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Part VI: Cliques, Stable Sets, and Colouring

We now arrive at a class of problems that are in general NP-complete: finding a
maximum-size clique or stable set or a minimum vertex-colouring in an undirected
graph. These problems relate to each other: a stable set in a graph is a clique in
the complementary graph, a colouring is a partitioning of the vertex set into stable
sets, and the maximum size of a clique is a lower bound for the minimum number
of colours.
Graph colouring was motivated originally by the four-colour conjecture formulated
in the 1850s, stating that each planar map can be coloured with at most four colours
— since 1977 a theorem of Appel and Haken. Later, colouring turned out to have
several other applications, like in school scheduling, timetabling, and warehouse
planning and in bungalow, terminal, platform, and frequency assignment. Finding
optimum cliques of stable sets again can be used in frequency assignment, and in
set packing problems, which show up for instance in crew scheduling.
While these problems are in general NP-complete, some are polynomial-time solv-
able for special classes of graphs: perfect graphs, t-perfect graphs, claw-free graphs.
They form the body of this part.
Perfect graphs carry one of the deepest theorems in graph theory, the strong per-
fect graph theorem — recently proved by Chudnovsky, Robertson, Seymour, and
Thomas. The proof is highly complicated, and we cannot give it in this book.
We refer to Part III for stable sets in and colouring of line graphs — equivalently,
matchings and edge-colouring.
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Chapter 64

Cliques, stable sets, and
colouring

This chapter studies cliques, stable sets, and colouring for general graphs:
complexity, polyhedra, fractional solutions, weighted versions.
In studying later chapters of this part, one can do largely with-
out the results of the present chapter. Only some elementary
definitions and terminology will be needed. It suffices to use this
chapter just for reference.
In this chapter, all graphs can be assumed to be simple.

64.1. Terminology and notation

Let G = (V,E) be an undirected graph. A clique is a set of vertices any two of
which are adjacent. The maximum size of a clique in G is the clique number
of G, and is denoted by ω(G).

A stable set is a set of vertices any two of which are nonadjacent. The
maximum size of a stable set in G is called the stable set number of G, and
is denoted by α(G).

A vertex cover is a set of vertices intersecting all edges. The minimum size
of a vertex cover in G is called the vertex cover number of G, and is denoted
by τ(G).

A (vertex-)colouring of G is a partition of V into stable sets S1, . . . , Sk.
The sets S1, . . . , Sk are called the colours of the colouring. The minimum
number of colours in a vertex-colouring of G is called the (vertex-)colouring
number of G, denoted by χ(G). A graph G is called k-(vertex-)colourable if
χ(G) ≤ k, and k-chromatic if χ(G) = k. A minimum (vertex-)colouring is
a colouring with χ(G) colours. A k-(vertex-)colouring is a colouring with k
colours.

A clique cover of G is a partition of V into cliques. The minimum number
of cliques in a clique cover of G is called the clique cover number of G, and is
denoted by χ(G). A minimum clique cover is a clique cover with χ(G) cliques.

The following relations between these parameters are immediate:

(64.1) α(G) = ω(G), χ(G) = χ(G), ω(G) ≤ χ(G), α(G) ≤ χ(G),
τ(G) = |V | − α(G).
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64.2. NP-completeness

It is NP-complete to find a maximum-size stable set in a graph. To be more
precise, the stable set problem: given a graph G and a natural number k,
decide if α(G) ≥ k, is NP-complete (according to Karp [1972b] this is implicit
in the work of Cook [1971] and was also known to R. Reiter):

Theorem 64.1. Determining the stable set number is NP-complete.

Proof. We reduce the satisfiability problem to the stable set problem. Let
C1 ∧ · · · ∧ Ck be a Boolean expression, where each Ci is of the form y1 ∨
· · · ∨ ym, with y1, . . . , ym ∈ {x1,¬x1, . . . , xn,¬xn}. Call x1,¬x1, . . . , xn,¬xn
the literals. Consider the graph G = (V,E) with V := {(σ, i) | σ is a literal
in Ci} and E := {{(σ, i), (τ, j)} | i = j or σ = ¬τ}. Then the expression is
satisfiable if and only if G has a stable set of size k.

It can be shown that the stable set problem remains NP-complete if the
graphs are restricted to 3-regular planar graphs (Garey, Johnson, and Stock-
meyer [1976]) or to triangle-free graphs (Poljak [1974]).

Since a subset U of V G is a vertex cover if and only if V G \U is a stable
set, we also have:

Corollary 64.1a. Determining the vertex cover number is NP-complete.

Proof. By Theorem 64.1, since the vertex cover number of a graph G is equal
to |V G| minus the stable set number.

A subset C of V G is a clique in a graph G if and only if C is a stable
set in the complementary graph G. So finding a maximum-size clique in G
is equivalent to finding a maximum-size stable set in G, and ω(G) = α(G).
Hence, as determining α(G) is NP-complete, also determining ω(G) is NP-
complete.

Also, it is NP-complete to decide if a graph is k-colourable (Karp [1972b]):

Theorem 64.2. Determining the vertex-colouring number is NP-complete.

Proof. We show that the stable set problem can be reduced to the vertex-
colouring problem. Let G = (V,E) be an undirected graph and let k ∈ Z+.
We want to decide if α(G) ≥ k. To this end, let V ′ be a copy of V and let
C be a set of size k, where V , V ′, and C are disjoint. Make a graph H with
vertex set V ∪ V ′ ∪ C as follows. A pair of vertices in V is adjacent in H if
and only if it is adjacent in G. The sets V ′ and C are cliques in H. Each
vertex in V is adjacent to each vertex in V ′ ∪C, except to its copy in V ′. No
vertex in V ′ is adjacent to any vertex in C.

This defines the graph H. Then α(G) ≥ k if and only if χ(H) ≤ |V | + 1.
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Well-known is the four-colour conjecture (or 4CC ), stating that χ(G) ≤ 4
for each loopless planar graph G. This conjecture was proved by Appel and
Haken [1977] and Appel, Haken, and Koch [1977], and is now called the four-
colour theorem. (A shorter proof was given by Robertson, Sanders, Seymour,
and Thomas [1997], leading to an O(n2)-time 4-colouring algorithm for planar
graphs (Robertson, Sanders, Seymour, and Thomas [1996]).)

However, it is NP-complete to decide if a planar graph is 3-colourable, even
if the graph has maximum degree 4 (Garey, Johnson, and Stockmeyer [1976]).
Moreover, determining the colouring number of a graph G with α(G) ≤ 4
is NP-complete (cf. Garey and Johnson [1979]). Holyer [1981] showed that
deciding if a 3-regular graph is 3-edge-colourable is NP-complete (see Sec-
tion 28.3). Note that one can decide in polynomial time if a graph G is
2-colourable, since bipartiteness can be checked in polynomial time.

These NP-completeness results imply that if NP �=co-NP, then one may
not expect a min-max relation characterizing the stable set number α(G), the
vertex cover number τ(G), the clique number ω(G), or the colouring number
χ(G) of a graph G.

64.3. Bounds on the colouring number

A lower bound on the colouring number is given by the clique number:

(64.2) ω(G) ≤ χ(G).

This is easy, since in any clique all vertices should have different colours.
There are several graphs which have strict inequality in (64.2). We men-

tion the odd circuits Ck, with k odd and ≥ 5: then ω(Ck) = 2 and χ(Ck) = 3.
Moreover, for the complement Ck of any such graph we have: ω(Ck) = �k/2	
and χ(Ck) = 
k/2�.

It was a conjecture of Berge [1963a] that these graphs are crucial. In
May 2002, M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas
announced that they have found a proof of this conjecture.

Strong perfect graph theorem: Each graph G with ω(G) < χ(G) has Ck
or Ck as induced subgraph for some odd k ≥ 5.

It is convenient to define a hole of a graph G to be an induced subgraph
of G isomorphic to Ck for some k ≥ 4. Moreover, an antihole is an induced
subgraph isomorphic to Ck for some k ≥ 4. A hole or antihole is odd if it
has an odd number of vertices. Then the strong perfect graph theorem can
be formulated as: each graph G with ω(G) < χ(G) has an odd hole or odd
antihole.

For more on this we refer to Chapter 65.
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64.3a. Brooks’ upper bound on the colouring number

There is a trivial upper bound on the colouring number:

(64.3) χ(G) ≤ ∆(G) + 1,

where ∆(G) denotes the maximum degree of G. This bound follows by colouring
the vertices ‘greedily’ one by one: at any stage, at least one colour (out of ∆(G) + 1
colours) is not used by the neighbours.

Brooks [1941] sharpened this inequality as follows. We follow the proof given
by Lovász [1975d].

Theorem 64.3 (Brooks’ theorem). For any connected graph G one has χ(G) ≤
∆(G), except if G is a complete graph or an odd circuit.

Proof. We can assume that G is 2-connected, since otherwise we can apply induc-
tion. Moreover, we can assume that ∆(G) ≥ 3. Let k := ∆(G).

I. First assume that G has nonadjacent vertices u and w with G − u − w
disconnected. Let V1 and V2 be proper subsets of V such that V1∪V2 = V , V1∩V2 =
{u, w}, and no edge connects V1 \ {u, w} and V2 \ {u, w}. Let G1 := G[V1] and
G2 := G[V2].

For i = 1, 2, we know by induction that χ(Gi) ≤ k, since Gi is not complete
(as u and w are nonadjacent), and since ∆(Gi) ≤ k and k ≥ 3. By symmetry of
G1 and G2, we can assume that each k-colouring of G1 gives u and w the same
colour (otherwise G1 and G2 have k-colourings that coincide on u and w, yielding a
k-colouring of G). This implies that both u and w have degree at least k − 1 in G1.
Hence they have degree at most 1 in G2. Therefore, as k ≥ 3, G2 has a k-colouring
giving u and w the same colour. So G is k-colourable.

II. Now choose a vertex v of maximum degree. As G is not a complete graph,
v has two nonadjacent neighbours, say u and w. By part I, we can assume that
G − u − w is connected. Hence it has a spanning tree T . Orient T so as to obtain
a rooted tree, rooted at v. Hence we can order the vertices of G as v1, . . . , vn such
that v1 = v, vn−1 = u, vn = w, and such that each vi with i > 1 is adjacent to some
vj with j < i. Give u and w colour 1. Next successively for i = n − 2, n − 1, . . . , 1,
we can give a colour from 1, . . . , k to vi different from the colours given to the
neighbours vj of vi with j > i. Such a colour exists, since if i > 1, there are less
than k neighbours vj of vi with j > i; and if i = 1, there are k such neighbours,
but neighbours u and w have the same colour.

(A related proof was given by Ponstein [1969], and a strengthening of Brooks’
theorem by Reed [1999a]. For another proof of Brooks’ theorem, see Melnikov and
Vizing [1969].)

64.3b. Hadwiger’s conjecture

Another upper bound on the colouring number is conjectured by Hadwiger [1943].
Since there exist graphs with ω(G) < χ(G), it is not true that if χ(G) ≥ k, then G
contains the complete graph Kk on k vertices as a subgraph. However, Hadwiger
conjectured the following, where a graph H is called a minor of a graph G if H
arises from some subgraph of G by contracting some (possibly none) edges.
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Hadwiger’s conjecture: If χ(G) ≥ k, then G contains Kk as a minor.

In other words, for each k, the graph Kk is the only graph G with the property
that G is not (k − 1)-colourable and each proper minor of G is (k − 1)-colourable.

Hadwiger’s conjecture is trivial for k = 1, 2, 3, and was shown by Hadwiger
[1943] for k = 4 (also by Dirac [1952]):

Theorem 64.4. If G has no K4 minor, then χ(G) ≤ 3.

Proof. One may assume that G = (V, E) is not a forest or a circuit. Then G has
a circuit C not covering all vertices of G. Choose v ∈ V \ V C. If G is 3-connected,
there are three paths from v to V C, disjoint except for v. This creates a K4 minor,
a contradiction.

So G is not 3-connected, that is, G has a vertex-cut of size less than 3. Then
χ(G) ≤ 3 follows by induction: if G is disconnected or has a 1-vertex-cut, this is
trivial, and if G is 2-connected and has a 2-vertex-cut {u, w}, we can apply induction
to the graphs G − K after adding an edge uw, for each component K of G − u − w.

(For another proof, see Woodall [1992].)
As planar graphs contain no K5 minor, Hadwiger’s conjecture for k = 5 implies

the four-colour theorem. In fact, Wagner [1937a] showed that his decomposition
theorem (Theorem 3.3) implies that Hadwiger’s conjecture for k = 5 is equivalent to
the four-colour conjecture. (Young [1971] gave a ‘quick’ proof of this equivalence.)
The four-colour conjecture was proved by Appel and Haken [1977] and Appel,
Haken, and Koch [1977]. (Robertson, Sanders, Seymour, and Thomas [1997] gave
a shorter proof.)

Robertson, Seymour, and Thomas [1993] showed that Hadwiger’s conjecture is
true also for k = 6, by reducing it again to the four-colour theorem. For k ≥ 7,
Hadwiger’s conjecture is unsettled.

Halin [1964] has proved that if G has no Kk minor, then χ(G) ≤ 2k−2 (Wagner
[1964] gave a short proof). Further progress on Hadwiger’s conjecture was made
by Wagner [1960], Mader [1968], Jakobsen [1971], Duchet and Meyniel [1982], Kos-
tochka [1982], Fernandez de la Vega [1983], Thomason [1984], and Reed and Sey-
mour [1998].

Hajós’ conjecture. G. Hajós1 conjectured (more strongly than Hadwiger) that
any k-chromatic graph contains a subdivision of Kk as subgraph. For k ≤ 4, Hajós’
conjecture is equivalent to Hadwiger’s conjecture.

Hajós’ conjecture was refuted by Catlin [1979] for k = 8. He showed that the
line graph L(G) of the graph G obtained from the 5-circuit C5 by replacing each

1 According to Toft [1996], Hajós considered the conjecture already in the 1940s in con-
nection with the four-colour conjecture, but he never published it. (The paper Hajós
[1961] commonly referred to, does not give Hajós’ conjecture.) An early written record
of the conjecture is in the review of Tutte [1961b], in the January 1961 issue of Math-
ematical Reviews, of the book Färbungsprobleme auf Flächen und Graphen (Colouring
Problems on Surfaces and Graphs) by Ringel [1959]. This book itself however does not
mention the conjecture.
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edge by three parallel edges, has colouring number 8 (as L(G) has 15 vertices and
stable set number 2), but contains no subdivision of K8.

Catlin in fact gave a counterexample to Hajós’ conjecture for each k ≥ 7. Erdős
and Fajtlowicz [1981] showed that almost all graphs are counterexamples to Hajós’
conjecture.

Related is the following result of Hajós [1961]: any graph G with χ(G) ≥ k can
be obtained from the complete graph Kk by a series of the following operations on
graphs (each preserving χ ≥ k):

(64.4) (i) add vertices or edges;
(ii) identify two nonadjacent vertices;

(iii) take two disjoint graphs G1 and G2, choose edges e1 = u1v1 of G1

and e2 = u2v2 of G2, identify u1 and u2, delete e1 and e2, and add
edge v1v2.

64.4. The stable set, clique, and vertex cover polytope

The stable set polytope Pstable set(G) of a graph G = (V,E) is the convex hull
of the incidence vectors of the stable sets in G. Since finding a maximum-size
stable set is NP-complete, one may not expect a polynomial-time checkable
system of linear inequalities describing the stable set polytope (Corollary
5.16a). More precisely, if NP�=co-NP, then there do not exist inequalities
satisfied by the stable set polytope such that their validity can be certified in
polynomial time and such that the inequality 1Tx ≤ α(G) is a nonnegative
linear combination of them.

The clique polytope Pclique(G) of a graph G = (V,E) is the convex hull of
the incidence vectors of cliques. Trivially

(64.5) Pclique(G) = Pstable set(G).

Hence, similar observations hold for the clique polytope.
Another related polytope is the vertex cover polytope Pvertex cover(G) of

G, being the convex hull of the incidence vectors of vertex covers in G. Since
a subset U of V is a vertex cover if and only if V \U is a stable set, we have

(64.6) x ∈ Pvertex cover(G) ⇐⇒ 1 − x ∈ Pstable set(G).

This shows that problems on the two types of polytopes can be reduced to
each other.

64.4a. Facets and adjacency on the stable set polytope

Padberg [1973] (for facets induced by odd circuits) and Nemhauser and Trotter
[1974] observed that

(64.7) each facet of the stable set polytope of an induced subgraph G[U ] of
G, is the restriction to U of some unique facet of Pstable set(G).
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More precisely, for each facet F of Pstable set(G[U ]) there is a unique facet F ′ of
Pstable set(G) with the property that F = {x ∈ R

U | x′ ∈ F ′}, where x′
v = xv if

v ∈ U and x′
v = 0 if v ∈ V \ U .

To prove (64.7), it suffices to prove it for U = V \ {v} for some v ∈ V . Let F
be a facet of Pstable set(G − v). We can consider F as a face of codimension 2 of
Pstable set(G) (by extending F with a 0 at coordinate v). Define H := {x ∈ R

V |
xv = 0}. As F is on the facet F ′′ := Pstable set(G) ∩ H of Pstable set(G), there is a
unique facet F ′ of Pstable set(G) with F = F ′′ ∩ F ′. This implies F = F ′ ∩ H, since

(64.8) F = F ′ ∩ F ′′ = F ′ ∩ Pstable set(G) ∩ H = F ′ ∩ H.

Suppose now that Pstable set(G) has another facet F ′′′ with F = F ′′′ ∩H. Then
F ⊆ F ′′′ ∩ F ′′ ⊆ F ′′′ ∩ H = F , and hence F = F ′′ ∩ F ′′′, contradicting the unicity
of F ′. This proves (64.7).

Padberg [1973] also showed the following:

Theorem 64.5. Let G = (V, E) be a graph and let a ∈ Z
V
+. Then the inequality

(64.9) aTx ≤ 1

is valid for the stable set polytope of G if and only if a is the incidence vector of a
clique C. Moreover, (64.9) determines a facet if and only if C is an inclusionwise
maximal clique.

Proof. Trivially, inequality (64.9) is valid if a = χC for some clique C. Conversely,
if (64.9) is valid, then a is a 0, 1 vector, and hence the incidence vector of a subset
C of V . Then C is a clique, since otherwise C contains a stable set S of size 2,
implying that (64.9) is not valid for x := χS .

In proving the second statement, we can assume that a = χC for some clique
C. Suppose that (64.9) determines a facet, and that C is not an inclusionwise
maximal clique. Then there is a clique C′ properly containing C. Hence for each
x ∈ Pstable set(G), if x(C) = 1, then x(C′) = 1. This implies that the inequality
x(C) ≤ 1 is not facet-inducing, a contradiction.

Finally suppose that C is an inclusionwise maximal clique. To see that (64.9)
determines a facet, let aTx = β be satisfied by all x in the stable set polytope with
x(C) = 1. So a(S) = β for each stable set S with |S ∩ C| = 1. Then av = β for
each v ∈ C, as S := {v} is stable. Also, au = 0 for each u ∈ V \ C, since by the
maximality of C, there is a vertex v ∈ C that is not adjacent to u. So S := {u, v}
is stable, and hence au + av = β. So au = 0. Concluding, aTx = β is some multiple
of x(C) = 1, and hence x(C) ≤ 1 determines a facet.

Graphs for which the nonnegativity and clique inequalities determine all facets,
are precisely the perfect graphs — see Chapter 65.

Trivially, the vertices of the stable set polytope are precisely the incidence vec-
tors of the stable sets. Chvátal [1975a] characterized adjacency:

Theorem 64.6. The incidence vectors of two different stable sets R, S are adjacent
vertices of the stable set polytope if and only if R�S induces a connected subgraph
of G.

Proof. To see necessity, if G[R�S] is not connected, then (as it is bipartite) it has
two colour classes U and W with {U, W} �= {R\S, S\R}. Let U ′ := U ∪(R∩S) and
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W ′ := W ∪(R∩S). Then U ′ and W ′ are stable sets and 1
2 (χR+χS) = 1

2 (χU′
+χW ′

),
contradicting the adjacency of χR and χS .

To see sufficiency, if χR and χS are not adjacent, then there exist stable sets U
and W , and λ, µ ∈ (0, 1) such that λχR+(1−λ)χS = µχU +(1−µ)χW and {U, W} �=
{R, S}. So U ∩ W = R ∩ S. Hence U \ W, W \ U forms a bipartition of G[R�S]
different from the bipartition R \ S, S \ R. This contradicts the connectedness of
G[R�S].

64.5. Fractional stable sets

The incidence vectors of stable sets in an undirected graph G = (V,E) are
precisely the integer vectors x ∈ R

V satisfying

(64.10) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) xu + xv ≤ 1 for {u, v} ∈ E.

(The inequalities (64.10)(ii) are called the edge inequalities.) Any (not nec-
essarily integer) solution x of (64.10) is called a fractional stable set. By
definition, its size is equal to x(V ).

The maximum size of a fractional stable set is called the fractional stable
set number and is denoted by α∗(G). By linear programming duality, α∗(G)
is equal to the fractional edge cover number ρ∗(G) (assuming that G has
no isolated vertices), which is the minimum value of y(E) over all y ∈ R

E

satisfying

(64.11) (i) 0 ≤ ye ≤ 1 for e ∈ E,
(ii) y(δ(v)) ≥ 1 for v ∈ V .

Any solution y of (64.11) is called a fractional edge cover.
This was also discussed in Section 30.11, where it was shown that each

vertex of the polytope determined by (64.11) (the fractional edge cover poly-
tope) is half-integer. A similar result holds for the fractional stable set poly-
tope, which is the polytope determined by (64.10) (the result is implicit in
Balinski [1965]):

Theorem 64.7. Each vertex of the fractional stable set polytope P is half-
integer.

Proof. Let x be a vertex of P . Let U := {v ∈ V | 0 < xv <
1
2} and let

W := {v ∈ V | 1
2 < xv < 1}. Then there is an ε > 0 such that both

x+ ε(χU −χW ) and x− ε(χU −χW ) belong to P . As x is a vertex, it follows
that χU − χW = 0. So U = W = ∅.

(This proof was provided to Nemhauser and Trotter [1974] by a referee of
their paper.)
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The theorem also follows from the observation of Balinski [1965] that each
nonsingular submatrix of the incidence matrix of a graph has a half-integer
inverse.

Theorem 64.7 implies that α∗(G) = 1
2α2(G), where α2(G) is the maximum

size of a 2-stable set, which is an integer vector x ∈ R
V satisfying

(64.12) (i) xv ≥ 0 for v ∈ V ,
(ii) xu + xv ≤ 2 for {u, v} ∈ E

(cf. Section 30.9).
Moreover, it implies a characterization of the 2-stable set polyhedron,

which is the convex hull of the 2-stable sets:

Corollary 64.7a. The 2-stable set polyhedron is determined by (64.12).

Proof. Directly from Theorem 64.7.

With the following construction, the problem of finding a maximum-
weight fractional stable set (and similarly, a maximum-weight 2-stable set),
can be reduced to the problem of finding a maximum-weight stable set in a
bipartite graph. The latter problem is strongly polynomial-time solvable, by
Theorem 21.10.

Let G = (V,E) be a graph. Let V ′ be a copy of V . For any v ∈ V , let v′

denote the copy of V in V ′. Define Ṽ := V ∪ V ′. Let Ẽ be the set of pairs
u′v and uv′, over all edges uv of G. Then G̃ := (Ṽ , Ẽ) is a bipartite graph.

For any weight function w : V → R+, define w̃ : Ṽ → R+ by w̃(v) :=
w̃(v′) := w(v) for v ∈ V . Then any stable set S in G̃ maximizing w̃(S) gives
a 2-stable set x in G maximizing wTx, by defining xv := |S∩{v, v′}|. Indeed,
for any 2-stable set x′ in G we can define a stable set S′ in G̃ by

(64.13) S′ := {v ∈ V | x′
v ≥ 1} ∪ {v ∈ V ′ | x′

v ≥ 2}.

Then wTx′ = w̃(S′) ≤ w̃(S) = wTx. (Here we assume without loss of gener-
ality that G has no isolated vertices.)

64.5a. Further on the fractional stable set polytope

Nemhauser and Trotter [1974] characterized the vertices of the fractional stable set
polytope:

Theorem 64.8. A vector x ∈ R
V is a vertex of the fractional stable set polytope

P of G if and only if x = χU2 + 1
2χU1 , where U2 is a stable set of G, where U1 is

disjoint from U2 ∪ N(U2), and where each component of G[U1] is nonbipartite.

Proof. Necessity. Let x be a vertex of P , and define U2 := {v ∈ V | xv = 1} and
U1 := {v ∈ V | xv = 1

2}. Then U2 is a stable set and no vertex in U1 is adjacent to
any vertex in U2. So U1 is disjoint from U2 ∪ N(U2).
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If some component of G[U1] would be bipartite, say with colour classes S and
T , then x± ε(χS −χT ) would belong to P for some ε �= 0. This contradicts the fact
that x is a vertex of P .

Sufficiency. Suppose that x satisfies the condition, and that x is not a vertex
of P . Then there is a nonzero vector y such that both x + y and x − y belong to
P . Necessarily, yv = 0 if v �∈ U1. Moreover, for each edge uw of G[U1] one has
yu + yw = 0, since xu + xw = 1. As each component of G[U1] contains an odd
circuit, this implies yv = 0 for each v ∈ U1. So y = 0, a contradiction.

A useful condition was given by Nemhauser and Trotter [1975]:

Theorem 64.9. Let G = (V, E) be a graph, let w : V → R be a weight function,
and let S ⊆ V be a stable set. If S is a maximum-weight stable set in the subgraph
of G induced by S ∪ N(S), then S is contained in some maximum-weight stable set
of G.

Proof. Let T be a maximum-weight stable set of G. Define U := (S ∪ T ) \ N(S).
Trivially, U is stable. Also, w(N(S)∩T ) ≤ w(S\T ), since w((S∪N(S))∩T ) ≤ w(S),
as S has maximum weight in G[S ∪ N(S)]. Hence

(64.14) w(U) = w(T ) + w(S \ T ) − w(N(S) ∩ T ) ≥ w(T ),

implying that U is a maximum-weight stable set in G.

This implies (Nemhauser and Trotter [1975]):

Corollary 64.9a. Let G = (V, E) be a graph, let w : V → R be a weight function,
and let x be a maximum-weight fractional stable set. Then S := {v | xv = 1} is
contained in a maximum-weight stable set.

Proof. This follows from Theorem 64.9, since S is a maximum-weight stable set in
G[S ∪N(S)]. For if T would be a stable set in G[S ∪N(S)] with w(T ) > w(S), then
x + ε(χT − χS) would belong to the fractional stable set polytope for some ε > 0,
while it has weight larger than x, a contradiction.

Picard and Queyranne [1977] showed that, for any graph G = (V, E) and any
weight function w : V → R, there is a unique minimal subset of vertices that has
fractional values in some optimum fractional stable set (solving a problem posed
by Nemhauser and Trotter [1975]):

Theorem 64.10. Let G = (V, E) be a graph, let w : V → R be a weight function,
and let x and y be maximum-weight fractional stable sets. Then there is a maximum-
weight fractional stable set z such that, for each vertex v, zv is integer if xv or yv

integer.

Proof. We can assume that x and y are half-integer (as we can assume that x and
y are vertices of the fractional stable set polytope). For i = 0, 1, 2, let Xi := {v |
xv = i/2} and Yi := {v | yv = i/2}. Then

(64.15) w(Y0 ∩ X2) ≤ w(X0 ∩ Y2),
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since

(64.16) y + 1
2 (χY0∩X2 − χX0∩Y2)

is a fractional stable set. Otherwise, since X2 is stable, there is an edge uv with
yu + yv = 1, u ∈ Y0 ∩ X2, and v �∈ X0 ∩ Y2. So yu = 0, and hence yv = 1. Also,
xu = 1, and hence xv = 0. So v ∈ X0 ∩ Y2, a contradiction. This shows (64.15).

Moreover,

(64.17) w(X0 \ Y0) ≤ w(X2 \ Y2),

since

(64.18) x + 1
2 (χX0\Y0 − χX2\Y2)

is a fractional stable set. Otherwise there is an edge uv with xu+xv = 1, u ∈ X0\Y0,
and v �∈ X2 \ Y2. So xu = 0, and hence xv = 1. Also, yu > 0, and hence yv < 1. So
v ∈ X2 \ Y2, a contradiction. This shows (64.17).

(64.15) and (64.17) imply that

(64.19) w(Y1 ∩ X2) = w(X2 \ Y2) − w(X2 ∩ Y0) ≥ w(X0 \ Y0) − w(Y2 ∩ X0)
= w(Y1 ∩ X0).

Hence

(64.20) z := y + 1
2 (χY1∩X2 − χY1∩X0)

has weight at least that of y. Moreover, z is a fractional stable set. Otherwise, as
X2 is stable, there is an edge uv with yu + yv = 1, u ∈ Y1 ∩ X2 and v �∈ Y1 ∩ X0.
So yu = yv = 1

2 , xu = 1, hence xv = 0. So v ∈ Y1 ∩ X0, a contradiction. Hence z is
a fractional stable set as required.

Nemhauser and Trotter [1975] and Picard and Queyranne [1977] gave a poly-
nomial-time algorithms to find a half-integer maximum-weight fractional stable set
attaining the minimum number of fractional values. (This can be derived from the
uniqueness of the minimal set of fractional vertices: just try xv = 0 and xv = 1 for
each v ∈ V , and see if the fractional stable set number drops.)

Pulleyblank [1979a] and Bourjolly and Pulleyblank [1989] characterized the
minimal set of fractional values. Related results were given by Grimmett [1986].

64.6. Fractional vertex covers

Similar results hold for fractional vertex covers, which are vectors x ∈ R
V

satisfying

(64.21) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) xu + xv ≥ 1 for {u, v} ∈ E.

Trivially, a vector x is a fractional vertex cover if and only if 1 − x is a
fractional stable set.

The minimum size of a fractional vertex cover is called the fractional
vertex cover number, and is denoted by τ∗(G). So
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(64.22) τ∗(G) + α∗(G) = |V |.
Again, by linear programming duality, τ∗(G) is equal to the fractional match-
ing number ν∗(G), which is the maximum value of y(E) over all y ∈ R

E

satisfying

(64.23) (i) 0 ≤ ye ≤ 1 for e ∈ E,
(ii) y(δ(v)) ≤ 1 for v ∈ V .

Any solution y of (64.23) is called a fractional matching. This was also dis-
cussed in Section 30.3, where it was shown that each vertex of the polytope
determined by (64.23) (the fractional matching polytope) is half-integer. A
similar result holds for the fractional vertex cover polytope, which is the poly-
tope determined by (64.21):

Theorem 64.11. Each vertex of the fractional vertex cover polytope P is
half-integer.

Proof. Directly from Theorem 64.7, since x belongs to the fractional vertex
cover polytope if and only if 1−x belongs to the fractional stable set polytope.

Theorem 64.11 implies that τ∗(G) = 1
2τ2(G), where τ2(G) is the minimum

size of a 2-vertex cover, which is an integer vector x ∈ R
V satisfying

(64.24) (i) xv ≥ 0 for v ∈ V ,
(ii) xu + xv ≥ 2 for {u, v} ∈ E

(cf. Section 30.10).
It also implies a characterization of the 2-vertex cover polyhedron, which

is the convex hull of the 2-vertex covers:

Corollary 64.11a. The 2-vertex cover polyhedron is determined by (64.24).

Proof. Directly from Theorem 64.11.

By the results on fractional stable sets and 2-stable sets given in Section
64.5, and using the reductions described above, a minimum-weight fractional
vertex cover and a minimum-weight 2-vertex cover can be found in strongly
polynomial time.

Notes. Corollary 64.9a and Theorem 64.10 have direct analogues for vertex covers:
given a graph G = (V, E) and a weight function w : V → R,

(64.25) for each minimum-weight fractional vertex cover x there is a minimum-
weight vertex cover contained in {v | xv �= 0},

and
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(64.26) for any two minimum-weight fractional vertex covers x and y there is
a minimum-weight fractional vertex cover z such that for each v ∈ V :
xv ∈ Z or yv ∈ Z ⇒ zv ∈ Z.

These statements can be derived from Corollary 64.9a and Theorem 64.10 by again
observing that a vector x is a (fractional) stable set if and only if 1 − x is a
(fractional) vertex cover. Similarly, Theorem 64.8 implies a characterization of the
vertices of the fractional vertex cover polytope.

64.6a. A bound of Lorentzen

The fractional stable set and vertex cover numbers give upper and lower bounds on
the stable set and vertex cover number, respectively. These bounds are computable
in polynomial time. A better polynomial-time computable bound was given by
Lorentzen [1966]:

Theorem 64.12. For each graph G = (V, E):

(64.27) 2ν∗(G) − ν(G) ≤ τ(G).

Proof. Since ν∗(G) = 2ν2(G) (cf. Section 30.2), there is a half-integer fractional
matching x : E → R+ with x(E) = ν∗(G), such that the support of x is the disjoint
union of a matching and a number t of odd circuits. We can assume that each
edge of G belongs to the support of x (as deleting edges increases neither ν(G) nor
τ(G)). Also we can assume that G has no isolated vertices. Then ν(G) = 1

2 (|V |− t),
τ(G) = 1

2 (|V | + t), and ν∗(G) = 1
2 |V |.

Bound (64.27) is generally a better lower bound on τ(G) than τ∗(G) (for ex-
ample, for G = K3). It implies an upper bound for α(G), generally better than
α(G) ≤ ρ∗(G):

Corollary 64.12a. For each graph G = (V, E) without isolated vertices:

(64.28) α(G) ≤ 2ρ∗(G) − ρ(G).

Proof. Using Theorem 30.9, we have α(G) = |V | − τ(G) ≤ |V | − 2ν∗(G) + ν(G) =
2(|V | − ν∗(G)) − (|V | − ν(G)) = 2ρ∗(G) − ρ(G).

64.7. The clique inequalities

A set of constraints stronger than the edge inequalities (64.10)(ii) is obtained
by the ‘clique inequalities’. Let P (G) be the polytope in R

V determined by

(64.29) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(C) ≤ 1 for each clique C.

The inequalities (64.29)(ii) are called the clique inequalities.
Since the integer solutions of (64.29) are exactly the incidence vectors of

stable sets, the stable set polytope of G is equal to the integer hull of P (G)
(the convex hull of the integer vectors in P (G)).
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We call any vector x satisfying (64.29) a strong fractional stable set. We
denote

(64.30) α∗∗(G) := strong fractional stable set number := the maximum
size of a strong fractional stable set.

Since each strong fractional stable set is a fractional stable set, we know

(64.31) α(G) ≤ α∗∗(G) ≤ α∗(G).

So α∗∗(G) gives a better upper bound on α(G) than α∗(G) gives — however,
α∗∗(G) is generally more difficult to compute.

Note that P (G) is the antiblocking polyhedron of the clique polytope of
G:

(64.32) P (G) = A(Pclique(G)).

(For background on antiblocking polyhedra, see Section 5.9.)

64.8. Fractional and weighted colouring numbers

For any graph G = (V,E), the fractional colouring number χ∗(G) is the
minimum value of λ1 + · · · + λk with λ1, . . . , λk ∈ R+ such that there exist
stable sets S1, . . . , Sk with

(64.33) λ1χ
S1 + · · · + λkχ

Sk = 1.

So if the λi are required to be integer, we have the colouring number.
By linear programming duality, the fractional colouring number is equal

to the maximum of 1Tx over the polytope P (G) in R
V
+ determined by

(64.34) xv ≥ 0 for each v ∈ V ,
x(S) ≤ 1 for each stable set S.

(So P (G) = P (G) and P (G) = A(Pstable set(G)).) Hence we have:

(64.35) χ∗(G) = α∗∗(G).

We denote

(64.36) χ∗(G) := χ∗(G),

which is called the fractional clique cover number of G.
No polynomial-time algorithm is known to calculate χ∗(G). Note that the

separation problem for P (G) is NP-complete, since the optimization problem
over Pstable set(G) is NP-complete.

Given a graph G = (V,E) and a weight function w : V → Z+, the
weighted colouring number χw(G) is the minimum value of λ1 + · · ·+λk with
λ1, . . . , λk ∈ Z+ such that there exist stable sets S1, . . . , Sk with

(64.37) λ1χ
S1 + · · · + λkχ

Sk = w.
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So if w = 1, then χw(G) is equal to the colouring number χ(G) of G. Hence
determining χw(G) is NP-complete.

For w : V → Z+, let graph Gw arise from G by replacing each vertex by a
clique Cv of size w(v), two vertices in different cliques Cu,Cv being adjacent
if and only if u and v are adjacent. Then

(64.38) χw(G) = χ(Gw).

We denote

(64.39) χw(G) := χw(G),

called the weighted clique cover number of G.
The fractional version is the fractional weighted colouring number χ∗

w(G),
defined as the minimum value of λ1 + · · · + λk with λ1, . . . , λk ∈ R+ such
that there exist stable sets S1, . . . , Sk with

(64.40) λ1χ
S1 + · · · + λkχ

Sk = w.

This value is equal to the maximum value of wTx over the antiblocking poly-
tope A(Pstable set(G)) pf Pstable set(G). Since the optimization problem over
Pstable set(G) is NP-complete, determining χ∗

w(G) is NP-hard.
We denote

(64.41) χ∗
w(G) := χ∗

w(G),

called the fractional weighted clique cover number of G.
The complexity results above can be specialized to classes of graphs. By

the results of Grötschel, Lovász, and Schrijver [1981,1984c]:

(64.42) For any collection G of graphs: there is a polynomial-time al-
gorithm to find the fractional weighted colouring number for
any graph in G and any weight function if and only there is a
polynomial-time algorithm to find a maximum-weight stable set
in any graph in G and for any weight function.

Since the problem of determining α(G) is NP-complete even if we restrict our-
selves to planar cubic graphs, determining χ∗

w(G) for such graphs is NP-hard.
As noticed in Grötschel, Lovász, and Schrijver [1981], determining χ∗

w(G) and
χ(G) seem incomparable with respect to complexity. For cubic graphs G,
χ(G) can be easily found in polynomial time (using Brooks’ theorem (The-
orem 64.3)), while determining χ∗

w(G) is NP-hard. In contrast to this, for
the line graph G of a cubic graph H, χ(G) is NP-complete to compute by
Holyer’s theorem that 3-edge colourability is NP-complete (see Section 28.3),
whereas χ∗

w(G) can be computed in polynomial time, since the separation
problem over A(Pstable set(G)) is polynomial-time solvable, as the optimiza-
tion problem over Pstable set(G) is polynomial-time solvable (as it amounts to
finding a maximum-weight matching in H).
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64.8a. The ratio of χ(G) and χ∗(G)

For later purposes we prove the following upper bound for the colouring number
in terms of the fractional colouring number, obtained by applying a greedy-type
algorithm (Johnson [1974a], Lovász [1975c]):

Theorem 64.13. For any graph G = (V, E):

(64.43) χ(G) ≤ (1 + ln α(G))χ∗(G).

Proof. Set k := α(G). Iteratively choose a maximum-size stable set S in G and
reset G to G − S. We stop if V G is empty.

The stable sets found form a colouring C of the (original) vertex set V . So
χ(G) ≤ |C|.

For each v ∈ V , define

(64.44) xv :=
1

|S| ,

where S is the set in C containing v. Then x(V ) = |C|, and hence

(64.45) χ(G) ≤ x(V ).

Consider any stable set S′ of G. Let S′ consist of vertices v1, . . . , vk, in the
order by which they are covered by stable sets S in the algorithm. Then for each
i = 1, . . . , k, we have

(64.46) xvi ≤ 1
k − i + 1

.

Indeed, let vi be covered by S ∈ C. When we selected S, the vertices vi, vi+1, . . . , vk

were uncovered yet. As we chose S, we know |S| ≥ |{vi, vi+1, . . . , vk}| = k − i + 1,
implying (64.46).

(64.46) implies

(64.47) x(S′) ≤
k∑

i=1

1
k − i + 1

=
k∑

i=1

1
i

≤ 1 + ln k ≤ 1 + ln α(G).

So (1 + ln α(G))−1 · x satisfies (64.34), and hence

(64.48) (1 + ln α(G))−1 · x(V ) ≤ χ∗(G).

Together with (64.45), this implies (64.43).

This theorem will be used in proving Theorem 67.17.

64.8b. The Chvátal rank

In Section 36.7a we defined the polyhedron P ′ for any rational polyhedron P and
the notion of the Chvátal rank of a polyhedron P .

Let P (G) denote the polytope of strong fractional stable sets, that is, the poly-
tope determined by (64.29) (the nonnegativity and clique constraints). For any
polyhedron P , let PI denote the integer hull of P , that is, the convex hull of the
integer vectors in P .
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Chvátal [1973a] showed that there is no fixed t such that P (G)(t) = P (G)I for
each graph G, even if we restrict G to graphs with α(G) = 2. Chvátal, Cook, and
Hartmann [1989] showed that t can be at least 1

3 log n for such graphs (where n is
the number of vertices).

We will see in Corollary 65.2e that the class of graphs G with P (G)I = P (G)
is exactly the class of perfect graphs. By Edmonds’ matching polytope theorem
(Corollary 25.1a) if G is the line graph of some graph H, then P (G)′ = P (G)I,
which is the matching polytope of H.

The smallest t for which P (G)(t) = P (G)I might be an indication of the compu-
tational complexity of the stable set number α(G). For each fixed t, the stable set
problem for graphs with P (G)(t) = P (G)I belongs to NP∩co-NP. Chvátal [1973a]
raised the question whether it belongs to P. (A negative indication is the result
of Eisenbrand [1999] that given a polytope P by linear inequalities and given x,
deciding if x belongs to P ′ is co-NP-complete.)

Another (weaker, but easier to compute) relaxation is: Q(G) is the polytope of
fractional stable sets; that is, the polytope in R

V determined by

(64.49) (i) xv ≥ 0 for each v ∈ V ,
(ii) xv + xw ≤ 1 for each vw ∈ E.

Again Q(G)I = Pstable set(G). Since Q(G) ⊇ P (G), there is no fixed t with
Q(G)(t) = Q(G)I for each graph G. Chvátal [1973a] noticed that for G = Kn

the smallest t with Q(G)(t) = Pstable set(G) is about log n.
It is not difficult to see that Q(G)′ is the polytope determined by (64.49) to-

gether with

(64.50) (iii) x(V C) ≤ � 1
2 |V C| for each odd circuit C.

Graphs G with Q(G)′ = Pstable set(G) are called t-perfect. More on t-perfect graphs
can be found in Chapter 68.

Chvátal [1975b] conjectures that there is no polynomial p(n) such that for
each graph G with n vertices we can obtain the inequality x(V ) ≤ α(G) from
system (64.49) by adding at most p(n) cutting planes. (That is, a list of at most
p(n) inequalities aT

i x ≤ �βi such that, for each i, ai is an integer vector and the
inequality aT

i x ≤ βi is a nonnegative combination of inequalities from (64.49) and
inequalities occurring earlier in the list.)

Chvátal, Cook, and Hartmann [1989] showed that the Chvátal rank of the
following relaxation of the stable set polytope:

(64.51) xv ≥ 0 for v ∈ V ,
x(U) ≤ α(G[U ]) for U ⊆ V ,

is Ω((n/ log n)
1
2 ), where G is a graph with n vertices. This relaxation is stronger

than the polytope determined by just the nonnegativity and clique constraints.

64.9. Further results and notes

64.9a. Graphs with polynomial-time stable set algorithm

In the remaining chapters of this part we will see that a maximum-weight stable set
can be found in strongly polynomial time in perfect graphs and their complements,
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in t-perfect graphs, and in claw-free graphs. In perfect graphs and their comple-
ments, also a minimum vertex-colouring can be found in polynomial time. In this
section we list some other classes of graphs where a maximum-size stable set or a
minimum vertex-colouring can be found in polynomial time.

A graph is a circular-arc graph if it is the intersection graph of a set of intervals
on a circle. Gavril [1974a] gave polynomial-time algorithms for finding a maximum-
size clique, a maximum-size stable set, and a minimum clique cover in these graphs.
Karapetyan [1980] showed that χ(G) ≤ 3

2ω(G) for any circular-arc graph G (prov-
ing a conjecture of Tucker [1975]). More on circular-arc graphs can be found in
Klee [1969], Tucker [1971,1974,1975,1978,1980], Trotter and Moore [1976], Garey,
Johnson, Miller, and Papadimitriou [1980], Golumbic [1980], Orlin, Bonuccelli, and
Bovet [1981], Gupta, Lee, and Leung [1982], Skrien [1982], Leung [1984], Hsu [1985,
1995], Teng and Tucker [1985], Apostolico and Hambrusch [1987], Golumbic and
Hammer [1988], Masuda and Nakajima [1988], Spinrad [1988], Shih and Hsu [1989a,
1989b], Bertossi and Moretti [1990], Hell, Bang-Jensen, and Huang [1990], Hsu and
Tsai [1991], Deng, Hell, and Huang [1992,1996], Eschen and Spinrad [1993], Hsu
and Spinrad [1995], Bhattacharya, Hell, and Huang [1996], Bhattacharya and Kaller
[1997], Hell and Huang [1997], Feder, Hell, and Huang [1999], and McConnell [2001].
See also Section 65.6d.

A graph is a circle graph if its vertex set is a set of chords of the circle, two
chords being adjacent if they intersect or cross. For these graphs, Gavril [1973] gave
polynomial-time algorithms for finding a maximum-size clique and a maximum-size
stable set. Bouchet [1985,1987b,1994], Naji [1985], and Gabor, Supowit, and Hsu
[1989] showed that circle graphs can be recognized in polynomial time; this was
improved to quadratic time by Spinrad [1994]. (Related results can be found in
Fournier [1978], Garey, Johnson, Miller, and Papadimitriou [1980], Golumbic [1980],
Rotem and Urrutia [1981], de Fraysseix [1984], Hsu [1985], Naji [1985], Dagan,
Golumbic, and Pinter [1988], Gabor, Supowit, and Hsu [1989], Masuda, Nakajima,
Kashiwabara, and Fujisawa [1990], Felsner, Müller, and Wernisch [1994], Ma and
Spinrad [1994], Spinrad [1994], and Elmallah and Stewart [1998]. See also Section
65.6d.)

The weighted stable set problem was shown to be polynomial-time solvable
for graphs without K5 − e minor by Barahona and Mahjoub [1994b]. (The graph
K5−e is obtained from K5 by deleting one edge.) Descriptions of the corresponding
polytopes are given by Barahona and Mahjoub [1994b,1994c].

Hsu, Ikura, and Nemhauser [1981] gave, for each fixed k, a polynomial-time
algorithm for the weighted stable set problem for graphs without odd circuits of
length larger than 2k + 1. A ‘nice class for the vertex packing problem’ (obtained
from bipartite graphs and claw-free graphs by repeated substitution) was given by
Bertolazzi, De Simone, and Galluccio [1997]. Another nice class was given by De
Simone [1993].

In Section 60.3d (Corollary 60.5b) we gave a proof of Győri’s theorem (Győri
[1984]), stating that the following class of graphs G satisfies α(G) = χ(G). Let A
be a {0, 1} matrix such that the 1’s in each row form a contiguous interval. Then
G has vertex set {(i, j) | ai,j = 1}, where two pairs (i, j) and (i′, j′) are adjacent if
and only if ai,j′ = ai′,j = 1. The method of Frank and Jordán [1995b] also yields a
polynomial-time algorithm to find a maximum-size stable set and a minimum clique



Section 64.9b. Colourings and orientations 1101

cover. Frank [1999a] gave an alternative algorithmic proof. This class of graphs is
not closed under taking induced subgraphs, and they need not be perfect.

Hammer, Mahadev, and de Werra [1985], Balas, Chvátal, and Nešetřil [1987],
Balas and Yu [1989], De Simone and Sassano [1993], Hertz and de Werra [1993],
Hertz [1995,1997], Brandstädt and Hammer [1999], Mosca [1999], and Lozin [2000]
gave further classes of graphs for which the maximum-size or maximum-weight
clique problem is polynomial-time solvable.

64.9b. Colourings and orientations

Let D = (V, A) be an orientation of an undirected graph G = (V, E). The following
was shown by Gallai [1968a] and Roy [1967] (referring to conjectures by P. Erdős
and C. Berge, respectively):

(64.52) χ(G) ≤ λ(D),

where

(64.53) λ(D) := the maximum number of vertices on a directed path in D.

To see this, consider an inclusionwise maximal subset A′ of A with the property
that D′ = (V, A′) is acyclic. For any v ∈ V , let h(v) be the number of vertices in a
longest directed path in D′ ending at v. If h(u) = h(v) for distinct vertices u and
v, then u and v are nonadjacent, since otherwise we can add the arc joining u and
v to A′. So h defines a colouring of V , with no more colours than the number of
vertices in a longest directed path in D′.

This proves (64.52). Note that (64.52) implies that each tournament (≡ ori-
entation of a complete graph) has a Hamiltonian path (a theorem of Rédei [1934]
(Corollary 14.14a)).

Roy [1967] also observed that each undirected graph G = (V, E) has an acyclic
orientation in which the number of vertices in a longest directed path is equal to
the colouring number of G. (This follows by colouring the vertices with colours
1, . . . , χ(G), and orienting any edge from u to v if the colour of u is smaller than
that of v, which gives a digraph D with λ(D) ≤ χ(G).)

This result is equivalent to the fact that for any undirected graph G = (V, E):

(64.54) χ(G) = min
D

λ(D),

where D ranges over all acyclic orientations of G.
These results are essentially based on the (easy) fact that the minimum num-

ber of antichains needed to cover a partially ordered set is equal to the size of a
maximum chain (Theorem 14.1).

Minty [1967] showed that for each graph G = (V, E):

(64.55) χ(G) ≤ k ⇐⇒ G has an orientation such that each undirected circuit
has at least 1

k
|V C| forward arcs.

Necessity follows by colouring the vertices with colours 1, . . . , k, and orienting any
edge from u to v if colour(u) < colour(v). To see sufficiency, let D be an orientation
as described. Give each arc a length k − 1, and add an arc in the reverse direction
of length −1. Then each directed circuit in the extended digraph has nonnegative
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length. Hence there is a ‘potential’ p : V → Z with 1 ≤ p(v) − p(u) ≤ k − 1 for each
arc (u, v) of D. Reducing p mod k gives a k-colouring as required.

Note that each orientation as in (64.55) is acyclic, and that any orientation
D with λ(D) ≤ k is as in (64.55). The equivalence (64.55) gives a vertex-free
description of the colouring number, and implies that χ(G) only depends on the
cycle matroid of G.

Deming [1979a] showed that dual statements can be derived from Dilworth’s
decomposition theorem (Theorem 14.2), where ‘chain’ and ‘antichain’ are inter-
changed.

First one has, as a dual to (64.52), that for any orientation D = (V, A) of an
undirected graph G = (V, E):

(64.56) α(G) ≥ ξ(D),

where

(64.57) ξ(D) := the minimum number of directed paths in D needed to cover
V .

To see (64.56), again consider an inclusionwise maximal subset A′ of A with
D′ = (V, A′) acyclic. By Dilworth’s decomposition theorem, V has a subset U of
size ξ(D) such that no two vertices in U are connected by a directed path in D.
Then U is a stable set in G, since if two distinct u, v ∈ U are adjacent in G, say
(u, v) ∈ A, then (u, v) �∈ A′, and hence A′ ∪ {(u, v)} is not acyclic. But then A′

contains a directed path from v to u, a contradiction.
This shows (64.56). Deming [1979a] showed also a dual form of (64.54):

(64.58) α(G) = max
D

ξ(D),

where D ranges over all acyclic orientations of G. Indeed, ≥ in (64.58) follows from
(64.56). To see ≤, let U be a maximum-size stable set in G. Let D be any acyclic
orientation of G in which each vertex in U is a source. Then ξ(D) ≥ |U | = α(G).

64.9c. Algebraic methods

Lovász [1994] gave the following relations between stable sets, cliques, and colour-
ings, using Hilbert’s Nullstellensatz (extending Li and Li [1981] and unpublished
work of D.J. Kleitman and L. Lovász). For any graph G = (V, E), define the poly-
nomial pG in the variables xv (v ∈ V ) by:

(64.59) pG :=
∏

uv∈E

(xu − xv)

(fixing some orientation of the edges). Then α(G) ≤ k if and only if there are graphs
H1, . . . , Ht on V satisfying

(64.60) pG = pH1 + · · · + pHt ,

with χ(Hi) ≤ k for i = 1, . . . , t. The number t can be exponentially large — hence
(64.60) gives no good characterization for the stable set number. Similarly, χ(G) ≥ k
if and only if there are graphs satisfying (64.60) with ω(Hi) ≥ k for i = 1, . . . , t.

Let G = (V, E) be a (simple) graph, with adjacency matrix AG. Motzkin and
Straus [1965] showed that the maximum value of xTAGx over x : V → R+ satisfying
x(V ) = 1, is equal to 1 − ω(G)−1.
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The proof of this is easy: for any two nonadjacent vertices u, v with xu > 0 and
xv > 0, we can reset xu := xu + ε, xv := xv − ε for some ε �= 0 without decreasing
xTAGx. Hence the maximum value is attained by a vector x whose support is a
clique C. As x takes the maximum value, we should have xv = 1/|C| for each v ∈ C.
Then xTAGx is maximized if C is a maximum-size clique.

Motzkin and Straus’ theorem implies the result of Korn [1968] that the minimum
value of xT(I + AG)x over x : V → R+ with x(V ) = 1, is equal to α(G)−1. Indeed,

(64.61) min
x

xT(I + AG)x = min
x

xT(J − AG)x = 1 − max
x

xTAGx = ω(G)−1

= α(G)−1.

More on this can be found in Gibbons, Hearn, Pardalos, and Ramana [1997].
Lovász [1982,1994] gave surveys of algebraic, topological, and other methods

for the stable set and the vertex colouring problem.

64.9d. Approximation algorithms

Lund and Yannakakis [1993,1994] showed that unless NP=P, there do not exist a
constant c and a polynomial-time algorithm that finds a vertex-colouring of any
graph G using at most cχ(G) colours. (This was proved for c < 2 by Garey and
Johnson [1976].)

More generally, Lund and Yannakakis [1993,1994] showed that there exists an
ε > 0 such that, unless NP=P, there is no polynomial-time algorithm to find the
colouring number of a graph up to a factor of nε (where n is the number of vertices).

A similar result for maximum-size stable sets was proved by Arora, Lund, Mot-
wani, Sudan, and Szegedy [1992,1998]. H̊astad [1996,1999] showed that, if NP �=P,
then there is no ε > 0 and a polynomial-time algorithm that finds a clique that is
maximum-size up to a factor n1/2−ε. Under a slightly stronger complexity assump-
tion (NP�=ZPP), H̊astad proved a factor of n1−ε.

For background, see Johnson [1992] and Papadimitriou [1994]. Related results
can be found in Hochbaum [1983a], Wigderson [1983], Berger and Rompel [1990],
Feige, Goldwasser, Lovász, Safra, and Szegedy [1991,1996], Berman and Schnitger
[1992], Boppana and Halldórsson [1992], Bellare, Goldwasser, Lund, and Russell
[1993], Khanna, Linial, and Safra [1993,2000], Bellare and Sudan [1994], Feige and
Kilian [1994,1996,1998a,1998b,2000], Karger, Motwani, and Sudan [1994,1998], Bel-
lare, Goldreich, and Sudan [1995,1998], Feige [1995,1997], Fürer [1995], H̊astad
[1996,1999], Alon and Kahale [1998], Arora and Safra [1998], Engebretsen and
Holmerin [2000], Srinivasan [2000], and Khot [2001].

In contrast, there is an easy algorithm to obtain a vertex cover in a graph
G = (V, E) of size at most 2τ(G) (F. Gavril 1974 (cf. Garey and Johnson [1979])):
choose any inclusionwise maximal matching M (greedily); then the set of vertices
covered by M is a vertex cover of size 2|M |. Since τ(G) ≥ |M |, this is a vertex
cover as described.

No polynomial-time algorithm yielding a factor better than 2 is known. H̊astad
[1997,2001] showed that, if NP �=P, no factor better than 7

6 is achievable in polyno-
mial time.

See also Section 67.4f below.
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64.9e. Further notes

Yannakakis [1988,1991] showed that the stable set polytope of the line graph L(Kn)
of a complete graph Kn cannot be represented as the projection of a polytope in
higher dimensions that is symmetric under the automorphism group of L(Kn). Cao
and Nemhauser [1998] characterized line graphs as those graphs whose stable set
polytope is determined by the inequalities corresponding to the matching polytope
constraints.

Euler, Jünger, and Reinelt [1987] extended results of Padberg [1973] on facets
of the stable set polytope, to more general ‘independence’ polytopes.

More on the stable set polytope can be found in Fulkerson [1971a], Chvátal
[1973a,1975a,1985a], Padberg [1973,1974b,1977,1979,1980,1984], Nemhauser and
Trotter [1974], Trotter [1975], Wolsey [1976], Balas and Zemel [1977], Naddef
and Pulleyblank [1981a], Sekiguchi [1983], Ikura and Nemhauser [1985], Grötschel,
Lovász, and Schrijver [1986], Lovász and Schrijver [1989,1991], Cheng and Cunning-
ham [1995,1997], Cánovas, Landete, and Maŕın [2000], Lipták and Lovász [2000,
2001], and Cheng and de Vries [2002a,2002b].

The convex hull of the incidence vectors of the stable sets of size at most a
given k is studied by Janssen and Kilakos [1999]. Generalizations of the stable
set polytope to more general 0, ±1 programming and satisfiability problems were
studied by Johnson and Padberg [1982], Hooker [1996], and Sewell [1996].

Methods for and computational results on the stable set problem (or the equiva-
lent clique, vertex cover, and set packing problems) are given by Balas and Samuels-
son [1977], Chvátal [1977], Houck and Vemuganti [1977], Tarjan and Trojanowski
[1977], Geoffroy and Sumner [1978], Gerhards and Lindenberg [1979], Hansen
[1980b], Bar-Yehuda and Even [1981,1982,1985], Billionnet [1981], Chiba, Nishizeki,
and Saito [1982] (planar graphs), Hochbaum [1982,1983a], Loukakis and Tsouros
[1982], Baker [1983,1994], Clarkson [1983], Monien and Speckenmeyer [1983,1985],
Balas and Yu [1986], Jian [1986], Robson [1986], Shindo and Tomita [1988], Hurkens
and Schrijver [1989], Carraghan and Pardalos [1990], Nemhauser and Sigismondi
[1992], Balas and Xue [1991,1996], Boppana and Halldórsson [1992], Pardalos and
Rodgers [1992], Paschos [1992], Khuller, Vishkin, and Young [1993,1994], Berman
and Fürer [1994], Mannino and Sassano [1994], Halldórsson [1995], Balas, Ceria,
Cornuéjols, and Pataki [1996], Bourjolly, Laporte, and Mercure [1997], Halldórsson
and Radhakrishnan [1997], Alon and Kahale [1998], Arkin and Hassin [1998], Feige
and Kilian [1998a], Kleinberg and Goemans [1998], Chandra and Halldórsson [1999,
2001], Nagamochi and Ibaraki [1999b], Bar-Yehuda [2000], Halperin [2000,2002],
Krivelevich and Vu [2000], Chen, Kanj, and Jia [2001], Krivelevich, Nathaniel, and
Sudakov [2001a,2001b], and Guha, Hassin, Khuller, and Or [2002].

Methods for graph colouring are proposed and investigated by Christofides
[1971], Brown [1972], Matula, Marble, and Isaacson [1972], Corneil and Graham
[1973], Johnson [1974b], Wang [1974], Lawler [1976a], McDiarmid [1979], Matula
and Beck [1983], Sys�lo, Deo, and Kowalik [1983], Wigderson [1983], Edwards [1986],
Berger and Rompel [1990], Hertz [1991], Halldórsson [1993], Blum [1994], Demange,
Grisoni, and Paschos [1994], Karger, Motwani, and Sudan [1994,1998], Schiermeyer
[1994], Beigel and Eppstein [1995], Blum and Karger [1997], Krivelevich and Vu
[2000], Eppstein [2001], Halperin, Nathaniel, and Zwick [2001], Molloy and Reed
[2001], Stacho [2001], Alon and Krivelevich [2002], and Charikar [2002].
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For computational results on clique, stable set, and colouring problems, consult
also Johnson and Trick [1996].

A survey of graph colouring algorithms was given by Matula, Marble, and Isaac-
son [1972]. Chiba, Nishizeki, and Saito [1981], Thomassen [1994], and Robertson,
Sanders, Seymour, and Thomas [1996] gave linear-time 5-colouring algorithms for
planar graphs. The worst-case behaviour of graph colouring algorithms was inves-
tigated by Johnson [1974b].

Mycielski [1955] showed that triangle-free graphs can have arbitrarily large
colouring number. King and Nemhauser [1974] and Gyárfás [1987] and Fouquet,
Giakoumakis, Maire, and Thuillier [1995] studied classes of graphs for which the
colouring number can be bounded by a function of the clique number.

Gyárfás [1987] conjectures that there exists a function g : Z+ → Z+ such that
χ(G) ≤ g(ω(G)) for each graph G without odd holes. Equivalently, for ω ∈ Z+, let
g(ω) be the maximum colouring number of a graph without odd holes and cliques of
size > ω. Then Gyárfás’ conjectures that g is finite. It is easy to see that g(2) = 2.
N. Robertson, P.D. Seymour, and R. Thomas announced that they proved g(3) = 4
(this was conjectured by G. Ding).

Upper bounds for the stable set number of a graph in terms of the degrees were
presented by Hansen [1979,1980b]. Relations between the colouring number and the
fractional colouring number are investigated by Kilakos and Marcotte [1997]. Reed
[1998] discussed bounding the chromatic number of a graph by a convex combina-
tion of its clique number and its maximum degree plus 1. Gerke and McDiarmid
[2001a,2001b] investigated the ratio of the weighted colouring and the weighted
clique number.

A theorem of Turán [1941] implies that any simple graph G with n vertices and
m edges satisfies:

(64.62) α(G) ≥ n2

n + 2m
.

Bondy [1978] showed that m ≥ 2τ(G)−1 if G is connected. A study of the relations
between several parameters derived from stability and colouring was given by Hell
and Roberts [1982].

A survey on the stable set problem is given by Padberg [1979], on approximation
methods for the stable set problem by Halldórsson [1998], and on colourings by
Jensen and Toft [1995] and Toft [1995]. Colouring is also discussed in most graph
theory books mentioned in Chapter 1.



Chapter 65

Perfect graphs: general theory

In this and the next two chapters, we consider the ‘perfect’ graphs, intro-
duced by C. Berge in the 1960s. They turn out to unify several results in
combinatorial optimization, in particular, min-max relations and polyhe-
dral characterizations.
Berge proposed two conjectures, the weak and the strong perfect graph
conjecture. The second implies the first.
The weak perfect graph conjecture says that perfection is maintained under
taking the complementary graph. This was proved by Lovász [1972c]: the
perfect graph theorem.
The strong perfect graph conjecture characterizes perfect graphs by exclud-
ing odd holes and odd antiholes. A proof of this was announced in May
2002 by Chudnovsky, Robertson, Seymour, and Thomas, resulting in the
strong perfect graph theorem. The announced proof is highly complicated,
and we cannot give it here.
Many of the results described in this and the next chapter follow directly as
a consequence of the strong perfect graph theorem (while some of them are
used in the proof). Where possible and appropriate, we give direct proofs
of these consequences.
In this chapter, we give general theory, in Chapter 66 we discuss classes of
perfect graphs, and in Chapter 67 we show the polynomial-time solvability
of the maximum-weight clique and minimum colouring problems for perfect
graphs.

65.1. Introduction to perfect graphs

As we saw before, the clique number ω(G) and the colouring number χ(G)
of a graph G = (V,E) are related by the inequality

(65.1) ω(G) ≤ χ(G).

Strict inequality can occur, for instance, for any odd circuit of length at least
five, and its complement.

Having equality in (65.1) does not say that much about the internal
structure of a graph: any graph G = (V,E) can be extended to a graph
G′ = (V ′, E′) satisfying ω(G′) = χ(G′), simply by adding to G a clique of
size χ(G), disjoint from V .
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However, the condition becomes much more powerful if we require that
equality in (65.1) holds for each induced subgraph of G. The idea for this was
formulated by Berge [1963a]. He defined a graph G = (V,E) te be perfect if
ω(G′) = χ(G′) holds for each induced subgraph G′ of G.

Various classes of graphs could be shown to be perfect, like the bipartite
graphs (trivially) and the line graphs of bipartite graphs (by Kőnig’s edge-
colouring theorem).

Berge [1960a,1963a] observed the important phenomenon that for several
of these classes, also the complementary graphs are perfect. Berge therefore
conjectured that the complement of any perfect graph is perfect again — the
weak perfect graph conjecture. This conjecture was proved by Lovász [1972c],
by proving an equivalent form of the conjecture given by Fulkerson [1972a]
(the replication lemma — see Corollary 65.2c below).

As mentioned, obvious examples of imperfect graphs are the odd circuits
of length at least five, and their complements. Berge [1963a] and P.C. Gilmore
(cf. Berge [1966]) made the conjecture that this characterizes perfect graphs,
which is the strong perfect graph conjecture. A proof was announced in May
2002 by Chudnovsky, Robertson, Seymour, and Thomas.

To simplify formulation, it is convenient to introduce the notions of ‘hole’
and ‘antihole’. A hole in a graph G is an induced subgraph of G isomorphic to
a circuit with at least four vertices. An antihole in G is an induced subgraph
of G isomorphic to the complement of a circuit with at least four vertices. A
hole or antihole is odd if it has an odd number of vertices.

Theorem 65.1 (Strong perfect graph theorem). A graph G is perfect if and
only if G contains no odd hole and no odd antihole.

A graph containing no odd hole or odd antihole is called a Berge graph2.
So the strong perfect graph theorem says that Berge graphs are precisely the
perfect graphs.

An alternative formulation is in terms of minimally imperfect graphs. A
minimally imperfect (or critically imperfect) graph is an imperfect graph such
that each proper induced subgraph is perfect. Then the strong perfect graph
theorem says that the only minimally imperfect graphs are the odd circuits
of length at least five, and their complements.

It is (as yet) unknown if perfection of a graph can be tested in polynomial
time. (Lovász [1986] ‘would guess’ that such an algorithm exists.) The clique
number of a perfect graph can be determined in polynomial time, with the
help of the ellipsoid method — see Chapter 67. However, no combinatorial
polynomial-time algorithm is known.

We will next discuss perfect graph theory in greater detail (although we
cannot give a proof of the strong perfect graph theorem). Let us make a useful
observation:
2 This term was introduced by Chvátal and Sbihi [1987].
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(65.2) any minimally imperfect graph G = (V,E) has no stable set S
with ω(G− S) < ω(G).

Otherwise, ω(G) ≥ ω(G − S) + 1 = χ(G − S) + 1 ≥ χ(G), since we can use
S as colour.

Similarly, for any class G of graphs closed under taking induced subgraphs:

(65.3) each graph G ∈ G is perfect ⇐⇒ each graph G ∈ G with V G �= ∅
has a stable set S with ω(G− S) < ω(G).

Here necessity follows from the fact that we can take for S any of the colours in
a minimum colouring of G. Sufficiency follows by induction on |V G|: χ(G) ≤
χ(G− S) + 1 = ω(G− S) + 1 ≤ ω(G).

65.2. The perfect graph theorem

Lovász [1972a] proved the weak perfect graph conjecture in the following
stronger form (suggested by A. Hajnal), which we show with the elegant
linear-algebraic proof found by Gasparian [1996].

Theorem 65.2. A graph G is perfect if and only if ω(G′)α(G′) ≥ |V G′| for
each induced subgraph G′ of G.

Proof. Necessity is easy, since if G is perfect, then ω(G′) = χ(G′) for each
induced subgraph G′ of G, and since χ(G′)α(G′) ≥ |V G′| for any graph G′.

To see sufficiency, it suffices to show that each minimally imperfect graph
G satisfies |V G| ≥ α(G)ω(G) + 1. We can assume that V G = {1, . . . , n}.
Define ω := ω(G) and α := α(G).

We first construct

(65.4) stable sets S0, . . . , Sαω such that each vertex is covered by exactly
α of the Si.

Let S0 be a stable set in G of size α. By the minimality of G, we know that
for each v ∈ S0, the graph G − v is perfect, and that hence χ(G − v) =
ω(G−v) ≤ ω. Therefore, V \{v} can be partitioned into ω stable sets. Doing
this for each v ∈ S0, we obtain stable sets as in (65.4).

Now for each i = 0, . . . , αω, there exists a clique Ci of size ω with Ci∩Si =
∅ (by (65.2)). Then, for distinct i, j with 0 ≤ i, j ≤ αω, we have |Ci∩Sj | = 1.
This follows from the fact that Ci has size ω and intersects each Sj in at most
one vertex, and hence, by (65.4), it intersects αω of the Sj . As Ci ∩ Si = ∅,
we have that |Ci ∩ Sj | = 1 if i �= j.

Now consider the (αω+1)×n incidence matrices M and N of S0, . . . , Sαω
and C0, . . . , Cαω respectively. So M and N are {0, 1} matrices, with Mi,j =
1 ⇐⇒ j ∈ Si, and Ni,j = 1 ⇐⇒ j ∈ Ci, for i = 0, . . . , αω and j = 1, . . . , n.
By the above, MNT = J−I, where J is the (αω+1)× (αω+1) all-1 matrix,



Section 65.3. Replication 1109

and I the (αω+ 1) × (αω+ 1) identity matrix. As J − I has rank αω+ 1, we
have n ≥ αω + 1.

Theorem 65.2 implies (Lovász [1972c]):

Corollary 65.2a (perfect graph theorem). The complement of a perfect
graph is perfect again.

Proof. Directly from Theorem 65.2, as the condition given in it is invariant
under taking the complementary graph.

As was observed by Cameron [1982], Theorem 65.2 implies that the ques-
tion ‘Given a graph, is it perfect?’ belongs to co-NP. Indeed, to certify im-
perfection of a graph, it is sufficient, and possible, to specify:

(65.5) (i) an induced subgraph G = (V,E),
(ii) integers α, ω ≥ 2 with |V | = αω + 1, and
(iii) for each v ∈ V , an ω-colouring of G− v and an α-colouring of

G− v.

This is possible, since, by Theorem 65.2, a minimally imperfect subgraph G
has these properties for ω := ω(G) and α := α(G). It is also sufficient to
certify imperfection, since (65.5)(iii) implies that ω(G) ≤ ω and α(G) ≤ α,
and hence by (65.5)(ii), that G is not perfect.

Theorem 65.2 implies:

Corollary 65.2b. Each minimally imperfect graph G satisfies

(65.6) |V G| = α(G)ω(G) + 1.

Proof. We have |V G| ≤ α(G)ω(G)+1, since for any vertex v of G, the graph
G− v is perfect, and hence

(65.7) |V G| − 1 = |V (G− v)| ≤ α(G− v)ω(G− v) ≤ α(G)ω(G).

Conversely, |V G| ≥ α(G)ω(G) + 1, since if |V G| ≤ α(G)ω(G), then
|V G′| ≤ α(G′)ω(G′) for each induced subgraph G′ of G (by the minimal
imperfection of G). This implies with Theorem 65.2 that G is perfect, a con-
tradiction.

65.3. Replication

Let G = (V,E) be a graph and let v ∈ V . Extend G with some new vertex, v′

say, which is adjacent to v and to all vertices adjacent to v in G. In this way
we obtain a new graph H, which we say is obtained from G by duplicating v.
Repeated duplicating a vertex is called replicating. Replicating a vertex v by
a factor k means duplicating v k − 1 times if k ≥ 1, and deleting v if k = 0.
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Corollary 65.2c (replication lemma). Let H arise from G by duplicating
vertex v. Then if G is perfect, also H is perfect.

Proof. By the perfect graph theorem, it suffices to show that H is perfect,
and hence (as we can apply induction) that ω(H) = χ(H).

By the perfect graph theorem, if G is perfect, then G is perfect. Hence
ω(H) = ω(G) = χ(G) = χ(H).

Repeated application of Corollary 65.2c implies the following (the weight-
ed colouring number is defined in Section 64.8):

Corollary 65.2d. Let G be a perfect graph and let w : V → Z+ be a ‘weight’
function. Then the maximum weight of a clique is equal to the weighted colour-
ing number χw(G) of G.

Proof. Let Gw be the graph arising from G by replicating any vertex v by
a factor w(v). By Corollary 65.2c, Gw is perfect, and so ω(Gw) = χ(Gw).
Since ω(Gw) is equal to the maximum weight of a clique in G and since
χ(Gw) = χw(G), the corollary follows.

65.4. Perfect graphs and polyhedra

The clique polytope of a graph G = (V,E) is the convex hull of the incidence
vectors of the cliques. Clearly, any vector x in the clique polytope satisfies:

(65.8) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(S) ≤ 1 for each stable set S.

Fulkerson [1972a] and Chvátal [1975a] showed that Corollary 65.2d implies a
polyhedral characterization of perfect graphs:

Corollary 65.2e. A graph G is perfect if and only if its clique polytope is
determined by (65.8).

Proof. Necessity. Let G be perfect. To prove that the clique polytope is
determined by (65.8), it suffices to show that for each weight function w :
V → Z+, the maximum weight t of a clique in G is not less than the maximum
of wTx over (65.8). By Corollary 65.2d, there exist stable sets S1, . . . , St with

(65.9) w = χS1 + · · · + χSt .

Hence for each x satisfying (65.8) we have

(65.10) wTx = x(S1) + · · · + x(St) ≤ t.

Sufficiency. Let the clique polytope of G be determined by (65.8). Suppose
that G is not perfect. Choose a minimal set U with ω(G[U ]) < χ(G[U ]). Let
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w := χU . The function wTx is maximized over Pclique(G) by the incidence
vector of each maximum-size clique ofG[U ]. Moreover, by linear programming
duality, there exists a stable set S with x(S) = 1 for each optimum solution
x. So S intersects each maximum-size clique of G[U ], and hence

(65.11) ω(G[U \ S]) ≤ ω(G[U ]) − 1 < χ(G[U ]) − 1 ≤ χ(G[U \ S]),

contradicting the minimality of U .

Corollary 65.2e is equivalent to: G is perfect if and only if Pclique(G) =
A(Pstable set(G)). (Here A(P ) is the antiblocking polyhedron of P .) Hence it
implies the perfect graph theorem (using the theory of antiblocking polyhedra
(cf. Section 5.9)):

(65.12) G is perfect ⇐⇒ Pclique(G) = A(Pstable set(G))
⇐⇒ Pstable set(G) = A(Pclique(G))
⇐⇒ Pclique(G) = A(Pstable set(G)) ⇐⇒ G is perfect.

Corollary 65.2d also implies that perfect graphs can be characterized by total
dual integrality:

Corollary 65.2f. A graph G is perfect if and only if system (65.8) is totally
dual integral.

Proof. Directly from Corollaries 65.2d and 65.2e.

So for any graph G we have that (65.8) determines an integer polytope if
and only if it is totally dual integral.

65.4a. Lovász’s proof of the replication lemma

The proof of Lovász [1972c] of the weak perfect graph theorem is based on proving
the ‘replication lemma’ (Corollary 65.2c above), as follows.

By (65.2), it suffices to find a stable set S in H intersecting all maximum-size
cliques of H, since any induced subgraph of H is an induced subgraph of G or arises
from it by replication.

Consider an ω(G)-colouring of G, and let S be the colour containing v. Then
S intersects each maximum-size clique C of H. Indeed, if v′ �∈ C, then C is a
maximum-size clique of G, and so it intersects S. If v′ ∈ C, then also v ∈ C (as
C ∪ {v} is a clique), and so C intersects S.

This proves the replication lemma, which by repeated application gives Corol-
lary 65.2d. Since the proof of Corollary 65.2e given above only uses Corollary 65.2d,
this shows (with (65.12)) that the replication lemma implies the perfect graph the-
orem. This is Fulkerson’s proof of the equivalence of the replication lemma and the
weak perfect graph conjecture (≡ perfect graph theorem).
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65.5. Decomposition of Berge graphs

The proof of the strong perfect graph conjecture is based on a decomposition
theorem of Berge graphs, stating that each Berge graph can be decomposed
into ‘basic’ graphs: bipartite graphs and their complements, and line graphs
of bipartite graphs and their complements. We formulate the decomposition
rules.

Let G = (V,E) be a graph. A 2-join of G is a partition of V into sets
V1 and V2 such that for i = 1, 2, |Vi| ≥ 3 and Vi contains disjoint nonempty
subsets Ai, Bi with the property that for all v1 ∈ V1 and v2 ∈ V2:

(65.13) v1 and v2 are adjacent ⇐⇒ v1 ∈ A1, v2 ∈ A2, or v1 ∈ B1,
v2 ∈ B2.

A skew partition of G is a partition V1, V2 of V such that G[V1] and G[V2]
are disconnected. An homogeneous pair of G is a pair A,B of disjoint subsets
of V such that 3 ≤ |A| + |B| ≤ |V | − 2 and such that for all x, y ∈ A∪B and
z ∈ V \ (A ∪B), if xz ∈ E and yz �∈ E, then x and y belong to distinct sets
A,B.

M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas announced
in May 2002 that they proved the following3:

Theorem 65.3. Let G be a Berge graph. Then G or G is bipartite or the line
graph of a bipartite graph, or has a 2-join, a skew partition, or a homogeneous
pair.

Unfortunately, we cannot give the (highly complicated) proof of this the-
orem. M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas also
showed that any minimum-size imperfect Berge graph has no skew parti-
tion4. Since such a graph has no 2-join (Cornuéjols and Cunningham [1985]
and Kapoor [1994] — see Corollary 65.7a below) and no homogeneous pair
(Chvátal and Sbihi [1987]), and since bipartite graphs and their line graphs
are perfect (Kőnig [1916] — see Section 66.1), this implies:

Theorem 65.4 (strong perfect graph theorem). A graph is perfect if and
only if it is a Berge graph.

65.5a. 0- and 1-joins

A 0-join of a graph G = (V, E) is a partition of V into nonempty sets V1 and V2

such that no edge connects V1 and V2. Let G1 := G[V1] and G2 = G[V2]. Then G is
called the 0-join of G1 and G2. Trivially:
3 This was conjectured by M. Conforti, G. Cornuéjols, N. Robertson, P.D. Seymour,

R. Thomas, and K. Vušković (cf. Cornuéjols [2002]). It builds on work of Roussel
and Rubio [2001], and it was stimulated by interaction with concurrent work of Con-
forti, Cornuéjols, Vušković, and Zambelli [2002] and Conforti, Cornuéjols, and Zambelli
[2002b].

4 conjectured by Chvátal [1985c].
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Theorem 65.5. G is perfect ⇐⇒ G1 and G2 are perfect.

Proof. This follows from the facts that ω(G) = max{ω(G1), ω(G2)} and χ(G) =
max{χ(G1), χ(G2)}, and that induced subgraphs of G arise by the same construc-
tion from induced subgraphs of G1 and G2.

Hence

(65.14) no minimally imperfect graph has a 0-join.

A 1-join (or join) of a graph G = (V, E) is a partition of V into subsets V1 and
V2 such that |V1| ≥ 2, |V2| ≥ 2, and such that there exist nonempty A1 ⊆ V1 and
A2 ⊆ V2 with the property that for all v1 ∈ V1 and v2 ∈ V2:

(65.15) v1 and v2 are adjacent ⇐⇒ v1 ∈ A1 and v2 ∈ A2.

Choose v1 ∈ A1 and v2 ∈ A2, and define G1 := G[V1 ∪{v2}] and G2 := G[V2 ∪{v1}].
Then G is called the 1-join of G1 and G2.

Bixby [1984] proved (generalizing a result of Lovász [1972c]):

Theorem 65.6. G is perfect ⇐⇒ G1 and G2 are perfect.

Proof. Necessity follows from the fact that G1 and G2 are induced subgraphs of G.
To prove sufficiency, it suffices to show ω(G) = χ(G), since each induced subgraph
of G arises by the same construction, or by a 0-join from induced subgraphs of G1

and G2. Let ω := ω(G) and ai := ω(G[Ai]) for i = 1, 2. It suffices to show that for
each i = 1, 2,

(65.16) G[Vi] has an ω-colouring such that Ai uses ai colours only,

since then we can assume that we use different colours for A1 and A2 (as a1 + a2 ≤
ω), yielding an ω-colouring of G.

To prove (65.16), we may assume that i = 1. Let G′
1 be the graph obtained from

G1 by replicating v2 by a factor ω − a1. So ω(G′
1) = ω. By the replication lemma,

G′
1 is perfect. Hence ω(G′

1) = χ(G′
1). As the clique of vertices obtained from v2 has

size ω − a1, we use only a1 colours for A1, as required.

An alternative proof follows from Cunningham [1982b]. Cunningham [1982a]
described an O(n3)-time algorithm to find a 1-join (if any).

Theorem 65.6 implies:

(65.17) no minimally imperfect graph has a 1-join,

since it has no 0-join, and hence G1 and G2 as above are proper induced subgraphs
of G, implying that they are perfect. Therefore, by Theorem 65.6, G is perfect, a
contradiction.

65.5b. The 2-join

We next show that a minimally imperfect graph has no 2-join, except if it is an odd
circuit. This was shown by Cornuéjols and Cunningham [1985] (for a special case)
and Kapoor [1994].
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The proof uses the following ‘special replication lemma’ (Cornuéjols and Cun-
ningham [1985]). Let e = uv be an edge of a graph G. Let G′ be the graph obtained
from replicating v and deleting edge uv′, where v′ is the new vertex.

Lemma 65.7α (special replication lemma). If G is perfect and uv is not contained
in a triangle of G, then G′ is again perfect.

Proof. It suffices to show that G′ has a stable set S′ such that ω(G′ −S′) < ω(G′).
If ω(G′) > ω(G), we can take S′ = {v′}. So we may assume ω(G′) = ω(G). Let S
be the colour of an ω(G)-colouring of G with v ∈ S. Let S′ := (S \ {v}) ∪ {v′}.
Then S′ is a stable set in G′. If ω(G′ − S′) < ω(G′) we are done. So assume that
ω(G′−S′) = ω(G′). Let C be a clique in G′−S′ of size ω(G). Since ω(G−S) < ω(G)
and since G − S = G′ − S′ − v, we know v ∈ C. Since ω(G′) = ω(G), we know
u ∈ C. Hence, C = {u, v} (since uv is not in a triangle). So ω(G′) = 2, and hence
vv′ is not contained in a triangle of G′. But then v′ has degree 1 in G′, implying
χ(G′) = χ(G) = ω(G) = ω(G′).

Next we consider a special 2-join, namely where the sets Ai and Bi in the
definition of 2-join are connected by a path in G[Vi] (for i = 1, 2). For i = 1, 2, let Pi

be a shortest Ai−Bi path in G[Vi]. Define G1 := G[V1∪V P2] and G2 := G[V2∪V P1].

Theorem 65.7. G is perfect ⇐⇒ G1 and G2 are perfect.

Proof. Necessity follows from the fact that G1 and G2 are induced subgraphs of
G. To prove sufficiency, it is enough to prove ω(G) = χ(G), since each induced
subgraph of G arises by the same construction, or by 1- or 0-joins, from induced
subgraphs of G1 and G2. Define ω := ω(G), and

(65.18) ai := ω(G[Ai]) and bi := ω(G[Bi]) for i = 1, 2.

Note that perfection of G1 implies that |EP1| ≡ |EP2| (mod 2), since V P1∪V P2

induces a hole in G1.
For any colouring φ of a graph and any set X of vertices, let φ(X) denote the

set of colours used by X. We show that, for each i = 1, 2, G[Vi] has an ω-colouring
φ : V → {1, . . . , ω} such that

(65.19) (i) φ(Ai) = {1, . . . , ai};
(ii) if |EPi| is even, then φ(Bi) = {1, . . . , bi};

(iii) if |EPi| is odd, then φ(Bi) = {ω − bi + 1, . . . , ω}.

This yields an ω-colouring of G, by replacing the colour, i say, of any vertex in V2

by ω − i + 1. (The correctness follows from a1 + a2 ≤ ω and b1 + b2 ≤ ω.)
To prove the existence of a colouring satisfying (65.19), we may assume i = 1.

Let v0, v1, . . . , vk be the vertices (in order) of the A2 − B2 path P2.
First assume that k > 1 or a1 + b1 ≥ ω. Let G′

1 be the graph arising from G1

by replicating vj by a factor

(65.20) ω − a1 if j < k − 1 and j is even,
a1 if j < k − 1 and j is odd,
min{ω − a1, b1} if j = k − 1 and j is even,
min{a1, b1} if j = k − 1 and j is odd,
ω − b1 if j = k.
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Then ω(G′
1) = ω, and any ω-colouring of G′

1 yields a colouring satisfying (65.19).
Indeed, if k is even, then (65.20) implies that the set of colours used by the copies
of v0 and the set of colours used by the copies of vk are comparable5. If k is odd,
then (65.20) implies that the set of colours used by the copies of v0 and the set of
colours not used by the copies of vk are comparable.

Next assume that k = 1 and a1 + b1 < ω. Extend G1 by a new vertex v′,
adjacent to all vertices in B1 and to v1. By the special replication lemma (Lemma
65.7α), the new graph G′′

1 is again perfect. Let G′
1 be the graph arising from G′′

1 by
replicating v0 by a factor ω − a1, v1 by a factor a1, and v′ by a factor ω − a1 − b1.
Again, ω(G′

1) = ω, and any ω-colouring of G′
1 yields a colouring satisfying (65.19).

This implies:

Corollary 65.7a. Any minimally imperfect graph having a 2-join is an odd circuit.

Proof. Let G be a minimally imperfect graph, and let Vi, Ai, Bi (for i = 1, 2) be
as in the definition of 2-join. If for some i, the graph G[Vi] has no Ai − Bi path,
then G has a 0- or 1-join, contradicting (65.14) or (65.17). So we can assume that,
for i = 1, 2, G[Vi] has an Ai − Bi path. Let Pi be a shortest such path.

By Theorem 65.7 and by symmetry, we may assume that G[V1 ∪ V P2] is not
perfect. Hence, by the minimal imperfection of G, G = G[V1 ∪ V P2].

We first show ω(G) = 2. Choose an internal vertex u on P2. (This exists,
since |V2| ≥ 3.) Choose v ∈ V \ {u}. By the minimal imperfection of G, we know
χ(G− v) = α(G− v). Therefore, V G\{v} can be partitioned into α(G− v) cliques.
Since |V G| = α(G)ω(G) + 1 (by (65.6)), each of these cliques has size ω(G). In
particular, u is in a clique of size ω(G). Hence, since u is an internal vertex of P2,
ω(G) = 2.

As ω(G) = 2, χ(G − v) ≤ 2 for each v ∈ V G; that is, G − v is bipartite for each
v ∈ V G. So each odd circuit is Hamiltonian. As G is not bipartite, G has an odd
circuit. This circuit has no chords, as otherwise there exists a shorter odd circuit.

Cornuéjols and Cunningham [1985] gave an O(n2m2)-time algorithm to find a
2-join in a given graph (if any).

65.6. Pre-proof work on the strong perfect graph
conjecture

In this section we survey research done on the strong perfect graph conjecture
before it was proved in general. Many of the results follow as a consequence
of the strong perfect graph theorem. Since the proof of this theorem is very
complicated, we will include proofs not based on the strong perfect graph
theorem.
5 Sets X and Y are called comparable if X ⊆ Y or Y ⊆ X.
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65.6a. Partitionable graphs

The strong perfect graph theorem implies that each minimally imperfect graph is a
circuit or its complement, and hence is highly symmetric. Before the strong perfect
graph theorem was proved, several regularity properties of minimally imperfect
graphs were shown, initiated by the work of Padberg [1974a].

A graph G = (V, E) is called partitionable if |V | = α(G)ω(G)+1 and χ(G−v) =
ω(G) and χ(G − v) = α(G) for each v ∈ V . By Corollary 65.2b, each minimally
imperfect graph is partitionable. As each partitionable graph is imperfect, the strong
perfect graph theorem is equivalent to: each partitionable graph has an odd hole or
odd antihole.

Partitionable graphs are characterized as follows6. Our proof of necessity is
based on Gasparian [1996] (and is similar to the proof of Theorem 65.2).

Theorem 65.8. A graph G is partitionable if and only if |V G| = α(G)ω(G) + 1
and each vertex is contained in exactly α(G) stable sets of size α(G) and in exactly
ω(G) cliques of size ω(G).

Proof. Define n := |V G|, α := α(G), and ω := ω(G).
I. To see necessity, let G be partitionable. Then the proof method of Theorem

65.2 applies: We again construct

(65.21) stable sets S0, . . . , Sαω such that each vertex is covered by exactly α
of the Si.

Indeed, let S0 be a stable set in G of size α. For each vertex v, as G is partitionable,
we know χ(G − v) = ω. Therefore, V G \ {v} can be partitioned into ω stable sets.
Doing this for each v ∈ S0, we obtain stable sets as in (65.21).

Next, for each i = 0, . . . , αω, there exists a clique Ci of size ω with Ci ∩ Si = ∅.
To see this, choose v ∈ Si. As G is partitionable, χ(G−v) = α, and hence V G\{v}
can be partitioned into α cliques. Since n = αω + 1, each clique has size ω. Since
|Si \ {v}| ≤ α − 1, at least one of these cliques is disjoint from Si.

Then, for distinct i, j with 0 ≤ i, j ≤ αω, we have |Ci ∩ Sj | = 1. This follows
from the fact that Ci has size ω and intersects each Sj in at most one vertex,
and hence, by (65.21), Ci intersects αω of the Sj . As Ci ∩ Si = ∅, we have that
|Ci ∩ Sj | = 1 if i �= j.

Now consider the (αω + 1) × n incidence matrices M and N of S0, . . . , Sαω and
C0, . . . , Cαω respectively. So M and N are {0, 1} matrices, with Mi,j = 1 ⇐⇒
j ∈ Si, and Ni,j = 1 ⇐⇒ j ∈ Ci, for i = 0, . . . , αω and j = 1, . . . , n. By the
above, MNT = J − I, where J is the (αω + 1) × (αω + 1) all-1 matrix, and I the
(αω + 1) × (αω + 1) identity matrix. So M and N are nonsingular.

It then suffices (by symmetry) to show that each maximum-size clique C occurs
among C0, . . . , Cn. Now (MχC)i is 1 if |C ∩Si| = 1, and is 0 otherwise. As |C| = ω
and as each v ∈ V belongs to exactly α of the Si, C intersects precisely αω of the
Si. That is, there is exactly one, say Sj , disjoint from C. Hence MχC = MχCj ,
and therefore C = Cj , as M is nonsingular.

6 Necessity of the condition for minimally imperfect graphs was shown by Padberg [1974a],
and for partitionable graphs in general by Bland, Huang, and Trotter [1979]. As to
sufficiency, Cameron [1982] referred to private communication with A. Lubiw in 1981,
and Whitesides [1982] called it ‘well known’.
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II. To see sufficiency, let G satisfy the condition. As each vertex of G is in exactly
α stable sets of size α, there are exactly n maximum-size stable sets. Similarly, there
are exactly n maximum-size cliques.

Let M and N be the incidence matrix of the maximum-size stable sets and
maximum-size cliques, respectively. We can order the rows such that MNT = J −I,
where J is the all-one n×n-matrix, and I the identity matrix of order n. To see this,
each maximum-size stable set S intersects precisely αω maximum-size cliques, since
|S| = α and each vertex v ∈ S is in precisely ω maximum-size cliques. Hence there is
a unique maximum-size clique C disjoint from S. Similarly, for each maximum-size
clique C there is a unique maximum-size stable set S disjoint from C.

So MNT = J − I, implying

(65.22) M(J − I)NT = MJNT − MNT = αJNT − (J − I) = αωJ − J + I
= nJ − 2J + I = (J − I)(J − I) = MNTMNT.

Since M and NT are nonsingular, this implies NTM = J − I.
Now choose v ∈ V . As NTM = J − I, for each u ∈ V \ {v} there exists a

unique pair of a maximum-size clique Cu and a maximum-size stable set Su with
u ∈ Cu, v ∈ Su, and Cu ∩ Su = ∅. Then for each w ∈ Cu we have Cw = Cu, since
w ∈ Cu and v ∈ Su. So the Cu partition V \ {v}, and hence χ(G − v) = α. Then
also χ(G − v) = ω by symmetry.

A partitionable graph G with α(G) = α and ω(G) = ω, is also called an (α, ω)-
graph.

The proof of Theorem 65.8 also implies the following further properties of parti-
tionable graphs (properties (i)-(iii) were proved for minimally imperfect graphs by
Padberg [1974a] and for partitionable graphs by Bland, Huang, and Trotter [1979];
property (iv) was shown by Whitesides [1982]):

Theorem 65.9. Let G be a partitionable graph with n vertices. Then:

(65.23) (i) G contains exactly n maximum-size cliques and exactly n maximum-
size stable sets;

(ii) the matrix N formed by the incidence vectors of the maximum-size
cliques is nonsingular, and the matrix M formed by the incidence
vectors of the maximum-size stable sets is nonsingular;

(iii) each maximum-size clique intersects all but one maximum-size sta-
ble sets, and each maximum-size stable set intersects all but one
maximum-size cliques;

(iv) for any two distinct vertices u, v of G there is a unique pair of
a maximum-size clique C and a maximum-size stable set S with
u ∈ C, v ∈ S, and C ∩ S = ∅.

Proof. See the proof of Theorem 65.8.

Notes. One may show that | det M | = α(G) and | det N | = ω(G) for any partition-
able graph. Indeed, since M1 = α(G) · 1, we have that M−11 = α(G)−1 · 1. Hence
α(G) divides det M (as (det M) ·M−1 is an integer matrix). Similarly, ω(G) divides
det N . Now | det M · det N | = | det(MNT)| = | det(J − I)| = |V G|− 1 = α(G)ω(G).
So | det M | = α(G) and | det N | = ω(G).
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Shepherd [1994b] showed that a graph G is partitionable if and only if for some
p, q ≥ 2 with |V G| = pq + 1: (i) G has a family of |V G| stable sets of size p such
that each vertex is in precisely p of them, and (ii) G has no stable set S of size
p that intersects each clique of size q. A polynomial-time recognition algorithm of
partitionable graphs was given by Shepherd [2001].

65.6b. More characterizations of perfect graphs

It is not difficult to show that for any partitionable graph G one has:

(65.24) χ∗(G) = ω(G) +
1

α(G)
.

Indeed, let n := |V G|, α := α(G), ω := ω(G), χ∗ := χ∗(G). To see ≥, observe
that the vector α−1 · 1 satisfies all stable set inequalities (64.34), and hence χ∗ ≥
nα−1 = ω + α−1. To see ≤, give each stable set of size α a value α−1. This gives a
fractional colouring of size ω + α−1. So χ∗ ≤ ω + α−1, proving (65.24).

Hence perfect graphs can be characterized by:

Theorem 65.10. A graph G is perfect ⇐⇒ χ∗(G′) is an integer for each induced
subgraph G′ of G.

Proof. See above.

Berge [1973a] gave the following further characterization of perfect graphs. For
any graph G = (V, E), let χ2(G) denote the bicolouring number of G, being the
minimum number of stable sets S1, . . . , St such that each vertex is in two of the
Si. Alternatively, it is the minimum number of colours such that we can assign to
each vertex a pair of colours in such a way that any two adjacent vertices get two
disjoint pairs of colours.

Theorem 65.11. A graph G is perfect if and only if χ2(G′) = 2χ(G′) for each
induced subgraph G′ of G.

Proof. To see necessity, we have 2ω(G) ≤ χ2(G) ≤ 2χ(G) for each graph G. Hence
if G is perfect, then ω(G) = χ(G), and hence χ2(G) = 2χ(G). As perfection is
closed under taking induced subgraphs, necessity of the condition follows.

To see sufficiency, let G be a minimally imperfect graph. Consider two nonad-
jacent vertices u and v. Then χ2(G) ≤ χ(G − u) + χ(G − v) + 1 (as we can take
{u, v} as a colour). Since, by the condition, χ2(G) = 2χ(G), we can assume, by
symmetry, that χ(G) ≤ χ(G − u). Hence χ(G) ≤ χ(G − u) ≤ ω(G − u) ≤ ω(G),
contradicting the fact that G is minimally imperfect.

(This proof does not use the perfect graph theorem.)

65.6c. The stable set polytope of minimally imperfect graphs

The following theorem of Padberg [1976] is a direct consequence of the strong
perfect graph conjecture, but we give a direct proof (we adapt the proof of Seymour
[1990b]):
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Theorem 65.12. Let G = (V, E) be a minimally imperfect graph. Then the polytope
determined by

(65.25) (i) xv ≥ 0 for v ∈ V ,
(ii) x(C) ≤ 1 for each clique C,

has precisely one noninteger vertex, namely ω−1 · 1, where ω := ω(G).

Proof. Let G = (V, E) be a minimally imperfect graph, and let x∗ be a noninteger
vertex of the polytope determined by (65.25). Set n := |V |.

First we have that

(65.26) x∗
v > 0 for each vertex v.

For suppose that x∗
v = 0. Then x∗|V \ {v} is a noninteger vertex of the polytope

(65.25) for G − v, contradicting the perfection of G − v (by Corollary 65.2e). This
proves (65.26).

Let C be a collection of cliques C such that x∗(C) = 1 for each C ∈ C and such
that {χC | C ∈ C} is a set of n linearly independent vectors. For v ∈ V , let Cv

denote the collection of C ∈ C with v ∈ C. Then:

(65.27) |Cv| ≤ ω for each v ∈ V .

To see this, consider any v ∈ V and any C ∈ C \ Cv. Since G − v is perfect, the
vector x∗|V \ {v} is a convex combination

∑
S λSχS of stable sets S in G − v. For

each u ∈ C, choose a stable set Su with u ∈ Su and λSu > 0. Then |C′ ∩ Su| = 1
for each C′ ∈ C \ Cv (since (x∗|V \ {v})(C′) = 1). So the incidence vectors χSu for
u ∈ C are linearly independent. This implies that the vectors χSu − x∗ for u ∈ C
have rank at least |C| − 1. As each of these vectors is orthogonal to χC′

for each
C′ ∈ C \ Cv, we have

(65.28) |C \ Cv| ≤ (n − 1) − (|C| − 1) = n − |C|.
Let U be the set of vertices not covered by all cliques in C. Then:

(65.29) n =
∑

C∈C
1 =

∑

C∈C

∑

v∈V \C

1
n − |C| =

∑

v∈U

∑

C∈C\Cv

1
n − |C|

≤
∑

v∈U

∑

C∈C\Cv

1
|C \ Cv| =

∑

v∈U

1 = |U | ≤ n.

So we have equality throughout; that is, U = V and |C \ Cv| = |V | − |C| for each
v ∈ V and each C ∈ C \ Cv. This gives equality in (65.28). So |Cv| = |C| ≤ ω,
proving (65.27).

Let C′ denote the collection of maximum-size cliques in G. By Theorem 65.9,
each v ∈ V is in precisely ω sets in C′. Hence

(65.30) n =
∑

C∈C
1 =

∑

C∈C
x∗(C) =

∑

v∈V

|Cv|x∗
v ≤ ω

∑

v∈V

x∗
v =

∑

C∈C′
x∗(C)

≤
∑

C∈C′
1 = n.

Hence we have equality throughout. Therefore, x∗ satisfies x∗(C) = 1 for each
maximum-size clique C. Hence x∗ = ω−1 · 1.
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By the antiblocking relation, Theorem 65.12 implies that the stable set polytope
of a minimally imperfect graph has precisely one facet not given by the clique and
nonnegative constraints:

Corollary 65.12a. Let G = (V, E) be a minimally imperfect graph. Then the stable
set polytope of G is determined by:

(65.31) xv ≥ 0 for v ∈ V ,
x(C) ≤ 1 for each clique C,
x(V ) ≤ α(G).

Proof. Directly from Theorem 65.12 applied to the antiblocking polytope of the
polytope determined by (65.25) (for G).

Shepherd [1990,1994b] calls a graph near-perfect if its stable set polytope is
determined by (65.31), and he showed that a graph G is minimally imperfect if and
only if both G and its complement G are near-perfect.

65.6d. Graph classes

Before a proof of the strong perfect graph theorem in general was announced in
2002, it had been proved for several classes of graphs. Next to the classes to be
discussed in Chapter 66, it was shown for (among other):

• claw-free graphs, that is, graphs not having K1,3 (a claw) as induced subgraph
(Parthasarathy and Ravindra [1976] (cf. Tucker [1979] and Maffray and Reed
[1999], and Giles and Trotter [1981] for a simpler proof)).
It follows that the line graph L(G) of a graph G is perfect if and only if G contains
no odd circuit with at least five vertices as (not necessarily induced) subgraph.
So these graphs have edge-colouring number χ′(G) equal to the maximum degree
∆(G) (if ∆(G) ≥ 3); moreover, the matching number ν(G) is equal to the mini-
mum number of stars and triangles needed to cover the edges of G; this extends
Kőnig’s edge-colouring and matching theorems (cf. Trotter [1977] and de Werra
[1978]).
Sbihi [1978,1980] and Minty [1980] showed that the weighted stable set problem
is solvable in strongly polynomial time for claw-free graphs (see Chapter 69). A
combinatorial polynomial-time algorithm for the colouring problem for claw-free
perfect graphs was given by Hsu [1981], and for the weighted clique and clique
cover problems by Hsu and Nemhauser [1981,1982,1984].
Chvátal and Sbihi [1988] gave a polynomial-time algorithm to recognize claw-
free perfect graphs, based on decomposition (cf. Maffray and Reed [1999]). Koch
[1979] gave a polynomial-time algorithm which for any claw-free graph either
finds a maximum-size stable set and a minimum-size clique cover of equal cardi-
nalities, or else finds an odd hole or odd antihole.
Perfection of line graphs was also studied by Cao and Nemhauser [1998]. The
validity of the strong perfect graph conjecture for claw-free graphs was extended
to ‘pan-free’ graphs by Olariu [1989b].

• K4-free graphs — graphs not having K4 as subgraph (Tucker [1977b], cf. Tucker
[1979,1987a]).
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• diamond-free graphs (Tucker [1987b]7) — graphs not having K4 − e (a diamond)
as induced subgraph (where K4 − e is the graph obtained from K4 by deleting
an edge) (Conforti [1989] gave an alternative proof). Tucker [1987b] gave an
O(n2m)-time algorithm to colour such graphs optimally. Fonlupt and Zemirline
[1987] and Conforti and Rao [1993] gave polynomial-time perfection tests for
diamond-free graphs. Related results can be found in Conforti and Rao [1989,
1992a,1992b] and Fonlupt and Zemirline [1992,1993].

• paw-free graphs — graphs not having a paw (a K4 with two incident edges deleted)
as induced subgraph. This follows from the perfection of Meyniel graphs (The-
orem 66.6). It also follows from a characterization of Olariu [1988e] of paw-free
graphs.

• square-free graphs (Conforti, Cornuéjols, and Vušković [2002]) — graphs not hav-
ing a C4 (a square) as induced subgraph.

• bull-free graphs (Chvátal and Sbihi [1987]) — graphs not having a bull as in-
duced subgraph, where a bull is the (self-complementary) graph on five vertices
a, b, c, d, e and edges ab, ac, bc, bd, ce (see Figure 65.1). Reed and Sbihi [1995]
gave a polynomial-time perfection test for bull-free graphs. More on bull-free
graphs can be found in de Figueiredo [1995], de Figueiredo, Maffray, and Porto
[1997,2001], and Hayward [2001].

• chair-free graphs (Sassano [1997]) — graphs not having a chair as induced sub-
graph, where a chair is the graph on five vertices a, b, c, d, e and edges ab, bc, cd,
be (see Figure 65.1).

• dart-free graphs (Sun [1991]) — graphs not having a dart as induced subgraph (a
dart is a graph with vertices a, b, c, d, e and edges ab, ac, ad, ae, bc, cd (see Figure
65.1)); Chvátal, Fonlupt, Sun, and Zemirline [2000,2002] gave a polynomial-time
recognition algorithm for dart-free perfect graphs.

• graphs having neither P5 nor K5 as induced subgraph (Maffray and Preissmann
[1994], Barré and Fouquet [1999]).

• circular-arc graphs (Tucker [1975]) — these are the intersection graphs of families
of intervals on a circle (cf. Section 64.9a).

• circle graphs (Buckingham and Golumbic [1984]) — these are the intersection
graphs of families of chords of a circle (cf. Section 64.9a).

• planar graphs (Tucker [1973b]). Tucker [1984b] showed that this can be derived
(without appealing to the four-colour theorem) from the validity of the strong
perfect graph conjecture for K4-free graphs: a K4 subgraph in a planar graph
G �= K4 contains a triangle that is a vertex-cut of G; hence one can apply
induction to find a 4-colouring of G.
Tucker and Wilson [1984] gave an O(n2) algorithm for finding a minimum colour-
ing of a planar perfect graph, Hsu [1987b] gave an O(n3)-time perfection test for
planar graphs, and Hsu [1988] described strongly polynomial-time algorithms for
the maximum-weight stable set, the weighted colouring, and the weighted clique
cover problems for planar perfect graphs.

• graphs embeddable in the torus or in the Klein bottle (Grinstead [1980,1981]).
• checked graphs (Gurvich and Temkin [1992]) — graphs whose vertex set is a

subset of R
2, two vertices being adjacent if and only the line segment connecting

them is horizontal or vertical.

7 An partial proof was given by Parthasarathy and Ravindra [1979], cf. Tucker [1987b].
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bull chair dart

Figure 65.1

The perfect graph theorem implies that the strong perfect graph conjecture is true
also for the classes of graphs complementary to those listed above.

Since Ck and Ck (for odd k ≥ 5) are claw-free, the result of Parthasarathy and
Ravindra [1976] implies that, to show the strong perfect graph theorem, it suffices
to show that each minimally imperfect graph is claw-free.

Other classes of graphs for which the strong perfect graph conjecture holds were
found by Rao and Ravindra [1977], Olariu [1988d], Jamison and Olariu [1989b], Car-
ducci [1992], Galeana-Sánchez [1993], Lê [1993b], De Simone and Galluccio [1994],
Maire [1994b], Maffray and Preissmann [1995], Xue [1995,1996], Ait Haddadene and
Gravier [1996], Maffray, Porto, and Preissmann [1996], Aı̈t Haddadène and Maffray
[1997], Kroon, Sen, Deng, and Roy [1997], Babăıtsev [1998], Hoàng and Le [2000b,
2001], and Gerber and Hertz [2001].

65.6e. The P4-structure of a graph and a semi-strong perfect
graph theorem

V. Chvátal noticed that the collection of 4-sets inducing the 4-vertex path P4 as a
subgraph, provides a useful tool in studying perfection. (Note that P4 is isomorphic
to P4.) It led Chvátal [1984a] to conjecture the following ‘semi-strong perfect graph
theorem’, which was proved by Reed [1987] (announced in Reed [1985]).

Call two graphs G and H, with V G = V H, P4-equivalent if for each U ⊆ V one
has: U induces a P4-subgraph of G if and only if U induces a P4-subgraph of H.
Then Reed’s theorem states that

(65.32) if G and H are P4-equivalent and G is perfect, then H is perfect.

This theorem implies the perfect graph theorem, since G and G are P4-equivalent.
On the other hand, the theorem is implied by the strong perfect graph theorem,
since any graph P4-equivalent to an odd circuit of length at least 5 is equal to that
circuit or to its complement.

Other relations between the P4-structure and perfection were proved by Chvátal
and Hoang [1985] and Chvátal, Lenhart, and Sbihi [1990]. Let G = (V, E) be a graph
and let V be partitioned into classes V0 and V1, with both G[V0] and G[V1] perfect.
For each word x = x1x2x3x4 of length 4 over the alphabet {0, 1}, let Qx denote
the set of chordless paths in G with vertices v1, v2, v3, v4 (in order) with vi ∈ Vxi

for i = 1, 2, 3, 4. Then G is perfect if:

(65.33) (i) Q1000 = Q0100 = Q0111 = Q1011 = ∅, or
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(ii) Q0000 = Q0110 = Q1001 = Q1111 = ∅, or
(iii) Q1000 = Q0100 = Q0110 = Q1001 = Q1111 = ∅, or
(iv) Q1000 = Q0101 = Q0110 = Q1001 = Q1111 = ∅, or
(v) Q1000 = Q0101 = Q0110 = Q1001 = Q0111 = ∅, or

(vi) Q1000 = Q1001 = Q1011 = ∅.

Sufficiency of (i) was shown by Chvátal and Hoang [1985], and of the other cases
by Chvátal, Lenhart, and Sbihi [1990] ((ii) also by Gurvich [1993a,1993b]), who
also showed that (65.33) essentially covers all cases where perfection of G follows
from perfection of its constituents and the ‘colouring’ of the P4-subgraphs. In fact,
(65.33) and its symmetrical cases (interchanging V0 and V1 and/or replacing G by
G) describe exactly the cases excluded by G or G being an odd chordless circuit of
length ≥ 5 or its complement.

A theorem of Seinsche [1974] states that each graph without an induced P4

subgraph is perfect. (This follows from the perfection of Meyniel graphs (Theorem
66.6).8)

Hence, case (65.33)(ii) implies the result of Hoang [1985] that any graph is
perfect if there is a set U of vertices having an odd intersection with each chordless
path with 4 vertices. More generally, it implies perfection of any graph if there is
a set U of vertices such that each induced P4 subgraph has exactly one of its two
middle vertices in U or has exactly one of its ends in U .

Related (and more general than the results of Chvátal and Hoang quoted above)
is the following theorem of Chvátal [1987a]. Let G = (V, E) be a graph and let V
be partitioned into two classes X and Y such that there are no x ∈ X, y ∈ Y , and
U ⊆ V such that both U ∪{x} and U ∪{y} induce a P4 subgraph. Then G is perfect
if and only if G[X] and G[Y ] are perfect.

More work on the P4-structure related to perfection is reported in Jung [1978],
Jamison and Olariu [1989c,1992a,1992b,1995a,1995b], Hayward and Lenhart [1990],
Hoàng [1990,1995,1999], Olariu [1991], Ding [1994], Rusu [1995a,1999b], Giak-
oumakis [1996], Hoàng, Hougardy, and Maffray [1996], Hougardy [1996b,1997,1999,
2001], Babel and Olariu [1997,1998,1999], Giakoumakis, Roussel, and Thuillier
[1997], Giakoumakis and Vanherpe [1997], Hougardy, Le, and Wagler [1997], Babel
[1998a,1998b], Babel, Brandstädt, and Le [1999], Brandstädt and Le [1999,2000],
Roussel, Rusu, and Thuillier [1999], Brandstädt, Le, and Olariu [2000], Hoàng and
Le [2000a,2001], Barré [2001], and Hayward, Hougardy, and Reed [2002].

65.6f. Further notes on the strong perfect graph conjecture

Markosyan and Karapetyan [1984] showed that the strong perfect graph conjecture
is equivalent to: each minimally imperfect graph G is regular of degree 2ω(G) − 2.

For k, n ∈ Z+, let Cn,k be the graph obtained from the circuit Cn (with n
vertices) by adding all edges connecting two vertices at distance less than k. If
n ≡ 1 (mod k + 1) and n ≥ 2k + 3, then Cn,k is partitionable. Chvátal [1976]
showed that the strong perfect graph conjecture is equivalent to: each minimally
imperfect graph G has C|V G|,ω(G) as spanning subgraph (not necessarily induced).

8 Arditti and de Werra [1976] claimed that Seinsche’s result also follows from the ‘fact’
that any graph without induced P4 subgraph is the comparability graph of a branching,
therewith overlooking C4.
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Bland, Huang, and Trotter [1979] and Chvátal, Graham, Perold, and White-
sides [1979] gave examples of partitionable graphs G not containing C|V G|,ω(G) as a
spanning subgraph. Sebő [1996a] and Bacsó, Boros, Gurvich, Maffray, and Preiss-
mann [1998] showed that these constructions give no counterexamples to the strong
perfect graph conjecture. Related results are given by Chvátal [1984b]. A computer
search for partitionable graphs was reported by Lam, Swiercz, Thiel, and Regener
[1980].

Call a pair of vertices u, v in a graph an even pair if each induced u − v path
has even length. Meyniel [1987] showed that a minimally imperfect graph has no
even pair. (This was extended to partitionable graphs by Bertschi and Reed [1987].)
Hougardy [1996a] proved that the strong perfect graph conjecture is equivalent to:
each properly induced subgraph of a minimally imperfect graph has an even pair or
is a clique. Bienstock [1991] showed that it is NP-complete to test if a graph has no
even pair. More on even pairs can be found in Hoàng and Maffray [1989], Bertschi
[1990], Hougardy [1995], Rusu [1995c], Everett, de Figueiredo, Linhares-Sales, Maf-
fray, Porto, and Reed [1997] (survey), Linhares Sales, Maffray, and Reed [1997],
Linhares Sales and Maffray [1998], de Figueiredo, Gimbel, Mello, and Szwarcfiter
[1999], Rusu [2000], and Everett, de Figueiredo, Linhares Sales, Maffray, Porto, and
Reed [2001] (survey).

Prömel and Steger [1992] showed that ‘almost all Berge graphs are perfect’: the
ratio of the number of n-vertex perfect graphs and the number of n-vertex Berge
graphs, tends to 1 if n → ∞.

The role of uniquely colourable perfect graphs for the strong perfect graph con-
jecture was investigated by Tucker [1983b]. Bacsó [1997] studied the conjecture that
a uniquely colourable perfect graph G is either a clique or contains two maximum-
size cliques intersecting each other in ω(G) − 1 vertices. This is implied by the
strong perfect graph theorem. Related work was given by Sakuma [2000].

Corneil [1986] investigated families of graphs ‘complete’ for the strong perfect
graph conjecture (that is, proving the conjecture for these graphs suffices to prove
the conjecture in general).

Equivalent versions of the strong perfect graph conjecture were given by
Olaru [1972,1973b], Ravindra [1975], Markosyan [1981], Markosyan and Gasparyan
[1987], Olariu [1990b], Huang [1991], Markosian, Gasparian, and Markosian [1992],
Galeana-Sánchez [1993], De Simone and Galluccio [1994], Lonc and Zaremba [1995],
and Padberg [2001].

Giles, Trotter, and Tucker [1984], Hsu [1984], Fonlupt and Sebő [1990], Croitoru
and Radu [1992b], Sebő [1992], Panda and Mohanty [1997], and Rusu [1997] gave
further techniques for proving the strong perfect graph conjecture.

Several other properties of minimally imperfect and partitionable graphs were
derived by Olaru [1969,1972,1973a,1973b,1977,1980,1993,1998], Sachs [1970], Pad-
berg [1974a,1974b,1975,1976], Parthasarathy and Ravindra [1976], Tucker [1977b,
1983a], Olaru and Suciu [1979], Markosyan [1981,1985], Sridharan and George
[1982], Whitesides [1982], Buckingham and Golumbic [1983], Chvátal [1984c,1985c],
Grinstead [1984], Olaru and Sachs [1984], Chvátal and Sbihi [1987], Meyniel
[1987], Olariu [1988b,1988c,1990a,1991], Meyniel and Olariu [1989], Preissmann
[1990], Sebő [1992,1996a,1996b], Cornuéjols and Reed [1993], Hougardy [1993], Maf-
fray [1993], Olariu and Stewart [1993], Hayward [1995], Hoàng [1996c], Perz and
Zaremba [1996], Fouquet, Maire, Rusu, and Thuillier [1997], Gasparyan [1998],
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Barré and Fouquet [1999,2001], Croitoru [1999], de Figueiredo, Klein, Kohayakawa,
and Reed [2000], Barré [2001], Roussel and Rubio [2001], and Conforti, Cornuéjols,
Gasparyan, and Vušković [2002]. Surveys were given by Preissmann and Sebő [2001]
and Cornuéjols [2002].

65.7. Further results and notes

65.7a. Perz and Rolewicz’s proof of the perfect graph theorem

An interesting proof of the perfect graph theorem was given by Perz and Rolewicz
[1990]. It does not use the replication lemma, and is based on linear algebra, in a
manner different from the proof of Gasparian given in Section 65.2, namely on the
value of determinants.

In fact, Perz and Rolewicz [1990] show (in a different but equivalent terminol-
ogy) that a graph G = (V, E) is perfect if and only if Pstable set(G) and Pclique(G)
form an antiblocking pair of polytopes. They prove sufficiency in a way similar to
the proof of Fulkerson given for sufficiency in Corollary 65.2e above.

They proved necessity as follows. Choose a counterexample with |V | minimal.
So G is perfect, and Pstable set(G) and Pclique(G) do not form an antiblocking
pair. Hence there exist x ∈ A(Pstable set(G)) and y ∈ A(Pclique(G)) with xTy > 1.
Choose such x, y with xTy maximal. Let ν := xTy.

We first show

(65.34) ν ≤ n

n − 1
,

where n := |V |. Indeed, for each u ∈ V , deleting the uth component of x and y, we
obtain vectors in A(Pstable set(G − u)) and A(Pclique(G − u)), respectively. By the
minimality of G, we have

∑
v �=u xvyv ≤ 1. Hence

(65.35) ν =
∑

v

xvyv =
1

n − 1

∑

u

(∑

v �=u

xvyv

) ≤ n

n − 1
.

This proves (65.34). By the minimality of G, we also have xv > 0 and yv > 0 for
each v.

Now ν−1 · x ∈ Pclique(G), since otherwise there is a z ∈ A(Pclique(G)) with
ν−1xTz > 1, contradicting the maximality of xTy. So there exist cliques C1, . . . , Cn

and λ1, . . . , λn > 0 such that

(65.36) x =
n∑

i=1

λiχ
Ci and

n∑

i=1

λi = ν.

Similarly, there exist stable sets S1, . . . , Sn and µ1, . . . , µn > 0 such that

(65.37) y =
n∑

j=1

µjχ
Sj and

n∑

j=1

µj = ν.

Then y(Ci) = 1 for i = 1, . . . , n, since y(Ci) ≤ 1 (as y ∈ A(Pclique(G))), and

(65.38) ν = xTy =
n∑

i=1

λiy(Ci) ≤
n∑

i=1

λi = ν.
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Similarly, x(Sj) = 1 for j = 1, . . . , n.
Consider, for some i = 1, . . . , n,

(65.39) 1 = y(Ci) =
n∑

j=1

µj |Ci ∩ Sj | ≤
n∑

j=1

µj = ν.

So the inequality is strict, and hence there is at least one j with Ci ∩ Sj = ∅. Then

(65.40) 1 = x(Sj) =
∑

i′
λi′ |Ci′ ∩ Sj | =

∑

i′ �=i

λi′ |Ci′ ∩ Sj | ≤
∑

i′ �=i

λi′ = ν − λi.

Hence with (65.34),

(65.41) n ≤
∑

i

(ν − λi) = nν − ν ≤ n,

implying equality in (65.40) for each i. So if Ci ∩ Sj = ∅, then Ci′ ∩ Sj �= ∅ for each
i′ �= i. Hence for each j, there is exactly one i with Ci ∩ Sj = ∅, and conversely. We
can assume that Ci ∩ Sj = ∅ if and only if i = j.

Let M and N be the incidence matrices of S1, . . . , Sn and of C1, . . . , Cn re-
spectively. So MNT = J − I. Hence | det M det N | = | det(J − I)| = n − 1. Since
y(Si) = 1 for each i, we have My = 1. So y′ := | det M | · y is a positive integer
vector. Similarly, x′ := | det N | · x is a positive integer vector. Then

(65.42) (x′)Ty′ = | det M det N |xTy = | det(J − I)|ν = n.

The kernel of the argument now is that this implies that x′ and y′ are the all-one
vectors, and therefore x and y each are scalar multiples of the all-one vector.

As x ∈ A(Pstable set(G)), x(S) ≤ 1 for any stable set S, and hence x = α′−1 · 1
for some α′ ≥ α(G). Similarly, y = ω′−1 · 1 for some ω′ ≥ ω(G). As G is perfect,
α′ω′ ≥ α(G)ω(G) ≥ n. Hence ν = xTy = (α′ω′)−1n ≤ 1, a contradiction.

65.7b. Kernel solvability

The following generalization of the Gale-Shapley theorem on stable matchings was
conjectured by Berge and Duchet [1986,1988a]9 and proved by Boros and Gurvich
[1996], using a technique from game theory due to Scarf [1967]. With the strong
perfect graph theorem it characterizes perfect graph by being kernel solvable.

Call a graph G = (V, E) kernel solvable if the following holds: if for each clique
C of G we have a total order <C of C, then there exists a stable set S such that
for each v ∈ V there is an s ∈ S and a clique C such that v, s ∈ C and v ≤C s.
Berge and Duchet conjectured that kernel solvable graphs are precisely the perfect
graphs. With Theorem 65.14 below, this conjecture is implied by the strong perfect
graph theorem.

Kernel solvability can be formulated equivalently in terms of kernels of digraphs.
A kernel of a directed graph D = (V, A) is a subset S of V such that S spans no
arc of D and such that for each v ∈ V \ S there is a u ∈ S with (v, u) ∈ A.

For any graph G = (V, E), a directed graph D = (V, A) is called a superorien-
tation of G if E = {{u, v} | (u, v) ∈ A}. (So {u, v} is an edge of G ⇐⇒ at least
9 Berge and Duchet [1986] refer to ‘Séminaire du Lundi, MSH, Paris, Janvier 1983’ (Mon-

day Seminar, MSH, Paris, January 1983). See Jensen and Toft [1995] p. 140 for further
references to the history of this conjecture.
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one of (u, v) and (v, u) belongs to A.) Then a graph G = (V, E) is kernel solvable if
and only if any superorientation D of G has a kernel if each clique C of G induces
a subgraph of D with a kernel.

Kernel solvability is closed under taking induced subgraphs: if U ⊆ V , and each
clique C of G[U ] has a total order <C , we can choose for each clique C of G a total
order which coincides with <C∩U on C ∩ U and which has C ∩ U as upper ideal.

Since neither Ck nor Ck is kernel solvable for odd k ≥ 5, the strong perfect
graph theorem implies that each kernel solvable graph is perfect.

Boros and Gurvich [1996] proved that a graph G is perfect if and only if each
graph H arising from G by replicating vertices is kernel solvable. It implies that the
strong perfect graph theorem is equivalent to: each Berge graph is kernel solvable
(since the class of Berge graphs is closed under replicating vertices).

To show that each perfect graph is kernel solvable, we follow the proof method
of Aharoni and Holzman [1998]. We first prove the following results of Scarf [1967].

Let M and N be disjoint finite nonempty sets, and for each i ∈ M let <i be
a total order of N . For any U , write y <i U if y <i u for each u ∈ U . Define
K := M ∪ N .

Call a subset L of K light if for each j ∈ N there is an i ∈ M \L with j ≤i L\M .
So any subset of a light set is light again. Let m := |M | and define

(65.43) S := {M} ∪ {L
∣∣ L light, |L| = m}.

Note that M is not light.
Now Scarf first proved:

Lemma 65.13α. Any light set L with |L| = m − 1 is contained in precisely two
sets in S.

Proof. Extend each <i to a total order on K, with i <i j <i i′ for all j ∈ N and
all i′ ∈ M \ {i}. Then

(65.44) any subset L of K is light if and only if for each k ∈ K there is an
i ∈ M with k ≤i L.

To see necessity in (65.44), let L ⊆ K be light and let k ∈ K. If k ∈ M , then
k ≤k L. If k ∈ N , then there is an i ∈ M \ L with k ≤i L \ M . As i �∈ L, we have
also k ≤i L ∩ M (since k ≤i M \ {i}). So k ≤i L.

To see sufficiency in (65.44), suppose ∀k ∈ K∃i ∈ M : k ≤i L. Let j ∈ N . Then
∃i ∈ M : j ≤i L. Then i �∈ L (as otherwise j ≤i i). Moreover, j ≤i L \ M . This
proves (65.44).

For any i ∈ M and any nonempty U ⊆ K, let mini U and maxi U denote the
minimal and maximal element of U with respect to <i.

First assume that L ⊆ M , say L = M \ {i}. Then L is contained in M , which
belongs to S. Moreover, z := maxi N is the unique element with L ∪ {z} light.10

This proves the lemma.
So henceforth we can assume that L �⊆ M . Define π : M → L by π(i) := mini L.

Then π is onto, since, as L is light, for each r ∈ L there is an i ∈ M with r ≤i L.
So r = mini L = π(i).

10 For let x ∈ N . Then L ∪ {x} is light ⇐⇒ ∀j ∈ N∃i ∈ M \ L : j ≤i (L ∪ {x}) \ M ⇐⇒
∀j ∈ N : j ≤i x ⇐⇒ x = maxi N .
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Hence, as |L| = |M |−1, there exist distinct i1, i2 ∈ M with π(i1) = π(i2), while
all other values of π are mutually distinct and different from π(i1).

For h = 1, 2, define

(65.45) Rh := {k ∈ K | k �≤i L for all i �= ih}.

Then Rh �= ∅, since ih ∈ Rh, as there is an r ∈ L \ M (as L �⊆ M), hence if i �= ih,
then ih �≤i r. Also, Rh ∩ L = ∅, since if r ∈ L, there is an i �= ih with π(i) = r,
so mini L = r, implying r ≤i L, and hence r �∈ Rh. Moreover, R1 ∩ R2 = ∅, since
otherwise there is a k ∈ K with k �≤i L for all i ∈ M , contradicting the fact that L
is light.

Define for h = 1, 2:

(65.46) rh := max
ih

Rh.

We first show that L∪{r1} and L∪{r2} are light. Suppose that (say) L∪{r1} is not
light. So there is a k ∈ K with k �≤i L∪{r1} for each i ∈ M . Since r1 �≤i L for each
i �= i1 (by definition of R1), it follows that k �≤i L for each i �= i1. Hence k ∈ R1.
However, r1 <i1 L, since r1 ∈ R1 and r1 ≤i L for some i ∈ M . So k ≤i1 r1 <i1 L,
and therefore k ≤i1 L ∪ {r1}, a contradiction. So L ∪ {r1} and L ∪ {r2} are light.

Finally we show that for any s ∈ K \ L, if L ∪ {s} is light, then s = r1 or
s = r2. So let L ∪ {s} be light. Then the function π′ : M → L ∪ {s} defined by
π′(i) := mini(L∪{s}) is onto (as L∪{s} is light), implying that it is one-to-one (as
|M | = |L∪{s}|). Hence π′ coincides with π on all but one element of M . Necessarily
the exceptional element belongs to {i1, i2}. Say π′(i) = π(i) for each i �= i1, while
π′(i1) = s. So mini L = π(i) = π′(i) <i s for each i �= i1; that is, s ∈ R1. Suppose
s �= r1. So s <i1 r1. Then r1 �≤i L ∪ {s} for each i ∈ M , contradicting the fact that
L ∪ {s} is light.

From this, Scarf derived:

Theorem 65.13 (Scarf’s lemma). Let A be a nonnegative m × n matrix and let
b ∈ R

m
+ be such that the polytope P := {x ∈ R

n
+ | Ax ≤ b} is nonempty and bounded.

For each i = 1, . . . , m, let <i be a total order on {1, . . . , n}. Then P has a vertex x
such that

(65.47) for each j ∈ {1, . . . , n} there is an i ∈ {1, . . . , m} such that aT
i x = bi

and such that xk = 0 for each k <i j.

Proof. We can assume, by slightly perturbing b, that for each vertex x of P there
are precisely n constraints among x ≥ 0, Ax ≤ b satisfied with equality. Add n
to each index i of <i. (So x <n+i y in the new notation ⇐⇒ x <i y in the old
notation.) Let N := {1, . . . , n}, M := {n + 1, . . . , n + m}, and K := N ∪ M . For
each face f of P define

(65.48) Kf := {k ∈ K | the kth constraint in x ≥ 0, Ax ≤ b is not tight at
some point in f}.

So |Kv| = m for any vertex v and |Ke| = m + 1 for any edge e. Call an edge e of
P good if 1 ∈ Ke and the set Ke \ {1} belongs to S (cf. (65.43)).

Now 0 is incident with precisely one good edge. Hence there is a vertex v �= 0
incident with an odd number of good edges. We show that Kv ∈ S, and hence Kv

is light (since Kv �= M , as v �= 0), implying that v satisfies (65.47).
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Let e be a good edge incident with v. Then Ke = Kv ∪ {k} for some k. As e is
good, we know that 1 ∈ Ke and Ke \ {1} ∈ S.

If 1 �∈ Kv, then k = 1 and hence Kv ∈ S. So we can assume that 1 ∈ Kv.
Applying Lemma 65.13α to the light set Kv \{1}, there is precisely one j �∈ Kv \{1}
with j �= k and Kv \ {1} ∪ {j} ∈ S. If j �= 1, then v is incident with precisely two
good edges, a contradiction. So j = 1, and hence Kv ∈ S.

This implies the theorem of Boros and Gurvich [1996]:

Corollary 65.13a. A perfect graph is kernel solvable.

Proof. Let G = (V, E) be a perfect graph, and for each clique C, let <C be a total
order on C. We must prove that

(65.49) there exist a stable set S such that for each v ∈ V there is a clique C
and an element s ∈ C ∩ S with v ∈ C and v ≤C s.

Extend each <C to a total order on V with w <C v for each w ∈ C, v ∈ V \ C.
Then by Theorem 65.13, the polytope in R

V determined by x ≥ 0, x(C) ≤ 1 (C
clique), has a vertex x such that for each v ∈ V there is a clique C with x(C) = 1
and such that xu = 0 for each u <C v. By Corollary 65.2e, x is the incidence vector
of some stable set S. So for each v ∈ V there is a clique C with |C ∩ S| = 1 and
with u �∈ S if u <C v. Therefore, for the vertex s in C ∩ S we have v ≤C s, and
hence v ∈ C. This shows (65.49).

It was conjectured by Berge and Duchet that conversely, each kernel solvable
graph is perfect. This follows from the strong perfect graph theorem, since kernel
solvability is closed under taking induced subgraphs and since odd circuits of length
at least five and their complements are not kernel solvable.

It implies the following theorem found by Boros and Gurvich [1996], for which
we give a direct proof. A graph H is called a blow-up of a graph G, if H arises from
G by replicating vertices (replacing vertices by cliques).

Theorem 65.14. A graph G is perfect if and only if each blow-up of G is kernel
solvable.

Proof. Since each blow-up of a perfect graph is perfect again (by the replication
lemma (Corollary 65.2c)), necessity follows from Corollary 65.13a.

Sufficiency is shown by proving that each graph G = (V, E) with |V | ≥
α(G)ω(G) + 1 has a blow-up that is not kernel solvable. (This is sufficient by The-
orem 65.2.)

Let C be the collection of cliques in G, and for each vertex v, let Cv be the
collection of cliques containing v. Let n := |V | and define

(65.50) Y := {y : C → Z+ | y(C) ≤ n|C|}.

For each y ∈ Y , we choose a vertex vy of G with

(65.51) y(Cvy ) ≤ ω(G)|C|.
This is possible since
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(65.52)
∑

v∈V

y(Cv) =
∑

C∈C
|C|yC ≤ ω(G)

∑

C∈C
yC ≤ ω(G)n|C|.

Let H be the graph with vertex set Y , two distinct vertices y, z ∈ Y being adjacent
if vy = vz or vy and vz are adjacent in G. So H is a blow-up of G. We show that
H is not kernel solvable.

For each clique K ⊆ Y of H, the set C := {vy | y ∈ K} is a clique of G. Then
choose a total order <K on K such that for all y, z ∈ K:

(65.53) if yC < zC , then y <K z.

Assume that H is kernel solvable. Then H has a stable set Z ⊆ Y such that for
each y ∈ Y there is a z ∈ Z and a clique K of H with y, z ∈ K and y ≤K z. As Z
is stable in H, the vz for z ∈ Z are distinct and form a stable set S in G. So for
each clique C of G there is at most one z ∈ Z with vz ∈ C. Define y : C → Z+ by:

(65.54) yC :=
{

zC + 1 if vz ∈ C, for z ∈ Z,
0 if C ∩ S = ∅.

Then y belongs to Y , since

(65.55) y(C) =
∑

z∈Z

∑

C∈Cvz

(zC + 1) =
∑

z∈Z

(z(Cvz ) + |Cvz |) ≤ |Z|ω(G)|C| + |C|

≤ (α(G)ω(G) + 1)|C| ≤ n|C|.
(The first inequality follows from (65.51).) Hence there exist a z ∈ Z and a clique
K of H with y, z ∈ K and y ≤K z. So for C := {vx | x ∈ K} we have, by (65.53),
yC ≤ zC . Since vz ∈ C (as z ∈ K), this contradicts (65.54).

Before the strong perfect graph conjecture was settled, and hence the conjec-
ture of Berge and Duchet, partial and related results on the latter conjecture were
obtained by Blidia [1986], Maffray [1986,1992], Duchet [1987], Berge and Duchet
[1988b,1990], Champetier [1989], Blidia and Engel [1992], Blidia, Duchet, and Maf-
fray [1993,1994], Chilakamarri and Hamburger [1993], and Galeana-Sánchez [1995,
1996,1997].

65.7c. The amalgam

A composition generalizing the 1-join, the amalgam, was shown to preserve perfec-
tion by Burlet and Fonlupt [1984]. Let G1 = (V1, E1) and G2 = (V2, E2) be perfect
graphs such that K := V1 ∩V2 is a clique in both graphs. For i = 1, 2, let vi ∈ Vi \K
be such that each vertex in K is adjacent to vi and to each neighbour of vi. Let H
be the graph on (V1 \ {v1}) ∪ (V2 \ {v2}) obtained from the union of G1 − v1 and
G2 − v2 by adding all edges between N(v1) \ K and N(v2) \ K.

Theorem 65.15. If G1 and G2 are perfect, then H is perfect.

Proof. It suffices to show that ω(H) = χ(H), since each induced subgraph of H
arises by the same construction.

For i = 1, 2, let pi := ω(Gi[N(vi)]) and let G′
i be the graph obtained from Gi by

replicating vi by a factor ω(H) − pi. So ω(G′
i) = ω(H). By the replication lemma,

G′
i is perfect. Hence ω(H) = χ(G′

i).
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Consider colourings of G′
1 and G′

2 with colours 1, . . . , ω(H). So N(vi) uses pre-
cisely pi colours. As p1 + p2 − |K| ≤ ω(H), we have (ω(H) − p1) + (ω(H) − p2) ≥
ω(H) − |K|. Hence we can assume that in G1 and G2 the colourings of K are the
same, and that all colours are used by the replication vertices of v1 and v2 and by
K. Then N(v1) \ K and N(v2) \ K have no colours in common. Hence we obtain
an ω(H)-colouring of H.

Cornuéjols and Cunningham [1985] gave an O(n2m)-time algorithm to decide
if a graph is the amalgam of smaller graphs.

Perfection is trivially closed under ‘clique sums’, that is, identifying two cliques
in two graphs. Whitesides [1981] gave an O(nm) algorithm to find a clique cut in
a graph, that is, a vertex-cut that is a clique. Tarjan [1985] gave an O(nm)-time
algorithm to find for any graph a decomposition by clique cuts.

Fonlupt and Uhry [1982] gave conditions under which identification of two ver-
tices in a graph maintains perfection. Ravindra and Parthasarathy [1977], Ravin-
dra [1978], Mândrescu [1991], and Kwaśnik and Szelecka [1997] investigated the
behaviour of perfection under taking (various) products of graphs.

More on the (de)composition of perfect graphs can be found in Hsu [1986,1987a],
Conforti and Rao [1992a,1992b], Corneil and Fonlupt [1993], Burlet and Fonlupt
[1994], and Conforti, Cornuéjols, Kapoor, and Vušković [1995].

65.7d. Diperfect graphs

Berge [1982a] introduced a directed variant of perfect graphs. In fact, there are two
symmetric variants, as no complementary phenomenon holds in the directed case.

A stable set or clique in a directed graph is a stable set of clique in the underlying
undirected graph. A directed graph D = (V, A) is called α-diperfect if for every
induced subgraph D′ = (V ′, A′) of D and for each maximum-size stable set S in
D′ there is a partition of V ′ into directed paths each intersecting S in exactly one
vertex.

Then:

(65.56) if the underlying undirected graph G of D is perfect, then D is α-
diperfect.

Indeed, if G is perfect, there is a maximum-size stable set S and a partition of V
into cliques each intersecting S. Each clique C gives a tournament on C in D, and
hence, by Rédei’s theorem (Corollary 14.14a), it contains a directed path spanning
C.

Another class of α-diperfect digraphs is formed by the symmetric digraphs:
directed graphs D = (V, A) such that if (u, v) ∈ A, then (v, u) ∈ A:

(65.57) each symmetric digraph is α-diperfect.

To see this, let S be a maximum-size stable set in D, and let D′ arise from D by
deleting all arcs entering S. By the Gallai-Milgram theorem (Theorem 14.14), V
can be partitioned into |S| directed paths in D′. These paths are as required.

Berge offered the following conjecture characterizing α-diperfect digraphs:

(65.58) (?) A directed graph D = (V, A) is α-diperfect if and only if D has no
induced subgraph C whose underlying undirected graph is a chordless
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odd circuit of length ≥ 5, say with vertices v1, . . . , v2k+1 (in order)
such that each of v1, v2, v3, v4, v6, v8, . . . , v2k is a source or a sink. (?)

The odd circuit described is not α-diperfect, since {v1, v4, v6, v8, . . . , v2k} is a
maximum-size stable set, but there are no directed paths as required.

A ‘dual’ concept is that of a χ-diperfect graph, which is a digraph D = (V, A)
such that for each induced subgraph D′ = (V ′, A′) of D and for each minimum
vertex-colouring (in the underlying undirected graph of D′) there exists a directed
path intersecting each colour exactly once.

Again one has:

(65.59) if the underlying undirected graph G of D is perfect, then D is χ-
diperfect.

Indeed, any maximum-size clique C intersects each colour in each minimum vertex-
colouring, and, again by Rédei’s theorem (Corollary 14.14a), there is a path span-
ning C.

Also:

(65.60) any symmetric digraph is χ-diperfect.

To see this, let S1, . . . , Sk be an optimum vertex-colouring. Let D′ be the graph
obtained from D by deleting all arcs from Sj to Si for all j > i. By the theorem
of Gallai and Roy (see (64.52)), D′ has a directed path of length k. Necessarily, it
intersects each Si exactly once.

One may show that the odd undirected circuit described in (65.58) is not χ-
diperfect. So conjecture (65.58) would imply that each χ-diperfect digraph is α-
diperfect.

In fact, any odd undirected circuit that contains three consecutive vertices
v1, v2, v3 that are sources or sinks, is not χ-diperfect (since there is an optimum
3-vertex-colouring where {v2} is one of the colours — hence v2 should belong to
a directed path with 3 vertices). In particular, the undirected circuit with vertices
v1, . . . , v7 and arcs

(65.61) (v1, v2), (v3, v2), (v3, v4), (v4, v5), (v5, v6), (v6, v7), (v1, v7)

is α-diperfect but not χ-diperfect (cf. Figure 65.2).

Figure 65.2
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65.7e. Further notes

Cameron, Edmonds, and Lovász [1986] showed that if the edges of a complete graph
are coloured with three colours such that no triangle gets three different colours,
and two of these colours form perfect graphs, then so does the third. (This general-
izes the perfect graph theorem.) A generalization and a related characterization of
perfection in terms of decomposition was given by Cameron and Edmonds [1997].

Markosyan and Karapetyan [1976] characterize perfection with the help of criti-
cal edges (edges e with α(G−e) > α(G)) and essential edges (edges e with χ(G−e) >
χ(G)). More on such edges can be found in Markosyan [1975], Karapetyan [1976],
Sebő [1996a], and Markossian, Gasparian, Karapetian, and Markosian [1998]. Edge-
minimal perfect graphs are studied by Wagler [1999], colouring perfect ‘degener-
ate’ graphs by Aı̈t Haddadène and Maffray [1997], ‘Gallai graphs’ and ‘anti-Gallai
graphs’ by Le [1993a,1996b], and ‘edge perfect graphs’ by Müller [1996].

An alternative polyhedral characterization of perfection of graphs was given by
Zaremba and Perz [1982]. Related is the work of Zaremba [1991] and Hujter [1999].

Chandrasekaran and Tamir [1984] and Cook, Fonlupt, and Schrijver [1986]
showed that, for any perfect graph G = (V, E) and any weight w : V → Z+,
the weighted colouring number is attained by a weighted colouring using at most
|V | different stable sets.

Von Rimscha [1983] showed that if G = (V, E) and H = (V, F ) are graphs with
G − v isomorphic to H − v for each v ∈ V , then G is perfect if and only if H is
perfect.

Bienstock [1991] showed that it is NP-complete to decide if a given graph has
an odd hole containing a prescribed vertex. More on the complexity of finding odd
holes can be found in Reed [1990]. A survey on forbidding holes and antiholes was
given by Hayward and Reed [2001].

Le [1996a] showed that if a graph G is imperfect and has no odd hole, then
the intersection graph of the edge sets of chordless circuits in G has an odd hole.
Akiyama and Chvátal [1990] characterized for which graphs G = (V, E) the in-
tersection graph of the triples spanning at least two edges, is perfect. Olaru and
Mândrescu [1992] considered perfection of products of graphs, and de Werra and
Hertz [1999] perfection of sums of graphs. Hertz [1998] characterized the graphs for
which all graphs obtained by ‘switching’ are perfect.

Variants of the notion of perfect graph were studied by Kőrner [1973], Duchet
[1980], Galeana-Sánchez [1982,1986,1988], Duchet and Meyniel [1983], Galeana-
Sánchez and Neumann-Lara [1986,1991a,1991b,1994,1996,1998], Lehel and Tuza
[1986], Conforti, Corneil, and Mahjoub [1987], Cameron [1989], Brown, Corneil,
and Mahjoub [1990], Markosyan and Gasparyan [1990], Reed [1990], Scheinerman
and Trenk [1990,1993], Berge [1992b,1992a,1995], Kőrner, Simonyi, and Tuza [1992],
Lehel [1994], Trenk [1995], Cai and Corneil [1996], Markossian, Gasparian, and Reed
[1996], Tamura [1997,2000], Gutin and Zverovich [1998], De Simone and Kőrner
[1999], Huang and Guo [1999], Fachini and Kőrner [2000], and de Figueiredo and
Vušković [2000].

Introductions to and surveys of perfect graphs are given by Berge [1973b,1975,
1986], Golumbic [1980], Lovász [1983b], Berge and Chvátal [1984] (a collection of
papers on perfect graphs), Chvátal [1985b,1987b], Jensen and Toft [1995], Toft
[1995], Ravindra [1997], Brandstädt, Le, and Spinrad [1999], and Ramı́rez Alfonśın
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and Reed [2001] (a collection of survey papers on perfect graphs). The latter ref-
erence includes a bibliography on perfect graphs by Chvátal [2001]. Applications
of perfect graphs to graph entropy were surveyed by Simonyi [2001] (cf. Simonyi
[1995]). Algorithmic aspects are discussed in Golumbic [1984].

We refer for historical remarks on perfect graphs to Section 67.4g.



Chapter 66

Classes of perfect graphs

In this chapter we consider classes of perfect graphs. The phenomenon
observed by Berge that clique number and colouring number are equal
for bipartite graphs, their line graphs, comparability graphs, and chordal
graphs, and for their complements, formed the motivation for him to raise
the conjecture that the complement of a perfect graph is perfect again (≡
perfect graph theorem).
The perfection of the graphs considered in this chapter follows directly
from the strong perfect graph theorem. However, since its proof is highly
complicated, we will give direct proofs of the perfection of several of these
graphs.

66.1. Bipartite graphs and their line graphs

The perfect graph theorem can be used to prove several min-max relations
on bipartite graphs: Kőnig’s matching theorem, the Kőnig-Rado edge cover
theorem, and Kőnig’s edge colouring theorem.

We start from the trivial observation that:

Theorem 66.1. ω(G) = χ(G) for each bipartite graph G.

Proof. Trivial.

Since the class of bipartite graphs is closed under taking induced sub-
graphs, this gives:

Corollary 66.1a. Each bipartite graph is perfect.

Proof. See above.

Hence, by the perfect graph theorem, also the complements of bipartite
graphs are perfect. This amounts to the Kőnig-Rado edge cover theorem
(Theorem 19.4):

Corollary 66.1b (Kőnig-Rado edge cover theorem). For any bipartite graph
G, α(G) = χ(G). Equivalently, the stable set number of any bipartite graph
(without isolated vertices) is equal to its edge cover number.
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Proof. Directly from the perfect graph theorem, since by Theorem 66.1, any
bipartite graph is perfect. Note that if G is a bipartite graph, then its cliques
have size at most 2; hence χ(G) is equal to the edge cover number of G if G
has no isolated vertices.

We saw in Section 16.2 that by Gallai’s theorem (Theorem 19.1), the
Kőnig-Rado edge cover theorem implies Kőnig’s matching theorem (Theorem
16.2), saying that the matching number of a bipartite graph G is equal to its
vertex cover number. That is, the stable set number of the line graph L(G) of
G is equal to the minimum number of cliques of L(G) that cover all vertices
of L(G); in notation:

(66.1) α(L(G)) = χ(L(G)).

As this is true for any induced subgraph of L(G) we know that the comple-
ment L(G) of the line graph L(G) of any bipartite graph G is perfect.

Hence with the perfect graph theorem we know:

Corollary 66.1c. The line graph of any bipartite graph is perfect.

Proof. See above.

This amounts to Kőnig’s edge-colouring theorem (Theorem 20.1):

Corollary 66.1d (Kőnig’s edge-colouring theorem). If G is the line graph of
a bipartite graph, then ω(G) = χ(G). Equivalently, the edge-colouring number
of any bipartite graph is equal to its maximum degree.

Proof. Again directly from Kőnig’s matching theorem and the perfect graph
theorem.

Complexity. In Part II on bipartite matching and covering, we saw that the op-
timization problems corresponding to the perfect graph parameters are solvable in
polynomial time, and their weighted versions are solvable in strongly polynomial
time, mainly by utilizing network flow techniques. We review the results.

The maximum-weight clique and the minimum colouring problem for bipartite
graphs are trivially solvable in strongly polynomial time. Also the weighted colour-
ing problem for bipartite graphs is easily solvable in strongly polynomial time.

A maximum-size stable set and a minimum clique cover in a bipartite graph can
be found in polynomial time (cf. Corollary 19.3a). Note that in bipartite graphs, the
minimum clique cover problem amounts to the minimum-size edge cover problem.
Also the weighted versions are solvable in strongly polynomial time by max-flow
techniques (cf. Corollary 21.25a). In bipartite graphs, the minimum weighted clique
cover problem amounts to the minimum-size b-edge cover problem.

A bipartite graph is easily recognized, by checking if there is no odd circuit.
In line graphs of bipartite graphs, finding a maximum-weight clique is trivial (by

checking all stars of the graph). In Sections 20.1 and 20.2 we saw that a minimum
weighted colouring can be found in strongly polynomial time.
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Finding a maximum clique and a minimum colouring in the complement of the
line graph of a bipartite graph G amounts to finding a maximum-size matching
and a minimum-size vertex cover in G, which can be found in polynomial time
(cf. Theorem 16.3 and Corollary 16.6a). Their weighted versions can be found in
strongly polynomial time with the methods for the assignment and the minimum-
cost flow problems (cf. Theorems 17.4 and 17.6).

Van Rooij and Wilf [1965] showed that line graphs of bipartite graphs can be
recognized in polynomial time, and that the corresponding bipartite graph can be
reconstructed in polynomial time.

66.2. Comparability graphs

Also Dilworth’s decomposition theorem (Theorem 14.2) can be derived from
the perfect graph theorem. Let (V,≤) be a partially ordered set. Let G =
(V,E) be the graph with:

(66.2) uv ∈ E if and only if u < v or v < u.

Any graph G obtained in this way is called a comparability graph.
In Theorem 14.1 we saw the following easy ‘dual’ form of Dilworth’s de-

composition theorem:

Theorem 66.2. In any partially ordered set (V,≤), the maximum size of a
chain is equal to the minimum number of antichains needed to cover V .

Proof. For any v ∈ V define the height of v as the maximum size of a chain in
V with maximum element v. Let k be the maximum height of the elements of
V . For i = 1, . . . , k, let Ai be the set of elements of height i. Then A1, . . . , Ak
are antichains covering V , and moreover, there is a chain of size k, since there
is an element of height k.

Equivalently, we have ω(G) = χ(G) for any comparability graph. As the
class of comparability graphs is closed under taking induced subgraphs we
have:

Corollary 66.2a. Each comparability graph is perfect.

Proof. Directly from Theorem 66.2.

Hence, by the perfect graph theorem, also the complement of a compara-
bility graph is perfect. This implies:

Corollary 66.2b (Dilworth’s decomposition theorem). In any partially or-
dered set (V,≤), the maximum size of an antichain is equal to the minimum
number of chains needed to cover V .

Proof. Directly from Corollary 66.2a.
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Complexity. The optimization problems corresponding to the perfect graph pa-
rameters for comparability graphs can be solved in strongly polynomial time by
path and flow techniques, as we saw in Chapter 14. With a greedy method, one can
find a maximum-weight clique in a comparability graph G = (V, E) with weight
function w : V → Q+ (if the underlying partial order ≤ is given): if all weights are
0, the problem is trivial; if there exist vertices of positive weights, find the set S of
minimal elements of positive weight, let α := minv∈S w(v), reset w(v) := w(v) − α
for v ∈ S, and find recursively a maximum-weight clique C for the new weights.
Then we can assume that C ∩ S �= ∅. Hence C is also a maximum-weight clique for
the original weight function.

This method also solves the weighted colouring problem in strongly polynomial
time. An O(n2) algorithm for the weighted colouring problem for comparability
graphs was given by Hoàng [1994]. The weighted stable set and clique cover prob-
lems can be solved in strongly polynomial time with flow techniques (see Chapter
14).

Trivially, recognizing comparability graphs belongs to NP (by giving the under-
lying partial order), and membership of co-NP follows from the characterizations of
Ghouila-Houri [1962a,1964] and Gilmore and Hoffman [1964]. A method of Gallai
[1967] implies that the problem in fact is polynomial-time solvable (cf. Pnueli, Lem-
pel, and Even [1971], Golumbic [1977], Spinrad [1985], Muller and Spinrad [1989],
and McConnell and Spinrad [1994,1997,1999] (the latter paper gives a linear-time
recognition algorithm)).

Golumbic, Rotem, and Urrutia [1983] and Lovász [1983b] characterized comple-
ments of comparability graphs as those graphs that are the intersection graph of a
family of continuous functions f : (0, 1) → R. (Here f and g intersect if f(x) = g(x)
for some x ∈ (0, 1).)

Permutation graphs. A permutation graph is a graph on {1, . . . , n} for which
there exists a permutation π of {1, . . . , n} such that i, j ∈ {1, . . . , n} are adjacent if
and only if (i−j)(π(i)−π(j)) > 0. A graph G is (isomorphic to) a permutation graph
if and only if both G and G are comparability graphs (Dushnik and Miller [1941]
(also Even, Pnueli, and Lempel [1972])). McConnell and Spinrad [1997] showed
that permutation graphs can be recognized in linear time (improving McConnell
and Spinrad [1994]). Another characterization was given by Baker, Fishburn, and
Roberts [1972].

The books by Even [1973] and Golumbic [1980] devote chapters to comparability
graphs and to permutation graphs.

66.3. Chordal graphs

We next consider a further class of perfect graphs, the ‘chordal graphs’ (or
‘rigid circuit graphs’ or ‘triangulated graphs’). A graph G is called chordal
if each circuit in G of length at least 4 has a chord. (A chord is an edge
connecting two vertices of the circuit that are nonadjacent in the circuit.)
Equivalently, a graph is chordal if it has no hole.
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For any set U of vertices, let N(U) denote the set of vertices not in U that
are adjacent to at least one vertex in U . Call a vertex v simplicial if N({v})
is a clique in G.

Dirac [1961] showed the following basic property of chordal graphs:

Theorem 66.3. Each chordal graph G contains a simplicial vertex.

Proof. We may assume that G has at least two nonadjacent vertices a, b.
Let U be a maximal nonempty subset of V with G[U ] connected and with
U ∪ N(U) �= V . Such a subset U exists as U := {a} induces a connected
subgraph of G and as {a} ∪N({a}) �= V .

Let W := V \(U ∪N(U)). Then each vertex v in N(U) is adjacent to each
vertex in W , since otherwise we could increase U by v. Moreover, N(U) is
a clique, for suppose that u,w ∈ N(U) are nonadjacent. Choose v ∈ W . Let
P be a shortest path in U ∪ N(U) connecting u and w. Then P ∪ {u, v, w}
would form a chordless circuit of length at least 4, a contradiction.

Now inductively we know that G[W ] contains a vertex v that is simplicial
in G[W ]. Since N(U) is a clique and since each vertex in W is adjacent to
each vertex in N(U), v is also simplicial in G.

(The proof of Theorem 66.3 implies that, in a chordal graph, each vertex v
that is nonadjacent to at least one vertex w �= v, is nonadjacent to at least
one simplicial vertex w �= v. Hence each noncomplete chordal graph contains
at least two nonadjacent simplicial vertices.)

As was observed by Fulkerson [1972a], Theorem 66.3 implies a result
of Berge [1963a] (the result was announced (with partial proof) in Berge
[1960a]):

Theorem 66.4. Any chordal graph G satisfies ω(G) = χ(G).

Proof. By Theorem 66.3, G has a simplicial vertex v. By induction we have
ω(G− v) = χ(G− v). In particular, G− v has an ω(G)-vertex-colouring. As
|N(v)| ≤ ω(G) − 1 (since {v} ∪ N(v) is a clique), we can extend this to an
ω(G)-vertex-colouring of G.

As the class of chordal graphs is closed under taking induced subgraphs,
this implies:

Corollary 66.4a. Each chordal graph is perfect.

Proof. Directly from Theorem 66.4.

With the perfect graph theorem, this implies the following result of Hajnal
and Surányi [1958] (which also can be derived directly from Theorem 66.3):

Corollary 66.4b. For any chordal graph G, α(G) = χ(G).
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Proof. Directly from Corollary 66.4a and the perfect graph theorem (Corol-
lary 65.2a).

Complexity. Dirac’s theorem (Theorem 66.3) can be used to obtain strongly
polynomial-time algorithms for the basic optimization problems for chordal graphs.
The proof of Theorem 66.4 yields such an algorithm to find an optimum colouring
and clique, also for the weighted versions. Similarly, the strong polynomial-time
solvability of the weighted stable set and clique cover problems can be derived
(Gavril [1972], Frank [1976b]). O(n2) algorithms for minimum weighted colouring
for chordal graphs were given by Balas and Xue [1991] and Hoàng [1994].

Dirac’s theorem also directly gives a polynomial-time recognition algorithm
for chordal graphs: iteratively find and delete a simplicial vertex until the graph is
empty. Linear-time algorithms were given by Lueker [1974], Rose and Tarjan [1975],
Rose, Tarjan, and Lueker [1976], and Tarjan and Yannakakis [1984]. (Gavril [1974b]
gave another polynomial-time algorithm.)

Dirac’s theorem also implies the following other characterizations of chordal
graphs (Dirac [1961] (stated explicitly by Fulkerson and Gross [1965] and Rose
[1970])):

(66.3) A graph G = (V, E) is chordal ⇐⇒ each induced subgraph has a
simplicial vertex ⇐⇒ G has an acyclic orientation D = (V, A) such
that if (u, v), (u, w) ∈ A, then {v, w} ∈ E.

Dirac [1961] moreover showed that a graph is chordal if and only if each inclusion-
wise minimal vertex-cut is a clique.

Interval graphs. An interval graph is the intersection graph G of a family C of
nonempty intervals on the real line11. Trivially, such a graph is the complement of
a comparability graph: define I < J ⇐⇒ i < j for all i ∈ I, j ∈ J . This gives a
partial order, and the corresponding comparability graph is equal to G.

Perfection of the complements of interval graphs was observed by T. Gallai (see
Hajnal and Surányi [1958]) — that is, the maximum number of disjoint intervals
in C is equal to the minimum number of points intersecting all intervals in C. This
is not hard to prove, and can be proved similarly to the easy dual of Dilworth’s
decomposition theorem (Theorem 14.1). In fact, a graph is an interval graph if and
only if it is chordal and its complement is a comparability graph.

The clique, stable set, colouring, and clique cover problem and their weighted
versions can be solved in strongly polynomial time with the methods for compara-
bility graphs described above. If the intervals are given in the order of their max-
imal elements, and we consecutively assign to each interval the smallest available
colour (numbering the colours 1, 2, . . .), we obtain an optimum colouring. (Kier-
stead [1988] showed that if we get the intervals in an arbitrary order and we assign
to any given interval the smallest possible colour (‘on-line’), then we need at most
40χ(G) colours.)

In fact, for any clique C in G there is a point x such that all intervals in C contain
x (by Helly’s theorem: a family of pairwise intersecting intervals has a nonempty
intersection). So finding a maximum-weight clique is trivial. A maximum-size stable

11 The intersection graph of a family C is the graph with vertex set C, two sets in C being
adjacent if and only if they intersect.
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set can be found by a greedy method: first find an interval I ∈ C with sup I minimal.
Next find recursively a maximum-size stable set S among the intervals in C disjoint
from I. Then S ∪ {I} is a maximum-size stable set in G.

In reply to questions of Hajós [1957] and Benzer [1959], interval graphs have
been characterized by Lekkerkerker and Boland [1962] (cf. Halin [1982]), Gilmore
and Hoffman [1964], and Fulkerson and Gross [1965]. The latter paper gives a
polynomial-time recognition algorithm. A linear-time recognition algorithm was
given by Booth and Lueker [1975,1976]. This was simplified by Korte and Möhring
[1987], Corneil, Olariu, and Stewart [1998], Hsu and Ma [1999], and Hsu [2002].

More on interval graphs can be found in the books by Golumbic [1980], Skrien
[1982], Fishburn [1985], and Brandstädt, Le, and Spinrad [1999], and in the survey
article by Golumbic [1985].

Split graphs. A split graph is a graph G = (V, E) where V can be partitioned into
a clique C and a stable set S. Trivially, a split graph is perfect, since C is contained
in a maximum-size clique; hence we can assume that C is a maximum-size clique; so
for each s ∈ S there is a c ∈ C nonadjacent to s; this yields a |C|-vertex-colouring
of G.

A graph G is a split graph if and only if both G and G are chordal graphs
(Foldes and Hammer [1977], Hammer and Simeone [1981]). The book by Golumbic
[1980] devotes a chapter to split graphs.

Trivially perfect graphs. Golumbic [1978] calls a graph trivially perfect if for
each induced subgraph, the stability number is equal to the number of inclusion-
wise maximal cliques. Trivially, each trivially perfect graph is perfect. Choudom,
Parthasarathy, and Ravindra [1975] and Golumbic [1978] showed that a graph is
trivially perfect if and only if it has no induced subgraph equal to the path P4 or
the circuit C4 (each with 4 vertices). This implies (by a theorem of Wolk [1962]
(proof simplified in Wolk [1965])) that a graph is trivially perfect if and only if it
is the comparability graph coming from a branching. Another characterization of
trivially perfect graphs was given by Alexe and Olaru [1997].

Threshold graphs. A threshold graph is a graph on vertex set V given by a
function w : V → R, such that two distinct vertices u, v are adjacent if and only if
w(u)+w(v) > 0. Chvátal and Hammer [1977] showed that a graph G is a threshold
graph if and only if neither G nor G has an induced subgraph equal to the path
P4 or the circuit C4 (each with 4 vertices) — that is, both G and G are trivially
perfect.

Each threshold graph is a split graph (trivially) and a permutation graph (order
the vertices as v1, . . . , vn such that w(v1) ≤ w(v2) ≤ · · · ≤ w(vn), and let π be the
permutation given by ordering |w(v1)|, |w(v2)|, . . . , |w(vn)|). However, the path P4

with 4 vertices is both a split graph and a permutation graph, but no threshold
graph.

The book by Mahadev and Peled [1995] focuses on threshold graphs, and the
book by Golumbic [1980] devotes a chapter to threshold graphs. A related class of
graphs was described by Wang [1995,1996].
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‘Strongly chordal’ graphs have been studied by Farber [1983,1984] and Kaplan and
Shamir [1994], and an analogue of chordal graphs for bipartite graphs by Golumbic
and Goss [1978].

66.3a. Chordal graphs as intersection graphs of subtrees of a tree

Chordal graphs can be characterized as intersection graphs of subtrees of a tree, as
was shown by L. Surányi (see Gyárfás and Lehel [1970]) and also by Walter [1972,
1978], Buneman [1974], and Gavril [1974c].

Let S be a collection of nonempty subtrees of a tree T . The intersection graph
of S is the graph with vertex set S, where two vertices S, S′ are adjacent if and
only if S and S′ have at least one vertex in common.

The class of graphs obtained in this way coincides with the class of chordal
graphs. To see this, we first show the following elementary lemma:

Lemma 66.5α. Let S be a collection of pairwise intersecting subtrees of a tree T .
Then there is a vertex of T contained in all subtrees in S.

Proof. By induction on |V T |. If |V T | = 1 the lemma is trivial, so assume |V T | ≥ 2.
Let t be an end vertex of T . If there exists a subtree in S consisting only of t, the
lemma is trivial. Hence we may assume that each subtree in S containing t also
contains the neighbour of t. So deleting t from T and from all subtrees in S gives
the lemma by induction.

Then we have the subtree characterization of chordal graphs:

Theorem 66.5. A graph is chordal if and only if it is isomorphic to the intersection
graph of a collection of subtrees of some tree.

Proof. Necessity. Let G = (V, E) be chordal. By Theorem 66.3, G contains a simpli-
cial vertex v. By induction, the graph G−v is the intersection graph of a collection
S of subtrees of some tree T . Let S ′ be the subcollection of S corresponding to the
set N of neighbours of v in G. As N is a clique, S ′ consists of pairwise intersecting
subtrees. Hence, by Lemma 66.5α, these subtrees have a vertex t of T in common.
Now we extend T and all subtrees in S ′ with a new vertex s and a new edge st.
Moreover, we introduce a new subtree {s} representing v. In this way we obtain a
subtree representation for G.

Sufficiency. Let G be the intersection graph of some collection S of subtrees of
some tree T . By (66.3) it suffices to show that G has a simplicial vertex. Let s be
an end vertex of T . If S contains a subtree only consisting of s, it gives a simplicial
vertex in G. If S contains no such subtree, then each subtree in S containing s also
contains the neighbour t (say) of s. So deleting s from T and from all subtrees in
S, does not modify the graph G. Hence we are done by induction.

This theorem enables us to interpret the perfection of chordal graphs in terms
of trees:
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Corollary 66.5a. Let S be a collection of nonempty subtrees of a tree T . Then the
maximum number of pairwise vertex-disjoint trees in S is equal to the minimum
number of vertices of T intersecting each tree in S.

Proof. Directly from Corollary 66.4b and Theorem 66.5, using Lemma 66.5α.

(This result was also stated by Cockayne, Hedetniemi, and Slater [1979].)
Similarly we have:

Corollary 66.5b. Let S be a collection of subtrees of a tree T . Let k be the max-
imum number of times that any vertex of T is covered by trees in S. Then S can
be partitioned into subcollections S1, . . . , Sk such that each Si consists of pairwise
vertex-disjoint trees.

Proof. Directly from Theorems 66.4 and 66.5, again using Lemma 66.5α.

Variations of the problem of packing and covering a tree by subtrees were stud-
ied by Bárány, Edmonds, and Wolsey [1986]. More characterizations of chordal
graphs were offered by Benzaken, Crama, Duchet, Hammer, and Maffray [1990].
More on chordal graphs can be found in the book of Golumbic [1980] and in
Skrien [1982], Leung [1984], Seymour and Weaver [1984] (a generalization of chordal
graphs), Lubiw [1987], Wallis and Wu [1995], and Nakamura and Tamura [2000] (a
generalization to bidirected graphs).

66.4. Meyniel graphs

Markosyan and Karapetyan [1976] and Meyniel [1976] showed the perfection
of graphs in which each odd circuit of length at least five has at least two
chords (Meyniel graphs). This was conjectured by Olaru [1969,1972].

It implies the perfection of Gallai graphs — graphs in which each odd
circuit of length at least five has two noncrossing chords (Gallai [1962], cf.
Surányi [1968] for a shorter proof 12), parity graphs — graphs in which each
odd circuit of length at least five has two crossing chords (Olaru [1969,1972,
1977], cf. Sachs [1970]), and graphs that have no path P4 as induced subgraph
(Seinsche [1974]).

We follow the proof given by Lovász [1983b] (which is a simplification of
Meyniel’s original proof).

Theorem 66.6. Each Meyniel graph is perfect.

Proof. I. We first show that in a Meyniel graph G = (V,E):

(66.4) for each odd circuit C and each vertex v on C, C has a chord
disjoint from v or each vertex of C − v is adjacent to v.

12 Gallai [1962] published a proof that α(G) = χ(G) for graphs in which each odd circuit
of length at least 5 has two noncrossing chords. Berge [1997] wrote that Gallai informed
him in a letter that he knew that also ω(G) = χ(G) holds for these graphs.
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Let C have no chord disjoint from v. Then the subgraph of G induced by V C
is outerplanar, with C as boundary. As each odd circuit of size at least five
has a chord we know that each odd bounded face is a triangle. (A face is odd
(even) if its is incident with an odd (even) number of edges.)

Moreover, as C is odd, there is at least one odd bounded face. So if v is not
adjacent to all vertices of C− v, there is an even bounded face, neighbouring
an odd bounded face. But then the union of these two faces forms an odd
circuit with only one chord, contradicting the condition.

II. We now prove the theorem. It suffices to show that χ(G) = ω(G)
for any Meyniel graph G = (V,E), as the class of Meyniel graphs is closed
under taking induced subgraphs. We may assume that V = {1, . . . , n}. Let
k := χ(G).

For each colouring φ : V → {1, . . . , k}, let the (ordered) clique Kφ =
(v1, . . . , vt) be obtained recursively as follows. If v1, . . . , vi have been deter-
mined (for i ≥ 0), then vi+1 is the largest vertex of colour i+1 that is adjacent
to each of v1, . . . , vi. If no such vertex exists, we stop, setting t := i.

Let φ be a k-colouring with Kφ = (v1, . . . , vt) lexicographically minimal.
If t = k we are done, so assume t < k. Consider the subgraph of G induced
by the vertices coloured t and t+ 1, and let H be its component containing
vt. Let ψ be the colouring obtained from φ by interchanging colours t and
t+1 in H. We show that Kψ is lexicographically less than Kφ, contradicting
our assumption.

Trivially, v1, . . . , vt−1 belong to Kψ (since we did not change any of the
colours 1, . . . , t−1). If no other vertex is in Kψ we are done, so we can assume
that Kψ contains a vertex w with ψ(w) = t.

Then w �= vt, since ψ(vt) = t + 1. If w < vt we are done, so we can
assume that w > vt. If φ(w) = t, this contradicts the choice of vt ∈ Kφ. So
φ(w) = t + 1, and H contains a shortest path P from vt to w. Necessarily,
this path is odd, and has no chords.

Let u be the second vertex on P . So φ(u) = t + 1. Since vt is the last
vertex in Kφ we know that there is an i ∈ {1, . . . , t− 1} with vi not adjacent
to u. Let C be the circuit made by P , vivt, and viw. As P has no chords, by
(66.4) vi is adjacent to u, a contradiction.

Ravindra [1982] showed that each Meyniel graph is strongly perfect (see
Section 66.5a below). This was extended by Hoàng [1987b], who showed that
Meyniel graphs are precisely those graphs with the property that for each
induced subgraph H and each vertex v of H, there exists a stable set in H
containing v and intersecting all inclusionwise maximal cliques of H. (This
was conjectured by Meyniel.)

Complexity. Burlet and Fonlupt [1984] showed that the class of Meyniel graphs
is closed under amalgamation (see Section 65.7c) and that each Meyniel graph
arises by amalgamation from chordal graphs and bipartite graphs added with one
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vertex connected to all vertices of the bipartite graph. They showed that it yields a
polynomial-time recognition algorithm (speeded up by Roussel and Rusu [1999b]).

Hoàng [1987b] gave an O(n8)-time algorithm to find a minimum colouring and
a maximum clique. An O(n3) algorithm was given by Hertz [1990a].

(Conforti, Cornuéjols, Kapoor, and Vušković [1999] consider an extension by
decomposing cap-free graphs (where a cap is a circuit with exactly one chord, con-
necting two vertices at distance two in the circuit) — a (not necessarily perfect)
generalization of Meyniel graphs.)

Gallai graphs. As mentioned, these are graphs in which each odd circuit of length
≥ 5 has two noncrossing chords. Polynomial-time recognition algorithms were given
by Burlet and Fonlupt [1984], Whitesides [1984], and Cicerone and Di Stefano
[1999b] (linear-time). The latter paper also gives a linear-time maximum-weight
clique algorithm. A linear-time colouring algorithm was found by Roussel and Rusu
[1999a].

Parity graphs. As mentioned, these are graphs in which each odd circuit of length
≥ 5 has two crossing chords. Parity graphs can be characterized alternatively as
those graphs such that for each pair u, v of vertices, all chordless u − v paths have
the same parity.

Combinatorial strongly polynomial-time algorithms to solve the weighted clique,
stable set, colouring, and clique cover problems in parity graphs were given by
Burlet and Uhry [1982], who also gave a polynomial-time recognition algorithm (by
decomposition of the graph into smaller parity graphs).

The parity graphs include the line-perfect graphs, which are graphs whose line
graph is perfect. They were characterized by Trotter [1977] — see the claw-free
graphs in Section 65.6d. More on parity graphs can be found in Adhar and Peng
[1990], Bandelt and Mulder [1991], Przytycka and Corneil [1991], Rusu [1995b],
Jansen [1998], and Cicerone and Di Stefano [1999a].

66.5. Further results and notes

66.5a. Strongly perfect graphs

Following Berge and Duchet [1984], a graph G = (V, E) is strongly perfect if each
induced subgraph H has a stable set intersecting all inclusionwise maximal cliques
of H. Each strongly perfect graph is perfect (by (65.2)). Berge and Duchet showed
that comparability graphs, chordal graphs, and complements of chordal graphs are
strongly perfect. Ravindra [1982] showed that Meyniel graphs are strongly perfect,
and Chvátal [1984d] that perfectly orderable graphs are strongly perfect.

Berge and Duchet also showed that the recognition problem for strongly perfect
graphs belongs to co-NP. No combinatorial polynomial-time algorithms are known
for the optimization problems for strongly perfect graphs.

Olaru [1996] showed that the graphs that are both minimally strongly imper-
fect and imperfect are precisely the odd circuits of length at least five and their
complements. Hence to prove the strong perfect graph theorem it suffices to show
that each minimally imperfect graph is also minimally strongly imperfect.
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More on strongly perfect graphs can be found in Ravindra [1981,1999], Berge
[1983], Basavayya and Ravindra [1985,1987], Preissmann [1985], Preissmann and
de Werra [1985], Olaru and Mı̂ndrescu [1986a,1986b], Olaru [1987,1993], Ravindra
and Basavayya [1988,1992,1994,1995], Olariu [1989a], W�loch [1995], Blidia, Duchet,
and Maffray [1996], Szelecka and W�loch [1996], and Alexe and Olaru [1997].

66.5b. Perfectly orderable graphs

A graph G = (V, E) is a perfectly orderable graph if it has an acyclic orientation
D = (V, A) such that if four vertices v1, v2, v3, v4 induce a chordless path in G with
edges v1v2, v2v3, v3v4, then (v1, v2) ∈ A or (v4, v3) ∈ A. Chvátal [1984d] showed
that perfectly orderable graphs are perfect — in fact, strongly perfect:

Theorem 66.7. Each perfectly orderable graph is strongly perfect.

Proof. We can assume that V = {1, . . . , n} and that if (i, j) ∈ A, then i < j. Let
S be the stable set with

∑
(2−i | i ∈ S) maximal. Then each v �∈ S has a neighbour

u ∈ S with u < v, since otherwise (S \ N(v)) ∪ {v} is better than S.
We show that each inclusionwise maximal clique K intersects S. Suppose K ∩

S = ∅. For s ∈ S, let Ks be the set of neighbours v ∈ K with s < v. Choose
s ∈ S with

∑
(2i | i ∈ Ks) maximal. As K is a maximal clique, s is nonadjacent

to some v ∈ K. Let u ∈ S be a neighbour of v with u < v. So v ∈ Ku \ Ks. By
the choice of s, there is a vertex i ∈ Ks \ Ku with i > v. So u < v < i, and hence
u and i are nonadjacent (otherwise i ∈ Ku). As u and s are nonadjacent (since
u, s ∈ S) and v and i are adjacent (since v, i ∈ K), u, v, i, s induce a P4 subgraph
with (u, v), (v, i), (s, i) ∈ A, a contradiction.

(Another proof, and a generalization, of this was given by Duchet and Olariu [1991].)
Note that the set S in this proof can be found by a greedy method. So we can

find an optimum colouring in polynomial time. Given an orientation as above, also
a maximum-size clique can be found in a greedy way — see Chvátal [1984d]. Hoàng
[1994] gave O(nm)-time algorithms, also for the weighted versions. Middendorf and
Pfeiffer [1990a] showed that it is NP-complete to decide if a graph is perfectly
orderable.

Comparability graphs, chordal graphs, and complements of chordal graphs are
perfectly orderable.

More on perfectly orderable graphs can be found in Cochand and de Werra
[1986], Preissmann, de Werra, and Mahadev [1986], Chvátal, Hoàng, Mahadev,
and de Werra [1987], Lehel [1987], Hertz [1988,1990b], Hoàng and Khouzam [1988],
Olariu [1988a,1993], Bielak [1989], Hoàng and Mahadev [1989], Hoàng and Reed
[1989a,1989b], Jamison and Olariu [1989a], Chvátal [1990,1993], Hoàng, Maffray,
and Preissmann [1991], Croitoru and Radu [1992a], Hoàng, Maffray, Olariu, and
Preissmann [1992], Gavril, Toledano Laredo, and de Werra [1994], Arikati and
Peled [1996], Giakoumakis [1996], Hoàng [1996a,1996b,2001], Rusu [1996], Hayward
[1997a], Hoàng, Maffray, and Noy [1999], and Hoàng and Tu [2000].

More classes of graphs based on orienting or colouring edges are given by Hoàng
[1987a].
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66.5c. Unimodular graphs

A graph G = (V, E) is unimodular if the following matrix M is totally unimod-
ular: the columns are indexed by V and the rows are the incidence vectors of all
inclusionwise maximal cliques of G. Any induced subgraph of a unimodular graph
is unimodular again, since for each v ∈ V and for each maximal clique C of G − v,
either C or C ∪ {v} is a maximal clique of G.

Unimodular graphs include bipartite graphs, line graphs of bipartite graphs,
and interval graphs.

Perfection of unimodular graphs and their complements was shown by Berge
[1963a]. Perfection of the complements of unimodular graphs follows from the Hoff-
man-Kruskal theorem (Hoffman and Kruskal [1956]), since

(66.5) α(G) = max{1Tx | x ≥ 0, Mx ≤ 1} = min{yT1 | y ≥ 0, yTM ≥ 1}
= χ(G),

as the LP-optima are attained by integer vectors x and y.
The perfection of a unimodular graph G = (V, E) can also be derived from the

Hoffman-Kruskal theorem, with an idea which Berge [1963a] attributed to M.H.
McAndrew. It suffices to find a stable set that intersects all maximum-size cliques.
Let M ′ be the submatrix of M corresponding to the maximum-size cliques. The
system 0 ≤ x ≤ 1, Mx ≤ 1, M ′x ≥ 1 has a solution (namely x = ω(G)−11). Hence,
as M is total unimodular, it has an integer solution x. This is the incidence vector
of a stable set as required.

By a result of Heller [1957] (cf. Theorem 21.4 in Schrijver [1986b]), a unimodular
graph has at most |V |(|V |+1) inclusionwise maximal cliques. As W.H. Cunningham
(cf. Grötschel, Lovász, and Schrijver [1988]) observed, this gives a polynomial-time
method to enumerate all maximal cliques: Choose v ∈ V . Enumerate the maximal
cliques C1, . . . , Ct of G− v (recursively). Then the maximal cliques of G are among
the cliques Ci (i = 1, . . . , t), and (Ci ∩ N(v)) ∪ {v} (i = 1, . . . , t). We can select the
maximal cliques among these cliques in polynomial time. Since t ≤ |V |(|V | + 1),
this gives a polynomial-time method.

This directly gives a strongly polynomial-time method to find a maximum-
weight clique. It also implies that the weighted versions of the stable set, colouring,
and clique cover problems can be solved in strongly polynomial time, by solving
an explicit linear programming problem (using Tardos [1986]). The colouring prob-
lem can be solved recursively by first finding (with LP-techniques) a 0, 1 vector x
satisfying x(C) ≤ 1 for each maximal clique C and x(C) = 1 for each maximum-
size clique C, and next colouring G − S recursively (where x = χS). The weighted
version can be solved similarly.

Since by a theorem of Seymour [1980a], totally unimodular matrices can be rec-
ognized in polynomial time, this also yields a polynomial-time method to recognize
a unimodular matrix.

Ghouila-Houri [1962b] showed that a graph G = (V, E) is unimodular if and
only if each nonempty subset U of V contains two disjoint sets U1 and U2 such that
U1 ∪ U2 �= ∅ and such that each maximal clique C of G with |C ∩ U | even, satisfies
|C ∩ U1| = |C ∩ U2|.
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66.5d. Further classes of perfect graphs

Weakly chordal graphs. A graph G = (V, E) is called weakly chordal (or weakly
triangulated) if neither G nor its complement contains a chordless circuit of length at
least 5. Hayward [1985] showed that weakly chordal graphs are perfect. Polynomial-
time algorithms for the optimization problems related to weakly chordal graphs
were given by Hayward, Hoàng, and Maffray [1989], Spinrad and Sritharan [1995],
and Hayward, Spinrad, and Sritharan [2000], and polynomial-time recognition al-
gorithms by Spinrad and Sritharan [1995] and Hayward, Spinrad, and Sritharan
[2000]. The class of weakly chordal graphs contains both the chordal graphs and
their complements.

More on weakly chordal graphs is given in Hoàng, Maffray, Olariu, and Preiss-
mann [1992], Hayward [1996,1997a,1997b], and McMorris, Wang, and Zhang [1998].
Weakly chordal comparability graphs were studied by Eschen, Hayward, Spinrad,
and Sritharan [1999].

Quasi-parity graphs. A graph G = (V, E) is a quasi-parity graph if each induced
subgraph H that is not a clique has two vertices that are not connected by a
chordless path of odd length. Meyniel [1987] showed that these graphs are perfect,
and that they include the Meyniel graphs and the perfectly orderable graphs. (A
short proof of this last is given by Hertz and de Werra [1988].)

Berge [1986] showed that the class of quasi-parity graphs can be enlarged to
those graphs in which for each induced subgraph H with at least two vertices,
there exist two vertices such that in H or H there is no chordless odd-length path
connecting them.

Edmonds-Giles graphs. Let D = (V, A) be a directed graph and let C be a
crossing collection of subsets of V with δout(U) = ∅ for each U ∈ C. Make an
undirected graph G with vertex set A, two arcs a, a′ being adjacent if and only if
there is a U ∈ C such that both a and a′ enter U . In Schrijver [1983a] such a graph
is called an Edmonds-Giles graph. Each such graph is perfect, as can be seen as
follows.

A special case of the Edmonds-Giles theorem (Theorem 60.1) is that the system
(in x ∈ R

A)

(66.6) (i) 0 ≤ x(a) ≤ 1 for a ∈ A,
(ii) x(δin(U)) ≤ 1 for U ∈ C,

is totally dual integral. Hence it determines an integer polytope. Now the integer
vectors x satisfying (66.6) are exactly the incidence vectors of the stable sets of
G. Each inequality (66.6)(ii) is a clique inequality. The stable set polytope of G
therefore is determined by the clique inequalities, and hence G is perfect (Corollary
65.2e). It in particular implies that each clique of G is contained in δin(U) for some
U ∈ C.

A special case of Edmonds-Giles graphs was given by Kahn [1984], where D =
(V, A) is a directed graph and C is the collection of nonempty proper subsets U of V
with δout(U) = ∅ and |δin(U)| minimal. With the perfect graph theorem this implies
that the arcs of a digraph can be coloured in such a way that each minimum-size
directed cut contains each colour exactly once.
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p-comparability graphs. Cameron and Edmonds [1992] showed perfection of the
following graphs. Let D = (V, A) be a directed graph and let U ⊆ V be such that
each directed circuit of D has precisely one vertex in U . Let G be the undirected
graph on V \ U with any two u, v ∈ V \ U adjacent if and only if there is a
directed circuit containing u and v. Cameron and Edmonds [1992] call such graphs
p-comparability graphs. Any comparability graph is a p-comparability graph, but
not conversely.

Each such graph G is perfect. The proof is by reduction to minimum-cost flow,
using the facts that each clique of G is contained in some directed circuit of D
and that by Theorem 65.11 it suffices to show that χ∗(G) = χ(G). (The class of
p-comparability graphs is closed under taking induced subgraphs, since adding all
arcs (u, v) for which there is a directed u − v path avoiding U , maintains the above
property of D.)

Now a minimum fractional clique cover of G corresponds to a minimum frac-
tional covering of V \ U by directed circuits. By the integer flow theorem, this last
is attained by an integer covering of V \U by directed circuits. Hence, the minimum
fractional clique cover in G is attained by an integer clique cover. This amounts to
χ∗(G) = χ(G).

Polyominoes. A polyomino is a union of unit squares in the plane. (A unit square
is a square with integer coordinates and area 1.)

Given a polyomino P , make a graph G with vertices all unit squares contained
in P , two of them being adjacent if and only if P contains a rectangle (with hor-
izontal and vertical sides) containing both squares. Győri [1984] showed that if P
is horizontally convex, then α(G) = χ(G) (see Section 60.3d). (P is horizontally
convex if each horizontal line has a convex intersection with P .) This extends a
result of Chaiken, Kleitman, Saks, and Shearer [1981], who proved α(G) = χ(G)
if P is orthogonally convex. (P is orthogonally convex if each horizontal or vertical
line has a convex intersection with P .) The latter paper also mentions that E. Sze-
merédi gave an example that one cannot delete orthogonal convexity, and it gives
an example of F.R.K. Chung (1979) showing that one cannot relax it to simple
connectivity.

Saks [1982] showed that if P is orthogonally convex, then the subgraph of G
induced by the boundary squares is perfect. (A boundary square of P is a unit
square having a neighbouring square not in P .) (This was proved for the subset of
corner squares by Chaiken, Kleitman, Saks, and Shearer [1981]. (A corner square
of P is a unit square having at least two neighbouring squares not in P .))

Shearer [1982] showed that also the following graph G arising from a simply
connected polyomino P is perfect: the vertices of G are the rectangles contained in
P , where two of them are adjacent if and only if they have a unit square in common.

Motwani, Raghunathan, and Saran [1989] showed that the visibility graph of
a horizontally convex polyomino is perfect; in fact, a permutation graph. More on
this and related problems can be found in Berge, Chen, Chvátal, and Seow [1981],
Győri [1985], Motwani, Raghunathan, and Saran [1988,1990], and Maire [1994a].

66.5e. Further notes

Hayward [1990] showed that graphs containing neither C5 nor P6 nor P6 as induced
subgraphs, are perfect. Other classes of perfect graphs were studied by Ravindra
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[1976], Payan [1983], Golumbic, Monma, and Trotter [1984], Hammer and Ma-
hadev [1985], Monma, Reed, and Trotter [1988], Hertz [1989a,1989b,1989c], Hoàng
and Maffray [1989,1992], Bertschi [1990], Lubiw [1991b], Sun [1991], Croitoru and
Radu [1993], Gurvich, Temkin, Udalov, and Shapovalov [1993], Thomas [1993],
Maire [1994b,1996], Rusu [1995b,1999c,1999a], Cheah and Corneil [1996], Gyárfás,
Kratsch, Lehel, and Maffray [1996] Giakoumakis [1997], Giakoumakis and Rusu
[1997], and Maffray and Preissmann [1999]. Le [2000] gave conjectures on the per-
fection of certain classes of graphs. A survey of several classes of perfect graphs and
their recognition and interrelations, is given in the book by Brandstädt, Le, and
Spinrad [1999]. The book of Simon [1992] studies efficient algorithms for classes
some of perfect graphs.

Conforti, Cornuéjols, Kapoor, and Vušković [1997] investigated ‘universally
signable’ graphs, a generalization of chordal graphs.

Hammer and Maffray [1993] introduced ‘preperfect’ graphs, and showed that
each preperfect graph is perfect, and that preperfect graphs include the Gallai and
the parity graphs (cf. Section 66.4).

Corneil and Stewart [1990] studied the complexity of finding minimum-size dom-
inating sets in several classes of perfect graphs. (A dominating set is a set U of
vertices with U ∪ N(U) = V .)

Berge and Las Vergnas [1970] showed that a graph G is perfect if for each odd
circuit C and each maximal clique K, the intersection of C and K does not consist
of two vertices that form an edge of C.

Vertex cuts in perfect and minimally imperfect graphs were surveyed by Rusu
[2001]. A characterization of perfect total graphs was given by Rao and Ravindra
[1977].

Figure 66.1

Lovász [1983b] calls a graph k-perfect if for each induced subgraph G = (V, E)
one has:

(66.7) ωk(G) = min
U⊆V

(kχ(G − U) + |U |)

where ωk(G) is the maximum size of a union of k cliques. By the results of Greene
and Kleitman (Corollaries 14.8a and 14.10a), comparability graphs and their com-
plements are k-perfect for each k. Also, complements of line graphs of bipartite
graphs are k-perfect, by Corollary 21.4b. On the other hand, the line graph of the
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bipartite graph in Figure 66.1 is not 2-perfect (Greene [1976]). Related results were
given by Berge [1989b,1992a,1992b] and Cameron [1989].

A.J. Hoffman and E.L. Johnson (cf. Golumbic [1980]) proposed the following
sharpening of perfection. Let G = (V, E) be a graph and let w : V → Z+. A k-
interval colouring is an assignment to each vertex v of an open subinterval of [0, k]
of length w(v) such that adjacent vertices obtain disjoint intervals. Let χint(G, w)
denote the minimum value of k for which G has a k-interval colouring. If w(v) = 1
for each vertex v, then χint(G, w) = χ(G). Call G superperfect if χint(G, w) is equal
to the maximum of w(K) over all cliques K in G. As Hoffman observed, each com-
parability graph is superperfect (this can be derived from Dilworth’s decomposition
theorem), but none of the other known interesting classes of perfect graphs have
this property.

A survey on subclasses of ‘classical’ perfect graphs (comparability graphs and
chordal graphs) was given by Duchet [1984]. More examples and applications of
perfect graphs were given by Shannon [1956], Berge [1967], and Tucker [1973a].



Chapter 67

Perfect graphs: polynomial-time
solvability

In this chapter we show that a maximum-weight stable set and a minimum
weighted clique cover in a perfect graph can be found in strongly polyno-
mial time. This was shown by Grötschel, Lovász, and Schrijver [1981,1988]
with the help of the ellipsoid method and of the function ϑ(G), introduced
by Lovász [1979d] as upper bound on the Shannon capacity of a graph
G. No combinatorial polynomial-time algorithms for these problems are
known.
We should stress that the naive approach of applying the ellipsoid method
to the stable set polytope of a perfect graph using the clique inequalities
does not work: it reduces the problem of finding a maximum-weight stable
set to deciding for any x ∈ R

V
+ if there is a clique C satisfying x(C) > 1.

This is equivalent to finding a maximum-weight clique, which is equivalent
to finding a maximum-weight stable set in the complementary graph, which
is perfect again. So this would give nothing but a reduction to itself.
In this chapter, all graphs can be assumed to be simple.

67.1. Optimum clique and colouring in perfect graphs
algorithmically

Lovász [1979d] introduced the following real number ϑ(G) for any graph
G = (V,E). Let MG be the collection of symmetric V ×V matrices satisfying
Mu,v = 0 for any two distinct adjacent vertices u and v and satisfying TrM =
1. Here TrM is the trace of M (sum of diagonal elements). Define

(67.1) ϑ(G) := max{1TM1 | M ∈ MG positive semidefinite}.

Here 1 denotes the all-one vector in R
V .

ϑ(G) has two important properties: it can be calculated (at least, approx-
imated) in polynomial time, and it gives an, often close, upper bound on the
stable set number α(G) (Lovász [1979d]).

First we show (where χ∗(G) denotes the fractional clique cover number
— cf. Section 64.8):

Theorem 67.1. For any graph G = (V,E):
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(67.2) α(G) ≤ ϑ(G) ≤ χ∗(G).

Proof. To see α(G) ≤ ϑ(G), let S be a maximum-size stable set and let M
be the matrix given by:

(67.3) M :=
1

|S|χ
S(χS)T.

Here χS is the incidence vector of S in R
V . Then M belongs to MG and is

positive semidefinite. Hence α(G) = |S| = 1TM1 ≤ ϑ(G).
To see ϑ(G) ≤ χ∗(G), let M attain the maximum in (67.1). Consider

cliques C1, . . . , Ck and λ1, . . . , λk ≥ 0 with

(67.4)
k∑

i=1

λiχ
Ci = 1 and

k∑

i=1

λi = χ∗(G).

Then, setting γ := χ∗(G):

(67.5) 0 ≤
k∑

i=1

λi(γ · χCi − 1)TM(γ · χCi − 1)

= γ2
k∑

i=1

λi(χCi)TMχCi − 2γ
k∑

i=1

λi(χC1)TM1 + γ1TM1

= γ2TrM − 2γ1TM1 + γ1TM1 = γ2 − γϑ(G),

since TrM = 1, 1TM1 = ϑ(G), and Mu,v = 0 if u �= v and u, v ∈ Ci for some
i.

(67.5) implies that ϑ(G) ≤ γ = χ∗(G).

Moreover, ϑ(G) can be approximated in polynomial time (Grötschel,
Lovász, and Schrijver [1981]):

Theorem 67.2. There is an algorithm that for any given graph G = (V,E)
and any ε > 0, returns a rational closer than ε to ϑ(G), in time bounded by
a polynomial in |V | and log(1/ε).

Proof. This is a consequence of Corollary (4.3.12) in Grötschel, Lovász, and
Schrijver [1988], stating that we can solve a convex optimization problem ap-
proximatively in polynomial time, if we know a ball contained in the feasible
region and a ball containing the feasible region, and if we can test member-
ship of the feasible region in polynomial time. These conditions are satisfied,
if we restrict ourselves to the affine space MG. The convex body of all posi-
tive semidefinite matrices in MG contains the ball with center (1/|V |) ·I and
radius 1/|V |2, and is contained in the ball with center the all-zero matrix and
radius |V |2. Membership can be tested in polynomial time, since we can test
positive semidefiniteness in polynomial time.

The two theorems above imply:



1154 Chapter 67. Perfect graphs: polynomial-time solvability

Corollary 67.2a. For any graph G satisfying α(G) = χ(G), the stable set
number can be found in polynomial time.

Proof. Theorem 67.1 implies α(G) = ϑ(G) = χ(G), and by Theorem 67.2 we
can find a number closer than 1

2 to ϑ(G) in time polynomial in |V |. Rounding
to the closest integer yields α(G).

To obtain an explicit maximum-size stable set, we need perfection of the
graph:

Corollary 67.2b. A maximum-size stable set in a perfect graph can be found
in polynomial time.

Proof. Let G = (V,E) be a perfect graph. Iteratively, for each v ∈ V , replace
G by G − v if α(G − v) = α(G). By the perfection of G, we can calculate
these values in polynomial time, by Corollary 67.2a.

We end up with a graph that forms a maximum-size stable set in the
original graph.

As perfection is closed under taking complements, also a maximum-size
clique in a perfect graph can be found in polynomial time.

The method described in the proof of Corollary 67.2b applies to all graphs
G for which α(H) = ϑ(H) holds for each induced subgraph H of G; but, as
we shall see in Corollary 67.14a, these are precisely the perfect graphs.

From Corollary 67.2b one can derive that a minimum colouring of a perfect
graph can also be found in polynomial time (we follow the method given in
Grötschel, Lovász, and Schrijver [1988]):

Corollary 67.2c. A minimum colouring in a perfect graph can be found in
polynomial time.

Proof. Let G = (V,E) be a perfect graph. It suffices to find a stable set S
intersecting each maximum-size clique in G; applying recursion to G−S does
the rest.

Starting with t = 0, we iteratively extend a list of maximum-size cliques
K1, . . . ,Kt as follows. First, find a stable set S intersecting each ofK1, . . . ,Kt.
This can be done by considering

(67.6) c := χK1 + · · · + χKt ,

and finding a stable set S maximizing c(S). This can be found by replacing
each vertex v by c(v) nonadjacent vertices (adjacent to the new vertices that
replace vertices adjacent to v), and finding a maximum-size stable set in the
new graph. This gives a stable set S in the original graph maximizing c(S).

Necessarily, c(S) = t, since G has a stable set intersecting each maximum-
size clique (as G is perfect). So S intersects each Ki.
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If ω(G − S) < ω(G), then S intersects each maximum-size clique in G,
and we are done. If ω(G − S) = ω(G), we find a maximum-size clique Kt+1
in G− S, add it to our list, and iterate.

The number of iterations is bounded by |V |, since in each iteration the
dimension of the space Lt of vectors x ∈ R

V with x(Ki) = 1 for each i drops,
as for the S found we have χS ∈ Lt and χS �∈ Lt+1.

67.2. Weighted clique and colouring algorithmically

In a straightforward way, the results of the previous section can be extended
to the weighted case. Let G = (V,E) be a graph and let w : V → Z+ be
a weight function. Let Gw be the graph obtained from G by replacing each
vertex v by a stable set Sv of size w(v), where vertices in distinct Su and
Sv are adjacent if and only if u and v are adjacent in G. So the maximum
weight of a stable set in G is equal to the maximum size of a stable set in
Gw. Define:

(67.7) αw(G) := α(Gw), ϑw(G) := ϑ(Gw), χw(G) := χ(Gw),
χ∗
w(G) := χ∗(Gw).

So αw(G) is equal to the maximum weight of a stable set in G. The definitions
of χw(G) and χ∗

w(G) agree with those in Section 64.8.
Theorem 67.1 gives the following inequalities:

Theorem 67.3. For any graph G = (V,E) and w : V → R+:

(67.8) αw(G) ≤ ϑw(G) ≤ χ∗
w(G).

Proof. Directly from Theorem 67.1 and (67.7).

In order to calculate ϑw(G), we need not construct Gw and calculate
ϑ(Gw). This would not be a polynomial-time method. We can calculate ϑw(G)
more concisely as follows.

Define
√
w : V → R+ by:

(67.9)
√
w(v) :=

√

w(v)

for v ∈ V . Then:

Theorem 67.4. For any graph G and w : V G → Z+:

(67.10) ϑw(G) = max{√
w

T
M

√
w | M ∈ MG positive semidefinite}.

Proof. We may assume that w > 0. Let D be the V Gw×V G matrix defined
by

(67.11) Du,v :=
{
w(v)− 1

2 if u ∈ Sv,
0 if u �∈ Sv,



1156 Chapter 67. Perfect graphs: polynomial-time solvability

for u ∈ V Gw and v ∈ V G.
First let M attain the maximum in (67.10). Then M ′ := DMDT is posi-

tive semidefinite, and, moreover, belongs to MGw . Indeed, for adjacent ver-
tices u, u′ of Gw, say u ∈ Sv and u′ ∈ Sv′ , with v and v′ adjacent vertices of
G, we have Mv,v′ = 0, and hence

(67.12) M ′
u,u′ = (DMDT)u,u′ =

∑

t,t′∈V G
Du,tMt,t′Du′,t′

= w(v)− 1
2w(v′)− 1

2Mv,v′ = 0.

Also (setting vu := v if u ∈ Sv):

(67.13) TrM ′ = Tr(DMDT) =
∑

u∈V Gw

∑

v,v′∈V G
Du,vDu,v′Mv,v′

=
∑

u∈V Gw

w(vu)−1Mvu,vu =
∑

v∈V G
w(v)−1w(v)Mv,v = TrM = 1.

So M ′ ∈ MGw
. Hence

(67.14) ϑw(G) = ϑ(Gw) ≥ 1TM ′1 = 1T(DMDT)1 =
√
w

T
M

√
w.

This shows ≥ in (67.10).
To see the reverse inequality, let M ′ be a positive semidefinite matrix in

MGw with 1TM ′1 = ϑ(Gw). Then M := DTM ′D is positive semidefinite,
and, moreover, belongs to MG. Indeed, for adjacent v, v′ ∈ V G we have

(67.15) Mv,v′ = (DTMD)v,v′ =
∑

u,u′∈V Gw

Du,vDu′,v′M ′
u,u′

=
∑

u∈Sv

∑

u′∈Sv′

w(v)− 1
2w(v′)− 1

2M ′
u,u′ = 0.

Also:

(67.16) TrM =
∑

v∈V G

∑

u,u′∈V Gw

Du,vDu′,vM
′
u,u′

=
∑

v∈V G

∑

u∈Sv

∑

u′∈Sv

w(v)−1M ′
u,u′ ≤

∑

v∈V G

∑

u∈Sv

M ′
u,u = TrM ′ = 1.

The inequality holds as for any positive semidefinite matrix A one has:
1TA1 ≤ 1T1 · TrA, since the largest eigenvalue of A is at most TrA. This is
applied to the Sv × Sv submatrix of M , for each v ∈ V .

Hence the matrix M̃ := (TrM)−1·M belongs to MG, and so the maximum
in (67.10) is at least

√
w

T
M̃

√
w, and hence at least

(67.17)
√
w

T
M

√
w =

√
w

T
DTM ′D

√
w = 1TM ′1 = ϑw(G).

This implies that ϑw(G) can be approximated in polynomial time:
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Theorem 67.5. There is an algorithm that for any given graph G = (V,E),
any w : V → Z+, and any ε > 0, returns a rational closer than ε to ϑw(G),
in time bounded by a polynomial in |V |, log ‖w‖∞, and log(1/ε).

Proof. Similar to the proof of Theorem 67.2.

The two theorems above imply:

Corollary 67.5a. For any graph G and weight function w : V → Z+ satis-
fying αw(G) = χw(G), the weighted stable set number can be found in poly-
nomial time.

Proof. Theorem 67.3 implies αw(G) = ϑw(G) = χw(G), and by Theorem
67.5 we can find a number closer than 1

2 to ϑw(G) in time polynomial in |V |.
Rounding to the closest integer yields αw(G).

To obtain a maximum-weight stable set explicitly, we again need perfec-
tion of the graph:

Corollary 67.5b. A maximum-weight stable set in a perfect graph can be
found in polynomial time.

Proof. Let G = (V,E) be a perfect graph and w : V → Z+. Iteratively, for
each v ∈ V , replace G by G− v if αw(G− v) = αw(G). By the perfection of
G, we can calculate these values in polynomial time, by Corollary 67.5a.

We end up with a graph that forms a maximum-weight stable set in the
original graph.

As perfection is closed under taking complements, also a maximum-weight
clique in a perfect graph can be found in polynomial time. So for any w :
V → Z+, we can determine

(67.18) ωw(G) :=maximum of w(C) over cliques C of G

in polynomial time.
Moreover, a minimum weighted colouring of a perfect graph can be found

in polynomial time (again, we follow the method given in Grötschel, Lovász,
and Schrijver [1988]):

Corollary 67.5c. Given a perfect graph G = (V,E) and a weight function
w : V → Z+, a minimum weighted colouring can be found in polynomial
time.

Proof. Let G = (V,E) be a perfect graph and let w : V → Z+. As in
the proof of Corollary 67.2c, we can find a stable set S intersecting each
maximum-weight clique in G, as follows. Starting with t = 0, we iteratively
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extend a list of maximum-weight cliques K1, . . . ,Kt. First find a stable set S
intersecting each of K1, . . . ,Kt. This can be done by considering

(67.19) c := χK1 + · · · + χKt ,

and finding a stable set S maximizing c(S). This can be found by replacing
each vertex v by c(v) nonadjacent vertices (adjacent to the new vertices that
replace vertices adjacent to v), and finding a maximum-size stable set in the
new graph. This gives a stable set S maximizing c(S).

Necessarily, c(S) = t, since G has a stable set intersecting each maximum-
weight clique (as Gw is perfect). So S intersects each Ki.

If ωw(G− S) < ωw(G), then S intersects each maximum-weight clique in
G, and we have the required S. If ωw(G− S) = ωw(G), we find a maximum-
weight clique Kt+1 in G− S, add it to our list, and iterate.

The number of iterations is bounded by |V |, since in each iteration the
dimension of the space Lt of vector x ∈ R

V with x(Ki) = 1 for each i drops,
since for the S found we have χS ∈ Lt and χS �∈ Lt+1.

This describes the method to find a stable set intersecting all maximum-
weight cliques. To find a minimum weighted colouring, we iteratively find
stable sets S1, . . . , Si, λ1, . . . , λi ∈ Z+, and a weight function wi as follows.
Set w1 := w. Next iteratively for i = 1, 2, . . ., as long as wi �= 0, find a stable
set Si intersecting all cliques C maximizing wi(C), calculate

(67.20) λi := ωwi(G) − ωwi(G− Si),

and set wi+1 := wi − λiχ
Si .

Then the λi, Si form a minimum weighted colouring, since

(67.21)
∑

i

λiχ
Si = w and

∑

i

λi = ωw(G) = χw(G).

To prove this, we first show:

(67.22) ωwi+1(G) = ωwi+1(G− Si) = ωwi
(G− Si) = ωwi

(G) − λi.

Here the second equality is trivial (since wi and wi+1 coincide outside Si). The
third inequality follows from definition (67.20) of λi. For the first equality,
≥ is trivial. To see ≤, consider a clique C intersecting Si. Then wi+1(C) =
wi(C) − λi|C ∩ Si| ≤ ωwi

(G) − λi. This proves (67.22), which implies the
second equality in (67.21).

Moreover, the number of iterations is at most |V |, since in each iteration
the face of the clique polytope spanned by the cliques C maximizing wi(C),
increases in dimension: each clique C in G maximizing wi(C) also maximizes
wi+1(C) (since wi+1(C) ≥ wi(C)−λi = ωwi(G)−λi = ωwi+1(G), by (67.22)),
and there is a clique C maximizing wi+1(C) but not wi(C) (namely any clique
C of G − Si maximizing wi(C), since wi+1(C) = wi(C) = ωwi(G − Si) =
ωwi+1(G)).
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67.3. Strong polynomial-time solvability

In the previous section we showed the polynomial-time solvability of the
weighted versions of the stable set and colouring problems in perfect graphs.
By Theorem 5.11 of Frank and Tardos [1985,1987], this can be strengthened
to strong polynomial-time solvability.

Theorem 67.6. A maximum-weight clique and a minimum weighted colour-
ing in a perfect graph can be found in strongly polynomial time.

Proof. A maximum-weight clique can be found in strongly polynomial time
by Theorem 5.11, since the class of clique polytopes of perfect graphs is
polynomial-time solvable by Corollary 67.5b.

Next, a minimum weighted colouring can be found with the method de-
scribed in the proof of Corollary 67.5c: it is strongly polynomial-time because
we can find (by the above) a maximum-weight clique in strongly polynomial
time.

This implies:

Corollary 67.6a. A maximum-weight stable set and a minimum-weight ver-
tex cover in a perfect graph can be found in strongly polynomial time.

Proof. Directly from Theorem 67.6, since stable sets in a perfect graph are
precisely the cliques in the complementary graph, which is again perfect.
Moreover, the vertex covers are precisely the complements of stable sets.

67.4. Further results and notes

67.4a. Further on ϑ(G)

In this section we give some further results on the function ϑ(G), and we consider
the related convex body TH(G). We use the following notation, for vector a, b ∈ R

V
+ :

(67.23) b/a is the vector in R
V with vth entry b(v)/a(v),√

b = b
1
2 is the vector in R

V with vth entry b(v)
1
2 ,

b− 1
2 is the vector in R

V with vth entry b(v)− 1
2 ,

∆b is the V × V diagonal matrix with diagonal b.

We set (b/a)v := 0 if av = 0 and (b− 1
2 )v := 0 if bv = 0. (This will turn out not to

harm the consistency.)
Moreover, we define, for any graph G = (V, E) and any symmetric matrix M :

(67.24) LG := the set of symmetric V × V matrices A with Au,v = 0 if u = v
or u and v are nonadjacent;
Λ(M) := the largest eigenvalue of M ,
PSD := the set of symmetric positive semidefinite matrices.



1160 Chapter 67. Perfect graphs: polynomial-time solvability

We usually restrict PSD to appropriate dimensions, like V × V . We define for any
two matrices X, Y (of equal dimensions) the ‘inner product’ X • Y by

(67.25) X • Y := Tr(XY T).

So if X ∈ MG and Y ∈ LG, then X • Y = 0.

A min-max relation for ϑw(G)

ϑw(G) is defined as a maximum. Applying convex duality, we can describe ϑw(G)
alternatively as a minimum (Lovász [1979d]):

Theorem 67.7. For each w ∈ R
V
+:

(67.26) ϑw(G) = min{Λ(W + A) | A ∈ LG},

where W :=
√

w
√

w
T.

Proof. Let M maximize
√

w
T
M

√
w over PSD ∩ MG. So ϑw(G) =

√
w

T
M

√
w.

To prove ≤ in (67.26), let A ∈ LG attain the minimum in (67.26) and let
λ := Λ(W + A). Then Y := λI − W − A is positive semidefinite, and hence

(67.27) 0 ≤ Y • M = (λI − W − A) • M = λTrM − W • M = λ − √
w

T
M

√
w

= Λ(W + A) − ϑw(G).

To prove ≥ in (67.26), we use convexity theory. Since M maximizes W •M over
the intersection of the convex sets PSD and MG, there exist supporting hyperplanes
{X | C • X = γ} of PSD and {X | D • X = δ} of MG such that

(67.28) PSD ⊆ {X | C • X ≥ γ}, MG ⊆ {X | D • X ≥ δ}, C • M = γ,
D • M = δ, and W = C + D.

Since PSD and MG consist of symmetric matrices only, we can assume that C and
D are symmetric (we can replace them by 1

2 (C + CT) and 1
2 (D + DT)).

Since PSD is a convex cone, we have γ = 0. Then C ∈ PSD, as xxT ∈ PSD for
each x ∈ R

V , hence xTCx = C • (xxT) ≥ 0.
Since MG is an affine space and since D •M = δ, we have MG ⊆ {X | D •X =

δ}. This implies that D = δ · I − A for some A ∈ LG (since each symmetric 0, 1
matrix containing precisely one 1 belongs to MG; the matrix remains to belong to
MG after putting a nonzero entry in any nonadjacent position and its transpose).
So

(67.29) δ = D • M = (W − C) • M = W • M .

As C is positive semidefinite, δ · I − W − A is positive semidefinite. Hence

(67.30) Λ(W + A) ≤ δ = W • M = ϑw(G).

The product ϑ(G)ϑ(G) is at least |V |

For perfect graphs G = (V, E), we have α(G)ω(G) ≥ |V |, and hence ϑ(G)ϑ(G) ≥
|V |. The latter inequality holds for any graph G. To prove it, we use the following
fact from matrix theory:
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(67.31) If X and Y are symmetric positive semidefinite n × n matrices, then
also X ∗ Y is positive definite,

where X ∗ Y is the n × n matrix given by: (X ∗ Y )i,j = Xi,jYi,j . (67.31) follows
from the fact that there exist vectors u1, . . . , un and v1, . . . , vn with Xi,j = uT

i uj

and Yi,j = vT
i vj for all i, j. Hence (X ∗ Y )i,j = (ui ◦ vi)T(uj ◦ vj) for all i, j, where

◦ denotes tensor product13. So X ∗ Y is positive semidefinite.

Theorem 67.8. ϑ(G)ϑ(G) ≥ |V | for each graph G = (V, E).

Proof. By (67.26), there exist A ∈ LG and B ∈ LG with

(67.32) ϑ(G) = Λ(J + A) and ϑ(G) = Λ(J + B).

So C := ϑ(G) · I − J − A and D := ϑ(G) · I − J − B are positive semidefinite. Now

(67.33) C ∗ D + C ∗ J + J ∗ D = (C + J) ∗ (D + J) − J ∗ J
= (ϑ(G) · I − A) ∗ (ϑ(G) · I − B) − J = ϑ(G)ϑ(G) · I − J

(as A ∗ I = I ∗ B = A ∗ B is the all-zero matrix). By (67.31), the first matrix in
(67.33) is positive semidefinite, hence also the last. So

(67.34) 0 ≤ 1T(ϑ(G)ϑ(G) · I − J)1 = ϑ(G)ϑ(G)|V | − |V |2,

implying the theorem.

The convex body TH(G)

The function ϑw(G) is related to a convex body TH(G) defined in Grötschel, Lovász,
and Schrijver [1986]. The following equivalent representation of TH(G) was given
by Lovász and Schrijver [1991].

For any symmetric matrix A, define the matrix R(A) by:

(67.35) R(A) :=
(

1 aT

a A

)
,

where a := diagA (the diagonal vector of A; that is, ai = Ai,i for each coordinate
i).

Given a graph G = (V, E), consider the collection RG of symmetric V × V
matrices A with R(A) positive semidefinite and with Au,v = 0 for distinct adjacent
u, v. Then define:

(67.36) TH(G) = {diagA | A ∈ RG}.

Theorem 67.9. TH(G) is convex and down-monotone in R
V
+.

Proof. TH(G) is convex, as it is a projection of the convex set RG. Moreover, if
a ∈ TH(G) and 0 ≤ b ≤ a, then b ∈ TH(G). Indeed, since a ∈ TH(G), there exists
a matrix A ∈ RG with a = diagA. Then the matrix

(67.37)
(

1 0
0 ∆b/a

)(
1 aT

a A

)(
1 0
0 ∆b/a

)
=
(

1 bT

b ∆b/aA∆b/a

)

13 The tensor product of vectors x ∈ R
U and y ∈ R

V is the vector x ◦ y in R
U×V defined

by: (x ◦ y)(u,v) := xuyv for u ∈ U and v ∈ V .
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is positive semidefinite. As the vth entry on the diagonal of ∆b/aA∆b/a is equal to
b(v)2/a(v) (or 0 if a(v) = 0), which is at most b(v), we have that

(67.38) ∆b/aA∆b/a + (∆b−b2/a)

belongs to RG and has diagonal equal to b. This proves that b ∈ TH(G), and hence
TH(G) is down-monotone.

To obtain a relation of TH(G) with the function ϑw(G), we first show the
following, where for x, y ∈ R

V , x ∗ y is the vector in R
V defined by:

(67.39) (x ∗ y)v := xvyv for v ∈ V .

Theorem 67.10. Let M maximize
√

w
T
M

√
w over PSD ∩ MG. Then

(67.40) M
√

w = ϑw(G) · b ∗ w− 1
2 ,

where b := diagM .

Proof. The maximum of

(67.41)
√

w
T
∆xM∆x

√
w

over x ∈ R
V satisfying xT∆bx = 1, is attained by x = 1. (Otherwise we can replace

M by ∆xM∆x to increase
√

w
T
M

√
w.) Now (67.41) is equal to

(67.42) xT∆√
wM∆√

wx.

So the maximum of (67.42) over x ∈ R
V satisfying xT∆bx = 1, is attained by x = 1.

Hence, by Lagrange’s theorem, there exists a µ ∈ R with

(67.43) ∆√
wM∆√

w1 = µ · ∆b1 = µ · b.

Then

(67.44) ϑw(G) =
√

w
T
M

√
w = 1T∆√

wM∆√
w1 = µ1Tb = µTrM = µ.

(67.43) and (67.44) give

(67.45) M
√

w = M∆√
w1 = µ · w− 1

2 ∗ b = ϑw(G) · b ∗ w− 1
2 ,

which is (67.40).

Now the relation of TH(G) with ϑw(G) is:

Theorem 67.11. For each w ∈ R
V
+:

(67.46) ϑw(G) = max{wTx | x ∈ TH(G)}.

Proof. I. We first show ≤ in (67.46). Let M be a matrix maximizing
√

w
T
M

√
w

over the positive semidefinite matrices M ∈ MG. It suffices to show that the matrix

(67.47) A := ϑw(G) · ∆
w

− 1
2
M∆

w
− 1

2

belongs to RG, since wTdiagA = ϑw(G)TrM = ϑw(G).
Trivially, Au,v = 0 for distinct adjacent u, v (since Mu,v = 0 for distinct adjacent

u, v). To see that R(A) is positive semidefinite, write a := diagA, b := diagM ,
and ϑ := ϑw(G). By (67.40) we have M

√
w = ϑ · b ∗ w− 1

2 . So ∆
w

− 1
2
M

√
w =

ϑ · ∆
w

− 1
2

(b ∗ w− 1
2 ) = ϑ · (b/w). Hence
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(67.48) R(A) =
(

1 aT

a A

)
=

(
1 ϑ · (b/w)T

ϑ · (b/w) ϑ · ∆
w

− 1
2
M∆

w
− 1

2

)

=

(
ϑ−1√w

T
M

√
w

√
w

T
M∆

w
− 1

2

∆
w

− 1
2
M

√
w ϑ · ∆

w
− 1

2
M∆

w
− 1

2

)
= ϑ−1 · UTMU,

where U is the matrix given by

(67.49) U := (
√

w ϑ · ∆
w

− 1
2

).

So R(A) is positive semidefinite.
II. To see ≥ in (67.46), let A ∈ RG maximize wTdiagA. Define a := diagA,

η := wTa, and

(67.50) M := η−1 · ∆
w

1
2
A∆

w
1
2
.

Trivially, M is positive semidefinite and belongs to MG. Also

(67.51) 0 ≤ (η, −wT)
(

1 aT

a A

)(
η

−w

)
= η2 − 2η · wTa + wTAw

= η
√

w
T
M

√
w − η2.

Therefore
√

w
T
M

√
w ≥ η, which proves ≥ in (67.46).

(67.46) implies that ϑw(G) is a convex function of w and that

(67.52) TH(G) = {x ∈ R
V
+ | wTx ≤ ϑw(G) for each w ∈ R

V
+}.

By (67.8),

(67.53) αw(G) ≤ ϑw(G) ≤ χ∗
w(G).

This gives:

Corollary 67.11a. For each graph G = (V, E):

(67.54) Pstable set(G) ⊆ TH(G) ⊆ A(Pclique(G)).

Proof. This follows directly from Theorem 67.11 with the inequalities (67.53), since
for each w ∈ R

V
+ :

(67.55) αw(G) = max{wTx | x ∈ Pstable set(G)},
ϑw(G) = max{wTx | x ∈ TH(G)},
χ∗

w(G) = max{wTx | x ∈ A(Pclique(G))}.

The antiblocking body of TH(G)

It turns out that taking the antiblocking body A(TH(G)) of TH(G) corresponds to
replacing G by its complement (Grötschel, Lovász, and Schrijver [1986]). We first
observe that

(67.56) A(TH(G)) = {w ∈ R
V
+ | ϑw(G) ≤ 1},
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since for each w : V → R+: w ∈ A(TH(G)) ⇐⇒ max{wTx | x ∈ TH(G)} ≤ 1
⇐⇒ ϑw(G) ≤ 1.

Theorem 67.12. A(TH(G)) = TH(G).

Proof. I. We first show A(TH(G)) ⊆ TH(G). Let w ∈ A(TH(G)); that is (by
(67.56)), ϑw(G) ≤ 1. To show that w belongs to TH(G) we should show by (67.52)
that

(67.57) wTa ≤ ϑa(G)

for each a ∈ R
V
+ .

By (67.26), there exist A ∈ LG and B ∈ LG such that

(67.58) ϑw(G) = Λ(
√

w
√

w
T + A) and ϑa(G) = Λ(

√
a
√

a
T + B).

So C := ϑw(G) · I − √
w

√
w

T − A and D := ϑa(G) · I − √
a
√

a
T − B are positive

semidefinite. Therefore, the matrix

(67.59) ϑw(G)ϑa(G)·I−√
w ∗ a

√
w ∗ a

T = C∗D+C∗(
√

a
√

a
T)+(

√
w

√
w

T)∗D

is positive semidefinite by (67.31) (note that A ∗ I = I ∗ B = A ∗ B is the all-zero
matrix). Hence

(67.60) 0 ≤ √
w ∗ a

T(ϑw(G)ϑa(G) · I − √
w ∗ a

√
w ∗ a

T)
√

w ∗ a

= ϑw(G)ϑa(G)
√

w ∗ a
T√

w ∗ a − √
w ∗ a

T√
w ∗ a

√
w ∗ a

T√
w ∗ a

= ϑw(G)ϑa(G)wTa − (wTa)2,

implying (67.57).
II. To prove TH(G) ⊆ A(TH(G)), let w ∈ TH(G). By (67.56) we should prove

ϑw(G) ≤ 1.
Let B maximize

√
w

T
B

√
w over PSD ∩ MG. Let b := diagB and define

(67.61) C := ∆√
w/b

B∆√
w/b

.

Then, with (67.40),

(67.62) C
√

b = ∆√
w/b

B
√

w = µ · ∆√
w/b

b ∗ w− 1
2 = µ ·

√
b,

where µ := ϑw(G). So C has
√

b as eigenvector, with eigenvalue µ. Since C is
positive semidefinite, also the matrix

(67.63) C − µ(
√

b
√

b
T
)

is positive semidefinite. Hence the matrix

(67.64) ∆
w

− 1
2

(C − µ ·
√

b
√

b
T
)∆

w
− 1

2
= ∆

b
− 1

2
B∆

b
− 1

2
− µ ·

√
b/w

√
b/w

T

is positive semidefinite.
Define A := I −∆

b
− 1

2
B∆

b
− 1

2
and z := b/w. So A ∈ LG and µ ·√z

√
z

T + A has

largest eigenvalue at most 1. Hence ϑz(G) ≤ µ−1, and so

(67.65) ϑw(G)ϑz(G) = µϑz(G) ≤ 1 = TrB = bT1 = wTz ≤ ϑz(G),

where the last inequality holds as w ∈ TH(G). Hence ϑw(G) ≤ 1.
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Facets of TH(G)

A subset F of TH(G) is called a facet of TH(G) if there is an inequality cTx ≤ γ
(with c �= 0) which is valid for TH(G), such that F is the set of vectors in TH(G)
having equality and such that F has dimension |V | − 1. Then (Grötschel, Lovász,
and Schrijver [1986]):

Theorem 67.13. For each graph G = (V, E), each facet F of TH(G) is determined
by an inequality xv ≥ 0 for some v ∈ V or by x(C) ≤ 1 for some clique C of G.

Proof. Let F be determined by the inequality cTx ≤ γ. If there is a v ∈ V with
xv = 0 for each x ∈ F , then F is determined by the inequality xv ≥ 0. So we can
assume that x > 0 for some x ∈ F . Since TH(G) = A(TH(G)), there is a w ∈ R

V
+

with ϑw(G) = 1 and F is determined by wTx ≤ 1. So w ∈ TH(G), and therefore
there is a matrix A ∈ RG with diagA = w. As A ∈ RG, the matrix R(A) is positive

semidefinite. Hence there exist linearly independent vectors
(

αi

ai

)
(i = 1, . . . , k)

such that

(67.66)
(

1 wT

w A

)
= R(A) =

k∑

i=1

(
αi

ai

)
(αi, a

T
i ).

We can assume that αi ≥ 0 for each i = 1, . . . , k. Now

(67.67) aT
i x = αi for each x ∈ F and each i = 1, . . . , k.

To see this, choose x ∈ F . As x ∈ TH(G), there is a matrix B ∈ RG with diagB = x.
Since R(B) is positive semidefinite, also the matrix

(67.68) B′ :=
(

1 −xT

−x B

)

is positive semidefinite. We therefore have (where again X • Y := Tr(XY T)):

(67.69)
k∑

i=1

(αi, a
T
i )B′

(
αi

ai

)
= R(A)•B′ = 1−2wTx+A•B = 1−2wTx+wTx

= 0.

(Here A • B = wTx follows from the fact that A ∈ RG, B ∈ RG, diagA = w, and
diagB = x.)

Since B′ is positive semidefinite, (67.69) implies that, for each i = 1, . . . , k:

(67.70) (αi, a
T
i )B′

(
αi

ai

)
= 0,

and therefore

(67.71) B′
(

αi

ai

)
= 0.

In particular,

(67.72) (1, −xT)
(

αi

ai

)
= 0,
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that is, aT
i x = αi, proving (67.67).

Since F is a facet, and since the
(

αi

ai

)
are linearly independent, we know k = 1.

So

(67.73)
(

1 wT

w A

)
=
(

α1

a1

)
(α1, a

T
1 ).

Since α1 ≥ 0, this implies α1 = 1 and a1 = w. Since diagA = w, we know w(v)2 =
w(v) for each v ∈ V , and so w ∈ {0, 1}V . Hence A = χC(χC)T for some C ⊆ V . As
Au,v = 0 for distinct nonadjacent u, v, we know that C is a clique.

This gives as consequence:

Corollary 67.13a. TH(G) is a polytope if and only if G is perfect.

Proof. If G is perfect, we have

(67.74) Pstable set(G) ⊆ TH(G) ⊆ A(Pclique(G)) = Pstable set(G),

implying that TH(G) = Pstable set(G), and therefore is a polytope.
To see the reverse implication, if TH(G) is a polytope, by (67.54) and Theorem

67.13, TH(G) is fully determined by the nonnegativity and clique inequalities; that
is,

(67.75) TH(G) = A(Pclique(G)).

Since also A(TH(G)) = TH(G) is a polytope, we know similarly that TH(G) =
A(Pclique(G)). Hence

(67.76) TH(G) = A(TH(G)) = Pclique(G) = Pstable set(G).

(67.75) and (67.76) imply that Pstable set(G) = A(Pclique(G)), and therefore G is
perfect by Corollary 65.2e.

Characterizing perfection by ϑ(G)

Lovász [1983b] showed that perfection can be characterized by the function ϑ(G).
To this end, Lovász first proved:

Theorem 67.14. If G is a partitionable graph, then

(67.77) α(G) < ϑ(G) < χ∗(G).

Proof. Let M be the incidence matrix of the maximum-size stable sets in G and
let N be the incidence matrix of the maximum-size cliques of G. Define n := |V G|,
α := α(G), and ω := ω(G). We first show the second inequality.

Let λ be the smallest eigenvalue of NTN . Since N is nonsingular (Theorem
65.9), we know λ > 0, and since Tr(NTN) = nω and NTN1 = ω2 · 1, we know
λ < ω (otherwise Tr(NTN) ≥ ω2 + (n − 1)ω > nω). So

(67.78) NTN − λI − ω2 − λ

n
J
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is positive semidefinite, and therefore

(67.79)
n(ω − λ)
ω2 − λ

I − J +
n

ω2 − λ
(NTN − ωI)

is positive semidefinite. So (using (67.26) and (65.24))

(67.80) ϑ(G) ≤ Λ(J − n

ω2 − λ
(NTN − ωI)) ≤ n(ω − λ)

ω2 − λ
<

n

ω
= χ∗(G).

So we have the second inequality in (67.77), which implies the first, since:

(67.81) ϑ(G) ≥ n

ϑ(G)
>

n

χ∗(G)
= α,

by (65.24) and Theorem 67.8.

This implies a characterization of perfect graphs:

Corollary 67.14a. For any graph G, the following are equivalent:

(67.82) (i) G is perfect,
(ii) α(H) = ϑ(H) for each induced subgraph H of G,

(iii) ϑ(H) = χ∗(H) for each induced subgraph H of G,
(iv) ϑ(H) is an integer for each induced subgraph H of G.

Proof. Directly from Theorem 67.14, using (65.24).

67.4b. The Shannon capacity Θ(G)

Shannon [1956] introduced the following parameter Θ(G), now called the Shannon
capacity of a graph G.

The strong product G · H of graphs G and H is the graph with vertex set
V G×V H, with two distinct vertices (u, v) and (u′, v′) adjacent if and only if u and
u′ are equal or adjacent in G and v and v′ are equal or adjacent in H.

The strong product of k copies of G is denoted by Gk. Then the Shannon
capacity Θ(G) of G is defined by:

(67.83) Θ(G) = sup
k

k
√

α(Gk).

(The interpretation is that if V is an alphabet, and adjacency means ‘confusable’,
then α(Gk) is the maximum number of k-letter words any two of which have un-
equal and inconfusable letters in at least one position. Then Θ(G) is the maximum
possible ‘information rate’.)

Since α(Gk+l) ≥ α(Gk)α(Gl), we know by Fekete’s lemma (Corollary 2.2a) that

(67.84) Θ(G) = lim
k→∞

k
√

α(Gk).

Guo and Watanabe [1990] showed that there exist graphs G for which Θ(G) is not
achieved by a finite product (that is, k

√
α(Gk) < Θ(G) for each k).

Since α(Gk) ≥ α(G)k, we have

(67.85) α(G) ≤ Θ(G),
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while strict inequality may hold: the 5-circuit C5 has α(C5) = 2 and α(C2
5 ) = 5. (If

C5 has vertices 1, . . . , 5 and edges 12, 23, 34, 45, and 51, then (1, 1), (2, 3), (3, 5),
(4, 2), (5, 4) is a stable set in C2

5 .) So Θ(C5) ≥ √
5, and Shannon [1956] raised the

question if equality holds here. Shannon proved Θ(C5) ≤ 5
2 ; more generally, he

proved, for any graph G:

(67.86) Θ(G) ≤ χ∗(G),

where χ∗(G) is the fractional clique cover number. This bound can be proved by
showing that

(67.87) χ∗(G · H) ≤ χ∗(G)χ∗(H).

This follows from the fact that if C and D are cliques of G and H respectively,
then C × D is a clique of G · H; hence if λ : C → R+ and µ : D → R+ are
minimum fractional clique covers for G and H respectively, where C and D denote
the collections of cliques of G and H respectively, then (where ◦ denotes tensor
product — see footnote on page 1161, and 1U denotes the all-one vector in R

U , for
any set U)

(67.88)
∑

C∈C

∑

D∈D
λCµDχC×D =

∑

C∈C

∑

D∈D
λCµD(χC ◦ χD)

=
(∑

C∈C
λCχC) ◦ (

∑

D∈D
µDχD) = 1V G ◦ 1V H = 1V G×V H

and hence

(67.89) χ∗(G · H) ≤
∑

C∈C

∑

D∈D
λCµD =

(∑

C∈C
λC

)( ∑

D∈D
µD

)
= χ∗(G)χ∗(H).

This proves (67.87) (in (67.112) we show equality).
(67.87) implies (67.86), since

(67.90) k
√

α(Gk) ≤
√

χ∗(Gk) ≤
√

χ∗(G)k = χ∗(G).

This bound was improved by Lovász [1979d] as follows (which will imply that
Θ(C5) =

√
5):

Theorem 67.15. Θ(G) ≤ ϑ(G) for each graph G.

Proof. Since α(G) ≤ ϑ(G), it suffices to show that for each k: α(Gk) ≤ ϑ(G)k. For
this it suffices to show that

(67.91) ϑ(G · H) ≤ ϑ(G)ϑ(H)

for any graphs G and H.
By (67.26), there exist matrices A ∈ LG and B ∈ LH such that

(67.92) ϑ(G) = Λ(JV G + A) and ϑ(H) = Λ(JV H + B),

where JU denotes the U × U all-one matrix, for any set U . Hence the matrices

(67.93) C := ϑ(G) · IV G − JV G − A and D := ϑ(H) · IV H − JV H − B

are positive semidefinite, where IU denotes the U × U identity matrix, for any set
U .

Therefore, also the following matrix14 is positive semidefinite:
14 The tensor product of a W × X matrix M and a Y × Z matrix N (where W, X, Y, Z are

sets), is the (W × Y ) × (X × Z) matrix M ◦ N defined by
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(67.94) C ◦ D + C ◦ JV H + JV G ◦ D = (C + JV G) ◦ (D + JV H) − JV G ◦ JV H

= (ϑ(G) · IV G − A) ◦ (ϑ(H) · IV H − B) − JV G×V H

= ϑ(G)ϑ(H) · IV G×V H − JV G×V H − M ,

where M := ϑ(G) · IV G ◦ B + ϑ(H)A ◦ IV H − A ◦ B. Since IV G ◦ B, A ◦ IV H , and
A ◦ B belong to LG·H ,15 also M belongs to LG·H . Therefore,

(67.95) ϑ(G · H) ≤ Λ(JV G×V H + M) ≤ ϑ(G)ϑ(H),

giving (67.91).

This proof consists of showing the inequality (67.91) for any two graphs G and
H. In fact, equality holds (Lovász [1979d]):

(67.96) ϑ(G · H) = ϑ(G)ϑ(H).

Indeed, let M and N attain the maximum in definition (67.1) for ϑ(G) and ϑ(H)
respectively. Then M ◦ N ∈ MG·H , and hence

(67.97) ϑ(G · H) ≥ 1T
V G×V H(M ◦ N)1V G×V H = (1T

V GM1V G)(1T
V HN1V H)

= ϑ(G)ϑ(H).

Theorem 67.15 implies that Θ(C5) =
√

5. One may give an explicit construction
to prove this, but it also follows from the following general result (Lovász [1979d]):16

Theorem 67.16. For each graph G = (V, E): ϑ(G)ϑ(G) ≥ |V |, with equality if G
is vertex-transitive.

Proof. The inequality is Theorem 67.8. If G is vertex-transitive, then 1Tx is max-
imized over TH(G) at a vector x = µ · 1 for some µ ∈ R, since if it is maximized at
x we can replace it by

(67.98)
1

|Γ |
∑

P∈Γ

Px,

where Γ is the group of permutation matrices representing automorphisms of G.
(This follows from the fact that Px ∈ TH(G) and 1TPx = 1Tx.)

As the maximum value is equal to ϑ := ϑ(G), we know 1Tx = ϑ, and so
µ = ϑ/n, where n := |V |. Since x ∈ TH(G) = A(TH(G)) (by Theorem 67.12), we
have ϑx(G) ≤ 1; hence (as x = µ ·1) ϑ(G) ≤ µ−1 = n/ϑ. This shows ϑ(G)ϑ(G) ≤ n.

(M ◦ N)(w,y),(x,z) := Mw,xNy,z

for w ∈ W , x ∈ X, y ∈ Y , z ∈ Z. If M and N are symmetric positive semidefinite
matrices, then M ◦ N is symmetric and positive semidefinite again, since if M = UTU
and N = V TV , then M ◦ N = (U ◦ V )T(U ◦ V ).

15 To see this, let (u, v) and (u′, v′) be equal or nonadjacent. Then (by definition of G ·H)
u = u′ and v = v′, or u 
= u′ and u and u′ are nonadjacent, or v 
= v′ and v and v′ are
nonadjacent. Hence (IV G)u,u′ = 0 or Bv,v′ = 0, and Au,u′ = 0 or (IV H)v,v′ = 0, and
Au,u′ = 0 or Bv,v′ = 0.

16 An automorphism of a graph G = (V, E) is a permutation π : V → V with E =
{{π(u), π(v)} | {u, v} ∈ E}. The graph G is vertex-transitive if for all u, v ∈ V there
exists an automorphism π with π(u) = v.
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Since C5 is isomorphic to C5, Theorem 67.16 gives ϑ(C5) =
√

5. So Θ(G) ≤ √
5.

As Θ(G) ≥√α(C2
5 ) =

√
5, one has Θ(G) =

√
5.

Another consequence of Theorem 67.16 is that for any vertex-transitive graph
G: Θ(G · G) = |V G|, since the pairs (v, v) for v ∈ V G form a stable set in G · G (so
Θ(G · G) ≥ |V G|), and since Θ(G · G) ≤ ϑ(G · G) = ϑ(G)ϑ(G) = |V G|. If moreover
G is self-complementary (like C5), then Θ(G) =

√|V G|.
For graphs that are not vertex-transitive, ϑ(G)ϑ(G) > |V G| may hold, even

α(G)α(G) > |V G|, for instance for G = K1,2.
Lovász [1979d] also gave the value of ϑ(Cn) for any odd circuit Cn:

(67.99) ϑ(Cn) =
n cos(π/n)

1 + cos(π/n)
for odd n.

For odd n ≥ 7, it is unknown if this is the value of Θ(Cn). Since each Cn is vertex-
transitive, by Theorem 67.16 we can derive from (67.99) the value of ϑ(Cn) for odd
n.

Lovász asked the question if Θ(G) = ϑ(G) for each graph G. This was answered
in the negative by Haemers [1979], by giving the following alternative upper bound
on the Shannon capacity of a graph G = (V, E). Let η(G) be the minimum rank of
a V ×V matrix M (over any field) such that Mv,v = 1 for each v ∈ V and Mu,v = 0
for distinct nonadjacent u and v. Then

(67.100) Θ(G) ≤ η(G).

This follows from the facts that α(G) ≤ η(G) (since any stable set S in G gives an
S×S identity submatrix of M), and that η(G·H) ≤ η(G)η(H) (since rank(M◦N) =
rank(M)rank(N) for any two matrices (over the same field)). Moreover, one has
η(G) ≤ χ(G) (by considering, for any clique cover of G, the {0, 1} matrix M with
Mu,v = 1 if and only if u and v belong to some clique in the clique cover).

Haemers gave a graph G on 27 vertices (the complement of the ‘Schläfli graph’)
with η(G) ≤ 7 and ϑ(G) = 9, implying Θ(G) ≤ 7 < ϑ(G). Since ϑ(G) = 3, this
also gives an example of a graph G satisfying Θ(G)Θ(G) < |V G| and (hence)
Θ(G)Θ(G) < Θ(G · G). (This disproves the conjecture of Shannon [1956] that
Θ(G)Θ(H) = Θ(G · H) for all graphs G, H, and answering to the negative the
question of Lovász [1979d] whether Θ(G)Θ(G) ≥ |V G| for all graphs G.)

It is unknown if Haemers’ bound η(G) can be computed in polynomial time.
(Peeters [1996] reports results on this. More work on Haemers’ bound in Haemers
[1981].)

The following bound follows with a method of Rosenfeld [1967]:

(67.101) α(G · H) ≤ χ∗(G)α(H).

To see this, let C1, . . . , Ck be cliques in G and λ1, . . . , λk ≥ 0 be such that

(67.102) λ1χ
C1 + · · · + λkχCk = 1V G and λ1 + · · · + λk = χ∗(G).

Let S ⊆ V G × V H be a stable set in G · H of size α(G · H). For each u ∈ V G, let
Su := {v ∈ V H | (u, v) ∈ S}. Then Su is a stable set of H, and if u and u′ are
adjacent vertices of G, then Su ∩ Su′ = ∅. For each i = 1, . . . , k, let

(67.103) Ti := {v ∈ V H | ∃u ∈ Ci : (u, v) ∈ S} =
⋃

u∈Ci

Su.

Since Ci is a clique in G, Ti is a stable set in H, and |Ti| =
∑

u∈Ci
|Su|. Hence
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(67.104) |S| =
∑

u∈V G

|Su| =
k∑

i=1

λi

∑

u∈Ci

|Su| =
k∑

i=1

λi|Ti| ≤
k∑

i=1

λiα(H)

= χ∗(G)α(H).

This shows (67.101).
Rosenfeld [1967] showed that for each graph G:

(67.105) α(G · H) = α(G)α(H) for each graph H ⇐⇒ α(G) = χ∗(G).

Here ⇐= follows from (67.101). To see =⇒, let x ∈ Q
V G
+ be a vector satisfying

x(C) ≤ 1 for each clique C, and 1Tx = χ∗(G). Let K be a positive integer such
that w := K · x is integer. Let Gw be the graph obtained from G by replacing each
vertex u by a clique Cu of size w(u) (where vertices in distinct Cu, Cu′ are adjacent
if and only if u and u′ are adjacent). Then ω(Gw) ≤ K. Hence for H := Gw we
have α(H) ≤ K.

Now let

(67.106) S := {(u, v) | u ∈ V G, v ∈ Cu}.

Then S is a stable set in G · H, since if (u, v) and (u′, v′) are distinct elements in
S, then, if u = u′, v and v′ belong to Cu and hence are nonadjacent in H, and, if
u �= u′, u and u′ are nonadjacent in G or v and v′ are nonadjacent in H.

So |S| ≤ α(G · H) = α(G)α(H). Hence

(67.107) χ∗(G) = 1Tx =
1
K

1Tw =
1
K

|S| ≤ 1
K

α(G)α(H) ≤ α(G).

Hence χ∗(G) = α(G).
More results on the stable set number of products of graphs are given by Vizing

[1963], Barnes and Mackey [1978], and Jha and Slutzki [1994].

The stable set number of products of circuits

The following equality was given by Baumert, McEliece, Rodemich, Rumsey, Stan-
ley, and Taylor [1971] and Markosyan [1971]:

(67.108) α(C2
2k+1) = k2 + � 1

2k.
≤ directly follows from (67.101), since α(C2k+1) = k and χ∗(C2k+1) = k + 1

2 . To
see ≥, we may assume that the vertices of C2k+1 are 0, 1, . . . , 2k, in order. Then
the pairs (2i, �2i/k), for i = 1, . . . , k2 + � 1

2k, where we take integers mod 2k + 1,
form a stable set of size k2 + � 1

2k in C2
2k+1.

Baumert, McEliece, Rodemich, Rumsey, Stanley, and Taylor [1971] showed
moreover the following inequalities (next to several other estimates for α(Ck

n)):

(67.109) α(Ck
n+2) ≥ 1 +

(n + 2)k − 2k

nk
α(Ck

n),

α(Ck
n) ≤ nk − nk−1

2k
,

α(C3
5 ) = 10, α(C4

5 ) = 25, α(C3
7 ) = 33.

Hales [1973] extended (67.108) to:

(67.110) α(C2k+1 · C2l+1) = kl + � 1
2 min{k, l}.

Related results on the stable set number of products of circuits are given by Sonne-
mann and Krafft [1974], Stein [1977], Hell and Roberts [1982], Mead and Narkiewicz
[1982], Vesel [1998], and Vesel and Žerovnik [1998].
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67.4c. Clique cover numbers of products of graphs

As for the analogue of the Shannon capacity for clique cover numbers, McEliece
and Posner [1971] showed that it gives no new parameter. We follow the proof of
Lovász [1975c].

Theorem 67.17. For any graph G:
(67.111) inf

k

k
√

χ(Gk) = lim
k→∞

k
√

χ(Gk) = χ∗(G).

Proof. We first show that for any two graphs G, H:
(67.112) χ∗(G · H) = χ∗(G)χ∗(H).
Here ≤ follows from (67.87). To see ≥, choose vectors x : V G → R+ with x(C) ≤ 1
for each clique, and with x(V G) = χ∗(G), and z : V H → R+ with z(C) ≤ 1 for
each clique, and with z(V H) = χ∗(H). Define y : V G × V H → R+ by
(67.113) y(u, v) := x(u)z(v)
for (u, v) ∈ V G × V H. Then y(C) ≤ 1 for each clique C of G · H, since there
are cliques C′ and C′′ of G and H, respectively, such that C ⊆ C′ × C′′; then
y(C) ≤ y(C′ × C′′) = x(C′)z(C′′) ≤ 1.

Hence
(67.114) χ∗(G · H) ≥ y(V G × V H) = x(V G)z(V H) = χ∗(G)χ∗(H).
This proves (67.112).

To prove (67.111), the first equality follows from Fekete’s lemma (Corollary
2.2a), since χ(Gk+l) = χ(Gk) · χ(Gl). Also we have by (67.112):

(67.115) inf
k

k
√

χ(Gk) ≥ inf
k

k
√

χ∗(Gk) = χ∗(G),

So it suffices to prove the reverse inequality in (67.115). Since ω(Gk) = ω(G)k

and since χ∗(Gk) = χ∗(G)k, we have by Theorem 64.13 (applied to Gk):

(67.116) inf
k

k
√

χ(Gk) ≤ inf
k

k
√

(1 + ln ω(Gk))χ∗(Gk)

= inf
k

k
√

(1 + k ln ω(G))χ∗(G) = χ∗(G),

as required.

An alternative proof was given by Hell and Roberts [1982]. A related infor-
mation-theoretic characterization of perfect graphs was given by Csiszár, Kőrner,
Lovász, Marton, and Simonyi [1990] (proving a conjecture of Kőrner and Mar-
ton [1988]). More on the colouring number of products of graphs can be found in
Borowiecki [1972], Greenwell and Lovász [1974], Vesztergombi [1980,1981], Turźık
[1983], Duffus, Sands, and Woodrow [1985], El-Zahar and Sauer [1985], Puš [1988],
Soukop [1988], Linial and Vazirani [1989], and Klavžar [1996] (survey).

Hales [1973] showed that for all graphs G, H:
(67.117) χ(G · H) ≥ χ∗(G)χ(H),
and
(67.118) χ(C2k+1 · C2l+1) = (k + 1)(l + 1) − � 1

2 min{k, l}�.
McEliece and Taylor [1973] showed that χ(C2

n,t) = �n/t�n/t��, where Cn,t is the
graph obtained from the circuit Cn by adding all chords connecting vertices at
distance less than t in Cn.
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67.4d. A sharper upper bound ϑ′(G) on α(G)

McEliece, Rodemich, and Rumsey [1978] and Schrijver [1979a] gave the following
sharper bound ϑ′(G) on the stable set number α(G), generally sharper than ϑ(G).
Again, let MG be the collection of symmetric V × V matrices satisfying Mu,v = 0
for any two distinct adjacent vertices u and v, and TrM = 1. (Here TrM is the
trace of M (sum of diagonal elements).) Then define

(67.119) ϑ′(G) := max{1TM1 | M ∈ MG nonnegative and positive semi-
definite}.

Here 1 denotes the all-one vector in R
V . Similarly to ϑ(G), the value of ϑ′(G) can

be calculated in polynomial time. Moreover

(67.120) α(G) ≤ ϑ′(G) ≤ ϑ(G)

for each graph G. The first inequality is proved similarly to the proof of the first
inequality in Theorem 67.1, while the second inequality follows from the fact that
the range of the maximization problem for ϑ′(G) is contained in that for ϑ(G).

ϑ′(G) indeed can be a sharper upper bound on the stable set number than ϑ(G),
as M.R. Best (cf. Schrijver [1979a]) found the following example of a graph G with
ϑ′(G) < ϑ(G). The vertex set is {0, 1}6, two vectors being adjacent if and only if
their Hamming distance17 is at most 3. Then ϑ′(G) = 4 whereas ϑ(G) = 16/3.

Schrijver [1979a] gave relations of ϑ′(G) with the linear programming bound
for codes of Delsarte [1973]. Related work can be found in Schrijver [1981a] and
Miklós [1996]. (The polynomial-time computable upper bound for α(G) given by
Luz [1995] is at least ϑ′(G) for all graphs G.)

67.4e. An operator strengthening convex bodies

The matrix method describing TH(G) given in Section 67.4a can be seen as a special
case of a method of improving approximations of the stable set polytope — in fact,
of any polytope with {0, 1} vertices (Lovász and Schrijver [1989,1991]).

Let K be a convex set, let R(A) be defined as in (67.35), and define

(67.121) NK := the collection of symmetric n×n matrices A with R(A) positive
semidefinite, and with Ai ∈ Ai,i · K and diagA − Ai ∈ (1 − Ai,i) · K
for each i = 1, . . . , n,

where Ai denotes the ith column of A.
Define the following new convex set N+(K):

(67.122) N+(K) := {diagA | A ∈ NK}.

Then N+(K) ⊆ [0, 1]n, since R(A) is positive semidefinite. The ellipsoid method
gives, for any collection K of convex sets:

(67.123) if the optimization problem over K is polynomial-time solvable for each
K ∈ K, then also the optimization problem over N+(K) is polynomial-
time solvable for each K ∈ K.

17 The Hamming distance of two vectors of equal dimension is equal to the number of
coordinates in which they differ.
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Indeed, if the optimization problem over K is polynomial-time solvable, then the
membership problem over K is polynomial-time solvable. Hence the membership
problem over NK is polynomial-time solvable, implying that the optimization prob-
lem over NK is polynomial-time solvable. Therefore, the optimization problem over
N+(K) is polynomial-time solvable. (Cf. Chapter 4 of Grötschel, Lovász, and Schrij-
ver [1988].)

Before proving further properties of the operator N+, we note that it commutes
with the following reflection. Define r : R

n → R
n by r(x)1 := 1−x1 and r(x)i := xi

for i = 2, . . . , n, for x ∈ R
n: Then

(67.124) N+(r(K)) = r(N+(K)).

To see this, let, for any n × n matrix A, the matrix A′ be defined by:

(67.125) A′
1,1 := 1 − A1,1; A′

1,i := A′
i,1 := Ai,i − Ai,1 for i = 2, . . . , n;

A′
i,j := Ai,j for i, j = 2, . . . , n.

Then R(A) is positive semidefinite if and only if R(A′) is positive semidefinite, since

(67.126) R(A′) =




1 0 0
1 −1 0
0 0 I



R(A)




1 1 0
0 −1 0
0 0 I



 .

Moreover, A ∈ NK ⇐⇒ A′ ∈ Nr(K) and diagA′ = r(diagA). This gives (67.124).
From this one can derive, if K is compact and convex and intersects [0, 1]n:

(67.127) N+(K) ⊆ K.

For let A ∈ NK and define a := diagA. If a �∈ K, there exists a w ∈ R
n and β ∈ R

with wTx ≤ β for each x ∈ K and wTa > β. Since by (67.124) we can flip signs if
necessary, we can assume w ≥ 0. Then, since for each i the vector Ai belongs to
Ai,i · K,

(67.128) wTAw =
∑

i

wi

(∑

j

wjAi,j

)
=
∑

i

wi(wTAi) ≤
∑

i

wiAi,iβ = βwTa.

Hence

(67.129) 0 ≤ (wTa, −wT)
(

1 aT

a A

)(
wTa
−w

)
= (wTa)2 − 2(wTa)2 + wTAw

≤ −(wTa)2 + β · wTa = (β − wTa)wTa < 0,

since β − wTa < 0 and wTa > β ≥ 0 (since β ≥ wTx ≥ 0 for any x ∈ K ∩ [0, 1]n).
This is a contradiction, showing (67.127).

Moreover, if K ⊆ [0, 1]n, then N+(K) remains to contain the integer hull of K:

(67.130) (N+(K))I = KI.

To see this, it suffices to show that x ∈ N+(K) for each 0,1 vector x in K. Obviously,
A := xxT belongs to NK . Hence x = diagA belongs to N+(K). This proves (67.130).

Finally, if K ⊆ [0, 1]n, then repeated application of the N+ operator gives the
integer hull KI of K. In fact, one has:

(67.131) Nn
+(K) = KI.

This follows from the fact that for each j = 1, . . . , n:
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(67.132) N+(K) ⊆ conv.hull{x ∈ K | xj ∈ {0, 1}}.

To see this, we may assume that j = n. Let a ∈ N+(K), with a = diagA and
A ∈ NK . Then An ∈ an · K and (a − An) ∈ (1 − an) · K. If an ∈ {0, 1}, then a
belongs to the right-hand side of (67.132). So we can assume that 0 < an < 1. Set

(67.133) a′ := 1
an

An and a′′ := 1
1−an

(a − An).

Then a′ and a′′ belong to K, and a′
n = 1, a′′

n = 0. As a = an · a′ + (1 − an) · a′′, we
have that a belongs to the right-hand side of (67.132). This proves (67.132).

(67.131) implies that, when starting with K := TH(G), we can obtain better
and better approximations of Pstable set(G) by applying the N+ operator. After any
fixed number of iterations, we can optimize over the convex body in polynomial
time, by (67.123).

Stephen and Tunçel [1999] showed that for the line graph G = L(K2n+1) of the
complete graph K2n+1, when starting with the polytope determined by the non-
negativity and edge constraints ((64.10) in Section 64.5), the number of iterations
is precisely n. Related results were given by Cook and Dash [2001].

Leaving out the positive semidefiniteness condition in NK yields a weaker oper-
ator N(K), which however still satisfies a number of the above properties, including
(67.131). The operator N(K) is a special case of a more general operator introduced
by Sherali and Adams [1990].

Results relating a related operator to perfection of graphs were given by Aguil-
era, Escalante, and Nasini [2002].

67.4f. Further notes

Juhász [1982] showed that for a random graph G on n vertices, ϑ(G) is of the order√
n, while Θ(G) is ‘likely’ to be of the order log n. Knuth [1994] asked if there is

a constant c such that ϑ(G) ≤ c
√

nα(G) for each graph G. This was answered
negatively by Feige [1995,1997], who showed that there is a constant c > 0 such
that

(67.134) ϑ(G) > α(G)n/2c
√

log n

for infinitely many graphs G (where n := |V G|).
The results of Kashin and Konyagin [1981] and Konyagin [1981] imply that if

α(G) ≤ 2, then ϑ(G) ≤ 2
2
3 n

1
3 and (in the worst case) ϑ(G) = Ω(n

1
3 /

√
log n).

Karger, Motwani, and Sudan [1994,1998] showed the existence of a constant
c > 0 such that

(67.135) χ(G) ≤ n
1− c

ϑ(G)

for each graph G (where n := |V G|). More on approximating α(G) or χ(G) by ϑ(G)
can be found in Szegedy [1994] and Charikar [2002].

Kleinberg and Goemans [1998] observed that for any graph G:

(67.136) τ(G) ≤ 2(|V | − ϑ(G)) ≤ 2τ(G)

(where τ(G) is the vertex cover number of G), and they showed that the factor 2
cannot be improved. Thus the factor 2 as relative error of ν(G) for approximating
τ(G) is not improved by 2(|V | − ϑ(G)).
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Fast practical algorithms to compute ϑ(G), based on interior-point methods,
were developed by Alizadeh [1991,1995]. The latter paper also gives a survey on
applying semidefinite programming to combinatorial optimization.

A colouring algorithm for perfect graphs based on decomposition was described
by Hsu [1986]. An on-line colouring algorithm for perfect graphs (not necessarily
yielding an optimum colouring) was given by Kierstead and Kolossa [1996]. An
algorithm for colouring some perfect graphs was given by Aı̈t Haddadène, Gravier,
and Maffray [1998]. Kratochvil and Sebő [1997] studied the complexity of colouring
a perfect graph if some vertices are pre-coloured. Brandstädt [1987] showed the NP-
completeness of several optimization problems for special classes of perfect graphs,
like finding a minimum feedback vertex set or a minimum dominating set.

Introductory surveys were given by Knuth [1994] and Goemans [1997] on ϑ(G),
by Grötschel, Lovász, and Schrijver [1984c] on polynomial-time algorithms for clique
and colouring problems in perfect graphs, and by Reed [2001a] on semi-definite
programming in relation to perfect graphs. Another characterization of perfection
in terms of TH(G) was given by Shepherd [2001].

A generalization of ϑ(G) was given by Narasimhan and Manber [1990]. A gen-
eralization of the Shannon capacity to directed graphs was studied by Bidamon and
Meyniel [1985]. An analogue of the Shannon capacity based on the ‘independent
domination number’ of a graph, was investigated by Farber [1986]. The Shannon
capacity of probabilistic graphs was investigated by Marton [1993].

Further investigations of eigenvalue methods to bound the Shannon capacity are
reported by Haemers [1995] and Fiol [1999]. Further convex programming duality
phenomena for perfect graphs were found by Wei [1988].

67.4g. Historical notes on perfect graphs

Shannon

As Berge [1997] mentioned, the perfect graph conjectures root in work of Shannon
[1956] concerning the ‘zero error capacity of a noisy channel’. It amounts to a study
of what we now call the Shannon capacity of a graph. Shannon gave the example
of C5 where α(C5) = 2 and α(C2

5 ) = 5, implying Θ(C5) ≥ √
5 > α(C5). Denoting

the logarithm of the Shannon capacity by C0, Shannon remarked:
No method has been found for determining C0 for the general discrete channel,
and this we propose as an interesting problem in coding theory.

Shannon proved the following lower and upper bounds on the Shannon capacity
Θ(G) of a graph G = (V, E). First:

(67.137) max
p

(∑
(pupv | u, v ∈ V, u = v or uv ∈ E)

)−1 ≤ Θ(G),

where p ranges over all p ∈ R
V
+ with

∑
v∈V p(v) = 1. It was observed by Korn [1968]

that this lower bound (and also the lower bound given by Gallager [1965]) is equal
to the stable set number α(G): if pu > 0 and pv > 0 for two adjacent vertices u and
v, either resetting pu := pu +pv and pv := 0, or resetting pv := pu +pv and pu := 0,
would increase the value in (67.137), a contradiction. So the set S := {v | pv > 0}
is a stable set. Then the value in (67.137) is maximized by taking pv := 1/|S| for
v ∈ S. (As we saw in Section 64.9c, this also follows from a theorem of Motzkin
and Straus [1965].)

The upper bound given by Shannon [1956] amounts to:
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(67.138) Θ(G) ≤ χ∗(G).

Shannon formulated and proved this upper bound in terms of information theory
as follows. Let V be an alphabet, let Σ be a set of ‘signals’, and for v ∈ V and
σ ∈ Σ, let pv,σ be the probability that when transmitting symbol v, signal σ is
received. So

∑
σ∈Σ pv,σ = 1 for each v ∈ V . Let G be the graph on V where two

elements u, v ∈ V are adjacent if and only if there is a signal σ with pu,σ > 0 and
pv,σ > 0. For each σ ∈ Σ, define the clique Kσ := {v ∈ V | pv,σ > 0} and the real
number λσ := max{pv,σ | v ∈ V }. So

(67.139)
∑

σ∈Σ

λσχKσ ≥ 1.

Hence, by definition of χ∗(G),

(67.140) χ∗(G) ≤
∑

σ∈Σ

λσ.

Moreover, for any fixed G, the minimum of the right-hand side in (67.140) is equal
to the left-hand side.

For any v = (v1, . . . , vk) ∈ V k and s = (s1, . . . , sk) ∈ Σk define

(67.141) pv,s :=
k∏

i=1

pvi,si and λs :=
k∏

i=1

λsi .

So pv,s is the probability that transmitted word v is received as word s.
Now consider any nonempty ‘code’ C ⊆ V k. The ‘error probability’ of C is

equal to

(67.142) q(C) := min
φ

1
|C|

∑

v∈C

∑
(pv,s | s ∈ Σk, φ(s) �= v),

where φ ranges over all functions φ : Σk → C. So it is the minimum error probability
taken over all possible ‘decoding schemes’ φ. Trivially, this minimum is attained by
the function φ with φ(s) equal to any v ∈ C maximizing pv,s over v ∈ C. So

(67.143) 1 − q(C) =
1

|C|
∑

s∈Σk

max
v∈C

pv,s ≤ 1
|C|

∑

s∈Σk

λs =
1

|C|
(∑

σ∈Σ

λσ

)k.

Therefore,

(67.144) k
√

|C| ≤

∑

σ∈Σ

λσ

k
√

1 − q(C)
.

Now q(C) = 0 if and only if C is stable in Gk. Minimizing over all Σ and probability
distributions pv,σ then yields

(67.145) k
√

|C| ≤ χ∗(G).

So this gives (67.138).
Shannon next observed that if a graph G = (V, E) has a function f : V → V

such that f(u) �= f(v) for any distinct nonadjacent vertices u and v, and such that
f(V ) is a stable set, then Θ(G) = α(G). The condition clearly is equivalent to:
α(G) = χ(G). Shannon noticed that this yields the value of Θ(G) for all graphs G
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with at most 5 vertices, except for C5, for which he derived
√

5 ≤ Θ(C5) ≤ 5
2 from

(67.138). Shannon observed that on 6 vertices all but four graphs have α(G) = χ(G),
and that the Shannon capacity of these four graphs can be expressed in terms of
Θ(C5). On 7 vertices, he stated that ‘at least one new situation arises’, namely C7.

Shannon proved that if G and H are disjoint graphs, then Θ(G + H) ≥
Θ(G)+Θ(H) and Θ(G ·H) ≥ Θ(G) ·Θ(H), and that equality holds if α(G) = χ(G).
Moreover, he conjectured equality for all G, H, but for the product this was dis-
proved by Haemers [1979], and for the sum by Alon [1998].

Berge

As remarked, in developing the concept of perfect graph Berge was motivated by
Shannon’s problem on the capacity of graphs. We quote from the article ‘Motiva-
tions and history of some of my conjectures’ of Berge [1997]:

June 1957: When he heard that I was writing a book on graph theory, my friend
M.P. Schützenberger drew my attention on an interesting paper of Shannon [51]
which was presented at a meeting for engineers and statisticians, but which could
have been missed by mathematicians working in algebra or combinatorics.

(Berge’s reference [51] is Shannon [1956].)
In his book ‘Théorie des graphes’ (Theory of Graphs), Berge [1958b] called a

function σ : V G → V G a preserving function (‘application préservante’), if for any
two distinct nonadjacent vertices u, v, also σ(u) and σ(v) are distinct and nonad-
jacent. Then, like Shannon, he considered graphs G having a preserving function σ
mapping V G to a stable subset of V G. Clearly, these are exactly the graphs with
α(G) = χ(G).

Berge [1958b] also mentioned that M.P. Schützenberger conjectured that

(67.146) Θ(G) = lim
k→∞

k
√

α(Gk),

which was shown by Lyubich [1964] to follow directly from Fekete’s lemma (Corol-
lary 2.2a).

According to Berge [1997], the problem of finding the minimal graphs G with
α(G) < Θ(G) was discussed in January 1960 at the Seminar of R. Fortet, where
he asked (prompted by graphs found by A. Ghouila-Houri) if it is true that each
graph G not having an odd hole or odd antihole satisfies α(G) = Θ(G):

This conjecture, somewhat weaker than the Perfect Graph Conjecture, was mo-
tivated by the remark that for the most usual channels, the graphs representing
the possible confusions between a set of signals (in particular the interval graphs)
have no odd holes and no odd antiholes, and are optimal in the sense of Shannon.

At the first international meeting on graph theory held at Dobogókő (Hungary)
in October 1959, Hajnal and Surányi [1958] presented the result that α(G) = χ(G)
for each chordal graph G. This motivated Berge to show that the same holds for
complements of chordal graphs. This result was announced, with partial proof,
in the paper Berge [1960a], which moreover mentions that several known results
yield other classes of graphs G with ω(G) = χ(G). In particular, it is observed that
theorems of Kőnig imply that ω(G) = χ(G) if G or G is the line graph of a bipartite
graph — ‘propriétés remarquables’ (remarkable properties) according to Berge.
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These results were presented at the Second International Symposium on Graph
Theory at the Martin-Luther-Universität in Halle an der Saale (German Democratic
Republic) in April 1960. In his memoirs, Berge [1997] mentioned that18

At that time, we were pretty sure that there were no other minimal obstructions;
for that reason, at the end of my talk in Halle, I proposed the following open
problem: If a graph G and its complement are semi-Gallai graphs, is it ture that
γ(G) = ω(G)?

where a graph is semi-Gallai if it has no odd hole, and where γ(G) is Berge’s
notation for the colouring number of G.

So, according to Berge, the strong perfect graph conjecture was stated in 1960
in Halle. It seems however that Berge was hesitating in putting the conjecture in
print. It is not quoted in the written abstract of the talk (Berge [1961]), which in
this respect only says that

Angesichts einer solchen Menge von Beispielen könnte man vermuten, daß für
jeden semi-Gallaischen Graphen G die Beziehung ω(G) = γ(G) gilt. Aber das
stimmt nicht, wie das folgende, von einem unserer Schüler, Herrn Ghouila-Houri,
angegebene Gegenbeispiel zeigt:
G ist ein Graph mit den Knoten a, b, c, d, e, f, g und den Kanten ac, ad, ae, af, bd,
be, bf, bg, ce, cf, cg, df, dg, eg. Man kann leicht zeigen, daß G ein semi-Gallaischer
Graph ist mit ω(G) = 3, aber γ(G) = 4 (siehe Abbildung 1).19

(This example (C7) was also given by Shannon [1956].) Incidentally, in this paper,
Berge called graphs G satisfying α(G) = χ(G) perfect graphs of Shannon (‘vol-
lkommenen Graphen von Shannon’).

About the strong perfect graph conjecture, Berge and Chvátal [1984] wrote:
An early effort of Alain Ghouila-Houri failed to produce a counterexample to this
conjecture. Despite this encouraging sign, Berge felt that the conjecture might be
too ambitious. Therefore he restricted himself to a weaker conjecture in the hope
that it might be easier to settle.

According to Berge and Chvátal [1984] (where a triangulated graph is a chordal
graph),

After the meeting at Halle an der Saale in 1960, the Strong Perfect Graph Con-
jecture received the enthusiastic support of G. Hajós and T. Gallai. In fact, Gallai
provided further evidence in support of the conjecture by strengthening the re-
sults on triangulated graphs: he proved that a graph is α-perfect and γ-perfect
whenever each of its odd cycles of length at least five has at least two non-crossing
chords.

In Gallai [1962], only a proof of α(G) = χ(G) is given, for graphs G in which any
odd circuit of length at least 5 has two noncrossing chords. Berge [1997] reported
that Gallai informed him in a letter that he knew that also ω(G) = χ(G) holds
for such graphs. However, Gallai’s paper does not mention this, and no reference is
made to Berge’s conjectures.

Berge and Chvátal [1984] continued:
18 As we aim at verbatim quotations, we leave the typo unchanged.
19 In view of such a multitude of examples one could conjecture that for each semi-Gallai

graph G the relation ω(G) = γ(G) holds. But that does not hold, as the following
counterexample, presented by one of our students, Mr Ghouila-Houri, shows:

G is a graph with nodes a, b, c, d, e, f, g and edges ac, ad, ae, af, bd, be, bf, bg, ce,
cf, cg, df, dg, eg. One can easily show, that G is a semi-Gallai graph with ω(G) = 3,
but γ(G) = 4 (see Figure 1).
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Nevertheless, Berge still felt that the weak conjecture was more promising. At a
conference at Rand Corporation in the summer of 1961, he had fruitful discussions
with Alan Hoffman, Ray Fulkerson and others. Later on, discussions between Alan
Hoffman and Paul Gilmore led Gilmore to a rediscovery of the Strong Perfect
Graph Conjecture and to an attempt to axiomatize the relevant properties of
cliques in perfect graphs.

Berge [1997] wrote that the discussions at the RAND Corporation with Alan Hoff-
man encouraged him to write a paper ‘in English’. This paper might have been the
first version of the paper ‘Some classes of perfect graphs’ (Berge [1963a]), published
in a booklet ‘Six Papers on Graph Theory’ by the Indian Statistical Institute in
Calcutta, which Berge visited in March-April 1963 and where he gave a series of
lectures. The booklet contains no year of publication, and the preface mentions
that it is intended for private circulation, and that the papers will be given for
publication by journals.

The paper contains as new results that ω(G) = χ(G) for unimodular graphs and
their complements, and also a full proof that it holds for chordal graphs (announced
earlier). The paper seems to be the first written account of the concept of perfect
graph, and of the perfect graph conjectures, in the last section of the paper:

V. CONJECTURES
The problem of characterizing α-perfect and γ-perfect graphs seems diffi-

cult, but the preceding results enable us to state several conjectures. For instance
:

Conjecture 1. A graph is α-perfect if and only if it is γ-perfect
Conjecture 2. A graph is γ-perfect if and only if it does not contain an

elementary odd cycle of one of the following types :
type 1 : the cycle is of length greater than 3 and does not possess any chord

;
type 2 : the cycle is of length greater than 3, and does not possess any

triangular chord, but possesses all its non-triangular chords ( a chord is triangular
if it determines a triangle with the edges of the cycle)

Conjecture 3. A graph is α-perfect if and only if it does not contain an
elementary odd cycle of type 1 or 2.

It is easy to show that conjecture 2 is equivalent to conjecture 3, and implies
conjecture 1. It is also easy to show that if a graph is γ-perfect (or α-perfect),
then it does not contain an elementary odd cycle of type 1 or 2.

At the General Assembly of the U.R.S.I. (Union Radio Scientifique Interna-
tionale) in Tokyo in September 1963, Berge developed further on the relations
between perfection and optimum codes in the sense of Shannon. We quote the
abstract (Berge [1963b]):

3. Claude Berge : Sur une conjecture relative au problème des codes optimaux de
Shannon, on considère un émetteur qui peut émettre un ensemble de signaux, par
suite du bruit chaque signal peut donner plusieurs interprétations à la réception.
On trace le graphe dont les sommets représentent les différents signaux, deux
points étant liés par une arête si les signaux correspondants peuvent être confon-
dus à la réception. Le problème essentiel est de caractériser les graphes que l’on
peut enrichir, on aboutit ainsi à une conjecture que l’on démontre pour certaines
classes particulières.20

20 3. Claude Berge : On a conjecture related to the problem of the optimal codes of
Shannon, we consider a transmitter that can transmit a set of signals, as a consequence
of noise each signal can give several interpretations at the reception. We make the graph



Section 67.4g. Historical notes on perfect graphs 1181

Berge [1997] wrote that the paper Berge [1963a] was distributed to all participants
of the U.R.S.I. meeting in 1963, and that a French version of it was published
as Berge [1966], added with some new results and an appendix with some results
proved in Berge [1967], in order to make the conjecture more plausible and more
interesting.

The paper Berge [1966] is more descriptive, but gives more relations to the
Shannon problem, and also mentions the strong perfect graph conjecture, attribut-
ing it jointly to P.C. Gilmore. After remarking that α(G) �= χ(G) for odd circuits
of length at least 5 and their complements, the paper states:

Nous nous sommes proposés de voir si la réciproque était vraie, et sommes arrivés
à la conjecture suivante avec P. Gilmore:
Conjecture. Soit G un graphe de signaux; il est parfait si et seulement s’il ne
contient pas un cycle impair sans cordes (de longueur > 3), ni le complémentaire
d’un cycle impair sans cordes (de longueur > 3).21

Berge [1966] also claimed, without proof, that Θ(G) = α(G) if and only if χ(G) =
α(G):

On voit aussi que la condition nécessaire et suffisante pour que la capacité du
graphe de signaux G soit égale à α(G) est que α(G) = θ(G).22

(Italics of Berge, who denoted the clique cover number χ(G) of G by θ(G).) However,
the line graph L(K6) of K6 is a counterexample to this (it has α = Θ = χ∗ = 3
and χ = 4).

The paper ‘Some classes of perfect graphs’ was published again in a book on
Graph Theory and Theoretical Physics edited by F. Harary (Berge [1967]). Accord-
ing to Berge [1997], this paper is ‘a final version’ of the manuscript, with suggestions
by Hoffman, and was handed over to Harary at the end of a NATO Advanced Study
Institute on Graph Theory in Frascati, Italy in March-April 1964. Compared with
Berge [1963a], the paper contains no new results, and moreover the last section
with the perfect graph conjectures (quoted above) has been omitted.

This paper was published also in the Proceedings of a Conference on Combi-
natorial Mathematics and Its Applications at the University of North Carolina at
Chapel Hill, 10–14 April 1967. It is followed by a ‘Discussion on Professor Berge’s
Paper’ by M.E. Watkins stating that ‘it seems likely that G is perfect if and only
if G is perfect’. Berge [1996] mentioned that this addendum

contributed to make the perfect graph conjecture popular. Before the Chapel Hill
conference, I did not get much interest for my problems from the mathematics
community; the first symposium lecture about perfect graphs from other mathe-
maticians was delivered by Horst Sachs [20] at the Calgary conference in 1969.

(Berge’s reference [20] is Sachs [1970].)

the vertices of which represent the different signals, two points being connected by an
edge if the corresponding signals can be confused at the reception. The essential problem
is of characterizing the graphs that one can enrich, we arrive this way at a conjecture
that we prove for certain particular classes.

21 We have resolved to see if the reverse would be true, and have arrived at the following
conjecture with P. Gilmore:

Conjecture. Let G be a graph of signals; it is perfect if and only if it neither
contains an odd circuit without chords (of length > 3), nor the complement of an odd
circuit without chords (of length > 3).

22 One also sees that the necessary and sufficient condition for that the capacity of the
graph of signals G is equal to α(G) is that α(G) = θ(G).
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Fulkerson

The results on perfect graphs obtained until then being restricted to specific classes
of graphs, the first serious dent in solving the perfect graph conjectures in general
was made by Fulkerson in a RAND Report of 1970 on antiblocking polyhedra. They
led Fulkerson to prove a ‘pluperfect graph theorem’, but also to doubt the validity
of the weak perfect graph conjecture, which blocked him finishing it off.

The RAND Report (Fulkerson [1970c]) was published as Fulkerson [1972a], and
the results were presented at the Second Chapel Hill Conference on Combinatorial
Mathematics and Its Applications at the University of North Carolina at Chapel
Hill in May 1970 (Fulkerson [1970d]), and at the 7th International Mathematical
Programming Symposium in 1970 in The Hague, for which a survey paper on
blocking and antiblocking pairs of polyhedra was written (Fulkerson [1970a,1971a]).

Fulkerson called a graph G γ-pluperfect if χ(H) = ω(H) for each graph H ob-
tained from G by deleting and replicating vertices. In particular, if G is γ-pluperfect,
then G is γ-perfect.

What Fulkerson [1970a,1971a] proved is that:

(67.147) G is γ-pluperfect ⇐⇒ G is γ-pluperfect.

The proof is not hard, but is based on a series of pioneering observations and general
polyhedral insights that are now fundamental in polyhedral combinatorics. It uses
the linear programming duality equality

(67.148) max{wTx | x ≥ 0, Mx ≤ 1} = min{yT1 | y ≥ 0, yTM ≥ wT},

where M is the incidence matrix of the stable sets of G and where w : V → R+.
Then:

(67.149) G = (V, E) is γ-pluperfect
1⇐⇒ ∀w : V → Z+, both optima in (67.148) are attained by integer

solutions x and y
2⇐⇒ ∀w : V → Z+, the maximum in (67.148) is attained by an integer

solution x
3⇐⇒ ∀w : V → Q+, the maximum in (67.148) is attained by an integer

solution x
4⇐⇒ ∀w : V → R+, the maximum in (67.148) is attained by an integer

solution x
5⇐⇒ each vertex of the polytope {x | x ≥ 0, Mx ≤ 1} is integer
6⇐⇒ the clique polytope of G is determined by the nonnegativity and

stable set constraints.

The first equivalence in (67.149) follows by observing that a weight w(v) of a vertex
v corresponds to replacing v by a clique of size w(v); this is equivalent to duplicating
v w(v)−1 times, or, if w(v) = 0, deleting v. The second equivalence can be derived
by considering, for any w : V → Z+ an inequality x(S) ≤ 1 in Mx ≤ 1 satisfied
with equality by all optimum solutions; hence replacing w by w −χS the maximum
decreases, hence by at least 1 (as it has an integer value); as the minimum decreases
by at most 1, we obtain an integer optimum dual solution by induction. The third
and fourth equivalences follow by scaling w and by continuity. The fifth equivalence
is general polyhedral theory, and the sixth one follows by observing that the integer
solutions of x ≥ 0, Mx ≤ 1 are precisely the incidence vectors of cliques.
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Now by Fulkerson’s theory of antiblocking polyhedra, the last statement in
(67.149) is invariant under interchanging ‘clique’ and ‘stable set’; that is, under
replacing G by the complementary graph G. Hence the same holds for the first
statement.

Fulkerson [1970c,1970a,1971a,1972a] gave another, symmetrical characteriza-
tion of γ-pluperfect graphs:

(67.150) a graph G = (V, E) is γ-pluperfect if and only if for all l, w : V → Z+,
the maximum of l(S)w(C) over all stable sets S and cliques C is at
least

∑
v l(v)w(v).

For this, Fulkerson was inspired by the length-width inequality for blocking pairs
of hypergraphs given in a 1965 preprint of Lehman [1965,1979].

The weak perfect graph conjecture implies that each perfect graph G is γ-
pluperfect, since trivially if χ(H) = ω(H) for each induced subgraph H of G, then
χ(H) = ω(H) for each H obtained from G by deleting and replicating vertices.
(Note that χ(H) = χ(G) and ω(H) = ω(G) if H arises from G by duplicating a
vertex.)

So, as Fulkerson [1970a,1971a] remarked (‘theorem 14’), the perfect graph con-
jecture is equivalent to: each γ-perfect graph is γ-pluperfect; or: γ-perfection is
maintained under duplicating vertices (later called the replication lemma):

Thus to prove the perfect graph conjecture, it would suffice to prove that γ-
perfection implies γ-pluperfection. For this it would suffice to show that if G is
γ-perfect, and if we duplicate an arbitrary vertex v in G and join v to its duplicate
vertex, the new graph G′ is again γ-perfect.

Another way of stating it is: if for each w : V → {0, 1} both optima in (67.148)
have integer solutions, then likewise for each w : V → Z+. This might seem too
strong from a general polyhedral point of view, and it made Fulkerson [1970a,1971a]
mistrust the conjecture:

It is our feeling that theorem 14 casts some doubt on the validity of the perfect
graph conjecture.

Lovász

The weak perfect graph conjecture was finally proved by Lovász [1972c], stating:

Fulkerson [5] reduced the problem to the following conjecture, using the theory
of antiblocking polyhedra:
Duplicating an arbitrary vertex of a perfect graph and joining the obtained two
vertices by an edge, the arising graph is perfect.
In §1 we prove a theorem which contains this conjecture.

(Reference [5] is Fulkerson [1972a].) Lovász also wrote:

It should be pointed out that thus the proof consists of two steps and the more
difficult second step was done first by Fulkerson.

With respect to this, Fulkerson [1973] remarked in his comments ‘On the perfect
graph theorem’:
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Concerning this proof, Lovász states: “It should be pointed out that thus the proof
consists of two steps, and the most difficult second step was done first by Fulker-
son.” I would be less than candid if I did not say that I agree with this remark,
at least in retrospect. But the fact remains that, while part of my aim in develop-
ing the anti-blocking theory had been to settle the perfect graph conjecture, and
that while I had succeeded via this theory in reducing the conjecture to a simple
lemma about graphs [3,4] (the “replication lemma”, a proof of which is given
in this paper) and had developed other seemingly more complicated equivalent
versions of the conjecture [3,4,5], I eventually began to feel that the conjecture
was probably false and thus spent several fruitless months trying to construct a
counterexample. It is not altogether clear to me now just why I felt the conjecture
was false, but I think it was due mainly to one equivalent version I had found
[4,5], a version that does not explicitly mention graphs at all.

(The references [3,4,5] correspond to Fulkerson [1972a,1971a,1970d].)
In the preprint of this article, Fulkerson [1972b] wrote moreover, after stating

the replication lemma:

Actually I knew more: Namely that the truth or falsity of the perfect graph
conjecture rested entirely on the truth or falsity of the replication lemma. I tried
for awhile to prove this lemma, without success, and then, as was mentioned
earlier, became convinced on other grounds that the perfect graph conjecture was
probably false, and began to look for a graph that was perfect but not pluperfect.
(I knew that it would do no good to look at known classes of perfect graphs, since
I had been able to prove that all of these were pluperfect.) The fact is that such
graphs don’t exist, of course. After some months of sporadic effort along these
lines, I quit working on the perfect graph conjecture, thinking that I would come
back to it later. There were other aspects of anti-blocking pairs of polyhedra, and
of blocking pairs of polyhedra, that I wanted to study, and, in any event, I felt
that the pluperfect graph theorem was a beautiful result in its own right.
In the spring of 1971 I received a postcard from Berge, who was then visiting the
University of Waterloo, saying that he had just heard that Lovász had a proof of
the perfect graph conjecture. This immediately rekindled my interest, naturally,
and so I sat down at my desk and thought again about the replication lemma.
Some four or five hours later, I saw a simple proof of it.

After having given a simple proof of the replication lemma, Fulkerson [1972b] con-
tinued:

As can be seen, there is nothing deep or complicated about the proof of this
lemma. Perhaps the fact that I saw a proof of it only after knowing it had to
be true may say something about the psychology of invention (or, better yet,
anti-invention) in mathematics, at least for me.

This is indeed an instructive illustration that believing a conjecture may help in
proving it.

In a subsequent paper, Lovász [1972a] proved more strongly that a graph G
is perfect if and only if α(H)ω(H) ≥ |V H| for each induced subgraph H of G.
This generalizes the perfect graph theorem, and was suggested by A. Hajnal. It
also sharpens Fulkerson’s result (67.150), implying that one may restrict l and w
to {0, 1}-valued functions with l = w.

The problem of Shannon [1956] concerning the Shannon capacity of C5 was
solved by Lovász [1979d].

In May 2002, M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas an-
nounced that they found a proof of the strong perfect graph conjecture, by proving
a number of deep results, and building on and inspired by earlier results of, among
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others, V. Chvátal, M. Conforti, G. Cornuéjols, W.H. Cunningham, A. Kapoor, F.
Roussel, P. Rubio, N. Sbihi, K. Vušković, and G. Zambelli.

More historical notes are given by Berge and Ramı́rez Alfonśın [2001] and Reed
[2001b].



Chapter 68

T-perfect graphs

The class of t-perfect graphs is defined polyhedrally: the stable set poly-
tope should be determined by the nonnegativity, edge, and odd circuit
constraints. It implies that a maximum-weight stable set in such graphs
can be found in polynomial time. LP duality gives a min-max relation for
the maximum-weight of a stable set in t-perfect graphs.
A characterization of t-perfect graphs is not known. The widest class of t-
perfect graphs known consists of those not containing certain subdivisions
of K4 as subgraph.

68.1. T-perfect graphs

A graph G = (V,E) is called t-perfect23 if the stable set polytope of G is
determined by

(68.1) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) xu + xv ≤ 1 for each edge uv ∈ E,
(iii) x(V C) ≤ � 1

2 |V C|	 for each odd circuit C.

A prominent non-t-perfect graph is K4. Below we shall see that, on the other
hand, if K4 does not occur in a graph in a certain way, then the graph is
t-perfect. But no exact characterization of t-perfection is known.

A motivation for studying t-perfection is algorithmic, since the definition
implies:

Theorem 68.1. A maximum-weight stable set in a t-perfect graph can be
found in strongly polynomial time.

Proof. By Theorems 5.10 and 5.11, it suffices to show that the separation
problem over the stable set polytope is polynomial-time solvable. Conditions
(i) and (ii) in (68.1) can be tested one by one. If they are satisfied, define a
function y : E → R+ by:

(68.2) ye := 1 − xu − xv

for each e = uv ∈ E. Then condition (iii) is equivalent to:
23 t stands for ‘trou’ (French for ‘hole’).
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(68.3) y(EC) ≥ 1 for each odd circuit C

(since y(EC) = |EC| − 2x(V C)). The latter condition can be checked in
polynomial time: Consider y as a length function, and for each u ∈ V , find an
odd circuit C through u with y(EC) minimal. This can be done by replacing
each vertex v by two vertices v′, v′′, and each edge e = vw by two edges v′w′′

and v′′w′, each of length ye; then a shortest path from u′ to u′′ gives the
required circuit.

If y(EC) < 1, we have a violated inequality.

A combinatorial polynomial-time algorithm to find the stable set number
of a t-perfect graph was given by Eisenbrand, Funke, Garg, and Könemann
[2002]. It is based on finding (by a greedy method similar to that used in
the proof of Theorem 64.13) an approximative fractional dual solution to the
problem of maximizing 1Tx over (68.1). with relative error less than 1/|V |.
Rounding then gives the stable set number. Applying this iteratively gives
an explicit maximum-size stable set.

Notes. The construction given in the proof of Theorem 68.1 shows that the
maximum-weight stable set problem in a t-perfect graph can be described by a
‘compact’ linear programming: the stable set polytope is the projection of a poly-
tope whose dimension and number of facets are polynomially bounded. To see this,
introduce, next to the variables y ∈ R

E
+, a variable zu,v for each u, v ∈ V . Requiring:

(68.4) zv,v ≥ 1 for each v ∈ V ,
zu,v ≤ yuv for each edge uv ∈ E,
zt,w ≤ zt,u + yuv + yvw for all t, u, v, w ∈ V with uv, vw ∈ E,

is equivalent to the odd circuit constraints. (In fact, one can do without the variables
ye, as they can be expressed in the xv.) So a maximum-weight stable set in a t-
perfect graph can be found in polynomial time with any polynomial-time linear
programming algorithm.

T-perfection can also be characterized in terms of the vertex cover polytope:

Theorem 68.2. A graph G = (V, E) is t-perfect if and only if the vertex cover
polytope of G is determined by:

(68.5) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) xu + xv ≥ 1 for each edge uv ∈ E,

(iii) x(V C) ≥ � 1
2 |V C|� for each odd circuit C.

Proof. System (68.5) arises from (68.1) by the reflection x → 1 − x. So integrality
of the two polytopes is equivalent.

68.2. Strongly t-perfect graphs

A graph G = (V,E) is called strongly t-perfect if system (68.1) is totally dual
integral. So each strongly t-perfect graph is t-perfect (Theorem 5.22). It is
unknown if the reverse implication holds:
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(68.6) Is every t-perfect graph strongly t-perfect?

Strong t-perfection can be characterized by the weighted version of the
stable set number and a certain weighted ‘edge and circuit’ cover number.
Let G = (V,E) be a graph and let w : V → Z+. In this chapter, a w-cover
is a family of vertices, edges, and odd circuits covering each vertex v at least
w(v) times. By definition, the cost of a vertex or edge is 1, and the cost of an
odd circuit C is � 1

2 |V C|	. The cost of a w-cover F is the sum of the costs of
the elements of F . Define

(68.7) αw(G) := the maximum weight of a stable set in G,
ρ̃w(G) := the minimum cost of a w-cover.

Obviously, αw(G) ≤ ρ̃w(G) for any graph G. Moreover:

(68.8) G is strongly t-perfect ⇐⇒ αw(G) = ρ̃w(G) for each w : V →
Z+.

This follows directly from a combinatorial interpretation of total dual inte-
grality.

Notes. W.R. Pulleyblank (cf. Gerards [1989a]) observed that, even for w = 1,
determining ρ̃w(G) is NP-complete, since the vertex set of a graph G can be par-
titioned into triangles if and only if ρ̃w(G) = 1

3 |V | where w = 1. The problem of
partitioning a graph into triangles is NP-complete. Since partitioning into trian-
gles remains to be NP-complete for planar graphs (Dyer and Frieze [1986]), even
determining ρ̃w(G) for planar graphs is NP-complete.

Again, strong t-perfection is equivalent to the total dual integrality of the vertex
cover constraints (68.5).

68.3. Strong t-perfection of odd-K4-free graphs

K4 is the smallest graph that is not t-perfect. Gerards and Schrijver [1986]
showed that any graph not containing an ‘odd K4-subdivision’ is t-perfect —
in fact, as Gerards [1989a] showed, strongly t-perfect. We will prove this in
this section (with a method inspired by Geelen and Guenin [2001]).

Call a subdivision of K4 odd if each triangle of K4 has become an odd
circuit — equivalently, if the evenly subdivided edges of K4 form a cut of K4.
We say that a graph contains no odd K4-subdivision if it has no subgraph
which is an odd K4-subdivision.

Theorem 68.3. A graph containing no odd K4-subdivision is strongly t-
perfect.

Proof. Let G = (V,E) be a counterexample with |V | + |E| minimum. Then
G has no isolated vertices. So we can assume that any minimum-cost w-cover
contains no vertices (for any w).
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For any weight function w : V → Z+, denote αw := αw(G) and ρ̃w :=
ρ̃w(G). As G is a counterexample, there exists a w : V → Z+ with αw < ρ̃w.

For any such w we have, for each edge e = uv,

(68.9) if S maximizes w(S) over stable sets S of G− e, then S contains
u and v.

Otherwise, S is a stable set of G, implying that (by the minimality of |V | +
|E|):
(68.10) αw(G) ≥ αw(G− e) = ρ̃w(G− e) ≥ ρ̃w(G),

a contradiction.
This implies

(68.11) w ≥ 1,

since if w(v) = 0 for some vertex v, then for any edge e incident with v
there is a stable set S of G− e maximizing w(S) and not containing v (since
deleting v from S does not decrease w(S)). This contradicts (68.9).

We next show that we can assume w to have some additional properties
(for an edge e = uv, χe is the incidence vector of the set {u, v}, that is, it is
the 0, 1 vector in R

V having 1’s in positions u and v):

Claim 1. There exist w : V → Z+ and f ∈ E such that

(68.12) ρ̃w+χf = αw + 1 = ρ̃w = αw+χf

and such that

(68.13) αw−χV C = ρ̃w−χV C

for each odd circuit C.

Proof of Claim 1. As G is not bipartite (by Theorem 19.7) and not just
an odd circuit (as this is trivially strongly t-perfect), we know that H has a
chordless odd circuit C0 that has at least one vertex of degree at least 3. Let
v be such a vertex, and let e be an edge incident with v but which is not on
C0.

Let B := V C0 \ {v}. We choose w such that w(V \B) is minimal. There
exists a k ∈ Z+ such that for w′ := w + k · χB , each stable set S of G − e
maximizing w′(S) satisfies |S ∩ B| = 1

2 |B|. Hence no such set S contains v,
and therefore, by (68.9), αw′ = ρ̃w′ .

Now let M be the perfect matching in C0 − v. For y : M → Z+ define

(68.14) wy := w +
∑

f∈M
yfχ

f .

As αw′ = ρ̃w′ , there exists a y : M → Z+ such that

(68.15) αwy = ρ̃wy .
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We choose such a y with
∑

f∈M yf minimal. Since αw < ρ̃w, there exists an
f ∈ M with yf ≥ 1. Then, by the minimality of y, we have αwy−χf < ρ̃wy−χf .
So we can assume that yf = 1 and yf ′ = 0 for each f ′ ∈ M \ {f}. We show
that w and f are as required.

To show (68.12), we have αw+χf ≤ αw +1, since any stable set S satisfies
(w + χf )(S) = w(S) + |f ∩ S| ≤ w(S) + 1. This implies

(68.16) αw + 1 ≤ ρ̃w ≤ ρ̃w+χf = αw+χf ≤ αw + 1,

implying (68.12).
Next, consider any odd circuit C in G. Then (w−χV C)(V \B) < w(V \B),

since V C is not contained in B. Therefore, by the choice of w, we have (68.13).
End of Proof of Claim 1

As from now we fix w and f satisfying (68.12) and (68.13). Let f connect
vertices u and u′. Since by the minimality of G, G has no isolated vertices,
there exists a minimum-cost w+χf -cover F consisting only of edges and odd
circuits, say, e1, . . . , et, C1, . . . , Ck. We choose them such that

(68.17) |V C1| + · · · + |V Ck|
is as small as possible. Then:

(68.18) at least two of the Ci traverse f .

To see this, let G′ := G − f (the graph obtained by deleting edge f). If
αw(G′) = αw(G), then by the minimality of G, G′ has a w-cover of cost αw.
As this is a w-cover in G as well, this would imply αw = ρ̃w, a contradiction.

So αw(G′) > αw(G). That is, there exists a stable set S in G′ with w(S) >
αw. Necessarily, S contains both u and u′. Then for any circuit C traversing
f :

(68.19) |V C ∩ S| ≤ � 1
2 |V C|	 + 1.

Also, f is not among e1, . . . , et, since otherwise F \ {f} is a w-cover of cost
ρ̃w+χf −1 = ρ̃w−1, contradicting the definition of ρ̃w. Setting l to the number
of Ci traversing f , we obtain:

(68.20) ρ̃w+χf ≤ αw + 1 ≤ w(S) = (w + χf )(S) − 2

≤ −2 +
t∑

j=1

|ej ∩ S| +
k∑

i=1

|V Ci ∩ S| ≤ −2 + t+
k∑

i=1

� 1
2 |V Ci|	 + l

= ρ̃w+χf + l − 2.

So l ≥ 2, which is (68.18).
By (68.18) we can assume that C1 and C2 traverse f . It is convenient to

assume that EC1 \ {f} and EC2 \ {f} are disjoint; this can be achieved by
adding parallel edges. So EC1 ∩ EC2 = {f}.

Then:
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(68.21) if C is an odd circuit with EC ⊆ EC1 ∪ EC2, then f ∈ EC and
EC1�EC2�EC is again an odd circuit.

Indeed, as EC1�EC2�EC is an odd cycle, it can be decomposed into circuits
C ′

2, . . . , C
′
p, with C ′

2, . . . , C
′
q odd and C ′

q+1, . . . , C
′
p even (q ≥ 2). Then

(68.22)
p∑

i=2

|EC ′
i| = |EC1�EC2�EC|

= |EC1| + |EC2| − |EC| − 2|{f} \ EC|.
Choose for each i = q + 1, . . . , p a perfect matching Mi in C ′

i. Let e′
1, . . . , e

′
r

be the edges in the matchings Mi and in {f} \EC. Then, defining C ′
1 := C,

(68.23) χV C1 + χV C2 =
q∑

i=1

χV C
′
i +

r∑

j=1

χe
′
j

and (using (68.22))

(68.24) � 1
2 |V C1|	 + � 1

2 |V C2|	 = 1
2 |EC1| + 1

2 |EC2| − 1

= −1 + |{f} \ EC| + 1
2

p∑

i=1

|EC ′
i| = −1 + r + 1

2

q∑

i=1

|EC ′
i|

≥ r +
q∑

i=1

� 1
2 |V C ′

i|	.

So replacing C1, C2 by C ′
1, . . . , C

′
q and adding e′

1, . . . , e
′
r to e1, . . . , et, gives

again a w + χf -cover of cost at most ρ̃w+χf . This also implies q = 2, since
otherwise we have strict inequality in (68.24), and we would obtain a w-cover
of cost less than ρ̃w.

If f �∈ EC, then f is among e′
1, . . . , e

′
r. Hence deleting f gives a w-cover

of cost at most ρ̃w+χf − 1 ≤ αw, contradicting (68.12). So f ∈ EC. As this
is true for any odd circuit in EC1 ∪EC2 we know that f ∈ EC ′

i for i = 1, 2.
If p ≥ 3 or r ≥ 1, then |EC ′

1| + |EC ′
2| < |EC1| + |EC2|, contradicting the

minimality of (68.17). So p = q = 2 and r = 0, which proves (68.21).
First, it implies

(68.25) a circuit in EC1 ∪ EC2 is odd if and only if it traverses f .

A second consequence is as follows. Let Pi be the u − u′ path Ci \ {f}.
Orient the edges occurring in the path Pi := Ci \ {f} in the direction from u
to u′, for i = 1, 2. Then

(68.26) the orientation is acyclic.

For suppose that it contains a directed circuit C. Then (EC1 ∪ EC2) \ EC
contains a directed u−u′ path, and hence an odd circuit C ′. Hence by (68.21),
EC1�EC2�EC ′ is an odd circuit, however containing the even circuit EC,
a contradiction.

Define
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(68.27) W := V P1 ∪ V P2 and F := EP1 ∪ EP2.

Consider the graph (W,F ). It is bipartite, as it contains no odd circuits by
(68.25). Moreover, u and u′ belong to the same colour class. Let A and B be
the colour classes of (W,F ), such that u, u′ ∈ A. So

(68.28) A := {v ∈ W | there exists an even-length directed u− v path},
B := {v ∈ W | there exists an odd-length directed u− v path}.

(Here and below, when speaking of a directed path, it is assumed to use only
the edges in EP1 ∪ EP2.) Define

(68.29) X := V P1 ∩ V P2 and

U := {v ∈ V | w(v) =
t∑

j=1

|ej ∩ {v}| +
k∑

j=1

|V Cj ∩ {v}|}.

So u, u′ �∈ U , u, u′ ∈ X, and X \ {u, u′} is the set of vertices in W having
degree 4 in the graph (W,F ).

We next show the following technical, but straightforward to prove, claim:

Claim 2. Let z ∈ A, let Q be an even-length directed u − z path, and let S
be a stable set in G. Then

(68.30) (w − χV Q)(S) ≥ αw − � 1
2 |V Q|	 + 1

if and only if

(68.31) (i) |ej ∩ S| = 1 for each j = 1, . . . , t,
(ii) |V Cj ∩ S| = � 1

2 |V Cj |	 for j = 3, . . . , k,
(iii) S ⊆ U ,
(iv) S contains B \ V Q and is disjoint from A \ V Q,
(v) S contains B ∩X and is disjoint from A ∩X.

Proof of Claim 2. By rerouting C1 and C2, we can assume that EQ ⊆ EC1.
Define Z := V C1 \ V Q. So |Z| is even. Consider the following sequence of
(in)equalities:

(68.32) (w − χV Q)(S) = w(S) − |V Q ∩ S|

≤
t∑

j=1

|ej ∩ S| +
k∑

j=1

|V Cj ∩ S| − |V Q ∩ S|

=
t∑

j=1

|ej∩S|+
k∑

j=2

|V Cj∩S|+ |Z∩S| ≤ t+
k∑

j=2

� 1
2 |V Cj |	+ |Z∩S|

= ρ̃w+χf − � 1
2 |V C1|	 + |Z ∩ S| ≤ ρ̃w+χf − � 1

2 |V C1|	 + 1
2 |Z|

= αw + 1 − � 1
2 |V Q|	.

Hence (68.30) holds if and only if equality holds throughout in (68.32), which
is equivalent to (68.31). Note that (68.31)(iv) and (v) are equivalent to: S
contains V C2 ∩ B and is disjoint from V C2 ∩ A, and S contains Z ∩ B and
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is disjoint from Z ∩A. Hence it is equivalent to (as u, u′ �∈ S by (68.31)(iii)):
|V C2 ∩ S| = � 1

2 |V C2|	 and |Z ∩ S| = 1
2 |Z|. End of Proof of Claim 2

By (68.26), we can order the vertices in X as x0 = u, x1, . . . , xs = u′ such
that both P1 and P2 traverse them in this order. For j = 0, . . . , s, let Pj be
the collection of directed u − x paths, where x = xj if xj ∈ A, and x is an
inneighbour of xj if xj ∈ B. So x ∈ A and each path in each Pj has even
length.

Let j be the largest index for which there exists a path Q ∈ Pj with

(68.33) αw−χV Q ≤ αw − � 1
2 |V Q|	.

Such a j exists, since (68.33) holds for the trivial directed u − u path, as
αw−χu ≤ αw. Also, j < s, since otherwise V Q = V C for some odd circuit C,
and hence, with (68.13) we have

(68.34) ρ̃w ≤ ρ̃w−χV C + � 1
2 |V C|	 = αw−χV C + � 1

2 |V C|	 ≤ αw,

contradicting (68.12).
LetQ1 andQ2 be the two paths in Pj+1 that extendQ. By the maximality

of j, we know

(68.35) αw−χV Qi ≥ αw − � 1
2 |V Qi|	 + 1.

So there exist stable sets S1 and S2 with

(68.36) (w − χV Qi)(Si) ≥ αw − � 1
2 |V Qi|	 + 1

for i = 1, 2. So for i = 1, 2, (68.31) holds for Qi, Si. By (68.31)(iv), S1 and
S2 coincide on W \ (V Q1 ∪ V Q2), and they coincide on X. In other words:

(68.37) (S1�S2) ∩W ⊆ (V Q1 ∪ V Q2) \X.

Let H be the subgraph of G induced by S1�S2. So H is a bipartite graph,
with colour classes S1 \ S2 and S2 \ S1. Define

(68.38) Yi := V Qi \ V Q
for i = 1, 2. Then

(68.39) H contains a path connecting Y1 and Y2.

For suppose not. Let K be the union of the components of H that intersect
Y1. So K is disjoint from Y2. Define S := S1�K. Then S ∩ Y1 = S2 ∩ Y1 and
S ∩Y2 = S1 ∩Y2. This implies that Q,S satisfy (68.31). Hence (68.30) holds,
contradicting (68.33). This proves (68.39).

Let C be the (even) circuit formed by the two directed xj − xj+1 paths.
So Y1 and Y2 are subsets of V C. Let R be a shortest path in H that connects
Y1 and Y2; say it connects y1 ∈ Y1 and y2 ∈ Y2.

Since y1, y2 ∈ S1�S2, we know by (68.37) that y1, y2 �∈ X. By (68.31)(iv),
if y1 ∈ S1 \ S2, then y1 ∈ A (since if y1 ∈ B, then y1 ∈ B \ V Q2, and so
y1 ∈ S2), and if y1 ∈ S2 \S1, then y1 ∈ B (since if y1 ∈ A, then y1 ∈ A\V Q2,
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and so y1 �∈ S2). Similarly, if y2 ∈ S2 \ S1, then y2 ∈ A and if y2 ∈ S1 \ S2,
then y2 ∈ B.

So if R is even, then y1 and y2 belong to the same set among S1 \ S2,
S2 \ S1, and hence they belong to different sets A,B. Similarly, if R is odd,
then y1 and y2 belong to the same set among A,B. Hence R forms with part
of C an odd circuit.

By (68.37), there exist a directed u−xj path N ′ and a directed xj+1 −u′

pathN ′′ that are (vertex-)disjoint from S1�S2. ConcatenatingN ′, f , andN ′′

makes an xj+1 −xj path N . Then N , R, and C make an odd K4-subdivision,
with 3-valent vertices xj , xj+1, y1, y2.

(The above proof of Claim 1 was given by D. Gijswijt.)

Notes. Theorem 68.3 includes the t-perfection of series-parallel graphs (conjectured
by Chvátal [1975a], and proved by M.J. Clancy in 1977 and by Mahjoub [1988]), the
strong t-perfection of series-parallel graphs (Boulala and Uhry [1979], who also gave
a polynomial-time algorithm to find a maximum-weight stable set in series-parallel
graphs), the t-perfection of almost bipartite graphs — graphs G having a vertex v
with G − v bipartite (Fonlupt and Uhry [1982]), the strong t-perfection of almost
bipartite graphs (this is implicit in Sbihi and Uhry [1984]), and the t-perfection of
odd-K4-free graphs (Gerards and Schrijver [1986]).

68.4. On characterizing t-perfection

The problem if a given graph G = (V,E) is t-perfect, belongs to co-NP:
non-t-perfection can be certified by a noninteger vertex x∗ of the polytope
determined by (68.1), together with a nonsingular system of constraints that
are tight for x∗. One must check that x∗ satisfies all constraints among (68.1)
— this can be done in polynomial time by the methods described in the
proof of Theorem 68.1. A polynomial-time algorithm for, or a combinatorial
certificate of, non-t-perfection is not known.

T-perfection and strong t-perfection are not closed under taking sub-
graphs, as is shown by Figure 68.1. However, t-perfection is closed under
taking induced subgraphs. This is easy to check, as well as that it is closed
under the following operation:

(68.40) choose a vertex v with N(v) a stable set, and contract all edges
in δ(v).

So one may ask for the minimally non-t-perfect graphs — minimal with
respect to taking induced subgraphs and applying operation (68.40). Known
minimal graphs include the wheels24 with an even number of vertices and
the graphs consisting of a circuit of length 4k and all chords connecting a
24 A wheel is a graph obtained from a circuit C by adding a new vertex, adjacent to all

vertices in C.
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e

C

Figure 68.1
A strongly t-perfect graph G with G − e not t-perfect. The
strong t-perfection of G can be derived from the fact that each in-
clusionwise maximal stable set intersects the triangle C. Hence for any
integer weight function, subtracting the incidence vector of V C, reduces
the maximum weight of a stable set by 1. We therefore can assume that
at least one of the vertices of C has weight 0, and hence we can delete
it. We are left with a graph containing no odd K4-subdivision — hence
being strongly t-perfect (Theorem 68.3).

vertex with its opposite vertex (k ≥ 1). Also strong t-perfection is closed
under taking induced subgraphs and the operation (68.40). So one may ask
a similar question for strong t-perfection.

A characterization that has been achieved is of those graphs for which
each, also noninduced, subgraph is t-perfect. Here subdivisions of K4 play a
role. Call a subdivision of K4 bad if it is not t-perfect.

It has been shown by Gerards and Shepherd [1998] that any graph without
bad K4-subdivision is t-perfect. Hence, each subgraph of a graph G is t-
perfect if and only if G contains no bad K4-subdivision. This was extended
to: any graph without bad K4-subdivision is strongly t-perfect (Schrijver
[2002b]). So each subgraph of a graph is t-perfect if and only if each subgraph
is strongly t-perfect.

The K4-subdivisions that are bad have been characterized by Barahona
and Mahjoub [1994c]. They showed that a K4-subdivision is not t-perfect if
and only if it is an odd K4-subdivision such that the following does not hold:
the edges of K4 that have become an even path, form a 4-cycle in K4, while
the two other edges of K4 are not subdivided. One may check that this is
equivalent to the fact that one cannot obtainK4 by the operations (68.40). So
necessity in this characterization follows from the closedness of t-perfection
under operation (68.40).
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68.5. A combinatorial min-max relation

A subdivision of K4 is called totally odd if it arises from K4 be replacing
each edge by an odd-length path. So a totally odd K4-subdivision is an odd
K4-subdivision. A graph containing no totally odd K4-subdivision need not
be t-perfect (see Figure 68.2, from Chvátal [1975a]). However, Sewell and
Trotter [1990,1993] showed that for weight function w = 1, the min-max
relation is maintained for totally odd K4-free graphs.

1/31/3

1/3

1/3 1/3

1/3

2/3

Figure 68.2
A graph containing no totally odd K4-subdivision and not be-
ing t-perfect. The values at the vertices represent a vector satisfying
(68.1) but not belonging to the stable set polytope.

This can be formulated in terms of the nonweighted version ρ̃(G) of ρ̃w(G)
defined in (68.7):

(68.41) ρ̃(G) := the minimum cost of a family of vertices, edges, and odd
circuits covering V .

One easily checks that the minimum is attained by a vertex-disjoint family.
Obviously, for any graph G,

(68.42) α(G) ≤ ρ̃(G).

So Sewell and Trotter [1990,1993] showed that equality holds for graphs with-
out totally odd K4-subdivision (generalizing a result of Gerards [1989a], who
proved it for graphs without odd K4-subdivision — a consequence of Theo-
rem 68.3; Chvátal [1975a] proved it for series-parallel graphs).

Theorem 68.4. For any graph G containing no totally odd K4-subdivision,
the stable set number α(G) is equal to ρ̃(G).

Proof. Let G = (V,E) be a counterexample with |V | + |E| minimal. Set
α := α(G). Then G is connected, and
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(68.43) α(G− v) = α for each v ∈ V and α(G− e) > α for each e ∈ E,

since otherwise G− v or G− e would be a smaller counterexample.
Hence for each vertex v, there exists a vertex-disjoint collection of vertices,

edges, and odd circuits, covering V \ {v} and of cost α. Let Fv be the set of
edges contained in this collection or in one of the circuits in it. Let Gv be the
graph (V \ {v}, Fv). So

(68.44) α(Gv) = α,

and Gv has maximum degree at most 2. Moreover, the minimality of G im-
plies:

(68.45) Fu ∪ Fv = E \ {uv} for each edge uv.

To see this, trivially, uv �∈ Fu ∪ Fv. Suppose that e �= uv is an edge not
contained in Fu ∪Fv. As α(G− e) > α, G− e has a stable set S of size α+1.
By symmetry, we can assume that v �∈ S. Then S is a stable set in the graph
Gv, contradicting (68.44).

This proves (68.45), which gives:

(68.46) for each edge uv, each edge e �= uv incident with u belongs to Fv.

This follows directly from (68.45), since e �∈ Fu (as u ∈ e).
This is used in proving:

(68.47) G is 3-regular.

For if vertex v has degree 1, with neighbour u, then α(G− v − u) < α; since
moreover ρ̃(G) ≤ ρ̃(G−u−v)+1 (since we can add edge uv to any collection
attaining the minimum for G− u− v), we have α(G) ≥ α(G− u− v) + 1 =
ρ̃(G−u−v)+1 ≥ ρ̃(G). This contradicts the fact that G is a counterexample.

If v has degree 2, let G′ be the graph obtained by contracting the edges
incident with v. Then G′ contains no totally odd K4-subdivision. Moreover,
it is straightforward to check that α(G) ≥ α(G′) + 1 and ρ̃(G) ≤ ρ̃(G′) + 1.
As G′ is smaller than G, we have ρ̃(G′) = α(G′). Hence α(G) ≥ α(G′) + 1 =
ρ̃(G′)+1 ≥ ρ̃(G). Again, this contradicts the fact that G is a counterexample.

So v has degree at least 3. Let u be one of its neighbours. Then δ(v) ⊆ Fu∪
{uv} by (68.46). As Gu has maximum degree at most 2, we have |δ(v)| = 3.
This proves (68.47).

By (68.45) and (68.47),

(68.48) for each edge uv of G, u is traversed by an odd circuit in Fv.

Moreover:

(68.49) Let uv be an edge of G and let C be the odd circuit in Fv travers-
ing u. Consider any edge e = xy on C with e �∈ Fu. Then both x
and y have even distance from u along C − e.
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Let S be a stable set of G−e of size α+1. So x, y ∈ S. Moreover, u ∈ S, since
otherwise α(Gu) > α (since e �∈ Fu), contradicting (68.44). So v �∈ S, and
hence S \{y} is a maximum-size stable set of G−v. Hence, S \{y} intersects
C in � 1

2 |V C|	 vertices. Therefore, S intersects C in 
 1
2 |V C|� vertices. As

x, y ∈ S, (68.49) follows.
Now choose a vertex, r say, and its neighbours, u1, u2, u3 say. For each

i ∈ {1, 2, 3}, Fui
contains an odd circuit Ci traversing r (by (68.48)), and

hence traversing the edges rui+1 and rui+2 (taking indices mod 3). We will
construct a totally odd K4-subdivision from them, which contradicts the
condition of the theorem.

For i = 1, 2, 3, let Pi be the path in Ci from ui+1 to ui+2 obtained by
deleting vertex r from Ci. Since α(G − rui) > α, G has a stable set Si
of size α, intersecting {r, u1, u2, u3} precisely in {ui}. Then for all distinct
i, j ∈ {1, 2, 3}:

(68.50) Sj contains all vertices along Pi at even distance from uj .

To see this, we may assume that i = 1, j = 2. Since S2 is a maximum-size
stable set in G − u1, it intersects C1 in � 1

2 |V C1|	 vertices. Since r, u3 �∈ S2,
S2 contains all vertices along P1 at even distance from u2, proving (68.50).

This implies, for distinct i, j, k ∈ {1, 2, 3}:

(68.51) V Pi ⊆ Sj�Sk.
One similarly shows, for distinct i, j, k ∈ {1, 2, 3}:

(68.52) Pi contains an edge that splits Pi into two even-length paths Pi,j
(containing uj) and Pi,k (containing uk), in such a way that Si
contains all vertices along Pi,j at odd distance from uj and all
vertices along Pi,k at odd distance from uk.

To prove this, we may assume that i = 1, j = 2, k = 3. Since S := S1 \{u1}∪
{r} is a maximum-size stable set in G − u1, it intersects C1 in � 1

2 |V C1|	
vertices. Since S contains r, there is precisely one edge on P1 not intersected
by S. This gives the edge as required in (68.52).

This implies, for distinct i, j ∈ {1, 2, 3}:

(68.53) V Pi,j = V Pi ∩ (Si�Sj),
and hence, for distinct i, j, k ∈ {1, 2, 3}:

(68.54) V Pi ∩ V Pj = V Pi,k ∩ V Pj,k,
since

(68.55) V Pi,k ∩ V Pj,k = V Pi ∩ (Si�Sk) ∩ V Pj ∩ (Sj�Sk) = V Pi ∩ V Pj
(using (68.51)).

For each i = 1, 2, 3, vertex ui+2 is on Pi and Pi+1. Hence there is a first
vertex vi on Pi (starting from ui+1), that also belongs to Pi+1. By (68.54), vi
occurs after vi+2 along Pi (seen from ui+1), since vi ∈ V Pi∩V Pi+1 ⊆ V Pi,i+2
and vi+2 ∈ V Pi+2 ∩ V Pi ⊆ V Pi,i+1. Moreover,
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(68.56) vi has even distance from ui+2 along Pi and along Pi+1.

To prove this, we may assume that i = 1. Suppose that v1 has odd distance
from u3 along P1. Let f and e be the previous and next edge along P1 (seen
from u2) and let g be the third edge incident with v1. Since v1 is the first
vertex along P1 belonging to P2, we know that f is not on P2. So f �∈ Fu2 ,
and hence (by (68.45)) f ∈ Fr. Since g is not on P1, we have g �∈ Fu1 , and
hence (again by (68.45)) g ∈ Fr. Therefore (as Fr has maximum degree at
most degree 2), e �∈ Fr. Then (68.49) implies that v1 has even distance from
u3 along P1. Hence v1 ∈ S3, and so v1 has also even distance from u3 along
P2 (by (68.50)). This proves (68.56).

For i = 1, 2, 3, let Qi be the ui+1 − vi part of Pi. Then Qi and Qi+1
intersect each other only in vi (since vi is the first vertex along Pi that is on
Pi+1). This implies that Q1, Q2, Q3 together with the edges ru1, ru2, and
ru3, form a totally odd K4-subdivision, a contradiction.

Recall that a graph is bipartite if and only if for each subgraph H, the
stable set number α(H) is equal to the edge cover number ρ(H). An extension
of this is implied by the theorem above:

Corollary 68.4a. A graph G contains no totally odd K4-subdivision if and
only α(H) = ρ̃(H) for each subgraph H of G.

Proof. Necessity follows from Theorem 68.4. Sufficiency follows from the fact
that if G is a totally odd K4-subdivision, then α(G) < ρ̃(G). This can be seen
by induction on |V G|. If |V G| = 4, then G = K4, and α(G) = 1, ρ̃(G) > 1.
If |V G| > 4, G has a vertex v of degree 2. Let G′ arise by contracting the
two edges incident with v. Then, using the induction hypothesis, α(G) ≤
α(G′) + 1 < ρ̃(G′) + 1 ≤ ρ̃(G).

Theorem 68.4 also implies (in fact, is equivalent to) the following. A graph
G = (V,E) is called α-critical if α(G− e) > α(G) for each e ∈ E. Then each
connected α-critical graph is either K1, or K2, or an odd circuit, or contains
a totally odd K4-subdivision (answering a question of Chvátal [1975a]).

We note that Theorem 68.4 implies that the stable set number α(G) of a
graph G without totally odd K4-subdivision can be determined in polynomial
time, as α(G) is equal to the maximum of 1Tx over (68.1) (since the separa-
tion problem is polynomial-time solvable — see Theorem 68.1). This implies
that an explicit maximum-size stable set can be found in polynomial time
(just by deleting vertices as long as the stable set number does not decrease).

The vertex cover number. Another consequence of Theorem 68.4 concerns the
vertex cover number τ(G) of a graph G = (V, E). Trivially, τ(G) + α(G) = |V |.
Define the profit of an edge to be 1, and the profit of a circuit C to be � 1

2 |V C|�.
The profit of a family of edges and circuits is equal to the sum of the profits of its
elements. Let ν̃(G) denote the maximum profit of a collection of pairwise vertex-
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disjoint edges and odd circuits in G. Then there is the following analogue to Gallai’s
theorem (Theorem 19.1):

Theorem 68.5. For any graph G = (V, E): ν̃(G) + ρ̃(G) = |V |.

Proof. Define the profit of any vertex to be 0. Then ν̃(G) is equal to the maximum
profit of a collection of vertices, edges, and circuits partitioning V . Similarly, ρ̃(G) is
equal to the minimum cost of a collection of vertices, edges, and circuits partitioning
V . Now for any collection C of vertices, edges, and circuits partitioning V we have
cost(C)+profit(C) = |V |. Hence the minimum cost over all such collections equals
|V | minus the maximum profit over all such collections. This gives the required
equality.

With Theorem 68.4, this implies a min-max relation for the vertex cover number
of totally-odd-K4-free graphs:

Corollary 68.5a. For any graph G containing no totally odd K4-subdivision, the
vertex cover number τ(G) is equal to ν̃(G).

Proof. Directly from Theorems 68.4 and 68.5, and from the fact that α(G)+τ(G) =
|V | for any graph G.

68.6. Further results and notes

68.6a. The w-stable set polyhedron

The t-perfection of odd-K4-free graphs can be extended to apply to w-stable sets.
Given a graph G = (V, E) and a function w : E → Z+, a w-stable set is a function
x : V → Z+ such that xu +xv ≤ we for each edge e = uv. So if w = 1 and G has no
isolated vertices, w-stable sets are the incidence vectors of stable sets. The w-stable
set polyhedron is the convex hull of the w-stable sets.

Theorem 68.3 implies a characterization of the w-stable set polyhedron of odd-
K4-free graphs. Consider the following system:

(68.57) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(e) ≤ we for each e ∈ E,

(iii) x(V C) ≤ � 1
2w(EC) for each odd circuit C,

where x(e) = xu + xv for e = uv.

Theorem 68.6. For any graph G = (V, E) containing no odd K4-subdivision and
for any w : E → Z+, system (68.57) determines the w-stable set polyhedron.

Proof. We show that (68.57) determines an integer polyhedron, and hence is equal
to the w-stable set polyhedron. Let x be a noninteger vertex of P . By resetting
we := we − �xu − �xv for e = uv ∈ E and xv := xv − �xv for v ∈ V , x remains a
noninteger vertex of the new P . So we can assume that 0 ≤ xv < 1 for each v ∈ V .

Let E′ be the set of edges e of G with we = 1. Then G′ = (V, E′) contains
no odd K4-subdivision, and hence is t-perfect (Theorem 68.3). So x is a convex
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combination of incidence vectors of stable sets of G′. As each such incidence vector
satisfies (i) and (ii) of (68.57) (since xu + xv ≤ 1 + 1 = 2 ≤ we for each edge e = uv
in E \ E′), it also satisfies (iii) (as it is integer). Hence x is a convex combination
of integer solutions of (68.57). So P is integer.

It was shown by Gijswijt and Schrijver [2002] that system (68.57) is totally dual
integral for each w : E → Z+ if and only if G contains no bad K4-subdivision.

68.6b. Bidirected graphs

We saw bidirected graphs before in Chapter 36. We recall some definitions and ter-
minology. A bidirected graph is a triple G = (V, E, σ), where (V, E) is an undirected
graph and where σ assigns to each e ∈ E and each v ∈ e a ‘sign’ σe,v ∈ {+1, −1}.
The graph (V, E) may have loops, but we will assume that the ‘two’ ends of the
loop have the same sign. (Other loops will be meaningless in our discussion.)

The edges e for which σe,v = 1 for each v ∈ e are called the positive edges, those
with σe,v = −1 for each v ∈ e are the negative edges, and the remaining edges are
the directed edges.

Clearly, undirected graphs and directed graphs can be considered as special
cases of bidirected graphs. Graph terminology extends in an obvious way to bidi-
rected graphs. The undirected graph (V, E) is called the underlying undirected graph
of G. We also will need the underlying signed graph G = (V, E, Σ), where Σ is the
family of positive and negative edges. We call a circuit C in (V, E) odd or even, if
|EC ∩ Σ| is odd or even, respectively.

A signed graph G = (V, E, Σ) is called an odd K4-subdivision if (V, E) is a
subdivision of K4 such that each triangle has become an odd circuit (with respect
to Σ). A bidirected graph is called an odd K4-subdivision if its underlying signed
graph is an odd K4-subdivision.

The E × V incidence matrix of a bidirected graph G = (V, E, σ) is the E × V
matrix M defined by, for e ∈ E and v ∈ V :

(68.58) Me,v :=
{

σe,v if e is not a loop,
2σe,v if e is a loop,

setting σe,v := 0 if v �∈ e.
For b ∈ Z

E , we consider integer solutions of the system Mx ≤ b. To this end,
define for any circuit C (in the undirected graph (V, E)) and any vertex v:

(68.59) aC,v := 1
2

∑

e∈EC

Me,v and dC := � 1
2

∑

e∈EC

be.

As C is a circuit, aC,v is an integer. Hence each integer solution x of Mx ≤ b
satisfies

(68.60)
∑

v∈V

aC,vxv = 1
2

∑

e∈EC

∑

v∈V

Me,vxv ≤ � 1
2

∑

e∈EC

be = dC .

Therefore, each integer solution of Mx ≤ b satisfies:

(68.61) (i) Mx ≤ b,
(ii)

∑

v∈V

aC,vxv ≤ dC for each odd circuit C.
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(Again, ‘odd’ is with respect to Σ.) Then Theorem 68.6 implies:

Corollary 68.6a. If a bidirected graph G contains no odd K4-subdivision, then
system (68.61) determines an integer polyhedron.

Proof. Make from the bidirected graph G = (V, E, σ) the following auxiliary undi-
rected graph G′ = (V ′, E′). For each e ∈ E which is not a positive loop, let ce := 1
if e is positive, ce := 2 if e is directed, and ce := 3 if e is negative. Then replace e
by a path Pe of length ce connecting the two vertices in V incident with e. Let ẽ
be the unique edge on Pe that is not incident with a vertex v of G with σe,v = −1.

If e is a positive loop at v, make a circuit Pe of length 3 starting and ending at
v. Let ẽ be one of the two edges on Pe incident with v.

Let F be the set of edges f of G′ that are on Pe for some e ∈ E and satisfy
f �= ẽ. As G has no odd K4-subdivision (as a bidirected graph), G′ has no odd
K4-subdivision (as an undirected graph). Hence by Theorem 68.6, the following
system (in x ∈ R

V ′
) determines an integer polyhedron:

(68.62) (i) x(ẽ) ≤ be for each edge e ∈ E,
(ii) x(f) = 0 for each edge f ∈ F ,

(iii) x(V C) ≤ � 1
2 |V C| for each odd circuit C in G′.

(Here ‘odd’ refers to the length of the circuit. As usual, x(f) := xu + xv where u
and v are the ends of f for f ∈ E′.) This implies that system (68.61) determines an
integer polyhedron, since the conditions (68.62)(ii) allow elimination of the variables
xv for v ∈ V ′ \ V .

This theorem may be used to characterize odd-K4-free bidirected graphs. Let
G = (V, E, σ) be a bidirected graph, with E ×V incidence matrix M . For a, b ∈ Z

E

consider integer solutions of

(68.63) a ≤ Mx ≤ b.

As the matrix

(68.64)
(

M
−M

)

is again the incidence matrix of some bidirected graph, we can consider the inequal-
ities (68.61)(ii) corresponding to matrix (68.64). They amount to:

(68.65)
∑

v∈V

1
2

(∑

e∈F

Me,v −
∑

e∈EC\F

Me,v

)
xv ≤ � 1

2

(∑

e∈F

be −
∑

e∈EC\F

ae

) for each

odd circuit C and each F ⊆ EC.

To describe the characterization, we define ‘minor’ of a signed graph G =
(V, E, Σ). For e ∈ E, deletion of e means resetting E and Σ to E \ {e} and Σ \ {e}.
Deletion of a vertex v means deleting all edges incident with v, and deleting v from
V . If e is not a loop, contraction of e means the following. Let e have ends u and
v. If e ∈ Σ, reset Σ := Σ�δ(u). Otherwise, let Σ be unchanged. Next contract
e in (V, E). This definition depends on the choice of the end u of e, but for the
application below this will be irrelevant. A resigning means choosing U ⊆ V and
resetting Σ to Σ�δ(U). A signed graph H is called a minor of a signed graph G if



Section 68.6c. Characterizing odd-K4 free graphs 1203

H arises from G by a series of deletions of edges and vertices, contractions of edges,
and resignings.

Then we have the following characterization (Gerards and Schrijver [1986]),
where odd-K4 stands for the signed graph (V K4, EK4, EK4).

Corollary 68.6b. For any bidirected graph G the following are equivalent:

(68.66) (i) G contains no odd K4-subdivision as subgraph;
(ii) the signed graph underlying G has no odd-K4 minor;

(iii) for all integer vectors a, b, system (68.63)(68.65) determines a box-
integer polyhedron.

Proof. The implication (ii)⇒(i) follows from the easy fact that any odd K4-
subdivision in G would yield an odd-K4 minor of the signed graph underlying
G.

The implication (i)⇒(iii) can be derived from Corollary 68.6a as follows. Replace
any ‘box’ constraint dv ≤ xv ≤ cv by 2dv ≤ 2xv ≤ 2cv, and incorporate it into M ,
by adding loops at v. Then the constraint (68.65) corresponding to such a loop C
at v is xv ≤ cv or −xv ≤ −dv. This gives a reduction to Corollary 68.6a.

To see the implication (iii)⇒(ii), note that (iii) is invariant under deleting rows
of M and under multiplying rows or columns by −1. It is also closed under contrac-
tions of any edge e, as it amounts to taking ae = be = 0 in (68.63). So, in proving
(iii)⇒(ii), if the signed graph underlying G has an odd-K4 minor, we may assume
that it is odd-K4. By multiplying rows and columns of M by −1, we may assume
that M is nonnegative. Then we do not have an integer polytope for a = 0, b = 1,
d = 0, c = 1.

In other words, the bidirected graphs without odd K4-subdivision are precisely
those whose E ×V incidence matrix has strong Chvátal rank at most 1 (cf. Section
36.7a, where it is shown that the transpose of each such matrix has strong Chvátal
rank at most 1).

68.6c. Characterizing odd-K4-free graphs by mixing stable sets
and vertex covers

A similar characterization can be formulated in terms of just undirected graphs, by
mixing stable sets and vertex covers. Call a graph H an odd minor of a graph G
if H arises from G by deleting edges and vertices, and by contracting all edges in
some cut δ(U) (in the graph without the deleted edges). The following is easy to
show:

(68.67) A graph G contains an odd K4-subdivision ⇐⇒ G contains K4 as
odd minor.

For a graph G = (V, E) and F ⊆ E, a subset U of V is called F -stable if U
is a stable set of the graph (V, F ). U is called an F -cover if U is a vertex cover of
(V, F ). Let F1 and F2 be disjoint subsets of E, and consider the system:
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(68.68) 0 ≤ xv ≤ 1 for v ∈ V ,
x(e) ≤ 1 for e ∈ F1,
x(e) ≥ 1 for e ∈ F2,∑

e∈EC∩F1

x(e) −
∑

e∈EC∩F2

x(e) ≤ |EC ∩ F1| − |EC ∩ F2| − 1

for each odd circuit C with EC ⊆ F1 ∪ F2

(where x(e) := xu + xv for e = uv ∈ E).

Corollary 68.6c. For any graph G = (V, E) the following are equivalent:

(68.69) (i) G contains no odd K4-subdivision;
(ii) for all disjoint F1, F2 ⊆ E, the convex hull of the incidence vectors

of the F1-stable F2-covers is determined by (68.68).

Proof. The implication (i)⇒(ii) follows from Corollary 68.6a. To see (ii)⇒(i), we
first show that (ii) is maintained under taking odd minors. Maintenance under
deletion of edges or vertices is trivial. To see that it is maintained under contraction
of cuts, let U ⊆ V and let G′ = (V ′, E′) be the contracted graph. Let F ′

1 and F ′
2 be

disjoint subsets of E′, and let x′ satisfy (68.68) for G′, F ′
1, F ′

2. Define x : V → R as
follows, where, for v ∈ V , v′ denotes the vertex of G′ to which v is contracted:

(68.70) xv :=
{

x′
v′ if v ∈ U ,

1 − x′
v′ if v ∈ V \ U .

Moreover, define F1 and F2 by:

(68.71) F1 := (F ′
1 ∩ E[U ]) ∪ (F ′

2 ∩ E[V \ U ]) ∪ δ(U),
F2 := (F ′

2 ∩ E[U ]) ∪ (F ′
1 ∩ E[V \ U ]).

Then x satisfies (68.68) with respect to G, F1, F2. Hence x is a convex combination
of integer solutions of (68.68). Applying the construction in reverse to (68.70), we
obtain x′ as a convex combination of integer solutions of (68.68) with respect to
G′, F ′

1, F
′
2.

This shows that (68.69)(ii) is maintained under taking odd minors. Moreover,
K4 violates the condition (taking F1 := E, F2 := ∅, xv := 1

3 for each v ∈ V ). This
shows sufficiency of the condition.

68.6d. Orientations of discrepancy 1

A directed graph D = (V, A) is said to have discrepancy k if for each (undirected)
circuit, the number of forward arcs differs by at most k from the number of backward
arcs.

The proof of Gerards [1989a] of the strong t-perfection of odd-K4-free graphs
(Theorem 68.3) is by showing that each such graph can be decomposed into graphs
that have an orientation of discrepancy 1, using a characterization of Gerards [1994]
of orientability of discrepancy 1 and a decomposition theorem of Gerards, Lovász,
Schrijver, Seymour, Shih, and Truemper [1993] (cf. Gerards [1990]). As the graphs
having an orientation of discrepancy 1 can be shown to be strongly t-perfect with
minimum-cost flow techniques (see Theorem 68.7 below), and as the composition
maintains total dual integrality of (68.1), the required result follows.
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It is not difficult to show that the underlying undirected graph of any digraph of
discrepancy 1, contains no odd K4-subdivision. So, by Theorem 68.3, any undirected
graph having an orientation of discrepancy 1, is strongly t-perfect. Gerards gave
a direct proof of the strong t-perfection of such graphs, based on the following
minimum-cost circulation argument:

Lemma 68.7α. Let D = (V, A) be a directed graph and let b : A → Z+. Then the
following system is totally dual integral:

(68.72) (i) xv ≥ 0 for v ∈ V ,
(ii) x(V C) ≤ b(AC) for each directed circuit C in D.

Proof. Choose w : V → Z+. We must show that the dual of maximizing wTx over
(68.72) has an integer optimum solution.

Make another directed graph D̃ = (Ṽ , Ã) as follows. For each vertex v of D,
make two vertices v′, v′′ and an arc (v′, v′′), and for each arc (u, v) of D, make an
arc (u′′, v′). This defines D̃.

Define g, f : Ã → Z+ by:

(68.73) g(v′, v′′) := w(v) and f(v′, v′′) := 0 for v ∈ V ,
g(u′′, v′) := 0 and f(u′′, v′) := b(u, v) for (u, v) ∈ A.

Then the maximum of wTx over (68.72) is equal to the maximum of gTz where
z : Ã → R+ satisfies

(68.74) z(AC̃) ≤ f(AC̃) for each directed circuit C̃ in D̃.

So if we consider f −z as length function on Ã, then (68.74) says that each directed
circuit in D̃ has nonnegative length. Hence, by Theorem 8.2, the maximum is equal
to the maximum of gTz over z : Ã → R+ for which there exists a p : Ṽ → R such
that

(68.75) z(ã) + p(t) − p(s) ≤ f(ã) for each ã = (s, t) ∈ Ã.

The latter system has a totally unimodular constraint matrix, and hence the LP
has integer optimum primal and dual solutions. The dual asks for the minimum of
yTf where y : Ã → Z+ satisfies

(68.76) y(ã) ≥ g(ã) for each ã ∈ Ã,
y(δin(ṽ)) = y(δout(ṽ)) for each ṽ ∈ Ṽ .

So y is a circulation in D̃. Hence y is a nonnegative integer combination of incidence
vectors of directed circuits C̃ in D̃:

(68.77) y =
∑

C̃

λ
C̃

χAC̃ .

For each directed circuit C̃ in D̃, let C denote the corresponding directed circuit in
D (obtained by contracting all arcs (v′, v′′) occurring in C̃). Then

(68.78) yTf =
∑

C̃

λ
C̃

(χAC̃)Tf =
∑

C̃

λ
C̃

f(AC̃) =
∑

C̃

λ
C̃

b(AC)

and



1206 Chapter 68. T-perfect graphs

(68.79)
∑

C̃

λ
C̃

χV C ≥ w.

Hence we have obtained an integer dual solution for the problem of maximizing
wTx over (68.72).

This lemma implies:

Theorem 68.7. Let G = (V, E) be an undirected graph having an orientation D of
discrepancy 1. Then G is strongly t-perfect.

Proof. Let D′ = (V, A′) be the digraph obtained from D by adding a reverse arc
(v, u) for each arc (u, v) of D, defining b(u, v) := 1 and b(v, u) := 0. Then the total
dual integrality of (68.1) follows directly from the total dual integrality of (68.72).
Note that each directed circuit C′ in D′ gives an undirected circuit C in D, with
b(AC′) equal to the number of forward arcs in C. As D has discrepancy 1, � 1

2 |V C|
is equal to the minimum value of b(AC′) and b(AC′−1).

This immediately implies the strong t-perfection of almost bipartite graphs —
graphs having a vertex v with G − v bipartite, since they have an orientation of
discrepancy 1, as one easily checks.

68.6e. Colourings and odd K4-subdivisions

Zang [1998] and Thomassen [2001] showed that any graph G without totally odd
K4-subdivision satisfies χ(G) ≤ 3.25 We may interpret this in terms of the integer
decomposition and rounding properties. Consider the antiblocking polytope Q of
the stable set polytope of a graph G = (V, E):

(68.80) xv ≥ 0 for each v ∈ V ,
x(S) ≤ 1 for each stable set S.

If G is t-perfect, the vertices of Q are: the origin, the unit base vectors, the incidence
vectors of the edges, and the vectors χV C/� 1

2 |V C| where C is an odd circuit.
(This follows from the definition of t-perfection with antiblocking polyhedra theory.)
Hence the fractional colouring number χ∗(G) of G, which is equal to the maximum
of 1Tx over (68.80) (cf. Section 64.8), is equal to

(68.81) max{2, max{ |V C|
� 1

2 |V C| | C odd circuit}}

(assuming E �= ∅). For nonbipartite graphs, this value is equal to 3. So for graphs
G without totally odd K4-subdivision, the colouring number χ(G) is equal to the
round-up �χ∗(G)� of the fractional colouring number.

25 This was conjectured by Toft [1975], and extends results of Hadwiger [1943] that a 4-
chromatic graph contains a K4-subdivision, of Catlin [1979] that it contains an odd K4-
subdivision, and of Gerards and Shepherd [1998] that it contains a bad K4-subdivision.
Zeidl [1958] showed that any vertex of a minimally 4-chromatic graph lies in a subdi-
vided K4 that contains an odd circuit. Other partial and related results were found by
Krusensjterna-Hafstrøm and Toft [1980], Thomassen and Toft [1981], and Jensen and
Shepherd [1995].
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A.M.H. Gerards (personal communication 2001) showed that system (68.80)
has the integer rounding property if G has no odd K4-subdivision. It implies that
the corresponding stable set polytope has the integer decomposition property. This
is equivalent to:

(68.82) χw(G) = �χ∗
w(G)�

for each odd-K4-free graph G and each w : V G → Z+.
This does not hold for any t-perfect graph: M. Laurent and P.D. Seymour

showed in 1994 that the complement of the line graph of a prism (complement of
C6) is t-perfect, but is not 3-colourable; hence its stable set polytope does not have
the integer decomposition property.

68.6f. Homomorphisms

Let G and H be simple graphs. A homomorphism G → H is a function φ : V G →
V H such that if uv ∈ EG, then φ(u)φ(v) ∈ EH (in particular, φ(u) �= φ(v)).
Obviously, if there exists a homomorphism G → H, then χ(G) ≤ χ(H).

For any k, let K
(k)
4 be the graph obtained from K4 by replacing each edge by

a path of length k. Then one may check that for odd k there is no homomorphism
K

(k)
4 → C2k+1.

Catlin [1985] showed that this is essentially the only counterexample: if G is a
connected graph of maximum degree 3 and k ∈ Z+, such that any two vertices of
G of degree 3 have distance at least k, and such that there is no homomorphism
G → C2k+1, then k is odd and G = K

(k)
4 . (This extends Brooks’ theorem (Theorem

64.3) for k = 1.)
Gerards [1988] extended this to: if a nonbipartite graph G has no odd minor

equal to K4 or to the graph obtained from the triangle by adding for each edge a
new vertex adjacent to the ends of the edge, then there is a homomorphism G → Ct,
where t is the shortest length of an odd circuit of G. Further results are given by
Catlin [1988].

68.6g. Further notes

Sbihi and Uhry [1984] call a graph G = (V, E) h-perfect26 if the stable set polytope
is determined by

(68.83) (i) xv ≥ 0 for v ∈ V ,
(ii) x(C) ≤ 1 for each clique C,

(iii) x(V C) ≤ � 1
2 |V C| for each odd circuit C.

So perfect graphs and t-perfect graphs are h-perfect. Sbihi and Uhry showed
that substituting bipartite graphs for edges of a series-parallel graph preserves h-
perfection.

The t-perfection of line graphs, and classes of graphs that are h-perfect but not
t-perfect, were studied by Cao and Nemhauser [1998]. Gerards [1990] gave a survey
on signed graphs without odd K4-subdivision.

26 h stands for ‘hole’ (English for ‘trou’).



Chapter 69

Claw-free graphs

Claw-free graphs are graphs not having K1,3 as induced subgraph. We show
the result of Minty and Sbihi that a maximum-size stable set in a claw-
free graph can be found in strongly polynomial time, and the extension of
Minty to the weighted case.

69.1. Introduction

A graph G = (V,E) is called claw-free if no induced subgraph of G is iso-
morphic to K1,3. Minty [1980] and Sbihi [1980] showed that a maximum-size
stable set in a claw-free graph can be found in polynomial time. Since the line
graph of any graph is claw-free, this generalizes Edmonds’ polynomial-time
algorithm for finding a maximum-size matching in a graph.

Sbihi’s algorithm is an extension of Edmonds’ blossom shrinking tech-
nique, while Minty gave a reduction to the maximum-size matching prob-
lem. Minty [1980] also indicated that his algorithm can be extended to the
weighted case by reduction to Edmonds’ weighted matching algorithm. The
final argument for this was given by Nakamura and Tamura [2001].

In Section 69.2, we describe Minty’s method for finding a maximum-size
stable set in claw-free graphs, and in Section 69.3 we describe the extension
to the weighted case.

69.2. Maximum-size stable set in a claw-free graph

An important property of claw-free graphs is that any vertex has at most
two neighbours in any stable set. This enables us to augment stable sets by
S-augmenting paths, which we define now.

Let G = (V,E) be a graph and let S be a stable set in G. A walk P =
(v0, v1, . . . , vk) (given by its vertex-sequence) is called S-alternating if pre-
cisely one of vi−1, vi belongs to S, for each i = 1, . . . , k. It is an S-augmenting
path if moreover P is a path, v0, vk �∈ S, and (S \ {v1, v3, . . . , vk−1}) ∪
{v0, v2, . . . , vk} is stable. This implies that (if k ≥ 2) each of v0 and vk
has precisely one neighbour in S, and each of v2, v4, . . . , vk−2 precisely two.
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It is easy to see that if G is claw-free, then there is a stable set larger
than S if and only if there exists an S-augmenting path. Indeed, sufficiency
follows from the definition of S-augmenting path. To see necessity, let S′ be
a stable set larger than S. Then the subgraph of G induced by S�S′ has a
component K with more vertices in S′ than in S. Since G is claw-free, this
subgraph has maximum degree 2, and hence K forms an S-augmenting path.

So in order to find a maximum-size stable set, it suffices to have a
polynomial-time algorithm to find for given S, an S-augmenting path, if
any. For this, it suffices to describe a polynomial-time algorithm to find an
S-augmenting a− b path for prescribed a, b ∈ V \S (if any). Varying over all
a, b ∈ V \ S, we find an S-augmenting path (if any).

Therefore, from now on we fix a, b ∈ V \ S. Then we can assume:

(69.1) a �= b; a and b have degree 1, each with neighbour in S, say sa
and sb; sa �= sb; each v ∈ V \ S with v �= a, b has precisely two
neighbours in S; for each s ∈ S with s �= sa, sb there are at least
two vertices in S at distance two from s; G is connected.

Indeed, otherwise finding an S-augmenting path is trivial, or it does not exist;
moreover, we can delete all neighbours of a or b distinct from sa or sb, and
all vertices in S \ {sa, sb} that have less than two vertices in S at distance
two.

The assumptions (69.1) imply that any S-augmenting path connects a
and b. Consider an S-alternating path

(69.2) P = (v0, s1, v1, . . . , sk, vk)

(given by its vertex-sequence), with v0 = a and vk = b. So s1 = sa and
sk = sb. Then (under the assumptions (69.1)):

Lemma 69.1α. P is S-augmenting if and only if vi−1 and vi are nonadjacent
for each i = 2, . . . , k − 1.

Proof. Necessity being trivial, we show sufficiency. It suffices to show that
(S \ {s1, . . . , sk}) ∪ {v0, . . . , vk} is a stable set. Any two vertices in S are
nonadjacent. All neighbours in S of any vi are among s1, . . . , sk. Finally,
suppose that any vi, vj are adjacent, with i < j. Then j ≥ i + 2, since vi
and vi+1 are nonadjacent by the condition. But then vi is adjacent to the
three pairwise nonadjacent vertices si, si+1, and vj . This contradicts the
claw-freeness of G.

We next prove a basic lemma of Minty [1980]. Define, for u, v ∈ V \ S:

(69.3) u ∼ v ⇐⇒ N(u) ∩ S = N(v) ∩ S.
Clearly, ∼ is an equivalence relation. We call any equivalence class a similarity
class, and if u ∼ v we say that u and v are similar. So for each s ∈ S, N(s)
is a union of similarity classes.
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We call a vertex s ∈ S splittable if N(s) can be partitioned into two classes
X,Y such that

(69.4) uv ∈ E ⇐⇒ u, v ∈ X or u, v ∈ Y

for all u, v ∈ N(s) with u �∼ v. If s is splittable, we call X and Y the classes
of s. Define

(69.5) S′ := {s ∈ S | s is splittable} and S′′ := S \ S′.

Then sa, sb ∈ S′, since N(sa)\{a} is a clique, as a has no neighbours in N(sa)
(by assumption (69.1)) and as G is claw-free — similarly for sb. Moreover:

Lemma 69.1β. Each vertex s ∈ S having at least three vertices in S at
distance two, belongs to S′.

Proof. Since sa, sb ∈ S′, we may assume that s �= sa, sb. Let G′ = (N(s), F )
be the subgraph of G with

(69.6) F := {uv ∈ E | u, v ∈ N(s), u �∼ v}.

Then

(69.7) each component of G′ induces a clique of G.

Suppose not. Let P = (v0, v1, . . . , vk) be a shortest path in G′ with v0vk �∈ E.
If k = 2, then v0 �∼ v1 �∼ v2, and hence v1 has a neighbour t ∈ S which is not
a neighbour of v0 or v2. But then v1 is adjacent to the pairwise nonadjacent
t, v0, v2, contradicting the claw-freeness of G.

If k = 3, then as P is shortest, v0v2, v1v3 ∈ E \ F . So v0 ∼ v2 and
v1 ∼ v3. Choose a vertex p with p �∼ v0 and p �∼ v1. (This is possible since
N(s) contains at least three similarity classes.) Then p has a neighbour t in S
which is not a neighbour of any of v0, v1, v2, v3. Since N(s) contains no three
pairwise nonadjacent vertices (as G is claw-free), we know that v0p ∈ E or
v3p ∈ E. By symmetry, we can assume that v0p ∈ E, and hence v0p ∈ F .
Then, by the minimality of k, we know successively that v1p ∈ F , v2p ∈ F ,
and v3p ∈ F . But then v0p and pv3 are in F , and hence, by the minimality
of k, v0v3 ∈ E.

If k ≥ 4, then v0v2, v0v3 ∈ E, hence (since v2 �∼ v3) v0v2 ∈ F or v0v3 ∈ F ,
contradicting the minimality of k. This proves (69.7).

Since G is claw-free, G′ has at least one component, X say, that intersects
at least two of the similarity classes. If G′ has at most two components,
or if X contains all but at most one similarity class, we are done, taking
Y := N(s) \X. If G′ has at least three components and N(s) \X intersects
at least two similarity classes, then G′ has two other components Y,Z for
which there exist x ∈ X, y ∈ Y , and z ∈ Z with x �∼ y �∼ z �∼ x, as one easily
checks27. But then s is adjacent to the three pairwise nonadjacent vertices
x, y, z, contradicting the claw-freeness of G.
27 Let y ∈ N(s) \ X be such that there exist x′, x′′ ∈ X with y 
∼ x′ 
∼ x′′ 
∼ y. Let Y be

the component of G′ containing y. Let Z be a third component, if possible containing
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vertex in S vertex not in S

Figure 69.1
A typical bone

Now consider the subgraph

(69.8) (V \ S′, δ(S′′))

of G. It is a bipartite graph, with colour classes S′′ and V \ S. We call each
component of this graph a bone. (A typical bone is depicted in Figure 69.1.)
By Lemma 69.1β, each s ∈ S′′ has at most two vertices in S at distance two.
Hence any bone B consists of a series of vertices s1, . . . , sk in S′′, together
with disjoint nonempty sets V0, V1, . . . , Vk of vertices such that si is incident
with each vertex in Vi−1 ∪ Vi for each i = 1, . . . , k. Moreover, B has two
neighbours in S′, say s and t, where s is adjacent to all vertices in V0 and t is
adjacent to all vertices in Vk. (It might be that s = t.) The degenerate case
is that k = 0, where B is a singleton vertex in V \ S with two neighbours in
S′.

The relevance of bones is that if we leave out from any S-augmenting path
the vertices that belong to S′, we are left with a number of subpaths, each of
which is an S′′-augmenting path contained in some bone. So in constructing
or analyzing an S-augmenting path, we can decompose it into S′′-augmenting
paths, glued together at vertices in S′. Here the classes of the vertices in S′

come in, since the ends of the two subpaths glued together at s ∈ S′ should
belong to different classes of s. This motivates the following graph H (called
the Edmonds graph by Minty [1980])28.

H has vertex set

(69.9) {(s,X) | s ∈ S′, X class of s} \ {(sa, {a}), (sb, {b})}
and the following edges:

(69.10) (i) {(s,X), (s, Y )} for s ∈ S′ \ {sa, sb} and X,Y the classes of s;

a vertex nonsimilar to y. Then, if Z contains a vertex z 
∼ y, we can take for x one of
x′, x′′. If Z contains no such vertex, let z ∈ Z. Then Y contains a vertex y′ 
∼ z. As
z 
∼ x′ and z 
∼ x′′, we are done again.

28 We note that in constructing H we could restrict S′ to those vertices in S that have at
least 3 vertices in S at distance two, together with sa and sb. However, for the extension
to the weighted case, we need S′ as defined above (namely, by being splittable).
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(ii) {(s,X), (t, Y )} for vertices (s,X), (t, Y ) of H such that there
exists an S′′-augmenting X − Y path P .

So the path P is contained in the bone B containing x and y for some x ∈ X
and some y ∈ Y . Its existence can be checked as follows. Let V0, V1, . . . , Vk be
as above. Make the digraph D on V0 ∪V1 ∪ . . .∪Vk with an arc from u ∈ Vi−1
to v ∈ Vi if uv �∈ E (for i = 1, . . . , k). Then a directed X −Y path in D gives
a path P as required, and conversely.

Let M be the matching of edges in (69.10)(i). So M covers all vertices of
H, except the vertices (sa, N(sa) \ {a}) and (sb, N(sb) \ {b}). Then (under
the assumptions (69.1)):

Lemma 69.1γ. G has an S-augmenting path ⇐⇒ H has an M -augmenting
path. We can obtain one from the other in polynomial time.

Proof. Let P = (v0, s1, v1, . . . , sk, vk) be an S-augmenting path in G, with
v0 = a and vk = b. Let si1 , . . . , sit be those vertices in P that belong to S′

(in order). So i1 = 1 and it = k. For j = 1, . . . , t, let Xj and Yj be the classes
of sij that contain vij−1 and vij , respectively. Then Xj �= Yj , since vij−1 and
vij are nonsimilar and nonadjacent. Moreover, the subpath of P between any
two sij and sij+1 forms an S′′-augmenting Yj −Xj+1 path. Hence

(69.11) ((si1 , Y1), (si2 , X2), (si2 , Y2), . . . , (sit−1 , Xt−1), (sit−1 , Yt−1),
(sit , Xt))

is an M -augmenting path in H.
We can reverse this construction. Indeed, any M -augmenting path Q

yields an S-alternating a − b walk P in G, by inserting appropriate S′′-
augmenting paths.

In fact, P is a path. For suppose that P traverses some vertex u of G
more than once. Then u belongs to two of the inserted paths. Necessarily,
they belong to the same bone B. Hence B has a neighbour in S′ that is
traversed more than once. But then Q traverses some matching edge more
than once, a contradiction.

So P is a path. Moreover, any two vertices at distance two in P are
nonadjacent, by construction of P . So P is S-augmenting, by Lemma 69.1α.

Concluding, we have obtained the result of Minty [1980] and Sbihi [1980]:

Theorem 69.1. A maximum-size stable set in a claw-free graph can be found
in polynomial time.

Proof. From Lemma 69.1γ, since finding an M -augmenting path in H
is equivalent to finding a perfect matching in M . The latter problem is
polynomial-time solvable by Corollary 24.4a.



Section 69.3. Maximum-weight stable set in a claw-free graph 1213

69.3. Maximum-weight stable set in a claw-free graph

There is an obvious way of extending the above construction to the weighted
case, but there is a catch in it. The idea was noted by Minty [1980], and
finalized by Nakamura and Tamura [2001].

Let G = (V,E) be a graph and let w : V → R+ be a weight function.
Call a stable set S extreme if it has maximum weight among all stable sets
of size |S|. It suffices to describe an algorithm to derive from any extreme
stable set S, an extreme set of size |S| + 1, if any (since then we can start
with S := ∅, enumerate extreme stable sets of all possible sizes, and choose
one of maximum weight among them).

The following observations are basic:

Lemma 69.2α. Let G = (V,E) be a claw-free graph, let w : V → R+, and
let S be an extreme stable set. Then:

(69.12) (i) each S-alternating chordless circuit satisfies w(V C \ S) ≤
w(V C ∩ S);

(ii) if P is an S-augmenting path maximizing w(V P \S)−w(V P ∩
S), then S�V P is an extreme stable set of size |S| + 1.

Proof. (i) follows from the fact that S�V C is a stable set of size |S|, and
hence w(S) ≥ w(S�V C) = w(S) + w(V C \ S) − w(V C ∩ S).

(ii) can be seen as follows. Let S̃ be an extreme stable set of size |S|+1. The
subgraph induced by S�S̃ has a component K with |K ∩ S̃| > |K ∩S|. Since
G is claw-free, K has maximum degree at most 2. So K is an S-augmenting
path, and hence |K ∩ S̃| = |K ∩S| + 1. Let L := (S�S̃) \K. Then S�L and
S̃�L are stable sets of size |S| and |S| + 1 respectively. Since S is extreme,
w(L ∩ S̃) ≤ w(L ∩ S). Hence w(S̃�L) ≥ w(S̃). So S̃�L is extreme again.
Hence we can assume that L = ∅. Then, since K is an S-augmenting path:

(69.13) w(S�V P ) = w(S) + w(V P \ S) − w(V P ∩ S)
≥ w(S) + w(K \ S) − w(K ∩ S) = w(S̃).

So S�V P is extreme.

Statement (ii) of Lemma 69.2α implies that, to find an extreme stable
set of size |S| + 1, it suffices to find an S-augmenting path P maximizing
w(V P \S)−w(V P ∩S). By enumerating over all pairs a, b ∈ V \S, it suffices
to find, for each fixed a, b ∈ V \S, an S-augmenting a− b path P maximizing
w(V P \ S) − w(V P ∩ S) (if any). Then we can make again the assumptions
(69.1), and construct the graph H. Define a weight function ω on the edges
of H (following the items in (69.10)) as follows:

(69.14) (i) ω({(s,X), (s, Y )}) := w(s),
(ii) ω({(s,X), (t, Y )}) := the maximum of w(V P \ S′′) −w(V P ∩

S′′) over all S′′-augmenting X − Y paths P .
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The maximum in (69.14)(ii) can be found in strongly polynomial time, since
it amounts to finding a longest directed X − Y path in the acyclic digraph
D described just after (69.10).

Now a maximum-weight perfect matching inH need not yield a maximum-
weight stable set in G, as was pointed out by Nakamura and Tamura [2001],
since there might exist M -alternating circuits that increase the weight of M ,
while they do not correspond to a chordless S-alternating circuit. However,
this can be avoided by preprocessing as follows.

We can assume that for each v ∈ V \ S with v �= a, b:

(69.15) (i) there exist s, t, x, y such that (x, s, v, t, y) is a chordless S-
alternating path and such that N(x) ∩N(y) ∩ S = ∅;

(ii) there exist s, t ∈ S′ and classes X of s and Y of t such that
there exists an S′′-augmenting X − Y path and such that
each S′′-augmenting X − Y path P attaining the maximum
in (69.14)(ii), traverses v.

Otherwise v is on no maximum-weight S-augmenting path, and hence we can
delete v. The conditions (69.15) can be tested in strongly polynomial time
(for (ii) using digraph D). Hence the deletions take strongly polynomial time
only.

Fix for each edge e of H in (69.14)(ii), a path Pe attaining the maximum.
Then we can transform any M -alternating path or circuit to an S-alternating
walk or closed walk, by replacing each such edge e by Pe. We call this the
corresponding walk or closed walk in G.

Lemma 69.2β. Under the assumptions (69.15), each M -alternating circuit
C in H satisfies ω(EC \M) ≤ ω(EC ∩M).

Proof. Suppose not. Choose C maximizing ω(EC \M) − ω(EC ∩M). Let
Γ be the corresponding S-alternating closed walk in G. Then Γ is not a
chordless circuit, since otherwise

(69.16) w(V Γ \ S) − w(V Γ ∩ S) = ω(EC \M) − ω(EC ∩M) > 0,

which contradicts (i) of Lemma 69.2α.
Since each Pe is simple and chordless, it follows that EC \ M contains

distinct edges e, f for which there exist u ∈ V Pe and v ∈ V Pf with u = v
or uv ∈ E. This implies that C has length 4, and that e and f are the only
edges in EC \M . So Pe and Pf are in the same bone B. Let s and t be the
neighbours of B in S′. Let s have classes Y,Z and t have classes W,X such
that Pe connects Y and W and Pf connects Z and X. Write

(69.17) Pe = (u0, s1, u1, . . . , sk, uk) and Pf = (v0, s1, v1, . . . , sk, vk)

for some k ≥ 0 and s1, . . . , sk ∈ S′′, where u0 ∈ Y , uk ∈ W , v0 ∈ Z, vk ∈ X.
We define s0 := s and sk+1 := t. Now

(69.18) for each i = 1, . . . , k: ui−1vi ∈ E or vi−1ui ∈ E.
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Otherwise, we can ‘switch’ Pe and Pf at si to obtain the S′′-augmenting
paths

(69.19) Q := (u0, s1, . . . , ui−1, si, vi, . . . , sk, vk) and
R := (v0, s1, . . . , vi−1, si, ui, . . . , sk, uk).

Hence H has edges {(s, Y ), (t,X)} and {(s, Z), (t,W )}, and

(69.20) ω({(s, Y ), (t,X)}) + ω({(s, Z), (t,W )})
≥ ω({(s, Y ), (t,W )}) + ω({(s, Z), (t,X)}).

By the choice of C, we have equality, and hence the paths Q and R attain the
corresponding maxima in (69.14)(ii). It implies, by assumption (69.15)(ii),
that ui−1, vi−1, ui, and vi are the only neighbours of si. Since none of
ui−1, vi−1 are adjacent to any of ui, vi, we have that si is splittable, that
is, si ∈ S′, a contradiction. This proves (69.18).

Next

(69.21) u0v0 �∈ E and ukvk �∈ E.

For suppose that (say) u0v0 ∈ E. By (69.15)(i), there exist x, y ∈ V \ S such
that (x, s, u0, s1, y) is a chordless path and such that N(x) ∩ N(y) ∩ S = ∅.
As x is nonadjacent to u0, and as u0 ∈ X, we have x ∈ Y , and so (as v0 ∈ Y )
xv0 ∈ E.

If k = 0, we have similarly yv0 ∈ E. Then v0 is adjacent to the pairwise
nonadjacent x, u0, y, a contradiction.

So k ≥ 1. Then y ∼ u1 and N(y) ∩ S = {s1, s2}. So xs1, xs2 �∈ E (since
N(x) ∩N(y) ∩ S = ∅). This implies xu1 �∈ E, since otherwise u1 is adjacent
to the pairwise nonadjacent s1, s2, x. Hence v0u1 �∈ E, since otherwise v0 is
adjacent to the pairwise nonadjacent x, u0, u1. By symmetry, also u0v1 �∈ E.
This contradicts (69.18), and hence proves (69.21).

Moreover,

(69.22) there is an i with 0 ≤ i ≤ k and uivi ∈ E,

as otherwise each circuit (si, ui, si+1, vi, si) is S-alternating and chordless,
which implies w(ui) + w(vi) − w(si) − w(si+1) ≤ 0 by Lemma 69.2α. This
gives the contradiction

(69.23) 0 < ω(EC \M) − ω(EC ∩M)
= w(V Pe \ S′′) − w(V Pe ∩ S′′) + w(V Pf \ S′′) − w(V Pf ∩ S′′)

− w(s) − w(t) =
k∑

i=0

(w(ui) + w(vi) − w(si) − w(si+1)) ≤ 0,

proving (69.22).
Now let i be the smallest index with uivi ∈ E. By (69.21), we know 1 ≤

i ≤ k−1. By (69.18) and by symmetry we can assume that viui+1 ∈ E. Since
si is adjacent to ui−1, vi−1, and vi, and since ui−1vi−1 �∈ E and vi−1vi �∈ E,
we know ui−1vi ∈ E. Then vi is adjacent to the pairwise nonadjacent ui−1,
ui, and ui+1, a contradiction.
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Now find a maximum-weight perfect matching N in H, with the maxi-
mum-weight perfect matching algorithm (Chapter 26). By Lemma 69.2β, we
can assume that N = M�EQ for some M -augmenting path Q in H (since if
N�M contains a circuit C, then N�EC again is a maximum-weight perfect
matching in H). Then Q maximizes ω(EQ \ M) − ω(EQ ∩ M) over all M -
augmenting paths. Let P be the corresponding path in G. Then P is an
S-augmenting path in G maximizing w(V P \ S) − w(V P ∩ S), as required.

We conclude:

Theorem 69.2. A maximum-weight stable set in a claw-free graph can be
found in strongly polynomial time.

Proof. See above.

69.4. Further results and notes

69.4a. On the stable set polytope of a claw-free graph

The polynomial-time solvability of the maximum-weight stable set problem for
claw-free graphs implies that the optimization problem over the stable set polytope
Pstable set(G) of a claw-free graph G = (V, E) is polynomial-time solvable. Hence
also the separation problem is polynomial-time solvable (with the ellipsoid method
(Theorem 5.10)). It implies (cf. Theorem 5.11) that, given a vector x ∈ Q

V , one
can decide in strongly polynomial time if x belongs to Pstable set(G), and if not,
find a facet-inducing inequality violated by x.

So in this respect, the stable set polytope of a claw-free graph is under control.
However, no explicit description is known of a system that determines Pstable set(G).
As we saw in Section 25.2, such a description is known for the special case where
G is the line graph of some graph H — that is, for the matching polytope of H. In
this special case, each facet can be described by an inequality with coefficients in
{0, 1}.

The latter fact does not generalize to claw-free graphs. Giles and Trotter [1981]
showed that for each k ∈ Z+ there exists a claw-free graph such that its stable set
polytope has a facet that is described by a linear inequality with coefficients k and
k + 1. (This refutes a conjecture of Sbihi [1978].)

Galluccio and Sassano [1997] characterized those facets of the stable set poly-
tope of a claw-free graph that can be described by an inequality with all coefficients
in {0, 1} (the rank facets).

More on facets of the stable set polytope of special classes of claw-free graphs
can be found in Ben Rebea [1981] and Oriolo [2002] (for graphs such that for each
vertex v, the graph induced by N(v) is the complement of a bipartite graph) and
Pulleyblank and Shepherd [1993] (for claw-free graphs such that no vertex has three
pairwise nonadjacent vertices at distance two).
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69.4b. Further notes

Minty [1980] observed that finding a maximum-size stable set in a graph without
induced K1,4 is NP-complete. This follows from the fact that the 3-dimensional
assignment problem can be reduced to it (its intersection graph has no induced
K1,4).

Poljak [1974] showed that finding a maximum-size stable set in a triangle-free
graph is NP-complete. It implies that finding a maximum-size clique in a claw-free
graph is NP-complete.

Shepherd [1995] characterized the stable set polytope of near-bipartite graphs,
that is, graphs with G− N(v) bipartite for each v ∈ V G. They include the comple-
ments of line graphs, and the complement of any near-bipartite graph is claw-free.

Ben Rebea [1981] showed that each connected claw-free graph G with α(G) ≥ 3
not containing an induced C5, contains no odd antihole. This was extended by
Fouquet [1993] who showed that each connected claw-free graph G with α(G) ≥ 4
contains no odd antihole with at least 7 vertices.

Lovász and Plummer [1986] gave a variant of Minty’s reduction of the maximum-
size stable set problem in claw-free graphs to the maximum-size matching problem.

Beineke [1970] (for simple graphs), N. Robertson (unpublished), Hemminger
[1971] (abstract only), and Bermond and Meyer [1973] characterized line graphs by
means of forbidden induced subgraphs (six graphs next to K1,3).

The polynomial-time solvability of the weighted stable set problem for claw-
free graphs was extended to claw-free bidirected graphs by Nakamura and Tamura
[1998]. A linear-time algorithm for ‘triangulated’ bidirected graphs was given by
Nakamura and Tamura [2000].
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