus T , and let C be a simple closed
curve on T . Then G contains k disjoint circuits each freely homotopic
to C if and only if

cr(G, D) ≥ k · mincr(C, D)

for each closed curve D on T .

This was extended to directed graphs by Seymour [1991] (including polynomial-time
solvability). A shorter proof of this, together with an extension to the Klein bottle,
was given by Ding, Schrijver, and Seymour [1993]. A survey is given in Schrijver
[1992].

76.7b. Vertex-disjoint homotopic paths in planar graphs with
holes

In a similar way one can prove (or derive from Theorem 76.2 as in the proof of Corol-
lary 76.1d for the fractional edge-disjoint case) results on vertex-disjoint homotopic
paths in a planar graph with holes.

Consider the following disjoint homotopic paths problem:
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(76.58) given: A planar graph G = (V, E), faces F1, . . . , Fp of G, including the
unbounded face, disjoint curves C1, . . . , Ck in T := R

2 \ (F1 ∪· · ·∪
Fp), each with end points in vertices of G on the boundary of T ,

find: disjoint paths P1, . . . , Pk in G, where Pi is homotopic to Ci in T
(i = 1, . . . , k).

Frank and Schrijver [1990] and Schrijver [1991c] gave polynomial-time algo-
rithms for this problem, and gave the following characterization (the first paper
gives an algorithm using the ellipsoid method, the second paper a combinatorial
algorithm):

Theorem 76.3. Problem (76.58) has a solution if and only if for each curve D in
T with end points on bd(T ) we have

(76.59) cr(G, D) ≥
k∑

i=1

mincr(Ci, D),

and for each doubly odd closed curve D in T traversing no fixed point of any Ci we
have

(76.60) cr(G, D) >

k∑

i=1

mincr(Ci, D).

Here a point p is called a fixed point of C if each curve homotopic to C traverses
p. (In particular, the ends points of C are fixed points of C.)

Figure 76.6 (due to L. Lovász, cf. Robertson and Seymour [1986]) shows that
condition (76.60) cannot be deleted in Theorem 76.3.

Theorem 76.3 was proved by Cole and Siegel [1984] for the special case where G
is a grid graph (a subgraph of the rectangular grid), and the Fi are precisely the faces
that are not surrounded by exactly four edges of the grid, and the boundary of each
face Fi is a rectangle. In this case, condition (76.60) is superfluous. Cole and Siegel
[1984] also gave a polynomial-time (O(n log n)) algorithm for this case (answering a
question of Pinter [1983]), using an oracle to test homotopy of curves. A polynomial-
time algorithm for such graphs, not using a homotopy testing oracle, was given by
Leiserson and Maley [1985]. Maley [1987] gave an O(n2 log n)-time algorithm (where
the solution has the additional property that each of the paths found is shortest
among all possible solutions), while Maley [1996] gave an O(n log n)-time algorithm
to test routability (not constructing the solution), under some mild conditions on
the routing rules and the input layout.

Theorem 76.3 and the polynomial-time solvability of (76.58) was proved for p ≤
2 by Robertson and Seymour [1986], where again condition (76.60) is superfluous.
(A linear-time algorithm for p = 2 was given by Ripphausen-Lipa, Wagner, and
Weihe [1993a], if at least one of the curves Ci connects F1 and F2.) A short proof
for the case p = 2 was given by Frank [1990c], which also extends to the directed
case, implying a result of Seymour [1991].

The polynomial-time solvability of (76.58) implies the following for nonhomo-
topic disjoint paths (Schrijver [1991c]):

(76.61) for each fixed p, the vertex-disjoint paths problem is polynomial-time
solvable for planar graphs if the terminals can be covered by the bound-
aries of at most p faces.
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Figure 76.6
The three holes are indicated by grey regions, and the curves by dashed
lines. We assume that the graph is embedded in the 2-sphere, such that
there is no unbounded face.
The cut condition (76.59) holds, as there is a fractional solution, but
no vertex-disjoint paths homotopic to the given curves exist.

(This was conjectured by Robertson and Seymour [1986], who proved it for p ≤ 2
(see Section 74.4c for p = 1). For p ≤ 2, Suzuki, Akama, and Nishizeki [1988a,
1988b,1988c,1990] gave an O(n log n)-time algorithm, improved to linear-time by
Ripphausen-Lipa, Wagner, and Weihe [1993a,1993b]. (The algorithm of Suzuki,
Akama, Nishizeki is linear-time if each net is spanned by F1 or by F2.) For p = 3,
a linear-time algorithm if each net is spanned by F1, F2, or F3 was announced by
H. Suzuki, T. Kumagai, and T. Nishizeki (1993; cf. Ripphausen-Lipa, Wagner, and
Weihe [1995]).)

The idea of proof of (76.61) is that for each net r we choose a curve Cr connecting
the points in r such that the Cr are disjoint, and next try to find paths as in (76.58);
it can be proved that we need to consider only a polynomially bounded number of
homotopy classes of curves Cr (for fixed p), which gives the required result.

In Schrijver [1993] this was extended, by similar methods, to the directed case:

(76.62) for each fixed p, the disjoint paths problem is polynomial-time solv-
able for directed planar graphs if the terminals can be covered by the
boundaries of at most p faces.

This remains the case if we prescribe for each net (si, ti) a subset Ai of the arc set
that path Pi is allowed to use.

For a sketch of the method for (76.58), see Schrijver [1990b].
Robertson and Seymour [1995] proved that if the number of terminals is fixed,

the vertex-disjoint paths problem in undirected graphs is O(n3)-time solvable, also
for nonplanar graphs. If moreover the graph is planar, Reed, Robertson, Schrij-
ver, and Seymour [1993] gave a linear-time algorithm. This connects to the results
described in Section 70.13a.



Section 76.7c. Disjoint trees 1371

76.7c. Disjoint trees

The polynomial-time solvability of finding paths (76.58) can be generalized to dis-
joint trees (Schrijver [1991c]). The following problem is solvable in polynomial
time:

(76.63) given: a planar graph G, faces F1, . . . , Fp of G (including the un-
bounded face), curves C1,1, . . . , C1,t1 , . . . , Ck,1, . . . , Ck,tk in the
space S := R

2 \ (F1 ∪ · · · ∪ Fp), with end points in vertices of
G on bd(S), such that for each i = 1, . . . , k, Ci,1, . . . , Ci,ti have
the same starting vertex;

find: disjoint subtrees T1, . . . , Tk of G such that for each i = 1, . . . , k
and j = 1, . . . , ti, Ti contains a path homotopic to Ci,j in S.

Again, by enumerating homotopy classes, it can be derived that, for each fixed p,
the problem

(76.64) given: a graph G = (V, E) and disjoint subsets W1, . . . , Wk of V ;
find: disjoint subtrees T1, . . . , Tk of G such that Ti spans Wi for i =

1, . . . , k,

is polynomial-time solvable if G is planar and W1, . . . , Wk can be covered by the
boundaries of at most p faces of G. (For p ≤ 2, Suzuki, Akama, and Nishizeki [1988a,
1988b,1988c,1990] gave an O(n log n)-time algorithm, improved to linear-time by
Ripphausen-Lipa, Wagner, and Weihe [1993a,1993b].)

Robertson and Seymour [1995] showed that for each fixed p, (76.64) is O(n3)-
time solvable for any graph if |W1 ∪ · · · ∪ Wk| ≤ p. If moreover the graph is planar,
Reed, Robertson, Schrijver, and Seymour [1993] gave a linear-time algorithm.

For minimum-length homotopic routing in grid graphs, see Ho, Suzuki, and
Sarrafzadeh [1993]. Surveys of homotopic routing methods are given by Schrijver
[1990b,1994b], and of applications of polyhedral combinatorics to multiflows on
surfaces by Schrijver [1990a]. ‘Gridless’ homotopic routing (that is, routing in the
plane (not in a graph), observing mutual distances between curves) was studied by
Tompa [1981] and Maley [1988].
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