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Part V: Trees, Branchings, and Connectors

This part focuses on structures that are defined by connecting several pairs of ver-
tices simultaneously, with most basic structure that of a spanning tree. A spanning
tree can be characterized as a minimal set of edges that connects each pair of ver-
tices by at least one path — that is, a minimal connector. Alternatively, it can be
characterized as a maximal set of edge that connects each pair of vertices by at
most one path — that is, a maximal forest.
Finding a shortest spanning tree belongs to classical combinatorial optimization,
with lots of applications in planning road, energy, and communication networks,
in chip design, and in clustering data in areas like biology, taxonomy, archeology,
and, more generally, in any large data base. Spanning trees are well under control
polyhedrally and algorithmically, both as to shortest and as to disjoint spanning
trees. They form a prime area of application of matroid theory.
There are several variations and generalizations of the notion of spanning tree that
are also well under control, like arborescences, branchings, biconnectors, bibranch-
ings, directed cut covers, and matching forests.
An illustrious variant that is worse under control is the Hamiltonian circuit —
in other words, the traveling salesman tour — which (in the directed case) can
be considered as a smallest strongly connected subgraph. The traveling salesman
problem is NP-complete and no complete polyhedral characterization is known.
It implies that more general optimization problems like finding a shortest strong
connector or a cheapest connectivity augmentation also are NP-complete. In this
part we will however come across some special cases that are well-solvable and
well-characterized.
In this part we also discuss the powerful framework designed by Edmonds and
Giles, based on defining the concept of a submodular flow in a directed graph with a
submodular function on its vertex set. It unifies several of the results and techniques
of the present part and of the previous part on matroids and submodular functions.
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Chapter 50

Shortest spanning trees

In this chapter we consider shortest spanning trees in undirected graphs.
We show that the greedy algorithm finds a shortest spanning tree in a
graph, and moreover yields min-max relations and polyhedral characteri-
zations. These are special cases of results on matroids discussed in Chapter
40, but deserve special consideration since the graph framework allows a
number of additional viewpoints and opportunities.
We recall some terminology and elementary facts. A graph G = (V, E)
is called a tree if G is connected and contains no circuit. For any graph
G = (V, E), a subset F of E is called:
• a spanning tree if (V, F ) is a tree,
• a forest if F contains no circuit,
• a maximal forest if F is an inclusionwise maximal forest,
• a connector if (V, F ) is connected.
A graph G has a spanning tree if and only if G is connected. For any
connected graph G = (V, E), each of the following characterizes a subset
F of E as a spanning tree:
• F is a maximal forest;
• F is an inclusionwise minimal connector;
• F is a forest with |F | = |V | − 1;
• F is a connector with |F | = |V | − 1.
In any graph G = (V, E), a maximal forest has |V | − k edges, where k is
the number of components of G; it forms a spanning tree in each of the
components of G. So each inclusionwise maximal forest is a maximum-size
forest; that is, each forest is contained in a maximum-size forest. Similarly,
each connector contains a minimum-size connector.

50.1. Shortest spanning trees

Let G = (V,E) be a connected graph and let l : E → R be a function,
called the length function. For any subset F of E, the length l(F ) of F is, by
definition:

(50.1) l(F ) :=
∑

e∈F

l(e).
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In this section we consider the problem of finding a shortest spanning tree in
G — that is, one of minimum length.

While this is a special case of finding a minimum-weight base in a matroid,
and hence can be solved with the greedy algorithm (Section 40.1), spanning
trees allow some variation on the method, essentially because we can exploit
the presence of the vertex set (graphic matroids are defined on the edge set
only).

Also these variants of the greedy method will be called greedy. Such meth-
ods go back to Bor̊uvka [1926a]. The correctness of each of the variants follows
from the following basic phenomenon.

Call a forest F good if there exists a shortest spanning tree T of G that
contains F . (So we are out for a good spanning tree.) Then:

Theorem 50.1. Let F be a good forest and let e be an edge not in F . Then
F ∪ {e} is a good forest if and only if

(50.2) there exists a cut C disjoint from F such that e is shortest among
the edges in C.

Proof. To see necessity, let T be a shortest spanning tree containing F ∪{e}.
Let C be the unique cut disjoint from T \ {e}. Then e is shortest in C, since
if f ∈ C, then T ′ := (T \ {e}) ∪ {f} is again a spanning tree. As l(T ′) ≥ l(T )
we have l(f) ≥ l(e).

To see sufficiency, let T be a shortest spanning tree containing F . Let P
be the path in T between the ends of e. Then P contains at least one edge
f that belongs to C. Then T ′ := (T \ {f}) ∪ {e} is a spanning tree again.
By assumption, l(e) ≤ l(f) and hence l(T ′) ≤ l(T ). Hence T ′ is a shortest
spanning tree again. As F ∪ {e} is contained in T ′, it is a good forest.

(The idea of this proof is in Jarńık [1930].)
This theorem offers us a framework for an algorithm: starting with F := ∅,

iteratively extend F by an edge e satisfying (50.2). We end up with a shortest
spanning tree.

Rule (50.2) was formulated by Tarjan [1983], and is the most liberal rule
in obtaining greedily a shortest spanning tree. The variants of the greedy
method are obtained by specifying how to choose edge e.

The first variant, the tree-growing method, was given by Jarńık [1930]
(and by Kruskal [1956], Prim [1957], Dijkstra [1959]). It is also called the
Jarńık-Prim method or Prim’s method (Prim was the first giving an O(n2)
implementation):

(50.3) Fix a vertex r. Set F := ∅. As long as F is not a spanning tree,
let K be the component of F containing r, let e be a shortest
edge leaving K, and reset F := F ∪ {e}.

Corollary 50.1a. Prim’s method yields a shortest spanning tree.
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Proof. Directly from Theorem 50.1, by taking C := δ(K).

A second variant, the forest-merging method or Kruskal’s method, is due
to Kruskal [1956] (and to Loberman and Weinberger [1957] and Prim [1957]):

(50.4) Set F := ∅. As long as F is not a spanning tree, choose a shortest
edge e for which F ∪ {e} is a forest, and reset F := F ∪ {e}.

(So this version is the true specialization of the greedy algorithm for matroids
to graphs.)

Corollary 50.1b. Kruskal’s method yields a shortest spanning tree.

Proof. Again directly from Theorem 50.1, as e is shortest in the cut δ(K)
for each of the two components K of F incident with e.

Prim [1957] and Loberman and Weinberger [1957] observed that the opti-
mality of the greedy method implies that each length function which gives the
same order of the edges (like the logarithm or square of the lengths), has the
same collection of shortest spanning trees. Similarly, the shortest spanning
tree minimizes the product of the lengths (if nonnegative).

In a similar way one finds a longest spanning tree. The maximum length
of a forest and the minimum length of a connector can also be found with
the greedy method.

Note that the greedy method is flexible: We can change our rule of choos-
ing the new edge e at any time throughout the algorithm, as long as at any
choice of e, (50.2) is satisfied.

As Prim [1957] and Dijkstra [1959] remark, the value of any variant of
the greedy method depends on its implementation. One should have efficient
ways to store and update information on the components of F , and on finding
an edge satisfying (50.2). We now consider such implementations for Prim’s
and for Kruskal’s method.

50.2. Implementing Prim’s method

Prim [1957] and Dijkstra [1959] described implementations of Prim’s method
that run in time O(n2). (Here we assume without loss of generality that the
graph is simple.)

To this end, we indicate at any vertex v, whether or not v belongs to the
component K containing r of the current forest F , and in case v �∈ K, we
store at v a shortest edge ev connecting v with K (void if there is no such
edge). Then at each iteration, we scan all vertices, and select one, v say, for
which v �∈ K and ev is shortest. We add ev to F , and v to K, and for each
edge vu incident with v, we replace eu by vu if u �∈ K and vu is shorter than
eu (or if eu is void).
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As each iteration takes O(n) time and as there are n − 1 iterations we
have the result stated by Dijkstra [1959]:

Theorem 50.2. A shortest spanning tree can be found in time O(n2).

Proof. See above.

In fact, by applying 2-heaps (Section 7.3) one can obtain a running time
bound of O(m log n) (E.L. Johnson, cf. Kershenbaum and Van Slyke [1972]),
and with Fibonacci heaps (Section 7.4) one obtains (Fredman and Tarjan
[1984,1987]):

Theorem 50.3. A shortest spanning tree can be found in time O(m +
n log n).

Proof. Directly by applying Fibonacci heaps as described in Section 7.4.

50.3. Implementing Kruskal’s method

Bottleneck in implementing Kruskal’s method is the necessity to scan the
edges sorted by length. As the best bound for sorting is O(m log n), we cannot
hope for implementations of Kruskal’s method faster than that.

However, the bound O(m log n) is easy to achieve. In fact, as was noticed
by Kershenbaum and Van Slyke [1972] (using ideas of Van Slyke and Frank
[1972]), it is easy to implement Kruskal’s method such that the time after
sorting is O(m+ n log n). This can be done with elementary data-structures
like lists; no heaps are needed.

Indeed, it is not hard to design a simple data structure that tests in
constant time if the ends of any edge belong to different components of the
current forest F , and that merges components in time linear in the size of
the smaller component1.

Then the iterations take O(m + n log n) time, since checking if the ends
of an edge belong to different components takes O(m) time overall, while
merging takes O(n log n) time overall: any vertex v belongs at most log2 n
times to the smaller component when merging, as, at any such event, the
component containing v at least doubles in size.
1 Consider any forest F . Represent each component K by a (singly) linked list. For any

vertex v, let r(v) be the first vertex of the list Lv containing v.
Initially, for each vertex v, r(v) = v, as Lv = {v}. At any iteration, the edge e = uv

considered connects different components of F if and only if r(u) �= r(v). Checking this
takes constant time.

If r(u) �= r(v), we can determine which of the lists Lu, Lv is smallest in time
O(min{|Lu|, |Lv |}) (by scanning them in parallel, starting at r(u) and r(v)). Assume
without loss of generality that |Lu| ≤ |Lv |. Then we reset r(u′) := r(v) for all u′ in Lu,
and we insert Lu into Lv directly after v. This can be done in time O(|Lu|).
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Tarjan [1983] showed that if the edges are presorted, a minimum span-
ning tree can be found in time O(mα(m,n)) (where α(m,n) is the ‘inverse
Ackermann function — see Section 50.6a).

50.3a. Parallel forest-merging

A variant that suggests parallel implementation was given by Bor̊uvka [1926a,1926b]
— the parallel forest-merging method or Bor̊uvka’s method. (This method was also
given by Choquet [1938] (without proof) and Florek, �Lukaszewicz, Perkal, Stein-
haus, and Zubrzycki [1951a].) It assumes that all edge lengths are different:

(50.5) Set F := ∅. As long as F is not a spanning tree do the following: choose
for each component K of F the shortest edge leaving K, and add all
chosen edges to F .

Theorem 50.4. Assuming that all edge lengths are different, the parallel forest-
merging variant yields a shortest spanning tree.

Proof. We show that F remains a good forest throughout the iterations. Consider
some iteration, and let F be the good forest at the start of the iteration. Let
e1, . . . , ek be the edges added in the iteration, indexed such that l(e1) < l(e2) <
· · · < l(ek). By the selection rule (50.5), for each i = 1, . . . , k, ei is the shortest edge
leaving some component K of F . Then K is also a component of F ∪{e1, . . . , ei−1},
as none of e1, . . . , ei−1 leave K (since ei is shortest leaving K). Hence for each
i = 1, . . . , k, F ∪ {e1, . . . , ei} is a good forest (by induction on i). Concluding, the
iteration yields a good forest.

50.3b. A dual greedy algorithm

We can consider a dual approach by iteratively decreasing a connector, instead of
iteratively growing a forest. The analogy can be exhibited as follows.

Let G = (V, E) be a connected graph and let l : E →∈ R be a length function.
Call a connector K ⊆ E good if K contains a shortest spanning tree. Then we have:

Theorem 50.5. Let K be a good connector and let e ∈ K. Then K \ {e} is a good
connector if and only if

(50.6) K contains a circuit C such that e is a longest edge in C.

Proof. To see necessity, let T be a shortest spanning tree contained in K \ {e}.
Let C be the unique circuit contained in T ∪ {e}. Then e is longest in C, since if
f ∈ C, then T ′ := (T \ {f}) ∪{e} is again a spanning tree. As l(T ′) ≥ l(T ) we have
l(e) ≥ l(f).

To see sufficiency, let T be a shortest spanning tree contained in K. If e �∈ T ,
then also K \ {e} contains T , and hence K \ {e} is a good connector. So we can
assume that e ∈ T . Let D be the cut determined by T − e. Then the circuit C
contains at least one edge f �= e that belongs to D. So T ′ := (T \ {e}) ∪ {f} is a
spanning tree again. By assumption, l(e) ≥ l(f) and hence l(T ′) ≤ l(T ). Hence T ′
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is a shortest spanning tree again. It is contained in K \ {e}, which therefore is a
good connector.

So we can formulate the dual greedy algorithm: starting with K := E, iteratively
remove from K an edge e satisfying (50.6). We end up with a shortest spanning
tree.

A special case is the following algorithm, proposed by Kruskal [1956]: iteratively
delete a longest edge e that is not a bridge. We end up with a shortest spanning
tree.

50.4. The longest forest and the forest polytope

The greedy algorithm can be easily adapted so as to give:

Theorem 50.6. A longest forest can be found in strongly polynomial time.

Proof. It suffices to find a longest spanning tree in any component. This can
be done with the greedy method.

As Edmonds [1971] noticed, it is easy to derive with the greedy method a
min-max relation for the maximum length of a forest in a graph G = (V,E).
This is similar to the results of Section 40.2.

Theorem 50.7. Let G = (V,E) be a graph and let l ∈ Z
E
+. Then the maxi-

mum length of a forest is equal to the minimum value of

(50.7)
∑

U∈P(V )\{∅}
yU (|U | − 1),

where y ∈ Z
P(V )\{∅}
+ satisfies

(50.8)
∑

U∈P(V )\{∅}
yUχ

E[U ] ≥ l.

Proof. The maximum cannot be larger than the minimum, since for any
forest F and any y ∈ Z

P(V )\{∅}
+ satisfying (50.8) one has:

(50.9) l(F ) ≤
∑

U∈P(V )\{∅}
yU |E[U ] ∩ F | ≤

∑

U∈P(V )\{∅}
yU (|U | − 1).

To see equality, let k := max{l(e) | e ∈ E}, and let Ei be the set of edges
e with l(e) ≥ i, for i = 0, 1, . . . , k. For each U ∈ P(V ) \ {∅}, let yU be the
number of i ∈ {1, . . . , k} such that U is a component of the graph (V,Ei).
Then it is easy to see that y satisfies (50.8).

We can find a sequence of forests Fk ⊆ · · · ⊆ F1 ⊆ F0, where for i =
0, 1, . . . , k, Fi is a maximal forest in (V,Ei) containing Fi+1, setting Fk+1 :=
∅.

Then for F := F0 we have:
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(50.10) l(F ) =
k∑

i=0

i|Fi \ Fi+1| =
k∑

i=1

|Fi| =
k∑

i=1

(|V | − κ(V,Ei))

=
∑

U∈P(V )\{∅}
yU (|U | − 1),

where κ(V,Ei) denotes the number of components of the graph (V,Ei).

(The series of forests Fk ⊆ Fk−1 ⊆ · · · ⊆ F1 ⊆ F0, corresponds to the greedy
method.)

Note that this theorem gives, if G is connected, a min-max relation for
the maximum length of a spanning tree.

For any graph G = (V,E), let the forest polytope of G, denoted by
Pforest(G), be the convex hull of the incidence vectors (in R

E) of the forests of
G. The following characterization of the forest polytope is (in matroid terms)
due to Edmonds [1971] (announced in Edmonds [1967a]):

Corollary 50.7a. The forest polytope of a graph G is determined by

(50.11) (i) xe ≥ 0 for e ∈ E,
(ii) x(E[U ]) ≤ |U | − 1 for nonempty U ⊆ V .

Proof. Trivially, the incidence vector of any forest satisfies (50.11), and hence
the forest polytope is contained in the polytope determined by (50.11). Sup-
pose now that the latter polytope is larger. Then (since both polytopes are
rational and down-monotone in R

E
+) there exists a vector l ∈ Q

E
+ such that

the maximum value of lTx over (50.11) is larger than the maximum of l(F )
over forests F . We can assume that l is integer. However, by Theorem 50.7,
the maximum of l(F ) is at least the minimum value of the problem dual to
maximizing lTx over (50.11), a contradiction.

Theorem 50.7 can be stated equivalently in TDI terms as follows:

Corollary 50.7b. System (50.11) is totally dual integral.

Proof. This follows from Theorem 50.7, by the definition of total dual inte-
grality.

Having a description of the forest polytope, we can derive a description
of the spanning tree polytope Pspanning tree(G) of a graph G = (V,E), which
is the convex hull of the incidence vectors of the spanning trees in G.

Corollary 50.7c. The spanning tree polytope of a graph G = (V,E) is de-
termined by
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(50.12) (i) xe ≥ 0 for e ∈ E,
(ii) x(E[U ]) ≤ |U | − 1 for nonempty U ⊆ V ,
(iii) x(E) = |V | − 1.

Proof. Directly from Corollary 50.7a, since the spanning trees are exactly
the forests of size |V |−1, and since there exist no forests larger than that.

One also directly has a TDI result:

Corollary 50.7d. System (50.12) is totally dual integral.

Proof. Directly from Corollary 50.7b, since (50.12) arises from (50.11) by
setting an inequality to equality (cf. Theorem 5.25).

Theorem 40.5 implies that (if G is loopless) an inequality (50.12)(ii) is
facet-inducing if and only if |U | ≥ 2 and U induces a 2-connected subgraph
of G (cf. Grötschel [1977a]).

In Section 51.4 we consider the problem of testing membership of the
forest polytope.

50.5. The shortest connector and the connector polytope

The greedy method also provides a min-max relation for the minimum length
of a connector in a graphG = (V,E). LetΠ denote the collection of partitions
of V into nonempty subsets. For any partition P of V , let δ(P) denote the
set of edges connecting two different classes of P. So any connector contains
at least |P| − 1 edges in δ(P).

Theorem 50.8. Let G = (V,E) be a connected graph and let l ∈ Z
E
+. Then

the minimum length of a spanning tree is equal to the maximum value of

(50.13)
∑

P∈Π

yP(|P| − 1),

where y ∈ Z
Π
+ such that

(50.14)
∑

P∈Π

yPχ
δ(P) ≤ l.

Proof. The minimum cannot be smaller than the maximum, since for any
spanning tree T and any y ∈ Z

Π
+ satisfying (50.14) one has:

(50.15) l(T ) ≥
∑

P∈Π

yPχ
δ(P)(T ) =

∑

P∈Π

yP |δ(P) ∩ T | ≥
∑

P∈Π

yP(|P| − 1).

To see equality, define k := max{l(e) | e ∈ E} and for i = 0, 1, . . . , k, let Ei

be the set of edges e with l(e) ≤ i. For each P ∈ Π, let yP be the number of
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i ∈ {1, . . . , k} such that P is the collection of components of (V,Ei). Then it
is easy to see that y satisfies (50.14).

We can find a sequence of forests F0 ⊆ F1 ⊆ · · ·Fk−1 ⊆ Fk, where F0 is a
maximal forest in (V,E0), and where for i = 0, . . . , k, Fi is a maximal forest
in (V,Ei) containing Fi−1, setting F−1 := ∅.

Then for T := Fk we have:

(50.16) l(T ) =
k∑

i=0

i|Fi \ Fi−1| = k|T | −
k−1∑

i=0

|Fi| =
k−1∑

i=0

(|V | − 1 − |Fi|)

=
k−1∑

i=1

(κ(V,Ei) − 1) =
∑

P∈Π

yP(|P| − 1),

where κ(V,Ei) denotes the number of components of the graph (V,Ei).

For any graph G = (V,E), let the connector polytope of G, denoted by
Pconnector(G), be the convex hull of the incidence vectors (in R

E) of the
connectors of G. The following characterization can be derived from Edmonds
[1970b], and was stated explicitly by Fulkerson [1970b]:

Corollary 50.8a. The connector polytope of a graph G is determined by

(50.17) (i) 0 ≤ xe ≤ 1 for e ∈ E,
(ii) x(δ(P)) ≥ |P| − 1 for P ∈ Π.

Proof. Trivially, the incidence vector of any connector satisfies (50.17), and
hence the connector polytope is contained in the polytope determined by
(50.17). Suppose now that the latter polytope is larger. Then (since both
polytopes are rational and up-monotone in [0, 1]E) there exists a vector l ∈
Q

E
+ such that the minimum value of lTx over (50.17) is smaller than the

minimum of l(C) over connectors C. We can assume that l is integer. However,
by Theorem 50.8, the minimum of l(C) is at most the maximum value of the
problem dual to minimizing lTx over (50.17), a contradiction.

Theorem 50.8 can be stated equivalently in TDI terms as follows:

Corollary 50.8b. System (50.17) is totally dual integral.

Proof. This follows from Theorem 50.8, by the definition of total dual inte-
grality.

Chopra [1989] described the facets of the connector polytope. In Section
51.4 we consider the problem of testing membership of the connector poly-
tope.
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50.6. Further results and notes

50.6a. Complexity survey for shortest spanning tree

O(nm) Jarńık [1930]

O(n2) Prim [1957], Dijkstra [1959]

O(m log n)
Kershenbaum and Van Slyke [1972], E.L.
Johnson (cf. Kershenbaum and Van Slyke
[1972])

O(m logm/n n) D.B. Johnson [1975b]

O(m
√

log n) R.E. Tarjan (cf. Yao [1975])

O(m log log n) Yao [1975]

O(m log logm/n n) Cheriton and Tarjan [1976], Tarjan [1983]

∗ O((m + n log L) log log L) D.B. Johnson [1977b]

O(m + n log n) Fredman and Tarjan [1984,1987]

O(mβ(m, n)) Fredman and Tarjan [1984,1987]

O(m log β(m, n)) Gabow, Galil, Spencer, and Tarjan [1986]
(cf. Gabow, Galil, and Spencer [1984])

O(m(logn L + α(m, n))) Gabow [1983b,1985b]

O(mα(m, n) log α(m, n)) Chazelle [1997]

∗ O(mα(m, n)) Chazelle [2000]

As before, ∗ indicates an asymptotically best bound in the table. Moreover,
β(m, n) := min{i | log(i)

2 n ≤ m/n} and L := max{l(e) | e ∈ E} (assuming l
nonnegative integer). The function α(m, n) is the inverse Ackermann function, de-
fined as follows. For i, j ≥ 1, the Ackermann function A(i, j) is defined recursively
by:

(50.18) A(1, j) = 2j for j ≥ 1,
A(i, 1) = A(i − 1, 2) for i ≥ 2,
A(i, j) = A(i − 1, A(i, j − 1)) for i, j ≥ 2.

Next, for m ≥ n ≥ 1,

(50.19) α(m, n) := min{i ≥ 1 | A(i, �m/n�) > log2 n}.

The function α(m, n) is extremely slowly growing.
Fredman and Willard [1990,1994] gave a ‘strongly trans-dichotomous’ linear-

time minimum spanning tree algorithm (where capabilities of random access ma-
chines, like addressing, can be used). Based on sampling, Karger [1993,1998] found
a simple linear-time approximative spanning tree algorithm, and an O(m+n log n)-
time minimum spanning tree algorithm not using Fibonacci heaps.

Katoh, Ibaraki, and Mine [1981] gave an algorithm to find the Kth shortest
spanning tree in time O(Km + min{n2, m log log n}) (improving slightly Gabow
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[1977]). They also gave an algorithm to find the second shortest spanning tree in
time O(min{n2, mα(m, n)}).

Pettie and Ramachandran [2000,2002a] showed that a shortest spanning tree
can be found in time O(T ∗(m, n)), where T ∗(m, n) is the minimum number of
edge length comparisons needed to determine the solution.

Frederickson [1983a,1985] gave an O(
√

m)-time algorithm to update a shortest
spanning tree (and the data-structure) if one edge changes length. Spira and Pan
[1973,1975] and Chin and Houck [1978] gave fast algorithms to update a shortest
spanning tree if vertices are added or removed. More on sensitivity and most vital
edges can be found in Tarjan [1982], Hsu, Jan, Lee, Hung, and Chern [1991], Dixon,
Rauch, and Tarjan [1992], Iwano and Katoh [1993], Lin and Chern [1993], and
Frederickson and Solis-Oba [1996,1999].

Tarjan [1979] showed that the minimality of a given spanning tree can be
checked in time O(mα(m, n)) (cf. Dixon, Rauch, and Tarjan [1992]). Komlós [1984,
1985] showed that the minimality of a given spanning tree can be checked by O(m)
comparisons of edge lengths. King [1997] gave a linear-time implementation in the
unit-cost RAM model. A randomized linear-time algorithm was given by Klein and
Tarjan [1994], and Karger, Klein, and Tarjan [1995].

Gabow and Tarjan [1984] (cf. Gabow and Tarjan [1979]) showed that the prob-
lem of finding a shortest spanning tree with a prescribed number of edges incident
with a (one) given vertex r, is linear-time equivalent to the (unconstrained) shortest
spanning tree problem. They also showed that if the edges of a graph are coloured
red and blue, a shortest spanning tree having exactly k red edges (for given k) can
be found in time O(m log log2+ m

n
n + n log n).

Brezovec, Cornuéjols, and Glover [1988] gave an efficient algorithm to find a
shortest spanning tree in a coloured graph with, for each colour, an upper and a
lower bound on the number of edges in the tree of that colour.

Camerini [1978] showed that a spanning tree minimizing maxe∈T l(e) can be
found in O(m) time.

Geometric spanning trees (on vertices in Euclidean space, with Euclidean dis-
tance as length function) were considered by Bentley, Weide, and Yao [1980],
Yao [1982], Supowit [1983], Clarkson [1984,1989], and Agarwal, Edelsbrunner,
Schwarzkopf, and Welzl [1991].

50.6b. Characterization of shortest spanning trees

The following theorem is implicit in Kalaba [1960]:

Theorem 50.9. Let G = (V, E) be a graph, let l ∈ R
E be a length function, and

let T be a spanning tree in G. Then T is a shortest spanning tree if and only if
l(f) ≥ l(e) for all e ∈ T and f ∈ E \ T with T − e + f a spanning tree.

Proof. Necessity being trivial, we show sufficiency. Let the condition be satisfied,
and suppose that T is not a shortest spanning tree. Choose a shorter spanning
tree T ′ with |T ′ \ T | minimal. Let f ∈ T ′ \ T . Let e be an edge on the circuit in
T ∪ {f} with e �= f , such that e connects the two components of T ′ \ {f}. Then
(T \{e})∪{f} is a spanning tree, and hence l(f) ≥ l(e). Define T ′′ := (T ′\{f})∪{e}.
Then l(T ′′) ≤ l(T ′) < l(T ) and |T ′′ \ T | < |T ′ \ T |, contradicting our minimality
assumption.
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This theorem gives a good characterization of the minimum length of a spanning
tree. (As Kalaba [1960] pointed out, it also gives an algorithm to find a shortest
spanning tree (by iteratively exchanging one edge for another if it makes the tree
shorter), but it is not polynomial-time.)

Recall that a forest is called good if it is contained in a shortest spanning tree.

Corollary 50.9a. Let G = (V, E) be a connected graph, let l ∈ R
E be a length

function, and let F be a forest. Then F is good if and only if for each e ∈ F there
exists a cut C with C ∩ F = {e} and with e shortest in C.

Proof. To see necessity, let F be good and let e ∈ F . So there exists a shortest
spanning tree T containing F . By Theorem 50.9, e is a shortest edge connecting
the two components of T − e. This gives the required cut C.

Sufficiency is shown by induction on |F |, the case F = ∅ being trivial. Choose
e ∈ F . By induction, F \ {e} is good (as the condition is maintained for F \ {e}).
The condition implies that (50.2) is satisfied, and hence F is good by Theorem 50.1.

50.6c. The maximum reliability problem

Often, in designing a network, one is not primarily interested in minimizing the
total length, but rather in maximizing ‘reliability’ (for instance when designing
energy or communication networks).

Let G = (V, E) be a connected graph and let r : E → R+ be a function. Let
us call r(e) the reliability of edge e. For any path P in G, the reliability of P is,
by definition, the minimum reliability of the edges occurring in P . The reliability
rG(s, t) of two vertices s and t is equal to the maximum reliability of P where P
ranges over all s − t paths. That is,

(50.20) rG(s, t) := max
P

min
e∈EP

r(e),

where the maximum ranges over all s − t paths P . (The value of rG(s, t) can be
found with the method described in Section 8.6e.)

The problem now is to find a minimal subgraph H of G having the same relia-
bility as G; that is, with rH = rG. Hu [1961] observed that there is a spanning tree
carrying the reliability of G. More precisely, Hu showed that any spanning tree T
of maximum total reliability is such a tree (also shown by Kalaba [1964]):

Corollary 50.9b. Let G = (V, E) be a graph, let r ∈ R
E, and let T be any spanning

tree. Then rT (s, t) = rG(s, t) for all s, t if and only if T is a spanning tree in G
maximizing r(T ).

Proof. To see sufficiency, let T maximize r(T ). Choose s, t ∈ V , and let P be a
path in G attaining maximum (50.20). Let e be an edge on the s − t path in T
with minimum r(e). Then P contains an edge f connecting the two components of
T − e. As T maximizes r(T ) we have r(f) ≤ r(e). Hence

(50.21) rT (s, t) = r(e) ≥ r(f) ≥ rG(s, t).
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Since trivially rT (s, t) ≤ rG(s, t), this shows sufficiency.
To see necessity, we apply Theorem 50.9. Choose e ∈ T , and suppose that there

is an edge f connecting the components of T − e, with r(f) > r(e). Then for the
ends s, t of f we have

(50.22) rG(s, t) ≥ r(f) > r(e) ≥ rT (s, t),

a contradiction.

Corollary 50.9b implies:

Corollary 50.9c. Let G = (V, E) be a complete graph and let l : E → R+ be a
length function satisfying

(50.23) l(uw) ≥ min{l(uv), l(vw)}

for all distinct u, v, w ∈ V . Let T be a longest spanning tree in G. Then for all
u, w ∈ V , l(uw) is equal to the minimum length of the edges in the u − w path in
T .

Proof. Note that (50.23) implies that l(uw) is equal to the reliability rG(u, w) of
u and w, taking r := l. So the corollary follows from Corollary 50.9b.

This implies the following. Let G = (V, E) be a graph and let c : E → R+ be a
capacity function. Let K be the complete graph on V . For each edge st of K, let
the length l(st) be the minimum capacity of any s − t cut in G. (An s − t cut is
any subset δ(W ) with s ∈ W, t �∈ W .)

Let T be a longest spanning tree in K. Then for all s, t ∈ V , l(st) is equal to
the minimum length of the edges of T in the s − t path in T .

(This tree need not be a Gomory-Hu tree, as is shown by the complete graph
on vertices 1, 2, 3 and c(12) = 1 and c(13) = c(23) = 2. Then edges 12 and 13 form
a tree as above, but it is not a Gomory-Hu tree.)

50.6d. Exchange properties of forests

The following fundamental property of forests in fact is the basis of most theorems
in this chapter. It is the ‘exchange property’ that makes the collection of forests
into a matroid.

Theorem 50.10. Let G = (V, E) be a graph and let F and F ′ be forests with
|F | < |F ′|. Then F ∪ {e} is a forest for some e ∈ F ′ \ F .

Proof. We can assume that E = F ∪ F ′. If no such edge e exists, then F is a
maximal forest in G. This however implies that |F | ≥ |F ′|, a contradiction.

Call a forest F extreme if l(F ′) ≥ l(F ) for each forest F ′ satisfying |F ′| = |F |.
The forests made iteratively in Kruskal’s method all are extreme, since:

Corollary 50.10a. Let F be an extreme forest and let e be a shortest edge with
e �∈ F and F ∪ {e} a forest. Then F ∪ {e} is extreme again.
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Proof. Let F ′ be an extreme forest with |F ′| = |F | + 1. By Theorem 50.10, there
exists an e′ ∈ F ′ \ F such that F ∪ {e′} is a forest. As F is extreme we have
l(F ′ \ {e′}) ≥ l(F ). Hence l(F ∪ {e′}) ≤ l(F ′). Also, by the choice of e, l(e) ≤ l(e′).
So l(F ∪ {e}) ≤ l(F ′). Concluding, F ∪ {e} is extreme (as F ′ is extreme).

The following corollary is due to Florek, �Lukaszewicz, Perkal, Steinhaus, and
Zubrzycki [1951a]. Recall that a forest is called good if it is contained in a shortest
spanning tree.

Corollary 50.10b. Each extreme forest is good.

Proof. Directly from Corollary 50.10a, since it implies that each extreme forest is
contained in an extreme maximal forest, and hence in a shortest maximal forest;
so it is good.

We also can derive a ‘slice-integrality’ result:

Corollary 50.10c. Let G = (V, E) be a graph and let k, l ∈ Z+. Then the convex
hull of the incidence vectors of forests F with k ≤ |F | ≤ l is equal to the intersection
of the forest polytope of G with {x ∈ R

E | k ≤ x(E) ≤ l}.

Proof. Let x be in the forest polytope with k ≤ x(E) ≤ l. Let x =
∑

F λF χF , where
F ranges over all forests and where the λF are nonnegative reals with

∑
F λF = 1.

Choose the λF with

(50.24)
∑

F

λF |F |2

minimal. Then

(50.25) |F ′| ≤ |F | + 1 for all F, F ′ with λF > 0 and λF ′ > 0.

Otherwise we can choose e ∈ F ′ \ F such that F ∪ {e} is a forest (by Theorem
50.10). Let α := min{λF , λF ′}. Then decreasing λF and λF ′ by α and increasing
λF∪{e} and λF ′\{e} by α, decreases sum (50.24). This contradicts our assumption,
and proves (50.25).

It implies that k ≤ |F | ≤ l for each F with λF > 0, and we have the corollary.

50.6e. Uniqueness of shortest spanning tree

Kotzig [1961b] characterized when there is a unique shortest spanning tree:

Theorem 50.11. Let G = (V, E) be a graph, let l ∈ R
E be a length function, and

let T be a spanning tree in G. Then T is a unique shortest spanning tree if and only
if l(f) > l(e) for all e ∈ T and f ∈ E \ T such that T − e + f is a spanning tree.

Proof. As the proof of Theorem 50.9.

This implies a sufficient condition given by Bor̊uvka [1926a]:
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Corollary 50.11a. Let G = (V, E) be a graph and let l ∈ R
E be a length function

with l(e) �= l(f) if e �= f . Then there is a unique shortest spanning tree.

Proof. Directly from Theorem 50.11.

Let G = (V, E) be a connected graph and let l ∈ R
E be a length function, with

l(e) �= l(f) if e �= f . Define

(50.26) T := {e ∈ E | ∃ cut C such that e is the shortest edge of C}.

Then

(50.27) E \ T = {e ∈ E | ∃ circuit D such that e is the longest edge in D}.

This is easy, since if some edge e is contained in some cut C and some circuit D,
then there exists an edge f �= e in C ∩ D. If l(f) < l(e), then e is not shortest in C,
and if l(f) > l(e), then e is not longest in D. Moreover, for any e ∈ E, if no circuit
D as in (50.27) exists, then each circuit D containing e contains an edge f with
l(f) > l(e). Hence the set of edges f with l(f) ≥ l(e) contains a cut C containing
e. This C is as in (50.26).

Now (Dijkstra [1960], Rosenstiehl [1967]):

(50.28) T is the unique shortest spanning tree in G.

Indeed, T is a forest, since each circuit D intersects E \ T (namely, in the longest
edge of D). Moreover, T is a connector, since each cut C intersects T (namely, in
the shortest edge of C). T is the unique shortest spanning tree. This follows from
Theorem 50.11, since for each e ∈ T and each f �∈ T , if (T \{e})∪{f} is a spanning
tree, then l(e) < l(f) as e is the shortest edge in the cut determined by T − e.

50.6f. Forest covers

Let G = (V, E) be an undirected graph. A subset F of E is called a forest cover
if F is both a forest and an edge cover. Forest covers turn out to be interesting
algorithmically and polyhedrally.

As Gamble and Pulleyblank [1989] point out, White [1971] showed:

Theorem 50.12. Given a graph G = (V, E) and a weight function w ∈ Q
E, a

minimum-weight forest cover can be found in strongly polynomial time.

Proof. Let E− be the set of edges of negative weight and let V− be the set of
vertices covered by E−. Let V+ := V \ V−. First find a subset F ′ of E[V+] ∪ δ(V+)
covering V+, of minimum weight. This can be done in strongly polynomial time,
by a variation of the strongly polynomial-time algorithm for the minimum weight
edge cover problem. (In fact, it is a special case of Theorem 34.4.)

Next find a forest F ′′ in E[V−] of minimum weight. Again, this can be done in
strongly polynomial time, by Theorem 50.6.

We can assume that any proper subset of F ′ does not cover V+. It implies that
F ′ is a forest and that for any vertex v ∈ V+ incident with some edge e in F ′ with
e ∈ δ(V+), e is the only edge in F ′ incident with v.
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This implies that F ′ ∪ F ′′ is a forest. Moreover, it is an edge cover, since F ′

covers V+ and F ′′ covers V−, since any vertex in V− is incident with an edge of
negative weight.

So F ′ ∪ F ′′ is a forest cover. To see that it has minimum weight, let B ⊆ E be
any forest cover. Let B′′ := B ∩ E[V−] and B′ := B \ B′′. Then w(B′) ≥ w(F ′),
since B′ covers V+. Also, w(B′′) ≥ w(F ′′), since B′′ is a forest. So w(B) ≥ w(F ).

Gamble and Pulleyblank [1989] showed that White’s method implies a charac-
terization of the forest cover polytope Pforest cover(G) of a graph G, which is the
convex hull of the incidence vectors of forest covers in G. It turns out to be equal
to the intersection of the forest polytope (characterized in Corollary 50.7a) and the
edge cover polytope (characterized in Corollary 27.3a):

Theorem 50.13. For any undirected graph G = (V, E):

(50.29) Pforest cover(G) = Pforest(G) ∩ Pedge cover(G).

Proof. The inclusion ⊆ is trivial, as any forest cover is both a forest and an edge
cover. Suppose that the reverse inclusion does not hold, and let x be a vertex of
Pforest(G)∩Pedge cover(G) which is not in Pforest cover(G). Let w ∈ Q

E be a weight
function such that x uniquely minimizes wTx over Pforest(G) ∩ Pedge cover(G). We
can assume that w(e) �= 0 for each edge e (as we can perturb w slightly).

Again let E− be the set of edges of negative weight, V− be the set of vertices
covered by E−, and V+ := V \V−. Since x is in the edge cover polytope, there exists
a subset F ′ of E[V+] ∪ δ(V+) covering V+ with

(50.30) w(F ′) ≤
∑

e∈E[V+]∪δ(V+)

w(e)xe.

Similarly, since x is in the forest polytope, there is a forest F ′′ in E[V−] with

(50.31) w(F ′′) ≤
∑

e∈E[V−]

w(e)xe.

Now, as in the proof of Theorem 50.12, F := F ′ ∪ F ′′ is a forest cover. Since
w(F ) ≤ wTx, this contradicts our assumptions on x and w.

White [1971] also considered the problem of finding a minimum weight forest
cover of given size k. Gamble and Pulleyblank [1989] showed that the convex hull
of the incidence vectors of forest covers of size k is equal to the intersection of the
forest cover polytope with the hyperplane {x ∈ R

E | x(E) = k}.
Cerdeira [1994] related forest covers to matroid intersection.

50.6g. Further notes

Let G = (V, E) be a graph. Call a subset U of V circuit-free if U spans no circuit;
that is, it induces a forest as subgraph of G. Ding and Zang [1999] characterized
the graphs G for which the convex hull of the incidence vectors of circuit-free sets
is determined by
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(50.32) 0 ≤ xv ≤ 1 for each vertex v,
x(V C) ≤ |V C| − 1 for each circuit C.

Their characterization implies that (50.32) is totally dual integral as soon as it
determines an integer polytope.

Goemans [1992] studied the convex hull of the incidence vectors of (not neces-
sarily spanning) subtrees of a graph.

Brennan [1982] reported on good experimental results with an implementation
of Kruskal’s method by only partially sorting the edges until the successive shortest
edges to be added to the current forest can be identified.

Győri [1978] and Lovász [1977a] showed that if G = (V, E) is k-connected and
v1, . . . , vk are distinct vertices, and n1, . . . , nk are positive integers with n1 + · · · +
nk = |V |, then G contains a forest F such that the component containing vi has
size ni (i = 1, . . . , k). For k = 2, Győri’s proof gives an O(nm)-time algorithm.
A linear-time algorithm for k = 2 was given by Suzuki, Takahashi, and Nishizeki
[1990]. More can be found in Győri [1981].

Khuller, Raghavachari, and Young [1993,1995b] considered spanning trees that
belance between shortest spanning trees and shortest paths trees.

Books covering shortest spanning trees include Even [1973,1979], Christofi-
des [1975], Lawler [1976b], Minieka [1978], Hu [1982], Papadimitriou and Steiglitz
[1982], Smith [1982], Aho, Hopcroft, and Ullman [1983], Sys�lo, Deo, and Kowa-
lik [1983], Tarjan [1983], Gondran and Minoux [1984], Nemhauser and Wolsey
[1988], Chen [1990], Cormen, Leiserson, and Rivest [1990], Lengauer [1990]. Ahuja,
Magnanti, and Orlin [1993], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], and Korte and Vygen [2000]. Pierce [1975] and Golden and Mag-
nanti [1977] gave bibliographies on algorithms for shortest spanning tree.

50.6h. Historical notes on shortest spanning trees

We refer to Graham and Hell [1985] for an extensive historical survey of shortest
tree algorithms, with several quotes (with translations) from old papers. Our notes
below have profited from their investigations.

We recall some terminology for a shortest spanning tree algorithm. We call it
tree-growing if we keep a tree on a subset of the vertices, and iteratively extend it by
adding an edge joining the tree with a vertex outside of the tree. It is forest-merging
if we keep a forest, and iteratively merge two components by joining them by an
edge. It is called parallel forest-merging if forest-merging is performed in parallel,
by connecting each component to its nearest neighbouring component (assuming
all lengths are distinct).

Bor̊uvka: parallel forest-merging

Bor̊uvka [1926a] described the problem of finding a shortest spanning tree as follows
(the paper is in Czech; we quote from its German summary; for quotes from Czech
with translation, see Graham and Hell [1985]):

In dieser Arbeit löse ich folgendes Problem:
Es möge eine Matrix der bis auf die Bedingungen rαα = 0, rαβ = rβα positiven
und von einander verschiedenen Zahlen rαβ (α, β = 1, 2, . . . n; n ≥ 2) gegeben
sein.
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Aus dieser ist eine Gruppe von einander und von Null verschiedener Zahlen
auszuwählen, so dass
1◦ in ihr zu zwei willkürlich gewählten natürlichen Zahlen p1, p2 (≤ n) eine Teil-
gruppe von der Gestalt

rp1c2 , rc2c3 , rc3c4 , . . . rcq−2cq−1 , rcq−1p2

existiere,
2◦ die Summe ihrer Glieder kleiner sei als die Summe der Glieder irgendeiner
anderen, der Bedingung 1◦ genügenden Gruppe von einander und von Null ver-
schiedenen Zahlen.2

So Bor̊uvka stated that the spanning tree found is the unique shortest. He assumed
that all edge lengths are different.

Bor̊uvka next described parallel forest-merging, in a somewhat complicated way.
(He did not have the language of graph theory at hand.) The idea is to update a
number of vertex-disjoint paths P1, . . . , Pk (initially k = 0). Along any Pi, the edge
lengths are decreasing. Let v be the last vertex of Pk and let e be the edge of
shortest length incident with v. If the other end vertex of e is not yet covered by
any Pi, we extend Pk with e, and iterate. Otherwise, if not all vertices are covered
yet by the Pi, we choose such a vertex v, and start a new path Pk+1 at v. If all
vertices are covered by the Pi, we shrink each of the Pi to one vertex, and iterate.
At the end, the edges chosen throughout the iterations form a shortest spanning
tree. It is easy to see that this in fact is ‘parallel forest-merging’.

The interest of Bor̊uvka in this problem came from a question of the Electric
Power Company of Western Moravia in Brno, at the beginning of the 1920s, asking
for the most economical construction of an electric power network (see Bor̊uvka
[1977]).

In a follow-up paper, Bor̊uvka [1926b] gave a simple explanation of the method
by means of an example. We refer to Nešetřil, Milková, and Nešetřilova [2001] for
translations of and comments on the two papers of Bor̊uvka.

Jarńık: tree-growing

In a reaction to Bor̊uvka’s work, Jarńık wrote on 12 February 1929 a letter to
Bor̊uvka in which he described a ‘new solution of a minimal problem discussed by
Mr Bor̊uvka’. This ‘new solution’ is the tree-growing method. An extract of the
letter was published as Jarńık [1930]. We quote from the German summary:

a1 ist eine beliebige unter den Zahlen 1, 2, . . . , n.
a2 ist durch

2 In this work, I solve the following problem:
A matrix may be given of positive distinct numbers rαβ (α, β = 1, 2 . . . n; n ≥ 2), up to
the conditions rαα = 0, rαβ = rβα.
From this, a group of numbers, different from each other and from zero, should be
selected such that
1◦ for arbitrarily chosen natural numbers p1, p2 (≤ n) a subgroup of it exists of the
form

rp1c2 , rc2c3 , rc3c4 , . . . rcq−2cq−1 , rcq−1p2 ,

2◦ the sum of its members be smaller than the sum of the members of any other group
of numbers different from each other and from zero, satisfying condition 1◦.
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ra1,a2 = min(
l = 1, 2, . . . , n

l �= a1

) ra1,l

definiert.
Wenn 2 ≤ k < n und wenn [a1, a2], . . . , [a2k−3, a2k−2] bereits bestimmt sind, so
wird [a2k−1, a2k] durch

ra2k−1,a2k = min ri,j ,

definiert, wo i alle Zahlen a1, a2, . . . , a2k−2, j aber alle übrigen von den Zahlen
1, 2, . . . , n durchläuft.3

Again, Jarńık assumed that all lengths are distinct and showed that then the short-
est spanning tree is unique. For a detailed discussion and translation of the article
of Jarńık [1930] (and of Jarńık and Kössler [1934] on the Steiner tree problem), see
Korte and Nešetřil [2001].

Other discoveries of parallel forest-merging

Parallel forest-merging was described also by Choquet [1938] (without proof), who
gave as motivation the construction of road systems:

Étant donné n villes du plan, il s’agit de trouver un réseau de routes permettant
d’aller d’une quelconque de ces villes à une autre et tel que:
1◦ la longueur globale du réseau soit minimum;
2◦ exception faite des villes, on ne peut partir d’aucun point dans plus de deux
directions, afin d’assurer la sûreté de la circulation; ceci entrâıne, par exemple,
que lorsque deux routes semblent se croiser en un point qui n’est pas une ville,
elles passent en fait l’une au-dessus de l’autre et ne communiquent pas entre elles
en ce point, qu’on appellera faux-croisement.4

He was one of the first concerned on the complexity of the method:

Le réseau cherché sera tracé après 2n opérations élémentaires au plus, en appelant
opération élémentaire la recherche du continu le plus voisin d’un continu donné.5

3 a1 is an arbitrary one among the numbers 1, 2, . . . , n.
a2 is defined by

ra1,a2 = min(
l = 1, 2, . . . , n

l �= a1

) ra1,l.

If 2 ≤ k < n and if [a1, a2], . . . , [a2k−3, a2k−2] are determined already, then [a2k−1, a2k]
is defined by

ra2k−1,a2k = min ri,j ,

where i runs through all numbers a1, a2, . . . , a2k−2, j however through all remaining of
the numbers 1, 2, . . . , n.

4 Being given n cities of the plane, the point is to find a network of routes allowing to go
from an arbitrary of these cities to another and such that:
1◦ the global length of the network be minimum;
2◦ except for the cities, one cannot depart from any point in more than two directions,
in order to assure the certainty of the circulation; this entails, for instance, that when
two routes seem to cross each other in a point which is not a city, they pass in fact one
above the other and do not communicate among them in this point, which we shall call
a false crossing.

5 The network looked for will be traced after at most 2n elementary operations, calling
the search for the continuum closest to a given continuum an elementary operation.
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Also Florek, �Lukaszewicz, Perkal, Steinhaus, and Zubrzycki [1951a,1951b] described
parallel forest-merging. They were motivated by clustering in anthropology, taxon-
omy, etc. In the latter paper, they apply the method to:

1◦ the capitals of Poland’s provinces, 2◦ two collections of excavated skulls, 3◦
42 archeological finds, 4◦ the liverworts of Silesian Beskid mountains with forests
as their background, and to the forests of Silesian Beskid mountains with the
liverworts appearing in them as their background.

Kruskal

Kruskal [1956] was motivated by Bor̊uvka’s first paper and by the application to
the traveling salesman problem, described as follows (where [1] refers to Bor̊uvka
[1926a]):

Several years ago a typewritten translation (of obscure origin) of [1] raised some
interest. This paper is devoted to the following theorem: If a (finite) connected
graph has a positive real number attached to each edge (the length of the edge),
and if these lengths are all distinct, then among the spanning trees (German:
Gerüst) of the graph there is only one, the sum of whose edges is a minimum;
that is, the shortest spanning tree of the graph is unique. (Actually in [1] this
theorem is stated and proved in terms of the “matrix of lengths” of the graph,
that is, the matrix ‖aij‖ where aij is the length of the edge connecting vertices
i and j. Of course, it is assumed that aij = aji and that aii = 0 for all i and j.)
The proof in [1] is based on a not unreasonable method of constructing a spanning
subtree of minimum length. It is in this construction that the interest largely lies,
for it is a solution to a problem (Problem 1 below) which on the surface is closely
related to one version (Problem 2 below) of the well-known traveling salesman
problem.
Problem 1. Give a practical method for constructing a spanning subtree of min-
imum length.
Problem 2. Give a practical method for constructing an unbranched spanning
subtree of minimum length.
The construction in [1] is unnecessarily elaborate. In the present paper I give
several simpler constructions which solve Problem 1, and I show how one of these
constructions may be used to prove the theorem of [1]. Probably it is true that
any construction which solves Problem 1 may be used to prove this theorem.

Kruskal described three algorithms: Construction A: iteratively choose the
shortest edge that can be added (forest-merging); Construction B: fix a nonempty
set U of vertices, and choose iteratively the shortest edge leaving some component
intersecting U (a generalization of tree-growing); Construction A′: iteratively re-
move the longest edge that can be removed without making the graph disconnected.
He proved that Construction A implies the uniqueness of shortest spanning tree if
all lengths are distinct.

In his reminiscences, Kruskal [1997] wrote about Bor̊uvka’s method:

In one way, the method of construction was very elegant. In another way, however,
it was unnecessarily complicated. A goal which has always been important to me
is to find simpler ways to describe complicated ideas, and that is all I tried to do
here. I simplified the construction down to its essence, but it seems to me that
the idea of Professor Bor̊uvka’s method is still present in my version.



Section 50.6h. Historical notes on shortest spanning trees 875

Prim

Prim [1957] gave the following motivation:

A problem of inherent interest in the planning of large-scale communication, dis-
tribution and transportation networks also arises in connection with the current
rate structure for Bell System leased-line services.

He described the following algorithm: choose a component of the current forest,
and connect it to the nearest component. He observed that Kruskal’s constructions
A and B are special cases of this.

Prim noticed that in fact only the order of the lengths determines if a spanning
tree is shortest:

The shortest spanning subtree of a connected labelled graph also minimizes all in-
creasing symmetric functions, and maximizes all decreasing symmetric functions,
of the edge “lengths.”

Prim preferred starting at a vertex and growing a tree for computational reasons:

This computational procedure is easily programmed for an automatic computer
so as to handle quite large-scale problems. One of its advantages is its avoidance
of checks for closed cycles and connectedness. Another is that it never requires
access to more than two rows of distance data at a time — no matter how large
the problem.

The implementation described by Prim has O(n2) running time.

Loberman and Weinberger

Loberman and Weinberger [1957] gave minimizing wire connections as motivation:

In the construction of a digital computer in which high-frequency circuitry is used,
it is desirable and often necessary when making connections between terminals to
minimize the total wire length in order to reduce the capacitance and delay-line
effects of long wire leads.

They described two methods: tree-growing and forest-merging. Only after they had
designed their algorithms, they discovered that their algorithms were given earlier
by Kruskal [1956].

However, it is felt that the more detailed implementation and general proofs of
the procedures justify this paper.

They next described how to implement Kruskal’s method, in particular, how to
merge forests. They also observed that the minimality of a spanning tree depends
only on the order of the lengths, and not on their specific values:

After the initial sorting into a list where the branches are of monotonically in-
creasing length, the actual value of the length of any branch no longer appears
explicitly in the subsequent manipulations. As a result, some other parameter
such as the square of the length could have been used. More generally, the same
minimum tree will persist for all variations in branch lengths that do not disturb
the original relative order.
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Dijkstra

Dijkstra [1959] gave again the tree-growing method, which he preferred (for com-
putational reasons) above the forest-merging method of Kruskal and Loberman
and Weinberger (overlooking the fact that these authors also gave the tree-growing
method):

The solution given here is to be preferred to the solution given by J.B. Kruskal
[1] and those given by H. Loberman and A. Weinberger [2]. In their solutions
all the — possibly 1

2n(n−1) — branches are first of all sorted according to length.
Even if the length of the branches is a computable function of the node coordi-
nates, their methods demand that data for all branches are stored simultaneously.
Our method requires the simultaneous storing of the data for at most n branches,
...

Dijkstra described an O(n2) implementation.
Dijkstra [1960] gave the following alternative shortest spanning tree method:

order edges arbitrarily, find the first edge that forms a circuit with previous edges;
delete the longest edge from this circuit, and continue. (This method was also found
by Rosenstiehl [1967].) This generalizes both forest-merging and tree-growing, by
choosing the order appropriately.

Further work

Kalaba [1960] proposed the method of first choosing a spanning tree arbitrarily,
and next adding, iteratively, an edge and removing the longest edge in the circuit
arising.

Kotzig [1961b] gave again Kruskal’s Algorithm A’ (a referee pointed Kruskal’s
work out to Kotzig). Kotzig moreover showed that there is a unique minimum
spanning tree T if and only if for each edge e not in T , e is the unique longest edge
in the circuit in T ∪ {e}.

As mentioned, Graham and Hell [1985] give an extensive survey on the history of
the minimum spanning tree (and minimum Steiner tree) problem. See also Nešetřil
[1997] for additional notes on the history of the minimum spanning tree problem.
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Packing and covering of trees

The basic facts on packing and covering of trees follow directly from those
on matroid union. In this chapter we check what these results amount to
in terms of graphs, and we give some more direct algorithms.

51.1. Unions of forests

For any graph G = (V,E) and any partition P of V , let δ(P) denote the set
of edges connecting distinct classes of P. From the following consequence of
the matroid union theorem we will derive other results on tree packing and
covering:

Theorem 51.1. Let G = (V,E) be an undirected graph and let k ∈ Z+. Then
the maximum size of the union of k forests is equal to the minimum value of

(51.1) |δ(P)| + k(|V | − |P|)
taken over all partitions P of V into nonempty classes.

Proof. This follows directly from the matroid union theorem (Corollary
42.1a) applied to the cycle matroid M of G. Indeed, by Corollary 42.1b,
the maximum size of the union of k forests is equal to the minimum value of

(51.2) |E \ F | + krM (F ),

where rM (F ) is the maximum size of a forest contained in F . We can assume
that each component of (V, F ) is an induced subgraph of G. So taking P
equal to the set of components of (V, F ), we see that rM (F ) = |V |− |P|, and
hence that the minimum of (51.2) is equal to the minimum of (51.1).

51.2. Disjoint spanning trees

Theorem 51.1 has a number of consequences. First we have the following tree
packing result of Tutte [1961a] and Nash-Williams [1961b]:

Corollary 51.1a (Tutte-Nash-Williams disjoint trees theorem). A graph
G = (V,E) contains k edge-disjoint spanning trees if and only if



878 Chapter 51. Packing and covering of trees

(51.3) |δ(P)| ≥ k(|P| − 1)

for each partition P of V into nonempty classes.

Proof. To see necessity of (51.3), each spanning tree contains at least |P|−1
edges in δ(P). To show sufficiency, it is equivalent to show that there exist
k(|V | − 1) edges that can be covered by k forests. By Theorem 51.1, this is
indeed possible, since

(51.4) |δ(P)| + k(|V | − |P|) ≥ k(|P| − 1) + k(|V | − |P|) = k(|V | − 1)

for each partition P of V into nonempty sets.

Gusfield [1983] observed that the Tutte-Nash-Williams disjoint trees the-
orem (Corollary 51.1a) implies that each 2k-edge-connected undirected graph
has k edge-disjoint spanning trees (since |δ(P)| ≥ k|P| ≥ k(|P| − 1)).

Similarly to the line pursued in Section 42.2, Corollary 51.1a can be for-
mulated equivalently in polyhedral terms:

Corollary 51.1b. The connector polytope of a graph has the integer decom-
position property.

Proof. Similar to the proof of Corollary 42.1e.

For any connected graph G = (V,E), define the strength of G by:

(51.5) strength(G) := max{λ | 1 ∈ λ · Pconnector(G)}
= max{

∑

T

λT | λT ≥ 0,
∑

T

λTχ
T ≤ 1},

where T ranges over the spanning trees of G, and where 1 denotes the all-1
vector in R

E .
The Tutte-Nash-Williams disjoint trees theorem is equivalent to: the max-

imum number of disjoint spanning trees in a graph G = (V,E) is equal to

strength(G)�. Similarly, the capacitated version of the Tutte-Nash-Williams
theorem is equivalent to the integer rounding property of the system (cf.
Section 42.2):

(51.6) xe ≥ 0 for e ∈ E,
x(T ) ≥ 1 for each spanning tree T .

51.3. Covering by forests

Dual to Corollary 51.1a is the following forest covering theorem of Nash-
Williams [1964], where E[U ] denotes the set of edges contained in U . (The
theorem is also a consequence of a theorem of Horn [1955] on covering vector
sets by linearly independent sets, since each graphic matroid is linear.)
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Corollary 51.1c (Nash-Williams’ covering forests theorem). The edge set of
a graph G = (V,E) can be covered by k forests if and only if

(51.7) |E[U ]| ≤ k(|U | − 1)

for each nonempty subset U of V .

Proof. Since any forest has at most |U | − 1 edges contained in U , we have
necessity of (51.7). To see sufficiency, notice that (51.7) implies

(51.8) |E| − |δ(P)| =
∑

U∈P
|E[U ]| ≤

∑

U∈P
k(|U | − 1) = k(|V | − |P|)

for any partition P of V into nonempty sets. So |δ(P)| + k(|V | − |P|) ≥ |E|,
and hence Theorem 51.1 implies that there exist k forests covering E.

(Nash-Williams [1964] derived Corollary 51.1c from Corollary 51.1a.)
Again, this corollary can be formulated in terms of the integer decompo-

sition property:

Corollary 51.1d. For any graph G, the forest polytope has the integer de-
composition property.

Proof. Similar to the proof of Corollary 42.1e.

These results are equivalent to: the minimum number of forests needed
to cover the edges of a graph G = (V,E) is equal to

(51.9) �min{λ | 1 ∈ λ · Pforest(G)}
,
where 1 denotes the all-one vector in R

E . A similar relation holds for the
capacitated case, which is equivalent to the integer rounding property of the
system:

(51.10) xe ≥ 0 for e ∈ E,
x(F ) ≤ 1 for each forest F .

The minimum number of forests needed to cover the edges of a graph G is
called the arboricity of G.

51.4. Complexity

The complexity results on matroid union in Sections 40.3, 42.3 and 42.4 imply
that these packing and covering problems for forests and trees are solvable
in polynomial time:

Theorem 51.2. For any graph G = (V,E), a maximum number of edge-
disjoint spanning trees and a minimum number of forests covering E can be
found in polynomial time.
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Proof. See Section 42.3.

Also weighted versions of it can be solved in strongly polynomial time, for
instance, finding a maximum-weight union of k forests in a graph. We give
in this section some direct proofs.

To study the complexity of the capacitated and fractional cases, we first
observe the following auxiliary result, that is (when applied to undirected
graphs) at the base of several algorithms on the forest and connector poly-
topes, and was observed by Rhys [1970], Picard and Ratliff [1975,1978], Picard
[1976], Trubin [1978], Picard and Queyranne [1982a], Padberg and Wolsey
[1983], and Cunningham [1985a]. (It also follows from the strong polynomial-
time solvability of submodular function minimization, but there is an easier
direct method.)

Theorem 51.3. Given a digraph D = (V,A), x ∈ Q
A
+, y ∈ Q

V , and disjoint
subsets S and T , we can find a set U with T ⊆ U ⊆ V \ S minimizing

(51.11) x(δin(U)) + y(U)

in strongly polynomial time.

Proof. Extend D by two new vertices s and t, and arcs (s, v) for v ∈ V
with yv > 0 and (v, t) for v ∈ V with yv < 0. This gives the digraph D′ =
(V ∪ {s, t}, A′). Define a capacity function c on A′ by:

(51.12) c(u, v) := x(u, v) for (u, v) ∈ A,
c(s, v) := yv if (s, v) ∈ A′,
c(v, t) := −yv for (v, t) ∈ A′.

Let κ := −c(δinA′(t)) (the sum of the negative yv’s). Then

(51.13) c(δinA′(U ∪ {t})) = x(δinA (U)) +
∑

v ∈ U
yv > 0

yv −
∑

v ∈ V \ U
yv > 0

yv

= x(δinA (U)) +
∑

v∈U

yv −
∑

v ∈ V
yv < 0

yv = x(δinA (U)) + y(U) − κ

for any U ⊆ V . Thus minimizing x(δinA (U)) + y(U) is reduced to finding a
minimum-capacity (S ∪ {s}) − (T ∪ {t}) cut in D′.

Testing membership and finding most violated inequalities

A first consequence of Theorem 51.3 is that we can test membership, and find
a most violated inequality, for the forest polytope (Picard and Queyranne
[1982b] (suggested by W.H. Cunningham) and Padberg and Wolsey [1983]).
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Corollary 51.3a. Given a graph G = (V,E) and x ∈ Q
E
+, we can decide

if x belongs to Pforest(G), and if not, find a most violated inequality among
(50.11), in strongly polynomial time.

Proof. Define yv := 2 − x(δ(v)) for v ∈ V . Then

(51.14) 2(x(E[U ]) − |U |) =
∑

v∈U

x(δ(v)) − x(δ(U)) − 2|U |

= −x(δ(U)) − y(U).

So any nonempty U ⊆ V minimizing x(δ(U))+y(U), maximizes x(E[U ])−|U |.
By Theorem 51.3, we can find such a U in strongly polynomial time. If
x(E[U ]) ≤ |U | − 1, x belongs to Pforest(G), and otherwise U gives a most
violated inequality.

A similar result holds for the up hull of the connector polytope, which we
show with a method of Jünger and Pulleyblank [1995]:

Corollary 51.3b. Given a graph G = (V,E) and x ∈ Q
E
+, we can find a

partition P of V into nonempty sets minimizing

(51.15) x(δ(P)) − |P|

in strongly polynomial time.

Proof. We first construct a vector y ∈ Q
V , by updating a vector y. Through-

out, y satisfies

(51.16) y(U) ≤ x(δ(U)) − 2 for each nonempty U ⊆ V .

Start with yv := −2 for all v ∈ V . Successively, for each v ∈ V , reset yv to
yv + α, where α is the minimum value of

(51.17) x(δ(U)) − 2 − y(U)

taken over all U ⊆ V containing v. Such a U can be found in strongly
polynomial time by Theorem 51.3.

We end up with a y satisfying (51.16). Moreover, each v ∈ V is contained
in some set U with y(U) = x(δ(U)) − 2.

Let P be the inclusionwise maximal sets U satisfying y(U) = x(δ(U))−2.
Then P is a partition of V , since if T,U ∈ P and T ∩ U �= ∅, then (by the
submodularity of x(δ(Y ))) y(T ∪ U) = x(δ(T ∪ U)) − 2, and hence T = U =
T ∪ U .

This P is as required, since for each partition Q of V into nonempty sets
we have

(51.18) 2x(δ(Q)) − 2|Q| =
∑

U∈Q
(x(δ(U)) − 2) ≥

∑

U∈Q
y(U) = y(V ),

with equality if Q = P.
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(This method is analogous to calculating the Dilworth truncation as discussed
in Theorem 48.4.)

Corollary 51.3b implies for finding the most violated inequality:

Corollary 51.3c. Given a graph G = (V,E) and x ∈ Q
E
+, we can decide if

x belongs to P ↑
connector(G), and if not, find a most violated inequality among

(50.17)(ii), in strongly polynomial time.

Proof. By Corollary 51.3b, we can find a partition P of V into nonempty
sets, minimizing x(δ(P)) − |P|. If this value is at least −1, then x belongs
to the up hull of the connector polytope, while otherwise P gives a most
violated inequality among (50.17)(ii).

Barahona [1992] showed that membership in the connector polytope can
be tested by solving O(n) maximum flow computations (improving Cunning-
ham [1985c]).

Fractional decomposition into trees

By definition, any vector in Pforest(G) or Pconnector(G) can be decomposed as
a convex combination of incidence vectors of forests or of connectors. These
decompositions can be found in strongly polynomial time, a result due to
Cunningham [1984] and Padberg and Wolsey [1984] (for the forest polytope).

In order to decompose a vector in the forest polytope as a convex com-
bination of forests, by the following theorem it suffices to have a method to
decompose a vector in the spanning tree polytope as a convex combination
of spanning trees:

Theorem 51.4. Given a connected graph G = (V,E) and x ∈ Pforest(G), we
can find a z ∈ Pspanning tree(G) with x ≤ z in strongly polynomial time.

Proof. We reset x successively for each edge e = uv of G as follows. Reset
xe to xe + α, where α is the largest value such that x remains to belong to
Pforest(G). That is, α equals the minimum value of

(51.19) |U | − 1 − x(E[U ]) = |U | − 1 − 1
2

∑

v∈U

x(δ(v)) + 1
2x(δ(U)),

taken over subsets U of V with u, v ∈ U . Such a U can be found in strongly
polynomial time by Theorem 51.3.

As Pforest(G) = P ↓
spanning tree(G) ∩ R

E
+, the final x is a z as required.

Hence, to decompose a vector in the forest polytope, we can do with
decomposing vectors in the spanning tree polytope:
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Theorem 51.5. Given a graph G = (V,E) and y ∈ Pspanning tree(G), we can
find spanning trees T1, . . . , Tk and λ1, . . . , λk ≥ 0 satisfying

(51.20) y = λ1χ
T1 + · · · + λkχ

Tk

and λ1 + · · · + λk = 1, in strongly polynomial time.

Proof. Iteratively resetting y, we keep an integer weight function w such
that y maximizes wTy over the spanning tree polytope. Initially, w := 0. We
describe the iteration.

Let T be a spanning tree in G with T ⊆ supp(y), maximizing w(T ). Let
a := y − χT . If a = 0 we stop; then y = χT . If a �= 0, let λ be the largest
rational such that

(51.21) χT + λ · a

belongs to P ↑
spanning tree(G).

We describe an inner iteration to find λ. We iteratively consider vectors
y along the halfline L := {χT + λ · a | λ ≥ 0}. Note that the function wTx is
constant on L. First we let λ be the largest rational such that χT + λ · a is
nonnegative, and set z := χT + λ · a.

We iteratively reset z. We check if z belongs to the spanning tree polytope,
and if not, we find a constraint among (50.12) most violated by z. That is,
we find a nonempty subset U of V minimizing |U | − 1 − z(E[U ]). Let z′ be
the vector on L attaining x(E[U ]) ≤ |U | − 1 with equality.

Consider any inequality x(E[U ′]) ≤ |U ′| − 1 violated by z′. Then

(51.22) |U ′| − 1 − |T ∩ E[U ′]| < |U | − 1 − |T ∩ E[U ]|.

This can be seen by considering the function d(x) := (|U | − 1 − x(E[U ])) −
(|U ′| − 1 − x(E[U ′])). We have d(z) ≤ 0 and d(z′) > 0, and hence, as d is
linear, d(χT ) > 0; that is, we have (51.22). So resetting z := z′, there are at
most |V | inner iterations.

Let y′ be the final z found. Since λ ≥ 1 (as y ∈ Pspanning tree(G)) and
y = λ−1 · y′ + (1 − λ−1) · χT , any convex decomposition of y′ into incidence
vectors of spanning trees, yields such a decomposition of y. We show that
this recursion terminates.

If we apply no iteration, then supp(y′) ⊂ supp(y). So replacing y, w by
y′, w gives a reduction.

If we do at least one iteration, we find a U such that y′ satisfies y′(E[U ]) =
|U | − 1 while |T ∩ E[U ]| < |U | − 1. In this case we replace y, w by y′, w′ :=
2w + χE[U ].

Then y′ maximizes w′Tx over the spanning tree polytope. Indeed, for any
x in the spanning tree polytope, we have

(51.23) w′Tx = 2wTx+ x(E[U ]) ≤ 2wTy + |U | − 1 = 2wTy′ + y′(E[U ])
= w′Ty′.
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Moreover, each tree T ′ maximizing w′(T ′) also maximizes w(T ′) (by the
greedy method: for any ordering of V for which w′ is nondecreasing, also
w is nondecreasing). However, T does not maximize w′(T ), since w′(T ) =
2w(T ) + |T ∩ E[U ]| < 2w(T ) + |U | − 1 = 2wTy + |U | − 1 = w′Ty′. So the
dimension of the face of vectors x maximizing w′Tx is less than the dimension
of the face of vectors x maximizing wTx.

So the number of iterations is at most |E|. This shows that the method
is strongly polynomial-time.

Now we can derive from the previous two theorems, an algorithmic result
for fractional forest decomposition:

Corollary 51.5a. Given a graph G = (V,E) and y ∈ Pforest(G), we can find
forests F1, . . . , Fk and λ1, . . . , λk ≥ 0 satisfying

(51.24) y = λ1χ
F1 + · · · + λkχ

Fk

and λ1 + · · · + λk = 1, in strongly polynomial time.

Proof. We can assume that G is connected, as we can consider each compo-
nent of G separately. By Theorem 51.4, we can find a z ∈ Pspanning tree(G)
with y ≤ z in strongly polynomial time. By Theorem 51.5, we can decompose
z as a convex combination of incidence vectors of spanning trees in strongly
polynomial time. By restricting the spanning trees to subforests if necessary,
we obtain a convex decomposition of y into incidence vectors of forests.

We can proceed similarly for decomposing a vector in the connector poly-
tope. To this end, we show the analogue for connectors of Theorem 51.4:

Theorem 51.6. Given a graph G = (V,E) and x ∈ P ↑
connector(G), we can

find a z ∈ Pspanning tree(G) with x ≥ z, in strongly polynomial time.

Proof. The method described in the proof of Corollary 51.3b gives a vector
y ∈ Q

V satisfying

(51.25) y(U) ≤ x(δ(U)) − 2 for each nonempty U ⊆ V ,

and a partition P of V into nonempty sets with y(U) = x(δ(U)) − 2 for each
U ∈ P. Hence

(51.26) y(V ) =
∑

U∈P
(x(δ(U)) − 2) = 2x(δ(P)) − 2|P| ≥ −2.

By decreasing components of y appropriately, we can achieve that y(V ) = −2,
while maintaining (51.25).

We are going to modify y and x, maintaining (51.25) and y(V ) = −2. For
each u, v ∈ V with e = uv ∈ E, we do the following. Let α be the minimum
value of x(δ(U)) − 2 − y(U) taken over subsets U of V with u ∈ U , v �∈ U .
So α ≥ 0. Let β := min{xe,

1
2α} and reset
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(51.27) xe := xe − β, yu := yu + β, yv := yv − β.

Then (51.25) is maintained, and the collection C of subsets U having equality
in (51.25) is not reduced. Moreover, in the new situation, xe = 0 or there is
a U ∈ C with u ∈ U and v �∈ U . Also, the new x belongs to P ↑

connector(G), as
for any partition Q of V into nonempty sets we have

(51.28)
∑

U∈Q
x(δ(U)) ≥ y(V ) + 2|Q| = 2|Q| − 2.

Doing this for each edge e (in both directions), we end up with x, y sat-
isfying (51.25) such that

(51.29) for all adjacent u, v, if xuv > 0, then there is a U ∈ C with u ∈ U
and v �∈ U .

This implies that

(51.30) yu = x(δ(u)) − 2

for each u ∈ V . Indeed, C is closed under unions and intersections of inter-
secting sets. Let U be the smallest set in C containing u. (This exists, since
V ∈ C.) To show (51.30), we must show U = {u}. Suppose therefore that
U �= {u}. By (51.29), there is no edge e connecting u and U \{u} with xe > 0.
Hence

(51.31) y(U) = yu + y(U \ {u}) ≤ x(δ(u)) − 2 + x(δ(U \ {u})) − 2
= x(δ(U)) − 4 < x(δ(U)) − 2,

contradicting the fact that U ∈ C. This proves (51.30).
Hence

(51.32) 2x(E) =
∑

u∈V

x(δ(u)) = y(V ) + 2|V | = 2(|V | − 1),

and so x(E) = |V | − 1. This implies that x belongs to the spanning tree
polytope.

This implies for fractional connector decomposition:

Corollary 51.6a. Given a graph G = (V,E) and x ∈ Pconnector(G), we can
find connectors C1, . . . , Ck and λ1, . . . , λk ≥ 0 satisfying

(51.33) x = λ1χ
C1 + · · · + λkχ

Ck

and λ1 + · · · + λk = 1, in strongly polynomial time.

Proof. By Theorem 51.6, we can find a z ∈ Pspanning tree(G) with x ≥ z in
strongly polynomial time. By Theorem 51.5, we can decompose z as a convex
combination of incidence vectors of spanning trees in strongly polynomial
time. This gives a decomposition as required.
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Fractionally packing and covering trees and forests

We now consider the problem of finding a maximum fractional packing of
spanning trees subject to a given capacity function, and its dual, finding a
minimum fractional covering by forests of a given demand function.

Since we have proved above that convex decompositions can be found in
strongly polynomial time, we only need to give a method to find the optimum
values of the fractional packing and covering.

The method is a variant of a ‘fractional programming method’ initiated
by Isbell and Marlow [1956], and developed by Dinkelbach [1967], Schaible
[1976], Picard and Queyranne [1982a], Padberg and Wolsey [1984], and Cun-
ningham [1985c].

It implies the following result of Picard and Queyranne [1982a] and Pad-
berg and Wolsey [1984]:

Theorem 51.7. Given a graph G = (V,E) and y ∈ Q
E
+, we can find the

minimum λ such that y ∈ λ · Pforest(G), in strongly polynomial time.

Proof. We can assume that y does not belong to the forest polytope. (Other-
wise multiply y by a sufficiently large scalar.) Let L be the line through 0 and
y. We iteratively reset y as follows. Find a nonempty subset U of V minimiz-
ing |U | − 1 − y(E[U ]). Let y′ be the vector on L with |U | − 1 − y′(E[U ]) = 0.

Now if y′ violates x(E[U ′]) ≤ |U ′| − 1 for some U ′, then |U ′| < |U |, since
the function d(x) := (|U |−1−x(E[U ]))− (|U ′|−1−x(E[U ′])) is nonpositive
at y and positive at y′, implying that it is positive at 0 (as d is linear in x).

We reset y := y′ and iterate, until y belongs to Pforest(G). So after at most
|V | iterations the process terminates, with a y on the boundary of Pforest(G).
Comparing the final y with the original y gives the required λ.

Hence we have for fractional forest covering:

Corollary 51.7a. Given a graph G = (V,E) and y ∈ Q
E
+, we can find forests

F1, . . . , Fk and rationals λ1, . . . , λk ≥ 0 such that

(51.34) y = λ1χ
F1 + · · · + λkχ

Fk

with λ1 + . . .+ λk minimal, in strongly polynomial time.

Proof. By Theorem 51.7, we can find the minimum value of λ such that y
belongs to λ ·Pforest(G). If λ = 0, then y = 0, and (51.34) is trivial. If λ > 0,
then by Corollary 51.5a we can decompose λ−1 · y as a convex combination
of incidence vectors of forests. This gives the required decomposition of y.

Similar results holds for fractional tree packing (Cunningham [1984,
1985c]). First one has:
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Theorem 51.8. Given a connected graph G = (V,E) and y ∈ Q
E
+, we can

find the maximum λ such that y ∈ λ · Pconnector(G), in strongly polynomial
time.

Proof. If supp(y) is not a connector, then λ = 0. So we may assume that
supp(y) is a connector. We can also assume that y �∈ Pconnector(G). Let L be
the line through 0 and y. We iteratively reset y as follows. Find a partition P
of V into nonempty sets minimizing y(δ(P))− (|P|−1) (by Corollary 51.3b).
Let y′ be the vector on L with y′(δ(P)) = |P| − 1.

Now if y′ violates x(δ(P ′)) ≥ |P ′| − 1 for some partition P ′ of V into
nonempty sets, then |P ′| < |P|, since the function d(x) := (x(δ(P)) − |P| +
1)− (x(δ(P ′))−|P ′|+1) is nonpositive at y and positive at y′, implying that
it is negative at 0 (as d is linear in x).

We reset y := y′ and iterate, until y belongs to Pconnector(G). So after at
most |V | iterations the process terminates, in which case we have a y on the
boundary of Pconnector(G). Comparing the final y with the original y gives
the required λ.

This implies for fractional tree packing:

Corollary 51.8a. Given a connected graph G = (V,E) and x ∈ Q
E
+, we can

find spanning trees T1, . . . , Tk and rationals λ1, . . . , λk ≥ 0 such that

(51.35) x ≥ λ1χ
T1 + · · · + λkχ

Tk

with λ1 + . . .+ λk maximal, in strongly polynomial time.

Proof. By Theorem 51.8, we can find the maximum value of λ such that x
belongs to λ · Pconnector(G). If λ = 0, we take k = 0. If λ > 0, by Corollary
51.6a we can decompose λ−1 ·x as a convex combination of incidence vectors
of connectors. This gives the required decomposition of x.

Integer packing and covering of trees

It is not difficult to derive integer versions of the above algorithms, but they
are not strongly polynomial-time, as we round numbers in it. In fact, an
integer packing or covering cannot be found in strongly polynomial time, as
it would imply a strongly polynomial-time algorithm for testing if an integer
k is even (which algorithm does not exist6): k is even if and only if K3 has
3
2k spanning trees containing each edge at most k times.
6 For any strongly polynomial-time algorithm with one integer k as input, there is a

number L and a rational function q : Z → Q such that if k > L, then the output
equals q(k). (This can be proved by induction on the number of steps of the algorithm.)
However, there do not exist a rational function q and a number L such that for k > L,
q(k) = 0 if k is even, and q(k) = 1 if k is odd.
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Weakly polynomial-time algorithms follow directly from the fractional
case with the help of the theorems of Nash-Williams and Tutte on disjoint
trees and covering forests.

Theorem 51.9. Given a graph G = (V,E) and y ∈ Z
E
+, we can find forests

F1, . . . , Ft and integers λ1, . . . , λt ≥ 0 such that

(51.36) y = λ1χ
F1 + · · · + λtχ

Ft

with λ1 + . . .+ λt minimal, in polynomial time.

Proof. First find F1, . . . , Fk and λ1, . . . , λk as in Corollary 51.7a. We can
assume that k ≤ |E| (by Carathéodory’s theorem). Let

(51.37) y′ :=
k∑

i=1

(λi − 
λi�)χFi = y −
k∑

i=1


λi�χFi .

So y′ is integer.
Replace each edge e by y′

e parallel edges, making G′. By Theorem 51.2,
we can find a minimum number of forests partitioning the edges of G′, in
polynomial time (as y′

e ≤ |E| for each e ∈ E). This gives forests Fk+1, . . . , Ft

in G.
Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution

of our problem. Trivially, (51.36) is satisfied (with λi replaced by 
λi�). By
Nash-Williams’ covering forests theorem (Theorem 51.1c), using (51.37),

(51.38) t− k ≤
⌈ k∑

i=1

(λi − 
λi�)
⌉
.

Therefore,

(51.39)
t∑

i=1


λi� = (t− k) +
k∑

i=1


λi� ≤
⌈ k∑

i=1

λi

⌉
,

proving that the decomposition is optimum.

One similarly shows for tree packing:

Theorem 51.10. Given a connected graph G = (V,E) and y ∈ Z
E
+, we can

find spanning trees T1, . . . , Tt and integers λ1, . . . , λt ≥ 0 such that

(51.40) y ≥ λ1χ
T1 + · · · + λtχ

Tt

with λ1 + . . .+ λt maximal, in polynomial time.

Proof. First find T1, . . . , Tk and λ1, . . . , λk as in Corollary 51.8a. We can
assume that k ≤ |E| (by Carathéodory’s theorem). Let

(51.41) y′ :=
⌈ k∑

i=1

(λi − 
λi�)χTi
⌉
.
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Replace each edge e by y′
e parallel edges, making G′. By Theorem 51.2, we can

find a maximum number of edge-disjoint spanning trees in G′, in polynomial
time (as y′

e ≤ |E| for each e ∈ E). This gives spanning trees Tk+1, . . . , Tt in
G.

Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution of
our problem. Trivially, (51.40) is satisfied (with λi replaced by 
λi�). By the
Tutte-Nash-Williams disjoint trees theorem using (51.41),

(51.42) t− k ≥
⌊ k∑

i=1

(λi − 
λi�)
⌋
.

Therefore,

(51.43)
t∑

i=1


λi� = (t− k) +
k∑

i=1


λi� ≥
⌊ k∑

i=1

λi

⌋
,

proving that the decomposition is optimum.

51.5. Further results and notes

51.5a. Complexity survey for tree packing and covering

Complexity survey for finding a maximum number of (or k) disjoint spanning trees
(∗ indicates an asymptotically best bound in the table):

O(m2 log n) Imai [1983a]

O(m2) Roskind and Tarjan [1985] (announced
by Tarjan [1976]) for simple graphs

∗ O(m
√

m
n

(m + n log n) log m
n

) Gabow and Westermann [1988,1992]

∗ O(nm log m
n

) Gabow and Westermann [1988,1992]

∗ O(kn
√

m + kn log n) Gabow [1991a] (announced)

Complexity survey for finding a minimum number of forests covering all edges of
the graph:

O(n4)
Picard and Queyranne [1982a]
(finding the number) for simple
graphs

O(n2m log2 n)
Picard and Queyranne [1982a]
(finding the number) for simple
graphs

�
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continued

O(m2)
Imai [1983a], Roskind and Tarjan
[1985] (announced by Tarjan [1976])
for simple graphs

∗ O(nm log n) Gabow and Westermann [1988,1992]

O(m(m(m + n log n) log m)1/3) Gabow and Westermann [1988,1992]

∗ O(m3/2 log(n2/m)) Gabow [1995b,1998]

Liu and Wang [1988] gave an O(k2n2m(m + kn2))-time algorithm to find a
minimum-weight union F of k edge-disjoint spanning trees in a graph G = (V, E),
where E is partitioned into classes E1, . . . , Et, such that ai ≤ |F ∩Ei| ≤ bi for each
i, given a partition E1, . . . , Et of E and numbers ai and bi for all i.

Complexity survey for finding a maximum-size union of k forests:

O(k2n2)
Imai [1983a], Roskind and Tarjan [1985]
(announced by Tarjan [1976]) for simple
graphs

O(k3/2
√

nm(m + n log n)) Gabow and Stallmann [1985]

∗ O(k3/2n
√

m + n log n) Gabow and Westermann [1988,1992]

∗ O(k1/2m
√

m + n log n) Gabow and Westermann [1988,1992]

∗ O(kn2 log k) Gabow and Westermann [1988,1992]

∗ O( m2

k
log k) Gabow and Westermann [1988,1992]

Algorithms for finding a maximum-size union of two forests were given by Kishi
and Kajitani [1967,1968,1969] and Kameda and Toida [1973].

Complexity survey for finding a maximum-weight union of k forests:

O(k2n2 + m log m) Roskind and Tarjan [1985] for simple graphs

∗ O(kn2 log k + m log m) Gabow and Westermann [1988,1992]

∗ O( m2

k
log k + m log m) Gabow and Westermann [1988,1992]

Roskind and Tarjan [1985] (cf. Clausen and Hansen [1980]) gave an O(k2n2 +
m log m)-time algorithm for finding a maximum-weight union of k disjoint spanning
trees, in a simple graph.

As for the capacitated case, the methods given in Section 51.4 indicate that
packing and covering problems on forests and trees can be solved by a series of
minimum-capacity cut problem (as they reduce to Theorem 51.3). A parametric
minimum cut method designed by Gallo, Grigoriadis, and Tarjan [1989] allows to
combine several consecutive minimum cut computations, improving the efficiency
of the corresponding tree packing and covering problem, as was done by Gusfield
[1991].

The published algorithms for integer packing and coverings of trees all are based
on rounding the fractional version, not increasing the complexity of the problem,
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except that rounding is included as an operation. This blocks these algorithms from
being strongly polynomial-time: as we saw in Section 51.4, it can be proved that
there exists no strongly polynomial-time algorithm for finding an optimum integer
packing of spanning trees under a given capacity (similarly, for integer covering by
forests).

The following table gives a complexity survey for finding a maximum fractional
packing of spanning trees subject to a given integer capacity function c, or a min-
imum fractional covering by forests subject to a given demand function c. Here it
seems that the optimum value can be found faster than an explicit fractional pack-
ing or covering. The problems of finding an optimum fractional packing of trees is
close to that of finding an optimum fractional covering of forests (or trees), so we
present their complexity in one survey.

For any graph G = (V, E) and c : E → R+, the strength is the maximum
value of λ such that c belongs to λ · Pconnector(G). It is equal to the maximum size
of a fractional packing of spanning trees subject to c. The fractional arboricity is
the minimum value of λ such that c belongs to λ · Pforest(G). This is equal to the
minimum size of a fractional c-covering by forest.

O(nm8) Cunningham [1984]: finding an optimum
fractional packing of trees

O(nm · MF(n, n2)) Cunningham [1985c]: computing strength

O(n4m2 log2 C) Gabow [1991a] (announced): computing
strength

∗ O(n3m) Gusfield [1991]: computing strength

O(nm2 log(n2/m)) Gusfield [1991]: computing strength

O(n3 · MF(n, m)) Trubin [1991]: finding an optimum fractional
packing of trees

O(n2 · MF(n, n2)) Barahona [1992]: computing strength

O(n2 · MF(n, n2)) Barahona [1995]: finding optimum fractional
packing of trees

∗ O(n · MF(n, m)) Cheng and Cunningham [1994]: computing
strength

∗ O(n · MF(n, m)) Gabow [1995b,1998]: computing strength
and fractional arboricity

∗ O(n3m log(n2/m))
Gabow and Manu [1995,1998]: finding an
optimum fractional packing of trees and an
optimum fractional covering by forests

∗ O(n2m log C log(n2/m))
Gabow and Manu [1995,1998]: finding an
optimum fractional packing of trees and an
optimum fractional covering by forests

Here MF(n, m) is the complexity of finding a maximum-value s − t flow subject to
c in a digraph with n vertices and m arcs, and C := ‖c‖max (assuming c integer).
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51.5b. Further notes

A special case of a question asked by A. Frank (cf. Schrijver [1979b], Frank [1995])
amounts to the following:

(51.44) (?) Let G = (V, E) be an undirected graph and let s ∈ V . Suppose
that for each vertex t �= s, there exist k internally vertex-disjoint s − t
paths. Then G has k spanning trees such that for each vertex t �= s,
the s − t paths in these trees are internally vertex-disjoint. (?)

(The spanning trees need not be edge-disjoint — otherwise G = K3 would form
a counterexample.) For k = 2, (51.44) was proved by Itai and Rodeh [1984,1988],
and for k = 3 by Cheriyan and Maheshwari [1988] and Zehavi and Itai [1989].

Peng, Chen, and Koh [1991] showed that for any undirected graph G = (V, E)
and any p, k ∈ Z+, there exist k disjoint forests each with p components if and only
if

(51.45) |δ(P)| ≥ k(|P| − p)

for each partition P of V into nonempty sets. This in fact is the matroid base
packing theorem (Corollary 42.1d) applied to the (|V | − p)-truncation of the cycle
matroid of G.

Theorem 42.10 of Seymour [1998] implies that if the edges of a graph G = (V, E)
can be partitioned into k forests and if for each e ∈ E a subset Le of {1, 2, . . .} with
|Le| = k is given, then we can partition E into forests F1, F2, . . . such that j ∈ Le

for each j ≥ 1 and each e ∈ Fj .
Henneberg [1911] and Laman [1970] characterized those graphs which have,

after adding any edge, two edge-disjoint spanning trees. This was extended to k
edge-disjoint spanning trees by Frank and Szegő [2001].

Farber, Richter, and Shank [1985] showed the following. Let G = (V, E) be an
undirected graph. Let V be the collection of pairs (T1, T2) of edge-disjoint spanning
trees T1 and T2 in G. Call two pairs (T1, T2) and (S1, S2) in V adjacent if |(T1 ∪
T2) − (S1 ∪ S2)| = 2. Then this determines a connected graph on V.

Cunningham [1985c] gave a strongly polynomial-time algorithm (O(nm min{n2,
m log n})) to find a minimum-cost set of capacities to be added to a capacitated
graph so as to create the existence of k edge-disjoint spanning trees; that is, given
G = (V, E) and c, k ∈ Z

E
+, solving

(51.46)
∑

e∈E

k(e)xe

where x ∈ Z
E
+ satisfies

(51.47) (c + x)(δ(P)) ≥ k(|P| − 1)

for each partition P of V into nonempty sets. (It amounts to finding a minimum-
cost integer vector in a contrapolymatroid.) Related work can be found in Bäıou,
Barahona, and Mahjoub [2000].
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Longest branchings and shortest
arborescences

We next consider trees in directed graphs. We recall some terminology and
facts. Let D = (V, A) be a digraph. A branching is a subset B of A such
that B contains no undirected circuit and such that for each vertex v there
is at most one arc in B entering v. A root of B is a vertex not entered
by any arc in B. For any branching B, each weak component of (V, B)
contains a unique root.
A branching B is called an arborescence if the digraph (V, B) is weakly
connected; equivalently, if (V, B) is a rooted tree. So each arborescence
B has a unique root r. We say that B is rooted at r, and we call B an
r-arborescence. An r-arborescence can be characterized as a directed span-
ning tree B such that each vertex is reachable in B from r. A digraph
D = (V, A) contains an r-arborescence if and only if each vertex of D is
reachable from r.

52.1. Finding a shortest r-arborescence

Let be given a digraph D = (V,A), a vertex r, and a length function l :
A → Q+. We consider the problem of finding a shortest (= minimum-length)
r-arborescence.

We cannot apply here the greedy method of starting at the root r and
iteratively extending an r-arborescence on a subset U of V , by the shortest
arc leaving U . This is shown by the example of Figure 52.1.

The following algorithm was given by Chu and Liu [1965], Edmonds
[1967a], and Bock [1971]:

Algorithm to find a shortest r-arborescence. Let A0 := {a ∈ A | l(a) =
0}. If A0 contains an r-arborescence B, then B is a shortest r-arborescence. If
A0 contains no r-arborescence, there is a strong component K of (V,A0) with
r �∈ K and with l(a) > 0 for each a ∈ δin(K). Let α := min{l(a) | a ∈ δin(K)}.
Set l′(a) := l(a) − α if a ∈ δin(K) and l′(a) := l(a) otherwise.

Find (recursively) a shortest r-arborescence B with respect to l′. As K is
a strong component of (V,A0), we can choose B such that |B ∩ δin(K)| = 1
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r

u v
1

2 3

Figure 52.1
In a greedy method one would first choose the shortest arc leaving
r, which is (r, u). This arc however is not contained in the shortest
r-arborescence.

(since if |B ∩ δin(K)| ≥ 2, then there exists an a ∈ B ∩ δin(K) such that
the set (B \ {a}) ∪ A0 contains an r-arborescence, say B′, with l′(B′) ≤
l′(B) − l′(a) ≤ l′(B)).

Then B is also a shortest r-arborescence with respect to l, since for any
r-arborescence B′:

(52.1) l(B′) = l′(B′) + α|B′ ∩ δin(K)| ≥ l′(B′) + α ≥ l′(B) + α = l(B).

Since the number of iterations is at most m (as in each step A0 increases),
we have:

Theorem 52.1. A shortest r-arborescence can be found in strongly polyno-
mial time.

Proof. See above.

In fact, direct analysis gives the following result of Chu and Liu [1965],
Edmonds [1967a], and Bock [1971]:

Theorem 52.2. A shortest r-arborescence can be found in time O(nm).

Proof. First note that there are at most 2n iterations. This can be seen as
follows. Let k be the number of strong components of (V,A0), and let k0 be
the number of strong components K of (V,A0) with din

A0
(K) = 0. Then at any

iteration, the number k + k0 decreases. Indeed, if the strong component K
selected remains a strong component, then din

A0
(K) �= 0 in the next iteration;

so k0 decreases. Otherwise, k decreases. Hence there are at most 2n iterations.
Next, each iteration can be performed in time O(m). Indeed, in time O(m)

we can identify the set U of vertices not reachable in (V,A0) from r. Next,
by Theorem 6.6 one can identify the strong components of the subgraph of
(V,A0) induced by U , in time O(m). Moreover, by Theorem 6.5 we can order
the vertices in U pre-topologically. Then the first vertex in this order belongs
to a strong component K such that each arc a entering K has l(a) > 0.
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Tarjan [1977] showed that this algorithm has an O(min{n2,m log n})-time
implementation.

52.1a. r-arborescences as common bases of two matroids

Let D = (V, A) be a digraph and let r ∈ V . The r-arborescences can be considered as
the common bases in two matroids on A: M1 is the cycle matroid of the underlying
undirected graph, and M2 is the partition matroid on A induced by the sets δin(v)
for v ∈ V \ {r}. We assume without loss of generality that no arc of D enters r.

Then the r-arborescences are exactly the common bases of M1 and M2. This
gives us a reduction of polyhedral and algorithmic results to matroid intersection.
In particular, Theorem 52.1 follows from the strong polynomial-time solvability of
weighted matroid intersection.

52.2. Related problems

The complexity results of Section 52.1 immediately imply similar results for
finding optimum branchings and arborescences without specifying a root.
First we note:

Corollary 52.2a. Given a digraph D = (V,A), r ∈ V , and a length function
l : A → Q, a longest r-arborescence can be found in O(nm) time.

Proof. Define L := max{l(a) | a ∈ A} and l′(a) := L− l(a) for each a ∈ A.
Then an r-arborescence B minimizing l′(B) is an r-arborescence maximizing
l(B).

Then we have for longest branching:

Corollary 52.2b. Given a digraph D = (V,A) and a length function l ∈ Q
A,

a longest branching can be found in time O(nm).

Proof. We can assume that l is nonnegative, by deleting all arcs of negative
length. Extend D by a new vertex r and new arcs (r, v) for all v ∈ V , each
of length 0. Let B be a longest r-arborescence in D′ (this can be found in
O(nm)-time by Corollary 52.2a). Then trivially B ∩A is a longest branching
in D.

Similarly, for finding a shortest arborescence, without prescribing a root:

Corollary 52.2c. Given a digraph D = (V,A) and a length function l ∈ Q
A
+,

a shortest arborescence can be found in time O(nm).

Proof. Extend D by a new vertex r and arcs (r, v) for each v ∈ V , giving
digraph D′. Let l(r, v) := Ln, where L := max{l(a) | a ∈ A}. If D has an
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arborescence, then a shortest r-arborescence in D′ has only one arc leaving
r, and deleting this arc gives a shortest arborescence in D.

52.3. A min-max relation for shortest r-arborescences

We now characterize the minimum length of an r-arborescence. Let D =
(V,A) be a digraph and let r ∈ V . Call a set C of arcs an r-cut if there exists
a nonempty subset U of V \ {r} with

(52.2) C = δin(U).

It is not difficult to show that

(52.3) the collection of inclusionwise minimal arc sets intersecting each
r-arborescence is equal to the collection of inclusionwise minimal
r-cuts,

and

(52.4) the collection of inclusionwise minimal arc sets intersecting each
r-cut is equal to the collection of r-arborescences.

The following theorem follows directly from the method of Edmonds
[1967a], and was stated explicitly by Bock [1971] (and also by Fulkerson
[1974]):

Theorem 52.3 (optimum arborescence theorem). Let D = (V,A) be a di-
graph, let r ∈ V , and let l : A → Z+. Then the minimum length of an
r-arborescence is equal to the maximum size of a family of r-cuts such that
each arc a is in at most l(a) of them.

Proof. Clearly, the maximum is not more than the minimum, as each r-cut
intersects each r-arborescence.

We prove the reverse inequality by induction on
∑

a∈A l(a). Let A0 :=
{a ∈ A | l(a) = 0}. If A0 contains an r-arborescence, the minimum is 0, while
the maximum is at least 0.

If A0 contains no r-arborescence, there exists a strong component K of
the digraph (V,A0) with r �∈ K and with l(a) > 0 for each a ∈ δin(K). Define
l′ := l − χδin(K). By induction there exist an r-arborescence B and r-cuts
C1, . . . , Ct such that each arc a is in at most l′(a) of the Ci and such that
l′(B) = t. We may assume that |B ∩ δin(K)| = 1, since if |B ∩ δin(K)| ≥ 2,
then for each a ∈ B ∩ δin(K), (B \ {a}) ∪A0 contains an r-arborescence, say
B′, with l′(B′) ≤ l′(B) − l′(a) ≤ l′(B).

It follows that l(B) = t+ 1. Moreover, taking Ct+1 := δin(K), each arc a
is in at most l(a) of the C1, . . . , Ct+1.
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Note that if B is a shortest r-arborescence, then |B∩C| = 1 for any r-cut
C in the maximum-size family. Moreover, for any a ∈ B, l(a) is equal to the
number of r-cuts C chosen with a ∈ C.

52.4. The r-arborescence polytope

Given a digraph D = (V,A) and a vertex r ∈ V , the r-arborescence poly-
tope is defined as the convex hull of the incidence vectors (in R

A) of the
r-arborescences; that is,

(52.5) Pr-arborescence(D) := conv.hull{χB | B r-arborescence}.

Theorem 52.3 implies that the r-arborescence polytope ofD is determined
by:

(52.6) (i) xa ≥ 0 for a ∈ A,
(ii) x(C) ≥ 1 for each r-cut C,
(iii) x(δin(v)) = 1 for v ∈ V \ {r}.

To prove this, we first characterize the up hull of the r-arborescence poly-
tope, where as usual the up hull of the r-arborescence polytope is defined
as

(52.7) P ↑
r-arborescence(D) := Pr-arborescence(D) + R

A
+.

Corollary 52.3a. P ↑
r-arborescence(D) is determined by

(52.8) (i) xa ≥ 0 for a ∈ A,
(ii) x(C) ≥ 1 for each r-cut C.

Proof. The incidence vector of any r-arborescence trivially satisfies (52.8);
hence P ↑

r-arborescence(D) is contained in the polyhedron Q determined by
(52.8).

Suppose that the reverse inclusion does not hold. Then there exists a
rational length function l ∈ Q

A
+ such that the minimum value of lTx over Q

is less than the minimum length of an r-arborescence. We can assume that
l is integer. However, the minimum value of lTx over Q cannot be less than
the maximum described in Theorem 52.3. So we have a contradiction.

Since the r-arborescence polytope is a face of its up hull, this implies:

Corollary 52.3b. The r-arborescence polytope is determined by (52.6).

Proof. Directly from Corollary 52.3a.

Corollary 52.3a also implies for the restriction to the unit cube:
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Corollary 52.3c. The convex hull of incidence vectors of arc sets containing
an r-arborescence is determined by

(52.9) (i) 0 ≤ xa ≤ 1 for a ∈ A,
(ii) x(C) ≥ 1 for each r-cut C.

Proof. Directly from Corollary 52.3a with Theorem 5.19.

Theorem 52.3 can be reformulated in TDI terms as:

Corollary 52.3d. System (52.8) is TDI.

Proof. Choose a length function l ∈ Z
A
+, and consider the dual problem of

minimizing lTx over (52.8). For each r-cut C, let yC be the number of times
C is chosen in the maximum family in Theorem 52.3. Moreover, let B be a
shortest r-arborescence. Then by Theorem 52.3, x := χB and the yC form a
dual pair of optimum solutions. As the yC are integer, it follows that (52.8)
is TDI.

This in turn implies for the r-arborescence polytope:

Corollary 52.3e. System (52.6) is TDI.

Proof. Directly from Corollary 52.3d, with Theorem 5.25, since (52.6) arises
from (52.8) by setting some of the inequalities to equality.

For the intersection with the unit cube it gives:

Corollary 52.3f. System (52.9) is TDI.

Proof. Directly from Corollary 52.3d, with Theorem 5.23.

In fact, (poly)matroid intersection theory gives the box-total dual inte-
grality of (52.8):

Theorem 52.4. System (52.8) is box-TDI.

Proof. Let M1 be the cycle matroid of the undirected graph underlying
D = (V,A), and let M2 be the partition matroid induced by the sets δin(v)
for v ∈ V \ {r}. By Corollary 46.1d, the system

(52.10) x(B) ≥ |V | − 1 − rMi(A \B) for i = 1, 2 and B ⊆ A,

is box-TDI. Now any inequality in (52.10) is a nonnegative integer combina-
tion of inequalities (52.8).

Indeed, if i = 1, then rM1(A\B) is equal to |V | minus the number of weak
components of the digraph (V,A\B). So the inequality in (52.10) states that
x(B) is at least the number of weak components of (V,A\B) not containing r.
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Hence it is a sum of the inequalities x(δin(K)) ≥ 1 for each weak component
K of (V,A \ B) not containing r, and of xa ≥ 0 for all a ∈ B not entering
any of these components.

If i = 2, then rM2(A \ B) is equal to the number of v �= r entered by at
least one arc in A\B. So the inequality in (52.10) states that x(B) is at least
the number of v �= r with δin(v) ⊆ B. It therefore is a sum of the inequalities
x(δin(v)) ≥ 1 for these v, and xa ≥ 0 for all a ∈ B not entering any of these
vertices.

So Corollary 46.1d implies that (52.8) is box-TDI.

52.4a. Uncrossing cuts

Edmonds and Giles [1977] and Frank [1979b] gave the following procedure of proving
that system (52.8) is box-TDI (cf. Corollary 52.3b). The proof is longer than that
given above, but it is a special case of a far more general approach (to be discussed
in Chapter 60), and is therefore worth noting at this point.

System (52.8) is equivalent to:

(52.11) (i) xa ≥ 0 for a ∈ A,
(ii) x(δin(U)) ≥ 1 for ∅ �= U ⊆ V \ {r}

Consider any length function l ∈ R
A
+. Let yU form an optimum solution to the

problem dual to minimizing lTx over (52.11):

(52.12) maximize
∑

U yU

subject to yU ≥ 0 for all U ,
∑

U yUχδin(U) ≤ l,

where U ranges over the nonempty subsets of V \ {r}.
Choose the yU in such a way that

(52.13)
∑

U

yU |U ||V \ U |

is as small as possible. Then the collection

(52.14) F := {U | yU > 0}

is laminar; that is,

(52.15) U ∩ W = ∅ or U ⊆ W or W ⊆ U for all U, W ∈ F .

For suppose not. Let α := min{yU , yW }. Decrease yU and yW by α, and increase
yU∩W and yU∪W by α. Then y remains a feasible dual solution, since

(52.16) χδin(U∩W ) + χδin(U∪W ) ≤ χδin(U) + χδin(W ).

Moreover, y remains trivially optimum. However, sum (52.13) decreases (by Theo-
rem 2.1), contradicting our assumption. So F is laminar.

Now the F × A matrix M with

(52.17) MU,a :=
{

1 if a ∈ δin(U),
0 otherwise,
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is totally unimodular. In fact, it is a network matrix. For make a directed tree T as
follows. The vertex set of T is the set F ′ := F ∪ {V }, while for each U ∈ F there
is an arc aU from W to U where W is the smallest set in F ′ with W ⊃ U . This is
in fact an arborescence with root V .

We also define a digraph D̃ = (F ′, Ã). For each arc a = (u, v) of D, let ã be an
arc from the smallest set in F ′ containing both u and v, to the smallest set in F ′

containing v. Let Ã := {ã | a ∈ A}.
Identifying any set U in F with the arc aU of T , the network matrix generated

by directed tree T and digraph D̃ is an F × Ã matrix which is the same as M . So
M is totally unimodular. Therefore, by Theorem 5.35, (52.11) is box-TDI.

52.5. A min-max relation for longest branchings

We now consider longest branchings. Characterizing the maximum size of a
branching is easy:

Theorem 52.5. Let D = (V,A) be a digraph. Then the maximum size of
a branching is equal to |V | minus the number of strong components K of D
with din

A (K) = 0.

Proof. The theorem follows directly from: (i) each branching has at least
one root in any strong component K of D with din

A (K) = 0, and (ii) if a set
R intersects each such K, then there is a branching with root set R (since
each vertex of D is reachable from R).

From Theorem 52.3 one can derive a min-max relation for the maximum
length of a branching in a digraph. The reduction is similar to the reduction
of the algorithmic problem of finding a longest branching to that of finding
a shortest r-arborescence.

However, a direct proof can be derived from matroid intersection. Con-
sider the system:

(52.18) (i) xa ≥ 0 for a ∈ A,
(ii) x(δin(v)) ≤ 1 for v ∈ V ,
(iii) x(A[U ]) ≤ |U | − 1 for U ⊆ V , U �= ∅.

Theorem 52.6. System (52.18) is TDI.

Proof. Directly from Theorem 41.12, applied to the cycle matroid M1 of
the undirected graph underlying D = (V,A), and the partition matroid M2
induced by the sets δin(v) for v ∈ V . Then each inequality x(B) ≤ rM1(B)
is the sum of the inequalities x(A[U ]) ≤ |U | − 1 for the weak components
U of (V,B), and −xa ≤ 0 for those arcs a ∈ A \ B contained in any weak
component of (V,B). Each inequality x(B) ≤ rM2(B) is the sum of the
inequalities x(δin(v)) ≤ 1 for those v entered by at least one arc in B, and
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−xa ≤ 0 for those arcs a ∈ A \ B that enter a vertex v entered by at least
one arc in B.

52.6. The branching polytope

The previous corollary immediately implies a description of the branching
polytope Pbranching(D) of D, which is the convex hull of the incidence vectors
of branchings in D (stated by Edmonds [1967a]):

Corollary 52.6a. The branching polytope of D = (V,A) is determined by
(52.18).

Proof. Directly from Theorem 52.6, since the integer solutions of (52.18) are
the incidence vectors of the branchings.

Also the following theorem of Edmonds [1967a] follows from matroid in-
tersection theory:

Corollary 52.6b. Let D = (V,A) be a digraph and let k ∈ Z+. Then the
convex hull of the incidence vectors of branchings of size k is equal to the
intersection of the branching polytope of D with the hyperplane {x | x(A) =
k}.

Proof. This is the common base polytope of the k-truncations of the matroids
M1 and M2 defined in the proof of Theorem 52.6.

In Corollary 53.3a we shall see that the convex hull of the incidence vectors
of branchings of size k has the integer decomposition property (McDiarmid
[1983]).

Giles and Hausmann [1979] characterized which pairs of branchings give
adjacent vertices of the branching polytope, and Giles [1975,1978b] and
Grötschel [1977a] characterized the facets of the branching polytope.

52.7. The arborescence polytope

The results on branchings in the previous section can be specialized to ar-
borescences (without prescribed root). Given a digraph D = (V,A), the ar-
borescence polytope of D, denoted by Parborescence(D), is the convex hull of
the incidence vectors of arborescences.

Corollary 52.6c. The arborescence polytope is determined by
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(52.19) (i) xa ≥ 0 for a ∈ A,
(ii) x(δin(v)) ≤ 1 for v ∈ V ,
(iii) x(A[U ]) ≤ |U | − 1 for U ⊆ V , U �= ∅,
(iv) x(A) = |V | − 1.

Proof. Directly from Corollary 52.6a, since Parborescence(D) is the face of
Pbranching(D) determined by the hyperplane x(A) = |V | − 1.

One similarly obtains from Theorem 52.6 the following, which yields a
min-max relation for the minimum length of an arborescence:

Corollary 52.6d. System (52.19) is TDI.

Proof. From Theorem 52.6, with Theorem 5.25.

52.8. Further results and notes

52.8a. Complexity survey for shortest r-arborescence

O(nm) Chu and Liu [1965], Edmonds [1967a],
Bock [1971]

O(n2) Tarjan [1977] (cf. Camerini, Fratta,
and Maffioli [1979])

O(m log n) Tarjan [1977] (cf. Camerini, Fratta,
and Maffioli [1979])

O(n log n + m log log logm/n n) Gabow, Galil, and Spencer [1984]

∗ O(m + n log n) Gabow, Galil, Spencer, and Tarjan
[1986]

As before, ∗ indicates an asymptotically best bound in the table.
X. Guozhi (see Guan [1979]), Gabow and Tarjan [1979,1984], and Gabow, Galil,

Spencer, and Tarjan [1986] studied the problem of finding a shortest r-arborescence
with exactly k arcs leaving r, yielding an O(m+n log n)-time algorithm. Hou [1996]
gave an O(k3m3)-time algorithm to find the k shortest r-arborescences in a digraph.

Gabow and Tarjan [1988a] gave O(m+n log n)- and O(m log∗ n)-time algorithms
for the bottleneck r-arborescence problem (that is, minimizing the maximum arc
cost), improving the O(m log n)-time algorithm of Camerini [1978]. (Here log∗ n is
the minimum i with log(i)

2 n ≤ 1.)

52.8b. Concise LP-formulation for shortest r-arborescence

Wong [1984] and Maculan [1986] observed that the problem of finding a shortest
r-arborescence can be formulated as a concise linear programming problem. In fact,
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the dominant P ↑
r-arborescence(D) of the r-arborescence polytope is the projection of

a polyhedron in nm dimensions determined by at most n(2m + n) constraints.

Theorem 52.7. Let D = (V, A) be a digraph and let r ∈ V . Then P ↑
r-arborescence(D)

is equal to the set Q of all vectors x ∈ R
A
+ such that for each u ∈ V \ {r} there

exists an r − u flow fu of value 1 satisfying fu ≤ x.

Proof. Since the incidence vector x = χB of any r-arborescence satisfies the con-
straints, we know that P ↑

r-arborescence(D) is contained in Q.
To see the reverse inclusion, let x ∈ Q. Then for each nonempty subset U of

V \ {r} one has

(52.20) x(δin(U)) ≥ fu(δin(U)) ≥ 1,

where u is any vertex in U and where fu is an r − u flow of value 1 with fu ≤ x.
So by Corollary 52.3a, x belongs to P ↑

r-arborescence(D).

This implies that a shortest r-arborescence can be found by solving a linear
programming problem of polynomial size:

Corollary 52.7a. Let D = (V, A) be a digraph and let r ∈ V and l ∈ R
A
+. Then

the length of a shortest r-arborescence is equal to the minimum value of

(52.21)
∑

a∈A

l(a)xa,

where x ∈ R
A is such that for each u ∈ V \ {r} there exists an r − u flow fu of

value 1 with fu ≤ x.

Proof. Directly from Theorem 52.7.

52.8c. Further notes

Frank [1979b] showed the following. Let D = (V, A) be a digraph and let r ∈ V .
Then a subset A′ of A is contained in an r-arborescence if and only if |U| ≤ |V | −
1−|A′| for each laminar collection U of nonempty subsets of V \{r} such that each
arc of D enters at most one set in U and no arc in A′ enters any set in U .

Goemans [1992,1994] studied the convex hull of (not necessarily spanning) par-
tial r-arborescences.

Karp [1972a] gave a shortening of the proof of Edmonds [1967a] of the correct-
ness of the shortest r-arborescence algorithm.

Books covering shortest arborescences include Minieka [1978], Papadimitriou
and Steiglitz [1982], and Gondran and Minoux [1984].
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Packing and covering of
branchings and arborescences

Packing arborescences is a special case of packing common bases in two ma-
troids. However, no general matroid theorem is known that covers this case.
In Section 42.6c the maximum number of common bases in two strongly
base orderable matroids was characterized, but this does not apply to pack-
ing arborescences, as graphic matroids are generally not strongly base or-
derable. Yet, min-max relations and polyhedral characterizations can be
proved for packing arborescences, and similarly for covering by branch-
ings.

53.1. Disjoint branchings

Edmonds [1973] gave the following characterization of the existence of disjoint
branchings in a given directed graph D = (V,A). We give the proof of Lovász
[1976c]. The root set of a branching B is the set of roots of B, that is, the set
of sources of the digraph (V,B).

Theorem 53.1 (Edmonds’ disjoint branchings theorem). Let D = (V,A)
be a digraph and let R1, . . . , Rk be subsets of V . Then there exist disjoint
branchings B1, . . . , Bk such that Bi has root set Ri (for i = 1, . . . , k) if and
only if

(53.1) din(U) ≥ |{i | Ri ∩ U = ∅}|,
for each nonempty subset U of V .

Proof. Necessity being trivial, we show sufficiency, by induction on |V \R1|+
· · ·+ |V \Rk|. If R1 = · · · = Rk = V , the theorem is trivial, so we can assume
that R1 �= V . For each U ⊆ V , define

(53.2) g(U) := |{i | Ri ∩ U = ∅}|.
Let W be an inclusionwise minimal set with the properties that W ∩R1 �= ∅,
W \ R1 �= ∅, and din(W ) = g(W ). Such a set exists, since W = V would
qualify.

Then
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(53.3) din(W \R1) ≥ g(W \R1) > g(W ) = din(W ),

and hence there exists an arc a = (u, v) in A with u ∈ W ∩R1 and v ∈ W \R1.
It suffices to show that (53.1) is maintained after resetting A := A \ {a} and
R1 := R1 ∪ {v}, since after resetting we can apply induction, and assign a to
B1.

To see that (53.1) is maintained, suppose that to the contrary there is
a U ⊆ V violating the condition after resetting. Then in resetting, din(U)
decreases by 1 while g(U) is unchanged. So a enters U , and, before resetting
we had din(U) = g(U) and U ∩R1 �= ∅. This implies (before resetting):

(53.4) din(U ∩W ) ≤ din(U) + din(W ) − din(U ∪W )
≤ g(U) + g(W ) − g(U ∪W ) ≤ g(U ∩W ).

So we have equality throughout. Hence din(U ∩ W ) = g(U ∩ W ) and R1 ∩
(U ∩W ) �= ∅ (as R1 ∩W �= ∅ and R1 ∩U �= ∅, and g(U ∩W ) = g(U)+g(W )−
g(U ∪W )). Also (U ∩W ) \ R1 �= ∅ (since v ∈ U ∩W ) and U ∩W ⊂ W (as
u �∈ U ∩W ). This contradicts the minimality of W .

(Also the method of Tarjan [1974a] is based on the existence of an arc a as in
this proof. Fulkerson and Harding [1976] gave another proof of the existence
of such ar arc (more complicated than that of Lovász given above).)

53.2. Disjoint r-arborescences

The previous theorem implies a characterization of the existence of disjoint
arborescences with prescribed roots:

Corollary 53.1a. Let D = (V,A) be a digraph and let r1, . . . , rk ∈ V . Then
there exist k disjoint arborescences B1, . . . , Bk, where Bi has root ri (for
i = 1, . . . , k) if and only if each nonempty subset U of V is entered by at least
as many arcs as there exist i with ri �∈ U .

Proof. Directly from Edmonds’ disjoint branchings theorem (Theorem 53.1)
by taking Ri := {ri} for all i.

If all roots are equal, we obtain the following min-max relation, announced
by Edmonds [1970b]. Recall that an r-cut is a cut δin(U) where U is a
nonempty subset of V \ {r}.

Corollary 53.1b (Edmonds’ disjoint arborescences theorem). Let D =
(V,A) be a digraph and let r ∈ V . Then the maximum number of disjoint
r-arborescences is equal to the minimum size of an r-cut.

Proof. Directly from Corollary 53.1a by taking k equal to the minimum size
of an r-cut and ri := r for i = 1, . . . , k.
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Note that Edmonds’ disjoint arborescences theorem implies Menger’s the-
orem: for any digraph D = (V,A) and r, s ∈ V , if k is the minimum size of
an r− s cut, we can extend D by k parallel arcs from s to v, for each vertex
v �= s; in the extended graph, the minimum size of an r-cut is k, and hence it
contains k arc-disjoint r-arborescences. This gives k arc-disjoint r − s paths
in the original graph D.

One can reformulate Edmonds’ disjoint arborescences theorem in a num-
ber of ways (Edmonds [1975]):

Corollary 53.1c. Let D = (V,A) be a digraph and let r ∈ V . Then for each
k ∈ Z+ the following are equivalent:

(53.5) (i) there exist k disjoint r-arborescences;
(ii) for each nonempty U ⊆ V \ {r}, din(U) ≥ k;
(iii) for each s �= r there exist k arc-disjoint r − s paths in D;
(iv) there exist k edge-disjoint spanning trees in the underlying

undirected graph such that for each s �= r there are exactly
k arcs entering s covered by these trees.

Proof. The equivalence of (i) and (ii) follows from Edmonds’ disjoint ar-
borescences theorem (Theorem 53.1b), and the equivalence of (ii) and (iii) is
a direct consequence of Menger’s theorem.

The implication (i) ⇒ (iv) is trivial. To prove (iv) ⇒ (ii), suppose that
(iv) holds, and let U be a nonempty subset of V \{r}. Each spanning tree has
at most |U | − 1 arcs contained in U . So the spanning trees of (iv) together
have at most k(|U | − 1) arcs contained in U . Moreover, they have exactly
k|U | arcs with head in U . Hence, at least k arcs enter U .

An interesting consequence of Edmonds’ disjoint arborescences theorem
was observed by Shiloach [1979a] and concerns the arc-connectivity of a di-
rected graph:

Corollary 53.1d. A digraph D = (V,A) is k-arc-connected if and only if
for all s1, t1, . . . , sk, tk ∈ V there exist arc-disjoint paths P1, . . . , Pk, where Pi

runs from si to ti (i = 1, . . . , k).

Proof. Sufficiency follows by taking s1 = · · · = sk and t1 = · · · = tk. To see
necessity, extendD by a vertex r and arcs (r, si) for i = 1, . . . , k. By Edmonds’
disjoint arborescences theorem (Corollary 53.1b), the extended digraph has k
disjoint r-arborescences, since each nonempty subset U of V is entered by at
least k arcs of D′. Choosing the si − ti path in the r-arborescence containing
(r, si), for i = 1, . . . , k, we obtain paths as required.
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53.3. The capacitated case

The capacitated version of the min-max relation for disjoint r-arborescences
reads:

Corollary 53.1e. Let D = (V,A) be a digraph, let r ∈ V , and let c ∈ Z
A
+

be a capacity function. Then the minimum capacity of an r-cut is equal to
the maximum value of

∑
B λB, where λB is a nonnegative integer for each

r-arborescence B such that

(53.6)
∑

B

λBχ
B ≤ c.

Proof. Directly from Corollary 53.1b by replacing each arc a by c(a) parallel
arcs.

One can equivalently formulate this in term of total dual integrality. To
see this, consider the r-cut polytope Pr-cut(D) of D, defined as the convex
hull of the incidence vectors of the r-cuts in D. In particular, consider the up
hull

(53.7) P ↑
r-cut(D) := Pr-cut(D) + R

A
+

of the r-cut polytope.
In Corollary 52.3a we saw that the up hull P ↑

r-arborescence(D) of the r-
arborescence polytope of D is determined by:

(53.8) (i) xa ≥ 0 for each arc a,
(ii) x(C) ≥ 1 for each r-cut C.

By the theory of blocking polyhedra, this implies that P ↑
r-cut(D) is determined

by:

(53.9) (i) xa ≥ 0 for each arc a,
(ii) x(B) ≥ 1 for each r-arborescence B.

In fact:

Corollary 53.1f. System (53.9) determines P ↑
r-cut(D) and is TDI.

Proof. The first part follows from the theory of blocking polyhedra applied
to Corollary 52.3a, and the second part is equivalent to Corollary 53.1e.

Another equivalent form is:

(53.10) For any digraph D = (V,A) and r ∈ V , the r-arborescence poly-
tope has the integer decomposition property.

By Theorem 5.30, the number of r-arborescences B with λB ≥ 1 in Corol-
lary 53.1e can be taken to be at most 2|A| − 1. (This improves a result of
Pevzner [1979a] giving an O(nm) upper bound.) Gabow and Manu [1995,
1998] showed an upper bound of |V | + |A| − 2.
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53.4. Disjoint arborescences

Frank [1979a,1981c] derived from Corollary 53.1a the following min-max re-
lation for disjoint arborescences without a prescribed root. (A subpartition of
V is a partition of a subset of V .)

Corollary 53.1g. Let D = (V,A) be a digraph and let k ∈ Z+. Then A
contains k disjoint arborescences if and only if

(53.11)
∑

U∈P
din(U) ≥ k(|P| − 1)

for each subpartition P of V with nonempty classes.

Proof. Necessity being easy, we show sufficiency. Choose x ∈ Z
V
+ such that

(53.12) x(U) ≥ k − din(U)

for each nonempty subset U of V , with x(V ) as small as possible. We show
that x(V ) = k. Since x(V ) ≥ k by (53.12), it suffices to show x(V ) ≤ k.

Let P be the collection of inclusionwise maximal nonempty sets having
equality in (53.12). Then P is a subpartition, for suppose that U,W ∈ P with
U ∩W �= ∅. Then

(53.13) x(U ∪W ) = x(U) + x(W ) − x(U ∩W )
≤ (k − din(U)) + (k − din(W )) − (k − din(U ∩W ))
≤ (k − din(U ∪W )),

and hence U ∪W ∈ P. So U = W .
Now for each v ∈ V with xv > 0 there exists a set U in P containing v,

since otherwise we could decrease xv. Hence

(53.14) x(V ) =
∑

U∈P
x(U) =

∑

U∈P
(k − din(U)) ≤ k,

by (53.11).
So x(V ) = k. Now let r1, . . . , rk be vertices such that any vertex v oc-

curs xv times among the ri. Then by Corollary 53.1a there exist disjoint
arborescences B1, . . . , Bk, where Bi has root ri. This shows the corollary.

53.5. Covering by branchings

Let A[U ] denote the set of arcs in A with both ends in U . Frank [1979a]
observed that the following min-max relation for covering by branchings can
be derived from Edmonds’ disjoint arborescences theorem:

Corollary 53.1h. Let D = (V,A) be a digraph and let k ∈ Z+. Then A can
be covered by k branchings if and only if
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(53.15) (i) degin(v) ≤ k for each v ∈ V ,
(ii) |A[U ]| ≤ k(|U | − 1) for each nonempty subset U of V .

Proof. Necessity being trivial, we show sufficiency. ExtendD by a new vertex
r, and for each v ∈ V , k − degin(v) parallel arcs from r to v. Let D′ be the
digraph thus arising. So each vertex in V is entered by exactly k arcs of D′,
and D′ has k|V | arcs.

Now each nonempty subset U of V is entered by at least k arcs of D′,
since exactly k|U | arcs have their head in U and at most k(|U |−1) arcs have
both ends in U . So by Edmonds’ disjoint arborescences theorem (Theorem
53.1b), D′ has k disjoint r-arborescences. Since D′ has exactly k|V | arcs,
these arborescences partition the arc set of D′. Hence restricting them to the
arcs of the original graph D, we obtain k branchings partitioning A.

(This was also shown by Markosyan and Gasparyan [1986].)
Corollary 53.1h is equivalent to:

Corollary 53.1i. Let D = (V,A) be a digraph and let k ∈ Z+. Then A can
be covered by k branchings if and only if degin(v) ≤ k for each v ∈ V and A
can be covered by k forests of the underlying undirected graph.

Proof. Directly from Corollary 53.1h with Corollary 51.1c.

Corollary 53.1h implies a polyhedral result of Baum and Trotter [1981]
(attributing the proof to R. Giles):

Corollary 53.1j. The branching polytope of a digraph D = (V,A) has the
integer decomposition property.

Proof. Let k ∈ Z+ and let x be an integer vector in k · Pbranching(D). Let
D′ = (V,A′) be the digraph obtained from D by replacing any arc a = (u, v)
by xa parallel arcs from u to v. Then by Corollary 53.1h, A′ can be partitioned
into k branchings. This gives a decomposition of x as a sum of the incidence
vectors of k branchings in D.

53.6. An exchange property of branchings

We derive an exchange property of branchings from Edmonds’ disjoint
branchings theorem (Theorem 53.1). It implies that the branchings in an
optimum covering can be taken of almost equal size. It will also be used in
Section 59.5 on the total dual integrality of the matching forest constraints.

We first show a lemma. For any branching B, let R(B) denote the set of
roots of B.
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Lemma 53.2α. Let B1 and B2 be branchings partitioning the arc set A of a
digraph D = (V,A). Let R1 and R2 be sets with R1 ∪ R2 = R(B1) ∪ R(B2)
and R1 ∩R2 = R(B1) ∩R(B2). Then A can be split into branchings B′

1 and
B′

2 with R(B′
i) = Ri for i = 1, 2 if and only if each strong component K of

D with din(K) = 0 intersects both R1 and R2.

Proof. Necessity is easy, since the root set of any branching intersects any
strong component K with din(K) = 0.

To see sufficiency, by Edmonds’ disjoint branchings theorem (Theorem
53.1), branchings B′

1 and B′
2 as required exist if and only if

(53.16) din(U) ≥ |{i ∈ {1, 2} | U ∩Ri = ∅}|

for each nonempty U ⊆ V . (Actually, Edmonds’ theorem gives the existence
of disjoint branchings B′

1 and B′
2 satisfying R(B′

i) = Ri for i = 1, 2. That
B′

1 ∪B′
2 = A follows from the fact that |B′

1|+ |B′
2| = |B1|+ |B2|, as |R(B′

1)|+
|R(B′

2)| = |R(B1)| + |R(B2)|.)
Suppose that inequality (53.16) does not hold. Then the right-hand side

is positive. If it is 2, then U is disjoint from both R1 and R2, and hence from
both R(B1) and R(B2) (since R1 ∪R2 = R(B1)∪R(B2)), implying that both
B1 and B2 enter U , and so din(U) ≥ 2.

So the right-hand side is 1, and hence the left-hand side is 0. We can
assume that U is an inclusionwise minimal set with this property. It implies
that U is a strong component of D. Then by the condition, U intersects both
R1 and R2, contradicting the fact that the right-hand side in (53.16) is 1.

First, this implies the following exchange property of branchings:

Theorem 53.2. Let B1 and B2 be branchings in a digraph D = (V,A). Let
s be a root of B2 and let r be the root of the arborescence in B1 containing
s. Then D contains branchings B′

1 and B′
2 satisfying

(53.17) B′
1 ∪B′

2 = B1 ∪B1, B′
1 ∩B′

2 = B1 ∩B2,
and R(B′

1) = R(B1) ∪ {s} or R(B′
1) = (R(B1) \ {r}) ∪ {s}.

Proof. We may assume that B1, B2 partition A, since we can delete all arcs
not occurring in B1 ∪B2, and add parallel arcs for those in B1 ∩B2. We may
also assume that s �= r (since the theorem is trivial if s = r).

Let K be the strong component of D containing s. If no arc of D enters
K, then r ∈ K (as B1 contains a directed path from r to s), and hence r is
not a root of B2 (as otherwise no arc enters r while K is strongly connected);
define R1 := (R(B1) \ {r}) ∪ {s} and R2 := (R(B2) \ {s}) ∪ {r}.

Alternatively, if some arc of D enters K, define R1 := R(B1) ∪ {s} and
R2 := R(B2) \ {s}. Then Lemma 53.2α implies that A can be split into
branchings B′

1 and B′
2 with R(B′

i) = Ri for i = 1, 2.
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The lemma also implies that a packing of branchings can be balanced in
the following sense:

Theorem 53.3. Let D = (V,A) be a digraph. If A can be covered by k
branchings, then A can be covered by k branchings each of size 
|A|/k� or
�|A|/k
.

Proof. Consider any two branchings B1, B2 in the covering which differ in
size by at least 2. Consider the digraphD′ = (V,B1∪B2). We can find subsets
R1 and R2 of V with R1∪R2 = R(B1)∪R(B2) and R1∩R2 = R(B1)∩R(B2),
such that each strong component K of D′ with din

D′(K) = 0 intersects both
R1 and R2, and such that R1 and R2 differ by at most 1 in size. (We can first
include, for any such component K, one element in K ∩ R(B1) in R1, and
one element in K ∩R(B2) in R2; next we distribute the remaining elements
in R(B1) and R(B2) almost equally over R1 and R2).

Then, by Lemma 53.2α, B1 ∪ B2 can be partitioned into branchings B′
1

and B′
2 with R(B′

i) = Ri for i = 1, 2. Then B′
1 and B′

2 differ by at most 1 in
size. Replacing B1 and B2 in the covering by B′

1 and B′
2, and iterating this,

we end up with a covering by k branchings, any two of which differ in size
by at most 1. This is a covering as required.

This theorem implies the integer decomposition property of the convex
hull of branchings of size k (McDiarmid [1983]):

Corollary 53.3a. Let D = (V,A) be a digraph and let k ∈ Z+. Then the
convex hull of the incidence vectors of the branchings of size k has the integer
decomposition property.

Proof. Choose p ∈ Z+, and let x be an integer vector in p · conv.hull{χB | B
branching, |B| = k}. By Corollary 53.1j, x is a sum of the incidence vectors
of p branchings. Let D′ = (V,A′) be the digraph arising from D by replacing
any arc a by xa parallel arcs. Then A′ can be partitioned into p branchings.
Now |A′|/p = x(A)/p = k. So, by Theorem 53.3, we can take these branchings
all of size k. Hence x is the sum of the incidence vectors of p branchings each
of size k.

53.7. Covering by r-arborescences

Vidyasankar [1978a] proved the following covering analogue of Edmonds’ dis-
joint branchings theorem. (A weaker version was shown by Frank [1979a] (cf.
Frank [1979b]).) For any digraph D = (V,A) and U ⊆ V , let H(U) denote
the set of outneighbours of V \ U ; that is, the set of the heads of the arcs
entering U . So H(U) ⊆ U .
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Theorem 53.4. Let D = (V,A) be a digraph, let r ∈ V , and let k ∈ Z+.
Then A can be covered by k r-arborescences if and only if

(53.18) degin(v) ≤ k for each v ∈ V , and degin(r) = 0,

and

(53.19)
∑

v∈H(U)

(k − degin(v)) ≥ k − din(U)

for each nonempty subset U of V \ {r}.

Proof. Necessity of (53.18) is trivial. To see necessity of (53.19), let U be a
nonempty subset of V \ {r}. Then each r-arborescence B intersects the set

(53.20)
⋃

v∈H(U)

δin(v) \ δin(U)

in at most |H(U)| − 1 arcs, since at least one arc of B should enter U . Hence
if A can be covered by k r-arborescences, the size of set (53.20) is at most
k(|H(U)| − 1), implying (53.19).

To see sufficiency, we can assume that for any arc a of D, if we would add
a parallel arc to a, then (53.18) or (53.19) is violated (since deleting parallel
arcs does not increase the minimum number of r-arborescences needed to
cover the arcs).

If degin(v) = k for each vertex v �= r, then A can be decomposed into k r-
arborescences by Edmonds’ disjoint arborescences theorem (Corollary 53.1b),
since then (53.19) implies that din(U) ≥ k for each nonempty subset U of
V \ {r}.

So we can assume that there exists a vertex u �= r with degin(u) < k.
Consider the collection C of nonempty subsets U of V \ {r} having equality
in (53.19) and with u ∈ H(U). Then C is closed under taking union and
intersection. Indeed, let U and W be in C. Then

(53.21)
∑

v∈H(U∩W )

(k − degin(v)) +
∑

v∈H(U∪W )

(k − degin(v))

≤
∑

v∈H(U)

(k − degin(v)) +
∑

v∈H(W )

(k − degin(v))

= (k − din(U)) + (k − din(W ))
≤ (k − din(U ∩W )) + (k − din(U ∪W )).

The first inequality follows from

(53.22) H(U ∩W ) ∩H(U ∪W ) ⊆ H(U) ∩H(W ) and
H(U ∩W ) ∪H(U ∪W ) ⊆ H(U) ∪H(W ),

as one easily checks.
By (53.19), (53.21) implies that we have equality throughout, As we have

equality in the first inequality in (53.21), and as k − degin(u) > 0, we know
that u ∈ H(U ∩W ) ∩H(U ∪W ). So U ∩W and U ∪W belong to C.
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Now for each arc a entering u, if we would add an arc parallel to a, (53.19)
is violated for some U . This implies that for each arc a entering u there exists
a U ∈ C such that the tail of a is in U . We can take for U the largest set in
C. Hence for each arc a entering u, the tail of a is in U . This contradicts the
fact that u ∈ H(U).

Frank [1979b] showed the following consequence of this result:

Corollary 53.4a. Let D = (V,A) be a digraph, let r ∈ V , and let k ∈ Z+.
Then A can be covered by k r-arborescences if and only if

(53.23) k · s(A′) ≥ |A′|

for each A′ ⊆ A. Here s(A′) denotes the maximum of |B ∩ A′| over r-
arborescences B.

Proof. As necessity is trivial, we show sufficiency, by showing that (53.23)
implies (53.18) and (53.19). To see (53.18), apply (53.23) to A′ := δin(v). To
see (53.19), apply (53.23) to A′ equal to the set (53.20).

Note that for acyclic digraphs, the minimum number of r-arborescences
needed to cover all arcs is easily characterized (Vidyasankar [1978a]):

Theorem 53.5. Let D = (V,A) be an acyclic digraph and let r ∈ V . Then
A can be covered by k r-arborescences if and only if r is the only source of D
and each indegree is at most k.

Proof. Necessity being easy, we show sufficiency. Trivially, we can cover A
by sets B1, . . . , Bk such that each Bi enters each v �= r precisely once. As D
is acyclic, each Bi is an r-arborescence.

53.8. Minimum-length unions of k r-arborescences

Let D = (V,A) be a digraph, let r ∈ V , and let k ∈ Z+. Consider the
following system in the variable x ∈ R

A:

(53.24) (i) xa ≥ 0 for each a ∈ A,
(ii) x(δin(U)) ≥ k for each nonempty U ⊆ V \ {r}.

The following basic result of Frank [1979b] follows from Theorem 52.4.

Theorem 53.6. System (53.24) is box-TDI.

Proof. Directly from Theorem 52.4, since if a system Ax ≤ b is box-TDI,
then for any k ≥ 0, the system Ax ≤ k · b is box-TDI.

This theorem has several consequences. First consider the system
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(53.25) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(δin(U)) ≥ k for each nonempty U ⊆ V \ {r}.

The following (cf. Frank [1979b]) implies a min-max relation for the min-
imum length of the union of k disjoint r-arborescences in D:

Corollary 53.6a. System (53.25) is TDI, and determines the convex hull of
subsets of A containing k disjoint r-arborescences.

Proof. Directly from Theorem 53.6 and Edmonds’ disjoint arborescences
theorem (Corollary 53.1b).

Another consequence of Theorem 53.6 is as follows. Let D = (V,A) and
D′ = (V,A′) be digraphs, let r ∈ V , and let k ∈ Z+. Consider the system in
the variable x ∈ R

A:

(53.26) (i) xa ≥ 0 for each a ∈ A,
(ii) x(δinA (U)) ≥ k − din

A′(U) for each nonempty U ⊆ V \ {r}.

Then:

Corollary 53.6b. System (53.26) is box-TDI.

Proof. Choose d, c ∈ Z
A
+. We must show that the system

(53.27) (i) d(a) ≤ xa ≤ c(a) for each a ∈ A,
(ii) x(δinA (U)) ≥ k − din

A′(U) for each nonempty U ⊆ V \ {r}
is TDI. Let D′′ = (V,A′′) be the digraph with A′′ := A ∪ A′ (taking arcs
multiple if they occur both in A and A′). By Theorem 53.6, the following
system in the variable x ∈ R

A′′
is TDI:

(53.28) (i) d(a) ≤ xa ≤ c(a) for each a ∈ A,
(ii) 1 ≤ xa ≤ 1 for each a ∈ A′,
(iii) x(δinA′′(U)) ≥ k for each nonempty U ⊆ V \ {r}.

This implies the total dual integrality of (53.27) by Corollary 5.27a.

Frank [1979a] derived the following ‘rank’ formula for coverings by k r-
arborescences:

Corollary 53.6c. Let D = (V,A) be a digraph, let r ∈ V , and let A′ ⊆
A. Then the maximum number of arcs in A′ that can be covered by k r-
arborescences is equal to the minimum value of

(53.29) k(|V | − 1) +
t∑

i=1

(din
A′(Vi) − k),

where V1, . . . , Vt is a laminar collection of nonempty subsets of V \ {r} such
that each arc in A enters at most one of these sets.
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Proof. Let µ be the maximum number of arcs in A′ that can be covered by
k r-arborescences. Consider the system (in x ∈ R

A)

(53.30) (i) xa ≥ 0 for a ∈ A,
(ii) x(δinA (U)) ≥ k − din

A′(U) for each nonempty U ⊆ V \ {r}.

By Corollary 53.6b, this system is TDI. Let x be an integer vector attaining
the minimum of x(A) over (53.30). Then

(53.31) µ = k(|V | − 1) − x(A).

Indeed, by (53.30) and by Edmonds’ disjoint arborescences theorem, there
exist k r-arborescences B1, . . . , Bk with

(53.32) x+ χA′ ≥ χB1 + · · · + χBk .

Let A′′ be the set of arcs in A′ covered by no Bi. By the minimality of x(A),
we have that x(A) + |A′| = k(|V | − 1) + |A′′|. As µ ≥ |A′| − |A′′| we have
≥ in (53.31). Since we can reverse this construction (starting from a set of k
r-arborescences covering µ arcs in A′, and making x), we have the equality
in (53.31).

By the total dual integrality of (53.30), x(A) is equal to the maximum
value of

(53.33)
t∑

i=1

(k − din
A′(Vi)),

taken over nonempty subsets V1, . . . , Vt of V \ {r} such that each arc in A
enters at most one of these sets. If, say, V1 ∩ V2 �= ∅ and V1 �⊆ V2 �⊆ V1,
we can replace V1 and V2 by V1 ∩ V2 and V1 ∪ V2 without violating these
conditions. Such replacements terminate by Theorem 2.1. We end up with
V1, . . . , Vt laminar as required. Therefore, with (53.31) we have the corollary.

Taking A′ = A, we get (Frank [1979b]):

Corollary 53.6d. Let D = (V,A) be a digraph and let r ∈ V . Then the
maximum number of arcs that can be covered by k r-arborescences is equal to
the minimum value of

(53.34) k(|V | − 1) +
t∑

i=1

(din(Vi) − k),

where V1, . . . , Vt form a laminar collection of nonempty subsets of V \ {r}
such that each arc enters at most one of these sets.

Proof. This is the case A′ = A in Corollary 53.6c.

This directly implies a min-max characterization for the minimum number
of r-arborescences needed to cover all arcs. However, Theorem 53.4 gives a
stronger relation.
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As for unions of k branchings, Frank [1979a] derived from Corollary 53.6c:

Corollary 53.6e. Let D = (V,A) be a digraph and let k ∈ Z+. The maximum
number of arcs of D that can be covered by k branchings is equal to the
minimum value of

(53.35) k(|V | − |P|) +
∑

U∈P
din(U)

taken over all subpartitions P of V with nonempty classes.

Proof. Let D′ be the digraph obtained from D by adding a new vertex r and
arcs (r, v) for each v ∈ V . Then the maximum number of arcs of D that can
be covered by k branchings in D is equal to the maximum number of arcs in
A that can be covered by k r-arborescences in D′. So Corollary 53.6c gives a
min-max relation for this.

The subsets Vi form a subpartition of V since if Vi and Vj would intersect
in a vertex v say, then the arc (r, v) of D′ enters two sets among the Vi,
contradicting the condition.

As for unions of k arborescences without prescribed root, Frank [1979a]
derived:

Corollary 53.6f. Let D = (V,A) be a digraph and let k ∈ Z+. Then A can
be covered by k arborescences if and only if

(53.36) k(|V | − 1 + λ) ≥ |A| +
t∑

i=1

(k − din(Vi))

for each laminar family (V1, . . . , Vt) of nonempty sets such that no arc enters
more than one of the Vi. Here λ denotes the maximum number of Vi’s having
nonempty intersection.

Proof. Necessity can be seen as follows. Let A be covered by arborescences
B1, . . . , Bk. For each v ∈ V , let r(v) be the number of Bi having v as root.
So r(V ) = k. For each a ∈ A, let s(a) be the number of Bi containing a. So
s(a) ≥ 1 for each a ∈ A. Moreover, s(δin(Vi)) + r(Vi) ≥ k for each i. Hence

(53.37) |A| +
t∑

i=1

(k − din(Vi)) ≤ |A| +
t∑

i=1

(
r(Vi) + s(δin(Vi)) − din(Vi)

)

≤ |A| +
∑

a∈A

(s(a) − 1) +
t∑

i=1

r(Vi) =
∑

a∈A

s(a) +
t∑

i=1

r(Vi)

= k(|V | − 1) +
t∑

i=1

r(Vi) ≤ k(|V | − 1) + kλ.
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The second inequality holds as each arc enters at most one of the Vi. For the
last inequality, we use that r(V ) = k and that V1, . . . , Vt can be partitioned
into λ collections, each consisting of disjoint sets. (53.37) shows necessity.

To see sufficiency, extend D by a vertex r and by the arc set A′ := {(r, v) |
v ∈ V }, yielding the digraph D′ = (V ∪ {r}, A ∪ A′). Consider the following
constraints for x ∈ R

A∪A′
:

(53.38) (i) xa ≥ 0 for each a ∈ A ∪A′,
(ii) x(δinD′(U)) ≥ k − din

D(U) for each nonempty U ⊆ V ,
(iii) x(δinD′(V )) = k.

Let x attain the minimum of x(A) over (53.38). Since system (53.38) is TDI
by Corollary 53.6b (with Theorem 5.25), we can assume that x is integer. We
show

(53.39) x(A) = k(|V | − 1) − |A|.

First, x(A) ≥ k(|V | − 1) − |A|, since

(53.40) x(A) + |A| + k = x(A) + |A| + x(δinA′(V ))
=

∑

v∈V

(
x(δinA′(v)) + x(δinA (v)) + din

A (v)
)

≥ k|V |.

To see the reverse inequality, x(A) is equal to the optimum value µ of the
problem dual to the above minimization problem: maximize

(53.41)
∑

U∈P(V )\{∅}
zU (k − din

A (U))

where z ∈ R
P(V )\{∅}
+ such that

(53.42)
∑

U

zUχ
δin

D′ (U) ≤ χA.

So we should prove that µ ≤ k(|V | − 1) − |A|.
Now let U be the collection of nonempty proper subsets U of V with

zU = 1. We may assume that U is laminar. Let λ be the maximum number
of U ∈ U containing any vertex. Then (53.42) implies that λ ≤ −zV (since
χA(a) = 0 for each a = (r, v)). Hence

(53.43) µ = k · zV +
∑

U∈U
(k − din

A (U)) ≤ −kλ+
∑

U∈U
(k − din

A (U))

≤ k(|V | − 1) − |A|

by (53.36), and we have the required inequality. This proves (53.39).
Then the vector y := x+ χA satisfies:

(53.44) y(δinD′(U)) ≥ k for each nonempty U ⊆ V ,
y(δinD′(V )) = k,
y(A∪A′) = x(A)+x(A′)+ |A| = k(|V |−1)−|A|+k+ |A| = k|V |.
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So by Edmonds’ disjoint arborescences theorem (Corollary 53.1b), y is the
sum of the incidence vectors of k r-arborescences, each with exactly one arc
leaving r. Hence (by the definition of y) A can be covered by k arborescences.

53.9. The complexity of finding disjoint arborescences

By Edmonds’ disjoint arborescences theorem, the maximum number of dis-
joint r-arborescences can be calculated in polynomial time, just by determin-
ing the minimum size of an r-cut. This can be done by determining, for each
v ∈ V \ {r}, the minimum size of an r − v cut, and taking the minimum of
these values.

Lovász [1976c] and Tarjan [1974a] showed that actually also a maximum
collection of disjoint r-arborescences can be found in polynomial time.

The proof (due to Lovász [1976c]) of Theorem 53.1 described above gives
such a polynomial-time algorithm. In fact, Lovász observed that it implies
the following result (obtained also by Tarjan [1974a]). Call a subset B of
the arc set A of a digraph D = (V,A) a partial r-arborescence if B is an
r-arborescence for the subgraph of D induced by the set V (B) of vertices
covered by B. We take V (B) := {r} if B is empty.

Theorem 53.7. Given a digraph D = (V,A) and a vertex r ∈ V , a maximum
number k of disjoint r-arborescences can be found in time O(k2m2).

Proof. First, the number k can be determined in time O(knm). Since k is
equal to the minimum size of a cut din(U) over nonempty subsets U of V \{r},
we can determine for each v ∈ V \ {r} a maximum set of arc-disjoint r − v
paths, by the augmenting path method described in Section 9.2. Actually,
for i = 1, . . . , k, we determine the ith augmenting paths for all v ∈ V \ {r},
before searching for the (i+ 1)th augmenting paths. In this way we can stop
if for some v ∈ V \ {r} no augmenting path exists. So in total we do at
most (n − 1)(k + 1) augmenting path searches. Thus it takes O(knm) time
to determine k.

Next, we can find an r-arborescence B such that

(53.45) din
A\B(U) ≥ k − 1 for each nonempty U ⊆ V \ {r},

in time O(km2). This recursively implies the theorem.
To find B, as in the proof of Theorem 53.1, we can grow a partial r-

arborescence B satisfying (53.45), starting with B = ∅. By the proof of
Theorem 53.1, if V (B) �= V , there exists an arc a leaving V (B) such that
resetting B := B ∪ {a} maintains (53.45). For any given arc a leaving V (B)
it amounts to testing if there exists a set U ⊆ V \ {r} such that a ∈ δin(U)
and din

A\B(U) = k− 1. This can be done in O(km) time with a minimum cut
algorithm.
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Now it is important to observe that for each arc a we need to do this test
at most once: if the test result is negative, then in growing B we never have
to consider arc a anymore; if the result is positive, a is added to B, and again
we will not consider a again.

So to obtain an r-arborescence, we determine at most m minimum cuts,
and so finding the r-arborescence B takes O(km2) time.

Tong and Lawler [1983] observed that the following quite easily follows
from Edmonds’ disjoint arborescences theorem:

Theorem 53.8. Given a digraph D = (V,A) and a vertex r ∈ V , we can
find in time O(knm) a set of arcs that is the union of a maximum number k
of disjoint r-arborescences.

Proof. As in the proof of Theorem 53.7 we can determine the number k in
time O(knm). Now consider any vertex v ∈ V . Find k arc-disjoint r−v paths
in D, and delete from D each arc entering v that is on none of these paths.
After that we still have din(U) ≥ k for any nonempty U ⊆ V \ {r}, since if
v �∈ U , then no arc entering U has been deleted, and if v ∈ U , then k arcs
entering U are maintained, as after deletion there are still k arc-disjoint r−v
paths in D.

Doing this successively for all vertices v ∈ V , we are left with a digraph
D with degin(v) = k if v �= r and degin(r) = 0, and with din(U) ≥ k for each
nonempty U ⊆ V \ {r}. So the remaining arc set is the union of k disjoint
r-arborescences. As k arc-disjoint r − v-paths can be found in time O(km),
we have the required result.

This implies with Theorem 53.7 a sharpening of Theorem 53.7:

Corollary 53.8a. Given a digraph D = (V,A) and a vertex r ∈ V ,
a maximum number k of disjoint r-arborescences can be found in time
O(knm+ k4n2).

Proof. By Theorem 53.8, we can find in time O(knm) a set A′ that is the
union of k disjoint r-arborescences. So m′ := |A′| = k(n − 1). Then by
Theorem 53.7 we can find k disjoint r-arborescences in A′, in time O(k2m′2).
Since O(k2m′2) = O(k4n2), the corollary follows.

Tong and Lawler [1983] in fact showed that the method of Lovász
[1976c] has an O(k2nm)-time implementation, yielding with Theorem 53.8
an O(knm+ k3n2)-time algorithm for finding k disjoint r-arborescences.

Also the capacitated case can be solved in strongly polynomial time
(Gabow [1991a,1995a]), as can be shown with the help of Edmonds’ dis-
joint branchings theorem. (Pevzner [1979a] proved that it can be solved in
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semi-strongly polynomial time, that is, by taking rounding as one arithmetic
step.)

Theorem 53.9. Given a digraph D = (V,A), r ∈ V , and a capacity function
c : A → Z+, we can find r-arborescences B1, . . . , Bk and integers λ1, · · · , λk ≥
0 with

∑k
i=1 λiχ

Bi ≤ c and with
∑k

i=1 λi maximized, in strongly polynomial
time.

Proof. We can find the maximum value in strongly polynomial time, as it is
equal to the minimum capacity of an r-cut. To find the λi explicitly, we show
more generally that the following problem is solvable in strongly polynomial
time (where R(B) denotes the set of roots of B):

(53.46) given: a digraph D = (V,A), a capacity function c : A → Z+, a
collection R of nonempty subsets of V , and a demand func-
tion d : R → Z+,

find: a collection B of branchings and a function λ : B → Z+, with∑
B∈B λBχ

B ≤ c and
∑

(λB | B ∈ B, R(B) = R) = d(R) for
each R ∈ R.

For any U ⊆ V , define

(53.47) g(U) :=
∑

(d(R) | R ∈ R, R ∩ U = ∅).

By replacing each arc a by c(a) parallel arcs, it follows from Edmonds’ disjoint
branchings theorem (Theorem 53.1) that a necessary and sufficient condition
for the existence of a solution of (53.46) is that

(53.48) c(δin(U)) ≥ g(U)

for each nonempty U ⊆ V .
We can assume that c(a) > 0 for each a ∈ A and d(R) > 0 for each

R ∈ R, and that we have an R1 ∈ R with R1 �= V .
We may also assume that (53.46) has a solution. This implies that there

exists an arc a = (u, v) ∈ A leaving R1 and a µ ≥ 1 such that resetting
d(R1) := d(R1) − µ, d(R1 ∪ {v}) := d(R1 ∪ {v}) + µ, c(a) := c(a) − µ,
maintains feasibility of (53.46). (If R1 ∪ {v} did not belong to R, we add it
to R.) We apply this for the maximum possible µ. This value of µ can be
calculated in strongly polynomial time, as it satisfies

(53.49) µ = min{c(a),min{c(δin(W ))−g(W ) | a ∈ δin(W ),W ∩R1 �= ∅}}

(for the original c and g).
To minimize c(δin(W ))− g(W ) over W with a ∈ δin(W ) and W ∩R1 �= ∅,

add, for each R ∈ R, a new vertex vR and, for each v ∈ R, a new arc (vR, v) of
capacity d(R). Moreover, add a new vertex r, and for each R ∈ R, a new arc
(r, vR) of capacity d(R). Let D′ = (V ′, A′) be the extended digraph. With a
minimum cut algorithm we can find a subset W ′ of V ′ \ {r} with a ∈ δin(W )
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and W ∩R1 �= ∅, minimizing the capacity of δinA′(W ). Then W := W ′ ∩ V is
a set as required.

We next apply the algorithm recursively. This describes the algorithm.

Running time. In each iteration, the number of arcs a with c(a) > 0 decreases
or the collection C := {U ⊆ V | U �= ∅, c(δin(U)) = g(U)} increases. As C is
an intersecting family, the number of times C increases is at most |V |3 (since
for each v ∈ V , the collection Cv := {U ∈ C | v ∈ U} is a lattice family,
and since each lattice family L is determined by the preorder � given by:
s � t ⇐⇒ each set in L containing t contains s; if L increases, then �
decreases, which can happen at most |V |2 times.)

So the number of iterations is at most |A| + |V |3.

With the reductions given earlier, this implies that the capacitated ver-
sions of packing arborescences and covering by branchings also can be solved
in strongly polynomial time.

Edmonds [1975] observed that matroid intersection and union theory im-
plies:

Theorem 53.10. Given a digraph D = (V,A), r ∈ V , k ∈ Z+, and a
length function l ∈ Q

A, we can find k disjoint r-arborescences B1, . . . , Bk

minimizing l(B1) + · · · + l(Bk) in strongly polynomial time.

Proof. This follows, with Corollary 53.1c and Theorem 53.7, from Theorem
41.8 applied to the intersection of two matroids: one being the union of k
times the cycle matroid of the undirected graph underlying D; the other
being the matroid in which a subset B of A is independent if and only if any
v ∈ V \ {r} is entered by at most k arcs in B.

This implies:

Corollary 53.10a. Given a digraph D = (V,A), r ∈ V , k ∈ Z+, and a
length function l ∈ Q

A, we can find a minimum-length subset B of A with
δinB (U) ≥ k for each nonempty U ⊆ V \ {r} in strongly polynomial time.

Proof. Directly from Theorem 53.10, with Edmonds’ disjoint arborescences
theorem (Corollary 53.1b).

53.10. Further results and notes

53.10a. Complexity survey for disjoint arborescences

Finding k disjoint r-arborescences in an uncapacitated digraph (∗ indicates an
asymptotically best bound in the table):
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O(k2m2) Lovász [1976c], Tarjan [1974a]

O(knm + k3n2) Tong and Lawler [1983]

∗ O(k2n2 + m) Gabow [1991a,1995a]

(As noticed by Tong and Lawler [1983], the paper of Shiloach [1979a] claiming
an O(k2nm) bound, contains an essential error (the set A constructed on page
25 of Shiloach [1979a] need not have the desired properties: it is maximal under
the condition that y �∈ A, while it should be maximal under the condition that
A ∪ V (T ) �= V ).)

The O(k2m2) bound for finding k pairwise disjoint r-arborescences implies the
O(n2∆4 log ∆) bound of Markosyan and Gasparyan [1986] for finding a minimum
number of branchings covering all arcs (where ∆ is the maximum indegree of the
vertices), by the construction given in the proof of Corollary 53.1h (as we can take
m ≤ n∆ and k ≤ 2∆).

Tarjan [1974c] gave an O(m + n log n)-time algorithm to find two disjoint r-
arborescences (actually, to find two r-arborescences with smallest intersection).
This was improved to O(mα(m, n)) by Tarjan [1976] (where α(m, n) is the inverse
Ackermann function), and to O(m) by Gabow and Tarjan [1985].

Clearly, each of the bounds in the table above implies a complexity bound for the
capacitated case, by replacing arcs by multiple arcs. However, this can increase the
number m of arcs dramatically, and does not lead to a polynomial-time algorithm.
Better bounds are given in the following table:

O(n3 · MF(n, m)) Pevzner [1979a] taking rounding as one
arithmetic step

∗ O(k2n2 + m) Gabow [1991a,1995a]

∗ O(n3m log n2

m
) Gabow and Manu [1995,1998]

∗ O(n2m log C log n2

m
) Gabow and Manu [1995,1998]

In these bounds, m is the number of arcs in the original graph, MF(n, m) denotes
the time needed to solve a maximum flow problem in a digraph with n vertices and
m arcs, and C is the maximum capacity (for integer capacity function).

The bounds of Gabow [1991a,1995a] and Gabow and Manu [1995,1998] in these
tables also apply to the problem considered in Edmonds’ disjoint branching theorem
(Theorem 53.1): finding k disjoint branchings B1, . . . , Bk where Bi has a given root
set Ri (i = 1, . . . , k), finding minimum coverings by branchings, and related prob-
lems. Gabow and Manu [1995,1998] also gave an O(n3m log n2

m
) fractional packing

algorithm of r-arborescences.
Gabow [1991a,1995a] announced O(kn(m+n log n) log n)- and O(k

√
n log n(m+

kn log n) log(nK))-time algorithms to find a minimum-cost union of k disjoint r-
arborescences (where K is the maximum cost, with integer cost function).
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53.10b. Arborescences with roots in given subsets

Let D = (V, A) be a digraph. Call a vector x ∈ Z
V
+ a root vector if there exist disjoint

arborescences such that for each v ∈ V , exactly xv of these arborescences have root
v. By Corollary 53.1a, root vectors are the integer solutions of the following system:

(53.50) (i) xv ≥ 0 for v ∈ V ,
(ii) x(U) ≤ dout(U) for each U ⊂ V .

This system generally does not define an integer polytope P , as is shown by the
digraph with vertices u, v, w and arcs (u, v), (v, w), and (w, u), where 1

2 · 1 is in P ,
but each integer vector x in P satisfies 1Tx ≤ 1.

Moreover, sets R of vertices for which there exist |R| disjoint arborescences,
rooted at distinct vertices in R, do not form the independent sets of a matroid, as
is shown by the graph of Figure 53.1.

Figure 53.1

However, for any k ∈ Z+, the system

(53.51) x(U) ≥ k − din(U) for each nonempty U ⊆ V ,

is box-TDI, since the right-hand side in (ii) is intersecting supermodular (cf. Sec-
tions 44.5 and 48.1).

Cai [1983] proved the following result, with a method (described below) of Frank
[1981c] for proving a special case (Corollary 53.11a):

Theorem 53.11. Let D = (V, A) be a digraph such that D has k arc-disjoint
arborescences. Let l, u ∈ Z

V
+ with l ≤ u. Then D has k arc-disjoint arborescences

such that, for each v ∈ V , at least l(v) and most u(v) of these arborescences are
rooted at v if and only if

(53.52) u(U) + din(U) ≥ k and l(U) +
∑

W∈P
(k − din(W )) ≤ k

for each nonempty subset U of V and each partition P of V \ U into nonempty
sets.

Proof. Necessity being easy, we show sufficiency. Choose x ∈ Z
V
+ such that l ≤ x ≤

u and such that (53.51) holds, with x(V ) as small as possible. (Such an x exists
since u(U) ≥ k − din(U) for each nonempty subset U of V .)

We show that x(V ) = k. Since x(V ) ≥ k by (53.51), it suffices to show x(V ) ≤ k.
Let P be the collection of inclusionwise maximal sets having equality in (53.51).
Then P is a subpartition, for suppose that U, W ∈ P with U ∩ W �= ∅. Then

(53.53) x(U ∪ W ) = x(U) + x(W ) − x(U ∩ W )
≤ (k − din(U)) + (k − din(W )) − (k − din(U ∩ W ))
≤ (k − din(U ∪ W )),
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and hence U ∪ W ∈ P. So U = W .
Now for each v ∈ V with xv > l(v) there exists a set W in P containing v, since

otherwise we could decrease xv. Hence

(53.54) x(V ) − l(V ) =
∑

W∈P
(x(W ) − l(W )) =

∑

W∈P
(k − din(W ) − l(W ))

≤ k − l(V ),

by (53.52).
So x(V ) = k. Now let r1, . . . , rk be vertices such that each vertex v occurs

xv times among the ri. Then by Corollary 53.1a there exist disjoint arborescences
B1, . . . , Bk, where Bi has root ri. This shows the theorem.

(In this proof we did not use the box-total dual integrality of (53.51), but we applied
a similar argument.)

This has as special case the following result of Frank [1981c]:

Corollary 53.11a. Let D = (V, A) be a digraph such that D has k arc-disjoint
arborescences. Let u ∈ Z

V
+. Then D has k arc-disjoint arborescences such that, for

each v ∈ V , at most u(v) of these arborescences have their root in v if and only if

(53.55) u(U) + din(U) ≥ k

for each nonempty subset U of V .

Proof. Directly from Theorem 53.11.

A related theorem is:

Theorem 53.12. Let D = (V, A) be a digraph and let R1, . . . , Rk be subsets of V .
Then there exist disjoint arborescences B1, . . . , Bk, where Bi has its root in Ri (for
i = 1, . . . , k) if and only if

(53.56)
∑

U∈P
(k − din(U)) ≤ |{i | Ri ∩

⋃
P �= ∅}|

for each subpartition P of V with nonempty classes.

Proof. Necessity is easy, since if the Bi exist, with roots ri ∈ Ri, then for each
U ∈ P one has that ri ∈ U or Bi contains at least one arc entering U . That is,

(53.57) |{ri} ∩ U | + din
Bi

(U) ≥ 1.

Summing this inequality over U ∈ P and over i = 1, . . . , k we obtain (53.56), with
Ri replaced by {ri}. This implies (53.56) for the original Ri.

To see sufficiency, first observe that the condition implies that the Ri are
nonempty (by taking P := {V }). If the Ri are singletons, the theorem is equiva-
lent to Corollary 53.1a. So we can assume that |R1| ≥ 2. Choose distinct vertices
u, w ∈ R1.

If the condition is maintained after replacing R1 by R1\{u}, the theorem follows
by induction. So we can assume that this violates the condition. That is, there exists
a subpartition P of V into nonempty classes such that (setting X :=

⋃
P):
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(53.58)
∑

U∈P
(k − din(U)) = |{i | Ri ∩ X �= ∅}|

and such that X∩R1 = {u} (for the original R1). Similarly we can assume that there
exists a subpartition Q of V into nonempty classes such that (setting Y :=

⋃
Q):

(53.59)
∑

U∈Q
(k − din(U)) = |{i | Ri ∩ Y �= ∅}|

and such that Y ∩ R1 = {w}.
Let F be the union of P and Q (any set occurring both in P and in Q occurs

twice in F). Now iteratively replace any T, U ∈ F with T ∩ U �= ∅ and T �⊆ U �⊆ T
by T ∩ U and T ∪ U . Then the final family F is laminar. Let R be the collection
of inclusionwise minimal sets in F and let S be the collection of inclusionwise
maximal sets in F . Then R and S are subpartitions of V into nonempty classes,
and

⋃
R = X ∩ Y and

⋃
S = X ∪ Y . Moreover

(53.60)
∑

U∈R
(k − din(U)) +

∑

U∈S
(k − din(U)) =

∑

U∈F
(k − din(U))

≥
∑

U∈P
(k − din(U)) +

∑

U∈Q
(k − din(U))

= |{i | Ri ∩ X �= ∅}| + |{i | Ri ∩ Y �= ∅}|
> |{i | Ri ∩ (X ∩ Y ) �= ∅}| + |{i | Ri ∩ (X ∪ Y ) �= ∅}|.

The first inequality follows from the submodularity of din(U). The last inequality
holds as (i) if Ri intersects X ∪ Y , then it intersects X or Y , (ii) if Ri intersects
X ∩ Y , then it intersects X and Y , and (iii) R1 intersects X and Y but not X ∩ Y ,
since R1 ∩ X = {u} and R1 ∩ Y = {w}.

However, (53.60) contradicts (53.56).

53.10c. Disclaimers

The equivalence of (i) and (iii) in Corollary 53.1c suggests the following question,
raised by A. Frank (cf. Schrijver [1979b], Frank [1995]; it generalizes a similar
question for the undirected case, described in Section 51.5b):
(53.61) (?) Let D = (V, A) be a k-arc-connected digraph and let r ∈ V . Sup-

pose that for each s ∈ V there exist k internally vertex-disjoint r − s
paths in D. Then there exist k r-arborescences such that, for any ver-
tex s, the k r − s paths determined by the respective r-arborescences
are internally vertex-disjoint. (?)

For k = 2 this was proved by Whitty [1987]. However, for k = 3, a counterexample
was found by Huck [1995].

Two potential generalizations of Edmonds’ disjoint arborescences theorem have
been raised, neither of which holds however. For vertices s, t, let λ(s, t) denote the
maximum number of arc-disjoint s − t paths. It is not true that for any digraph
D = (V, A), r ∈ V , and T ⊆ V \ {r}, there exist k disjoint subsets A1, . . . , Ak of A
such that each Ai contains an r − t path for each t ∈ T if and only if λ(r, t) ≥ k for
each t ∈ T (see Figure 53.2, for k = 2).

N. Robertson raised the question if it is true that in any digraph D = (V, A)
and any r ∈ V , there exist partial r-arborescences B1, B2, . . . such that each vertex
v ∈ V \ {r} is in exactly λ(r, v) of them. Lovász [1973b] showed that Figure 53.3 is
a counterexample. (Related work is reported by Bang-Jensen, Frank, and Jackson
[1995] and Gabow [1996].)
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r T

Figure 53.2

r

Figure 53.3

53.10d. Further notes

Frank [1981c] gave the following results for mixed graphs. Let G = (V, E, A) be a
mixed graph (that is, (V, E) is an undirected graph and (V, A) is a directed graph).
A mixed branching is a subset B of E ∪ A such that the undirected edges in B can
be oriented such that B becomes a branching. Then E can be covered by k mixed
branchings if and only if

(53.62) (i) din
A (U) + |E[U ]| ≤ k|U | for each U ⊆ V ,

(ii) |A[U ]| + |E[U ]| ≤ k(|U | − 1) for each ∅ �= U ⊆ V .

Similarly, a mixed r-arborescence is a subset B of E ∪ A such that the undirected
edges in B can be oriented such that B becomes an r-arborescence. Then for any
r ∈ V , G has k disjoint mixed r-arborescences if and only if for each subpartition
P of V \ {r} with nonempty classes, the number of edges (directed or not) entering
any class of P, is at least k|P|.

Cai [1989] characterized when, for given digraphs D1 = (V, A1) and D2 =
(V, A2), a, b ∈ Z

V
+ , and k ∈ Z+, there exists an r ∈ Z

V
+ with a ≤ r ≤ b and there

exist, for i = 1, 2, k disjoint arborescences in Di such that for each v ∈ V , r(v) of
these arborescences have root v. This can be proved using polymatroid intersection
theory, in particular the box-total dual integrality of

(53.63) x(U) ≥ k − din
Ai

(U) for i = 1, 2 and nonempty U ⊆ V

(Theorem 48.5). (For a generalization, see Cai [1990a,1993].)
Cai [1990b] showed, for given digraph D = (V, A), r ∈ V , d, c ∈ Z

A
+, and k ∈ Z+:

there exist k r-arborescences such that each arc is covered at least d(a) times and
at most c(a) times, if and only if d(δin(v)) ≤ k, for each v ∈ V \ {r}, and
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(53.64)
∑

v∈U

min{k − d(δin(v) \ δin(U)), c(δin(v) ∩ δin(U))} ≥ k

for each nonempty subset U of V \ {r}.



Chapter 54

Biconnectors and bibranchings

The concept of biconnector is a generalization of that of a connector. Let
G = (V, E) be an undirected graph and let V be partitioned into classes R
and S. An R −S biconnector is a subset F of E such that each component
of (V, F ) intersects both R and S. So contracting R or S gives a connector.
If R is a singleton, R − S biconnectors are precisely the connectors.
For biconnectors, min-max relations, polyhedral characterizations, and
complexity results similar to those for connectors hold.
In this chapter we also consider the forest analogue of biconnector, the
biforest. An R − S biforest is a forest F such that each component of
(V, F ) has at most one edge in the cut δ(R). So contracting R or S gives a
forest. Also biforests show good polyhedral and algorithmical behaviour.
Similar results hold for the directed analogues of biconnectors and biforests,
the bibranchings and the bifurcations. An R − S bibranching is a set B of
arcs such that for each s ∈ S, B contains an R − s path and for each
r ∈ R, B contains an r − S path. Bibranchings form a generalization of
arborescences, and give rise to similar min-max relations and polyhedral
characterizations. An R − S bifurcation is a set B of arcs containing no
undirected circuit, such that each vertex in R is left by at most one arc in
B, each vertex in S is entered by at most one arc in B, and B contains no
arcs from S to R.
Theorem 54.11 on disjoint bibranchings will be the only result of this chap-
ter that will be used later in this book, namely in Chapter 56 to obtain a
dual form of the Lucchesi-Younger theorem, on packing directed cut covers
in a source-sink connected digraph. The proof of Theorem 54.11 uses no
other results from this chapter.

54.1. Shortest R − S biconnectors

Let G = (V,E) be a graph and let V be partitioned into two sets R and S. A
subset F of E is called an R− S biconnector if each component of the graph
(V, F ) intersects both R and S. So F is an R − S biconnector if and only if
each component of (V, F ) has at least one edge in δ(R).

A min-max relation for the minimum size of an R−S biconnector can be
derived easily from the Kőnig-Rado edge cover theorem:
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Theorem 54.1. Let G = (V,E) be a graph and let V be partitioned into sets
R and S such that each component of G intersects both R and S. Then the
minimum size of an R − S biconnector is equal to the maximum size of a
subset of V spanning no edge connecting R and S.

Proof. To see that the minimum is not less than the maximum, let F be a
minimum R − S biconnector and let U attain the maximum. Then F is a
forest. For each r ∈ U ∩R, let φ(r) be the first edge in any r − S path in F ;
and for each s ∈ U ∩S let φ(s) be the first edge in any s−R path in F . Then
φ is injective from U to F (as U spans no edge in δ(R)). Hence |U | ≤ |F |.

To see equality, let H := (N(R)∪N(S), δ(R)), where N(R) and N(S) are
the sets of neighbours of R and of S respectively. (So N(R) ⊆ S and N(S) ⊆
R, and H is bipartite.) Let U ′ be a maximum-size stable set in H. Let F ′

be a minimum-size edge cover in H. By the Kőnig-Rado edge cover theorem
(Theorem 19.4) we know |F ′| = |U ′|. Let U := U ′ ∪ (V \ (N(R) ∪ N(S))).
Then U spans no edge connecting R and S. By adding |V \ (N(R) ∪N(S))|
edges to F ′ we obtain an R− S biconnector F with

(54.1) |F | = |U ′| + |V \ (N(R) ∪N(S))| = |U |.

This shows the required equality.

To obtain a min-max relation for the minimum length of an R−S bicon-
nector (given a length function on the edges), consider the system

(54.2) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(P)) ≥ |P| for each subpartition P of R or S

with nonempty classes.

Here a subpartition of a set X is a partition of a subset of X (that is, a
collection of disjoint subsets of X). δ(P) denotes the set of edges incident
with but not spanned by any set in P. Then system (54.2) determines the
R−S biconnector polytope — the convex hull of the incidence vectors of R−S
biconnectors:

Theorem 54.2. System (54.2) is box-totally dual integral and determines the
R− S biconnector polytope.

Proof. This follows from matroid intersection theory, applied to the matroids
M1 and M2 on E, where M1 is obtained from the cycle matroid M(G) of G
by contracting R to one vertex, making all edges spanned by R to a loop, and
where M2 is obtained similarly from M(G) by contracting S to one vertex,
making all edges spanned by S to a loop.

So the spanning sets of M1 are the subsets F of E such that each compo-
nent of (V, F ) intersects R. Similarly, the spanning sets of M2 are the subsets
F of E such that each component of (V, F ) intersects S. Hence the common
spanning sets are precisely the R−S biconnectors. Therefore, by Corollaries
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41.12f and 50.8a, system (54.2) determines the convex hull of the incidence
vectors of R − S biconnectors. To see that the system is box-TDI, we use
Corollary 41.12g and the fact that for each F ⊆ E, the inequality

(54.3) x(F ) ≥ rMi(E) − rMi(E \ F )

is a nonnegative integer combination of the inequalities (54.2). Indeed (for
i = 1), if P denotes the collection of the components of (V,E \ F ) contained
in S, then

(54.4) x(F ) ≥ x(δ(P)) ≥ |P| ≥ rM1(E) − rM1(E \ F ),

as rM1(E) ≤ |S| and rM1(E \ F ) = |S| − |P|.

This implies a min-max relation for the minimum length of an R − S
biconnector. The reduction to matroid intersection also immediately implies
that one can find a shortest R−S biconnector in strongly polynomial time.

54.2. Longest R − S biforests

Again, let G = (V,E) be a graph and let V be partitioned into two sets R and
S. Call a subset F of E an R−S biforest if F is a forest and each component
of F contains at most one edge in δ(R).

A min-max relation for the maximum size of an R − S biforest can be
derived easily from Kőnig’s matching theorem:

Theorem 54.3. Let G = (V,E) be a graph and let V be partitioned into
sets R and S. Then the maximum size of an R − S biforest is equal to the
minimum value of |V | − |U|, where U is a collection of components of G−R
and G− S such that no edge connects any two sets in U .

Proof. We may assume that G has no loops. To see that the maximum is not
more than the minimum, consider any R−S biforest F and any collection U
as in the theorem. Then F contains no path connecting two distinct sets in
U . Hence |F | ≤ |V | − |U|.

The reverse inequality is proved by induction on the number of edges not
in δ(R).

If E = δ(R), then G is bipartite, and R−S biforests coincide with match-
ings. Then the theorem is equivalent to Kőnig’s matching theorem (Theorem
16.2).

If E �= δ(R), choose an edge e = uv in E \δ(R). If we contract e, the min-
imum value in the theorem reduces by precisely 1. Moreover, the maximum
reduces by at least 1, since any R − S forest in the contracted graph gives
with e an R−S forest in the original graph. So we are done by induction.

To obtain a min-max relation for the maximum length of an R−S biforest
(given a length function on the edges), consider the following system:
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(54.5) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(E[U ]) ≤ |U | − 1 for each nonempty subset U of R or S,
(iii) x(E[U ] ∪ (δ(U) ∩ δ(R))) ≤ |U |

for each subset U of R or S.

This determines the R−S biforest polytope — the convex hull of the incidence
vectors of R− S biforests:

Theorem 54.4. System (54.5) is box-totally dual integral and determines the
R− S biforest polytope.

Proof. This can be reduced to matroid intersection theory, similar to the
proof of Theorem 54.3.

Again, this theorem implies a min-max relation for the maximum length
of an R − S biforest, and the reduction to matroid intersection also implies
that a longest R− S biforest can be found in strongly polynomial time.

54.3. Disjoint R − S biconnectors

We give a min-max relation for the maximum number of disjoint R − S
biconnectors (Keijsper and Schrijver [1998]). It generalizes the Tutte-Nash-
Williams disjoint trees theorem (Corollary 51.1a) — which theorem however
is used in the proof — and the disjoint edge covers theorem for bipartite
graphs (Theorem 20.5).

We follow the (algorithmic) proof method of Keijsper [1998a], based on
the following lemma:

Lemma 54.5α. Let T1 = (V,E1) and T2 = (V,E2) be edge-disjoint spanning
trees and let r ∈ V . For each e = rv ∈ δT1(r), let φ(e) be the first edge of
the v − r path in T2 that leaves the component of T1 − e containing v. Let
B ⊆ δT1(r) be such that φ(B) contains at most one edge not in δT2(r). Then
(E1 \B) ∪ φ(B) and (E2 \ φ(B)) ∪B are spanning trees again.

Proof. By induction on |B|, the case |B| ≤ 1 being easy. Let |B| ≥ 2. Then
there exists an edge f = rw ∈ B with φ(f) ∈ δT2(r) (by the condition given
in the theorem). Define

(54.6) T ′
1 := (T1 \ {f}) ∪ {φ(f)} and T ′

2 := (T2 \ {φ(f)}) ∪ {f}.

Let B′ := B \ {f}. Then for each e = rv ∈ B′,

(54.7) φ(e) is equal to the first edge of the v − r path in T ′
2 that leaves

the component K of T ′
1 − e containing v.

To see this, let L be the component of T1−f containing w. Since φ(f) connects
L and r, K is equal to the component of T1 − e containing v. Moreover, the
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v − r path P in T ′
2 does not differ from the v − r path in T2 before entering

L, and hence the first edge of P leaving K equals φ(e). This shows (54.7).
Now (T1 \ B) ∪ φ(B) = (T ′

1 \ B′) ∪ φ(B′) and (T2 \ φ(B)) ∪ B = (T ′
2 \

φ(B′)) ∪B′, and by induction, they are spanning trees.

Notice that the function φ : E1 ∩ δ(r) → E2 defined in the lemma is
injective.

In the following lemma, we consider forests as edge sets. We recall that
G/R denotes the graph obtained from G by contracting all vertices in R to
one new vertex, denoted by R. The edges in the contracted graph are named
after the edges in the original graph.

Lemma 54.5β. Let G = (V,E) be a graph and let V be partitioned into
sets R and S. Let X1 and X2 be disjoint forests in G/R and let Y1 and
Y2 be disjoint forests in G/S. Then there exist disjoint forests X ′

1 and X ′
2

in G/R and disjoint forests Y ′
1 and Y ′

2 in G/S with X ′
1 ∪ X ′

2 = X1 ∪ X2,
Y ′

1 ∪ Y ′
2 = Y1 ∪ Y2, X ′

1 ∩ Y ′
2 = ∅, and X ′

2 ∩ Y ′
1 = ∅.

Proof. By adding new edges spanned by S, we can assume that the Xi are
spanning trees in G/R. Similarly, we can assume that the Yi are spanning
trees in G/S. (At the conclusion, we delete the new edges from the X ′

i and
Y ′

i .)
If X1 ∩ Y2 = ∅ and X2 ∩ Y1 = ∅, we are done. So, by symmetry, we can

assume that X1 ∩ Y2 �= ∅.
For each e = rs ∈ X1 ∩ δ(R), with r ∈ R, s ∈ S, let φ(e) be the first edge

on the s − R path in X2 that leaves the component of X1 − e containing s.
For each e = rs ∈ Y2 ∩ δ(R), with r ∈ R, s ∈ S, let ψ(e) be the first edge on
the r − S path in Y1 that leaves the component of Y2 − e containing r.

This gives injective functions

(54.8) φ : X1 ∩ δ(R) → X2 and ψ : Y2 ∩ δ(R) → Y1.

Observe that X1 ∩ (Y1 ∪ Y2) ⊆ δ(R) and Y2 ∩ (X1 ∪ X2) ⊆ δ(R). Consider
the directed graph with vertex set E and arc set

(54.9) A := {(e, φ(e)) | e ∈ X1 ∩ δ(R)} ∪ {(e, ψ(e)) | e ∈ Y2 ∩ δ(R)}.

Choose e0 ∈ X1 ∩ Y2 and set e1 := φ(e0). Then D contains a unique directed
path e0, e1, . . . , eh such that e0, . . . , eh−1 ∈ X1 ∪ Y2 and eh �∈ X1 ∪ Y2. (This
because each vertex in X1 ∩Y2 has outdegree 2 and indegree 0 in D, and each
vertex in (X1 ∪ Y2) \ (X1 ∩ Y2) has outdegree 1 and indegree at most 1.)

It follows that for each j < h one has ej+1 = φ(ej) if j is even and
ej+1 = ψ(ej) if j is odd. Define

(54.10) B := {ej | 0 ≤ j < h, j even} and C := {ej | 1 ≤ j < h, j odd}.

Then by Lemma 54.5α,
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(54.11) X ′
1 := (X1 \B) ∪ φ(B), X ′

2 := (X2 \ φ(B)) ∪B,
Y ′

1 := (Y1 \ ψ(C)) ∪ C, Y ′
2 := (Y2 \ C) ∪ ψ(C),

are again spanning tree of G/R and G/S respectively. Note that X ′
1∩X ′

2 = ∅,
Y ′

1 ∩ Y ′
2 = ∅, X ′

1 ∪X ′
2 = X1 ∪X2 and Y ′

1 ∪ Y ′
2 = Y1 ∪ Y2.

Now φ(B) ∩ ψ(C) = ∅, φ(B) ∩ (Y2 \ C) = ∅ (since φ(B) ∩ Y2 ⊆ C, as
eh �∈ Y2), and ψ(C) ∩ (X1 \ B) = ∅ (since ψ(C) ∩X1 ⊆ B, as eh �∈ X1). So
X ′

1 ∩ Y ′
2 ⊆ (X1 ∩ Y2) \ {e0} (since e0 �∈ X ′

1).
Moreover, B ∩ C = ∅, B ∩ (Y1 \ ψ(C)) = ∅ (since B ∩ Y1 ⊆ ψ(C), as

e0 �∈ Y1), and C ∩ (X2 \ φ(B)) = ∅ (since C ∩ X2 ⊆ φ(B), as e0 �∈ X2). So
X ′

2 ∩ Y ′
1 ⊆ X2 ∩ Y1.

Concluding, |X ′
1 ∩ Y ′

2 | + |X ′
2 ∩ Y ′

1 | < |X1 ∩ Y2| + |X2 ∩ Y1|. Therefore,
iterating this, we obtain trees as required.

Now a min-max relation for disjoint R− S biconnectors can be deduced:

Theorem 54.5. Let G = (V,E) be a graph, let V be partitioned into sets
R and S, and let k ∈ Z+. Then there exist k disjoint R − S biconnectors if
and only if |δ(P)| ≥ k|P| for each subpartition P of R or S with nonempty
classes.

Proof. Necessity being easy, we show sufficiency. By Corollary 51.1a, the
graph G/R (obtained from G by contracting R) has k disjoint spanning trees
X1, . . . , Xk. Similarly, the graph G/S has k disjoint spanning trees Y1, . . . , Yk.
Then Xi ∩ Yj is a subset of δ(R), for all i, j. Choose the Xi and Yi in such a
way that

(54.12)
k∑

i=1

|Xi ∩ Yi|

is as large as possible.
Then Xi ∩ Yj = ∅ for all distinct i, j, for if, say, X1 ∩ Y2 �= ∅, we can

replace X1, X2, Y1, Y2 by X ′
1, X

′
2, Y

′
1 , Y

′
2 as in Lemma 54.5β. Then we have

(54.13) |X ′
1 ∩ Y ′

1 | + |X ′
2 ∩ Y ′

2 | = |(X ′
1 ∪X ′

2) ∩ (Y ′
1 ∪ Y ′

2)|
= |(X1 ∪X2) ∩ (Y1 ∪ Y2)| > |X1 ∩ Y1| + |X2 ∩ Y2|.

This contradicts the maximality of sum (54.12).
Hence X1∪Y1, . . . , Xk ∪Yk form k disjoint R−S biconnectors as required.

This proof gives a polynomial-time algorithm to find a maximum number
of disjoint R− S biconnectors. Keijsper [1998a] gave an O(DT(n,m) + nm)-
time algorithm for this problem, where DT(n,m) denotes the time needed
to find a maximum number of disjoint spanning trees in an undirected graph
with n vertices and m edges.

By replacing edges by parallel edges, one obtains a capacitated version
of Theorem 54.5. The corresponding optimization problem can be solved in
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polynomial time, by a straightforward adaptation of the methods described
in the proofs of Theorems 51.8 and 51.10 and Corollary 51.8a. However, the
capacitated problem cannot be solved in strongly polynomial time if we do
not allow rounding (cf. the argument given in Section 51.4).

A generalization of Theorem 54.5 is given by Keijsper [1998a].

54.4. Covering by R − S biforests

With the foregoing two lemmas, one can also derive a min-max relation for the
minimum number of R − S biforests that cover all edges (Keijsper [1998b]).
It generalizes the Nash-Williams’ covering forests theorem (Corollary 51.1c)
— which theorem however is used in the proof — and Kőnig’s edge-colouring
theorem for bipartite graphs (Theorem 20.1).

Theorem 54.6. Let G = (V,E) be a graph, let V be partitioned into sets R
and S, and let k ∈ Z+. Then E can be covered by k R − S biforests if and
only if

(54.14) |E[U ]| ≤ k(|U | − 1) and |E[U ]| + |δ(U) ∩ δ(R)| ≤ k|U |

for each nonempty subset U of R or S.

Proof. Necessity being easy, we show sufficiency. We can assume that G is
connected, as otherwise we can consider any component of G separately.

By Corollary 51.1c, the edges of the graph G/R can be partitioned into k
forests X1, . . . , Xk. Similarly, the edges of the graph G/S can be partitioned
into k forests Y1, . . . , Yk. So Xi ∩Yj ⊆ δ(R), for all i, j. Choose the Xi and Yi

in such a way that sum (54.12) is as large as possible. Then, as in the proof
of Theorem 54.5, Xi ∩Yj = ∅ for distinct i, j. Hence each e ∈ δ(R) belongs to
Xi ∩ Yi for some i = 1, . . . , k. Concluding, X1 ∪ Y1, . . . , Xk ∪ Yk form R − S
biforests as required.

This proof gives a polynomial-time algorithm for finding a minimum cov-
ering by R − S biforests. The methods of Section 51.4 can be extended to
imply the polynomial-time solvability of the corresponding capacitated ver-
sion, while strong polynomial-time solvability is again impossible.

54.5. Minimum-size bibranchings

We now turn to the directed analogues of biconnectors and biforests. Let
D = (V,A) be a digraph and let V be partitioned into two sets R and S. Call
a subset B of A an R − S bibranching if in the graph (V,B), each vertex in
S is reachable from R, and each vertex in R reaches S.
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Similarly to minimum R − S biconnectors, a min-max relation for the
minimum size of an R − S bibranching follows easily from the Kőnig-Rado
edge cover theorem.

Theorem 54.7. Let D = (V,A) be a graph and let V be partitioned into sets
R and S such that each vertex in R can reach S and such that each vertex
in S is reachable from R. Then the minimum size of an R − S bibranching
is equal to the maximum size of a subset of V spanning no arc in δout(R).

Proof. To see that the minimum is not less than the maximum, let B be a
minimum-size R − S bibranching and let U attain the maximum. For each
r ∈ U ∩ R, let φ(r) be any arc in B leaving r, and for each s ∈ U ∩ S let
φ(s) be any arc in B entering s. Then φ is injective from U to B, and hence
|U | ≤ |B|.

To see equality, let U ′ be a maximum stable set in the bipartite graph
H with colour classes N in(S) ⊆ R and Nout(R) ⊆ S, with r ∈ N in(S)
and s ∈ Nout(R) adjacent if and only if D has an arc from r to s. (Here
Nout(X) and N in(X) are the sets of outneighbours and of inneighbours of
X, respectively.)

Let B′ be a minimum-size edge cover in H. By the Kőnig-Rado edge cover
theorem (Theorem 19.4) we know |B′| = |U ′|. Now by adding |V \(Nout(R)∪
N in(S))| arcs to B′ we obtain an R− S bibranching B with

(54.15) |B| = |U ′| + |V \ (Nout(R) ∪N in(S))| = |U |,

where U := U ′ ∪ (V \ (Nout(R) ∪N in(S))). This shows the required equality.

If each arc of D belongs to δout(R), then Theorem 54.7 reduces to the
Kőnig-Rado edge cover theorem (Theorem 19.4).

The proof gives a polynomial-time algorithm to find a minimum-size R−S
bibranching (as we can find a minimum-size edge cover in a bipartite graph
in polynomial time (Corollary 19.3a)).

54.6. Shortest bibranchings

To obtain a min-max relation for the minimum length of an R−S bibranching
(given a length function on the arcs), define a set of arcs C to be an R − S
bicut if C = δin(U) for some nonempty proper subset U of V satisfying U ⊆ S
or S ⊆ U .

Consider the system:

(54.16) (i) xa ≥ 0 for each a ∈ A,
(ii) x(C) ≥ 1 for each R− S bicut C.
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Then the following implies a min-max relation for the minimum length of an
R− S bibranching.

Theorem 54.8. System (54.16) is box-TDI.

Proof. Let w : A → R+. Let U be the collection of nonempty proper subsets
U of V satisfying U ⊆ S or S ⊆ U . Consider the maximum value of

(54.17)
∑

U∈U
yU

where y : U → R+ satisfies

(54.18)
∑

U∈U
yUχ

δin(U) ≤ w.

Choose y : U → R+ attaining the maximum, such that

(54.19)
∑

U∈U
yU |U ||V \ U |

is minimized. We show that the collection F := {U ∈ U | yU > 0} is cross-
free; that is, for all T,U ∈ F one has

(54.20) T ⊆ U or U ⊆ T or T ∩ U = ∅ or T ∪ U = V .

Suppose that this is not true. Let α := min{yT , yU}. Decrease yT and yU by
α, and increase yT∩U and yT∪U by α. Now (54.18) is maintained, and (54.17)
did not change. However, (54.19) decreases (by Theorem 2.1), contradicting
our minimality assumption.

So F is cross-free. Now the F ×A matrix M with

(54.21) MU,a :=
{

1 if a ∈ δin(U),
0 otherwise,

is totally unimodular. To see this, let T = (W,B) and π : V → W form a
tree-representation of F (see Section 13.4). That is, T is a directed tree and
F = {Vb | b ∈ B}, where

(54.22) Vb := {v ∈ V | π(v) belongs to the same component of T − b as
the head of b}.

Then for any arc a = (u, v) of D, the set of forward arcs in the undirected
π(u) − π(v) path in T is contiguous, that is, forms a directed path, say from
u′ to v′. This follows from the fact that there exist no arcs b, c, d in this order
on the path with b and d forward and c backward.

Define a′ := (u′, v′), and let D′ = (W,A′) be the digraph with A′ :=
{a′ | a ∈ A}. Then M is equal to the network matrix generated by T and D′

(identifying b ∈ B with the set Vb in F determined by b). Hence by Theorem
13.20, M is totally unimodular.

This implies with Theorem 5.35 that (54.16) is box-TDI.
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This implies that the R−S bibranching polytope — the convex hull of the
incidence vectors of R− S bibranchings — can be described as follows:

Corollary 54.8a. The R− S bibranching polytope is determined by

(54.23) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(C) ≥ 1 for each R− S bicut C.

Proof. By Theorem 54.8, (54.23) determines an integer polytope. Necessarily,
each vertex of it is the incidence vector of an R− S branching.

The box-total dual integrality of (54.16) has as special case the total dual
integrality of (54.23), which is equivalent to:

Corollary 54.8b (optimum bibranching theorem). Let D = (V,A) be a
digraph, let V be partitioned into sets R and S, and let l : A → Z+ be a
length function. Then the minimum length of an R − S bibranching is equal
to the maximum size of a family of R − S dicuts, such that each arc a is in
at most l(a) of them.

Proof. This is a reformulation of the total dual integrality of (54.23), which
follows from Theorem 54.8.

We also note that Theorem 54.8 implies that for each k ∈ Z+ the system

(54.24) (i) xa ≥ 0 for each a ∈ A,
(ii) x(C) ≥ k for each R− S bicut C,

is box-TDI (since if Ax ≤ b is box-TDI, then for each k > 0, Ax ≤ k · b is
box-TDI).

Keijsper and Pendavingh [1998] gave an O(n′(m+ n log n)) algorithm to
find a shortest bibranching, where n′ := min{|R|, |S|}. The strong polynomial-
time solvability follows also from the strong polynomial-time solvability of
finding a minimum-length strong connector for a source-sink connected di-
graph, which by the method of Theorem 57.3 can be reduced to finding a
minimum-length directed cut cover, which is a special case of weighted ma-
troid intersection (Section 55.5).

54.6a. Longest bifurcations

Let D = (V, A) be a digraph and let V be partitioned into two sets R and S. Call a
subset B of A an R−S bifurcation if B contains no undirected circuits, each vertex
in R is left by at most one arc in B, each vertex in S is entered by at most one
arc in B, and B contains no arcs from S to R. So B is an R − S bifurcation if and
only if contracting R gives a branching and contracting S gives a cobranching. (A
cobranching is a set B of arcs whose reversal B−1 is a branching.)

Similarly to maximum R − S biforests, a min-max relation for the maximum
size of an R − S bifurcation follows from Kőnig’s matching theorem:
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Theorem 54.9. Let D = (V, A) be a graph and let V be partitioned into sets R
and S, with δin(R) = ∅. Then the maximum size of an R − S bifurcation is equal
to the minimum size of |V | − |L|, where L is a collection of strong components K
of D with either K ⊆ R and δout(K) ⊆ δout(R), or K ⊆ S and δin(K) ⊆ δin(S),
such that no arc connects two components in L.

Proof. To see that the minimum is not less than the maximum, let B be a
maximum-size R − S bifurcation and let L attain the minimum. Let U be the
set of vertices v with v ∈ R and δout

B (v) = ∅, or v ∈ S and δin
B (v) = ∅. Then

(54.25) |B| = |V | − |U | − |B ∩ δout(R)| ≤ |V | − |L|,
since each K ∈ L contains a vertex in U or is entered or left by an arc in B∩δout(R).

To see equality, consider the following bipartite graph H. H has vertex set the
set K of strong components K of D with either K ⊆ R and δout(K) ⊆ δout(R), or
K ⊆ S and δin(K) ⊆ δin(S). Two sets K, L ∈ K are adjacent if and only if there is
an arc connecting K and L. (This implies that one of K, L is contained in R, the
other in S.) Let L be a maximum-size stable set in H and let B′ be a maximum-size
matching in H. By Kőnig’s matching theorem (Theorem 16.2), |B′| + |L| = |K|.
Now by adding |V |−|K| arcs to the arc set in D corresponding to B′, we can obtain
an R − S bifurcation of size |B′| + |V | − |K| = |V | − |L|.

If each arc of D belongs to δout(R), then Theorem 54.9 reduces to Kőnig’s
matching theorem (Theorem 16.2).

We next give a min-max relation for the maximum length of an R−S bifurcation,
by reduction to Theorem 54.8 on minimum-length bibranching:

Theorem 54.10. Let D = (V, A) be a digraph and let V be partitioned into R and
S such that there are no arcs from S to R. Let l ∈ Z

A
+ be a length function. Then

the maximum length of an R − S bifurcation is equal to the minimum value of

(54.26)
∑

v∈V

yv +
∑

U∈U
zU (|U | − 1)

where y ∈ Z
V
+ and z ∈ Z

U
+, with U := {U | U �= ∅, U ⊆ R or U ⊆ S}, such that

(54.27)
∑

v∈R

yvχδout(v) +
∑

v∈S

yvχδin(v) +
∑

U∈U
zUχA[U ] ≥ l.

Proof. To see that the maximum is not more than the minimum, let B be any
R − S bifurcation and let yv, zU satisfy (54.27). Then

(54.28) l(B) =
∑

a∈B

l(a) ≤
∑

a∈B

(
∑

v ∈ R
a ∈ δout(v)

yv +
∑

v ∈ S
a ∈ δin(v)

yv +
∑

U ∈ U
a ∈ A[U ]

zU )

=
∑

v∈R

yv|B ∩ δout(v)| +
∑

v∈S

yv|B ∩ δin(v)| +
∑

U∈U
zU |B ∩ A[U ]|

≤
∑

v∈V

yv +
∑

U∈U
zU (|U | − 1).

To see equality, extend D by two new vertices, r and s, and by arcs (r, v) for
each v ∈ S ∪ {s} and (v, s) for each v ∈ R. This makes the digraph D′ = (V ′, A′).
Define R′ := R ∪ {r} and S′ := S ∪ {s}. Let L := max{l(a) | a ∈ A} + 1. Define
l′ ∈ Z

A′
+ by:
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(54.29) l′(a) :=






L − l(a) for each a ∈ A[R] ∪ A[S],
2L − l(a) for each a ∈ δout(R),

L for each a = (r, v) with v ∈ S and a = (v, s)
with v ∈ R,

0 for a = (r, s).

Let U ′ be the collection of nonempty subsets U of R′ or S′. By Theorem 54.8,
applied to D′, there exists an R′ −S′ bibranching B′ in D′ and a z : U ′ → Z+ such
that

(54.30) l′(B′) =
∑

U∈U′
zU ,

and

(54.31)
∑

U ∈ U ′

U ⊆ R′

zUχδout(U) +
∑

U ∈ U ′

U ⊆ S′

zUχδin(U) ≤ l′.

Since l′(r, s) = 0 we know that zU = 0 if r or s belongs to U . That is, zU = 0 if
U ∈ U ′ \ U .

For each v ∈ V , define

(54.32) yv := L −
∑

U ∈ U
v ∈ U

zU .

Then yv ≥ 0 for each v ∈ V , as

(54.33) yv = L −
∑

U ∈ U
v ∈ U

zU ≥ L − l′(r, v) = 0

if v ∈ S, and similarly yv ≥ 0 if v ∈ R.
Also, y and z satisfy (54.27), since for any arc a = (u, v) one has, if u, v ∈ R:

(54.34) yu +
∑

U ∈ U
a ∈ A[U ]

zU = L −
∑

U ∈ U
u ∈ U

zU +
∑

U ∈ U
a ∈ A[U ]

zU = L −
∑

U ∈ U
a ∈ δout(U)

zU

≥ L − l′(a) = l(a).

Similarly, if u, v ∈ S, then

(54.35) yv +
∑

U ∈ U
a ∈ A[U ]

zU ≥ l(a).

Finally, if u ∈ R and v ∈ S, then:

(54.36) yu + yv = 2L −
∑

U ∈ U
u ∈ U

zU −
∑

U ∈ U
v ∈ U

zU

= 2L −
∑

U ∈ U
a ∈ δout(U)

zU −
∑

U ∈ U
a ∈ δin(U)

zU ≥ 2L − l′(a) = l(a).
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So y and z satisfy (54.27).
Note that each u ∈ R is left by a unique arc in B′, since if there is more than

one, all arcs leaving u should have their heads in S′ (since if (u, v), (u′, v′) ∈ B′,
v �= v′, v �∈ S′, then B′ \ {(u, v)} is again an R′ − S′ bibranching). Then replacing
one outgoing arc (u, v) ∈ B′ by the arc (r, v) keeps B′ an R − S bibranching,
however of smaller length. This contradicts our assumption. So each vertex in R is
left by exactly one arc in B′, and similarly, each vertex in S is entered by exactly
one arc in B′. This implies that B := B′ ∩ A is an R − S bifurcation.

We finally show that equality holds throughout in (54.28). Indeed, if a ∈ B, then
a ∈ B′, and hence we have equality in (54.34), implying that the first inequality in
(54.28) is satisfied with equality. Moreover, if yv > 0 and v ∈ S, then we have strict
inequality in (54.33), and hence (r, v) �∈ B′. Therefore |B ∩ δin(v)| = 1. Similarly,
yv > 0 and v ∈ R implies |B ∩ δout(v)| = 1. Finally, if zU > 0 and (say) U ⊆ R,
then |B′ ∩ δout(U)| = 1, and hence |B′ ∩ A[U ]| = |U | − 1 (since each v ∈ R is left
by precisely one arc in B′), implying |B ∩A[U ]| = |U |− 1. This shows that also the
second inequality in (54.28) is satisfied with equality.

Theorem 54.10 is equivalent to the total dual integrality of the following system:

(54.37) (i) xa ≥ 0 for each a ∈ A,
(ii) x(δout(v)) ≤ 1 for each v ∈ R,

(iii) x(δin(v)) ≤ 1 for each v ∈ S,
(iv) x(A[U ]) ≤ |U | − 1 for each nonempty U with U ⊆ R

or U ⊆ S.

It yields a description of the R − S bifurcation polytope — the convex hull of the
incidence vectors of the R − S bifurcations in D.

Corollary 54.10a. System (54.37) is TDI and determines the R − S bifurcation
polytope.

Proof. This is equivalent to Theorem 54.10.

As for the complexity, the reduction given in Theorem 54.10 also implies that a
maximum-length R−S bifurcation can be found in strongly polynomial time (since
a minimum-length R−S bibranching can be found in strongly polynomial time).

54.7. Disjoint bibranchings

Consider the system

(54.38) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(B) ≥ 1 for each R− S bibranching B.

By the theory of blocking polyhedra, Corollary 54.8a implies:

Corollary 54.10b. System (54.38) determines the convex hull of the inci-
dence vectors of arc sets containing an R− S bicut.
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Proof. Directly from Corollary 54.8a with the theory of blocking polyhedra.

System (54.38) in fact is TDI, which is equivalent to the following state-
ment:

Theorem 54.11 (disjoint bibranchings theorem). Let D = (V,A) be a di-
graph and let V be partitioned into sets R and S. Then the maximum number
of disjoint R−S bibranchings is equal to the minimum size of an R−S bicut.

Proof. Let k be the minimum size of an R − S bicut. Clearly, there are
at most k disjoint R − S bibranchings. We show equality. For any digraph
D = (V,A) and r ∈ V , call a subset B of A an r-coarborescence if the set
B−1 of reverse arcs of B is an r-arborescence.

By Edmonds’ disjoint arborescences theorem (Corollary 53.1b), the graph
D/R (obtained from D by contracting R to one vertex) has k disjoint
R-arborescences B1, . . . , Bk. Similarly, the graph D/S has k disjoint S-
coarborescences B′

1, . . . , B
′
k. Choose the Bi and B′

i such that the sum

(54.39)
k∑

i=1

k∑

j = 1
j 	= i

|Bi ∩B′
j |

is as small as possible. If the sum is 0, then

(54.40) B1 ∪B′
1, . . . , Bk ∪B′

k

are k disjoint R − S bibranchings in D as required. So we can assume that
the sum is positive. Without loss of generality, B1 ∩B′

2 �= ∅.
Define

(54.41) X := (B1 ∪B2) ∩A[S], X ′ := (B′
1 ∪B′

2) ∩A[R],
Y := (B1 ∪B2) ∩ δout(R), Y ′ := (B′

1 ∪B′
2) ∩ δout(R).

Let K be the collection of strong components K of the digraph (S,X) with
δinX(K) = ∅. Similarly, let K′ be the collection of strong components K of the
digraph (R,X ′) with δout

X′ (K) = ∅.
Now din

Y (K) = din
B1∪B2

(K) ≥ 2 for each K ∈ K, and similarly dout
Y ′ (K) ≥ 2

for each K ∈ K′. Then we can split Y into Y1 and Y2 and Y ′ into Y ′
1 and Y ′

2
such that

(54.42) din
Yi

(K) ≥ 1 for each K ∈ K and i = 1, 2,
dout

Y ′
i

(K) ≥ 1 for each K ∈ K′ and i = 1, 2,
and Y1 ∩ Y ′

2 = ∅ and Y2 ∩ Y ′
1 = ∅.

This can be seen as follows. Select for each U ∈ K a pair eU from δinY (U).
Similarly, select for each U ∈ K′ a pair eU from δout

Y ′ (U). So the eU for
U ∈ K are disjoint, and the eU for U ∈ K′ are disjoint. Hence the eU for
U ∈ K ∪ K′ form a bipartite graph on Y ∪ Y ′ (in fact, a set of vertex-disjoint
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paths and even circuits). The two colour classes of this bipartite graph give
the partitions of Y and Y ′ as required.

Then by Lemma 53.2α, X can be split into two branchings X1 and X2
such that the set of roots of Xi is equal to the set of heads of Yi (i = 1, 2).
Similarly, X ′ can be split into two cobranchings X ′

1 and X ′
2 such that the set

of coroots of X ′
i is equal to the set of tails of Y ′

i (i = 1, 2). (A cobranching is
a set B of arcs whose reversal B−1 is a branching. A coroot of B is a root of
B−1.)

Define

(54.43) B̃i := Xi ∪ Yi and B̃′
i := X ′

i ∪ Y ′
i

for i = 1, 2. Since B̃1 ∩ B̃′
2 = ∅ and B̃2 ∩ B̃′

1 = ∅, replacing B1, B2, B
′
1, B

′
2 by

B̃1, B̃2, B̃
′
1, B̃

′
2 decreases sum (54.39), contradicting the minimality assump-

tion.

The capacitated case can be derived as a consequence:

Corollary 54.11a. Let D = (V,A) be a digraph, let V be partitioned into
sets R and S, and let c ∈ Z

A
+ be a capacity function. Then the maximum

number of R − S bibranchings such that no arc a is in more than c(a) of
these bibranchings is equal to the minimum capacity of an R− S bicut.

Proof. This follows from Theorem 54.11 by replacing any arc a by c(a)
parallel arcs.

Equivalently, in TDI terms:

Corollary 54.11b. System (54.38) is totally dual integral.

Proof. This is a reformulation of Corollary 54.11a.

Another consequence is:

(54.44) For any digraph D = (V,A) and any partition of V into R and
S, the R−S bibranching polytope has the integer decomposition
property.

As for the complexity, the proof of Theorem 54.11 gives a polynomial-time
algorithm for finding a maximum number of disjoint R−S bibranchings. For
the capacitated case there is a semi-strongly polynomial-time algorithm (that
is, where rounding takes one arithmetic step): first find a fractional dual so-
lution, then round (Grötschel, Lovász, and Schrijver [1988]). A combinatorial
semi-strongly polynomial-time algorithm follows from the results in Section
57.5.
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54.7a. Proof using supermodular colourings

We show how to derive Theorem 54.11 on disjoint bibranchings from Edmonds’
disjoint branchings theorem (Theorem 53.1) and Theorem 49.14 on supermodular
colourings.

Let D = (V, A) be a digraph and let V be partitioned into R and S. Let k ∈ Z+.
Define H := δout(R), and define the following collections of subsets of H:

(54.45) C1 := {δin
H (U) | ∅ �= U ⊆ S} and C2 := {δout

H (U) | ∅ �= U ⊆ R}.

Then C1 and C2 are intersecting families on H. Define gj : Cj → Z for j = 1, 2 by:

(54.46) g1(B) := max{k − din
A[S](U) | ∅ �= U ⊆ S, B = δin

H (U)} for B ∈ C1,
g2(B) := max{k − dout

A[R](U) | ∅ �= U ⊆ R, B = δout
H (U)} for B ∈ C2.

Then g1 and g2 are intersecting supermodular. Moreover, if U attains the maximum
in (54.46), then

(54.47) g1(B) = k − din
A[S](U) ≤ din

A (U) − din
A[S](U) = din

H (U) = |B| if U ⊆ S
and
g2(B) = k−dout

A[R](U) ≤ dout
A (U)−dout

A[R](U) = dout
H (U) = |B| if U ⊆ R.

Since gj(B) ≤ k for j = 1, 2 and B ∈ Cj , by Theorem 49.14 we can partition H
into classes H1, . . . , Hk such that:

(54.48) (i) if ∅ �= U ⊆ S, then U is entered by at least k − din
A[S](U) of the

classes Hi, and
(ii) if ∅ �= U ⊆ R, then U is left by at least k − dout

A[R](U) of the classes
Hi.

By Edmonds’ disjoint branchings theorem, (i) implies that A[S] contains disjoint
branchings B1, . . . , Bk such that, for each i = 1, . . . , k, the root set of Bi is equal to
the set of heads of the arcs in Hi; that is, each vertex in S is entered by at least one
arc in Bi ∪ Hi. Similarly, A[R] contains disjoint cobranchings (= branchings if all
orientations are reversed) B′

1, . . . , B
′
k such that, for each i = 1, . . . , k, each vertex

in R is left by at least one arc in B′
i ∪Hi. Then the Bi ∪Hi ∪B′

i form disjoint R−S
bibranchings.

54.7b. Covering by bifurcations

Theorem 54.11 also implies the following characterization of the minimum number
of R − S bifurcations needed to cover all arcs (Keijsper [1998b]):

Corollary 54.11c. Let D = (V, A) be a digraph and let V be partitioned into sets
R and S, with no arc from S to R. Then A can be covered by k R − S bifurcations
if and only if

(54.49) (i) degout(v) ≤ k for each v ∈ R;
(ii) degin(v) ≤ k for each v ∈ S;

(iii) |A[U ]| ≤ k(|U | − 1) for each nonempty subset U of R or S.
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Proof. Necessity being easy, we show sufficiency. Extend D by two new vertices r
and s, for each v ∈ S by k − degin(v) parallel arcs from r to v, for each v ∈ R by
k − degout(v) parallel arcs from v to s, and by k parallel arcs from r to s. Let D′

be the graph arising in this way. So in D′, each v ∈ R has outdegree k, and each
v ∈ S has indegree k. Define R′ := R ∪ {r} and S′ := S ∪ {s}.

Then by Theorem 54.11, D′ has k disjoint R′ − S′ bibranchings. Indeed, any
nonempty subset U of R′ is left by k|U |− |A[U ]| ≥ k arcs of D′ if r �∈ U (since each
vertex in R has outdegree k in D′), and by at least k arcs of D′ if r ∈ U . Similarly,
any nonempty subset of S′ is entered by at least k arcs of D′.

Now each of these bibranchings leaves any v ∈ R exactly once (as v has out-
degree k in D′), and (similarly) enters any v ∈ S exactly once. Moreover, these
bibranchings cover A. Hence restricted to A we obtain a covering of A by k R − S
bifurcations.

An equivalent way of saying this is (using Corollary 54.10a):

(54.50) For any digraph D = (V, A) and any partition of V into R and S, the
R − S bifurcation polytope has the integer decomposition property.

As for the complexity, the reduction given in the proof of Corollary 54.11c
implies a polynomial-time algorithm to find a minimum number of R − S bifurca-
tions covering the arc set (by reduction to finding a maximum number of disjoint
bibranchings). The capacitated version can be solved in semi-strongly polynomial
time, with the help of the ellipsoid method, by first finding a fractional packing,
and next round (like in Section 51.4).

54.7c. Disjoint R − S biconnectors and R − S bibranchings

As in Keijsper and Schrijver [1998], one can derive Theorem 54.5 on disjoint R−S bi-
connectors (in an undirected graph) from Theorem 54.11 on disjoint R−S bibranch-
ings (in a directed graph), with the help of the Tutte-Nash-Williams disjoint trees
theorem (Corollary 51.1a).

Indeed, the condition in Theorem 54.5 gives, with the Tutte-Nash-Williams
disjoint trees theorem, that the graph G/R obtained from G by contracting R to
one vertex, has k edge-disjoint spanning trees.

By orienting the edges in these trees appropriately, we see that G/R has an
orientation such that any nonempty U ⊆ S is entered by at least k arcs, and such
that each edge incident with R is oriented away from R. Similarly, G/S has an
orientation such that any nonempty U ⊆ R is left by at least k arcs, and such that
each edge incident with S is oriented towards S.

Combining the two orientations, we obtain an orientation D = (V, A) of G such
that each R−S bicut has size at least k. Hence, by Theorem 54.11, D has k disjoint
R − S bibranchings, and hence, G has k disjoint R − S biconnectors.

54.7d. Covering by R − S biforests and by R − S bifurcations

Similarly, one can derive Theorem 54.6 on covering R − S biforests from Corollary
54.11c on covering R − S bifurcations, with the help of Nash-Williams’ covering
forests theorem (Corollary 51.1c). Indeed, the condition in Theorem 54.6 gives,
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with Nash-Williams’ covering forests theorem, that the edges of the graph G/R
obtained from G by contracting R to one vertex, can be covered by k forests. Hence
G/R has an orientation such that any vertex in S is entered by at most k arcs, and
such that R is only left by arcs. Similarly, G/S has an orientation such that any
vertex in R is left by at most k arcs, and such that S is only entered by arcs.

Combining the two orientations, we obtain an orientation D = (V, A) of G
satisfying the condition in Corollary 54.11c. Hence the arcs of D can be covered by
k R−S bifurcations, and hence the edges of G can be covered by k R−S biforests.



Chapter 55

Minimum directed cut covers
and packing directed cuts

A directed cut in a directed graph D = (V, A) is a set of arcs δin(U) for
some nonempty proper subset U of V with δout(U) = ∅. A directed cut
cover is a set of arcs intersecting each directed cut — equivalent, it is a set
of arcs such that their contraction makes the graph strongly connected. For
planar digraphs, a directed cut cover corresponds to a feedback arc set in
the dual digraph — a set of arcs whose removal makes the digraph acyclic.
Lucchesi and Younger showed that the minimum size of a directed cut cover
is equal to the maximum number of disjoint directed cuts. This min-max
relation is the basis for several other results on shortest directed cut covers,
which we survey in this chapter. In the next chapter we consider the, less
tractable, disjoint directed cut covers.

55.1. Minimum directed cut covers and packing directed
cuts

Let D = (V,A) be a digraph. A subset C of A is called a directed cut if there
exists a nonempty proper subset U of V with δin(U) = C and δout(U) = ∅.
A directed cut cover is a set of arcs intersecting each directed cut.

It is easy to show that for any subset B of A the following are equivalent:

(55.1) (i) B is a directed cut cover;
(ii) adding to D all arcs (u, v) with (v, u) ∈ B makes the digraph

strongly connected;
(iii) contracting all arcs in B makes the digraph strongly connected.

So a minimum directed cut cover gives a minimum number of arcs in D such
that making them two-way we obtain a strongly connected digraph.

Moreover, A. Frank (cf. Lovász [1979a] p. 271) showed:

Theorem 55.1. Let D = (V,A) be a weakly connected digraph without cut
arcs and let B ⊆ A. Then B is an inclusionwise minimal directed cut cover
if and only if B is an inclusionwise minimal set such that if we invert the
orientations of all arcs in B, the digraph becomes strongly connected.
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Proof. Define Ã := (A \B) ∪B−1, where B−1 := {a−1 | a ∈ B}, and where
a−1 is the arc arising from a by inverting its orientation.

Trivially, if (V, Ã) is strongly connected, then B is a directed cut cover.
Hence it suffices to show that if B is an inclusionwise minimal directed cut
cover, then D̃ = (V, Ã) is strongly connected.

Suppose that D̃ is not strongly connected. Let K be a strong component
of D̃ with δin

Ã
(K) = ∅. Let δinA (K) = {a1, . . . , at}. So a1, . . . , at belong to

B. Hence, as B is an inclusionwise minimal directed cut cover, for each i =
1, . . . , t there exists a subset Ui of V with δinA (Ui) = ∅ and δout

B (Ui) = {ai}.
Then for each i, Ui ∩K = ∅. For suppose that Ui ∩K �= ∅. As the head

of ai does not belong to Ui, Ui splits K. Hence some arc a ∈ Ã enters Ui,
with a spanned by K. As δinA (Ui) = ∅, we know a ∈ B−1, and therefore
a−1 ∈ δout

B (Ui) while a �= ai, a contradiction.
Also, Ui ∩ Uj = ∅ for i �= j, as δinA (Ui ∩ Uj) = ∅ and

(55.2) dout
B (Ui ∩ Uj) ≤ dout

B (Ui) + dout
B (Uj) − dout

B (Ui ∪ Uj) = 0,

since both ai and aj leave Ui ∪ Uj .
So U1, . . . , Ut are disjoint subsets of V \ K. As D has no cut arcs,

dout
A (Ui) ≥ 2 for each i. Hence, as no arc in A enters any Ui, and only one

arc (namely ai) leaves Ui to enter K, the set W := V \ (K ∪ U1 ∪ · · · ∪ Ut)
is nonempty. Also, δout

A (W ) = ∅, and so δinB (W ) �= ∅, that is δout
B (K ∪ U1 ∪

· · · ∪ Ut) �= ∅. However, δout
B (K) = ∅ (since δin

Ã
(K) = ∅) and δout

B (Ui) = {ai},
implying δout

B (K ∪ Ui) = ∅ for each i, a contradiction.

55.2. The Lucchesi-Younger theorem

Lucchesi and Younger [1978] proved the following min-max relation for the
minimum size of a directed cut cover, which was conjectured by N. Robertson
and by Younger [1965,1969] (for planar graphs by Younger [1963a], inspired
by a question suggested by J.P. Runyan to Seshu and Reed [1961]).

The proof below is a variant of the proof of Lovász [1976c] (cf. Lovász
[1979b]).

Theorem 55.2 (Lucchesi-Younger theorem). Let D = (V,A) be a weakly
connected digraph. Then the minimum size of a directed cut cover is equal to
the maximum number of disjoint directed cuts.

Proof. For any digraph D, let ν(D) be the maximum number of disjoint
directed cuts in D and let τ(D) be the minimum size of a directed cut cover.
Choose a counterexample D = (V,A) with a minimum number of arcs.

For anyB ⊆ A, letDB be the graph obtained fromD by replacing each arc
(u, v) in B by a directed u−v path of length 2 (the intermediate vertex being
new). Choose an inclusionwise maximal subset B of A with ν(DB) = ν(D).
Then B �= A, as ν(DA) ≥ 2ν(D) > ν(D).
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Choose b ∈ A \ B. So ν(DB∪{b}) > ν(D). Moreover, as D is a smallest
counterexample, the graph D′ obtained from D by contracting b satisfies
ν(D′) = τ(D′) ≥ τ(D) − 1 ≥ ν(D). Combining a maximum-size packing of
directed cuts in D′ and one in DB∪{b}, we obtain a family F of nonempty
proper subsets of the vertex set V ′ of DB with the property that

(55.3) |F| = 2ν(D) + 1, and the δin(U) for U ∈ F are directed cuts in
DB covering any arc of DB at most twice.

Now we choose F satisfying (55.3) such that

(55.4)
∑

U∈F
|U ||V ′ \ U |

is minimized. Then F is a cross-free family. Indeed, if X,Y ∈ F with X �⊆
Y �⊆ X, X ∩ Y �= ∅ and X ∪ Y �= V ′, we can replace X and Y by X ∩ Y
and X∪Y , while not violating (55.3) but decreasing sum (55.4) (by Theorem
2.1), contradicting its minimality.

So F is cross-free. For each X ∈ F , define

(55.5) β(X) := {U ∈ F | U ⊆ X or U ∩X = ∅}.

Let F2 be the collection of sets occurring twice in F and let F1 be the
collection of sets occurring precisely once in F . Then

(55.6) if X and Y are distinct sets in F1 with |β(X)| ≡ |β(Y )| (mod 2),
then no arc of D enters both X and Y .

Suppose that to the contrary arc a enters both X and Y . As F is cross-free,
we can assume that X ⊂ Y .

If |β(Y )| ≤ |β(X)|, then (as Y ∈ β(Y ) \ β(X)) there exists a Z in β(X) \
β(Y ). So Z �⊆ Y and Z ∩Y �= ∅. Hence Z �⊆ X, and so Z ∩X = ∅. So Y �⊆ Z,
and hence (as F is cross-free) Z ∪ Y = V ′. So a leaves Z, a contradiction
(since no arc leaves any set in F).

If |β(Y )| ≥ |β(X)|+2, then there exists a Z �= Y with Z ∈ β(Y )\β(X). So
Z �⊆ X and Z ∩X �= ∅. Hence Z ∩Y �= ∅, and so Z ⊆ Y . So Z ∪X �= V ′, and
hence (as F is cross-free) X ⊂ Z. So a enters X,Y , and Z, a contradiction.
This proves (55.6).

It follows that for some j ∈ {0, 1}, the collection

(55.7) F2 ∪ {X ∈ F1
∣∣ |β(X)| ≡ j (mod 2)}

has size at least ν(D) + 1. By (55.6), it gives ν(D) + 1 disjoint directed cuts
in DB , contradicting our assumption.

Equivalent to the Lucchesi-Younger theorem is the following weighted
version of it:

Corollary 55.2a. Let D = (V,A) be a digraph and let l : A → Z+ be a
length function. Then the minimum length of a directed cut cover is equal to
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the maximum number of directed cuts such that each arc a is in at most l(a)
of them.

Proof. Replace any arc a by a path of length l(a) (contracting a if l(a) =
0). Then the Lucchesi-Younger theorem applied to the new graph gives the
present corollary.

This can be formulated in terms of the total dual integrality of the fol-
lowing system:

(55.8) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(C) ≥ 1 for each directed cut C.

Define the directed cut cover polytope of D as the convex hull of the incidence
vectors of directed cut covers. Then:

Corollary 55.2b. System (55.8) is TDI and determines the directed cut
cover polytope of D.

Proof. The total dual integrality is a reformulation of Corollary 55.2a. The
total dual integrality of (55.8) implies that it determines an integer polytope.
Hence the second part of the corollary follows.

55.3. Directed cut k-covers

In fact, system (55.8) is box-TDI, and more generally, the following system
is box-TDI, as was shown by Edmonds and Giles [1977]:

(55.9) x(C) ≥ 1 for each directed cut C.

Edmonds and Giles’ proof gives the following alternative way of proving the
Lucchesi-Younger theorem.

Theorem 55.3. System (55.9) is box-TDI.

Proof. Let U be the collection of nonempty proper subsets U of V with
δout(U) = ∅. So {δin(U) | U ∈ U} is the collection of all directed cuts.

Choose w ∈ R
A, and let y achieve the maximum in the dual of minimizing

wTx over (55.9), that is, in:

(55.10) max{
∑

U∈U
yU | y ∈ R

U
+,

∑

U∈U
yUχ

δin(U) = w},

such that

(55.11)
∑

U∈U
yU |U ||V \ U |
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is as small as possible. Let F := {U ∈ U | yU > 0}. Then F is cross-free.
Suppose to the contrary that T,U ∈ F with T �⊆ U �⊆ T , T ∩ U �= ∅,
T ∪U �= V . Let α := min{yT , yU} > 0. Then decreasing yT and yU by α, and
increasing yT∩U and yT∪U by α, maintains feasibility of y, while its value
is not changed; so it remains an optimum solution. However, sum (55.11)
decreases (by Theorem 2.1). This contradicts the minimality of (55.11).

So F is cross-free, and hence the constraints corresponding to F form
a totally unimodular matrix (Corollary 13.21a). Hence, by Theorem 5.35,
system (55.9) is box-TDI.

This implies the box-total dual integrality of (for k ≥ 0):

(55.12) x(C) ≥ k for each directed cut C.

Corollary 55.3a. For each k ∈ R+, system (55.12) is box-TDI.

Proof. Directly from Theorem 55.3, since if a system Ax ≤ b is box-TDI,
then also Ax ≤ k · b is box-TDI.

This has the following consequences. Call a subset C of the arc set A of
a digraph D = (V,A) a directed cut k-cover if C intersects each directed cut
in at least k arcs. Consider the system:

(55.13) 0 ≤ xa ≤ 1 for a ∈ A,
x(C) ≥ k for each directed cut C.

Then:

Corollary 55.3b. System (55.13) is TDI and determines the convex hull of
the incidence vectors of the directed cut k-covers.

Proof. Directly from Corollary 55.3a.

From this, a min-max relation for the minimum size of a directed cut
k-cover can be derived:

Corollary 55.3c. Let D = (V,A) be a digraph and let k ∈ Z+, such that
each directed cut has size at least k. Then the minimum size of a directed cut
k-cover is equal to the maximum value of

(55.14)
∣∣⋃C

∣∣ + k|C| −
∑

C∈C
|C|

taken over all collections C of directed cuts.

Proof. By Corollary 55.3b, the minimum size of a directed cut k-cover is
equal to the minimum value of 1Tx over (55.13). Hence, as (55.12) is TDI,
the minimum size of a directed cut k-cover is equal to the maximum value of
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(55.15) k
∑

C

yC − z(A),

where yC ∈ Z+ for each directed cut C and where z ∈ Z
A
+ such that

(55.16)
∑

C

yCχ
C − z ≤ 1.

Now we can assume that yC ∈ {0, 1} for each C, since if yC ≥ 2, then za ≥ 1
for each a ∈ C (by (55.16)). Hence decreasing yC by 1 and decreasing za by 1
for each a ∈ C, maintains (55.16) while (55.15) is not decreased (as |C| ≥ k
by assumption).

Let C := {C | yC = 1}. As z(A) is minimized, we have

(55.17) z =
∑

C∈C
χC − χ

⋃
C ,

and hence that z(A) is equal to
∑

C∈C |C| −
∣∣ ⋃

C
∣∣. This proves the corollary.

55.4. Feedback arc sets

The Lucchesi-Younger theorem implies a min-max relation for the minimum
size of a feedback arc set in a planar digraph. A feedback arc set in a digraph
D = (V,A) is a set of arcs intersecting every directed circuit.

In fact, if D has no loops, then a set A′ is an inclusionwise minimal
feedback arc set if and only if A′ is an inclusionwise minimal set of arcs such
that inverting all arcs in A′ makes the digraph acyclic (Grinberg and Dambit
[1966], Gallai [1968a]).

E.L. Lawler and R.M. Karp (see Karp [1972b]) showed that finding a
minimum-size feedback arc set in a digraph, is NP-complete. For planar di-
graphs one has however:

Theorem 55.4. Let D = (V,A) be a planar digraph. Then the minimum size
of a feedback arc set is equal to the maximum number of arc-disjoint directed
circuits.

Proof. Consider the dual digraph D∗ of D. Then a set of arcs of D forms a
directed circuit if and only if the set of dual arcs forms a directed cut in D∗.
Hence the corollary follows immediately from the Lucchesi-Younger theorem
(Theorem 55.2).

Notes. Figure 55.1 (from Younger [1965]) shows that we cannot drop the planarity
condition. This is a counterexample with a smallest number of vertices, since Bara-
hona, Fonlupt, and Mahjoub [1994] showed that in a digraph with no K3,3 minor,
the minimum size of a feedback arc set is equal to the maximum number of disjoint
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Figure 55.1
The minimum size of a feedback arc set equals 2, while there are no
two disjoint directed cuts.

directed circuits. The proof is based on a theorem of Wagner [1937b] on decompos-
ing graphs without K3,3 minor into planar graphs and copies of K5. (Nutov and
Penn [1995] gave a similar proof. Related work is done is reported in Nutov and
Penn [2000].)

Figure 55.2
An Eulerian digraph where the minimum size of a feedback arc set
equals 5, while there are no 5 disjoint directed cuts.

Moreover, Borobia, Nutov, and Penn [1996] showed that in an Eulerian digraph
with at most 6 vertices, the minimum size of a feedback arc set is equal to the
maximum value of a fractional packing of directed circuits. This is not the case if
there are more than 6 vertices, as is shown by the graph in Figure 55.2.

Guenin and Thomas [2001] characterized the digraphs D that have the property
that for every subhypergraph D′ of D, the maximum number of disjoint circuits in
D′ is equal to the minimum size of a feedback arc set in D′.

More on the polytope determined by the feedback arc sets, equivalently on
the acyclic subgraph polytope (the convex hull of the incidence vectors of arc sets
containing no directed circuit) is presented in Young [1978], Grötschel, Jünger, and
Reinelt [1984,1985a,1985b], Reinelt [1993], Leung and Lee [1994], Goemans and
Hall [1996], and Bolotashvili, Kovalev, and Girlich [1999]. (Bowman [1972] wrongly
claimed to give a system determining the acyclic subgraph polytope.)
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The problem of finding a minimum-weight feedback arc set is equivalent to the
linear ordering problem: given a matrix M , find a permutation matrix P such that
the sum of the elements below the main diagonal of P TMP is minimized. More on
this can be found in Younger [1963b], Jünger [1985], Reinelt [1985], Berger and Shor
[1990,1997], Arora, Frieze, and Kaplan [1996,2002], Fernandez de la Vega [1996],
Frieze and Kannan [1996,1999], and Newman and Vempala [2001].

For feedback arc sets in linklessly embeddable graphs, see Section 55.6b. For
feedback vertex sets, see Section 55.6c.

55.5. Complexity

It was shown by Lucchesi [1976], Karzanov [1979c,1981], and Frank [1981b]
that a minimum-size directed cut cover and a maximum packing of directed
cuts can be found in polynomial time. Lucchesi [1976] also gave a weakly
polynomial-time algorithm for the weighted versions of these problems, and
Frank [1981b] gave a strongly polynomial-time algorithm for these problems.

Frank and Tardos [1984b] showed that finding a minimum-length directed
cut k-cover in fact can be reduced to a weighted matroid intersection problem.
Thus all ingredients for a strongly polynomial-time algorithm are ready at
hand.

We describe the reduction. Let D = (V,A) be a digraph, let l : A → Q+
be a length function, and let k ∈ Z+. We want to find a directed cut k-cover
of minimum length.

Let D−1 = (V,A−1) be the reverse digraph of D, where A−1 := {a−1 |
a ∈ A} and a−1 = (v, u) if a = (u, v). We will define matroids M1 and M2
on A ∪A−1.

M1 is easy: it is the partition matroid induced by the sets {a, a−1} for
a ∈ A. To define M2, let U be the collection of nonempty proper subsets U
of V with δinA (U) = ∅. Define

(55.18) P := {x ∈ Z
V
+ | x(V ) = |A| and x(U) ≥ |A[U ]| + k for each

U ∈ U}.

Then:

(55.19) for x, y ∈ P and u ∈ V with xu < yu, there exists a v ∈ V with
xv > yv and x+ χu − χv ∈ P .

Indeed, let K be the collection of inclusionwise maximal subsets U of V \ {u}
with U ∈ U and x(U) = |A[U ]| + k. As sets with this property are closed
under unions of intersecting sets, K consists of disjoint sets, and no two of
them are connected by an arc. Hence for W := V \

⋃
K, we have

(55.20) y(W ) = y(V ) −
∑

U∈K
y(U) ≤ |A| −

∑

U∈K
(|A[U ]| + k) = x(W ).
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As xu < yu and u ∈ W , we know that xv > yv for some v ∈ W . Also,
x + χu − χv ∈ P , since there is no subset U of V \ {u} with δin(U) = ∅,
x(U) = |A[U ]| + k, and v ∈ U .

This shows (55.19), which implies that

(55.21) B := {B ⊆ A ∪A−1 | degin
B ∈ P}

forms the collection of bases of a matroid M2 on A ∪ A−1, provided that B
is nonempty; equivalently, provided that each directed cut in D has size at
least k. (That M2 is a matroid can also be derived from Corollary 49.7a.)

To test independence in M2, it suffices to have one base of M2 (which we
have: A−1), and to have a test of being a base. Equivalently, we should be
able to test membership of P . Let x ∈ Z

V
+ with x(V ) = |A|. By Theorem

51.3, we can find a nonempty proper subset U of V minimizing

(55.22) x(U) − |A[U ]| + (k + |A|)din(U)
= x(U) −

∑

v∈U

degout(v) + dout(U) + (k + |A|)din(U),

in strongly polynomial time. If this minimum is at least k, then x belongs
to P . If this minimum is less than k, then din(U) = 0, and hence x(U) <
|A[U ]| + k, implying that x does not belong to P .

Now a subset C of A is a directed cut k-cover if and only if B := (A \
C) ∪ C−1 is a common base of M1 and M2. Hence:

Theorem 55.5. Given a digraph D = (V,A), a length function l : A → Q+,
and k ∈ Z+, a minimum-length directed cut k-cover can be found in strongly
polynomial time.

Proof. Directly from the above, with Theorem 41.8. We apply the weighted
matroid intersection algorithm to find a maximum-length common base B in
the matroids M1 and M2 on A ∪ A−1, defining l(a−1) := 0 for a ∈ A. Then
A \B is a minimum-length directed cut cover.

55.5a. Finding a dual solution

Also a maximum packing of directed cuts can be found in polynomial time. Let
B be the maximum-length base found and let C be the directed cut k-cover with
B = (A \ C) ∪ C−1.

The weighted matroid intersection algorithm also yields a dual solution. Indeed,
if l is integer-valued, it gives length functions l1, l2 : A∪A−1 → Z such that l = l1+l2
and such that B is an li-maximal base of Mi, for i = 1, 2 (cf. Section 41.3a).

Define

(55.23) F := {U ⊆ V | din
A (U) = 0, dout

C (U) = k},

and define a pre-order � on V by:

(55.24) u � v ⇐⇒ each U ∈ F containing u also contains v,
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for u, v ∈ V . It can be checked in polynomial time whether u � v holds, since it
is equivalent to: degin

B −χu + χv ∈ P . Indeed, degin
B −χu + χv belongs to P if and

only if v ∈ U for each U ∈ U satisfying u ∈ U and
∑

s∈U degin
B (s) = |A[U ]| + k.

Now
∑

s∈U degin
B (s) = |A[U ]| + dout

C (U). So it is equivalent to: u � v.
Next define for each u ∈ V :

(55.25) p(u) := max{l2(a) | ∃v � u : a−1 ∈ δout
B (v)}.

Let h0 < · · · < ht be the elements of the set {p(u) | u ∈ V }. For j = 1, . . . , t, define
Vj := {u | p(u) ≥ hj}. Let K be the collection of all weak components of D − Vj ,
over all j = 1, . . . , t, and for each K ∈ K, let

(55.26) yK :=
∑

(hj − hj−1 | j = 1, . . . , t; K is a weak component of D − Vj).

So

(55.27) P = h0χ
V +

∑

K∈K
yKχK .

Then:

Theorem 55.6. Each K ∈ K belongs to F . Moreover, for each a = (u, v) ∈ A:

(55.28) (i)
∑

(yK | K ∈ K, a ∈ δout(K)) ≤ l(a) if a ∈ A \ C,
(ii)

∑
(yK | K ∈ K, a ∈ δout(K)) ≥ l(a) if a ∈ C.

Proof. Consider any j = 1, . . . , t. By definition of p(u), we know that Vj is a lower
ideal with respect to �. That is, if v ∈ Vj and u � v, then u ∈ Vj . (Indeed, if
v ∈ Vj , then p(v) ≥ hj , hence l2(a) ≥ hj for some a with a−1 ∈ δout

B (w) for some
w � v. Since w � u we have p(u) ≥ l2(a) ≥ hj .)

Hence, for each v ∈ Vj and u �∈ Vj we have u �� v. Therefore, there is a U ∈ F
with u ∈ U and v �∈ U . This implies, as F is a crossing family, that there is a
partition of V \ Vj into sets in F . As din

A (U) = 0 and dout
C (U) = k, it follows that

this partition is equal to the collection of weak components of the digraph D − Vj .
So each weak component K of D − Vj satisfies din

A (K) = 0 and dout
C (K) = k; that

is, K belongs to F .
Consider any arc a = (v, u) ∈ B. As B is an l1-maximal base of M1, we

have l1(a−1) ≤ l1(a). Let p(u) = l2(b) for some b−1 ∈ δout
B (w) and some w � u.

Since u � w, we know that degin
B −χu + χw ∈ P . So (B ∪ {b}) \ {a} is again a

base of M2. Hence we have (as B is an l2-maximal base of M2) l2(b) ≤ l2(a). So
l2(a) ≥ l2(b) ≥ p(u). Also p(v) ≥ l2(a−1), by definition of p(v). Hence

(55.29) l(a) − l(a−1) = l1(a) + l2(a) − l1(a−1) − l2(a−1) ≥ l2(a) − l2(a−1)
≥ p(u) − p(v).

If a ∈ A \ C, we have l(a−1) = 0, and obtain (55.28)(i), since a enters no K ∈ K
and so p(u) ≥ p(v). Hence

(55.30) l(a) ≥ p(u) − p(v) =
∑

(yK | K ∈ K, a ∈ δout(K)).

If a ∈ C−1, we have l(a) = 0 and obtain (55.28)(ii), since a−1 enters no K ∈ K,
and so p(u) ≤ p(v). Hence

(55.31) l(a−1) ≤ p(v) − p(u) =
∑

(yK | K ∈ K, a−1 ∈ δout(K)).
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For each a ∈ C, let s(a) be the difference of the two terms in (55.28)(ii), and
for a ∈ A \ C let s(a) := 0. Then

(55.32)
∑

K∈K
yKχδout

A (K) − s ≤ l

and

(55.33) k
∑

K∈K
yK − s(A) =

∑

K∈K
yK |δout

A (K) ∩ C| − s(A)

=
∑

a∈C

∑
(yK | K ∈ K, a ∈ δout(K)) − s(A) = l(C).

Thus we have an integer optimum dual solution to maximizing lTx over the system
0 ≤ x ≤ 1, x(Y ) ≥ k (Y directed cut). If k = 1, we can do with s = 0, and obtain
an integer optimum packing of directed cuts subject to l.

So we have:

Theorem 55.7. Given a digraph D = (V, A) and a length function l : A → Z+, an
optimum packing of directed cuts subject to l can be found in strongly polynomial
time.

Proof. See above.

55.6. Further results and notes

55.6a. Complexity survey for minimum-size directed cut cover

O(n5 log n) Lucchesi [1976]

O(n3m) Frank [1981b]

O(n2M(n)) Frank [1981b]

∗ O(n2m) Gabow [1993b,1995c]

∗ O(nM(n)) Gabow [1993b,1995c]

As before, ∗ indicates an asymptotically best bound in the table. M(n) denotes the
time to multiply n×n matrices. Also Karzanov [1979c,1981] gave a polynomial-time
algorithm to find a minimum-size directed cut cover. Lucchesi [1976] gave also a
polynomial-time algorithm to find a minimum-weight directed cut cover, and Frank
[1981b] and Gabow [1993a,1993b,1995c] gave strongly polynomial-time algorithms
for this.

55.6b. Feedback arc sets in linklessly embeddable digraphs

An undirected graph is called linklessly embeddable if it can be embedded in R
3

such that any two vertex-disjoint circuits C1 and C2 are unlinked (that is, there
is a topological sphere S such that C1 is in the interior of S and C2 is in the
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exterior of S). A digraph is called linklessly embeddable if its underlying undirected
graph is linklessly embeddable. (Linklessly embeddable graphs are characterized by
Robertson, Seymour, and Thomas [1995] in terms of ‘forbidden minors’.)

Seymour [1996] showed that in an Eulerian linklessly embeddable directed
graph, the minimum-size of a feedback arc set is equal to the maximum number of
arc-disjoint directed circuits. We sketch the proof.

The basic combinatorial-topological part of the proof consists of showing:

Theorem 55.8. Let D be an Eulerian linklessly embeddable digraph. Suppose that
there exist 2k+1 directed circuits such that any arc is in at most two of them. Then
there exist k + 1 arc-disjoint directed circuits.

Sketch of proof. By a theorem of Robertson, Seymour, and Thomas [1995], D
can be embedded in R

3 such that for each undirected circuit C in D there exists
an open disk B in R

3 with boundary C and disjoint from D. (We identify D with
its embedding.)

Let C1, . . . , Ct be a maximum number of directed circuits in D such that any
arc of D is in at most two of them. So t ≥ 2k + 1. Moreover, each arc of D is
contained in exactly two of the Ci. Otherwise, the arcs not covered twice contain a
directed circuit (as D is Eulerian). This contradicts the maximality of t.

For each i = 1, . . . , t, let Bi by an open disk with boundary Ci and disjoint from
D. We can assume that the Bi are pairwise disjoint, as can be seen as follows. First,
we can assume that the Bi are tame and in general position. In particular, no point
is in four of the Bi. Any point p in three of the Bi is the intersection point of three
of the Bi, pairwise crossing at p. Any point p in two of the Bi is the intersection
point of two of the Bi, crossing at p. Moreover, any two distinct Bi and Bj intersect
each other in a finite number of closed and open curves, each representing crossings
of Bi and Bj . Let c(Bi, Bj) denote the number of such components.

We choose the Ci and Bi such that the sum of the c(Bi, Bj) for i �= j is
minimized.

Now it is elementary combinatorial topology to prove that there exist for any
distinct i, j, with Bi ∩ Bj �= ∅, directed circuits C′

i and C′
j in D with

(55.34) χAC′
i + χAC′

j = χACi + χACj

and open disks B′
i and B′

j with boundaries C′
i and C′

j respectively, such that B′
i ∩

B′
j = ∅ and c(B′

i, Bh) + c(B′
j , Bh) ≤ c(Bi, Bh) + c(Bj , Bh) for all h �= i, j.

Hence, by the minimality of the sum of the c(Bi, Bj), it follows that the Bi

are disjoint. So D, together with the Bi forms the union of a number of compact
surfaces, certain points of which are identified. As these surfaces are orientable
(since they are embedded in R

3), the Bi fall apart into two classes: those with
boundary oriented clockwise, and those with boundary oriented counter-clockwise.
Each of these classes have arc-disjoint boundaries, and at least one of these classes
has size at least k + 1. This proves the theorem.

Seymour [1996] next continues by deriving (for linklessly embeddable graphs)
the total dual integrality of the following system in x ∈ R

A:

(55.35) x(C) ≥ 1 for each directed circuit C in D.
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Note that nonnegativity of x is not required here.

Corollary 55.8a. For any linklessly embeddable digraph D = (V, A), system (55.35)
is totally dual integral.

Proof. Let w ∈ Z
A be such that the minimum of wTx over (55.35) is finite. Let

C be the collection of directed circuits in D. By Theorem 5.29, it suffices to show
that the maximum value µ of

∑
C∈C y(C) taken over y : C → 1

2Z+ satisfying

(55.36)
∑

C∈C
yCχAC ≤ w

is attained by an integer-valued y.
Now (as the minimum is finite) w belongs to the cone generated by the incidence

vectors of directed circuits, and hence w is a nonnegative circulation. Replace any
arc a = (u, v) by w(a) parallel arcs from u to v, giving the Eulerian digraph D′ =
(V, A′). Then µ is equal to half of the maximum number µ′ of directed circuits in
D′ such that any arc of D′ is in at most two of these circuits. By Theorem 55.8, D′

contains at least � 1
2µ′� arc-disjoint directed circuits. Since � 1

2µ′� ≥ µ, this gives in
D an integer vector y : C → Z+ as required.

This finally gives:

Theorem 55.9. The minimum size of a feedback arc set in an Eulerian linklessly
embeddable digraph D = (V, A) is equal to the maximum number of arc-disjoint
directed circuits.

Proof. Consider the LP-duality relation for maximizing x(U) over (55.35):

(55.37) min{x(A) | x(C) ≥ 1 for each directed circuit C}
= max{

∑

C

yC | yC ≥ 0,
∑

C

yCχAC = 1},

where C ranges over all directed circuits. By Corollary 55.8a and the theory of total
dual integrality (Theorem 5.22), both optima have an integer optimum solution.
So the maximum is equal to the maximum number of arc-disjoint directed circuits.
Let x attain the minimum. By Theorem 8.2, there exists a (‘potential’) p : V → Z

with xa ≥ p(v) − p(u) for each arc a = (u, v) of D. Define x′(a) := xa − p(v) + p(u)
for each arc a = (u, v). Then x′ ∈ Z

A
+, x′(C) = x(C) ≥ 1 for each directed circuit

C, and x′(A) = x(A) (since D is Eulerian). Hence the set of arcs a with x′(a) ≥ 1
forms a feedback arc set of size at most x(A), proving the theorem.

System (55.35) can be tested in polynomial time, for any digraph (with the Bell-
man-Ford method). It implies that in an Eulerian linklessly embeddable digraph, a
minimum-size feedback arc set can be found in polynomial time (with the ellipsoid
method).

55.6c. Feedback vertex sets

A feedback vertex set in a digraph D = (V, A) is a subset U of V with D − U
acyclic — that is, U intersects every directed circuit. Reed, Robertson, Seymour,
and Thomas [1996] proved:
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(55.38) for each integer k ≥ 0 there exists an integer nk ≥ 0 such that each
digraph D = (V, A) having no k vertex-disjoint directed circuits, has
a feedback vertex set of size at most nk.

(For k = 2 this answers a question of Gallai [1968b] and Younger [1973].)
Reed, Robertson, Seymour, and Thomas also showed that for each fixed integer

k, there is a polynomial-time algorithm to find k vertex-disjoint directed circuits in
a digraph if they exist.

Earlier, progress on (55.38) was made by McCuaig [1993], who proved it for
k = 2, where n2 = 3, by Seymour [1995b], who proved a fractional version of it (if
there is no fractional packing of k directed circuits, then there is a feedback vertex
set of size at most nk), and by Reed and Shepherd [1996] for planar graphs.

According to Reed, Robertson, Seymour, and Thomas [1996], N. Alon proved
that nk is at least Ck log k for some constant C.

Cai, Deng, and Zang [1999,2002] characterized for which orientations D = (V, A)
of a complete bipartite graph the system

(55.39) xv ≥ 0 for v ∈ V ,
x(V C) ≥ 1 for each directed circuit C,

is totally dual integral. (Related results can be found in Cai, Deng, and Zang [1998].)
Guenin [2001b] gave a characterization of digraphs D = (V, A) for which the

linear system in R
V ∪A for feedback arc and vertex sets:

(55.40) xv ≥ 0 for v ∈ V ,
xa ≥ 0 for a ∈ A,
x(V C) + x(AC) ≥ 1 for each directed circuit C,

is totally dual integral.
The undirected analogue of (55.38) was proved for k = 2 by Bollobás [1963],

and for general k by Erdős and Pósa [1965]. Ding and Zang [1999] characterized
the undirected graphs G = (V, E) for which the system

(55.41) xv ≥ 0 for v ∈ V ,
x(V C) ≥ 1 for each circuit C,

is totally dual integral. Their characterization implies that (55.41) is totally dual
integral if and only if it defines an integer polyhedron.

A polyhedral approach to the feedback vertex set problem was investigated by
Funke and Reinelt [1996]. Approximation algorithms for feedback problems were
given by Monien and Schulz [1982], Eades, Lin, and Smyth [1993], Bar-Yehuda,
Geiger, Naor, and Roth [1994,1998], Becker and Geiger [1994,1996], Bafna, Berman,
and Fujito [1995,1999], Even, Naor, Schieber, and Sudan [1995,1998], Even, Naor,
and Zosin [1996,2000], Goemans and Williamson [1996,1998], Chudak, Goemans,
Hochbaum, and Williamson [1998], Bar-Yehuda [2000], and Cai, Deng, and Zang
[2001]. More on the feedback vertex set problem was presented by Smith and Wal-
ford [1975], Kevorkian [1980], Rosen [1982], Speckenmeyer [1988], Stamm [1991],
Hackbusch [1997], and Pardalos, Qian, and Resende [1999].

55.6d. The bipartite case

McWhirter and Younger [1971] (cf. Younger [1970], Vidyasankar [1978b]) proved
the Lucchesi-Younger theorem in case the arcs of D form a directed cut; that is, in
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case the underlying undirected graph is bipartite, while all arcs are oriented from
one colour class to the other. It amounts to the following:

Theorem 55.10. Let G = (V, E) be a connected bipartite graph and let F be the
collection of subsets E[U ] of E for which U is a vertex cover with E[U ] nonempty.
Then the minimum size of a set of edges intersecting each set in F is equal to the
maximum number of disjoint sets in F .

Proof. Let U and W be the colour classes of G and let digraph D be obtained from
G by orienting each edge from U to W . Then a set of edges belongs to F if and only
if it is a directed cut of D. Hence the theorem follows from the Lucchesi-Younger
theorem.

D.H. Younger (cf. Frank [1993b]) showed that the maximum number of disjoint
nonempty cuts in a bipartite graph G is equal to the maximum number of disjoint
directed cuts in the directed graph obtained from G by orienting all edges from one
colour class to the other (cf. Corollary 29.13b). (Vidyasankar [1978b] showed that
a set of edges J intersecting each set in F attains the minimum in Theorem 55.10
if and only if J intersects any circuit C of G in at most 1

2 |EC| edges; that is, if and
only if J is a join — cf. Section 29.11d.)

As noted by Younger [1979], the Lucchesi-Younger theorem, in the form of
Corollary 55.2b, implies the Kőnig-Rado edge cover theorem (Theorem 19.4): the
minimum size of an edge cover in a bipartite graph G = (V, E) is equal to the
maximum size of a stable set in G. To obtain this as a consequence, let U and W
be the colour classes of G and let D = (V, A) be the directed graph with vertex
set V and arcs all pairs (u, v) with u ∈ U and v ∈ W . Define a weight function
w : A → Z by w(u, v) := 1 if uv ∈ E, and ∞ otherwise. Then the minimum weight
of a directed cut cover in D is equal to the minimum size of an edge cover in G. With
this correspondence, Corollary 55.2b gives the Kőnig-Rado edge cover theorem.

55.6e. Further notes

Frank, Tardos, and Sebő [1984] showed that the Lucchesi-Younger theorem implies
that in a digraph D = (V, A), the minimum size of a directed cut cover is equal to
the maximum value of

(55.42)
k∑

i=1

number of weak components of D − Vi,

where ∅ �= V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ V are such that no arc leaves any Vi and enters
at most one of the Vi.

Frank and Tardos [1989] showed that a weakly connected digraph D = (V, A)
has a branching that intersects all directed cuts if and only if for each nonempty
U ⊆ V , the number of weak components K of D − U with din(K) = 0, is at most
|U |.

Younger [1965] proved the Lucchesi-Younger theorem for digraphs having an
arborescence, and, more generally, Younger [1979] proved it for source-sink con-
nected digraphs (that is, each strong component not left by any arc is reachable by
a directed path from each strong component not entered by any arc).
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Tuza [1994] showed that for any planar directed graph D = (V, A) and any
collection T of directed triangles in D, the minimum number of arcs intersecting
each triangle in T is equal to the maximum number of arc-disjoint triangles in T .



Chapter 56

Minimum directed cuts and
packing directed cut covers

A minimum-capacity directed cut can be found in strongly polynomial
time, by applying the minimum-capacity s − t cut algorithm, for all s, t, in
some modified digraph.
As for packing directed cut covers it is unknown if it is polynomial-time
tractable. Also it is unknown if the maximum number of disjoint directed
cut covers is equal to the minimum size of a directed cut — this is Woodall’s
conjecture. But the capacitated version of it does not hold.
In this chapter we consider a few cases where Woodall’s conjecture has
been proved, in particular for the source-sink connected digraphs.

56.1. Minimum directed cuts and packing directed cut
covers

The Lucchesi-Younger theorem states that in a digraph D = (V,A), the
minimum size of a directed cut cover is equal to the maximum number of
disjoint directed cuts. Woodall [1978a,1978b] ventured the conjecture that
this min-max relation would be maintained after interchanging the terms
directed cut and directed cut cover:

Conjecture (Woodall’s conjecture). In a digraph, the minimum size of a
directed cut is equal to the maximum number of disjoint directed cut covers.

This conjecture is open.
A capacitated version of Woodall’s conjecture (conjectured by Edmonds

and Giles [1977] and D.H. Younger) is however not true. Note that the Lucch-
esi-Younger theorem is equivalent to its weighted version, by replacing arcs by
directed paths of length l(a) if l(a) ≥ 1, and contracting an arc a if l(a) = 0.
We could attempt this approach to obtain an equivalent capacitated version
from Woodall’s conjecture, by replacing any arc a by c(a) parallel arcs, but
there is a problem here: if c(a) = 0, we delete a and can create new directed
cuts.

A capacitated version with capacities 0 and 1 amounts to the statement
that each directed cut k-cover can be partitioned into k directed cut covers.
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Figure 56.1 gives a counterexample to this for the case k = 2 (Schrijver
[1980a]). Note that the counterexample is planar, and that therefore the
‘planar dual’ assertion (on packing feedback arc sets) also does not hold.

x y

z

Figure 56.1
A directed cut 2-cover that cannot be split into two directed
cut covers. Let C be the set of heavy arcs. Then C is a directed cut
2-cover, since for each arc c ∈ C, the set C \ {c} is a directed cut cover,
which is easy to check since up to symmetry there are only two types
of arcs in C.
However, C cannot be split into directed cut covers C1 and C2. To see
this, observe that each of these Ci must contain exactly one of the two
arcs in C meeting any source or sink. Moreover, each Ci must contain
at least one of the arcs labeled x, y, z, since the set of arcs from the
inner hexagon to the outer hexagon forms a directed cut. Hence we
may assume without loss of generality that C1 contains the arcs x and
y, but not z. But then C1 does not intersect the directed cut of those
arcs going from the right half of the figure to the left half.

To interpret this polyhedrally, consider the system:

(56.1) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(B) ≥ 1 for each directed cut cover B.

With Corollary 55.2b, the theory of blocking polyhedra gives that system
(56.1) determines the convex hull of the incidence vectors of arc sets contain-
ing a directed cut. However, by the example in Figure 56.1, system (56.1)
generally is not TDI, as total dual integrality amounts to the capacitated
version of Woodall’s conjecture.

In a number of special cases, Woodall’s conjecture, and its capacitated
extension, have been proved. In the remainder of this chapter we will consider
such cases.
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Two more counterexamples to the conjecture of Edmonds and Giles were
given by Cornuéjols and Guenin [2002c], and they asked if, together with
the example of Figure 56.1, these form all minimal counterexamples to the
Edmonds-Giles conjecture.

56.2. Source-sink connected digraphs

Feofiloff and Younger [1987] and Schrijver [1982] showed that for source-sink
connected digraphs, the min-max relation for packing directed cut covers does
hold. Here a digraph is called source-sink connected if each strong component
not left by any arc is reachable by a directed path from each strong component
not entered by any arc. So an acyclic digraph is source-sink connected if each
sink is reachable by a directed path from each source. We follow the proof of
Schrijver [1982].

Theorem 56.1. Let D = (V,A) be a source-sink connected digraph and let
k ∈ Z+. Then any directed cut k-cover C can be partitioned into k directed
cut covers.

Proof. Choose a counterexample with |V | + |C| as small as possible. Then
D is acyclic, since any strong component can be contracted to one vertex.

We may assume that if v is reachable in D from u and v �= u, then
(u, v) ∈ A. We first show:

(56.2) for any nonempty proper subset U of V with δout(U) = ∅ and
|δinC (U)| = k, one has |U | = 1 or |U | = |V | − 1.

Suppose not. Let D′ := D/U and D′′ := D/U be the digraphs obtained from
D by contracting U and U := V \ U , respectively. Note that D′ and D′′ are
source-sink connected again. Let C ′ be the set of arcs in C with tail in U ,
and let C ′′ be the set of arcs in C with head in U .

Now each directed cut in D′ intersects C ′ in at least k arcs, as it is
a directed cut in D and hence intersects C in at least k arcs. So by the
minimality of |V | + |C|, C ′ can be split into k directed cut covers B′

1, . . . , B
′
k

for D′. As |δinC (U)| = k, each B′
i has exactly one arc entering U . Similarly,

C ′′ can be split into k directed cut covers B′′
1 , . . . , B

′′
k for D′′, such that each

B′′
i has exactly one arc entering U . By choosing indices appropriately, we

can assume that B′
i and B′′

i have an arc entering U in common, for each
i = 1, . . . , k (as |δinC (U)| = k).

Then each B′
i ∪ B′′

i is a directed cut cover for D. For suppose that there
is a nonempty proper subset W of V with δout(W ) = ∅ and δin(W ) disjoint
from B′

i ∪ B′
i. Then U ∩ W �= ∅ and U �⊆ W , since otherwise δin(W ) is a

directed cut of D′, and hence some arc in B′
i enters W . So some arc in B′′

i

enters U ∩W . Similarly, some arc in B′
i enters U ∪W . Since exactly one arc
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in B′
i ∪ B′′

i enters U , it follows that at least one arc in B′
i ∪ B′′

i enters W ,
contradicting our assumption.

So each B′
i ∪ B′′

i is a directed cut cover for D. As they are disjoint, this
contradicts our assumption, thus proving (56.2).

We next show the following. Let X be the set of sources of D and let Y
be the set of sinks of D. Then:

(56.3) for each a = (u, v) ∈ C we have u ∈ X or v ∈ Y .

For suppose not. Then by (56.2), each directed cut of D intersects C \ {a}
in at least k arcs (as any directed cut intersecting C in exactly k arcs and
containing a is equal to δin({v}) or δin(V \ {u}), implying that v is a sink or
u is a source). So by the minimality of |V | + |C|, we can split C \ {a} into k
directed cut covers. This implies that also C can be split into k directed cut
covers, contradicting our assumption. This proves (56.3).

Next:

(56.4) if a = (u, v) ∈ C, a′ = (u′, v′) ∈ C, and v is reachable from u′,
then u′ ∈ X or v ∈ Y .

For suppose not. By (56.3), u ∈ X and v′ ∈ Y , and hence (since D is source-
sink connected), a′′ = (u, v′) ∈ A. Now a �= a′, as u ∈ X and u′ �∈ X. So
C ′ := (C \ {a, a′}) ∪ {a′′} is smaller than C. Moreover, C ′ is a directed cut
k-cover. Indeed, let U be a nonempty proper subset of V with δout(U) = ∅.
If |U | = 1 or |U | = |V | − 1, then δinC′(U) = δinC (U), since then U = {r} for
some sink r or U = V \ {s} for some source s. If 1 < |U | < |V | − 1, then

(56.5) |δinC′(U)| ≥ |δinC (U)| − 1 ≥ k,

since if both a and a′ enter U , then u �∈ U and v′ ∈ U , and hence a′′ enters
U .

So C ′ is a directed cut k-cover, and hence, by the minimality of |V |+ |C|,
C ′ can be split into k directed cut covers. Let B be the directed cut cover
containing a′′. Then B′ := (B \ {a′′}) ∪ {a, a′} is a directed cut cover, since
any directed cut δin(W ) containing a′′, contains at least one of a, a′. Indeed,
otherwise u, v �∈ W , u′, v′ ∈ W , but then u′ �= v and arc (u′, v) leaves W ,
contradicting the fact that W determines a directed cut.

So by replacing B by B′ we obtain a splitting of C into k directed cut
covers, contradicting our assumption. This proves (56.4).

This implies:

(56.6) V can be partitioned into sets R and S such that δin(R) = ∅,
X ⊆ R, Y ⊆ S, and if any (u, v) ∈ C leaves R, then u ∈ X and
v ∈ Y .

For define

(56.7) C ′ := {(u, v) ∈ C | u �∈ X or v �∈ Y },
R := {v ∈ V | D′ = (V,A ∪ C−1) has a directed v −X path},
S := V \R.
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Then X ⊆ R, δinA (R) = ∅, and any (u, v) ∈ C leaving R satisfies u ∈ X and
v ∈ Y . To see that Y ⊆ S, suppose to the contrary that D′ has a directed
Y −X path P . Choose P shortest. Then by (56.3), P has of at most three
arcs. Let (v′, u′) and (v, u) be the first and last arc of P . So v′ ∈ Y and
u ∈ X. These arcs belong to C ′−1, and v is reachable from u′ in D. So by
(56.4), u′ ∈ X or v ∈ Y . This contradicts the definition of C ′. This shows
(56.6).

Fix R,S as in (56.6). Let D′ = (V,A′) be the digraph arising from D by
replacing any arc (u, v) of D by k parallel arcs from v to u. Then

(56.8) |δinA′∪C(U)| ≥ k

for each nonempty proper subset U of V . So by Theorem 54.11, A′ ∪ C can
be split into k R − S bibranchings. Let B1, . . . , Bk be the intersections of
these bibranchings with C. We show that each Bi is a directed cut cover,
contradicting our assumption, and therefore finishing the proof.

Suppose that say B1 is not a directed cut cover. Let U be a nonempty
proper subset of V with δout(U) = ∅, and suppose that no arc in B1 enters
U . Note that if U contains any source, it contains all sinks, since no arc of D
leaves U . So U contains no sources or contains all sinks.

First assume that U contains no sources of D. As U contains at least one
sink (as U �= ∅ and δout(U) = ∅), we know U �⊆ R. As A′ ∪ B1 is an R − S
bibranching, we know that

(56.9) δinA′∪B1
(U ∩ S) �= ∅.

As δout
A (U ∩S) = ∅ (since δout

A (U) = ∅ and δinA (R) = ∅), we have δinA′(U ∩S) =
∅. Hence some arc (u, v) in B1 enters U ∩ S. As by assumption (u, v) does
not enter U , (u, v) enters S, and u ∈ U . However, by (56.6), u belongs to X.
This contradicts our assumption that U contains no sources of D.

The case that U contains all sinks is symmetric, and leads again to a
contradiction.

A special case of Theorem 56.1 is Woodall’s conjecture for source-sink
connected digraphs:

Corollary 56.1a. Let D = (V,A) be a source-sink connected digraph. Then
the minimum size of a directed cut is equal to the maximum number of disjoint
directed cut covers.

Proof. This is the case C = A of Theorem 56.1.

Also, a capacitated version can be derived from the theorem:

Corollary 56.1b. Let D = (V,A) be a source-sink connected digraph and let
c : A → Z+ be a capacity function. Then the minimum capacity of a directed
cut is equal to the maximum number of directed cut covers such that no arc
a is in more than c(a) of these directed cut covers.
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Proof. Directly from Theorem 56.1, by adding, for any arc a of D, c(a) arcs
parallel to a, and by taking for C the set of newly added arcs.

Equivalently, in TDI terms:

Corollary 56.1c. If D = (V,A) is a source-sink connected digraph, then
system (56.1) is totally dual integral.

Proof. This is a reformulation of Corollary 56.1b.

Feofiloff [1983] gave a polynomial-time algorithm to find a maximum num-
ber of disjoint directed cut covers in a source-sink connected digraph. Also
the proof above implies a polynomial-time algorithm.

A polynomial-time algorithm for the capacitated case can be derived from
the ellipsoid method (cf. Grötschel, Lovász, and Schrijver [1988]). A semi-
strongly polynomial-time algorithm also follows from Section 57.5 below.

Notes. Frank [1979b] showed the special case of Woodall’s conjecture for digraphs
having an arborescence. (Such digraphs are source-sink connected.) J. Edmonds
observed that this can be derived from Edmonds’ disjoint arborescences theorem
(Corollary 53.1b): Let D = (V, A) have an r-arborescence. Let k be the minimum
size of a directed cut in D. Add to D, for each arc (u, v) of D, k parallel arcs
from v to u. This makes the digraph D′ = (V, A′) with |δin

A′(U)| ≥ k for each
nonempty U ⊆ V \ {r}. Hence D′ has k disjoint r-arborescences (by Edmonds’
disjoint arborescences theorem). Now for any r-arborescence B in D′, the set B ∩A
is a directed cut cover in D, since if U is a nonempty proper subset of V with
δout

A (U) = ∅, then δin
A′(U) = δin

A (U), and hence δin
B∩A(U) = δin

B (U) �= ∅. So we
obtain k disjoint directed cut covers in D.

56.3. Other cases where Woodall’s conjecture is true

Another case where Woodall’s conjecture holds is given in:

Theorem 56.2. Let D = (V,A) be a digraph arising from a directed tree
T = (V,A′) such that (u, v) ∈ A if and only if v is reachable in T from u. Let
c : A → Z+ be a capacity function. Then the minimum capacity of a directed
cut is equal to the maximum number of directed cut covers such that each arc
a is in at most c(a) of them.

Proof. The proof is by induction on the minimum capacity k of a directed
cut. Then it suffices to show that there exists a directed cut cover B with
χB ≤ c and with (c− χB)(C) ≥ k − 1 for each directed cut C.

Let M be the A′ ×A network matrix generated by T and D (cf. Section
13.3). Then the rows of M are precisely the incidence vectors of inclusionwise
minimal directed cuts. So it suffices to show that there exists an integer
solution x of
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(56.10) 0 ≤ x ≤ c,Mx ≥ 1,M(c− x) ≥ (k − 1)1,

since for any such x there is a directed cut cover B satisfying χB ≤ x.
Since M is totally unimodular, it suffices to show that (56.10) has any

solution. Define x := 1
k c. Then x satisfies (56.10), since Mc ≥ k1 and hence

Mx ≥ 1 and M(c− x) = k−1
k Mc ≥ (k − 1)1.

The theorem can also be formulated in terms of partitioning directed cut
k-covers:

Corollary 56.2a. Let D = (V,A) be a digraph such that A contains a directed
spanning tree T with the property that for each arc (u, v) in A there exists a
directed u−v path in T . Then any directed cut k-cover in D can be partitioned
into k directed cut covers.

Proof. This follows from Theorem 56.2 by taking c(u, v) equal to the number
of times there is an arc from u to v in the directed cut k-cover.

A. Frank also noted that Woodall’s conjecture is true if the minimum size
of a directed cut is at most 2:

Theorem 56.3. Let D = (V,A) be a digraph such that each directed cut has
size at least two. Then there are two disjoint directed cut covers.

Proof. As the underlying undirected graph is 2-edge-connected, it has a
strongly connected orientation D′ = (V,A′) (see Corollary 61.3a). Let B1 be
the set of arcs of D that have the same orientation in D′ and let B2 := A\B1.
Then B1 and B2 are disjoint directed cut covers.

Figure 56.1 shows that this cannot be generalized to each directed cut
2-cover being partitionable into two directed cut covers.

56.3a. Further notes

Karzanov [1985c] gave a strongly polynomial-time algorithm to find a minimum-
mean capacity directed cut (cf. McCormick and Ervolina [1994]).
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Strong connectors

A strong connector is a set of new arcs whose addition to a given digraph
D makes it strongly connected. If each potential new arc has been given a
length, then finding a shortest strong connector is NP-complete, even if D
has no arcs at all: finding a directed Hamiltonian circuit is a special case.
(So even if each length is 0 or 1, the problem is NP-complete.)
However, there are a few cases where finding a shortest strong connector
is tractable and where min-max relations and polyhedral characterizations
hold — for instance, if D is source-sink connected. For these digraphs,
packing strong connectors is similarly tractable. These results follow by
reduction to directed cut covers discussed in the previous two chapters.

57.1. Making a directed graph strongly connected

Let (V,A) and (V,B) be digraphs. The set B is called a strong connector for
D if the digraph (V,A ∪B) is strongly connected.

Consider the following strong connectivity augmentation problem:

(57.1) Given a digraph D = (V,A) and a cost function k : V × V → Q,
find a minimum-cost strong connector for D.

Theorem 57.1. The strong connectivity augmentation problem is NP-com-
plete, even if A = ∅.

Proof. The problem of finding a Hamiltonian circuit in a digraph D′ =
(V,A′) is equivalent to the existence of a strong connector for (V, ∅) of cost
|V |, where k(u, v) := 1 if (u, v) ∈ A′, and k(u, v) := 2 otherwise.

Eswaran and Tarjan [1976] showed that if the cost of each new arc equals
1, then there is an easy solution:

Theorem 57.2. If D = (V,A) is an acyclic digraph with at least 2 vertices,
and with ρ sources and σ sinks, then the minimum size of a strong connector
for D equals max{ρ, σ}.
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Proof. To see that the minimum is at least max{ρ, σ}, note that for each
source r one should add at least one arc entering r; similarly, for each sink s
one should add at least one arc leaving s.

That the bound can be attained is shown by induction on max{ρ, σ}.
If there is a pair of a source r and a sink s such that s is not reachable
from r, add an arc (s, r). This reduces both ρ and σ by 1, while maintaining
acyclicity, and induction gives the result.

So we can assume that each sink is reachable from each source. We can
also assume that ρ ≥ σ (otherwise, reverse all orientations). Let r1, . . . , rρ
be the sources and let s1, . . . , sσ be the sinks. Then adding arcs (si, ri) for
i = 1, . . . , σ, and arcs (si, r1) for i = σ+1, . . . , ρ makes D strongly connected,
proving the theorem.

This implies for not necessarily acyclic digraphs:

Corollary 57.2a. Let D = (V,A) be a digraph which is not strongly con-
nected, let ρ be the number of strong components K of D with din(K) = 0
and let σ be the number of strong components K of D with dout(K) = 0.
Then the minimum size of a strong connector for D equals max{ρ, σ}.

Proof. Apply Theorem 57.2 to the digraph obtained from D by contracting
each strong component of D to one vertex.

These proofs also give a polynomial-time algorithm to find a minimum-
size strong connector. Eswaran and Tarjan [1976] describe a linear-time im-
plementation.

57.2. Shortest strong connectors

Let D0 = (V,A0) and D = (V,A) be digraphs. Call a subset A′ of A a D0-
cut (in D) if A′ = δinA (U) for some nonempty proper subset U of V with
δinA0

(U) = ∅.
It is easy to see that a set B of arcs of D is a strong connector for D0

if and only if B intersects each D0-cut in D. The following consequence of
the Lucchesi-Younger theorem was given in Schrijver [1982]. It gives a min-
max relation for the minimum length of a strong connector, if the following
condition holds for digraphs D0 = (V,A0) and D = (V,A):

(57.2) for each (u, v) ∈ A there exist u′, v′ ∈ V such that in D0, u′ is
reachable from u and from v′, and v from v′.

We mention two special cases where this condition is satisfied:

• A is a subset of A−1
0 ,

• D0 is source-sink connected.
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We derive from the Lucchesi-Younger theorem (Schrijver [1982]):

Theorem 57.3. Let D0 = (V,A0) and D = (V,A) be digraphs satisfying
(57.2) and let l : A → Z+ be a length function. Then the minimum length of
a strong connector in D for D0 is equal to the maximum number of D0-cuts
in D such that no arc a of D is in more than l(a) of these cuts.

Proof. We can assume that D0 is acyclic, and that for any u, v ∈ V , if v is
reachable in D0 from u, then (u, v) ∈ A0. (So (v, v) ∈ A0 for each v ∈ V .)

We show the theorem by induction on the number τ of arcs a = (u, v)
of D for which (v, u) �∈ A0. If τ = 0, the theorem is equivalent to Corollary
55.2a.

If τ > 0, choose (u, v) ∈ A with (v, u) �∈ A0. By assumption, there exist
u′, v′ ∈ V with (u, u′), (v′, u′), (v′, v) ∈ A0. Introduce two new vertices, u′′

and v′′, and add arcs

(57.3) (u, u′′), (u′′, u′), (v′′, u′′), (v′′, v), (v′, v′′)

to A0. Moreover, replace arc (u, v) of A by (u′′, v′′), with length equal to
that of the original arc (u, v). Let D̃0 = (Ṽ , Ã0) and D̃ = (Ṽ , Ã) denote the
modified graphs.

This transformation decreases the number τ by 1. Moreover,

(57.4) any subset C of A is a strong connector for D0 if and only if the
set C̃ ⊆ Ã is a strong connector for D̃0.

Here C̃ arises from C by replacing (u, v) by (u′′, v′′) if (u, v) ∈ C. Proving
(57.4) suffices, since it implies that the two numbers in the theorem are
invariant under the transformation.

(57.4) can be seen as follows. Choose C ⊆ A. First let C be a strong
connector for D0. If (u, v) �∈ C, then C̃ = C is also strong connector for D̃0

(since in D̃0 the new vertex u′′ is on a u − u′ path, and the new vertex v′′

is on a v′ − v path). If (u, v) ∈ C, then C̃ = (C \ {(u, v)}) ∪ {(u′′, v′′)} is a
strong connector for D̃0, since A0∪C contains the u−v path (u, u′′), (u′′, v′′),
(v′′, v).

Conversely, let C̃ be a strong connector for D̃0. If (u′′, v′′) �∈ C̃, then
C = C̃ is also a strong connector for D0, since any directed path in Ã0 ∪ C̃
connecting two vertices in V and traversing any of the new vertices u′′, v′′,
can be shortcut to a path avoiding u′′ and v′′.

If (u′′, v′′) ∈ C̃, then C = (C̃ \ {(u′′, v′′)}) ∪ {(u, v)} is a strong connector
for D0, since any directed path in Ã0 ∪ C̃ connecting two vertices in V and
traversing arc (u′′, v′′), must traverse (u, u′′), (u′′, v′′), and (v′′, v), and hence
gives a path in A0 ∪ C, by replacing this by (u, v).

The proof gives also an algorithmic reduction to the problem of find-
ing a minimum-length directed cut cover, and hence (by Theorem 55.5) a
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minimum-length strong connector for D0 can be found in strongly polyno-
mial time.

Theorem 57.3 includes several theorems considered earlier:

• s, t ∈ V and A0 := {(u, v) | u = t or v = s}: max-potential min-work
theorem (Theorem 8.3);

• V is the disjoint union of U and W , A0 := {(u,w) | u ∈ U,w ∈ W} and
A ⊆ {(w, u) | w ∈ W,u ∈ U}: weighted version of the Kőnig-Rado edge
cover theorem(Theorem 19.4);

• A0 = {(v, r) | v ∈ V } for some r ∈ V : optimum arborescence theo-
rem(Theorem 52.3);

• V is the disjoint union of U and W and A0 := {(u,w) | u ∈ U,w ∈
W}:optimum bibranching theorem(Corollary 54.8b);

• A ⊆ {(u, v) | (v, u) ∈ A0}: Lucchesi-Younger theorem (Theorem 55.2).

A cardinality version of the previous theorem is:

Corollary 57.3a. Let D0 = (V,A0) and D = (V,A) be digraphs satisfying
(57.2). Then the minimum size of a strong connector in D for D0 is equal to
the maximum number of disjoint D0-cuts in D.

Proof. This is the case l = 1 of Theorem 57.3.

We formulate this for the special case of source-sink connected digraphs.
Recall that a digraph D = (V,A) is called source-sink connected if each
strong component not left by any arc is reachable by a directed path from
each strong component not entered by any arc.

Corollary 57.3b. Let D0 = (V,A0) and D = (V,A) be digraphs, with D0
source-sink connected. Let l : A → Z+ be a length function. Then the min-
imum length of a strong connector in D for D0 is equal to the maximum
number of D0-cuts in D such that no arc a of D is in more than l(a) of these
cuts.

Proof. Directly from Theorem 57.3, since condition (57.2) is implied by the
fact that D0 is source-sink connected.

The cardinality version is:

Corollary 57.3c. Let D0 = (V,A0) and D = (V,A) be digraphs, with D0
source-sink connected. Then the minimum size of a strong connector in D
for D0 is equal to the maximum number of disjoint D0-cuts in D.

Proof. This is the case l = 1 in Corollary 57.3b.
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57.3. Polyhedrally

Theorem 57.3 can be equivalently formulated in TDI terms:

Corollary 57.3d. Let D0 = (V,A0) and D = (V,A) be digraphs satisfying
(57.2). Then the system

(57.5) (i) xa ≥ 0 a ∈ A,
(ii) x(δinA (U)) ≥ 1 U ⊂ V,U �= ∅, δinA0

(U) = ∅,

is TDI and determines the convex hull of the strong connectors of D0.

Proof. This is a reformulation of Theorem 57.3.

In fact, system (57.5) is box-TDI, as will follow from Theorem 60.3.
By the theory of blocking polyhedra, Corollary 57.3d implies:

Corollary 57.3e. Let D0 = (V,A0) and D = (V,A) satisfy (57.2). Then the
system

(57.6) (i) 0 ≤ xa ≤ 1 a ∈ A,
(ii) x(B) ≥ 1 B strong connector for D0

determines the convex hull of subsets of A containing a D0-cut.

Proof. System (57.6) determines the blocking polyhedron of the polyhedron
determined by (57.5), and hence its vertices are the incidence vectors of sub-
sets of A that intersect all strong connectors for D0. These are precisely the
sets of arcs in A containing a D0-cut.

System (57.6) generally is not TDI, by Figure 56.1. But ifD0 is source-sink
connected, system (57.6) is totally dual integral, as is shown in the following
section.

57.4. Disjoint strong connectors

Similarly to the derivation of Theorem 57.3 from the Lucchesi-Younger theo-
rem, the following generalization can be derived as a consequence of Theorem
56.1 (Schrijver [1982]):

Theorem 57.4. Let D0 = (V,A0) and D = (V,A) be digraphs, with D0
source-sink connected. Then the minimum size of a D0-cut in D is equal to
the maximum number of disjoint strong connectors in D for D0.

Proof. The proof is similar to the derivation of Theorem 57.3 from the Luc-
chesi-Younger theorem. We can assume that for any u, v ∈ V , if v is reachable
in D0 from u, then (u, v) ∈ A0.
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We show the theorem by induction on the number τ of arcs (u, v) of D
for which (v, u) �∈ A0. If τ = 0, the theorem is equivalent to Theorem 56.1
(by taking C := {(u, v) | (v, u) ∈ A}).

If τ > 0, choose (u, v) ∈ A with (v, u) �∈ A0. Let u′ be a sink of D0 with
(u, u′) ∈ A0 and let v′ be a source of D0 with (v′, v) ∈ A0. As D0 is source-
sink connected we know that (v′, u′) ∈ A0. Now introduce two new vertices,
u′′ and v′′, and add arcs

(57.7) (u, u′′), (u′′, u′), (v′′, u′′), (v′′, v), (v′, v′′)

to A0. Moreover, replace arc (u, v) of A by (u′′, v′′). Let D̃0 = (Ṽ , Ã0) and
D̃ = (Ṽ , Ã) denote the modified graphs.

This transformation decreases τ by 1. Again (57.4) holds. This implies
that the two numbers in the theorem are invariant under the transformation.
Hence the theorem follows by induction.

The condition given in this theorem cannot be relaxed to condition (57.2),
as Figure 56.1 shows.

Theorem 57.4 has the following special cases:

• s, t ∈ V and A0 := {(u, v) | u = t or v = s}: Menger’s theorem (Corollary
9.1b);

• V is the disjoint union of U and W , A0 = {(u,w) | u ∈ U,w ∈ W} and
A ⊆ {(w, u) | w ∈ W,u ∈ U}: Gupta’s edge-colouring theorem (Theorem
20.5);

• r ∈ V and A0 = {(v, r) | v ∈ V }: Edmonds’ disjoint arborescences theorem
(Corollary 53.1b);

• V is the disjoint union of U and W and A0 = {(u,w) | u ∈ U,w ∈ W}:
disjoint bibranchings theorem(Theorem 54.11);

• D0 = (V,A0) is source-sink connected and A ⊆ {(u, v) | (v, u) ∈ A0}:
Corollary 56.1b.

An equivalent capacitated version of Theorem 57.4 reads:

Corollary 57.4a. Let D0 = (V,A0) and D = (V,A) be digraphs, with D0
source-sink connected, and let c ∈ Z

A
+ be a capacity function. Then the min-

imum capacity of a D0-cut in D is equal to the maximum number of strong
connectors in D for D0 such that any arc a of D is in at most c(a) of them.

Proof. Directly from Theorem 57.4 by replacing any arc a of D by c(a)
parallel arcs.

Equivalently, in TDI terms:

Corollary 57.4b. Let D0 = (V,A0) and D = (V,A) be digraphs, with D0
source-sink connected. Then system (57.6) is totally dual integral.
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Proof. This is a reformulation of Corollary 57.4a.

57.5. Complexity

As for the complexity of finding disjoint strong connectors for a source-sink
connected digraph, the proof of Theorem 57.4 gives a polynomial-time reduc-
tion to finding a maximum number of disjoint directed cut covers in a subset
of the arcs of a source-sink connected graph. The latter problem is solvable
in polynomial time by the methods of Section 56.2.

The capacitated case can be solved in semi-strongly polynomial time (that
is, where rounding is taken as one arithmetic operation) with the ellipsoid
method (cf. Grötschel, Lovász, and Schrijver [1988]). A combinatorial semi-
strongly polynomial-time algorithm is as follows.

Let be given a source-sink connected digraph D0 = (V,A0), a digraph
D = (V,A), and a capacity function c : A → Z+. We show that an optimum
fractional packing of strong connectors subject to c can be found in strongly
polynomial time. Then an integer packing can be found by rounding (like in
Section 51.4), thus yielding a semi-strongly polynomial-time algorithm.

Define C := {U | ∅ �= U ⊂ V, din
A0

(U) = 0}. To find an optimum fractional
packing, let κ be the minimum of c(δinA (U)) taken over sets U ∈ C. (κ can be
computed with a maximum flow algorithm.) We keep a subcollection U of C
with c(δinA (U)) = κ for each U ∈ U .

Choose a strong connector B ⊆ A for A0 with din
B(U) = 1 for each U ∈ U .

(This can be found in strongly polynomial time, by finding a minimum-length
strong connector for length function l :=

∑
U∈U χ

δinB (U). It exists by Theorem
57.4.)

If c = 0, we are done. If c �= 0, determine a rational λ as follows. First
set λ := min{c(a) | a ∈ B}. Next, iteratively, find a U ∈ C minimizing

(57.8) (c− λ · χB)(δinA (U)).

If this minimum value is less than κ− λ, reset

(57.9) λ :=
c(δinA (U)) − κ

din
B(U) − 1

,

and iterate. If the minimum is equal to κ− λ, this ends the inner iterations.
Then we reset c := c − λ · χB , κ := κ − λ, and U := U ∪ {U}, and (outer)
iterate.

In each outer iteration, the number of arcs a with c(a) > 0 decreases
or the intersecting family generated by U increases (since for the U added
we have din

B(U) > 1). Hence the number of outer iterations is bounded by
|A| + |V |3 (see the argument given in the proof of Theorem 53.9).

In each outer iteration, the number of inner iterations is at most |B|. To
see this, consider any inner iteration, and denote by λ′ and U ′ the objects λ
and U in the next inner iteration. As U minimizes (57.8), we know
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(57.10) (c− λ · χB)(δinA (U)) ≤ (c− λ · χB)(δinA (U ′)).

Moreover, if the next iteration is not the last iteration, then

(57.11) (c− λ′ · χB)(δinA (U ′)) < κ− λ′ = (c− λ′ · χB)(δinA (U))

(the equality follows from definition (57.9), replacing λ by λ′). Now (57.10)
and (57.11) imply

(57.12) λ′(din
B(U) − din

B(U ′)) < c(δinA (U)) − c(δinA (U ′))
≤ λ(din

B(U) − din
B(U ′)).

Since λ′ < λ (as (57.8) is less than κ− λ), we have din
B(U ′) < din

B(U). Hence
the number of inner iterations is at most |B|.

57.5a. Crossing families

Theorem 57.4 and part of Theorem 57.3 were generalized by Schrijver [1983b]. Let
C be a crossing family of subsets of a set V ; that is:

(57.13) if U, W ∈ C and U ∩ W �= ∅ and U ∪ W �= V , then U ∩ W ∈ C and
U ∪ W ∈ C.

Let D = (V, A) be a digraph. Call B ⊆ A a C-cut if B = δin(U) for some U ∈ C.
Call B ⊆ A a C-cover if B intersects each C-cut.

Let C be a crossing family of nonempty proper subsets of a set V . In Schrijver
[1983b] it is shown that the following are equivalent:

(57.14) (i) for each digraph D = (V, A), the minimum size of a C-cut is equal
to the maximum number of disjoint C-covers;

(ii) for each digraph D = (V, A) and each length function l : A → Z+,
the minimum length of a C-cover is equal to the maximum number
of C-cuts such that no arc a is in more than l(a) of these cuts;

(iii) there are no V1, V2, V3, V4, V5 in C with V1 ⊆ V3 ⊆ V5, V1 ⊆ V2,
V2 ∪ V3 = V , V3 ∩ V4 = ∅, and V4 ⊆ V5.

The configuration described in (iii) is depicted in Figure 57.1. As directed graphs
may have parallel arcs, property (57.14)(i) is equivalent to its capacitated version.
So condition (57.14)(i) is equivalent to the total dual integrality of

(57.15) xa ≥ 0 for a ∈ A,
x(B) ≥ 1 for each C-cover B ⊆ A,

for each digraph (V, A). Similarly, condition (57.14)(ii) is equivalent to the total
dual integrality of

(57.16) xa ≥ 0 for a ∈ A,
x(B) ≥ 1 for each C-cut B ⊆ A,

for each digraph (V, A).
Frank [1979b] showed that (57.14)(i) holds if C is an intersecting family. (For

any intersecting family C, (iii) holds if V �∈ C, which we may assume without loss
of generality.)
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Figure 57.1
The configuration excluded in (57.14)(iii). In this Venn-diagram,
the collection is represented by the interiors of the ellipses and by the
exteriors of the rectangles.

In (57.14)(i) and (ii) we require the min-max relation for cuts and covers to
hold for all directed graphs on V . It is a more general problem to characterize pairs
(C, D) of a crossing family C on V and a directed graph D = (V, A) having the
properties described in (57.14)(i) and (ii), respectively. For example, the Lucchesi-
Younger theorem (Theorem 55.2), and its extension by Edmonds and Giles [1977],
assert that if C is a crossing family on V and no arc of D leaves any set U ∈ C,
then (C, D) has the properties described in (ii). However, the example in Figure
56.1 shows that it generally does not have the property described in (57.14)(i). So
for fixed graphs D, (57.14)(i) and (ii) are not equivalent.

Theorem 60.3 implies that a pair (C, D) has property (ii) if C is a crossing family
and D a directed graph such that if U1, U2, U3 ∈ C with U1 ⊆ V \ U2 ⊆ U3, then no
arc enters both U1 and U3. This generalizes the Lucchesi-Younger theorem.

We show the equivalence of (57.14)(ii) and (iii), for which we show a lemma
indicating that condition (57.14)(iii) has a natural characterization in terms of total
unimodularity.

For any collection C of subsets of a set V , let A be the collection of all ordered
pairs of elements of V (making the complete directed graph D = (V, A)), and let
MC be the C × A matrix with

(57.17) (MC)U,a :=
{

1 if a enters U ,
0 otherwise.

Lemma 57.5α. Let C be a cross-free collection of nonempty proper subsets of a set
V . Then MC is totally unimodular if and only if C satisfies (57.14)(iii).

Proof. To see necessity, let MC be totally unimodular. Suppose that condition
(57.14)(iii) is violated. So there exist V1, V2, V3, V4, V5 in C with V1 ⊆ V3 ⊆ V5,
V1 ⊆ V2, V2 ∪ V3 = V , V3 ∩ V4 = ∅, and V4 ⊆ V5. Choose v1 ∈ V1, v2 ∈ V \ V2,
v4 ∈ V4, and v5 ∈ V \ V5. Define

(57.18) A0 := {(v2, v1), (v4, v1), (v2, v4), (v5, v4), (v5, v2)}

(cf. Figure 57.2). Consider the submatrix of MC with rows indexed by V1, . . . , V5,
and columns indexed by the arcs in A0. Then, as one easily checks:
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Figure 57.2

(57.19) each set in C0 is entered by exactly two arcs from A0, and each arc in
A0 enters exactly two sets in C0.

So this submatrix has exactly two 1’s in each row and each column, and hence is
not totally unimodular.

To see sufficiency, let C satisfy (57.14)(iii). To prove that MC is totally unimod-
ular, we use the following characterization of Ghouila-Houri [1962b] (cf. Theorem
19.3 in Schrijver [1986b]): a matrix M is totally unimodular if and only if each
collection R of rows of M can be partitioned into classes R1 and R2 such that the
sum of the rows in R1, minus the sum of the rows in R2, is a vector with entries
0, ±1 only.

To check this condition, we can assume that we have chosen all rows of MC (as
any subset of the rows gives a matrix of the same type as MC). Make a digraph
D = (C, A′), where A′ consists of all pairs (T, U) from C such that

(57.20) T ⊂ U , and there is no W ∈ C with T ⊂ W ⊂ U .

We show that the undirected graph underlying D′ is bipartite, which will verify
Ghouila-Houri’s criterion: let C1 and C2 be the two colour classes; then any arc
a = (u, v) of D enters a chain of subsets in C (as C is cross-free), which subsets are
alternatingly in C1 and C2. Hence the sum of the rows with index in C1 minus the
sum of the rows with index in C2, has an entry 0 or ±1 in position a.

To show that D′ is bipartite, suppose that it has an (undirected) circuit of odd
length. Since this circuit is odd, and since D′ is acyclic, it follows that there are
distinct U0, U1, . . . , Uk, Uk+1 in C, with k ≥ 3, such that

(57.21) (U1, U0), (U1, U2), (U2, U3), . . . , (Uk−1, Uk), (Uk+1, Uk)

belong to A′. So U0 and U2 are distinct minimal sets in C containing U1 as a
subset. As C is cross-free, U0 ∪ U2 = V . Similarly, Uk−1 and Uk+1 are distinct
maximal subsets of Uk, and hence Uk−1 ∩ Uk+1 = ∅. As U2 ⊆ Uk−1, it follows that
U1 ⊆ U0 ∩ U2, U0 ∪ U2 = V , U2 ∪ Uk+1 ⊆ Uk, and U2 ∩ Uk+1 = ∅. This contradicts
(57.14)(iii).

This gives the box-TDI result:

Theorem 57.5. Let C be a crossing family of nonempty proper subsets of a set V
satisfying (57.14)(iii) and let D = (V, A) be a digraph. Then the system
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(57.22) xa ≥ 0 for a ∈ A,
x(δin(U)) ≥ 1 for U ∈ C,

is box-TDI.

Proof. Let w : A → R+. Consider the maximum value of

(57.23)
∑

U∈C
yU

where y : C → R+ satisfies

(57.24)
∑

U∈C
yUχδin(U) ≤ w.

Choose y : C → R+ attaining the maximum, such that

(57.25)
∑

U∈C
yU |U ||V \ U |

is minimized. We show that the collection F := {U ∈ C | yU > 0} is cross-free; that
is, for all T, U ∈ F one has

(57.26) T ⊆ U or U ⊆ T or T ∩ U = ∅ or T ∪ U = V .

Suppose that this is not true. Let α := min{yT , yU}. Decrease yT and yU by α,
and increase yT∩U and yT∪U by α. Now (57.24) is maintained, and (57.23) did not
change. However, (57.25) decreases (Theorem 2.1), contradicting our minimality
assumption.

So F is cross-free. As MF is totally unimodular by Lemma 57.5α, this gives the
box-total dual integrality of (57.22) by Theorem 5.35.

Condition (57.14)(iii) is necessary and sufficient for integrality of the polyhe-
dron:

Corollary 57.5a. For any crossing family C of nonempty proper subsets of a set
V , (57.22) defines an integer polyhedron for each digraph D = (V, A) if and only if
condition (57.14)(iii) holds.

Proof. Sufficiency follows from Theorem 57.5. To see necessity, suppose that
(57.22)(iii) does not hold. Let V1, . . . , V5 in C with V1 ⊆ V3 ⊆ V5, V1 ⊆ V2,
V2 ∪ V3 = V , V3 ∩ V4 = ∅, and V4 ⊆ V5. Let C0 := {V1, . . . , V5} and C1 := C \ C0.
Choose v1 ∈ V1, v2 ∈ V \ V2, v4 ∈ V4, v5 ∈ V \ V5. Let D = (V, A) be a digraph,
with A = A0 ∪ A1, where A0 is as defined in (57.18) and where

(57.27) A1 := {(u, v) | u, v ∈ V such that (u, v) enters no Vi (i = 1, . . . , 5)}.

Then

(57.28) each set in C1 is either entered by at least one arc in A1 or by at least
two arcs in A0.

To see this, by definition of A1, a subset U of V is entered by no arc in A1 if and
only if U belongs to the lattice generated by C0 (with respect to inclusion). This
lattice consists of the sets
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(57.29) ∅, V, V1, . . . , V5, V1 ∪ V4, V2 ∩ V3, (V2 ∩ V3) ∪ V4, V3 ∪ V4, V2 ∩ V5,

as (57.29) is closed under taking unions and intersections, and as each set in (57.29)
is generated by taking unions and intersections from C0. Since each of the sets in
(57.29), except ∅ and V , is entered by at least two arcs in A0, we have (57.28).

(57.19) and (57.28) give:

(57.30) any C-cover in A contains at least three arcs in A0, and any C-cut
contains at least one arc in A1 or at least two arcs in A0.

Define x : A → Q be x := χA1 + 1
2χA0 and a length function l : A → Z by l := χA0 .

Then x satisfies (57.22) and lTx = 5
2 . However, l(C) ≥ 3 for each C-cover C. So

(57.22) determines no integer polyhedron.

Theorem 57.5 and Corollary 57.5a imply the equivalence of (57.14)(ii) and (iii).
For the proof of the equivalence of (57.14)(i) and (iii), we refer to Schrijver [1983b].
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The traveling salesman problem

The traveling salesman problem (TSP) asks for a shortest Hamiltonian cir-
cuit in a graph. It belongs to the most seductive problems in combinatorial
optimization, thanks to a blend of complexity, applicability, and appeal to
imagination.
The problem shows up in practice not only in routing but also in vari-
ous other applications like machine scheduling (ordering jobs), clustering,
computer wiring, and curve reconstruction.
The traveling salesman problem is an NP-complete problem, and no
polynomial-time algorithm is known. As such, the problem would not fit
in the scope of the present book. However, the TSP is closely related to
several of the problem areas discussed before, like 2-matching, spanning
tree, and cutting planes, which areas actually were stimulated by ques-
tions prompted by the TSP, and often provide subroutines in solving the
TSP.
Being NP-complete, the TSP has served as prototype for the development
and improvement of advanced computational methods, to a large extent
utilizing polyhedral techniques. The basis of the solution techniques for
the TSP is branch-and-bound, for which good bounding techniques are
essential. Here ‘good’ is determined by two, often conflicting, criteria: the
bound should be tight and fast to compute. Polyhedral bounds turn out to
be good candidates for such bounds.

58.1. The traveling salesman problem

Given a graph G = (V,E), a Hamiltonian circuit in G is a circuit C with
V C = V . The symmetric traveling salesman problem (TSP) is: given a graph
G = (V,E) and a length function l : E → R, find a Hamiltonian circuit C of
minimum length.

The directed version is as follows. Given a digraph D = (V,A), a directed
Hamiltonian circuit, or just a Hamiltonian circuit, in D is a directed circuit C
with V C = V . The asymmetric traveling salesman problem (TSP or ATSP)
is: given a digraph D = (V,A) and a length function l : A → R, find a
Hamiltonian circuit C of minimum length.
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In the context of the traveling salesman problem, vertices are sometimes
called cities, and a Hamiltonian circuit a traveling salesman tour. If the ver-
tices are represented by points in the plane and each pair of vertices is con-
nected by an edge of length equal to the Euclidean distance between the two
points, one speaks of the Euclidean traveling salesman problem.

58.2. NP-completeness of the TSP

The problem of finding a Hamiltonian circuit and (hence) the traveling sales-
man problem are NP-complete. Indeed, in Theorem 8.11 and Corollary 8.11b
we proved the NP-completeness of the directed and undirected Hamiltonian
circuit problem. This implies the NP-completeness of the TSP, both in the
undirected and the directed case:

Theorem 58.1. The symmetric TSP and the asymmetric TSP are NP-
complete.

Proof. Given an undirected graph G = (V,E), define l(e) := 0 for each edge
e. Then G has a Hamiltonian circuit if and only if G has a Hamiltonian circuit
of length ≤ 0. This reduces the undirected Hamiltonian circuit problem to
the symmetric TSP.

One similarly shows the NP-completeness of the asymmetric TSP.

This method also gives that the symmetric TSP remains NP-complete if
the graph is complete and the length function satisfies the triangle inequality :

(58.1) l(uw) ≤ l(uv) + l(vw) for all u, v, w ∈ V .

Indeed, to test if a graphG = (V,E) has a Hamiltonian circuit, define l(uv) :=
1 if u and v are adjacent and l(uv) := 2 otherwise (for u �= v). Then G has
a Hamiltonian circuit if and only if there exists a traveling salesman tour of
length ≤ |V |.

Garey, Graham, and Johnson [1976] and Papadimitriou [1977a] showed
that even the Euclidean traveling salesman problem is NP-complete. (Simi-
larly for several other metrics, like l1.) More on complexity can be found in
Section 58.8b below.

58.3. Branch-and-bound techniques

The traveling salesman problem is NP-complete, and no polynomial-time
algorithm is known. Most exact methods known are essentially enumerative,
aiming at minimizing the enumeration. A general framework is that of branch-
and-bound. The idea of branch-and-bound applied to the traveling salesman
problem roots in papers of Tompkins [1956], Rossman and Twery [1958],
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and Eastman [1959]. The term ‘branch and bound’ was introduced by Little,
Murty, Sweeney, and Karel [1963].

A rough, elementary description is as follows. Let G = (V,E) be a graph
and let l : E → R be a length function. For any set C of Hamiltonian circuits,
let µ(C) denote the minimum length of the Hamiltonian circuits in C.

Keep a collection Γ of sets of Hamiltonian circuits and a function λ : Γ →
R satisfying:

(58.2) (i)
⋃
Γ contains a shortest Hamiltonian circuit;

(ii) λ(C) ≤ µ(C) for each C ∈ Γ .

A typical iteration is:

(58.3) Select a collection C ∈ Γ with λ(C) minimal. Either find a circuit
C ∈ C with l(C) = λ(C) or replace C by (zero or more) smaller
sets such that (58.2) is maintained.

Obviously, if we find C ∈ C with l(C) = λ(C), then C is a shortest Hamilto-
nian circuit.

This method always terminates, but the method and its efficiency heavily
depend on how the details in this framework are filled in: how to bound (that
is, how to define and calculate λ(C)), how to branch (that is, which smaller
sets replace C), and how to find the circuit C.

As for branching, the classes C in Γ can be stored implicitly: for example,
by prescribing sets B and F of edges such that C consists of all Hamiltonian
circuits whose edge set contains B and is disjoint from F . Then we can split C
by selecting an edge e ∈ E\(B∪F ) and replacing C by the classes determined
by B ∪ {e}, F and by B,F ∪ {e} respectively.

As for bounding, one should choose λ(C) that is fast to compute and close
to µ(C). For this, polyhedral bounds seem good candidates, and in the coming
sections we consider a number of them.

For finding the circuit C ∈ C, a heuristic or exact method can be used. If
it returns a circuit C with l(C) > λ(C), we can delete all sets C′ from Γ with
λ(C′) ≥ l(C), thus saving computer space.

58.4. The symmetric traveling salesman polytope

The (symmetric) traveling salesman polytope of an undirected graph G =
(V,E) is the convex hull of the incidence vectors (in R

E) of the Hamiltonian
circuits. The TSP is equivalent to minimizing a function lTx over the traveling
salesman polytope. Hence this is NP-complete.

The NP-completeness of the TSP also implies that, unless NP=co-NP, no
description in terms of inequalities of the traveling salesman polytope may be
expected (Corollary 5.16a). In fact, as deciding if a Hamiltonian circuit exists
is NP-complete, it is NP-complete to decide if the traveling salesman polytope
is nonempty. Hence, if NP�=co-NP, there exist no inequalities satisfied by
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the traveling salesman polytope such that their validity can be certified in
polynomial time and such that they have no common solution.

58.5. The subtour elimination constraints

Polynomial-time computable lower bounds on the minimum length of a
Hamiltonian circuit can be obtained by including the traveling salesman poly-
tope in a larger polytope (a relaxation) over which lTx can be minimized in
polynomial time.

Dantzig, Fulkerson, and Johnson [1954a,1954b] proposed the following
relaxation:

(58.4) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(δ(v)) = 2 for each vertex v,
(iii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V .

The integer solutions of (58.4) are precisely the incidence vectors of the Hamil-
tonian circuits. If (ii) holds, then (iii) is equivalent to:

(58.5) (iii’) x(E[U ]) ≤ |U | − 1 for each U ⊆ V with ∅ �= U �= V .

These conditions are called the subtour elimination constraints.
It can be shown with the ellipsoid method that the minimum of lTx over

(58.4) can be found in strongly polynomial time (cf. Theorem 5.10). For this
it suffices to show that the conditions (58.4) can be tested in polynomial
time. This is easy for (i) and (ii). If (i) and (ii) are satisfied, we can test (iii)
by taking x as capacity function, and test if there is a cut δ(U) of capacity
less than 2, with ∅ �= U �= V .

No combinatorial polynomial-time algorithm is known to minimize lTx
over (58.4). In practice, one can apply the simplex method to minimize lTx
over the constraints (i) and (ii), test if the solution satisfies (iii) by finding
a cut δ(U) minimizing x(δ(U)). If this cut has capacity at least 2, then x
minimizes lTx over (58.4). Otherwise, we can add the constraint x(δ(U)) ≥ 2
to the simplex tableau (a cutting plane), and iterate. (This method is implicit
in Dantzig, Fulkerson, and Johnson [1954b].)

Branch-and-bound methods that incorporate such a cutting plane method
to obtain bounds and that extend the cutting plane found to all other nodes
of the branching tree to improve their bounds, are called branch-and-cut.

System (58.4) generally is not enough to determine the traveling salesman
polytope: for the Petersen graph G = (V,E), the vector x with xe = 2

3 for
each e ∈ E satisfies (58.4) but is not in the traveling salesman polytope of G
(as it is empty).

Wolsey [1980] (also Shmoys and Williamson [1990]) showed that if G is
complete and the length function l satisfies the triangle inequality, then the
minimum of lTx over (58.4) is at least 2

3 times the minimum length of a
Hamiltonian circuit. It is conjectured (cf. Carr and Vempala [2000]) that
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for any length function, a lower bound of 3
4 holds (which is best possible).

Related results are given by Papadimitriou and Vempala [2000] and Boyd
and Labonté [2002] (who verified the conjecture for n ≤ 10).

Maurras [1975] and Grötschel and Padberg [1979b] showed that, if G is
the complete graph on V and 2 ≤ |U | ≤ |V |−2, then the subtour elimination
constraint (58.4)(iii) determines a facet of the traveling salesman polytope.

Chvátal [1989] showed the NP-completeness of recognizing if the bound
given by the subtour elimination constraints is equal to the length of a short-
est tour. He also showed that there is no nontrivial upper bound on the
relative error of this bound.

58.6. 1-trees and Lagrangean relaxation

Held and Karp [1971] gave a method to find the minimum value of lTx over
(58.4), with the help of 1-trees and Lagrangean relaxation.

Let G = (V,E) be a graph and fix a vertex, say 1, of G. A 1-tree is a subset
F of E such that |F ∩ δ(1)| = 2 and such that F \ δ(1) forms a spanning tree
on V \ {1}. So each Hamiltonian circuit is a 1-tree with all degrees equal to
2.

It is easy to find a shortest 1-tree F , as it consists of a shortest spanning
tree of the graph G − 1, joined with the two shortest edges incident with
vertex 1. Corollary 50.7c implies that the convex hull of the incidence vectors
of 1-trees is given by:

(58.6) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(1)) = 2,
(iii) x(E[U ]) ≤ |U | − 1 for each nonempty U ⊆ V \ {1},
(iv) x(E) = |V |.

Then (58.4) is equivalent to (58.6) added with (58.4)(ii).
The Lagrangean relaxation approach to find the minimum of lTx over

(58.4) is based on the following result. For any y ∈ R
V define

(58.7) ly(e) := l(e) − yu − yv

for e = uv ∈ E, and define

(58.8) f(y) := 2y(V ) + min
F

ly(F ),

where F ranges over all 1-trees. Christofides [1970] and Held and Karp [1970]
observed that for each y ∈ R

V :

(58.9) f(y) ≤ the minimum length of a Hamiltonian circuit,

since if C is a shortest Hamiltonian circuit, then f(y) ≤ 2y(V )+ly(C) = l(C).
The function f is concave. Since a shortest 1-tree can be found fast, also

f(y) can be computed fast. Held and Karp [1970] showed:
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Theorem 58.2. The minimum value of lTx over (58.4) is equal to the max-
imum value of f(y) over y ∈ R

V .

Proof. This follows from general linear programming theory. Let Ax = b be
system (58.4)(ii) and let Cx ≥ d be system (58.6). As (58.4) is equivalent to
Ax = b, Cx ≥ d, we have, using LP-duality:

(58.10) min
Ax = b
Cx ≥ d

lTx = max
y, z

z ≥ 0
yTA + zTC = lT

yTb+ zTd

= max
y

(yTb+ max
z ≥ 0

zTC = lT − yTA

zTd) = max
y

(
yTb+ min

Cx≥d
(lT − yTA)x

)

= max
y

f(y).

The last inequality holds as Cx ≥ d determines the convex hull of the inci-
dence vectors of 1-trees.

This translates the problem of minimizing lTx over (58.4) to finding the
maximum of the concave function f . We can find this maximum with a
subgradient method (cf. Chapter 24.3 of Schrijver [1986b]). The vector y
(the Lagrangean multipliers) can be used as a correction mechanism to urge
the 1-tree to have degree 2 at each vertex. That is, if we calculate f(y), and
see that the 1-tree F minimizing ly(F ) has degree more than 2 at a vertex
v, we can increase ly on δ(v) by decreasing yv. Similarly, if the degree is less
than 2, we can increase yv. This method was proposed by Held and Karp
[1970,1971].

The advantage of this approach is that one need not implement a lin-
ear programming algorithm with a constraint generation technique, but that
instead it suffices to apply the more elementary tools of finding a shortest
1-tree and updating y. More can be found in Jünger, Reinelt, and Rinaldi
[1995].

58.7. The 2-factor constraints

A strengthening of relaxation (58.4) is obtained by using the facts that each
Hamiltonian circuit is a 2-factor and that the convex hull of the incidence
vectors of 2-factors is known (Corollary 30.8a) (this idea goes back to Robin-
son [1949] for the asymmetric TSP and Bellmore and Malone [1971] for the
symmetric TSP, and was used for the symmetric TSP by Grötschel [1977a]
and Pulleyblank [1979b]):

(58.11) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(δ(v)) = 2 for each vertex v,
(iii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V ,
(iv) x(δ(U) \ F ) − x(F ) ≥ 1 − |F |

for U ⊆ V , F ⊆ δ(U), F matching, |F | odd.
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Since a minimum-length 2-factor can be found in polynomial time, the in-
equalities (i), (ii), and (iv) can be tested in polynomial time (cf. Theorem
32.5). Hence the minimum of lTx over (58.11) can be found in strongly pol-
ynomial time.

System (58.11) generally is not enough to determine the traveling sales-
man polytope, as can be seen, by taking the Petersen graph G = (V,E) and
xe := 2

3 for each edge e.
Grötschel and Padberg [1979b] showed that, for complete graphs, each

of the inequalities (58.11)(iv) determines a facet of the traveling salesman
polytope (if |F | ≥ 3). Boyd and Pulleyblank [1991] studied optimization over
(58.11).

58.8. The clique tree inequalities

Grötschel and Pulleyblank [1986] found a large class of facet-inducing inequal-
ities, the ‘clique tree inequalities’, that generalize the ‘comb inequalities’ (see
below), which generalize both the subtour elimination constraints (58.4)(iii)
and the 2-factor constraints (58.11)(iv). However, no polynomial-time test of
clique tree inequalities is known.

A clique tree inequality is given by:

(58.12)
r∑

i=1

x(δ(Hi)) +
s∑

j=1

x(δ(Tj)) ≥ 2r + 3s− 1,

where H1, . . . , Hr are pairwise disjoint subsets of V and T1, . . . , Ts are pair-
wise disjoint proper subsets of V such that

(58.13) (i) no Tj is contained in H1 ∪ · · · ∪Hr,
(ii) each Hi intersects an odd number of the Tj ,
(iii) the intersection graph of H1, . . . , Hr, T1, . . . , Ts is a tree.

(Here, the intersection graph is the graph with verticesH1, . . . , Hr, T1, . . . , Ts,
two of them being adjacent if and only if they intersect. Each Hi is called a
handle and each Tj a tooth.)

Theorem 58.3. The clique tree inequality (58.12) is valid for the traveling
salesman polytope.

Proof. It suffices to show that each Hamiltonian circuit C satisfies:

(58.14)
r∑

i=1

dC(Hi) +
s∑

j=1

dC(Tj) ≥ 2r + 3s− 1.

We apply induction on r, the case r = 0 being easy (as it implies s = 1). For
each i = 1, . . . , r, let βi be the number of Tj intersecting Hi.
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If there is an i with dC(Hi) ≥ βi, say i = 1, then, by parity, dC(H1) ≥ β1+
1. The sets H2, . . . , Hr, T1, . . . , Ts fall apart into β1 collections of type (58.13),
to which we can apply induction. Adding up the inequalities obtained, we get:

(58.15)
r∑

i=2

dC(Hi) +
s∑

j=1

dC(Tj) ≥ 2(r − 1) + 3s− β1.

Then (58.14) follows, as dC(H1) ≥ β1 + 1.
So we can assume that dC(Hi) ≤ βi −1 for each i. For all i, j, let αi,j := 1

if Tj ∩ Hi �= ∅ and C has no edge connecting Tj ∩ Hi and Tj \ Hi, and let
αi,j := 0 otherwise. Then

(58.16) dC(Tj) ≥ 2 + 2
r∑

i=1

αi,j ,

since C restricted to Tj falls apart into at least 1 +
∑r

i=1 αi,j components
(using (58.13)(i)).

Moreover, for each i = 1, . . . , r, there exist at least βi − dC(Hi) indices j
with αi,j = 1. Hence

(58.17)
s∑

j=1

dC(Tj) ≥ 2s+ 2
r∑

i=1

s∑

j=1

αi,j ≥ 2s+ 2
r∑

i=1

(βi − dC(Hi))

≥ 2s+ r +
r∑

i=1

(βi − dC(Hi)) = 2r + 3s− 1 −
r∑

i=1

dC(Hi),

since
∑r

i=1 βi = r + s − 1, as the intersection graph of the Hi and the Tj is
a tree with r + s vertices, and hence with r + s− 1 edges.

(58.17) implies (58.14).

Notes. Grötschel and Pulleyblank [1986] also showed that, if G is a complete graph,
then any clique tree inequality determines a facet if and only if each Hi intersects
at least three of the Tj .

The clique tree inequalities are not enough to determine the traveling salesman
polytope, as is shown again by taking the Petersen graph G = (V, E) and xe := 2

3
for all e ∈ E.

The special case r = 1 of the clique tree inequality is called a comb inequality,
and was introduced by Grötschel and Padberg [1979a] and proved to be facet-
inducing (if G is complete and s ≥ 3) by Grötschel and Padberg [1979b].

The special case of the comb inequality with |H1 ∩Tj | = 1 for all j = 1, . . . , s is
called a Chvátal comb inequality, introduced by Chvátal [1973b]. The special case of
the Chvátal comb inequalities with |Tj | = 2 for each j = 1, . . . , s gives the 2-factor
constraints (58.11)(iv) (since 2x(F ) +

∑
f∈F x(δ(f)) = 4|F |).

No polynomial-time algorithm is know to test the clique tree inequalities, or the
comb inequalities, or the Chvátal comb inequalities. Carr [1995,1997] showed that
for each constant K, there is a polynomial-time algorithm to test the clique tree
inequalities with at most K teeth and handles. (This can be done by first fixing
intersection points of the Hi ∩ Tj (if nonempty) and points in Tj \ (H1 ∪ · · · ∪ Hr),
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and next finding minimum-capacity cuts separating the appropriate sets of these
points (taking x as capacity function). We can make them disjoint where necessary
by the usual uncrossing techniques. As K is fixed, the number of vertices to be
chosen is also bounded by a polynomial in |V |.)

Letchford [2000] gave a polynomial-time algorithm for testing a superclass of the
comb inequalities in planar graphs. Related results are given in Carr [1996], Fleis-
cher and Tardos [1996,1999], Letchford and Lodi [2002], and Naddef and Thienel
[2002a,2002b].

58.8a. Christofides’ heuristic for the TSP

Christofides [1976] designed the following algorithm to find a short Hamiltonian
circuit in a complete graph G = (V, E) (generally not the shortest however). It
assumes a nonnegative length function l satisfying the following triangle inequality :

(58.18) l(uw) ≤ l(uv) + l(vw)

for all u, v, w ∈ V .
First determine a shortest spanning tree T (with the greedy algorithm). Next,

let U be the set of vertices that have odd degree in T . Find a shortest perfect
matching M on U . Now ET ∪ M forms a set of edges such that each vertex has
even degree. (If an edge occurs both in ET and in M , we take it as two parallel
edges.) So we can make a closed path C such that each edge in ET ∪M is traversed
exactly once. Then C traverses each vertex at least once. By shortcutting we obtain
a Hamiltonian circuit C′ with l(C′) ≤ l(C).

How far away is the length of C′ from the minimum length µ of a Hamiltonian
circuit?

Theorem 58.4. l(C′) ≤ 3
2µ.

Proof. Let C′′ be a shortest Hamiltonian circuit. Then l(T ) ≤ l(C′′) = µ, since C′′

contains a spanning tree. Also, l(M) ≤ 1
2 l(C′′) = 1

2µ, since we can split C′′ into
two collections of paths, each having U as set of end vertices. They give two perfect
matchings on U , of total length at most l(C′′) (by the triangle inequality (58.18)).
Hence one of these matchings has length at most 1

2 l(C′′). So l(M) ≤ 1
2 l(C′′) = 1

2µ.
Combining the two inequalities, we obtain

(58.19) l(C′) ≤ l(C) = l(T ) + l(M) ≤ 3
2µ,

which proves the theorem.

The factor 3
2 seems quite large, but it is the smallest factor for which a

polynomial-time method is known. Don’t forget moreover that it is a worst-case
bound, and that in practice (or on average) the algorithm might have a much
better performance.

Wolsey [1980] showed more strongly that (if l satisfies the triangle inequality)
the length of the tour found by Christofides’ algorithm, is at most 3

2 times the
lower bound based on the subtour elimination constraints (58.4). If all distances
are 1 or 2, Papadimitriou and Yannakakis [1993] gave a polynomial-time algorithm
with worst-case factor 7

6 . Hoogeveen [1991] analyzed the behaviour of Christofides’
heuristic when applied to finding shortest Hamiltonian paths.
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58.8b. Further notes on the symmetric traveling salesman problem

Adjacency of vertices of the symmetric traveling salesman polytope of a graph
G = (V, E) is co-NP-complete, as was shown by Papadimitriou [1978].

Norman [1955] remarked that the symmetric traveling salesman polytope of the
complete graph Kn has dimension 1

2n(n−3) =
(

n
2

)
−n (if n ≥ 3). Proofs were given

by Maurras [1975] and Grötschel and Padberg [1979a].
The symmetric traveling salesman polytopes of Kn for small n were studied by

Norman [1955], Boyd and Cunningham [1991], Christof, Jünger, and Reinelt [1991]
(n = 8), and Naddef and Rinaldi [1992,1993]. Weinberger [1974a] showed that the
up hull of the symmetric traveling salesman polytope of K6 is not determined by
inequalities with 0, 1 coefficients only.

Rispoli and Cosares [1998] showed that the diameter of the symmetric traveling
salesman polytope of a complete graph is at most 4. Grötschel and Padberg [1985]
conjecture that it is at most 2. (See Sierksma and Tijssen [1992] and Sierksma,
Teunter, and Tijssen [1995] for supporting results.) Further work on the symmetric
traveling salesman polytope includes Naddef and Rinaldi [1993], Queyranne and
Wang [1993], Carr [2000], Cook and Dash [2001], and Naddef and Pochet [2001].

Rispoli [1998] showed that the monotonic diameter of the symmetric traveling
salesman polytope of Kn is �n/2� − 1 if n ≥ 6. (The monotonic diameter of a
polytope is the minimum λ such that for each linear function lTx and each pair of
vertices y, z such that lTx is maximized over P at z, there is a y − z path along
vertices and edges of the polytope such that the function lTx is monotonically
nondecreasing and such that the number of edges in the path is at most λ.)

Sahni and Gonzalez [1976] showed that for any constant c, unless P=NP, there
is no polynomial-time algorithm finding a Hamiltonian circuit of length at most c
times the minimum length of a Hamiltonian circuit. Johnson and Papadimitriou
[1985a] showed that unless P=NP there is no fully polynomial approximation scheme
for the Euclidean traveling salesman problem (that is, there is no algorithm that
gives for any ε > 0, a Hamiltonian circuit of length at most 1+ε times the minimum
length of a Hamiltonian circuit, with running time bounded by a polynomial in the
size of the problem and in 1/ε).

However, Arora [1996,1997,1998] showed that for the Euclidean TSP there is
a polynomial approximation scheme: there is an algorithm that gives, for any n
vertices in the plane and any ε > 0, a Hamiltonian circuit of length at most 1 + ε
times the minimum length of a Hamiltonian circuit, in nO(1/ε) time. The method
also applies to several other metrics. Mitchell [1999] noticed that the methods of
Mitchell [1996] imply similar results. Related work is reported in Trevisan [1997,
2000], Rao and Smith [1998], and Dumitrescu and Mitchell [2001]. Earlier work on
plane TSP includes Karp [1977], Steele [1981], Moran [1984], Karloff [1989], and
Clarkson [1991].

A polynomial-time approximation scheme for the traveling salesman problem
where the length is determined by the shortest path metric in a weighted planar
graph was given by Arora, Grigni, Karger, Klein, and Woloszyn [1998] (extending
the unweighted case proved by Grigni, Koutsoupias, and Papadimitriou [1995]).

Yannakakis [1988,1991] showed that the traveling salesman problem on Kn can-
not be expressed by a linear program of polynomial size that is invariant under the
symmetric group on Kn. (A similar negative result was proved by Yannakakis for
the perfect matching polytope.)
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More valid inequalities for the symmetric traveling salesman polytope were
given by Grötschel [1980a], Papadimitriou and Yannakakis [1984], Fleischmann
[1988], Boyd and Cunningham [1991], Naddef [1992], Naddef and Rinaldi [1992],
and Boyd, Cunningham, Queyranne, and Wang [1995].

Jünger, Reinelt, and Rinaldi [1995] gave a comparison of the values of vari-
ous relaxations for several instances of the symmetric traveling salesman problem.
Johnson, McGeoch, and Rothberg [1996] report on an ‘asymptotic experimental
analysis’ of the Held-Karp bound. A probabilistic analysis of the Held-Karp bound
for the Euclidean TSP was presented by Goemans and Bertsimas [1991].

A worst-case comparison of several classes of valid inequalities for the traveling
salesman polytope was given by Goemans [1995]. Several integer programming for-
mulations for the TSP were compared by Langevin, Soumis, and Desrosiers [1990].
Althaus and Mehlhorn [2000,2001] showed that the subtour elimination constraints
solve traveling salesman problems coming from curve reconstruction, under appro-
priate sampling conditions.

Semidefinite programming was applied to the symmetric TSP by Cvetković,
Čangalović, and Kovačević-Vujčić [1999a,1999b] and Iyengar and Çezik [2001].

Let G = (V, E) be an undirected graph. The symmetric traveling salesman
polytope of G is a face of the convex hull of all integer solutions of

(58.20) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V .

Fonlupt and Naddef [1992] characterized for which graphs G each vertex x of (58.20)
is integer and has x(δ(v)) ≡ 0 (mod 2) for each vertex v of G.

Grötschel [1980a] studied the monotone traveling salesman polytope of a graph,
which is the convex hull of the incidence vectors of subsets of Hamiltonian circuits.

Cornuéjols, Fonlupt, and Naddef [1985] considered the related problem of find-
ing a shortest tour in a graph such that each vertex is traversed at least once, and the
related polytope (cf. Naddef and Rinaldi [1991]). Further and related studies (also
on shortest k-connected spanning subgraphs, on the ‘Steiner network problem’,
and on the (equivalent) ‘survivable network design problem’) include Bienstock,
Brickell, and Monma [1990], Grötschel and Monma [1990], Monma, Munson, and
Pulleyblank [1990], Kelsen and Ramachandran [1991,1995], Barahona and Mahjoub
[1992,1995], Chopra [1992,1994], Goemans and Williamson [1992,1995a], Grötschel,
Monma, and Stoer [1992], Han, Kelsen, Ramachandran, and Tarjan [1992,1995],
Khuller and Vishkin [1992,1994], Nagamochi and Ibaraki [1992a], Cheriyan, Kao,
and Thurimella [1993], Gabow, Goemans, and Williamson [1993,1998], Garg, San-
tosh, and Singla [1993], Naddef and Rinaldi [1993], Queyranne and Wang [1993],
Williamson, Goemans, Mihail, and Vazirani [1993,1995], Aggarwal and Garg [1994],
Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [1994], Khuller,
Raghavachari, and Young [1994,1995a,1996], Mahjoub [1994,1997], Agrawal, Klein,
and Ravi [1995], Khuller and Raghavachari [1995], Ravi and Williamson [1995,
1997], Cheriyan and Thurimella [1996a,2000], Didi Biha and Mahjoub [1996], Fer-
nandes [1997,1998], Carr and Ravi [1998], Cheriyan, Sebő, and Szigeti [1998,2001],
Auletta, Dinitz, Nutov, and Parente [1999], Czumaj and Lingas [1998,1999], Jain
[1998,2001], Fonlupt and Mahjoub [1999], Fleischer, Jain, and Williamson [2001],
Cheriyan, Vempala, and Vetta [2002], and Gabow [2002]. This problem relates to
connectivity augmentation — see Chapter 63.
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58.9. The asymmetric traveling salesman problem

We next consider the asymmetric traveling salesman problem. LetD = (V,A)
be a directed graph. The (asymmetric) traveling salesman polytope of D is
the convex hull of the incidence vectors (in R

A) of Hamiltonian circuits in
D. Again, since the asymmetric traveling salesman problem is NP-complete,
we know that unless NP=co-NP there is no system of linear inequalities that
describes the traveling salesman polytope of a digraph such that their validity
can be certified in polynomial time.

Again, we can obtain lower bounds on the minimum length of a Hamil-
tonian circuit in D by including the traveling salesman polytope in a larger
polytope (a relaxation) over which lTx can be minimized in polynomial time.
The analogue of relaxation (58.4) for the directed case is:

(58.21) (i) 0 ≤ xa ≤ 1 for a ∈ A,
(ii) x(δin(v)) = 1 for v ∈ V ,
(iii) x(δout(v)) = 1 for v ∈ V ,
(iv) x(δin(U)) ≥ 1 for U ⊆ V with ∅ �= U �= V .

With the ellipsoid method, the minimum of lTx over (58.21) can be found in
strongly polynomial time. However, no combinatorial polynomial-time algo-
rithm is known. (The relaxation (i), (ii), (iii) is due to Robinson [1949].)

Grötschel and Padberg [1977] showed that each inequality (58.21)(iv) de-
termines a facet of the traveling salesman polytope of the complete directed
graph, if 2 ≤ |U | ≤ |U | − 2. (This result was announced in Grötschel and
Padberg [1975].)

(58.21) is not enough to determine the traveling salesman polytope, even
not for digraphs on 4 vertices only. This is shown by Figure 58.1. Another
example is obtained from the Petersen graph, by replacing each edge by two
oppositely oriented edges and putting value 1

3 on each arc.

Figure 58.1
Setting xa := 1

2 for each arc a, we have a vector x satisfying (58.21)
but not belonging to the traveling salesman polytope.
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58.10. Directed 1-trees

As in the undirected case, Held and Karp [1970] showed that the minimum
of lTx over (58.21) can be obtained as follows.

Let D = (V,A) be a digraph and fix a vertex 1 of D. Call a subset F of A
a directed 1-tree if F contains exactly one arc, a say, entering 1 and if F \{a}
is a directed 1-tree such that exactly one arc leaves 1.7 Each Hamiltonian
circuit is a directed 1-tree, and a minimum-length directed 1-tree can be
found in strongly polynomial time (by adapting Theorem 52.1).

From Corollary 52.3b one may derive that the convex hull of the incidence
vectors of directed 1-trees is determined by:

(58.22) (i) 0 ≤ xa ≤ 1 for a ∈ A,
(ii) x(δin(v)) = 1 for each v ∈ V ,
(iii) x(δout(1)) = 1,
(iv) x(δin(U)) ≥ 1 for each nonempty U ⊆ V \ {1}.

Again, a Lagrangean relaxation approach can find the minimum of lTx over
(58.21), for l ∈ R

A. For any y ∈ R
V define

(58.23) ly(a) := l(a) − y(u)

for any arc a = (u, v) ∈ A, and define

(58.24) f(y) := min
F

ly(F ) + y(V ),

where F ranges over directed 1-trees.
Then the minimum of lTx over (58.21) is equal to the maximum of f(y)

over y ∈ R
V . The proof is similar to that of Theorem 58.2.

58.10a. An integer programming formulation

The integer solutions of (58.21) are precisely the incidence vectors of Hamiltonian
circuits, so it gives an integer programming formulation of the asymmetric traveling
salesman problem. The system has exponentially many constraints. A.W. Tucker
showed in 1960 (cf. Miller, Tucker, and Zemlin [1960]) that the asymmetric TSP
can be formulated as the following integer programming problem, of polynomial
size only. Set n := |V |, fix a vertex v0 of D, and minimize lTx where x ∈ Z

A and
z ∈ R

V are such that

(58.25) (i) xa ≥ 0 for a ∈ A,
(ii) x(δin(v)) = 1 for v ∈ V ,
(ii) x(δout(v)) = 1 for v ∈ V ,
(iv) zu − zv + nxa ≤ n − 1 for a = (u, v) ∈ A with u, v �= v0.

7 Held and Karp used the term 1-arborescence for a directed 1-tree. To avoid confusion
with r-arborescence (a slightly different notion), we have chosen for directed 1-tree.
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The conditions (i), (ii), and (iii) and the integrality of x guarantee that x is the
incidence vector of a set C of arcs forming directed circuits partitioning V . Then
condition (iv) says the following. For any arc a = (u, v) not incident with v0,
one has: if a belongs to C, then zu ≤ zv − 1; if a does not belong to C, then
zu − zv ≤ n − 1. This implies that C contains no directed circuit disjoint from v0.
Hence C is a Hamiltonian circuit.

Conversely, for any incidence vector x of a Hamiltonian circuit, one can find
z ∈ R

V satisfying (58.25).
Unfortunately, the linear programming bound one may derive from (58.25) is

generally much worse than that obtained from (58.21).

58.10b. Further notes on the asymmetric traveling salesman
problem

Bartels and Bartels [1989] gave a system of inequalities determining the traveling
salesman polytope of the complete directed graph on 5 vertices (correcting Heller
[1953a] and Kuhn [1955a]).

Padberg and Rao [1974] showed that the diameter of the asymmetric traveling
salesman polytope of the complete directed graph on n vertices is equal to 1 if
3 ≤ n ≤ 5, and to 2 if n ≥ 6. Rispoli [1998] showed that the monotonic diameter
of the asymmetric traveling salesman polytope of the complete directed graph on
n vertices equals �n/3� if n ≥ 3. (For the definition of monotonic diameter, see
Section 58.8b.)

Adjacency of vertices of the asymmetric traveling salesman polytope of a graph
G = (V, E) is co-NP-complete, as was shown by Papadimitriou [1978]8. The number
of edges of the asymmetric traveling salesman polytope was estimated by Sarangara-
jan [1997].

H.W. Kuhn (cf. Heller [1953a], Kuhn [1955a]) claimed that the dimension of
the asymmetric traveling salesman polytope of the complete directed graph on n
vertices is equal to n2 −3n+ 1 (if n ≥ 3). A proof of this was supplied by Grötschel
and Padberg [1977]. Further work on this polytope is reported in Kuhn [1991].

More valid inequalities for the asymmetric traveling salesman polytope were
given by Grötschel and Padberg [1977], Grötschel and Wakabayashi [1981a,1981b],
Balas [1989], Fischetti [1991,1992,1995], Balas and Fischetti [1993,1999], and Quey-
ranne and Wang [1995].

A polytope generalizing the directed 1-tree polytope and the asymmetric trav-
eling salesman polytope, the ‘fixed-outdegree 1-arborescence polytope’, was studied
by Balas and Fischetti [1992]. Another polyhedron related to the asymmetric trav-
eling salesman polytope was studied by Chopra and Rinaldi [1996].

Billera and Sarangarajan [1996] showed that each 0,1 polytope is affinely equiv-
alent to the traveling salesman polytope of some directed graph.

Frieze, Karp, and Reed [1992,1995] investigated the tightness of the assignment
bound (determined by (58.21)(i)-(iii)). Williamson [1992] compared the Held-Karp
lower bound for the asymmetric TSP with the assignment bound.

Carr and Vempala [2000] related the relative error of the asymmetric TSP bound
obtained from (58.21) to that of the symmetric TSP bound obtained from (58.4).

8 Murty [1969] gave a characterization of adjacency that was shown to be false by Rao
[1976].
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Padberg and Sung [1991] compared different formulations of the asymmetric
traveling salesman problem.

An analogue of Christofides’ algorithm (Section 58.8a) for the asymmetric case
is not known: no factor c and polynomial-time algorithm are known that give a
Hamiltonian circuit in a digraph of length at most c times the length of a shortest
Hamiltonian circuit, even not if the lengths satisfy the triangle inequality.

58.11. Further notes on the traveling salesman problem

58.11a. Further notes

There is an abundance of papers presenting algorithms, heuristics, and computa-
tional results for the traveling salesman problem. We give a short selection of it.

Milestones in solving large-scale symmetric traveling salesman problems were
achieved by Dantzig, Fulkerson, and Johnson [1954b] (42 cities), Held and Karp
[1962] (48 cities), Karg and Thompson [1964] (57 cities), Held and Karp [1971] (64
cities), Helbig Hansen and Krarup [1974] (80 cities), Camerini, Fratta, and Maffioli
[1975] (100 cities), Grötschel [1980b] (120 cities), Crowder and Padberg [1980] and
Padberg and Hong [1980] (318 cities), Padberg and Rinaldi [1987] (532 cities),
Grötschel and Holland [1991] (666 cities), Padberg and Rinaldi [1990b,1991] (2392
cities), Applegate, Bixby, Chvátal, and Cook [1995] (7397 cities), and Applegate,
Bixby, Chvátal, and Cook [1998] (13,509 cities). Although the complexity of a TSP
instance is not simply a function of the number of cities, these papers represent
substantial steps forward in developing computational techniques for the traveling
salesman problem.

Dynamic programming approaches were proposed by Bellman [1962] and Held
and Karp [1962]. Several methods were compared by computer experiments by
Lin [1965]. The Lagrangean relaxation technique was introduced by Christofides
[1970] and Held and Karp [1970,1971]. The Held-Karp method was implemented
and extended by Helbig Hansen and Krarup [1974], Smith and Thompson [1977],
and Volgenant and Jonker [1982,1983]. Related work includes Bazaraa and Goode
[1977].

Miliotis [1976,1978] described a constraint generation approach, mixing sub-
tour elimination constraints with Gomory cuts or with branching. Focusing on
the asymmetric TSP are Little, Murty, Sweeney, and Karel [1963] (first reports
on a branch-and-bound method), Bellmore and Malone [1971] (on the effect of
the subtour elimination constraints), (cf. Garfinkel [1973], Smith, Srinivasan, and
Thompson [1977], Lenstra and Rinnooy Kan [1978], Carpaneto and Toth [1980b],
Zhang [1997a]), Balas and Christofides [1981] (a Lagrangean approach based on
the assignment problem, solving randomly generated asymmetric TSP’s with up to
325 cities), Miller and Pekny [1989,1991], Pekny and Miller [1992], and Carpaneto,
Dell’Amico, and Toth [1995].

Further bounds for the symmetric and asymmetric TSP were given by Christo-
fides [1972], Carpaneto, Fischetti, and Toth [1989] and Fischetti and Toth [1992].

Important heuristics (algorithms that yield a tour that is expected to be short,
but not necessarily shortest) and local search techniques include the nearest neigh-
bour heuristic: always go to the closest city not yet visited (Menger [1932a], Gavett
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[1965], Bellmore and Nemhauser [1968]), the Lin-Kernighan heuristic: start with
a Hamiltonian circuit and iteratively replace a limited number of edges by other
edges as long as it makes the circuit shorter (Lin and Kernighan [1973]), and Chris-
tofides’ heuristic discussed in Section 58.8a. From the further work on, and analyses
of, heuristics and local search techniques we mention Christofides and Eilon [1972],
Rosenkrantz, Stearns, and Lewis [1977], Cornuéjols and Nemhauser [1978], Frieze
[1979], d’Atri [1980], Bentley and Saxe [1980], Ong and Moore [1984], Golden and
Stewart [1985] (survey), Johnson and Papadimitriou [1985b] (survey), Karp and
Steele [1985] (survey), Johnson, Papadimitriou, and Yannakakis [1988], Kern [1989],
Bentley [1990,1992], Papadimitriou [1992] (showing that unless P=NP, any local
search method taking polynomial time per iteration, can lead to a locally optimum
tour that is arbitrarily far from the optimum), Fredman, Johnson, McGeoch, and
Ostheimer [1993,1995], Chandra, Karloff, and Tovey [1994,1999], Tassiulas [1997],
and Frieze and Sorkin [2001]. A survey and comparison of heuristics and local search
techniques for the traveling salesman problem was given by Johnson and McGeoch
[1997].

Polynomial-time solvable special cases of the traveling salesman problem were
given by Gilmore and Gomory [1964a,1964b], Gilmore [1966], Lawler [1971a], Sys�lo
[1973], Cornuéjols, Naddef, and Pulleyblank [1983], and Hartvigsen and Pulleyblank
[1994]. Surveys of such problems were given by Gilmore, Lawler, and Shmoys [1985]
and Burkard, Dĕıneko, van Dal, van der Veen, and Woeginger [1998].

The standard reference book on the traveling salesman problem, covering a
wide variety of aspects, was edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys
[1985]. In this book, Grötschel and Padberg [1985] considered the traveling salesman
polytope, Padberg and Grötschel [1985] computation with the help of polyhedra,
Johnson and Papadimitriou [1985a] the computational complexity of the TSP, and
Balas and Toth [1985] branch-and-bound method methods. Computational methods
and results are surveyed in the book by Reinelt [1994].

Survey articles on the traveling salesman problem were given by Gomory [1966],
Bellmore and Nemhauser [1968], Gupta [1968], Tyagi [1968], Burkard [1979], Chris-
tofides [1979], Grötschel [1982] (also on other NP-complete problems), and Johnson
and McGeoch [1997] (local search techniques). Introductions are given in the books
by Minieka [1978], Sys�lo, Deo, and Kowalik [1983], Cook, Cunningham, Pulley-
blank, and Schrijver [1998], and Korte and Vygen [2000]. An insightful survey of
the computational methods for the symmetric TSP was given by Jünger, Reinelt,
and Rinaldi [1995]. A framework for guaranteeing quality of TSP solutions was
presented by Jünger, Thienel, and Reinelt [1994]. An early survey on branch-and-
bound method techniques was given by Lawler and Wood [1966].

Barvinok, Johnson, Woeginger, and Woodroofe [1998] showed that there is a
polynomial-time algorithm to find a longest Hamiltonian circuit in a complete graph
with length determined by a polyhedral norm. Related work was done by Barvinok
[1996]. More on the longest Hamiltonian circuit can be found in Fisher, Nemhauser,
and Wolsey [1979], Serdyukov [1984], Kostochka and Serdyukov [1985], Kosaraju,
Park, and Stein [1994], Hassin and Rubinstein [2000,2001], and Bläser [2002].

58.11b. Historical notes on the traveling salesman problem

Mathematically, the traveling salesman problem is related to, in fact generalizes, the
question for a Hamiltonian circuit in a graph. This question goes back to Kirkman
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[1856] and Hamilton [1856,1858] and was also studied by Kowalewski [1917b,1917a]
— see Biggs, Lloyd, and Wilson [1976]. We restrict our survey to the traveling
salesman problem in its general form.

The mathematical roots of the traveling salesman problem are obscure. Dantzig,
Fulkerson, and Johnson [1954a] say:

It appears to have been discussed informally among mathematicians at mathe-
matics meetings for many years.

A 1832 manual

The traveling salesman problem has a natural interpretation, and Müller-Merbach
[1983] detected that the problem was formulated in a 1832 manual for the successful
traveling salesman, Der Handlungsreisende — wie er sein soll und was er zu thun
hat, um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften
gewiß zu sein — Von einem alten Commis-Voyageur9 (‘ein alter Commis-Voyageur’
[1832]). (Whereas the politically correct nowadays prefer to speak of the traveling
salesperson problem, the manual presumes that the ‘Handlungsreisende’ is male,
and it warns about the risks of women in or out of business.)

The booklet contains no mathematics, and formulates the problem as follows:
Die Geschäfte führen die Handlungsreisenden bald hier, bald dort hin, und es
lassen sich nicht füglich Reisetouren angeben, die für alle vorkommende Fälle
passend sind; aber es kann durch eine zweckmäßige Wahl und Eintheilung der
Tour, manchmal so viel Zeit gewonnen werden, daß wir es nicht glauben umgehen
zu dürfen, auch hierüber einige Vorschriften zu geben. Ein Jeder möge so viel
davon benutzen, als er es seinem Zwecke für dienlich hält; so viel glauben wir aber
davon versichern zu dürfen, daß es nicht wohl thunlich sein wird, die Touren durch
Deutschland in Absicht der Entfernungen und, worauf der Reisende hauptsächlich
zu sehen hat, des Hin- und Herreisens, mit mehr Oekonomie einzurichten. Die
Hauptsache besteht immer darin: so viele Orte wie möglich mitzunehmen, ohne
den nämlichen Ort zweimal berühren zu müssen.10

The manual suggests five tours through Germany (one of them partly through
Switzerland). In Figure 58.2 we compare one of the tours with a shortest tour, found
with ‘modern’ methods. (Most other tours given in the manual do not qualify for
‘die Hauptsache’ as they contain subtours, so that some places are visited twice.)

Menger’s Botenproblem 1930

K. Menger seems to be the first mathematician to have written about the traveling
salesman problem. The root of his interest is given in his paper Menger [1928c]. In
9 ‘The traveling salesman — how he should be and what he has to do, to obtain orders

and to be sure of a happy success in his business — by an old traveling salesman’
10 Business brings the traveling salesman now here, then there, and no travel routes can

be properly indicated that are suitable for all cases occurring; but sometimes, by an
appropriate choice and arrangement of the tour, so much time can be gained, that we
don’t think we may avoid giving some rules also on this. Everybody may use that much
of it, as he takes it for useful for his goal; so much of it however we think we may
assure, that it will not be well feasible to arrange the tours through Germany with
more economy in view of the distances and, which the traveler mainly has to consider,
of the trip back and forth. The main point always consists of visiting as many places as
possible, without having to touch the same place twice.
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Figure 58.2
A tour along 45 German cities, as described in the 1832 traveling sales-
man manual, is given by the unbroken (bold and thin) lines (1285 km).
A shortest tour is given by the unbroken bold and by the dashed lines
(1248 km). We have taken geodesic distances — taking local conditions
into account, the 1832 tour might be optimum.

this, he studies the length l(C) of a simple curve C in a metric space S, which is,
by definition,

(58.26) l(C) := sup
n−1∑

i=1

dist(xi, xi+1),

where the supremum ranges over all choices of x1, . . . , xn on C in the order deter-
mined by C. What Menger showed is that we may relax this to finite subsets X of
C and minimize over all possible orderings of X. To this end he defined, for any
finite subset X of a metric space, λ(X) to be the shortest length of a path through
X (in graph terminology: a Hamiltonian path), and he showed that

(58.27) l(C) = sup
X

λ(X),

where the supremum ranges over all finite subsets X of C. It amounts to showing
that for each ε > 0 there is a finite subset X of C such that λ(X) ≥ l(C) − ε.

Menger [1929a] sharpened this to:

(58.28) l(C) = sup
X

κ(X),

where again the supremum ranges over all finite subsets X of C, and where κ(X)
denotes the minimum length of a spanning tree on X.

These results were reported also in Menger [1930]. In a number of other papers,
Menger [1928b,1929b,1929a] gave related results on these new characterizations of
the length function.

The parameter λ(X) clearly is close to the practical interpretation of the trav-
eling salesman problem. This relation was made explicit by Menger in the session
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of 5 February 1930 of his mathematisches Kolloquium in Vienna. Menger [1931a,
1932a] reported that he first asked if a further relaxation is possible by replacing
κ(X) by the minimum length of an (in current terminology) Steiner tree connect-
ing X — a spanning tree on a superset of X in S. (So Menger toured along some
basic combinatorial optimization problems.) This problem was solved for Euclidean
spaces by Mimura [1933].

Next Menger posed the traveling salesman problem, as follows:

Wir bezeichnen als Botenproblem (weil diese Frage in der Praxis von jedem
Postboten, übrigens auch von vielen Reisenden zu lösen ist) die Aufgabe, für
endlichviele Punkte, deren paarweise Abstände bekannt sind, den kürzesten die
Punkte verbindenden Weg zu finden. Dieses Problem ist natürlich stets durch
endlichviele Versuche lösbar. Regeln, welche die Anzahl der Versuche unter die
Anzahl der Permutationen der gegebenen Punkte herunterdrücken würden, sind
nicht bekannt. Die Regel, man solle vom Ausgangspunkt erst zum nächstgelegenen
Punkt, dann zu dem diesem nächstgelegenen Punkt gehen usw., liefert im allge-
meinen nicht den kürzesten Weg.11

So Menger asked for a shortest Hamiltonian path through the given points. He was
aware of the complexity issue in the traveling salesman problem, and he realized
that the now well-known nearest neighbour heuristic might not give an optimum
solution.

Harvard, Princeton 1930-1934

Menger spent the period September 1930-February 1931 as visiting lecturer at Har-
vard University. In one of his seminar talks at Harvard, Menger presented his results
(quoted above) on lengths of arcs and shortest paths through finite sets of points.
According to Menger [1931b], a suggestion related to this was given by Hassler
Whitney, who at that time did his Ph.D. research in graph theory at Harvard. This
paper of Menger however does not mention if the practical interpretation was given
in the seminar talk.

The year after, 1931-1932, Whitney was a National Research Council Fellow
at Princeton University, where he gave a number of seminar talks. In a seminar
talk, he mentioned the problem of finding the shortest route along the 48 States of
America.

There are some uncertainties in this story. It is not sure if Whitney spoke about
the 48 States problem during his 1931-1932 seminar talks (which talks he did give),
or later, in 1934, as is said by Flood [1956] in his article on the traveling salesman
problem:

This problem was posed, in 1934, by Hassler Whitney in a seminar talk at Prince-
ton University.

That memory can be shaky might be indicated by the following two quotes. Dantzig,
Fulkerson, and Johnson [1954a] remark:
11 We denote by messenger problem (since in practice this question should be solved by

each postman, anyway also by many travelers) the task to find, for finitely many points
whose pairwise distances are known, the shortest route connecting the points. Of course,
this problem is solvable by finitely many trials. Rules which would push the number of
trials below the number of permutations of the given points, are not known. The rule
that one first should go from the starting point to the closest point, then to the point
closest to this, etc., in general does not yield the shortest route.
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Both Flood and A.W. Tucker (Princeton University) recall that they heard about
the problem first in a seminar talk by Hassler Whitney at Princeton in 1934
(although Whitney, recently queried, does not seem to recall the problem).

However, when asked by David Shmoys, Tucker replied in a letter of 17 February
1983 (see Hoffman and Wolfe [1985]):

I cannot confirm or deny the story that I heard of the TSP from Hassler Whitney.
If I did (as Flood says), it would have occurred in 1931-32, the first year of the old
Fine Hall (now Jones Hall). That year Whitney was a postdoctoral fellow at Fine
Hall working on Graph Theory, especially planarity and other offshoots of the
4-color problem. ... I was finishing my thesis with Lefschetz on n-manifolds and
Merrill Flood was a first year graduate student. The Fine Hall Common Room
was a very lively place — 24 hours a day.

(Whitney finished his Ph.D. at Harvard University in 1932.)
Another uncertainty is in which form Whitney has posed the problem. That he

might have focused on finding a shortest route along the 48 states in the U.S.A., is
suggested by the reference by Flood, in an interview on 14 May 1984 with Tucker
[1984a], to the problem as the ‘48 States Problem of Hassler Whitney’. In this
respect Flood also remarked:

I don’t know who coined the peppier name ‘Traveling Salesman Problem’ for
Whitney’s problem, but that name certainly has caught on, and the problem has
turned out to be of very fundamental importance.

TSP, Hamiltonian paths, and school bus routing

Flood [1956] remembered that in 1937, A.W. Tucker pointed out to him the con-
nections of the TSP with Hamiltonian games and Hamiltonian paths in graphs:

I am indebted to A.W. Tucker for calling these connections to my attention, in
1937, when I was struggling with the problem in connection with a schoolbus
routing study in New Jersey.

In the following quote from the interview by Tucker [1984a], Flood referred to school
bus routing in a different state (West Virginia), and he mentioned the involvement
in the TSP of Koopmans, who spent 1940-1941 at the Local Government Surveys
Section of Princeton University (‘the Princeton Surveys’):

Koopmans first became interested in the “48 States Problem” of Hassler Whitney
when he was with me in the Princeton Surveys, as I tried to solve the problem
in connection with the work by Bob Singleton and me on school bus routing for
the State of West Virginia.

1940

In 1940, some papers appeared that study the traveling salesman problem, in a
different context. They seem to be the first containing mathematical results on the
problem.

In the American continuation of Menger’s mathematisches Kolloquium, Menger
[1940] returned to the question of the shortest path through a given set of points in
a metric space, followed by investigations of Milgram [1940] on the shortest Jordan
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curve that covers a given, not necessarily finite, set of points in a metric space. As
the set may be infinite, a shortest curve need not exist.

Fejes [1940] investigated the problem of a shortest curve through n points in
the unit square. In consequence of this, Verblunsky [1951] showed that its length is
less than 2 +

√
2.8n. Later work in this direction includes Few [1955], Beardwood,

Halton, and Hammersley [1959], Steele [1981], Moran [1984], Karloff [1989], and
Goddyn [1990].

Lower bounds on the expected value of a shortest path through n random points
in the plane were studied by Mahalanobis [1940] in order to estimate the cost of a
sample survey of the acreage under jute in Bengal. This survey took place in 1938
and one of the major costs in carrying out the survey was the transportation of men
and equipment from one survey point to the next. He estimated (without proof)
the minimum length of a tour along n random points in the plane, for Euclidean
distance:

It is also easy to see in a general way how the journey time is likely to behave.
Let us suppose that n sampling units are scattered at random within any given
area ; and let us assume that we may treat each such sample unit as a geometrical
point. We may also assume that arrangements will usually be made to move from
one sample point to another in such a way as to keep the total distance travelled
as small as possible ; that is, we may assume that the path traversed in going
from one sample point to another will follow a straight line. In this case it is
easy to see that the mathematical expectation of the total length of the path
travelled in moving from one sample point to another will be (

√
n − 1/

√
n). The

cost of the journey from sample to sample will therefore be roughly proportional
to (

√
n − 1/

√
n). When n is large, that is, when we consider a sufficiently large

area, we may expect that the time required for moving from sample to sample
will be roughly proportional to

√
n, where n is the total number of samples in

the given area. If we consider the journey time per sq. mile, it will be roughly
proportional to

√
y, where y is the density of number of sample units per sq. mile.

This research was continued by Jessen [1942], who estimated empirically a similar
result for l1-distance (Manhattan distance), in a statistical investigation of a sample
survey for obtaining farm facts in Iowa:

If a route connecting y points located at random in a fixed area is minimized, the
total distance, D, of that route is12

D = d

(
y − 1√

y

)

where d is a constant.
This relationship is based upon the assumption that points are connected by direct
routes. In Iowa the road system is a quite regular network of mile square mesh.
There are very few diagonal roads, therefore, routes between points resemble
those taken on a checkerboard. A test wherein several sets of different members
of points were located at random on an Iowa county road map, and the minimum
distance of travel from a given point on the border of the county through all the
points and to an end point (the county border nearest the last point on route),
revealed that

D = d
√

y

works well. Here y is the number of randomized points (border points not in-
cluded). This is of great aid in setting up a cost function.

12 at this point, Jessen referred in a footnote to Mahalanobis [1940].
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Marks [1948] gave a proof of Mahalanobis’ bound. In fact he showed that
√

1
2A(

√
n−

1/
√

n) is a lower bound, where A is the area of the region. Ghosh [1949] showed
that this bound asymptotically is close to the expected value, by giving a heuris-
tic for finding a tour, yielding an upper bound of 1.27

√
An. He also observed the

complexity of the problem:
After locating the n random points in a map of the region, it is very difficult to
find out actually the shortest path connecting the points, unless the number n is
very small, which is seldom the case for a large-scale survey.

TSP, transportation, and assignment

As is the case for several other combinatorial optimization problems, the RAND
Corporation in Santa Monica, California, played an important role in the research
on the TSP. Hoffman and Wolfe [1985] write that

John Williams urged Flood in 1948 to popularize the TSP at the RAND Corpo-
ration, at least partly motivated by the purpose of creating intellectual challenges
for models outside the theory of games. In fact, a prize was offered for a significant
theorem bearing on the TSP. There is no doubt that the reputation and author-
ity of RAND, which quickly became the intellectual center of much of operations
research theory, amplified Flood’s advertizing.

(John D. Williams was head of the Mathematics Division of RAND at that time.)
At RAND, researchers considered the idea of transferring the successful methods

for the transportation problem to the traveling salesman problem. Flood [1956]
mentioned that this idea was brought to his attention by Koopmans in 1948. In the
interview with Tucker [1984a], Flood remembered:

George Dantzig and Tjallings Koopmans met with me in 1948 in Washington,
D.C., at the meeting of the International Statistical Institute, to tell me excitedly
of their work on what is now known as the linear programming problem and with
Tjallings speculating that there was a significant connection with the Traveling
Salesman Problem.

The issue was taken up in a RAND Report by Julia Robinson [1949], who, in
an ‘unsuccessful attempt’ to solve the traveling salesman problem, considered, as a
relaxation, the assignment problem, for which she found a cycle reduction method.
The relation is that the assignment problem asks for an optimum permutation, and
the TSP for an optimum cyclic permutation.

Robinson’s RAND report might be the earliest mathematical reference using
the term ‘traveling salesman problem’:

The purpose of this note is to give a method for solving a problem related to the
traveling salesman problem. One formulation is to find the shortest route for a
salesman starting from Washington, visiting all the state capitals and then return-
ing to Washington. More generally, to find the shortest closed curve containing n
given points in the plane.

Flood wrote (in a letter of 17 May 1983 to E.L. Lawler) that Robinson’s report
stimulated several discussions on the TSP of him with his research assistant at
RAND, D.R. Fulkerson, during 1950-195213.

It was noted by Beckmann and Koopmans [1952] that the TSP can be formu-
lated as a quadratic assignment problem, for which however no fast methods are
known.
13 Fulkerson started at RAND only in March 1951.
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Dantzig, Fulkerson, Johnson 1954

Fundamental progress on the traveling salesman was made in a seminal paper by
the RAND researchers Dantzig, Fulkerson, and Johnson [1954a] — according to
Hoffman and Wolfe [1985] ‘one of the principal events in the history of combinatorial
optimization’. The paper introduced several new methods for solving the traveling
salesman problem that are now basic in combinatorial optimization. In particular,
it shows the importance of cutting planes for combinatorial optimization.

While the subtour elimination constraints (58.4)(iii) are enough to cut off the
noncyclic permutation matrices from the polytope of doubly stochastic matrices
(determined by (58.4)(i) and (ii)), they generally do not yield all facets of the
traveling salesman polytope, as was observed by Heller [1953a]: there exist doubly
stochastic matrices, of any order n ≥ 5, that satisfy (58.4) but are not a convex
combination of cyclic permutation matrices.

The subtour elimination constraints can nevertheless be useful for the TSP,
since it gives a lower bound for the optimum tour length if we minimize over the
constraints (58.4). This lower bound can be calculated with the simplex method,
taking the (exponentially many) constraints (58.4)(iii) as cutting planes that can
be added during the process when needed. In this way, Dantzig, Fulkerson, and
Johnson were able to find the shortest tour along cities chosen in the 48 U.S. states
and Washington, D.C. Incidentally, this is close to the problem mentioned by Julia
Robinson in 1949 (and maybe also by Whitney in the 1930s).

The Dantzig-Fulkerson-Johnson paper gives no algorithm, but rather gives a
tour and proves its optimality with the help of the subtour elimination constraints.
This work forms the basis for most of the later work on large-scale traveling sales-
man problems.

Early studies of the traveling salesman polytope were reported by Heller
[1953a,1953b,1955a,1955b,1956a,1956b], Kuhn [1955a], Norman [1955], and Ro-
backer [1955b], who also made computational studies of the probability that a
random instance of the traveling salesman problem needs the subtour elimination
constraints (58.4)(iii) (cf. Kuhn [1991]). This made Flood [1956] remark on the
intrinsic complexity of the traveling salesman problem:

Very recent mathematical work on the traveling-salesman problem by I. Heller,
H.W. Kuhn, and others indicates that the problem is fundamentally complex.
It seems very likely that quite a different approach from any yet used may be
required for succesful treatment of the problem. In fact, there may well be no
general method for treating the problem and impossibility results would also be
valuable.

Flood mentioned a number of other applications of the traveling salesman problem,
in particular in machine scheduling, brought to his attention in a seminar talk at
Columbia University in 1954 by George Feeney.

Other work on the traveling salesman problem in the 1950s was done by Mor-
ton and Land [1955] (a linear programming approach with a 3-exchange heuristic),
Barachet [1957] (a graphic solution method), Bock [1958], Croes [1958] (a heuris-
tic), and Rossman and Twery [1958]. In a reaction to Barachet’s paper, Dantzig,
Fulkerson, and Johnson [1959] showed that their method yields the optimality of
Barachet’s (heuristically found) solution.
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In 1962, the soap company Proctor and Gamble run a contest, requiring to
solve a traveling salesman problem along 33 U.S. cities. Little, Murty, Sweeney,
and Karel [1963] report:

The traveling salesman problem recently achieved national prominence when a
soap company used it as the basis of a promotional contest. Prizes up to $10,000
were offered for identifying the most correct links in a particular 33-city prob-
lem. Quite a few people found the best tour. (The tie-breaking contest for these
successful mathematicians was to complete a statement of 25 words or less on “I
like...because...”.) A number of people, perhaps a little over-educated, wrote the
company that the problem was impossible—an interesting misinterpretation of
the state of the art.



Chapter 59

Matching forests

Giles [1982a,1982b,1982c] introduced the concept of a matching forest in a
mixed graph (V, E, A), which is a subset F of E ∪ A such that F ∩ A is a
branching and F ∩ E is a matching only covering roots of the branching
F ∩ A. Equivalently, F contains no circuit (in the underlying undirected
graph) and each v ∈ V is head of at most one e ∈ F . (Here, for an
undirected edge e, both ends of e are called head of e.)
Matching forests generalize both matchings in undirected graphs and
branchings in directed graphs. Giles gave a polynomial-time algorithm to
find a maximum-weight matching forest, yielding as a by-product a charac-
terization of the matching forest polytope (the convex hull of the incidence
vectors of matching forests).
Giles’ results generalize the polynomial-time solvability and the polyhe-
dral characterizations for matchings (Chapters 24–26) and for branchings
(Chapter 52).

59.1. Introduction

A mixed graph is a triple (V,E,A), where (V,E) is an undirected graph and
(V,A) is a directed graph. In this chapter, a graph can have multiple edges,
but no loops. The underlying undirected graph of a mixed graph is the undi-
rected graph obtained from the mixed graph by forgetting the orientations
of the directed edges.

As usual, if an edge e is directed from u to v, then u is called the tail and
v the head of e. In this chapter, if e is undirected and connects u and v, then
both u and v will be called head of e.

A subset F of E ∪ A is called a matching forest if F contains no circuits
(in the underlying undirected graph) and any vertex v is head of at most one
edge in F . We call a vertex v a root of F if v is head of no edge in F . We
denote the set of roots of F by R(F ).

It is convenient to consider the relations of matching forests with match-
ings in undirected graphs and branchings in directed graphs: M is a matching
in an undirected graph (V,E) if and only if M is a matching forest in the
mixed graph (V,E, ∅). In this case, the roots of M are the vertices not covered
by M . Similarly, B is a branching in a directed graph (V,A) if and only if B
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is a matching forest in the mixed graph (V, ∅, A). In this case, the concept of
root of a branching and root of a matching forest coincide.

In turn, we can characterize matching forests in terms of matchings and
branchings: for any mixed graph (V,E,A), a subset F of E∪A is a matching
forest if and only if F ∩ A is a branching in (V,A) and F ∩ E is a matching
in (V,E) such that F ∩ E only covers roots of F ∩A.

It will be useful to observe the following formulas, for any matching forest
F in a mixed graph (V,E,A), setting M := F ∩ E and B := F ∩A:

(59.1) R(F ) = R(M) ∩R(B) and V = R(M) ∪R(B).

In fact, for any matching M in (V,E) and any branching B in (V,A), the set
M ∪B is a matching forest if and only if R(M) ∪R(B) = V .

59.2. The maximum size of a matching forest

Giles [1982a] described a min-max formula for the maximum size of a match-
ing forest. It can be derived from the Tutte-Berge formula with the following
direct formula:

Theorem 59.1. Let (V,E,A) be a mixed graph and let K be the collection of
those strong components K of the directed graph (V,A) that satisfy din

A (K) =
0. Consider the undirected graph H with vertex set K, where two distinct
K,L ∈ K are adjacent if and only if there is an edge in E connecting K and
L. Then the maximum size of a matching forest in (V,E,A) is equal to

(59.2) ν(H) + |V | − |K|.

Here ν(H) denotes the maximum size of a matching in H.

Proof. Let M ′ be a matching in H of size ν(H). Then M ′ yields a matching
M of size ν(H) in (V,E), where each edge in M connects two components
in K. Now there exists a branching B in (V,A) such that B has exactly |K|
roots, such that each K ∈ K contains exactly one root, and such that each
vertex covered by M is a root of B. (To see that such a branching B exists,
choose, for any K ∈ K not intersecting M , an arbitrary vertex in K. Let X
be the set of chosen vertices together with the vertices covered by M . As X
intersects each K ∈ K, each vertex in V is reachable in (V,A) by a directed
path from X. Hence there exists a branching B with root set X. This B has
the required properties.)

Then M ∪B is a matching forest, of size ν(H) + |V | − |K| (as B has size
|V | − |K|).

To see that there is no larger matching forest, let F be any matching
forest. Let U :=

⋃
K. Then F has at most |V \ U | edges with at least one

head in V \U . Since no directed edge enters U , all other edges are contained in
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U . So it suffices to show that F has at most ν(H)+ |U |− |K| edges contained
in U .

Let N be the set of (necessarily undirected) edges in F connecting two
different components in K. For each K ∈ K, let αK be the number of edges
in N incident with K. Then

(59.3) |N | −
∑

K∈K
max{0, αK − 1} ≤ ν(H),

since by deleting, for each K ∈ K, at most max{0, αK − 1} edges from N
incident with K, we obtain a matching in the graph H defined above.

We have moreover that any K ∈ K spans at most |K|−max{1, αK} edges
of F . With (59.3) this implies that the number of edges in F contained in U
is at most

(59.4) |N | +
∑

K∈K
(|K| − max{1, αK}) ≤ ν(H) +

∑

K∈K
(|K| − 1)

= ν(H) + |U | − |K|,

as required.

The method described in this proof also directly implies that a maximum-
size matching forest can be found in polynomial time (Giles [1982a]).

59.3. Perfect matching forests

e f

a

b

Figure 59.1
{e, f} and {e, a, b} are perfect matching forests.

A matching forest F is called perfect if each vertex is head of exactly
one edge in F . (So a perfect matching forest need not be a maximum-size
matching forest — cf. Figure 59.1.) The following is easy to see:

(59.5) A mixed graph (V,E,A) contains a perfect matching forest F
if and only if the graph (V,E) contains a matching M such that
each strong component K of (V,A) with din(K) = 0 is intersected
by at least one edge in M .

Indeed, if a perfect matching forest F exists, then M := F ∩ E is such a
matching. Conversely, if such a matching M exists, any vertex is reachable
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by a directed path from at least one vertex covered by M ; hence M can be
augmented with directed arcs to a perfect matching forest.

This shows (59.5), which implies the following characterization for perfect
matching forests of Giles [1982b]:

Theorem 59.2. Let (V,E,A) be a mixed graph and let K be the collection of
strong components K of (V,A) with din

A (K) = 0. Then (V,E,A) has a perfect
matching forest if and only if for each U ⊆ V and L ⊆ K the graph (V,E)−U
has at most |U | +

∣∣ ⋃
L

∣∣ − |L| odd components that are contained in
⋃

L.

Proof. Extend G = (V,E) by, for each K ∈ K, a clique CK of size |K| − 1,
such that each vertex in CK is adjacent to each vertex in K. This makes the
undirected graph H. Then (V,E,A) has a perfect matching forest if and only
if graph H has a matching covering

⋃
K. So we can apply Corollary 24.6a.

This method also gives a polynomial-time algorithm to find a perfect
matching forest.

59.4. An exchange property of matching forests

As a preparation for characterizing the matching forest polytope, we show
an exchange property of matching forests. It generalizes the well-known and
trivial exchange property of matchings in an undirected graph, based on
considering the union of two matchings.

Lemma 59.3α. Let F1 and F2 be matching forests in a mixed graph (V,E,A).
Let s ∈ R(F2)\R(F1). Then there exist matching forests F ′

1 and F ′
2 such that

F ′
1 ∩ F ′

2 = F1 ∩ F2, F ′
1 ∪ F ′

2 = F1 ∪ F2, s ∈ R(F ′
1), and

(59.6) (i) |F ′
1| < |F1|,

or (ii) |F ′
1| = |F1| and |R(F ′

1)| > |R(F1)|,
or (iii) |F ′

1| = |F1|, R(F ′
1) = (R(F1) \ {t}) ∪ {s} for some

t ∈ R(F1), and |R(F ′
1 ∩A) ∩K| = |R(F1 ∩A) ∩K| for

each strong component K of the directed graph (V,A).

Proof. We may assume that F1 and F2 partition E ∪ A, as we can delete
edges that are not in F1 ∪ F2, and add parallel edges to those in F1 ∩ F2.

Define Mi := Fi ∩E and Bi := Fi ∩A for i = 1, 2. Let K be the collection
of strong components K of the directed graph (V,A) with δinA (K) = ∅. Then
each set in K intersects both R(B1) and R(B2), and {v} ∈ K for each v ∈
R(B1) ∩R(B2).

So each K ∈ K with |K| ≥ 2 intersects R(B1) and R(B2) in disjoint
subsets. Hence we can choose for each such K
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(59.7) a pair eK ⊆ K consisting of a vertex in R(B1) \ R(B2) and a
vertex in R(B2) \R(B1).

Let N be the set of pairs eK for K ∈ K with |K| ≥ 2. So N consists of
disjoint pairs.

Then the undirected graph H on V with edge set

(59.8) M1 ∪M2 ∪N

consists of a number of vertex-disjoint paths and circuits, since no vertex in
R(B1) \R(B2) is covered by M2, and no vertex in R(B2) \R(B1) is covered
by M1.

Moreover, s has degree at most one in H. Indeed, s is not covered by M2,
as s ∈ R(F2) = R(M2) ∩ R(B2). If s is covered by M1, then s ∈ R(B1), and
so s ∈ R(B1) ∩R(B2), implying that s is not covered by N .

So s is the starting vertex of a path component P of H (possibly only
consisting of s). Let Y be the set of edges in M1 ∪ M2 occurring in P , and
set

(59.9) M ′
1 := M1�Y and M ′

2 := M2�Y

(where � denotes symmetric difference). Since Y is the union of the edge
sets of some path components of the graph (V,M1 ∪M2), we know that M ′

1
and M ′

2 are matchings again.
Then, obviously, R(M ′

1) and R(M ′
2) arise from R(M1) and R(M2) by

exchanging these sets on V P ; that is:

(59.10) R(M ′
1) = (R(M1) \ V P ) ∪ (R(M2) ∩ V P ) and

R(M ′
2) = (R(M2) \ V P ) ∪ (R(M1) ∩ V P ).

We show that a similar operation can be performed with respect to B1 and
B2; that is, we show that there exist disjoint branchings B′

1 and B′
2 in (V,A)

satisfying

(59.11) R(B′
1) = (R(B1) \ V P ) ∪ (R(B2) ∩ V P ) and

R(B′
2) = (R(B2) \ V P ) ∪ (R(B1) ∩ V P ).

By Lemma 53.2α, it suffices to show that each K ∈ K intersects both sets in
(59.11). If |K| = 1, then K is contained in both R(B1) and R(B2), and hence
in both sets in (59.11). If |K| ≥ 2, then eK intersects both R(B1) and R(B2).
Since eK is either contained in V P or disjoint from V P , eK intersects both
sets in (59.11). Hence, as eK ⊆ K, also K intersects both sets in (59.11).
Therefore, branchings B′

1 and B′
2 satisfying (59.11) exist.

(59.10) and (59.11) imply:

(59.12) F ′
1 := M ′

1 ∪B′
1 and F ′

2 := M ′
2 ∪B′

2 are matching forests.

To see this, we must show that R(M ′
1)∪R(B′

1) = V and R(M ′
2)∪R(B′

2) = V .
Since R(M1)∪R(B1) = V and R(M2)∪R(B2) = V , this follows directly from
(59.10) and (59.11). This shows (59.12).
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Since R(F ) = R(M)∩R(B) for any matching forest F (with M := F ∩E
and B := F ∩A), (59.10) and (59.11) imply that also R(F ′

1) and R(F ′
2) arise

from R(F1) and R(F2) by swapping on P ; that is:

(59.13) R(F ′
1) = (R(F1) \ V P ) ∪ (R(F2) ∩ V P ) and

R(F ′
2) = (R(F2) \ V P ) ∪ (R(F1) ∩ V P ).

This implies:

(59.14) s ∈ R(F ′
1) \R(F ′

2),

since s ∈ V P and s ∈ R(F2) \R(F1).
We study the effects of the exchanges (59.10) and (59.11), to show that

one of the alternatives (59.6) holds. It is based on the following observations
on the sizes of M ′

1 and B′
1. Let t be the last vertex of P (possible t = s).

Suppose that none of the alternatives (59.6) hold. If s = t, then s is
not covered by M1, and so M ′

1 = M1 and R(B′
1) = R(B1) ∪ {s}, implying

|F ′
1| < |F1|, which is alternative (59.6)(i). So s �= t.
By the exchanges made, |M1| − |M ′

1| = |M1 ∩ EP | − |M2 ∩ EP | and
|R(F1)| − |R(F ′

1)| = |R(F1) ∩ V P | − |R(F2) ∩ V P |. This gives, as |F ′
1| ≥ |F1|,

since alternative (59.6)(i) does not hold:

(59.15) |M1 ∩ EP | − |M2 ∩ EP | + |R(F1) ∩ V P | − |R(F2) ∩ V P |
= |M1| + |R(F1)| − |M ′

1| − |R(F ′
1)| = |F ′

1| − |F1| ≥ 0.

(The last equality holds as |F ′
i | = |V | − |M ′

i | − |R(F ′
i )| for i = 1, 2, since

|F ′
i | + |M ′

i | is the number of heads of edges in F ′
i .)

We next note:

(59.16) no intermediate vertex v of P belongs to R(F1) ∪R(F2).

For suppose that v ∈ R(F1). Then (as v is an intermediate vertex of P ) v is
covered by M2 and some eK ∈ N . Hence v ∈ R(B2), and therefore v �∈ R(B1)
(by (59.7)), contradicting the fact that v ∈ R(F1). One similarly shows that
v �∈ R(F2), proving (59.16).

As s ∈ R(F2) \R(F1), (59.16) implies that

(59.17) |R(F1) ∩ V P | ≤ |R(F2) ∩ V P |, with equality if and only if t ∈
R(F1) \R(F2).

With (59.15) this gives that |M1 ∩ EP | ≥ |M2 ∩ EP |.
Let k be the number of edges in M1 ∪M2 on P . Note that the edges in

M1 ∪ M2 occur along P alternatingly in M1 and M2, as any intermediate
eK ∈ N on P connects an edge in M1 and an edge in M2 (as by (59.7),
eK ∈ N consists of a vertex not in R(B2) and a vertex not in R(B1)).

Suppose that k is odd. Then |M1 ∩EP | = |M2 ∩EP |+1. So the last edge
in M1 ∪ M2 along P (seen from s) belongs to M1. Moreover, one has that
t �∈ R(F1). For if t ∈ R(F1), then t is not covered by M1, and hence t belongs
to some eK = {v, t} ∈ N with v covered by M1. Hence v ∈ R(B1), and hence
t �∈ R(B1) (by (59.7)), contradicting the fact that t ∈ R(F1). So t �∈ R(F1).



Section 59.5. The matching forest polytope 1011

Then (59.17) implies that |R(F2) ∩ V P | > |R(F1) ∩ V P |. This implies with
(59.15) that |F ′

1| = |F1| (as |M1 ∩ EP | = |M2 ∩ EP | + 1), and with (59.13)
that |R(F ′

1)| > |R(F1)|. So (59.6)(ii) holds, a contradiction.
So k is even, and hence |M1 ∩ EP | = |M2 ∩ EP |, which implies with

(59.13), (59.15), and (59.17) that |R(F1)| = |R(F2)| and t ∈ R(F1) \ R(F2).
Therefore, |F ′

1| = |F1| (by (59.16)) and R(F ′
1) = (R(F1) \ {t}) ∪ {s}.

Finally, |R(B′
1) ∩K| = |R(B1) ∩K| for each strong component K of D.

This follows directly (with (59.11)) from the fact that for any v ∈ K ∩ V P
one has either K = {v} (if |K| = 1) or v ∈ eK (if |K| ≥ 2). For suppose
that v ∈ V P is incident with no eK ∈ N . We show that v ∈ R(B1) ∩R(B2),
implying {v} ∈ K. If v is an intermediate vertex of P , then v is covered
by M1 and M2 and hence v belongs to R(B1) and R(B2). If v = s, then
v ∈ R(F2) (so v ∈ R(B2)) and v is covered by M1, so v ∈ R(B1). If v = t,
then v ∈ R(F1) (so v ∈ R(B1)) and v is covered by M2, so v ∈ R(B2).

59.5. The matching forest polytope

The matching forest polytope of a mixed graph (V,E,A) is the convex hull of
the incidence vectors of the matching forests. So the matching forest polytope
is a polytope in R

E∪A.
Giles [1982b] showed that the matching forest polytope is determined by

the following inequalities:

(59.18) (i) xe ≥ 0 for each e ∈ E ∪A,
(ii) x(δhead(v)) ≤ 1 for each v ∈ V ,
(iii) x(γ(L)) ≤

⌊∣∣ ⋃
L

∣∣ − 1
2 |L|

⌋
for each subpartition L of V
with |L| odd and all classes
nonempty.

Here we use the following notation and terminology. δhead(v) denotes the set
of edges with head v. A subpartition of V is a collection of disjoint subsets of
V . As usual,

⋃
L denotes the union of the sets in L. For each subpartition

L, we define:

(59.19) γ(L) := the set of undirected edges spanned by
⋃

L and directed
edges spanned by any set in L.

The inequalities (i) and (ii) in (59.18) are trivially valid for the incidence
vector of any matching forest F . To see that (iii) is valid, we can assume that
F ⊆ γ(L) and that V =

⋃
L. Then |R(F ∩ A)| ≥ |L|, since each set in L

contains at least one root of F ∩ A (since no directed edge enters any set in
L). Moreover, |F ∩E| ≤ 
 1

2 |R(F ∩A)|�, since F ∩E is a matching on a subset
of R(F ∩A). As |F ∩A| = |V | − |R(F ∩A)|, this gives:

(59.20) |F | = |F ∩ E| + |F ∩A| ≤ 
1
2 |R(F ∩A)|� + (|V | − |R(F ∩A)|)

= 
|V | − 1
2 |R(F ∩A)|� ≤

⌊∣∣ ⋃
L

∣∣ − 1
2 |L|

⌋
,
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as required.
Each integer solution x of (59.18) is the incidence vector of a matching

forest. Indeed, as x is a 0, 1 vector by (i) and (ii), we know that x = χF

for some F ⊆ E ∪ A. By (ii), each vertex is head of at most one edge in F .
Hence, if F would contain a circuit (in the underlying undirected graph), it
is a directed circuit C. But then for L := {V C}, condition (iii) is violated.
So F is a matching forest.

We show that system (59.18) is totally dual integral. This implies that
it determines an integer polytope, which therefore is the matching forest
polytope.

The proof method is a generalization of the method in Section 25.3a
for proving the Cunningham-Marsh formula, stating that the matching con-
straints are totally dual integral.

The total dual integrality of (59.18) is equivalent to the following. For
any weight function w : E ∪A → Z, let νw denote the maximum weight of a
matching forest. Call a matching forest F w-maximal if w(F ) = νw. Let Λ be
the set of subpartitions L of V with |L| odd and with all classes nonempty.

Then the total dual integrality of (59.18) is equivalent to: for each weight
function w : E ∪A → Z, there exist y : V → Z+ and z : Λ → Z+ satisfying

(59.21)
∑

v∈V

yv +
∑

L∈Λ

z(L)
⌊∣∣⋃L

∣∣ − 1
2 |L|

⌋
≤ νw

and

(59.22)
∑

v∈V

yvχ
δhead(v) +

∑

L∈Λ

z(L)χγ(L) ≥ w.

Now we can derive (Schrijver [2000b]):

Theorem 59.3. For each mixed graph (V,E,A), system (59.18) is totally
dual integral.

Proof. We must prove that for each mixed graph (V,E,A) and each function
w : E ∪A → Z, there exist y, z satisfying (59.21) and (59.22).

In proving this, we can assume that w is nonnegative. For suppose that
w has negative entries, and let w′ be obtained from w by setting all negative
entries to 0. As νw′ = νw and w′ ≥ w, any y, z satisfying (59.21) and (59.22)
with respect to w′, also satisfy (59.21) and (59.22) with respect to w.

Suppose that the theorem is not true. Choose a counterexample (V,E,A)
and w : E ∪A → Z+ with |V | + |E ∪A| +

∑
e∈E∪A w(e) as small as possible.

Then the underlying undirected graph of (V,E,A) is connected, since oth-
erwise one of the components will form a smaller counterexample. Moreover,
w(e) ≥ 1 for each edge e, since otherwise we can delete e to obtain a smaller
counterexample.

Next:
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(59.23) for each v ∈ V , there exists a w-maximal matching forest F with
v ∈ R(F ).

For suppose that no such matching forest exists. For any edge e, let w′(e) :=
w(e) − 1 if v is head of e and w′(e) := w(e) otherwise. Then νw′ = νw − 1.
By the minimality of w, there exist y, z satisfying (59.21) and (59.22) with
respect to w′. Replacing yv by yv + 1 we obtain y, z satisfying (59.21) and
(59.22) with respect to w, contradicting our assumption. This proves (59.23).

This implies:

(59.24) each weak component of the directed graph (V,A) is strongly
connected.

To see this, it suffices to show that each directed edge e = (u, v) is contained
in some directed circuit. By (59.23) there exists a w-maximal matching forest
F with v ∈ R(F ). Then the weak component of F containing v is an arbores-
cence rooted at v. As F has maximum weight, F ∪ {e} is not a matching
forest, and hence F ∩A contains a directed v−u path. This makes a directed
circuit containing e, and proves (59.24).

Let K denote the collection of strong components of (V,A). Define
w′(e) := w(e) − 1 for each edge e. The remainder of this proof consists of
showing that |K| is odd (so K ∈ Λ), and that

(59.25) νw ≥ νw′ + 
|V | − 1
2 |K|�.

This is enough, since, by the minimality of w, there exist y, z satisfying (59.21)
and (59.22) with respect to w′. Replacing z(K) by z(K) + 1 we obtain y, z
satisfying (59.21) and (59.22) with respect to w (note that γ(K) = E ∪ A),
contradicting our assumption.

To show (59.25), choose a w′-maximal matching forest F of maximum
size |F |. Under this condition, choose F such that it maximizes |R(F )|.

We show that for each s ∈ V the following holds, where r is the root of
the arborescence14 in F ∩A containing s:

(59.26) there exist a t ∈ R(F ) and a w′-maximal matching forest F ′

satisfying |F ′| = |F |, R(F ′) = (R(F )\{t})∪{s}, and |R(F ′∩A)∩
K| = R(F ∩A)∩K| for each strong component K of (V,A); if r ∈
R(F ), then moreover t = r and R(F ′∩A) = (R(F∩A)\{r})∪{s}.

Let F1 := F and let F2 be a w-maximal forest with s ∈ R(F2) (which exists
by (59.23)). We first find F ′

1 and F ′
2 as follows.

If r �∈ R(F ), then s �∈ R(F ) = R(F1) (since otherwise s is a root of F ∩A,
and hence r = s ∈ R(F )). Applying Lemma 59.3α to F1 and F2 yields the
matching forests F ′

1 and F ′
2.

If r ∈ R(F ), then s �∈ R(F ∩A). Apply Theorem 53.2 to B1 := F1 ∩A and
B2 := F2 ∩A. It yields branchings B′

1 and B′
2 in (V,A) satisfying B′

1 ∩B′
2 =

14 An arborescence in a branching B is a weak component of (V, B), or just the arc set of
it.
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B1 ∩B2, B′
1 ∪B′

2 = B1 ∪B2, and R(B′
1) = R(B1)∪{s} or R(B′

1) = (R(B1) \
{r})∪{s}. This implies R(B′

2) = R(B2)\{s} or R(B′
2) = (R(B2)\{s})∪{r}.

Now define F ′
i := (Fi ∩E)∪B′

i for i = 1, 2. Then the F ′
i are matching forests,

since r ∈ R(F1 ∩ E) and s ∈ R(F2 ∩ E).
In both constructions, |F ′

1| ≤ |F1|, and if |F ′
1| = |F1|, then |R(F ′

1)| ≥
|R(F1)|. Moreover,

(59.27) χF ′
1 + χF ′

2 = χF1 + χF2 ,

which implies that w(F ′
1) + w(F ′

2) = w(F1) + w(F2). Hence

(59.28) w′(F ′
1) + w(F ′

2) = w(F ′
1) + w(F ′

2) − |F ′
1| ≥ w(F1) + w(F2) − |F1|

= w′(F1) + w(F2).

Therefore, since F1 is a w′-maximal matching forest and F2 is a w-maximal
matching forest, we have equality throughout in (59.28). So F ′

1 is w′-maximal
and |F ′

1| = |F1|. Hence |R(F ′
1)| ≥ |R(F1)|. Then, by the maximality of |R(F )|,

we know that |R(F ′
1)| = |R(F1)|.

Set F ′ := F ′
1. If r �∈ R(F ), we know that (59.6)(iii) holds, which gives

(59.26). If r ∈ R(F ), then (59.26) holds for t := r, and R(B′
1) = (R(B1) \

{t})∪{s} or R(B′
2) = (R(B2)\{s})∪{t} (since |F ′

1| = |F1|, F ′
1 ∩E = F1 ∩E,

|F ′
2| = |F2|, F ′

2 ∩ E = F2 ∩ E). Moreover, s and t belong to the same strong
component of (V,A): as r = t is the root of the arborescence in F1 ∩ A
containing s, there exists a t− s path in (V,A); since each weak component
of (V,A) is a strong component (by (59.24)), there is a directed s− t path in
(V,A). This implies (59.26).

Note that (59.26) implies in particular that R(F ) �= ∅. Suppose |R(F )| ≥
2. Choose F under the additional condition that the minimum distance in
(V,E,A) between distinct vertices u, v ∈ R(F ) is as small as possible. Here,
the distance in (V,E,A) is the length of a shortest u−v path in the underlying
undirected graph.

Necessarily, this distance is at least two, since otherwise we can extend
F by an edge connecting u and v, thereby maintaining w′-maximality but
increasing the size. This contradicts the maximality of |F |.

So we can choose an intermediate vertex s on a shortest u− v path. Let
F ′ be the matching forest described in (59.26), with t ∈ R(F ). By symmetry
of u and v we can assume that t �= u. So u, s ∈ R(F ′), contradicting the
choice of F , as the distance of u and s is smaller than that of u and v.

This implies that |R(F )| = 1. Let R(F ) = {r} and let K be the strong
component of (V,A) containing r. We choose F (and r) under the additional
constraint that |R(F ∩A) ∩K| is as large as possible.

Suppose |R(F ∩ A) ∩K| ≥ 2. Choose F under the additional constraint
that r has minimal distance in (V,A) from some root u of F ∩A in K \ {r}.
In this case, the distance in (V,A) from u to r is the length of a shortest
directed u− r path. (Such a path exists, since K is strongly connected.)

Let T be the arborescence in F ∩A containing r. Let s be the first vertex
on a shortest directed u− r path Q in (V,A) that belongs to T . Necessarily
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s �= r, since otherwise we can extend F by the last edge of Q, contradicting
the maximality of |F |.

Let F ′ be the matching forest described in (59.26). Then s ∈ R(F ′) and
R(F ′ ∩A) = (R(F ∩A) \ {r}) ∪ {s}. Hence u remains a root of F ′ ∩A, while
the distance in (V,A) from u to s is shorter than that from u to r. This
contradicts our choice of F (replacing K, r by L, s).

So |R(F ∩A)∩K| = 1. Suppose that there exists a component L of (V,A)
with |R(F ∩ A) ∩ L| ≥ 2. Choose s in L arbitrarily. Let F ′ be the matching
forest described in (59.26). Then s ∈ R(F ′) while |R(F ′ ∩ A) ∩ L| ≥ 2,
contradicting the choice of F .

So no such component L exists; that is, each L ∈ K contains exactly one
root of F ∩ A. So |F ∩ A| = |V | − |K|. Moreover, as |R(F )| = 1, |K| is odd
and |F ∩ E| = 
 1

2 |K|�. So |F | = |F ∩A| + |F ∩ E| = 
|V | − 1
2 |K|�. Hence

(59.29) νw ≥ w(F ) = w′(F ) + |F | = νw′ + |F | = νw′ + 
|V | − 1
2 |K|�,

thus proving (59.25).

We remark that the optimum dual solution y, z constructed in this proof
has the following additional property: if K,L ∈ Λ and z(K), z(L) > 0, then
K and L are ‘laminar’ in the following sense:

(59.30) ∀K ∈ K ∃L ∈ L : K ⊆ L,
or ∀L ∈ L ∃K ∈ K : L ⊆ K,
or ∀K ∈ K ∀L ∈ L : K ∩ L = ∅.

Theorem 59.3 implies the characterization of the matching forest polytope
of Giles [1982b]:

Corollary 59.3a. For each mixed graph (V,E,A), the matching forest poly-
tope is determined by (59.18).

Proof. By Theorems 59.3 and 5.22, the vertices of the polytope determined
by (59.18) are integer. Since the integer solutions of (59.18) are the incidence
vectors of matching forests, this proves the corollary.

59.6. Further results and notes

59.6a. Matching forests in partitionable mixed graphs

Call a mixed graph G = (V, E, A) partitionable (into R and S) if V can be par-
titioned into classes R and S such that each undirected edge connects R and S,
while each directed arc is spanned by R or by S.

Trivially, a mixed graph is partitionable if and only if each circuit has an even
number of undirected edges. That is, by contracting all directed arcs we obtain a
bipartite graph. (Another characterization is: the incidence matrix is totally uni-
modular.)
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In a different form, we have studied matching forests in partitionable mixed
graphs before. Let G = (V, E, A) be a mixed graph partitionable into R and S.
Orient the edges in E from R to S, and turn the orientation of any arc in A
spanned by R. We obtain a directed graph D′ = (V, A′). Then it is easy to see that:

(59.31) a set of edges and arcs of G is a matching forest ⇐⇒ the corresponding
arcs in D′ form an R − S bifurcation.

This implies that a number of theorems on matching forests in a partitionable mixed
graph can be obtained from those on R − S bifurcations. First we have:

Theorem 59.4. Let G = (V, E, A) be a partitionable mixed graph. Then the max-
imum size of a matching forest in G is equal to the minimum size of |V | − |L|,
where L is a collection of strong components K of the directed graph D = (V, A)
with din

D (K) = 0 such that no edge in E connects two components in L.

Proof. This is equivalent to Theorem 54.9.

We similarly obtain a min-max relation for the maximum weight of a matching
forest in a partitionable mixed graph, by the total dual integrality of the following
system:

(59.32) (i) xe ≥ 0 for each e ∈ E ∪ A,
(ii) x(δhead(v)) ≤ 1 for each v ∈ V ,

(iii) x(A[U ]) ≤ |U | − 1 for each nonempty U with U ⊆ R or U ⊆ S.

Here δhead(v) is the set of edges and arcs having v as head.

Theorem 59.5. If G is a mixed graph partitionable into R and S, then (59.32) is
TDI and determines the matching forest polytope.

Proof. This is equivalent to Corollary 54.10a.

For covering by matching forests in partitionable mixed graphs we have:

Theorem 59.6. Let G = (V, E, A) be a mixed graph partitionable into R and S.
Then E ∪ A can be covered by k matching forests if and only if

(59.33) (i) |δhead(v)| ≤ k for each v ∈ V ;
(ii) |A[U ]| ≤ k(|U | − 1) for each nonempty subset U of R or S.

Proof. This is equivalent to Corollary 54.11c.

The case A = ∅ is Kőnig’s edge-colouring theorem (Theorem 20.1).
An equivalent, polyhedral way of formulating Theorem 59.6 is:

Corollary 59.6a. If G is a partitionable mixed graph, then the matching forest
polytope has the integer decomposition property.

Proof. Directly from Theorem 59.6.
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59.6b. Further notes

The facets of the matching forest polytope are characterized in Giles [1982c].
Matching forests form a special case of matroid matching. Let G = (V, E, A) be

a mixed graph. Consider the space R
V × R

V . Associate with any undirected edge
e = uv ∈ E, the pair (χu, 0), (χv, 0) of vectors in R

V × R
V . Associate with any

directed arc a = (u, v) ∈ A, the pair (χv, 0), (0, χu − χv) of vectors in R
V × R

V .
One easily checks that M ⊆ E ∪ A is a matching forest if and only if its associated
pairs form a matroid matching. Thus matroid matching theory implies a min-max
relation and a polynomial-time algorithm for the maximum size of a matching
forest. However, as we saw in Section 59.2, there is an easy direct method for this.



Chapter 60

Submodular functions on
directed graphs

At two structures we came across the proof technique of making a collection
of subsets cross-free: at submodular functions (like in polymatroid inter-
section) and at directed graphs (like in the proof of the Lucchesi-Younger
theorem).
Edmonds and Giles [1977] combined the two structures into one general
framework, consisting of a submodular function defined on the vertex set
of a directed graph. Johnson [1975a] and Frank [1979b] designed a variant
of Edmonds and Giles’ framework, containing the polymatroid intersection
theorem and the optimum arborescence theorem as special cases.
We first describe the results of Edmonds and Giles, and after that we
present a variant, from which the results of Frank can be derived. At the
base is the method of Edmonds and Giles to represent any cross-free family
by a directed tree (the tree-representation) and to derive a network matrix
if the family consists of subsets of the vertex set of a directed graph — see
Section 13.4.

60.1. The Edmonds-Giles theorem

Let D = (V,A) be a digraph and let C be a crossing family of subsets of V
(that is, if T,U ∈ C with T ∩U �= ∅ and T ∪U �= V , then T ∩U, T ∪U ∈ C).
A function f : C → R is called submodular on crossing pairs, or crossing
submodular, if for all T,U ∈ C with T ∩ U �= ∅ and T ∪ U �= V one has

(60.1) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U).

Given such D, C, f , a submodular flow is a function x ∈ R
A satisfying:

(60.2) x(δin(U)) − x(δout(U)) ≤ f(U) for each U ∈ C.

The set P of all submodular flows is called the submodular flow polyhedron.
Equivalently, P is equal to the set of all vectors x in R

A with the property
that the ‘gain’ vector of x is in the extended polymatroid EPf . (The excess
function of x equals Mx where M is the V ×A incidence vector of D.)

Then Edmonds and Giles [1977] showed:
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Theorem 60.1 (Edmonds-Giles theorem). If f is crossing submodular, then
(60.2) is box-TDI.

Proof. Choose w ∈ R
A, and let y be an optimum solution to the dual of

maximizing wTx over (60.2):

(60.3) min{
∑

U∈C
y(U)f(U) | y ∈ R

C
+,

∑

U∈C
y(U)(χδin(U) − χδout(U)) = w}.

Choose y such that

(60.4)
∑

U∈C
y(U)|U ||V \ U |

is as small as possible. Let C0 := {U ∈ C | y(U) > 0}. We first prove that C0
is cross-free.

Suppose to the contrary that T,U ∈ C0 with T �⊆ U �⊆ T , T ∩ U �= ∅,
T ∪ U �= V . Let α := min{y(T ), y(U)} > 0. Then decreasing y(T ) and y(U)
by α, and increasing y(T ∩ U) and y(T ∪ U) by α, maintains feasibility of
z, u, y, while its value is not increased (hence it remains optimum). However,
sum (60.4) decreases (by Theorem 2.1). This contradicts the minimality of
(60.4).

As C0 is cross-free, the submatrix formed by the constraints corresponding
to C0 is totally unimodular (by Corollary 13.21a). Hence, by Theorem 5.35,
(60.2) is box-TDI.

Note that the proof also yields that the solution y in (60.3) can be taken
such that the collection {U ∈ C | y(U) > 0} is cross free.

Box-TDI implies primal integrality (a polyhedron P is box-integer if P ∩
{x | d ≤ x ≤ c} is integer for all integer vectors d, c):

Corollary 60.1a. If f is integer, the polyhedron determined by (60.2) is
box-integer.

Proof. By Theorem 60.1, max{wTx | x ∈ P} is achieved by an integer
solution x, for each vector w.

Complexity. The algorithmic results on polymatroid intersection of Cun-
ningham and Frank [1985] and Fujishige, Röck, and Zimmermann [1989] im-
ply that the optimization problem associated with the Edmonds-Giles theo-
rem can be solved in strongly polynomial time.

Indeed, let D = (V,A) be a digraph, let C be a crossing family, let f :
C → Q be crossing submodular, and let c, d, l : A → Q. If we want to find
a submodular flow x with d ≤ x ≤ c minimizing lTx, we can assume that
all arcs in A are vertex-disjoint. Moreover, we can assume that for each arc
a = (u, v) ∈ A we have f({v}) = c(a) and f({u}) = −d(a). Hence we
can ignore d and c, and assume that we want to find a submodular flow x
minimizing lTx.
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Now define C2 := {{u, v} | (u, v) ∈ A} and f2({u, v}) := 0, w(v) := l(u, v),
and w(u) := 0, for each (u, v) ∈ A. Then the problem is equivalent to finding
a vector x in EPf ∩ EPf2 with x(V ) = 0 and minimizing wTx. This can be
solved in strongly polynomial time by Theorem 49.9.

(Frank [1982b] gave a strongly polynomial-time algorithm for the special
case if f is integer, c = 1, and d = 0.)

A similar reduction of submodular flows to polymatroid intersection was
given by Kovalev and Pisaruk [1984].

60.1a. Applications

Network flows. If we take C := {{v} | v ∈ V } and f = 0, then (60.2) determines
circulations, and Theorem 60.1 passes into a theorem on minimum-cost circulations.
It may be specialized easily to several other results on flows in networks, e.g., to
the max-flow min-cut theorem (Theorem 10.3; take d = 0, c ≥ 0, and w(a) = 0 for
a �= (s, r) and w((s, r)) = 1) and to Hoffman’s circulation theorem (Theorem 11.2).

Lucchesi-Younger theorem. Let D = (V, A) be a digraph and define

(60.5) C := {U ⊆ V | ∅ �= U �= V and dout
A (U) = 0}.

So C consists of all sets U such that the collection of arcs entering U forms a directed
cut. Taking f := −1, c := 0, d := −∞, and w := 1, Theorem 60.1 passes into the
Lucchesi-Younger theorem (Theorem 55.2, cf. Corollary 55.2b): the minimum size
of a directed cut cover is equal to the maximum number of disjoint directed cuts.
For arbitrary w we obtain a weighted version.

Polymatroid intersection. Let f1 and f2 be nonnegative submodular set function
on S. Let S′ and S′′ be two disjoint copies of S, let V = S′ ∪ S′′, and define C by

(60.6) C := {U ′ | U ⊆ S} ∪ {S′ ∪ U ′′ | U ⊆ S}
where U ′ and U ′′ denote the sets of copies of elements of U in S′ and S′′. Define
f : C → R+ by

(60.7) f(U ′) := f1(U) for U ⊆ S,
f(V \ U ′′) := f2(U) for U ⊆ S,
f(S′) := min{f1(S), f2(S)}.

Then C and f satisfy (60.1). If we take d = 0 and c = ∞, Theorem 60.1 passes into
the polymatroid intersection theorem (Corollary 46.1a, cf. Theorem 46.1).

Frank and Tardos [1989] showed that also Theorem 44.7 (a generalization of Lovász
[1970a] of Kőnig’s matching theorem) fits into the Edmonds-Giles model. For ap-
plications of the Edmonds-Giles theorem to graph orientation, see Chapter 61.

60.1b. Generalized polymatroids and the Edmonds-Giles theorem

The Edmonds-Giles theorem (Theorem 60.1) also comprises the total dual integral-
ity of the system defining the intersection of two generalized polymatroids (Section
49.11b). Indeed, let S be a finite set, let, for i = 1, 2, Ci and Di be collections of
subsets of S, and let fi : Ci → R and gi : Di → R form a paramodular pair (fi, gi).
Then the system
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(60.8) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≥ g1(U) for U ∈ D1,
x(U) ≤ f2(U) for U ∈ C2,
x(U) ≥ g2(U) for U ∈ D2,

is box-totally dual integral, which is Corollary 49.12b.
To see this as a special case of the Edmonds-Giles theorem, let S1 and S2 be

disjoint copies of S, and let V := S1 ∪ S2. For each s ∈ S, let as be the arc (s2, s1),
where s1 and s2 are the copies of s in S1 and S2 respectively. Let A := {as | s ∈ S}.

Let

(60.9) C := {U1 | U ∈ C1} ∪ {V \ U1 | U ∈ D1} ∪ {V \ U2 | U ∈ C2} ∪ {U2 |
U ∈ D2},

where Ui denotes the set of copies of the elements in U in Si (i = 1, 2). It is easy
to see that C is a crossing family.

Define f : C → R by:

(60.10) f(U1) := f1(U) for U ∈ C1,
f(V \ U1) := −g1(U) for U ∈ D1,
f(V \ U2) := f2(U) for U ∈ C2,
f(U2) := −g2(U) for U ∈ D2.

(In case that f(S1) or f(S2) would be defined more than once, we take the smallest
of the values.) Then f is submodular on crossing pairs. Now the system (in x ∈ R

A)

(60.11) x(δin(U)) − x(δout(U)) ≤ f(U) for U ∈ C
is the same as (60.8) (after renaming each variable x(s) to x(as)). So the box-total
dual integrality of (60.8) follows from the Edmonds-Giles theorem.

Frank [1984b] showed that, conversely, the solution set of the ‘Edmonds-Giles’
system (60.2) is the projection of the intersection of two generalized polymatroids.

60.2. A variant

We now give a theorem similar to Theorem 60.1, which includes as special
cases again the Lucchesi-Younger theorem and the polymatroid intersection
theorem, and moreover theorems on optimum arborescences, bibranchings,
and strong connectors.

For any digraph D = (V,A) and any family C of subsets of V , define the
C ×A matrix M by

(60.12) MU,a :=
{

1 if a enters U ,
0 otherwise,

for U ∈ C and a ∈ A.
This matrix is totally unimodular if C is cross-free and the following con-

dition holds:

(60.13) if X,Y, Z ∈ C with X ⊆ V \Y ⊆ Z, then no arc of D enters both
X and Z.
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Theorem 60.2. If C is cross-free and (60.13) holds, then M is totally uni-
modular.

Proof. Let T = (W,B) and π : V → W form a tree-representation for C. For
any arc a = (u, v) of D, the set of forward arcs in the undirected π(u) −π(v)
path in T is contiguous, that is, forms a directed path, say from u′ to v′. This
follows from the fact that there exist no arcs b, c, d in this order on the path
with b and d forward and c backward, by (60.13).

Define a′ := (u′, v′), and let D′ = (W,A′) be the digraph with A′ :=
{a′ | a ∈ A}. Then M is equal to the network matrix generated by T and D′

(identifying b ∈ B with the set Xb in C determined by b). Hence by Theorem
13.20, M is totally unimodular.

Recall that a function g on a crossing family C is called supermodular on
crossing pairs, or crossing supermodular, if for all T,U ∈ C:

(60.14) if T∩U �= ∅ and T∪U �= V , then g(T )+g(U) ≤ g(T∩U)+g(T∪U).

Consider the polyhedron P determined by:

(60.15) xa ≥ 0 for a ∈ A,
x(δin(U)) ≥ g(U) for U ∈ C.

Theorem 60.3. If g is crossing supermodular and (60.13) holds, then system
(60.15) is box-TDI.

Proof. Let w ∈ R
A and let y achieve the maximum in the dual of minimizing

wTx over (60.15):

(60.16) max{
∑

U∈C
y(U)g(U) | y ∈ R

C
+,

∑

U∈C
y(U)χδin(U) ≥ w},

in such a way that

(60.17)
∑

U∈C
y(U)|U ||V \ U |

is as small as possible. Define

(60.18) C0 := {U ∈ C | y(U) > 0}.

We first show that C0 is cross-free. Suppose to the contrary that there are T,U
in C with T �⊆ U �⊆ T , T ∩U �= ∅, and T ∪U �= V . Let α := min{y(T ), y(U)}.
Now decrease y(T ) and y(U) by α, and increase y(T ∩U) and y(T ∪U) by α.
Then y remains feasible and optimum, while sum (60.17) decreases (Theorem
2.1), a contradiction.

Since C0 determines a totally unimodular submatrix by Theorem 60.2, by
Corollary 5.20b system (60.15) is box-TDI.
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Note that the proof yields that (60.16) has a solution y with {U ∈ C |
y(U) > 0} cross-free. Condition (60.13) cannot be deleted, as is shown by
Figure 60.1.

Figure 60.1
A collection and a digraph showing that condition (60.13) can-
not be deleted in Theorem 60.3. In this Venn-diagram, the collec-
tion is represented by the interiors of the ellipses and by the exteriors
of the rectangles.

Again, there is the following standard corollary for primal integrality:

Corollary 60.3a. If g is integer, the polyhedron determined by (60.15) is
box-integer.

Proof. As before.

Notes. Johnson [1975a] proved Theorem 60.3 for the special case that C is the
collection of all nonempty subsets of V \ {r} (where r is a fixed element of V ), and
Frank [1979b] extended this result to the case where C is any intersecting family of
subsets of V \ {r}. Note that in this case condition (60.13) is trivially satisfied.

60.2a. Applications

We list some applications of Theorem 60.3, which may be compared with the ap-
plications of the Edmonds-Giles theorem (Section 60.1a).

Kőnig-Rado edge cover theorem. Let G = (V, E) be a bipartite graph, with
colour classes V1 and V2. Let D = (V, A) be the digraph arising from G by orienting
all edges from V2 to V1. Define C := {{v} | v ∈ V1} ∪ {V \ {v} | v ∈ V2} and let
d := 0, c := ∞, g := 1, w := 1. Then Theorem 60.3 gives the Kőnig-Rado edge
cover theorem (Theorem 19.4): the minimum size of an edge cover in a bipartite
graph is equal to the maximum size of a stable set. Taking w arbitrary gives a
weighted version.
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Optimum arborescence theorem. Let D = (V, A) be a digraph, let r ∈ V , and
let C be the collection of all nonempty subsets of V \ {r}. Let g := 1, d := 0,
c := ∞, and let w : A → Z+. Theorem 60.3 now gives the optimum arborescence
theorem (Theorem 52.3): the minimum weight of an r-arborescence is equal to the
maximum number of r-cuts such that no arc a is in more than w(a) of these r-cuts.

Optimum bibranching theorem. Let D = (V, A) be a digraph and let V be
split into sets R and S. Define C := {U ⊆ V | ∅ �= U ⊆ S or S ⊆ U ⊂ V } and
d := 0, c := ∞, g := 1, and let w : A → Z+. Then Theorem 60.3 gives Corollary
54.8b: the minimum weight of a bibranching is equal to the maximum number of
subsets in C such that no arc a enters more than w(a) of these subsets.

Lucchesi-Younger theorem. Let D = (V, A) be a digraph and let C be the
collection of all nonempty proper subsets U of V with δout

A (U) = ∅. Let g := 1,
d := 0, c := ∞, and w := 1. Then Theorem 60.3 gives the Lucchesi-Younger
theorem (Theorem 55.2): the minimum size of a directed cut cover is equal to the
maximum number of disjoint directed cuts. Taking w arbitrary, gives a weighted
version.

Strong connectors. Suppose that g = 1, d = 0, and c = ∞, and that for all
V1, V2 ∈ C we have: if V1 ∩ V2 �= ∅, then V1 ∩ V2 ∈ C, and if V1 ∪ V2 �= V , then
V1 ∪ V2 ∈ C. Then Theorem 60.3 is equivalent to Theorem 57.3.

Indeed, let D = (V, A) and D0 = (V, A0) be digraphs such that for each arc
a = (u, v) of D there are vertices u′ and v′ such that D0 contains directed paths
from u to u′, from v′ to v, and from v′ to u′. Let w : A → Z+. Then the minimum
weight of a strong connector in D for D0 is equal to the maximum number of
D0-cuts in D such that no arc a of D is in more than w(a) of these D0-cuts.

This can be derived from Theorem 60.3 by taking C := {U ⊆ V | ∅ �= U �= V ,
δin

A0(U) = ∅}. Conversely, if C satisfies the condition given above, we can take
A0 := {(u, v) | u, v ∈ V, (u, v) enters no U ∈ C}.

Polymatroid intersection. Let g1 and g2 be integer supermodular nondecreasing
set functions on S with g1(∅) = g2(∅) = 0. Then

(60.19) min{x(S) | x ∈ Z
S
+, x(U) ≥ gi(U) for U ⊆ S, i = 1, 2}

= max
U⊆S

(g1(U) + g2(S \ U)).

This follows by taking disjoint copies S′ and S′′ of S, and setting V := S′ ∪ S′′,
C := {T ⊆ V | T ⊆ S′ or S′ ⊆ T}, A := {(s′′, s′) | s ∈ S}, g(U ′) := g1(U) and
g(V \ U ′′) := g2(U) for U ⊆ S (without loss of generality, g1(S) = g2(S)), d := 0,
c := ∞, w := 1.

By taking d, c, w arbitrary, several other (contra)polymatroid intersection the-
orems follow.
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60.3. Further results and notes

60.3a. Lattice polyhedra

In a series of papers, Hoffman [1976a,1978] and Hoffman and Schwartz [1978] de-
veloped a theory of ‘lattice polyhedra’, which extends results of Johnson [1975a].
This theory has much in common with the theories described above.

Let (L, ≤) be a partially ordered set and let ∧ : L × L → L be a function such
that

(60.20) for all a, b ∈ L: a ∧ b ≤ a and a ∧ b ≤ b.

Let S be a finite set and let φ : L → P(S) be such that

(60.21) if a < b < c, then φ(a) ∩ φ(c) ⊆ φ(b)

for a, b, c in L. Let ∨ : L × L → L and let f : L → R+ satisfy:

(60.22) f(a ∧ b) + f(a ∨ b) ≤ f(a) + f(b)

for all a, b in L. So f is, in a sense, submodular.
Define

(60.23) S′ := {u ∈ S | ∀a, b ∈ L : χφ(a∧b)(u) + χφ(a∨b)(u) ≤ χφ(a)(u) +
χφ(b)(u)} and
S′′ := {u ∈ S | ∀a, b ∈ L : χφ(a∧b)(u) + χφ(a∨b)(u) ≥ χφ(a)(u) +
χφ(b)(u)}.

The polyhedron determined by:

(60.24) xu ≥ 0 (u ∈ S \ S′),
xu ≤ 0 (u ∈ S \ S′′),
x(φ(a)) ≤ f(a) (a ∈ L).

is called a lattice polyhedron. Hoffman and Schwartz [1978] showed that system
(60.24) is box-totally dual integral.

Theorem 60.4. System (60.24) is box-TDI.

Proof. Choose w ∈ R
S
+. Consider the dual of maximizing wTx over (60.24):

(60.25) min{yTf | y ∈ R
L
+,

∑

a∈L

yaχφ(a) ≤ w(u) if u ∈ S′ and
∑

a∈L

yaχφ(a) ≥

w(u) if u ∈ S′′}.

Order the elements of L as a1, . . . , an such that if ai ≤ aj , then i ≤ j. Let y attain
(60.25), such that y(L) is minimal, and, under this condition, such that

(60.26) (y(a1), . . . , y(an))

is lexicographically maximal.
Then the collection C := {a ∈ L | ya > 0} is a chain in L. For suppose to

the contrary that a, b ∈ C with a �≤ b �≤ a. Let α := min{ya, yb}. Reset y by
decreasing ya and yb by α, and increasing y(a ∧ b) and y(a ∨ b) by α. One easily
checks, using (60.22) and (60.23), that the new y again attains the minimum (60.25),
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and moreover that (y(a1), . . . , y(an)) lexicographically increases, contradicting our
assumption.

By (60.21) for each u in S, the set of a in C with u ∈ φ(a) forms an interval
in C. So the linear inequalities corresponding to C make up a totally unimodular
matrix (as it is a network matrix generated by a directed path and a directed graph
(Theorem 13.20)). Therefore, by Theorem 5.35, system (60.24) is box-TDI.

We give some applications of Theorem 60.4 (more applications are in Hoffman
[1976a], Hoffman and Schwartz [1978], and Gröflin [1984,1987]).

Shortest paths (Johnson [1975a]). Let D = (V, A) be a digraph and let s, t ∈ V .
Let L := {U ⊆ V | s ∈ U, t �∈ U} and let ≤:=⊆, ∧ := ∩, ∨ := ∪. Let S := A and
let for each U ∈ L, φ(U) := δout(U). These data satisfy (60.20) and (60.21), where
S′ := S. If f = −1, Theorem 60.4 gives: the minimum length of an s − t path is
equal to the maximum number of s− t cuts such that no arc a is in more than c(a)
of these s − t cuts — the max-potential min-work theorem (Theorem 7.1).

Matroid intersection (Hoffman [1976a]). Let (S, I) and (S, I2) be matroids, with
rank functions r1 and r2 and assume r1(S) = r2(S). Let S′ and S′′ be two disjoint
copies of S and let V := S′ ∪S′′. Let L := {U ⊆ V | U ⊆ S′ or S′ ⊆ U}. Let ≤:=⊆,
∧ := ∩, ∨ := ∪. Define for T ⊆ S:

(60.27) f(T ′) := r1(T ), φ(T ′) := T ,
f(V \ T ′′) := r2(T ), φ(V \ T ′′) := T.

As these data satisfy (60.20), (60.21), and (60.22), Theorem 60.4 yields the matroid
intersection theorem. Polymatroid intersection can be included similarly.

Chains and antichains in partially ordered sets (Hoffman and Schwartz
[1978]). Let (V, �) be a partially ordered set and let L be the collection of lower
ideals of V (a subset Y of V is a lower ideal if y � x ∈ V implies y ∈ V ). Define
≤:=⊆, ∧ := ∩, ∨ := ∪.

First, let S := V . For Y ∈ L, let φ(Y ) be the collection of maximal elements of
Y . These data satisfy (60.20) and (60.21), and S′ = S′′ = S.

Theorem 60.4 with f(Y ) := k for each Y ∈ L then gives the theorem of Greene
[1976] (Corollary 14.10b) that the maximum size of the union of k chains is equal
to the minimum value of |V \ Y | + k · c1(Y ), where Y ranges over all subsets of V
and where c1(Y ) denotes the maximum size of a chain contained in Y .

Indeed, Theorem 60.4 gives the total dual integrality of

(60.28) 0 ≤ xv ≤ 1 for v ∈ V ,
x(A) ≤ k for each antichain A.

Hence the maximum size of the union of k chains is, by Dilworth’s decomposition
theorem, equal to (where A denotes the collection of antichains in V )

(60.29) max{1Tx | x ∈ {0, 1}V , x(A) ≤ k for A ∈ A}
= min{k

∑

A∈A
yA + z(V ) | y ∈ Z

A
+ , z ∈ Z

V
+ ,

∑

A∈A
yAχA + z ≥ 1}

= min
Y ⊆V

(|V \ Y | + k·(minimum number of antichains covering Y ))

= min
Y ⊆V

(|V \ Y | + k · c1(Y )).
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Also the dual result (exchanging ‘chain’ and ‘antichain’) due to Greene and
Kleitman [1976] (Corollary 14.8b) can be derived. Let L, ≤, ∧, ∨ be as above and
let S := V ∪ {w}, where w is some new element. For Y ∈ L, let φ(Y ) be the
collection of maximal elements of Y together with w and let f(Y ) := −|φ(Y )|.
These data again satisfy (60.20) and (60.21), and S′ = S′′ = S.

Then Theorem 60.4 gives the box-total dual integrality of the system

(60.30) x(A) + λ ≤ −|A| for each antichain A,

and hence of the system

(60.31) x(A) + λ ≥ |A| for each antichain A.

Then the maximum union of k antichains is equal to

(60.32) max{
∑

A∈A
yA|A|

∣
∣ y ∈ Z

A
+ ,

∑

A∈A
yAχA ≤ 1,

∑

A∈A
yA = k}

= min{x(V ) + k · λ | x ∈ Z
V
+ , λ ∈ Z, x(A) + λ ≥ |A| for each A ∈ A}

≥ min
Y ⊆V

(|V \ Y | + k·(maximum size of an antichain contained in Y )).

The equality follows from the box-total dual integrality of (60.31). The inequality
follows by taking Y := {v ∈ V | xv = 0}. Then λ is at least the maximum size of
an antichain contained in Y , since for any antichain A ⊆ Y : λ = x(A) + λ ≥ |A|.

Common base vectors in two polymatroids (Gröflin and Hoffman [1981]). Let
f1 and f2 be submodular set functions on S. The polymatroid intersection theorem
gives:

(60.33) f(T ) := max{x(T ) | x(U) ≤ fi(U) for U ⊆ S and i = 1, 2}
= min

U⊆T
(f1(U) + f2(T \ U)),

for T ⊆ S. Gröflin and Hoffman [1981] showed that Theorem 46.4 follows from
Theorem 60.4 above as follows. (The proof of Theorem 46.4 was modelled after the
proof of Theorem 60.4.)

Let L be the set of all pairs (T, U) of subsets of S with T ∩ U = ∅, partially
ordered by ≤ as follows:

(60.34) (T, U) ≤ (T ′, U ′) and only if T ⊆ T ′ and U ⊇ U ′.

Then (L, ≤) is a lattice with lattice operations ∧ and ∨ (say). Define φ(T, U) :=
|S \ (T ∪ U)| and f(T, U) := f1(T ) + f2(U) − f(S). As these data satisfy (60.20),
(60.21), and (60.22), Theorem 60.4 applies. We have S′ = S′′ = S. Hence the
system

(60.35) x(S \ (T ∪ U)) ≥ f1(T ) + f2(U) − f(S) for (T, U) ∈ L

is box-TDI. With the definition of f , this implies the box-total dual integrality of

(60.36) x(T ) ≤ f(S \ T ) − f(S) for T ⊆ S,

and (equivalently) of

(60.37) x(T ) ≥ f(S) − f(S \ T ) for T ⊆ S.
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That is, we have Theorem 46.4.

Convex sets in partially ordered sets (Gröflin [1984]). Let (S, ≤) be a partially
ordered set. A subset C of S is called convex if a, b ∈ C and a ≤ x ≤ b imply x ∈ C.
Then the system

(60.38) x(C) ≤ 1 for each convex subset C of S,

is box-TDI. Note that this system describes the polar of the convex hull of the
incidence vectors of convex sets.

To see the box-total dual integrality of (60.38), define

(60.39) L := {(A, B) | A lower ideal and B upper ideal in S with A ∪ B = S}.

(An upper ideal is a subset B such that if b ∈ B and x ≥ b, then x ∈ B. Similarly,
a lower ideal is a subset B such that if b ∈ B and x ≤ b, then x ∈ B.) Make L to a
lattice by defining a partial order � on L by:

(60.40) (A, B) � (A′, B′) ⇐⇒ A ⊆ A′, B ⊇ B′.

Define f : L → R and φ : L → P(S) by: f(A, B) := 1 and φ(A, B) := A ∩ B,
for (A, B) ∈ L. Applied to this structure, Theorem 60.4 gives the box-total dual
integrality of (60.38).

(‘Greedy’ algorithms for some lattice polyhedra problems were investigated by
Kornblum [1978].)

An extension of lattice polyhedra, to handle rooted-connectivity augmentation
of a digraph, was given by Frank [1999b].

60.3b. Polymatroidal network flows

Hassin [1978,1982] and Lawler and Martel [1982a,1982b] gave the following ‘poly-
matroidal network flow’ model equivalent to that of Edmonds and Giles. Let
D = (V, A) be a digraph. For each v ∈ V , let Cout

v and Cin
v be intersecting fam-

ilies of subsets of δout(v) and δin(v), respectively, and let fout
v : Cout

v → R and
f in

v : Cin
v → R be submodular on intersecting pairs. Then the system

(60.41) x(δout(v)) = x(δin(v)) for v ∈ V ,
x(B) ≤ f in

v (B) for each v ∈ V and B ∈ Cin
v ,

x(B) ≤ fout
v (B) for each v ∈ V and B ∈ Cout

v ,

is box-TDI. Frank [1982b] showed that this can be derived from the Edmonds-
Giles theorem (Theorem 60.1) as follows. Make a digraph D′ = (V ′, A′), where A′

consists of disjoint arcs a′ := (ua, va) for each a ∈ A. Let C consist of all subsets U
of V ′ such that there exists a v ∈ V satisfying:

(60.42) U = {va | a ∈ δin(v)} ∪ {ua | a ∈ δout(v)},
or ∃B ∈ Cin

v : U = {va | a ∈ B},
or ∃B ∈ Cout

v : U = V ′ \ {ua | a ∈ B}.

Define f(U) := 0, f(U) := f in
v (B), and f(U) := f in

v (B), respectively. Then the
box-total dual integrality of (60.41) is equivalent to that of

(60.43) x(δin
A′(U)) − x(δout

A′ (U)) ≤ f(U) for U ∈ C,



Section 60.3c. A general model 1029

which follows from Theorem 60.1.
Lawler [1982] showed that, conversely, the Edmonds-Giles model is a special case

of the polymatroidal network flow model. To see this, let D = (V, A) be a digraph,
let C be a crossing family of subsets of V , and let f : C → R be crossing submodular.
Let Ĉ be the collection of all sets U = U1 ∩ · · · ∩ Ut with U1, . . . , Ut ∈ C \ {V } such
that Ui ∪ Uj = V for all i, j with 1 ≤ i < j ≤ t. Define f̂ : Ĉ → R by

(60.44) f̂(U) := min(f(U1) + · · · + f(Ut)),

where the minimum ranges over sets U1, . . . , Ut as above. Then Ĉ is an intersecting
family and f̂ is intersecting submodular (Theorem 49.6).

Now extend D by a new vertex r, and arcs (v, r) for v ∈ V , thus making the
digraph D′ = (V ∪ {r}, A′). Let Cin

r consist of all subsets B of δin
A′(r) for which

there is a U ∈ Ĉ satisfying

(60.45) B = {(v, r) | v ∈ U}.

Define f in
r (B) := f̂(U). Then

(60.46) x(δout
A′ (v)) = x(δin

A′(v)) for v ∈ V ,
x(δin

A′(r)) = 0,
x(B) ≤ f in

r (B) for B ∈ Cin
r ,

is a special case of (60.41). Moreover, the box-total dual integrality of (60.46) implies
the box-total dual integrality of

(60.47) x(δin
A (U)) − x(δout(U)) ≤ f(U) for U ∈ C,

since in (60.46) we can restrict B to those B for which there exists a U ∈ C with
B = {(v, r) | v ∈ U} (since x(δin

A′(r)) = 0). Then

(60.48) x(B) =
∑

v∈U

(
x(δin

A (v)) − x(δout
A (v))

)
= x(δin

A (U)) − x(δout
A (U)).

So it implies the Edmonds-Giles theorem (Theorem 60.1).

60.3c. A general model

In Schrijver [1984a] the following general framework was given. Let S be a finite
set, let n ∈ Z+, let C be a collection of subsets of S, let b, c ∈ (R ∪ {±∞})n, and
let f : C → R and h : C → {0, ±1}n satisfy:

(60.49) (i) if {T1, T2, T3} is a cross-free subcollection of C, then for each j =
1, . . . , n, there exist u, v ∈ S such that for i = 1, 2, 3: h(Ti)j = +1
if and only if (u, v) enters Ti, and h(Ti)j = −1 if and only if (u, v)
leaves Ti;

(ii) if T and U are crossing sets in C, then there exist T ′, U ′ ∈ C such
that T ′ ⊂ T and

f(T ) + f(U) − f(T ′) − f(U ′) ≥ (h(T ) + h(U) − h(T ′) − h(U ′))x

for each x with b ≤ x ≤ c.

Then the system (in x ∈ R
n)
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(60.50) b ≤ x ≤ c,
h(T )x ≤ f(T ) for T ∈ C,

is box-TDI. This contains the Edmonds-Giles theorem (Theorem 60.1) and Theo-
rems 60.3 and 60.4 as special cases.

A proof of the box-total dual integrality of (60.50) can be sketched as follows.
If we maximize a linear functional wTx over (60.50), condition (60.49)(ii) implies
that there exists an optimum dual solution whose active constraints correspond to
a cross-free subfamily of C. Next, condition (60.49)(i) implies that these constraints
form a network matrix, hence a totally unimodular matrix, proving the box-total
dual integrality of (60.50) with Theorem 5.35.

60.3d. Packing cuts and Győri’s theorem

Let D = (V, A) be a digraph and let g : P(V ) → Z+ satisfy the supermodular
inequality

(60.51) g(U) + g(W ) ≤ g(U ∩ W ) + g(U ∪ W )

for all U, W ⊆ V such that δin(U) ∩ δin(W ) �= ∅ and g(U) > 0, g(W ) > 0.
The following was shown by Frank and Jordán [1995b] (in the terminology of

bisupermodular functions — see Corollary 60.5a):

Theorem 60.5. Let D = (V, A) be a digraph satisfying:

(60.52) V can be partitioned into two sets S and T such that A consists of all
arcs from S to T .

Let g be as above, with g(U) = 0 if δin(U) = ∅. Then the minimum of x(A) taken
over all x : A → Z+ satisfying

(60.53) x(δin(U)) ≥ g(U) for each U ⊆ V ,

is equal to the maximum value of
∑

U∈B g(U), where B is a collection of subsets U

such that the δin(U) for U ∈ B are disjoint.

Proof. Let τ(g) and ν(g) denote the minimum and maximum value, respectively.
Then ν(g) ≤ τ(g), since, if x : A → Z+ satisfies (60.53) and B is as described,

then

(60.54) x(A) ≥
∑

U∈B
x(δin(U)) ≥

∑

U∈B
g(U).

The reverse inequality τ(g) ≤ ν(g) is shown by induction on ν(g). If ν(g) = 0,
then g(U) = 0 for all U ⊆ V , and hence τ(g) = 0. Now let ν(g) ≥ 1.

For each a ∈ A, define a function ga by

(60.55) ga(U) :=
{

g(U) − 1 if a ∈ δin(U) and g(U) ≥ 1,
g(U) otherwise,

for U ⊆ V . In other words:

(60.56) ga(U) = max{g(U) − din
{a}(U), 0}.

Then
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(60.57) ga again satisfies (60.51).

Indeed, if δin(U) ∩ δin(W ) �= ∅, and ga(U) > 0 and ga(W ) > 0, then g(U) > 0 and
g(W ) > 0, and ga(U) = g(U) − din

{a}(U) and ga(W ) = g(W ) − din
{a}(W ). Hence

(60.58) ga(U) + ga(W ) = g(U) + g(W ) − din
{a}(U) − din

{a}(W )
≤ g(U ∩ W ) + g(U ∪ W ) − din

{a}(U ∩ W ) − din
{a}(U ∪ W )

≤ ga(U ∩ W ) + ga(U ∪ W ).

So ga satisfies (60.51).
The following is the key of the proof:

(60.59) there exists an arc a with ν(ga) ≤ ν(g) − 1.

Suppose to the contrary that ν(ga) = ν(g) for all a ∈ A. As ν(g) ≥ 1, there exists
a W ⊆ V with g(W ) ≥ 1. For each a ∈ δin(W ), as ν(ga) = ν(g), there exists
a collection Ba such that any arc of D enters at most one U ∈ Ba, such that
ga(Ba) = νg, and such that g(U) > 0 for each U ∈ Ba. As g(Ba) ≤ ga(Ba), a enters
no U ∈ Ba.

Now for each U ⊆ V , let w(U) be the number of times U occurs among the
Ba (over all a ∈ δin(W )). Reset w(W ) := w(W ) + 1. Then w has the following
properties:

(60.60) (i)
∑

U⊆V

w(U)χδout(U) ≤ |δin(W )| · 1 and

(ii)
∑

U⊆V

w(U)g(U) > |δin(W )|ν(g).

Moreover, g(U) ≥ 1 whenever w(U) > 0.
Now as long as there exist U, U ′ ⊆ V with w(U) > 0 and w(U ′) > 0 and not

satisfying:

(60.61) δin(U) ∩ δin(U ′) = ∅ or U ⊆ U ′ or U ′ ⊆ U ,

decrease w(U) and w(U ′) by 1, and increase w(U ∩ U ′) and w(U ∪ U ′) by 1. This
operation maintains (60.60) and decreases

(60.62)
∑

U∈P(V )

w(U)|U ||V \ U |

(by Theorem 2.1). So after a finite number of these operations, w satisfies (60.60)
and all U, U ′ with w(U) > 0 and w(U ′) > 0 satisfy (60.61).

Let F be the collection of U ⊆ V with w(U) > 0. We apply the length-width
inequality for partially ordered sets (Theorem 14.5) to (F , ⊆). By (60.60)(i), the
maximum of w(C) taken over chains in F is at most |δin(W )|, since by (60.52), there
is an arc a ∈ A entering all U ∈ C (as δin(U) �= ∅, since g(U) ≥ 1, for each U ∈ F).
Moreover, the maximum of g(B) taken over antichains B in F is at most ν(g), since
the elements in F satisfy (60.61), and therefore B gives a collection of disjoint cuts.
But then (60.60)(ii) contradicts the length-width inequality. This proves (60.59).

We now can apply induction, since trivially τ(g) ≤ τ(ga) + 1, as increasing xa

by 1 for any x satisfying (60.53) with respect to ga, gives an x satisfying (60.53)
with respect to g. So τ(g) ≤ τ(ga) + 1 = ν(ga) + 1 ≤ ν(g).

This theorem can be equivalently formulated as follows. Let S and T be finite
sets. Consider functions h : P(S) × P(T ) → R satisfying
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(60.63) h(X1 ∩ X2, Y1 ∪ Y2) + h(X1 ∪ X2, Y1 ∩ Y2) ≥ h(X1, Y1) + h(X2, Y2)
for all X1, X2 ⊆ S and Y1, Y2 ⊆ T with X1 ∩ X2 �= ∅, Y1 ∩ Y2 �= ∅,
h(X1, Y1) > 0, and h(X2, Y2) > 0.

Call a collection F ⊆ P(S) × P(T ) independent if X1 ∩ X2 = ∅ or Y1 ∩ Y2 = ∅
for all distinct (X1, Y1), (X2, Y2) in F . So F is independent if the sets X × Y for
(X, Y ) ∈ F are disjoint.

As usual,

(60.64) h(F) :=
∑

(X,Y )∈F
h(X, Y ).

Moreover, if z : S × T → R, denote

(60.65) z(X × Y ) :=
∑

(x,y)∈X×Y

z(x, y)

for X ⊆ S and Y ⊆ T .

Corollary 60.5a. Let h : P(S)×P(T ) → Z+ satisfy (60.63), such that h(X, Y ) = 0
if X = ∅ or Y = ∅. Then the minimum value of z(S × T ) where z : S × T → Z+

satisfies

(60.66) z(X × Y ) ≥ h(X, Y ) for all X ⊆ S, Y ⊆ T ,

is equal to the maximum value of h(F) where F is independent.

Proof. We can assume that S and T are disjoint. Let V := S ∪ T , and define a set
function g on V by:

(60.67) g(U) := h(S \ U, T ∩ U)

for U ⊆ V . Let D = (V, A) be the digraph with A consisting of all arcs from S to
T . Then D and g satisfy the condition of Theorem 60.5, and the min-max equality
proved in Theorem 60.5 is equivalent to the min-max equality described in the
present corollary.

Frank and Jordán showed that this theorem implies the following ‘minimax
theorem for intervals’ of Győri [1984]. Let I and J be collections of sets. Then
J is said to generate I if each set in I is a union of sets in J . Győri’s theorem
characterizes the minimum size of a collection of intervals generating a given finite
collection I of intervals. For this, we can take an ‘interval’ to be a finite, contiguous
set of integers.

To describe the min-max equality, consider the undirected graph GI = (VI , EI)
with

(60.68) VI := {(s, I) | s ∈ I ∈ I},

where two distinct pairs (s, I) and (s′, I ′) are adjacent if and only if s ∈ I ′ and
s′ ∈ I. Call a subset C of VI stable if any two elements of C are nonadjacent (in
other words, C is a stable set in GI).

Corollary 60.5b (Győri’s theorem). Let I be a finite collection of intervals. Then
the minimum size of a collection of intervals generating I is equal to the maximum
size of a stable subset of VI .
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Proof. To see that the minimum is not less than the maximum, observe that if J
generates I and C is a stable subset of VI , then for any J ∈ J , there is at most
one (s, I) ∈ C with s ∈ J ⊆ I, while for any (s, I) ∈ C there is at least one such
J ∈ J . So |J | ≥ |C|.

Equality is shown with Corollary 60.5a. Let S be the union of the intervals in
I. Define a function h : P(S) × P(S) → {0, 1} by

(60.69) h(X, Y ) = 1 if and only if X and Y are nonempty intervals such that
max X = min Y and X ∪ Y ∈ I, and such that there is no I ∈ I with
X ∩ Y ⊆ I ⊂ X ∪ Y ,

for X, Y ⊆ S. (Here max Z and min Z denote the maximum and minimum element
of Z, respectively.)

Then h satisfies (60.63). To see this, note first that each (X, Y ) with h(X, Y ) = 1
is characterized by a point s ∈ S and an inclusionwise minimal interval I ∈ I
containing s (inclusionwise minimal among all intervals in I containing s). The
relation is that {s} = X ∩ Y and I = X ∪ Y .

To see that h satisfies (60.63), let h(X1, Y1) = 1 and h(X2, Y2) = 1 and X1 ∩
X2 �= ∅ and Y1∩Y2 �= ∅. We show h(X1∩X2, Y1∪Y2) = 1 (then h(X1∪X2, Y1∩Y2) =
1 follows by symmetry).

In fact, this is straightforward case-checking. Let Xi = [ai, bi], Yi = [bi, ci], and
Ii := Xi ∪ Yi for i = 1, 2. As X1 ∩ I2 �= ∅ �= Y1 ∩ I2, we know that b1 ∈ [a2, c2],
and similarly b2 ∈ [a1, c1]. By symmetry, we can assume that a1 ≤ a2. Hence, by
the minimality of X1 ∪ Y1 as an interval containing b1, c1 ≤ c2. Now, if b2 ≤ b1,
we have X1 ∩ X2 = [a2, b2] = X2 and Y1 ∪ Y2 = [b2, c2] = Y2, and therefore
h(X1 ∩ X2, Y1 ∪ Y2) = h(X2, Y2) = 1. If b1 < b2, then X1 ∩ X2 = [a2, b1] and
Y1 ∪ Y2 = [b1, c2]. Suppose that there is an I ∈ I with b1 ∈ I ⊂ [a2, c2]. By the
minimality of [a2, c2] as an interval containing b2, we know b2 �∈ I. Hence I ⊂ [a1, c1],
contradicting the minimality of [a1, c1] as an interval containing b1. Therefore, no
such I exists, and hence we have h(X1 ∩ X2, Y1 ∪ Y2) = 1.

So Corollary 60.5a applies (taking T := S). Let z and F attain the minimum
and maximum respectively. Let J be the collection of intervals [s, t] with z(s, t) ≥ 1
and s ≤ t. Let C be the collection of pairs (s, I) with s ∈ S and I ∈ I such that
there is an (X, Y ) ∈ F with h(X, Y ) = 1, X ∩ Y = {s}, and X ∪ Y = I. Then J
generates I, since z(X × Y ) ≥ h(X, Y ) for all X, Y . Moreover, C is stable as F is
independent. Finally, |J | ≤ z(S × S) = h(F) = |C|.

(Frank [1999a] gave an alternative, algorithmic proof.)
Győri’s theorem in fact states that the colouring number of the complementary

graph of GI is equal to its clique number. It has the following consequence, proved
by Chaiken, Kleitman, Saks, and Shearer [1981] and conjectured by V. Chvátal.
Let P be a rectilinear polygon in R

2 (where each side horizontal or vertical), such
that the intersection of P with each horizontal or vertical line is convex. Then the
minimum number of rectangles contained in P needed to cover P , is equal to the
maximum number of points in P no two of which are contained in any rectangle
contained in P .

Franzblau and Kleitman [1984] gave an O(|I|2)-time algorithm to find the op-
tima in Győri’s theorem, with a proof of equality as by-product.

Győri’s theorem was extended by Lubiw [1991a] to a weighted version. She
noted that a fully weighted version of the theorem does not hold; that is, taking
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integer weights w(s, I) on any pair (s, I), the maximum weight of a stable set need
not be equal to the minimum size of a family J of intervals such that for any (s, I)
there are at least w(s, I) intervals J in J satisfying s ∈ J ⊆ I. (In other words, GI
need not be perfect.)

However, as Lubiw showed, these two optima are equal if w(s, I) only depends
on s; that is, if w(s, I) = w(s) for some w : S → Z+. Also this can be derived from
Frank and Jordán’s theorem: instead of defining h(X, Y ) := 1 in (60.69), define
h(X, Y ) := w(s) where {s} = X ∩ Y .

As Frank and Jordán observed, their method extends Győri’s theorem to the
case where we take ‘interval’ to mean: interval on the circle (instead of just the real
line).

Other applications of Theorem 60.5 are to vertex-connectivity augmentation —
see Theorem 63.11.

60.3e. Further notes

For another model equivalent to that of Edmonds and Giles, based on distributive
lattices, see Gröflin and Hoffman [1982] — cf. Schrijver [1984b]. Grishuhin [1981]
gave a lattice model requiring total unimodularity as a condition.

Further algorithms for minimum-cost submodular flow were given by Fujishige
[1978a,1987], Zimmermann [1982b,1992], Barahona and Cunningham [1984], Cui
and Fujishige [1988], Chung and Tcha [1991], Gabow [1993a], McCormick and Er-
volina [1993], Iwata, McCormick, and Shigeno [1998,1999,2000,2002], Wallacher and
Zimmermann [1999], Fleischer and Iwata [2000], and Fleischer, Iwata, and Mc-
Cormick [2002]. A survey on algorithms for submodular flows was presented by
Fujishige and Iwata [2000].

Zimmermann [1982a,1982b,1985] considered group-valued extensions of some
of the models. Federgruen and Groenevelt [1988] extended some models to more
general objective functions. Zimmermann [1986] considered duality for balanced
submodular flows. Qi [1988a] and Murota [1999] gave generalizations of submodular
flows. Convex-cost submodular flows were considered by Iwata [1996,1997].

An algorithm for a model comprising the Edmonds-Giles and the lattice poly-
hedron model (Section 60.3a) was given by Karzanov [1983]. For 0,1 problems it is
polynomial-time.

The effectivity of uncrossing techniques is studied by Hurkens, Lovász, Schrijver,
and Tardos [1988] and Karzanov [1996].

The facets of submodular flow polyhedra were studied by Giles [1975].
For a comparison of models, see Schrijver [1984b], and for a survey, including

results on the dimension of faces of submodular flow polyhedra, see Frank and
Tardos [1988]. A survey of submodular functions and flows is given by Murota
[2002].



Chapter 61

Graph orientation

Orienting an undirected graph so as to obtain a k-arc-connected directed
graph is the object of study in this chapter. Recall that a directed graph
D is called an orientation of an undirected graph G if G is the underlying
undirected graph of D.
Central result is a deep theorem of Nash-Williams showing that each undi-
rected graph has an orientation that keeps at least half of the connectivity
(rounded down) between any two vertices.
It implies that a 2k-edge-connected undirected graph has a k-arc-connected
orientation. This can be proved alternatively and easier with the help of
submodular functions (cf. Section 61.4).

61.1. Orientations with bounds on in- and outdegrees

We first consider orientations obeying bounds on the indegrees and/or out-
degrees. The results follow quite directly from bipartite matching or (equiv-
alently) flow theory.

Hakimi [1965] considered lower bounds on the indegrees:

Theorem 61.1. Let G = (V,E) be an undirected graph and let l : V → Z+.
Then G has an orientation D = (V,A) with degin

A (v) ≥ l(v) for each v ∈ V
if and only if each U ⊆ V is incident with at least l(U) edges.

Proof. Let A be the family of subsets of E obtained by taking set δ(v)
with multiplicity l(v), for each v ∈ V . Then the existence of an orientation
as required is equivalent to the existence of a transversal of A. By Hall’s
marriage theorem (Theorem 22.1), this is equivalent to the condition in the
theorem.

A direct consequence is:

Corollary 61.1a. Let G = (V,E) be an undirected graph and let l : V → Z+.
Then G has an orientation D = (V,A) with degin

A (v) = l(v) for each v ∈ V if
and only if l(V ) = |E| and each U ⊆ V is incident with at least l(U) edges.

Proof. Directly from Theorem 61.1.
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Another consequence concerns upper bounds:

Corollary 61.1b. Let G = (V,E) be an undirected graph and let u : V → Z+.
Then G has an orientation D = (V,A) with degin

A (v) ≤ u(v) for each v ∈ V
if and only if each U ⊆ V spans at most u(U) edges.

Proof. For each v ∈ V , define l(v) := deg(v) − u(v). (We may assume that,
for each v ∈ V , u(v) ≤ deg(v), since otherwise resetting u(v) := deg(v) does
not change the conditions in the theorem.)

Now G has an orientation with degin(v) ≤ u(v) for each v if and only if
G has an orientation with degin(v) ≥ l(v) for each v (just by reversing the
orientation of all edges). By Theorem 61.1, the latter is equivalent to: each
U ⊆ V is incident with at least l(U) edges; that is: E[U ]| + |δE(U)| ≥ l(U).
Since

(61.1) l(U) =
∑

v∈U

(deg(v) − u(v)) = 2|E[U ]| + |δE(U)| − u(U),

it is equivalent to: |E[U ]| ≤ u(U), as required.

Frank and Gyárfás [1978] gave a characterization for the case of lower
bounds on both indegrees and outdegrees:

Theorem 61.2. Let G = (V,E) be an undirected graph and let l, u : V → Z+
with l ≤ u. Then G has an orientation D = (V,A) with l(v) ≤ degin

A (v) ≤
u(v) for each v ∈ V if and only if each U ⊆ V is incident with at least l(U)
edges and spans at most u(U) edges.

Proof. The condition trivially being necessary, we prove sufficiency. Let D =
(V,A) be an arbitrary orientation of G. It suffices to show that there exists
a function x : A → {0, 1} such that for each v ∈ V :

(61.2) l(v) ≤ degin
A (v) − x(δinA (v)) + x(δout

A (v)) ≤ u(v),

since reversing the orientation of the arcs a with x(a) = 1 then gives an
orientation as required. Condition (61.2) is equivalent to:

(61.3) degin
A (v) − u(v) ≤ x(δinA (v)) − x(δout

A (v)) ≤ degin
A (v) − l(v).

By Corollary 11.2i, such an x exists if and only if

(61.4) |δinA (U)| ≥ max{
∑

v∈U

(degin
A (v) − u(v)),

∑

v∈V \U

(l(v) − degin
A (v))}

for each U ⊆ V . Since |δinA (U)| +
∑

v∈V \U degin
A (v) is equal to the number of

edges incident with V \U and since
∑

v∈U degin
A (v) − |δinA (U)| is equal to the

number of edges spanned by U , this is equivalent to the condition given in
the theorem.
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Ford and Fulkerson [1962] observed that the undirected edges of a mixed
graph (V,E,A) can be oriented so as to obtain an Eulerian directed graph if
and only if

(61.5) (i) degE(v) + degin
A (v) + degout

A (v) is even for each v ∈ V ,

(ii) dout
A (U) − din

A (U) ≤ dE(U) for each U ⊆ V .

This can be proved similarly.

61.2. 2-edge-connectivity and strongly connected
orientations

Each 2k-edge-connected undirected graph has a k-arc-connected orientation,
which will be seen in Section 61.3. In the present section we consider the spe-
cial case k = 2, which goes back to a theorem of Robbins [1939]. Tarjan [1972]
showed that depth-first search is the tool behind. We follow his approach.

Theorem 61.3. Given an undirected graph G = (V,E) we can find an ori-
entation D of G, in linear time, such that for each u, v ∈ V , if G has two
edge-disjoint u− v paths, then D has a directed u− v path.

Proof. Choose s ∈ V arbitrarily, and consider a depth-first search tree T
starting at s. Orient each edge in T away from s. For each remaining edge
e = uv, there is a directed path in T that connects u and v. Let the path run
from u to v. Then orient e from v to u. This gives the orientation D of G.

Then any edge not in T belongs to a directed circuit in D. Moreover, any
edge f in T that is not a cut edge, belongs to a directed circuit in D (since
there is an edge e �∈ T connecting the two components of T −f). This implies
that D is as required.

This implies the theorem of Robbins [1939] on strongly connected orien-
tations:

Corollary 61.3a (Robbins’ theorem). An undirected graph G has a strongly
connected orientation if and only if G is 2-edge-connected.

Proof. Necessity is easy, and sufficiency follows from Theorem 61.3.

(The proof by Robbins [1939] uses the fact that each 2-edge-connected graph
has an ‘ear-decomposition’ — cf. Section 15.5a.)

The above proof also shows that a strongly connected orientation can be
found in linear time:

Corollary 61.3b. Given a 2-edge-connected graph G, a strongly connected
orientation of G can be found in linear time.
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Proof. Directly from Theorem 61.3.

Robbins’ theorem (Corollary 61.3a) extends to the following result of
Frank [1976a] and Boesch and Tindell [1980] for mixed graphs.

Theorem 61.4. Let G = (V,E) be a graph in which part of the edges is
oriented. Then the remainder of the edges can be oriented so as to obtain a
strongly connected digraph if and only if G is 2-edge-connected and there is
no nonempty proper subset U of V such that all edges in δ(U) are oriented
from U to V \ U .

Proof. Necessity being easy, we show sufficiency. Let G be a counterexample
with a minimum number of undirected edges. Then there is at least one
undirected edge, say e = uv. By the minimality assumption, orienting e from
s to t violates the condition. That is, there exists a U ⊆ V with u ∈ U ,
v ∈ V \ U , such that each edge �= e in δ(U) is oriented from U to V \ U .
Similarly, there exists a T ⊆ V with v ∈ T , u ∈ V \ T , such that each edge
�= e δ(T ) is oriented from T to V \ T .

Then each edge in δ(U ∩ T ) is oriented from U ∩ T to V \ (U ∩ T ), and
hence U ∩ T = ∅. Similarly, U ∪ T = V . Hence δ(U) = {e}, a contradiction.

The graph K2,3 shows that a 2-edge-connected graph need not have an
orientation in which each two vertices belong to a directed circuit; that is
an orientation such that for each two vertices s, t there exists an arc-disjoint
pair of an s− t and a t− s path.

Chung, Garey, and Tarjan [1985] gave a linear-time algorithm to find an
orientation as described in Theorem 61.4.

61.2a. Strongly connected orientations with bounds on degrees

Robbins’ theorem (Corollary 61.3a) states that an undirected graph G has a
strongly connected orientation if and only if G is 2-edge-connected. Frank and
Gyárfás [1978] extended this to the case where upper and lower bounds are pre-
scribed on the indegrees of the orientation.

Let κ(G) denote the number of its components of any graph G.

Theorem 61.5. Let G = (V, E) be a 2-edge-connected undirected graph and let
l, u ∈ Z

V
+ with l ≤ u. Then G has a strongly connected orientation D = (V, A)

satisfying l(v) ≤ degin
A (v) ≤ u(v) for each v ∈ V if and only if for each U ⊆ V :

(61.6) (i) |E[U ]| + κ(G − U) ≤ u(U),
(ii) |E[U ]| + |δ(U)| − κ(G − U) ≥ l(U).

Proof. It is easy to see that condition (61.6) is necessary. To see sufficiency, let
(61.6) hold. Let D = (V, A) be a strongly connected orientation of G with
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(61.7)
∑

v∈V

max{0, degin
A (v) − u(v), l(v) − degin

A (v)}

as small as possible. (A strongly connected orientation exists by Corollary 61.3a.)
If sum (61.7) is 0, we are done, so assume that it is positive. Then there exists

a vertex v0 with degin
A (v0) > u(v0) or l(v0) > degin

A (v0). Suppose that degin
A (v0) >

u(v0). Let U be the set of vertices v for which D has two arc-disjoint v − v0 paths.
Then degin

A (v) ≥ u(v) for each v ∈ U , since otherwise we can reverse the orientation
on the arcs of one of the two arc-disjoint v−v0 paths, thereby keeping the orientation
strongly connected while decreasing sum (61.7).

We claim that U violates (61.6)(i). To this end, we show that

(61.8) each component K of G − U is left by exactly one arc of D.

This can be seen as follows. For each v ∈ K, there exists a Uv ⊆ V with dout
A (Uv) = 1

and v ∈ Uv, v0 �∈ Uv (as there exist no two arc-disjoint v0 − v paths). We choose
each Uv inclusionwise maximal.

It suffices to show that

(61.9) Uv = K for each v ∈ K.

To see this, note first that, for each v ∈ K, we have Uv ⊆ K. Indeed, Uv ∩ U = ∅,
since if say v1 ∈ U ∩ Uv, then there exist no two arc-disjoint v1 − v0 paths in D,
contradicting the definition of U . If Uv would intersect another component K′ of
G − U , then dout

A (Uv) = dout
A (Uv ∩ K) + dout

A (Uv ∩ K′) ≥ 2 — a contradiction.
Moreover, if v �= v′ and Uv ∩ Uv′ �= ∅, then Uv = Uv′ . This follows from:

(61.10) 1 ≤ dout
A (Uv ∪Uv′) ≤ dout

A (Uv) +dout
A (Uv′)−dout

A (Uv ∩Uv′) ≤ 1 + 1−1
= 1.

So, if Uv �= Uv′ , we would increase Uv or Uv′ by replacing it by Uv ∪ Uv′ — a
contradiction.

So the Uv partition K. Now if Uv �= K, there exist v and v′ such that Uv �= Uv′

and such that G has an edge connecting Uv and Uv′ . We can assume that it is
oriented from Uv′ to Uv. So it is the unique edge leaving Uv′ . Hence dout

A (Uv ∪Uv′) ≤
dout

A (Uv) = 1. So replacing Uv by Uv ∪ Uv′ would increase Uv — a contradiction.
This shows (61.9), and hence (61.8).

So dout
A (K) = 1 for each component K of G − U . Therefore

(61.11) |E[U ]| + κ(G − U) =
∑

v∈U

degin
A (v) > u(U).

Thus U violates (61.6)(i).
One similarly shows that degin

A (v0) < l(v0) implies violation of (61.6)(ii).

This implies an alternative characterization:

Corollary 61.5a. Let G = (V, E) be a 2-edge-connected undirected graph and let
l, u ∈ Z

V
+ with l ≤ u. Then G has a strongly connected orientation D = (V, A)

satisfying l(v) ≤ degin
A (v) ≤ u(v) for each v ∈ V if and only if G has strongly

connected orientations D′ = (V, A′) and D′′ = (V, A′′) with l(v) ≤ degin
A′(v) and

degin
A′′(v) ≤ u(v) for each v ∈ V .
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Proof. Directly from Theorem 61.5, as (61.6)(i) is void if u = ∞ and as (61.6)(ii)
is void if l = 0 (since κ(G − U) ≤ dG(U)).

For further results, see Theorem 61.7.

61.3. Nash-Williams’ orientation theorem

The result of Robbins [1939] was extended deeply by Nash-Williams [1960].
Before stating and proving it, we give a useful lemma of Nash-Williams [1960].
Let φ : V × V → R be a symmetric function (that is, φ(u, v) = φ(v, u) for all
u, v ∈ V ). Define a set function R on V by:

(61.12) R(U) := max
u∈U,v∈V \U

φ(u, v) if ∅ ⊂ U ⊂ V , and

R(∅) := R(V ) := 0.

Lemma 61.6α. For all T,U ⊆ V :

(61.13) R(T ) +R(U) ≤ R(T ∩ U) +R(T ∪ U)
or R(T ) +R(U) ≤ R(T \ U) +R(U \ T ).

Proof. Suppose not. Then ∅ �= T �= V and ∅ �= U �= V . Choose s ∈ T ,
t ∈ V \T , u ∈ U , v ∈ V \U such that R(T ) = φ(s, t) and R(U) = φ(u, v). By
symmetry, we can assume that R(T ) ≤ R(U) and u ∈ T . So u ∈ T ∩ U , and
hence T ∩U splits15 {u, v}. This implies that T ∪U splits neither {s, t}, nor
{u, v}, as otherwise the first inequality in (61.13) holds (as φ(s, t) ≤ φ(u, v)).

Hence t, v ∈ T ∪ U , and so t ∈ U \ T and v ∈ T \ U . Then T \ U splits
{u, v}, and U \ T splits {s, t}, implying the second inequality in (61.13).

For any undirected graph G = (V,E) and s, t ∈ V , let λG(s, t) denote the
maximum number of edge-disjoint s−t paths in G. Similarly, for any directed
graph D = (V,A) and s, t ∈ V , let λD(s, t) denote the maximum number of
arc-disjoint s− t paths in D.

Theorem 61.6 (Nash-Williams’ orientation theorem). Any undirected graph
G = (V,E) has an orientation D = (V,A) with

(61.14) λD(s, t) ≥ 
 1
2λG(s, t)�

for all s, t ∈ V .

Proof. Call a partition of a set T into pairs, a pairing of T . For any number
k, define

(61.15) k∗ := 2
 1
2k�.

For any subset U of V , define
15 Set X splits set Y if both Y ∩ X and Y \ X are nonempty.
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(61.16) r(U) := max
u∈U,v 	∈U

λG(u, v),

setting r(U) := 0 if U = ∅ or U = V . Let T be the set of vertices of odd
degree of G.

I. It suffices to show that T has a pairing P such that

(61.17) dG(U) − dP (U) ≥ r(U)∗ for each U ⊆ V .

To see that this is sufficient, let G′ = (V,E ∪ P ). That is, G′ is the graph
obtained from G by adding all pairs in P as new edges (possibly in parallel).
Then all degrees in G′ are even, and hence G′ has an Eulerian orientation
D′ = (V,A′). So

(61.18) degout
D′ (v) = degin

D′(v) = 1
2 degG′(v)

for each v ∈ V . This implies that, for each U ⊆ V ,

(61.19) dout
D′ (U) = 1

2dG′(U).

Let A be the restriction of A′ to the original edges of G and let D = (V,A).
We claim that D is an orientation of G as required. Indeed, by (61.17), for
each U ⊆ V ,

(61.20) dout
D (U) ≥ dout

D′ (U) − dP (U) = 1
2dG′(U) − dP (U)

= 1
2 (dG(U) − dP (U)) ≥ 
 1

2r(U)�.
Hence, for any u, v ∈ V , if U ⊆ V with u ∈ U , v �∈ U , and λD(u, v) = dout

D (U),
then

(61.21) λD(u, v) = dout
D (U) ≥ 
 1

2r(U)� ≥ 
 1
2λG(u, v)�.

II. We now prove the theorem. Define for any Y ⊆ V and U ⊆ V ,

(61.22) rY (U) := max
u∈Y ∩U,v∈Y \U

λG(u, v),

setting rY (U) := 0 if Y ∩ U = ∅ or Y ⊆ U .
By Lemma 61.6α, for any U,W ⊆ V ,

(61.23) rY (U)∗ + rY (W )∗ ≤ rY (U ∩W )∗ + rY (U ∪W )∗

or rY (U)∗ + rY (W )∗ ≤ rY (U \W )∗ + rY (W \ U)∗.

This follows from Lemma 61.6α by taking φ(u, v) := λG(u, v)∗ if u, v ∈ Y
and φ(u, v) := 0 otherwise.

Suppose that there exist graphs G for which T has no pairing P satisfying
(61.17). Choose G with |V | + |E| minimal.

Choose Y ⊆ V such that T has no pairing P satisfying

(61.24) dG(U) − dP (U) ≥ rY (U)∗ for each U ⊆ V ,

with |Y | as small as possible. Then

(61.25) For any subset X of V splitting Y and satisfying dG(X)∗ =
rY (X)∗, one has |X| = 1 or |X| = |V | − 1.
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For suppose 1 < |X| < |V | − 1. Consider the graph G1 = (V1, E1) obtained
from G by contracting V \X to one vertex, v1 say. Let T1 be the set of vertices
of odd degree of G1. By the minimality of |V |+ |E|, T1 has a pairing P1 such
that for each subset U of X:

(61.26) dG1(U) − dP1(U) ≥ r(U)∗.

(Note that r(U) ≤ maxu∈U,v∈V \U λG1(u, v).)
Similarly, consider the graph G2 = (V2, E2) obtained from G by contract-

ing X to one vertex, v2 say. Let T2 be the set of vertices of odd degree of G2.
Again by the minimality of |V | + |E|, T2 has a pairing P2 such that for each
subset U of V \X and for each u ∈ U , v ∈ V2 \ U :

(61.27) dG2(U) − dP2(U) ≥ r(U)∗.

Now define a pairing P of T as follows. (Observe that v1 ∈ T1 if and only
if v2 ∈ T2.) If v1 �∈ T1 and v2 �∈ T2, let P := P1 ∪ P2. If v1 ∈ T1 and v2 ∈ T2,
let u1 ∈ X and u2 ∈ V \ X be such that u1v1 ∈ P1 and u2v2 ∈ P2. Then
define

(61.28) P := (P1 \ {u1v1}) ∪ (P2 \ {u2v2}) ∪ {u1u2}.
We claim that P satisfies (61.24). To show this, we may assume by (61.23)
that rY (U ∩ X)∗ + rY (U ∪ X)∗ ≥ rY (U \ X)∗ + rY (X \ U)∗. (Otherwise,
replace U by V \ U .)

Set U1 := U ∩X and U2 := V \ (U ∪X). Then

(61.29) dG(U) + dG(X) ≥ dG(U1) + dG(U2) = dG1(U1) + dG2(U2)
≥ r(U1)∗+dP1(U1)+r(U2)∗+dP2(U2) ≥ rY (U)∗+rY (X)∗+dP (U)
≥ rY (U)∗ + dG(X) + dP (U) − 1,

using (61.26) and (61.27). As dG(U) + dP (U) is even, (61.24) follows. This
contradicts our assumption, showing (61.25).

We next show that

(61.30) each edge of G intersects Y .

For assume that G has an edge e = st disjoint from Y . By (61.25), there is
no U splitting Y with dG(U)∗ = rY (U)∗ and s ∈ U , t �∈ U . So deleting edge
e, changes no rY (U)∗. Let G′ be the graph obtained from G by deleting e.
Let T ′ be the set of vertices of G′ of odd degree. (So T ′ = T�{s, t}.) Then,
by the minimality of |V | + |E|, we know that T ′ has a pairing P ′ such that,
for each U ⊆ V ,

(61.31) dG′(U) − dP ′(U) ≥ r(U)∗ ≥ rY (U)∗.

It is not difficult to transform pairing P ′ of T ′ to a pairing P of T with the
property that |P \ P ′| ≤ 1.16 Then (61.24) holds. Indeed, dG(U) ≥ dG′(U)
16 If s, t ∈ T ′ and st ∈ P ′, define P := P ′ \ {st}. If s, t ∈ T ′ and st �∈ P ′, let s′ and t′ be

such that ss′ ∈ P ′ and tt′ ∈ P ′, and define P := (P ′ \ {ss′, tt′}) ∪ {s′t′}. If s ∈ T ′ and
t �∈ T ′, let s′ be such that ss′ ∈ P ′, and define P := (P ′ \ {ss′}) ∪ {ts′}. If s �∈ T ′ and
t ∈ T ′, let t′ be such that tt′ ∈ P ′, and define P := (P ′ \ {tt′}) ∪ {st′}. If s �∈ T ′ and
t �∈ T ′, define P := P ′ ∪ {st}.
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and dP (U) ≤ dP ′(U)+1 (as |P \P ′| ≤ 1). Hence (61.24) follows from (61.31),
with parity. This contradiction proves (61.30).

Next:

(61.32) |Y | ≥ 2.

For suppose that |Y | ≤ 1. In G there exist 1
2 |T | edge-disjoint paths such that

each vertex in T occurs exactly once as an end vertex of one of these paths.
(This can be seen by taking an arbitrary pairing Q of T , and considering
an Eulerian tour C in the graph G = (V,E ∪ Q). Then removing Q from
C decomposes C into paths as required.) Let P be the set of pairs of end
vertices of these paths. Then dG(U) ≥ dP (U) for each U ⊆ V , and (61.24)
follows, contradicting our assumption. So we know (61.32).

Choose a set X splitting Y with dG(X) minimal. Then dG(X) = rY (X).
By (61.25), we may assume that X = {x} for some x ∈ Y . So rY (U) = dG(x)
for any U splitting Y , since for any y ∈ Y \ U we have

(61.33) dG(x) ≤ dG(U) ≤ rY (U) ≤ λG(x, y) ≤ dG(x).

.
Define Y ′ := Y \ {x}. Then, by the minimality of |Y |, T has a pairing P

such that for each U ⊆ V ,

(61.34) dG(U) − dP (U) ≥ rY ′(U)∗.

We show that (61.24) holds, which forms a contradiction. To this end, choose
U ⊆ V .

First assume that U splits Y ′. Then rY ′(U) ≥ rY (U), since λG(x, y) =
dG(X) ≤ rY ′(U) for each y ∈ Y ′ (by the minimality of dG(X), since any
splitting of Y ′ also splits Y ). This implies (61.34).

So we can assume that U splits Y but does not split Y ′; that is, U ∩ Y =
{x}. Consider any u ∈ U \{x}. Let αu denote the number of edges connecting
u and x and let βu denote the number of edges connecting u and Y \{x}. By
(61.30), αu + βu = degG(u). Since X = {x} splits Y with dG(X) minimum,
we have dG({x, u}) ≥ degG(x). Hence βu ≥ αu, with strict inequality if u ∈ T
(since then αu + βu is odd).

Therefore, setting U ′ := U \ {x} and λ := number of edges connecting x
and V \ U ,

(61.35) dG(U) = λ+
∑

u∈U ′
βu ≥ λ+

∑

u∈U ′
αu + |U ′ ∩T | = degG(x)+ |U ′ ∩T |

= rY (U) + |U ′ ∩ T | ≥ rY (U) + |U ∩ T | − 1 ≥ rY (U) + dP (U) − 1.

Hence, with parity, we have (61.24).

(This is the original proof of Nash-Williams [1960]. Mader [1978a] and Frank
[1993a] gave alternative proofs.)

An orientation satisfying the condition described in Theorem 61.6 is called
well-balanced. Nash-Williams [1969] (giving an introduction to the proof
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above) remarks that with methods similar to those used in the proof of The-
orem 61.6, one can prove that for any graph G and any subgraph H of G,
there is a well-balanced orientation of G such that the restriction to H is
well-balanced again.

61.4. k-arc-connected orientations of 2k-edge-connected
graphs

Nash-Williams’ orientation theorem directly implies:

Corollary 61.6a. An undirected graph G has a k-arc-connected orientation
if and only if G is 2k-edge-connected.

Proof. Directly from Theorem 61.6.

A direct proof of this corollary, based on total dual integrality, was given
by Frank [1980b] and Frank and Tardos [1984b], and is as follows.

Orient the edges of G arbitrarily, yielding the directed graph D = (V,A).
Consider the system

(61.36) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(δin(U)) − x(δout(U)) ≤ din(U) − k for each nonempty

U ⊂ V .

By the Edmonds-Giles theorem (Theorem 60.1), this system is TDI, and
hence determines an integer polytope P . If G is 2k-edge-connected, then P
is nonempty, since the vector x := 1

2 · 1 belongs to P .
As P is nonempty and integer, (61.36) has an integer solution x. Then G

has a k-arc-connected orientation D′: reversing the orientation of the arcs a
of D with xa = 1 gives a k-arc-connected orientation D′, since

(61.37) din
D′(U) = din

D(U) − x(δinD(U)) + x(δout
D (U)) ≥ k

for any nonempty proper subset U of V .

Notes. The total dual integrality of (61.36) implies also the following result of
Frank, Tardos, and Sebő [1984] (denoting the number of (weak) components of a
(di)graph G by κ(G)). Let G = (V, E) be a 2-edge-connected undirected graph
and let U ⊆ V . Then the minimum number of arcs entering U over all strongly
connected orientations of G is equal to the maximum of

(61.38)
∑

T∈P
κ(G − T ),

taken over partitions P of U into nonempty classes such that no edge connects
different classes of P.

This implies another result of Frank, Tardos, and Sebő [1984]: Let D = (V, A)
be a digraph and let C = δin(U) be a directed cut. Then the minimum of |B ∩ C|
where B is a directed cut cover is equal to the maximum of
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(61.39)
∑

T∈P
κ(D − T ),

taken over partitions P of U into nonempty classes such that no arc of D connects
distinct classes of P.

As A. Frank (personal communication 2002) observed, the proof above yields
a stronger result of Nash-Williams [1969]: let G = (V, E) be a 2k-edge-connected
graph and let F ⊆ E have an Eulerian orientation; then the remaining edges have
an orientation so as to obtain a k-arc-connected digraph. This follows by taking for
A any orientation extending the orientation of F , and by setting xa := 0 for each
arcs in F , and xa := 1

2 for all other arcs a. Then x satisfies (61.36), and the result
follows as above.

61.4a. Complexity

By the results in Section 60.1 on the complexity of the Edmonds-Giles problem, one
can find a k-arc-connected orientation of a 2k-edge-connected undirected graph in
polynomial time; more generally, one can find a minimum-length k-arc-connected
orientation in strongly polynomial time, if we are given a length for each orientation
of each edge.

A direct method of finding a minimum-length k-arc-connected orientation can
be based on weighted matroid intersection, similarly to the method described in
Section 55.5 to find a minimum-length directed k-cover in a directed graph (such
that the k-arc-connected orientations form the common bases of two matroids).

61.4b. k-arc-connected orientations with bounds on degrees

Frank [1980b] extended Corollary 61.6a to the case where lower and upper bounds
on the indegrees of the vertices are prescribed:

Theorem 61.7. Let G = (V, E) be a 2k-connected undirected graph and let l, u ∈
Z

V
+ with l ≤ u. Then G has a k-arc-connected orientation D with l(v) ≤ degin

D (v) ≤
u(v) for each v ∈ V if and only if

(61.40) |E[W ]| + |δ(P)| ≥ k|P| + max{
∑

v∈W

l(v),
∑

v∈W

(degG(v) − u(v))}

for each subpartition P of V with nonempty classes, where W := V \
⋃

P.

Proof. It is not difficult to see that the condition is necessary. To show sufficiency,
by Corollary 61.6a, G has a k-arc-connected orientation D. Choose D such that

(61.41)
∑

v∈V

max{0, degin
D (v) − u(v), l(v) − degin

D (v)}

is as small as possible. If sum (61.41) is 0 we are done, so assume that it is positive.
By symmetry, we can assume that there is a vertex r with degin

D (r) < l(r).
Let P be the collection of inclusionwise maximal nonempty subsets U of V \{r}

with din(U) = k, and let W := V \
⋃

P.
Then the sets in P are disjoint. For let U, W ∈ P with U ∩ W �= ∅. Then

(61.42) 2k ≤ din
D (U ∩ W ) + din

D (U ∪ W ) ≤ din
D (U) + din

D (W ) = 2k,
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implying din
D (U ∪ W ) = k, and so U = W = U ∪ W .

Suppose that there exists a vertex s ∈ W with degin
D (s) > l(s). Then reversing

the orientations of the arcs of any r − s path in D gives again a k-arc-connected
orientation (since there is no U ⊆ V with din

D (U) = k and s ∈ U , r �∈ U), but
decreases sum (61.41). This contradicts our minimality assumption.

So degin
D (v) ≤ l(v) for each v ∈ W , with strict inequality for at least one v ∈ W

(namely for r). Now each edge of G that is spanned by no set in P, either enters
some U ∈ P, or has its head in W . So the number of such edges is

(61.43) k|P| +
∑

v∈W

degin
D (v), which is less than k|P| +

∑

v∈W

l(v).

This contradicts the condition.

This has an alternative characterization as consequence:

Corollary 61.7a. Let G = (V, E) be an undirected graph, let k ∈ Z+, and let
l, u ∈ Z

E
+ with l ≤ u. Then G has a k-arc-connected orientation D with l(v) ≤

degin
D (v) ≤ u(v) for each v ∈ V if and only if G has k-arc-connected orientations

D′ and D′′ with l(v) ≤ degin
D′(v) and degin

D′′(v) ≤ u(v) for each v ∈ V .

Proof. This follows from the fact that the condition in Theorem 61.7 can be de-
composed into a condition on l and one on u.

61.4c. Orientations of graphs with lower bounds on indegrees of
sets

Let G = (V, E) be an undirected graph and let l : P(V ) → Z+ be such that

(61.44) l(T ) + l(U) − d(T, U) ≤ l(T ∩ U) + l(T ∪ U), for all T, U ⊆ V with
T ∩ U �= ∅ and T ∪ U �= V ,

where d(T, U) denotes the number of edges connecting T \ U and U \ T .
Frank [1980b] showed with submodularity theory:

Theorem 61.8. Let G = (V, E) be a graph and let l : P(V ) → Z+ satisfy (61.44).
Then G has an orientation D = (V, A) with

(61.45) din
A (U) ≥ l(U)

for each U ⊆ V if and only if

(61.46) |δ(P)| ≥ max{
∑

U∈P
l(U),

∑

U∈P
l(V \ U)}

for each partition P of V into nonempty proper subsets, where δ(P) denotes the set
of edges of G connecting different classes of P.

Proof. The necessity of the condition is obvious. To prove sufficiency, let D = (V, A)
be an arbitrary orientation of G. Define for each nonempty proper subset U of V

(61.47) f(U) := din
A (U) − l(U).
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One easily checks, using (61.44), that f is crossing submodular. Moreover, if x :
A → {0, 1} is such that

(61.48) x(δin
A (U)) − x(δout

A (U)) ≤ f(U)

for each nonempty proper subset U of V , then the digraph D′ = (V, A′) obtained
from D = (V, A) by reversing the direction of the arcs a with xa = 1, has indegrees
as required by (61.45), since

(61.49) din
A′(U) = din

A (U) − x(δin
A (U)) + x(δout

A (U)) ≥ din
A (U) − f(U) = l(U).

Hence it suffices to show that (61.48) has an integer solution x with 0 ≤ x ≤ 1.
Consider x as a transshipment. The ‘excess function’ excessx ∈ R

V of x is given
by:

(61.50) excessv := x(δin
A (v)) − x(δout

A (v))

for v ∈ V . Then (61.48) is equivalent to

(61.51) y(U) ≤ f(U).

Now y is the excess function of some x ∈ {0, 1}A if and only if x is an integer
y-transshipment with 0 ≤ x ≤ 1. So, by Corollary 11.2f, y is the excess function of
some x ∈ {0, 1}A if and only if y is integer, y(V ) = 0, and

(61.52) y(U) ≤ din
A (U)

for each U ⊆ V . Since l(U) ≥ 0, (61.52) is implied by (61.51).
So it suffices to show that (61.51) has an integer solution y with y(V ) = 0. By

Theorem 49.10, y exists if and only if

(61.53)
∑

U∈P
f(U) ≥ 0

for each partition or copartition P of V , where each set in P is a nonempty proper
subset of V . (A copartition of V is a collection of sets whose complements form a
partition of V .) This is equivalent to the condition given in the present theorem.

61.4d. Further notes

Frank [1980b] observed that Edmonds’ disjoint arborescences theorem implies:

Corollary 61.8a. Let G = (V, E) be an undirected graph and r ∈ V . Then G has
an orientation such that each nonempty subset U of V \ {r} is entered by at least k
arcs if and only if G contains k edge-disjoint spanning trees.

Proof. Necessity follows from the fact that if the orientation D = (V, A) as required
exists, then by Edmonds’ disjoint arborescences theorem (Corollary 53.1b), D has
k disjoint r-arborescences. Hence G has k edge-disjoint spanning trees.

Sufficiency follows from the fact that we can orient each spanning tree in G
so as to become an r-arborescence. Orienting the remaining edges arbitrarily, we
obtain an orientation as required.

Frank [1993c] gave a direct proof of the existence of this orientation from
the conditions given in the Tutte-Nash-Williams disjoint trees theorem (Corollary
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51.1a), yielding (with Edmonds’ disjoint arborescences theorem) a proof of the
Tutte-Nash-Williams disjoint trees theorem.

Frank [1982a] showed that each k-arc-connected orientation of an undirected
graph can be obtained from any other by reversing iteratively directed paths and
circuits, without destroying k-arc-connectivity. This can be derived from a result
of L. Lovász that two k-arc-connected orientations are adjacent on the polytope
determined by (61.36) if and only if they differ on a directed circuit or on a collection
of vertex-disjoint directed paths. Frank [1982b] showed that a minimum-cost k-arc-
connected orientation can be found in strongly polynomial time, by reduction to
the Edmonds-Giles model. Accelerations were given by Gabow [1993a,1993b,1994,
1995c].

Frank, Jordán, and Szigeti [1999,2001] and Frank and Király [1999,2002] stud-
ied graph orientations that satisfy parity and connectivity conditions. Orientations
preserving prescribed shortest paths are considered by Hassin and Megiddo [1989].

Chvátal and Thomassen [1978] showed that each 2-edge-connected graph of
radius r has a strongly connected orientation of radius at most r2 + r. This was
extended to mixed graphs by Chung, Garey, and Tarjan [1985].

For surveys on applying submodularity to orientation problems, see Frank
[1993a,1996b].
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Network synthesis

The network synthesis problem asks for a graph having prescribed connec-
tivity properties, with a minimum number of edges. If the edges have costs,
a minimum total cost is required.
The problem can be seen as the special case of the connectivity augmenta-
tion problem where the input graph is edgeless. Connectivity augmentation
in general will be discussed in Chapter 63.

62.1. Minimal k-(edge-)connected graphs

We first consider the easy problem of finding a graph of given connectivity,
with a minimal number of edges. First, vertex-connectivity:

Theorem 62.1. Let k and n be positive integers with n ≥ 2. The minimum
number of edges of a k-vertex-connected graph with n vertices is n−1 if k = 1,
� 1

2kn
 if 1 < k < n, and 1
2n(n− 1) otherwise.

Proof. Since any k-vertex-connected graph contains a spanning tree, has
minimum degree at least k if k < n, and is a complete graph if k ≥ n, the
values given are lower bounds. Moreover, if k = 1 or k ≥ n, the bound is
tight. So we can assume 1 < k < n, and it suffices to show that there exists
a k-vertex-connected graph G = (V,E) with |V | = n and |E| = � 1

2kn
.
Let V := {1, . . . , n} and let C be the circuit on V with edge set {{i, i+1} |

i ∈ V }, taking addition mod n. Let G be the graph on V with edges all pairs
of vertices at distance at most 1

2k in C.
First assume that k is even. Then G has 1

2kn edges. We show that G is
k-vertex-connected. Suppose to the contrary that G has a vertex-cut U of
size less than k. There are at least two components K of C[U ] such that the
two neighbours of K in C belong to different components of G−U (as G−U
is disconnected). In particular, the two neighbours have distance more than
1
2k in C, and so these components each have size at least 1

2k. This contradicts
the fact that |U | < k.

Next, if k is odd, we add to G � 1
2n
 edges {i, j}, where i and j have

distance 
 1
2n� in C, and such that these edges cover all vertices in V . So G

has � 1
2kn
 edges. We show that G is k-vertex-connected.
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Suppose that G has a vertex-cut U of size less than k. By the above, C[U ]
consists of two components of size l := 1

2 (k − 1) each. We can assume that
U = [1, l]∪ [s+1, s+ l] for some s with l < s and s+ l < n. Now n is adjacent
to no vertex in [l+1, s], while n is adjacent to at least one of 
 1

2n� and � 1
2n
.

So 
 1
2n� < l + 1 or � 1

2n
 > s, implying n > 2s (as k < n). By symmetry
of the two components we similarly have n > 2(n − s), that is n < 2s, a
contradiction.

For edge-connectivity the answer is almost the same:

Theorem 62.2. Let k and n be positive integers with n ≥ 2. The minimum
number of edges of a k-edge-connected graph with n vertices is n−1 if k = 1,
and � 1

2kn
 otherwise. If k ≤ n − 1 the minimum is attained by a simple
graph.

Proof. Again, the values are lower bounds, as a k-edge-connected graph
contains a spanning tree and has each degree at least k. Clearly the lower
bound can be attained if k = 1, so assume k ≥ 2. Let C be a graph on
V := {1, . . . , n} with edges all pairs {i, i + 1} for i ∈ V (with addition mod
n). Let G be the graph obtained from C by replacing each edge by 
 1

2k�
parallel edges.

If k is even, then G is k-edge-connected as required. If k is odd, add � 1
2n


edges {i, j} to G, where i and j have distance 
 1
2n� in C, and such that these

edges cover all vertices in V . So G has � 1
2kn
 edges. We show that G is k-

edge-connected. Suppose that dG(U) < k for some nonempty proper subset U
of V . By symmetry, we can assume that |U | ≥ 1

2n. Now C[U ] is connected (as
otherwise dG[U ] ≥ 4
 1

2k� ≥ k, since k > 1). So we can assume that U = [1, s],
with s ≥ � 1

2n
. However, n ∈ V \ U is adjacent to at least one of 
 1
2n� and

� 1
2n
. As both of these vertices belong to U , we have dG(U) ≥ 2
 1

2k�+1 = k,
a contradiction.

Finally, if k ≤ n− 1, the minimum is attained by a simple graph. Indeed,
by Theorem 62.1, there is a k-vertex-connected graph G = (V,E) with n
vertices and � 1

2kn
 edges. Necessarily, G is simple. We show that G is k-
edge-connected. Suppose that there is a nonempty U ⊂ V with dG(U) < k.
Then |U ||V \U | ≥ n− 1 ≥ k, and hence there exist s ∈ U and t ∈ V \U that
are not adjacent. Hence G has k internally vertex-disjoint s − t paths, and
therefore k edge-disjoint s−t paths. This contradicts the fact that dG(U) < k.

The directed case is even simpler. For vertex-connectivity one has:

Theorem 62.3. Let k and n be positive integers with n ≥ 2. Then the min-
imum number of arcs of a k-vertex-connected directed graph with n vertices
is kn if k ≤ n− 1, and n(n− 1) otherwise.
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Proof. Since each vertex should have at least min{k, n− 1} outneighbours,
the values are lower bounds. Trivially it is attained if k ≥ n.

If k ≤ n − 1, let D be the directed graph on V := {1, . . . , n} with arcs
all pairs (i, i + l) with i ∈ V and 1 ≤ l ≤ k, taking addition mod n. Then
D has kn arcs. To see that D is k-vertex-connected, let U be a vertex-cut.
Choose i, j ∈ V \ U with j not reachable from i in D − U . We may assume
that 1 ≤ i < j ≤ n and that j − i is as small as possible. Then j − i > k and
i+ 1, . . . , j − 1 belong to U . So |U | ≥ k.

Finally, for arc-connectivity (Fulkerson and Shapley [1971]):

Theorem 62.4. Let k and n be positive integers with n ≥ 2. Then the
minimum number of arcs of a k-arc-connected directed graph with n vertices
is kn. If k ≤ n− 1, the minimum is attained by a simple directed graph.

Proof. Since each vertex should be left by at least k arcs, kn is a lower
bound. It is attained by the directed graph obtained from a directed circuit
on n vertices, by replacing any arc by k parallel arcs.

If k ≤ n−1, the minimum is attained by a simple directed graph. Indeed,
by Theorem 62.3, there is a k-vertex-connected directed graph D = (V,A)
with n vertices and kn arcs. Necessarily, D is simple. We show that D is
k-arc-connected. Suppose that there is a nonempty U ⊂ V with dout

D (U) < k.
Then |U ||V \U | ≥ n− 1 ≥ k, and hence there exist s ∈ U and t ∈ V \U with
(s, t) �∈ A. Hence D has k internally vertex-disjoint s− t paths, and therefore
k arc-disjoint s− t paths. This contradicts the fact that dout

D (U) < k.

Notes. Edmonds [1964] showed that for each simple graph with all degrees at least
k, there exists a k-edge-connected simple graph with the same degree-sequence.

62.2. The network synthesis problem

Let V be a finite set and let r : V × V → R+. A realization of r is a pair of a
directed graph D = (V,A) and a capacity function c : A → R+ such that for
all s, t ∈ V , each s− t cut in G has capacity at least r(s, t). The pair D, c is
called an exact realization if for all s, t ∈ V with s �= t, the minimum capacity
of an s− t cut in D as equal to r(s, t).

Obviously, any function r has a realization. We say that r is exactly re-
alizable if it has an exact realization. The network synthesis problem is the
problem to find an exact or cheapest realization for a given r (or to decide
that none exist).

The following theorem due to Gomory and Hu [1961] characterizes the
exactly realizable symmetric17 functions. It also shows that if r : V ×V → R

is exactly realizable and symmetric, then r has an undirected exact realization
17 A function r : V × V → R is called symmetric if r(u, v) = r(v, u) for all u, v ∈ V .



1052 Chapter 62. Network synthesis

(more precisely, an exact realization D, c where for each arc a = (u, v) of D,
also (v, u) is an arc, with c(u, v) = c(v, u)).

Theorem 62.5. A symmetric function r : V × V → R+ is exactly realizable
if and only if

(62.1) r(u,w) ≥ min{r(u, v), r(v, w)}

for all distinct u, v, w ∈ V . If r is exactly realizable, there is a tree that gives
an exact realization of r.

Proof. Necessity being easy, we show sufficiency. Let T = (V,E) be a tree
on V maximizing

(62.2)
∑

uv∈E

r(u, v).

Taking c(uv) := r(u, v) for each edge uv ∈ E gives an exact realization of
r. To see this, note that for all s, t, the minimum capacity of an s− t cut is
equal to minuv∈EP r(u, v), where P is the s− t path in T . By (62.1) we know
that r(s, t) is not smaller than this minimum. To show equality, suppose to
the contrary that r(u, v) < r(s, t) for some uv ∈ P . Then replacing T by
(T − uv) ∪ st gives a tree with larger sum (62.2).

Notes. Obviously, condition (62.1) remains necessary for exact realizability of non-
symmetric functions. Resh [1965] claimed that (62.1) also remains sufficient, but a
counterexample is given by the function r : V × V → R+ with V = {1, 2, 3, 4}, and
r(1, 2) = r(1, 3) = r(1, 4) = r(2, 4) = r(3, 4) = 1, and r(s, t) = 0 for all other s, t
(cf. Mayeda [1962]).

62.3. Minimum-capacity network design

Theorem 62.5 yields a tree as an exact realization of a given function r :
V × V → R+. A tree is a most economical realization in the sense of having
a minimum number of edges with nonzero capacity. It generally gives no
exact realization for which the sum of the capacities is minimum. Such an
exact realization has been characterized by Chien [1960] (extending Mayeda
[1960]), while Gomory and Hu [1961] showed that if r is integer, there is a
half-integer optimum exact realization.

As a preparation, we first show the following lemma of Gomory and Hu
[1961] (λG(s, t) denotes the maximum number of edge-disjoint s− t paths in
G):

Lemma 62.6α. Let r : V × V → R+ be symmetric and let T be a spanning
tree on V maximizing r(T ). Then any graph G = (V,E) satisfies

(62.3) λG(s, t) ≥ r(s, t)
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for all s, t ∈ V if and only if (62.3) is satisfied for each edge st of T .

Proof. Necessity being trivial, we show sufficiency. Let s, t ∈ V and let P be
the s− t path in T . By the maximality of r(T ), we know that r(s, t) ≤ r(e)
for each edge e on P . Hence

(62.4) λG(s, t) ≥ min
e=uv∈EP

λG(u, v) ≥ min
e∈EP

r(e) ≥ r(s, t),

as required.

We also use the following lemma:

Lemma 62.6β. If r : V ×V → R+ is symmetric and exactly realizable, then
there exists a spanning tree T on V that maximizes r(T ) over all spanning
trees, and that moreover is a Hamiltonian path.

Proof. Let T maximize r(T ). Choose T and k such that T contains a path
v1, . . . , vk, with k as large as possible. Choose T, k moreover such that the
vector (degT (v1), . . . ,degT (vk)) is lexicographically minimal. If T is not a
path, there is a j with 1 < j < k and degT (vj) ≥ 3. Let vju be an
edge of T incident with vj , with u �= vj−1, vj+1. If r(vj+1, u) ≥ r(vj , u),
we can replace edge vju of T by vj+1u, contradicting the lexicographic
minimality. So r(vj , u) > r(vj+1, u), and so r(vj , vj+1) ≤ r(vj+1, u), since
r(vj+1, u) ≥ min{r(vj , vj+1), r(vj , u)} by (62.1). Hence replacing edge vjvj+1
of T by vj+1u would give a tree with a longer path, contradicting our as-
sumption.

Now we can formulate and prove the theorem. For any r : V × V → R

and u ∈ V define

(62.5) R(u) := max
v 	=u

r(u, v).

Theorem 62.6. Let r : V × V → R+ be symmetric and exactly realizable.
Then the minimum value of

∑
e∈E c(e) where G = (V,E) and c form an

(undirected) exact realization of r, is equal to

(62.6) 1
2

∑

u∈V

R(u).

Moreover, if r is integer, the minimum is attained by a half-integer exact
realization c.

Proof. We may assume that r is integer. (62.6) indeed is a lower bound,
since for each exact realization G = (V,E), c of r one has

(62.7)
∑

e∈E

c(e) = 1
2

∑

u∈V

∑

e∈δ(u)

c(e) ≥ 1
2

∑

u∈V

R(u).
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To see that the lower bound is attained by a half-integer exact realization,
let T be a spanning tree on V maximizing r(T ). By Lemma 62.6β, we can
assume that T is a path v1, . . . , vn.

Let k := maxu,v r(u, v). For i = 0, . . . , k, let Ei be the set of edges e of
T with r(e) ≤ i, and for each nonsingleton component P of T − Ei, make
a circuit consisting of edges parallel to P and one edge connecting the end
vertices of P . Let G = (V,E) arise by taking the edge-disjoint union of these
circuits. Let c(e) := 1

2 for each e ∈ E. Then

(62.8) λG(vj , vi) = 2r(vj , vi)

for all i, j with 1 ≤ j < i ≤ n.
Indeed, in proving ≥, we can assume that j = i − 1 (by Lemma

62.6α). As vi−1, vi are contained in r(vi−1, vi) edge-disjoint circuits, we have
λG(vi−1, vi) ≥ 2r(vi−1, vi).

Conversely, the inequality ≤ in (62.8) follows from

(62.9) λG(vj , vi) ≤ min
j<h≤i

2r(vh−1, vh) ≤ 2r(vj , vi).

The first inequality here follows from the fact that for each h with j < h ≤ i,
the number of edges connecting {v1, . . . , vh−1} and {vh, . . . , vn} is equal to
2r(vh−1, vh). The second inequality follows from (62.1).

Notes. Note that also any nonexact realization has size at least (62.6), and there-
fore, the theorem also characterizes the minimum size of any realization.

Wing and Chien [1961] observed that a minimum-capacity realization can be
found by linear programming, and Gomory and Hu [1962,1964] showed that also
the weighted case can be solved by linear programming. Indeed, the polyhedron P
of all realizations of a given function r : V × V → Q+ can be described as follows.
Let E is the collection of all unordered pairs of elements of V . Then P is determined
by:

(62.10) xe ≥ 0 for all e ∈ E,
x(δ(U)) ≥ R(U) for all nonempty U ⊂ V ,

where R(U) := maxu∈U,v∈V \U r(u, v).
This formulation was given by Gomory and Hu [1962] and applied to finding

a minimum-cost realization with linear programming, by a row-generating imple-
mentation of the simplex method (thus avoiding listing the exponential number of
constraints). Bland, Goldfarb, and Todd [1981] observed that description (62.10)
implies polynomial-time solvability with the ellipsoid method, since the constraints
(62.10) can be tested in polynomial time.

A direct, polynomial-size linear programming formulation was given by Gomory
and Hu [1964], by extending the number of variables. Indeed, P consists of those
x ∈ R

E
+ such that for all distinct s, t ∈ V , there exists an s − t flow fs,t : E → R

E
+

with f ≤ x and of value r(s, t).
The latter description implies that a minimum-weight realization can be deter-

mined in polynomial time, by solving an explicit linear programming problem —
in fact, in strongly polynomial time, with the method of Tardos [1986].
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Note that the exact realizations do not form a convex set; for instance, if V =
{u, v, w} and r(s, t) = 1 for all s, t ∈ V , then x(uv) = x(vw) = x(uw) = 2

3 is a
convex combination of exact realizations, but is not itself an exact realization.

62.4. Integer realizations and r-edge-connected graphs

In Section 62.3, the fractional version of the minimum-capacity network de-
sign problem was discussed. We now consider the case where all capacities
are required to be integer. It relates to: given r : V × V → Z+, find an
r-edge-connected undirected graph G = (V,E) with a minimum number of
edges. Here a graph G = (V,E) is called r-edge-connected if λG(s, t) ≥ r(s, t)
for all s, t ∈ V with s �= t.

Eswaran and Tarjan [1976] observed that the weighted version of the
integer realization problem is NP-complete, as finding a Hamiltonian circuit
in an undirected graph can be reduced to it. (So even if r = 2 and all weights
belong to {0, 1}, it is NP-complete.)

Chou and Frank [1970] gave a polynomial-time algorithm for finding a
minimum-size integer realization, implying the following characterization of
the minimum number γ(r) of edges of an r-edge-connected graph18.

To this end we can assume that r is symmetric and exactly realiz-
able, that is, satisfies (62.1) (since resetting r(s, t) to the maximum of
mine=uv∈EP r(u, v) over all s− t paths P , does not change the problem).

Again, define for each u ∈ V ,

(62.11) R(u) := max
v 	=u

r(u, v).

Theorem 62.7. Let r : V × V → Z+ be symmetric and satisfy (62.1).
(i) If R(u) = 1 for some u ∈ V , then γ(r) = γ(r′) + 1, where r′ is the
restriction of r to (V \ {u}) × (V \ {u}).
(ii) If R(u) �= 1 for all u ∈ V , then

(62.12) γ(r) = � 1
2

∑

u∈V

R(u)
.

Proof. We first show (i). The inequality γ(r) ≤ γ(r′) + 1, is easy, since an
r-edge-connected graph can be obtained from an r′-edge-connected graph by
adding one edge connecting u with some v �= u with r(u, v) = 1.

To see the reverse inequality, let G = (V,E) be an r-edge-connected graph
with |E| = γ(r). As R(u) = 1, we have degG(u) ≥ 1. Let ut be an edge
incident with u. Let H be the graph obtained from G by contracting ut.
Then H is r′-edge-connected and has |E|−1 edges, showing γ(r′) ≤ |E|−1 =
γ(r) − 1.
18 The construction of Chou and Frank [1970] is lacunary, and does not apply, e.g., to the

case where r(u, v) = 3 for all u, v and |V | is odd.
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We next show (ii). Trivially, for any r-edge-connected graph G = (V,E):

(62.13) |E| = 1
2

∑

u∈V

degG(u) ≥ 1
2

∑

u∈V

R(u).

This proves ≥ in (62.12). To prove ≤, order the vertices as v1, . . . , vn such
that R(v1) ≥ R(v2) ≥ · · · ≥ R(vn). Note that R(v1) = R(v2).

Let k := 
 1
2R(v1)�. Let W be the set of vertices v with R(v) odd. Let M

be a set of � 1
2 |W |
 edges covering W such that if v1, v2 ∈ W , then v1v2 ∈ M .

For i = 1, . . . , k, let Ci be a circuit on {v ∈ V | R(v) ≥ 2i}. So C1 is
a Hamiltonian circuit. We choose C1 in such a way that the components of
C1 − v1 − v2 span no edge in M . Let H be the (edge-disjoint) union of M
and C1. Then for any U ⊆ V :

(62.14) if dH(U) = 2 and U ∩ {v1, v2} = ∅, then U ∩W = ∅.

Indeed, if dH(U) = 2, then U induces a path on C1. As U ∩ {v1, v2} = ∅, U
is contained in a component of C1 − v1 − v2. Hence each edge in M incident
with U belongs to dH(U). As dH(U) = 2, it follows that no edge in M is
incident with U . So U ∩W = ∅, proving (62.14).

Let G be the (edge-disjoint) union ofM,C1, . . . , Ck. Note that the number
of edges of G is equal to

(62.15) |M | +
k∑

i=1

|ECi| = |M | +
∑

u∈V


 1
2R(u)� = � 1

2 |W |
 +
∑

u∈V


 1
2R(u)�

= � 1
2

∑

u∈V

R(u)
.

We finally show that G is r-connected, for which it suffices to show that
for i = 2, . . . , n:

(62.16) λG(vi−1, vi) ≥ R(vi).

To see that this is sufficient, note that for h < j one has

(62.17) λG(vh, vj) ≥ min
h<i≤j

λG(vi−1, vi) ≥ min
h<i≤j

R(vi)

= R(vj) ≥ r(vh, vj).

To prove (62.16), choose the smallest i ≥ 2 for which it is not true. Then G
has a cut δ(U) with vi ∈ U , vi−1 �∈ U , and dG(U) < R(vi). By the minimality
of i, δ(U) separates no pair among v1, . . . , vi−1, and hence v1, . . . , vi−1 �∈ U .
Now, setting l := 
 1

2R(vi)�:

(62.18) 2l + 1 ≥ R(vi) > dG(U) ≥ dH(U) +
l∑

j=2

dCj (U) ≥ 2l

(as Cj covers vi−1 and vi for j = 1, . . . , l). Hence dH(U) = 2 and R(vi) is odd.
So U ∩W �= ∅. Hence, by (62.14), i = 2. Then v1v2 ∈ M , and so dH(U) ≥ 3,
a contradiction.
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Notes. In fact, by choosing M in this proof in such a way that degM (u) = 1 if
u ∈ W \ {v1}, and degM (u) = 0 if u ∈ (V \ W ) \ {v1}, we obtain a graph G with
degG(u) = R(u) for each u �= v1. Hence λG(u, v) = min{R(u), R(v)} for all distinct
u, v ∈ V .

The construction can be extended to obtain a strongly polynomial-time algo-
rithm that, for given integer function r, finds a minimum-capacity integer realization
c (Sridhar and Chandrasekaran [1990,1992]).

(Chou and Frank [1970] claim to give an algorithm to find a minimum-size exact
realization, but their construction fails when taking r(1, 2) := r(3, 4) := r(4, 5) := 5,
r(2, 3) := r(5, 6) := 3, and r(i, j) := mini<h≤j r(h−1, h) for i < j. The construction
gives 15 edges, while there is an exact realization with 14 edges only.)

Frank and Chou [1970] announced a polynomial-time algorithm for the problem:
given a symmetric r : V ×V → Z+, find a simple r-edge-connected graph G = (V, E)
(if any) with |E| minimal.

Wang and Kleitman [1973] characterized the degree-sequences of k-vertex-
connected simple undirected graphs.



Chapter 63

Connectivity augmentation

This last chapter of Part V is devoted to the connectivity augmentation
problem: given a graph, find the minimum number of edges to be added
to make it k-connected. There is an undirected and a directed variant, and
a vertex-connectivity and an edge/arc-connectivity variant. Thus we will
come across:
• making a directed graph k-arc-connected (Section 63.1),
• making an undirected graph k-edge-connected (Section 63.3),
• making a directed graph k-vertex-connected (Section 63.5),
• making an undirected graph k-vertex-connected (Section 63.6).
For the first three problems, min-max relations and polynomial-time al-
gorithms have been found. The core is formed by fundamental theorems
of Frank and Jordán. As for the fourth problem, only for fixed k the
polynomial-time solvability has been proved. The complexity for general k
is open.
Two special cases of connectivity augmentation have been considered be-
fore: making a digraph 1-arc-connected — that is, strongly connected
(Chapter 57), and making an edge- or arcless (di)graph k-vertex- or
edge/arc-connected — the network synthesis problem (Chapter 62).

63.1. Making a directed graph k-arc-connected

Let (V,A) and (V,B) be directed graphs. The set B is called a k-arc-connector
for D if the directed graph (V,A∪B) is k-arc-connected (where in A∪B arcs
are taken parallel if they occur both in A and in B). So 1-arc-connectors are
precisely the strong connectors, which we discussed in Chapter 57.

Frank [1990a,1992a] characterized the minimum size of a k-arc-connector
for a directed graph, with the help of the following result of Mader [1982] (we
follow the proof of Frank [1992a]).

Lemma 63.1α. Let D = (V,A) be a directed graph, let k ∈ Z+, and let
x, y : V → Z+. Then D has a k-arc-connector B with degin

B(v) = xv and
degout

B (v) = yv for each v ∈ V if and only if x(V ) = y(V ) and

(63.1) x(U) ≥ k − din
A (U) and y(U) ≥ k − dout

A (U)
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for each nonempty proper subset U of V .

Proof. Necessity is easy, since for each nonempty U ⊂ V ,

(63.2) k ≤ din
A∪B(U) = din

B(U) + din
A (U) ≤ x(U) + din

A (U),

and similarly for y.
To see sufficiency, choose a counterexample with x(V ) minimal. Trivially,

x(V ) ≥ 1. Let X be the collection of inclusionwise maximal proper subsets U
of V satisfying x(U)+din(U) = k, and let Y be the collection of inclusionwise
maximal proper subsets U of V satisfying y(U) + dout(U) = k. (We set din

and dout for din
A and dout

A .)
Let R := {v ∈ V | xv ≥ 1} and S := {v ∈ V | yv ≥ 1}. Then

(63.3) for all r ∈ R and s ∈ S, there exists a U ∈ X ∪ Y with r, s ∈ U .

Otherwise, we could augment D by a new arc (s, r) and decrease both xr and
ys by 1. Then (63.1) is maintained, and we obtain a smaller counterexample,
contradicting our assumption. This shows (63.3).

Now note that for each U ∈ X :

(63.4) y(V \ U) ≥ k − dout(V \ U) = k − din(U) = x(U).

This implies, for each U ∈ X :

(63.5) if S ⊆ U , then U ∩R = ∅; if R ⊆ U , then U ∩ S = ∅.

Indeed, if S ⊆ U , then y(V \ U) = 0, implying (with (63.4)) that x(U) = 0,
that is, U ∩ R = ∅. Similarly, if R ⊆ U , then x(U) = x(V ), implying (with
(63.4)) that y(V \ U) = y(V ), that is, U ∩ S = ∅. This proves (63.5).

Now choose r ∈ R, s ∈ S, and let U ∈ X ∪Y with r, s ∈ U . By symmetry,
we may assume that U ∈ X . By (63.5), S �⊆ U . Choose t ∈ S \ U . Let
T ∈ X ∪ Y contain r and t.

First assume that T ∈ X . Then T ∪ U = V , by the maximality of T and
U and the submodularity of the set function x(W ) + din(W ). This implies
(using (63.4)):

(63.6) y(V ) ≥ y(V \U)+y(V \T ) ≥ x(U)+x(T ) = x(T ∪U)+x(T ∩U)
> x(V ) = y(V )

(since V \ U and V \ T are disjoint, and since r ∈ T ∩ U), a contradiction.
So T ∈ Y. But then

(63.7) 2k = x(T ) + din(T ) + y(U) + dout(U)
≥ x(T \ U) + din(T \ U) + y(U \ T ) + dout(U \ T ) + x(T ∩ U)
+ y(T ∩ U) ≥ 2k,

implying equality throughout. Hence x(T ∩ U) = 0, contradicting the fact
that r ∈ T ∩ U .

From this, the min-max relation for minimum-size k-arc-connectors of
Frank [1990a,1992a] (generalizing Corollary 57.2a) easily follows:
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Theorem 63.1. Let D = (V,A) be a directed graph and let k, γ ∈ Z+. Then
D has a k-arc-connector of size at most γ if and only if

(63.8) γ ≥
∑

X∈P
(k − din(X)) and γ ≥

∑

X∈P
(k − dout(X))

for each collection P of disjoint nonempty proper subsets of V .

Proof. Necessity follows since for each nonempty subset X of V , at least
k − din(X) arcs entering X must be in any k-arc-connector, and at least
k − dout(X) arcs leaving X must be in any k-arc-connector. As any new arc
can enter at most one set in P, we have (63.8).

To see sufficiency, choose x : V → Z+ satisfying x(U) ≥ k − din(U) for
each nonempty U ⊂ V , with x(V ) as small as possible.

We show x(V ) ≤ γ. Let P be the collection of inclusionwise maximal
proper subsets U of V satisfying x(U) = k − din(U). Any two distinct sets
T,U ∈ P satisfy T ∪ U �= V , since otherwise V \ T and V \ U are disjoint,
and we obtain the contradiction

(63.9) γ ≥ k − dout(V \ T ) + k − dout(V \ U) = 2k − din(T ) − din(U)
= x(T ) + x(U) ≥ x(T ∪ U) = x(V ) > γ.

Moreover, any two distinct T,U ∈ P are disjoint, since otherwise we obtain
the contradiction

(63.10) x(T )+x(U) = 2k−din(T )−din(U) ≤ 2k−din(T ∩U)−din(T ∪U)
< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

by the maximality of T .
Now each v ∈ V with xv ≥ 1 is contained in some U ∈ P, as otherwise

we could decrease xv. This gives

(63.11) x(V ) =
∑

U∈P
x(U) =

∑

U∈P
(k − din(U)) ≤ γ.

Hence x(V ) ≤ γ. Similarly, there exists a y : V → Z+ satisfying y(U) ≥
k − dout(U) for each nonempty proper subset U of V and y(V ) ≤ γ. We can
assume that x(V ) = y(V ) = γ. So we can apply Lemma 63.1α, which gives
the theorem.

The proof yields a polynomial-time algorithm, as the proof reduces to a
polynomial-time number of tests if a given x : V → Z+ satisfies

(63.12) x(U) ≥ k − din(U) for each nonempty U ⊂ V .

(Similarly for y.) This can be done by maximum flow calculations: add a new
vertex s and for each v ∈ V , add xv (parallel) arcs from s to v and k parallel
arcs from v to s. Then (63.12) is satisfied if and only if in the extended graph
there exist k arc-disjoint u− v paths, for all u, v ∈ V .

Thus (Frank [1990a,1992a]):
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Theorem 63.2. Given a directed graph D = (V,A) and k ∈ Z+, a minimum-
size k-arc-connector can be found in time bounded by a polynomial in the size
of D and in k.

Proof. See above.

63.1a. k-arc-connectors with bounds on degrees

Frank [1990a,1992a] derived similarly characterizations of the existence of k-arc-
connectors of given size and satisfying given lower and upper bounds on the in- and
outdegrees:

Theorem 63.3. Let D = (V, A) be an undirected graph, let k, γ ∈ Z+, and let
lin, lout, uin, uout ∈ Z

V
+ with lin ≤ uin and lout ≤ uout. Then D has a k-arc-

connector B of size at most γ satisfying lin(v) ≤ degin
B (v) ≤ uin(v) and lout(v) ≤

degout
B (v) ≤ uout(v) for each v ∈ V if and only if γ ≤ uin(V ), γ ≤ uout(V ),

(63.13) k − din(U) ≤ uin(U) and k − dout(U) ≤ uout(U)

for each nonempty proper subset U of V , and

(63.14) γ ≥ lin(V \
⋃

P) +
∑

X∈P
(k − din(X)) and

γ ≥ lout(V \
⋃

P) +
∑

X∈P
(k − dout(X))

for each collection P of disjoint nonempty proper subsets of V .

Proof. Necessity is easy. To see sufficiency, choose x : V → Z+ satisfying lin ≤ x ≤
uin, x(V ) ≥ γ, and x(U) ≥ k − din(U) for each nonempty U ⊂ V , with x(V ) as
small as possible.

We show x(V ) ≤ γ. Let P be the collection of inclusionwise maximal proper
subsets U of V satisfying x(U) = k − din(U). Any two distinct sets T, U ∈ P
satisfy T ∪ U �= V , since otherwise V \ T and V \ U are disjoint, and we obtain the
contradiction

(63.15) γ ≥ k − dout(V \ T ) + k − dout(V \ U) = 2k − din(T ) − din(U)
= x(T ) + x(U) ≥ x(T ∪ U) ≥ x(V ) > γ.

Moreover, any two distinct T, U ∈ P are disjoint, since otherwise we obtain the
contradiction

(63.16) x(T ) + x(U) = 2k − din(T ) − din(U) ≤ 2k − din(T ∩ U) − din(T ∪ U)
< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

by the maximality of T .
Now each v ∈ V with xv > lin(v) is contained in some U ∈ P, as otherwise we

could decrease xv. This gives

(63.17) x(V ) = lin(V \
⋃

P) +
∑

U∈P
x(U) = lin(V \

⋃
P) +

∑

U∈P
(k −din(U)) ≤ γ.
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Hence x(V ) = γ. Similarly, there exists a y : V → Z+ satisfying lout ≤ y ≤ uout,
y(V ) = γ, and y(U) ≥ k − dout(U) for each nonempty U ⊂ V . So we can apply
Lemma 63.1α, which gives the theorem.

Again, this proof yields a polynomial-time algorithm to find a minimum-size
k-arc-connector satisfying prescribed bounds on the in- and outdegrees.

Notes. The following problem is NP-complete: given a directed graph D = (V, A),
a function r : V × V → Z+, and a cost function k : V × V → Q+, find a minimum-
cost set of new arcs whose addition to D makes the graph r-arc-connected. Frank
[1990a,1992a] showed that if there are functions k′, k′′ : V → Q+ with k(u, v) =
k′(u) + k′′(v) for all u, v ∈ V , then this problem is solvable in polynomial time.

Gusfield [1987a] gave a linear-time algorithm to find a minimum number of
directed arcs to be added to a mixed graph such that it becomes strongly connected
(that is, for all vertices u, v there is a u − v path traversing directed edges in the
right direction only).

Frank and Jordán [1995b] gave an alternative proof of Theorem 63.1 based on
bisubmodular functions, and showed a number of related results.

Frank [1993c] gave some further methods for the problems discussed in these
sections.

Kajitani and Ueno [1986] showed that the minimum size of a k-arc-connector for
a directed tree D = (V, A) is equal to the maximum of

∑
v∈V max{0, k − degin(v)}

and
∑

v∈V max{0, k − degout(v)}.
Frank [1990a,1992a] gave a polynomial-time algorithm for: given directed graph

D = (V, A), r ∈ V , and k ∈ Z+, find a minimum number of arcs to be added to
D such that for each s ∈ V there exist k arc-disjoint r − s paths in the augmented
graph. The complexity was improved by Gabow [1991b].

63.2. Making an undirected graph 2-edge-connected

Let (V,E) and (V, F ) be undirected graphs. The set F is called a k-edge-
connector for G if the graph (V,E ∪ F ) is k-edge-connected (where in E ∪ F
edges are taken parallel if they occur both in E and in F ).

The minimum size of a 1-edge-connector of a graph G trivially is one
less than the number of components of G. Eswaran and Tarjan [1976] and
Plesńık [1976] characterized the minimum size of a 2-edge-connector, by first
showing:

Theorem 63.4. Let G = (V,E) be a forest with at least two vertices and
with p vertices of degree 1 and q isolated vertices. Then the minimum size of
a 2-edge-connector for G equals � 1

2p
 + q.

Proof. Each vertex of degree 1 should be incident with at least one new edge,
and each vertex of degree 0 should be incident with at least two new edges.
So any 2-edge-connector has size at least 1

2p+ q.
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To see that � 1
2p
 + q can be attained, first assume that G is not con-

nected. Choose vertices u and v in different components, with deg(u) ≤ 1
and deg(v) ≤ 1. Adding edge uv, reduces 1

2p+ q by 1, as one easily checks.
So we can assume that G is a tree. If p ≤ 3, the graph is a path or a

subdivision of K1,3, and the theorem is easy.
If p ≥ 4, there is a pair of end vertices u, v such that at least two edges

of G leave the u − v path P in G. Let G′ be the tree obtained from G
by contracting P to one vertex. Then G′ has p − 2 end vertices. Applying
induction shows that G′ has a 2-edge-connector F of size � 1

2p
−1. By adding
edge uv we obtain a 2-edge-connector of G, proving the theorem.

This implies, for not necessarily forests:

Corollary 63.4a. Let G = (V,E) be a non-2-edge-connected undirected
graph. For i = 0, 1, let pi be the number of 2-edge-connected components
K with dE(K) = i. Then the minimum size of a 2-edge-connector equals
� 1

2p1
 + p0.

Proof. Directly from Theorem 63.4, by contracting each 2-edge-connected
component to one vertex.

These proofs give polynomial-time algorithms to find a minimum-size 2-
edge-connector for a given undirected graph. Eswaran and Tarjan [1976] gave
a linear-time algorithm.

63.3. Making an undirected graph k-edge-connected

Watanabe and Nakamura [1987] gave a min-max formula and a polynomial-
time algorithm for the minimum size of a k-edge-connector for any undirected
graph. Cai and Sun [1989] and Frank [1992a] showed that the min-max rela-
tion can be derived from the following lemma (given, in a different, ‘vertex-
splitting’ terminology, by Mader [1978a] and Lovász [1979a] (Problem 6.53);
the proof below follows Frank [1992a]):

Lemma 63.5α. Let G = (V,E) be a graph, let k ∈ Z+, with k ≥ 2, and let
x : V → Z+. Then G has a k-edge-connector F with degF (v) = xv for each
v ∈ V if and only if x(V ) is even and

(63.18) x(U) ≥ k − dE(U)

for each nonempty proper subset U of V .

Proof. Necessity is easy, since for each nonempty U ⊂ V ,

(63.19) k ≤ dE∪F (U) = dF (U) + dE(U) ≤ x(U) + dE(U).
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To see sufficiency, choose a counterexample with x(V ) minimal. Trivially,
x(V ) ≥ 2.

Let S := {v ∈ V | xv ≥ 1}, and fix s ∈ S. Let U be the collection of
inclusionwise maximal sets U ⊂ V containing s and satisfying x(U)+dE(U) ≤
k + 1. Note that

(63.20) x(U) ≤ 1
2x(V ) for each U ∈ U ,

since otherwise x(V \ U) ≤ x(U) − 2, implying the contradiction k ≤ x(V \
U) + dE(V \ U) ≤ x(U) − 2 + dE(U) ≤ k − 1.

Moreover,

(63.21) for all t ∈ S \ {s}, there exists a U ∈ U containing t.

Otherwise, we could augment G by a new edge st and decrease both xs and
xt by 1. Then (63.18) is maintained, and we obtain a smaller counterexample,
contradicting our assumption. This shows (63.21).

Next:

(63.22) for any two distinct T,U ∈ U , G has an edge leaving T ∩ U , and
no edge connecting T ∩ U and V \ (T ∪ U).

Consider:

(63.23) 2(k + 1) ≥ x(T ) + dE(T ) + x(U) + dE(U)
= x(T \ U) + dE(T \ U) + x(U \ T ) + dE(U \ T )
+2|E[T ∩ U, V \ (T ∪ U)]| + 2x(T ∩ U) ≥ 2k + 2,

implying equality throughout. So x(T ∩U) = 1 and |E[T ∩U, V \(T ∪U)] = ∅.
Since dE(T ∩ U) ≥ k − x(T ∩ U) = k − 1 ≥ 1, this proves (63.22).

Now by (63.21) and (63.20) we can choose three sets T,U,W ∈ U . Then

(63.24) T ∩ U = T ∩W = U ∩W.

Indeed, by symmetry it suffices to prove that T ∩ U ∩ W = U ∩ W . Let
M := U ∩ W . Suppose T ∩ M �= M ; so M �⊆ T , and hence T ∪ M �= T .
Defining φ(X) := x(X) + dE(X) for X ⊆ V , we obtain the contradiction

(63.25) k ≤ φ(T ∩M) ≤ φ(T ) + φ(M) − φ(T ∪M)
≤ φ(T ) + φ(U) + φ(W ) − φ(U ∪W ) − φ(T ∪M)
≤ 3(k + 1) − 2(k + 2) = k − 1,

since the maximality of T , U , and W gives φ(U ∪W ) ≥ k+2 and φ(T ∪M) ≥
k + 2. This shows (63.24).

Now by (63.22), G has an edge leaving T ∩U , while the other end should
be in each of T ∪U , T ∪W , and U ∪W , and hence in T ∩U , a contradiction.

From this, the min-max result for minimum-size k-edge-connectors of
Watanabe and Nakamura [1987] follows:
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Theorem 63.5. Let G = (V,E) be an undirected graph and let k, γ ∈ Z+,
with k ≥ 2. Then G has a k-edge-connector of size at most γ if and only if

(63.26) 2γ ≥
∑

U∈P
(k − d(U))

for each collection P of disjoint nonempty proper subsets of V .

Proof. Necessity follows since for each nonempty proper subset U of V , at
least k−d(U) edges entering U must be in any k-edge-connector. As any new
edge can enter at most two sets in P, we have (63.26).

To see sufficiency, choose x : V → Z+ satisfying (63.18), with x(V ) as
small as possible. By Lemma 63.5α it suffices to show that x(V ) ≤ 2γ.

Let P be the collection of inclusionwise maximal subsets U of V satisfying
x(U) = k − d(U). Any two distinct sets T,U ∈ P satisfy T ∪ U �= V , since
otherwise we obtain the contradiction

(63.27) 2γ < x(V ) = x(T ∪ U) ≤ x(T ) + x(U) = k − d(T ) + k − d(U)
= k − d(V \ T ) + k − d(V \ U) ≤ 2γ,

using (63.26). Moreover, any two distinct T,U ∈ P are disjoint, since other-
wise we obtain the contradiction

(63.28) x(T ) + x(U) = 2k − d(T ) − d(U) ≤ 2k − d(T ∩ U) − d(T ∪ U)
< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

by the maximality of T . Now each v ∈ V with xv ≥ 1 is contained in some
U ∈ P, as otherwise we could decrease xv. This gives

(63.29) x(V ) =
∑

U∈P
x(U) =

∑

U∈P
(k − d(U)) ≤ 2γ,

which proves the theorem.

Similarly to the directed case, the proof implies that a minimum-size k-
edge-connector can be found in polynomial time (Watanabe and Nakamura
[1987]):

Theorem 63.6. Given an undirected graph G and k ∈ Z+, a minimum-size
k-edge-connector can be found in strongly polynomial time.

Proof. The proof method reduces to a polynomially bounded number of tests
of (63.18), which can be performed in strongly polynomial time by reducing
it to maximum flow computations.

Notes. Also Naor, Gusfield, and Martel [1990,1997], and Gabow [1991b] gave
polynomial-time algorithms to find a minimum-size k-edge-connector. Frank [1990a,
1992a] and Benczúr [1994,1999] gave strongly polynomial-time algorithms for the
(integer) capacitated version of the problem. More and related results can be found
in Gabow [1994], Benczúr [1995], Nagamochi and Ibaraki [1995,1996,1997,1999c],
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Nagamochi, Shiraki, and Ibaraki [1997], Benczúr and Karger [1998,2000], Nag-
amochi and Eades [1998], Bang-Jensen and Jordán [2000], and Nagamochi, Naka-
mura, and Ibaraki [2000].

63.3a. k-edge-connectors with bounds on degrees

Frank [1990a,1992a] derived similarly characterizations of the existence of k-edge-
connectors of given size and satisfying given lower and upper bounds on the degrees:

Theorem 63.7. Let G = (V, E) be an undirected graph, let k, γ ∈ Z+, with k ≥ 2,
and let l, u ∈ Z

V
+ with l ≤ u. Then G has a k-edge-connector F of size at most γ

satisfying l(v) ≤ degF (v) ≤ u(v) for each v ∈ V if and only if 2γ ≤ u(V ),
(63.30) k − dE(U) ≤ u(U)
for each nonempty proper subset U of V , and

(63.31) 2γ ≥ l(V \
⋃

P) +
∑

U∈P
(k − dE(U)).

for each collection P of disjoint nonempty proper subsets of V .

Proof. The conditions can be easily seen to be necessary.
To see sufficiency, let x : V → Z+ satisfy l ≤ x ≤ u, x(V ) ≥ 2γ, x(U) ≥

k − dE(U) for each nonempty U ⊂ V , and with x(V ) as small as possible. Such an
x exists, by (63.30). By Lemma 63.5α, it suffices to show that x(V ) ≤ 2γ.

Let P be the collection of inclusionwise maximal proper subsets U of V satis-
fying x(U) = k − d(U). Any two distinct sets T, U ∈ P satisfy T ∪ U �= V , since
otherwise we obtain the contradiction
(63.32) 2γ < x(V ) = x(T ∪ U) ≤ x(T ) + x(U) = k − d(T ) + k − d(U)

= k − d(V \ T ) + k − d(V \ U) ≤ 2γ,
by (63.31). Moreover, any two distinct T, U ∈ P are disjoint, since otherwise we
obtain the contradiction
(63.33) x(T ) + x(U) = 2k − d(T ) − d(U) ≤ 2k − d(T ∩ U) − d(T ∪ U)

< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),
by the maximality of T . Now each v ∈ V with xv > l(v) is contained in some
U ∈ P, as otherwise we could decrease xv. This gives

(63.34) x(V ) = l(V \
⋃

P) +
∑

U∈P
x(U) = l(V \

⋃
P) +

∑

U∈P
(k − d(U)) ≤ 2γ,

as required.

Notes. T. Jordán (cf. Bang-Jensen and Jordán [1997]) showed that finding a mini-
mum number of edges that makes a given simple graph k-edge-connected and keeps
it simple, is NP-complete. On the other hand, Bang-Jensen and Jordán [1997,1998]
gave, for any fixed k, an O(n4)-time algorithm for this problem. Taoka, Watan-
abe, and Takafuji [1994] gave an O(m + n log n)-time algorithm for k = 4 and
an O(n2 + m)-time algorithm for k = 5 (assuming the input graph is k − 1-edge-
connected). Other fast algorithms for undirected edge-connectivity augmentation
were given by Benczúr [1999].

Ueno, Kajitani, and Wada [1988] gave a polynomial-time algorithm for finding
a minimum-size k-edge-connector for a tree.
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63.4. r-edge-connectivity and r-edge-connectors

Let G = (V,E) be an undirected graph and let r : V × V → Z+. G is called
r-edge-connected if for all u, v ∈ V there exist r(u, v) edge-disjoint paths
connecting u and v. So, by Menger’s theorem, G is r-edge-connected if and
only if dE(U) ≥ r(u, v) for all U ⊆ V and u ∈ U , v ∈ V \ U .

An r-edge-connector for G is a set F of edges on V such that the graph
G′ := (V,E ∪ F ) satisfies λG′(u, v) ≥ r(u, v) for all u, v ∈ V . (Again, E ∪ F
is the disjoint union, allowing parallel edges.) Define γ(G, r) as the minimum
size of an r-edge-connector for G.

Given an undirected graph G = (V,E), a function r : V × V → Z+, and
a cost function k : V × V → Q+, it is NP-complete to find a minimum-
cost r-edge-connector (since for E = ∅, r = 2, it is the traveling salesman
problem).

Frank [1990a,1992a] gave a polynomial-time algorithm and a min-max
formula for the cardinality case: given a graph G = (V,E) and r : V × V →
Z+, find the minimum number of edges to be added to make G r-edge-
connected. We describe the method in this section.

It is based on the following theorem of Mader [1978a] (conjectured by
Lovász [1976a]; we follow the proof of Frank [1992b]):

Lemma 63.8α. Let G = (V ∪ {s}, E) be an undirected graph, where s has
even and positive degree, and s is not incident with a bridge of G. Then s has
two neighbours u and v such that the graph G′ obtained from G by replacing
su and sv by one new edge uv satisfies

(63.35) λG′(x, y) = λG(x, y)

for all x, y ∈ V .

Proof. By induction on |V |+deg(s). For any U ⊆ V with ∅ �= U �= V , define

(63.36) R(U) := max
u∈U,v∈V \U

λG(u, v),

and set R(∅) := R(V ) := 0. So R(U) ≤ d(U) for each U ⊆ V .
Let P be the collection of nonempty proper subsets U of V with d(U) =

R(U), and let U be the collection of nonempty proper subsets U of V with
d(U) ≤ R(U) + 1 (hence P ⊆ U).

Note that u, v ∈ N(s) are as required in the lemma if and only if there is
no U ∈ U containing both u and v. So we can assume that

(63.37) for each pair u, v ∈ N(s) there is a U ∈ U containing u and v.

We first show:

(63.38) |T | = 1 for each T ∈ P.

Suppose not. Consider the graph G/T obtained from G by contracting T
(where T also denotes the vertex obtained by contracting T ). By induction,
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G/T has two edges su′ and sv such that for the graph H obtained from G/T
by replacing su′ and sv by a new edge u′v, one has

(63.39) λH(x, y) = λG/T (x, y)

for all x, y ∈ V (G/T ) \ {s}. By symmetry of u′ and v, we may assume that
v �= T , that is, v ∈ V \ T . Let u := u′ if u′ �= T and choose u ∈ T ∩N(s) if
u′ = T .

Then for all Z ∈ U :

(63.40) if T ⊆ Z or T ∩ Z = ∅ then u �∈ Z or v �∈ Z.

Indeed, as R(Z) ≥ d(Z) − 1, there exist x, y ∈ V such that Z splits x, y
and λG(x, y) ≥ d(Z) − 1. Since T ⊆ Z or T ∩ Z = ∅, we may assume that
x �∈ T . Define y′ := y if y �∈ T , and y′ := T if y ∈ T . Define Z ′ := Z if
T ∩ Z = ∅, and Z ′ := (Z \ T ) ∪ {T} if T ⊆ Z. Suppose now u, v ∈ Z. Then
dH(Z ′) = dG(Z) − 2. This gives the contradiction

(63.41) λG/T (x, y′) ≥ λG(x, y) ≥ dG(Z) − 1 > dH(Z ′) ≥ λH(x, y′)
= λG/T (x, y′),

proving (63.40).
Now let U ∈ U contain u and v. By Lemma 61.6α, R(T ) + R(U) is at

most R(T ∩ U) +R(T ∪ U) or at most R(T \ U) +R(U \ T ).
If R(T ) +R(U) ≤ R(T ∩ U) +R(T ∪ U), then

(63.42) d(T ) + d(U) ≥ d(T ∩ U) + d(T ∪ U) ≥ R(T ∩ U) +R(T ∪ U)
≥ R(T ) +R(U) ≥ d(T ) + d(U) − 1,

implying R(T∪U) ≥ d(T∪U)−1. So T∪U ∈ U and u, v ∈ T∪U , contradicting
(63.40).

So R(T ) +R(U) ≤ R(T \ U) +R(U \ T ). Hence

(63.43) d(T ) + d(U) ≥ d(T \ U) + d(U \ T ) ≥ R(T \ U) +R(U \ T )
≥ R(T ) +R(U) ≥ d(T ) + d(U) − 1.

So d(T )+d(U) = d(T \U)+d(U \T ), and hence T ∩U contains no neighbours
of s. So u′ �= T (otherwise u ∈ T ∩ U ∩ N(s)). Hence u′ = u ∈ U \ T . By
(63.43) we also know R(U \T ) ≥ d(U \T )−1. So U \T ∈ U and u, v ∈ U \T ,
contradicting (63.40). This proves (63.38).

Note that (63.38) implies

(63.44) λG(u, v) = min{deg(u),deg(v)} for all u, v ∈ V ,

since λG(u, v) = dE(U) for some U ⊆ V splitting {u, v}. So U ∈ P, and
hence |U | = 1, implying (63.44).

Choose a vertex t ∈ N(s) of minimum degree. Let U ′ be a minimal collec-
tion of inclusionwise maximal sets in U containing t such that

⋃
U ′ ⊇ N(s)

(this exists by (63.37)). Note that for each U ∈ U one has |E[U, s]| ≤ 1
2 deg(s),

since otherwise d(V \ U) ≤ d(U) − 2 (since deg(s) is even), and hence

(63.45) R(V \ U) ≤ d(V \ U) ≤ d(U) − 2 ≤ R(U) − 1 = R(V \ U) − 1,
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a contradiction. Hence |U ′| ≥ 3 (as t ∈ U for each U ∈ U ′). Moreover,

(63.46) for each U ∈ U ′, there is a v ∈ N(s) such that U is the only set
in U ′ containing v.

(Otherwise we could delete U from U ′.)
Also,

(63.47) R(U \ {t}) ≥ R(U) for each U ∈ U ′.

Indeed, choose x ∈ U and y ∈ V \ U with R(U) = λG(x, y). If x �= t,
then R(U \ {t}) ≥ λG(x, y) = R(U), as required. If x = t, then for any
u ∈ N(s) ∩ (U \ {t}),

(63.48) R(U) = λG(t, y) = min{deg(t),deg(y)} ≤ min{deg(u),deg(y)}
= λG(u, y) ≤ R(U \ {t}).

This shows (63.47).
Moreover, for any distinct X,Y ∈ U ′ one has

(63.49) R(X) +R(Y ) ≤ R(X \ Y ) +R(Y \X).

Suppose not. Then, by Lemma 61.6α we know R(X) +R(Y ) ≤ R(X ∩ Y ) +
R(X∪Y ), and by symmetry we can assume that R(X) > R(X \Y ). Hence by
(63.47), X ∩ Y �= {t}, and hence by (63.38), X ∩ Y �∈ P. By the maximality
of X and Y , R(X ∪ Y ) ≤ d(X ∪ Y ) − 2. This gives the contradiction

(63.50) R(X ∩ Y ) +R(X ∪ Y ) ≤ (d(X ∩ Y ) − 1) + (d(X ∪ Y ) − 2)
≤ d(X) + d(Y ) − 3 ≤ R(X) +R(Y ) − 1
≤ R(X ∩ Y ) +R(X ∪ Y ) − 1,

proving (63.49).
This implies that for any distinct X,Y ∈ U ′ one has

(63.51) |X \ Y | = |Y \X| = 1, and st is the only edge connecting X ∩ Y
and (V ∪ {s}) \ (X ∪ Y ).

Indeed, by (63.49) (as st connects X ∩ Y and X ∪ Y ),

(63.52) d(X) + d(Y )
= d(X \ Y ) + d(Y \X) + 2|E[X ∩ Y, (V ∪ {s}) \ (X ∪ Y )]|
≥ d(X \ Y ) + d(Y \X) + 2 ≥ R(X \ Y ) +R(Y \X) + 2
≥ R(X) +R(Y ) + 2 ≥ d(X) + d(Y ).

So we have equality throughout. Hence X \ Y, Y \X ∈ P, and therefore, by
(63.38), |X \Y | = |Y \X| = 1. Moreover, d(X ∩Y, V \ (X ∪Y )) = 1, proving
(63.51).

Now choose X,Y, Z ∈ U ′. Then (63.51) and (63.46) imply that X ∩ Y =
X∩Z = Y ∩Z. So st is the only edge leaving X∩Y , and hence st is a bridge.
This contradicts the condition given in this lemma.

Note that
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(63.53) the graph G′ arising in Lemma 63.8α again has no bridge incident
with s,

as for any two neighbours x, y of s in G′ one has λG′(x, y) = λG(x, y) ≥ 2.
The lemma therefore can be applied iteratively to yield:

Theorem 63.8. Let G = (V,E) be an undirected graph and let r : V × V →
Z+ be symmetric. Let x : V → Z+ be such that x(K) �= 1 for each component
K of G. Then G has an r-edge-connector F satisfying degF (v) = xv for each
v ∈ V if and only if x(V ) is even and

(63.54) x(U) + dE(U) ≥ r(u, v)

for all U ⊆ V and all u ∈ U , v ∈ V \ U .

Proof. Necessity of (63.54) follows from the fact that x(U) + dE(U) ≥
dF (U) + dE(U) ≥ r(u, v). To see sufficiency, extend V by a new vertex s
and, for each v ∈ V , xv edges connecting s and v (parallel if xv ≥ 2). Let H
be the extended graph. Then (63.54) implies

(63.55) dH(U) ≥ r(u, v)

for all U ⊆ V and all u ∈ U , v ∈ V \ U . Hence, for all u, v ∈ V ,

(63.56) λH(u, v) ≥ r(u, v).

Now by iteratively splitting s as in Lemma 63.8α (cf. (63.53)), we obtain a
set F of new edges such that adding F to G, the new graph G′ satisfies

(63.57) λG′(u, v) = λH(u, v) ≥ r(u, v)

for all u, v ∈ V . As moreover degF (v) = xv for each v ∈ V , F is an r-edge-
connector as required.

The condition that x(K) �= 1 for each component K cannot be deleted,
as can be seen by taking G = (V, ∅), r := 1, x := 1, with |V | ≥ 4.

We next give the theorem of Frank [1990a,1992a] characterizing the min-
imum size γ(G, r) of an r-edge-connector. To this end we can assume that r
satisfies:

(63.58) (i) r(u, v) = r(v, u) ≥ λG(u, v) for all u, v ∈ V ;
(ii) r(u,w) ≥ min{r(u, v), r(v, w)} for all u, v, w ∈ V .

Define

(63.59) R(U) := max
u∈U,v∈V \U

r(u, v) if ∅ ⊂ U ⊂ V , and

R(∅) := R(V ) := 0.

Call a component K of G marginal if K �= V , r(u, v) = λG(u, v) for all
u, v ∈ K, and r(u, v) ≤ 1 for all u ∈ K and v ∈ V \K.
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Theorem 63.9. Let G = (V,E) be an undirected graph and let r : V × V →
Z+ satisfy (63.58).

(i) If K is a marginal component of G, then

(63.60) γ(G, r) = γ(G−K, r′) +R(K),

where r′ is the restriction of r to (V \K) × (V \K).
(ii) If G has no marginal components, then γ(G, r) is equal to the maxi-

mum value of

(63.61) � 1
2

∑

U∈P
(R(U) − dE(U))


taken over all collections P of disjoint nonempty proper subsets of V .

Proof. We first show (i). Let K be a marginal component of G and define
α := R(K). As K is marginal, α ≤ 1. The inequality

(63.62) γ(G, r) ≤ γ(G−K, r′) + α

is easy, since an r-edge-connector for G can be obtained from an r′-edge-
connector F for G−K: if α = 0, then F is an r-edge-connector, and if α = 1,
we obtain an r-edge-connector by adding to F one edge connecting some pair
u ∈ K, v ∈ V \K with r(u, v) = 1.

To see the reverse inequality, let F be a minimum-size r-edge-connector
for G. Let G′ := (V,E ∪ F ). So G′ is r-edge-connected.

If F contains no edges connectingK and V \K, then α = 0 and F contains
an r′-edge-connector for G − K. Hence γ(G, r) = |F | ≥ γ(G − K, r′) =
γ(G−K, r′) + α.

If F contains an edge uv with u ∈ K, v ∈ V \K, then the graphH obtained
from G′ by contracting (K ∪ {v}) to one vertex, is r′-edge-connected. Since
edge uv ∈ F is contracted, it implies that G−K has an r′-edge-connector of
size at most |F | − 1. So γ(G−K, r′) ≤ |F | − 1 ≤ γ(G, r) − α.

We next show (ii). Let G have no marginal components. Choose x : V →
Z+ such that x(U) + dE(U) ≥ R(U) for each U ⊆ V , with x(V ) as small
as possible. Let µ be the maximum value of (63.61). It suffices to show that
x(V ) ≤ 2µ, since then we can apply Theorem 63.8 (after increasing x(v) by
1 for some v ∈ V if x(V ) is odd). So assume x(V ) > 2µ. As µ > 0 (otherwise
x = 0), we know x(V ) > 2.

Then

(63.63) x(K) �= 1 for each component K of G.

For suppose x(K) = 1. We show that K is marginal, which is a contradiction.
First, K �= V , since x(V ) > 2. Second, for each u ∈ K, v ∈ V \K, we have
r(u, v) ≤ x(K) + dE(K) = x(K) ≤ 1. Third, to prove that r(u, v) = λG(u, v)
for u, v ∈ K, there is a subset U of K with |U∩{u, v}| = 1, λG(u, v) = dE(U),
and x(U) = 0. Then r(u, v) ≤ x(U) + dE(U) = dE(U) = λG(u, v). So K is
marginal, contradicting our assumption. This proves (63.63).
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By the minimality of x, there exists a collection P of nonempty proper
subsets U of V satisfying x(U) = R(U) − dE(U), such that P covers {v |
xv ≥ 1}. Choose P such that

(63.64)
∑

U∈P
|U |

is as small as possible. Then

(63.65) T ∩ U = ∅ for distinct T,U ∈ P.

For suppose T ∩ U �= ∅. Note that T �⊆ U �⊆ T , by the minimality of (63.64).
Observe also that T ∪ U �= V , since otherwise we obtain the contradiction

(63.66) 2µ < x(V ) = x(T ∪ U) ≤ x(T ) + x(U)
= R(T ) − d(T ) +R(U) − d(U)
= R(V \ T ) − d(V \ T ) +R(V \ U) − d(V \ U) ≤ 2µ.

(by definition of µ, since V \ T and V \ U are disjoint).
By Lemma 61.6α, R(T ) + R(U) is at most R(T ∩ U) + R(T ∪ U) or at

most R(T \ U) +R(U \ T ).
If R(T ) +R(U) ≤ R(T ∩ U) +R(T ∪ U), then

(63.67) x(T ) + x(U) = R(T ) − d(T ) +R(U) − d(U)
≤ R(T ∩ U) − d(T ∩ U) +R(T ∪ U) − d(T ∪ U)
≤ x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

and hence we have equality throughout. This implies that x(T ∪U) = R(T ∪
U) − dE(T ∪ U), and hence replacing T and U by T ∪ U would decrease
(63.64), a contradiction.

If R(T ) +R(U) ≤ R(T \ U) +R(U \ T ), then

(63.68) x(T ) + x(U) = R(T ) − d(T ) +R(U) − d(U)
≤ R(T \ U) − d(T \ U) +R(U \ T ) − d(U \ T )
≤ x(T \ U) + x(U \ T ) ≤ x(T ) + x(U),

implying equality throughout. This implies that x(T \U) = R(T \U)−dE(T \
U), and hence replacing T by T \U would decrease (63.64), a contradiction.

This proves (63.65), yielding the contradiction

(63.69) 2µ < x(V ) =
∑

U∈P
x(U) =

∑

U∈P
(R(U) − d(U)) ≤ 2µ,

which proves the theorem.

Frank [1990a,1992a] also gave a polynomial-time algorithm to find a
minimum-cost r-edge-connector if the cost of any new edge uv is given by
k(u) + k(v), for some function k : V → Q+. This is done with the help of the
following auxiliary result:

Theorem 63.10. Let G = (V,E) be an undirected graph and let r : V ×V →
Z+ be symmetric. Define R(U) as in (63.59). Then



Section 63.4. r-edge-connectivity and r-edge-connectors 1073

(63.70) Q := {x ∈ R
V
+ | x(U) ≥ R(U) − dE(U) for all U ⊆ V }

is a contrapolymatroid, with associated supermodular function given by, for
X ⊆ V :

(63.71) g(X) := max
U

∑

U∈U
(R(U) − dE(U)),

where the maximum ranges over collections U of disjoint nonempty subsets
of X.

Proof. Clearly, for any x ∈ R
V
+ one has x ∈ Q if and only if x(U) ≥ g(X)

for each X ⊆ V .
To see that g is supermodular, choose X,Y ⊆ V . Let

(63.72) g(X) =
∑

U∈U
(R(U) − d(U)) and g(Y ) =

∑

T∈T
(R(T ) − d(T )),

where U and T are collections of disjoint nonempty subsets of X and of Y ,
respectively. The collections U and T together form a family S of nonempty
subsets of V satisfying

(63.73)
∑

S∈S
χS ≤ χX∩Y + χX∪Y and g(X) + g(Y ) ≤

∑

S∈S
(R(S) − d(S)).

We now choose S such that (63.73) is satisfied and such that

(63.74)
∑

S∈S
|S|(|V \ S| + 1)

is as small as possible.
We claim that S is laminar; that is,

(63.75) if T,U ∈ S, then T ⊆ U or U ⊆ T or T ∩ U = ∅.

Suppose not. By Lemma 61.6α, R(T )+R(U) is at most R(T ∩U)+R(T ∪U)
or at most R(T \U)+R(U \T ). If R(T )+R(U) ≤ R(T ∩U)+R(T ∪U), then
replacing T and U by T ∩U and T ∪U maintains (63.73) but decreases (63.74)
(by Theorem 2.1), contradicting the minimality assumption. IfR(T )+R(U) ≤
R(T \U) +R(U \ T ), then replacing T and U by T \U and U \ T maintains
(63.73) but decreases (63.74) (again by Theorem 2.1), again contradicting
the minimality condition. This proves (63.75).

Now let P be the collection of inclusionwise maximal elements in S and
let Q be the collection of remaining sets in S. (If a set occurs twice in S, it
is both in P and in Q.) Then each set in P is contained in X ∪ Y , and each
set in Q is contained in X ∩ Y . Moreover, both P and Q are collections of
disjoint sets. Hence

(63.76) g(X ∪ Y ) + g(X ∩ Y ) ≥
∑

P∈P
(R(P ) − d(P )) +

∑

Q∈Q
(R(Q) − d(Q))

=
∑

S∈S
(R(S) − d(S)) ≥ g(X) + g(Y );
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that is, g is supermodular.

With this theorem, also good characterizations and polynomial-time algo-
rithms can be obtained for the minimum size of an r-edge-connector satisfying
prescribed lower and upper bounds on its degrees — see Frank [1990a,1992a].

Bang-Jensen, Frank, and Jackson [1995] extended these results to mixed
graphs.

63.5. Making a directed graph k-vertex-connected

Let (V,A) and (V,B) be directed graphs. The set B is called a k-vertex-
connector for D if the directed graph (V,A∪B) is k-vertex-connected. (Note
that parallel edges will not help the vertex-connectivity.)

Since, for directed graphs, 1-vertex-connectors and 1-arc-connectors coin-
cide, the problem of finding a minimum-size 1-vertex-connector for a given
directed graph is addressed in Section 57.1.

Frank and Jordán [1995b] showed the following min-max relation for
minimum-size k-vertex connector in directed graphs (which is a special case
of Frank and Jordán’s Theorem 60.5 above).

Call a pair (X,Y ) of subsets of V a good pair if X �= ∅, Y �= ∅, X ∩Y = ∅,
and D has no arc from X to Y . Call a collection F of good pairs a good
collection if X ∩X ′ = ∅ or Y ∩ Y ′ = ∅ for all distinct (X,Y ), (X ′, Y ′) ∈ F .

Theorem 63.11. Let D = (V,A) be a directed graph and let k ∈ Z+. Then
the minimum size of a k-vertex-connector for D is equal to the maximum
value of

(63.77)
∑

(X,Y )∈F
(k − |V \ (X ∪ Y )|),

where F ranges over good collections of good pairs.

Proof. Let γ be the maximum value. The minimum is not less than γ, since
for any (X,Y ) ∈ F , at least k − |V \ (X ∪ Y )| arcs from X to Y should be
added, while such arcs do not run from X ′ to Y ′ for any other pair (X ′, Y ′)
in F (as X ∩X ′ = ∅ or Y ∩ Y ′ = ∅).

To see equality, we can assume that D is not k-vertex-connected. Then
there exist disjoint nonempty subsets T and U of V such that D has no arc
from T to U and such that |V \ (T ∪ U)| < k.

If there exist t ∈ T and u ∈ U such that augmenting D with the arc (t, u),
the maximum decreases, we are done by induction. So we can assume that
no such pair t, u exists. Hence for each t ∈ T and u ∈ U , there exists a good
collection Ft,u of good pairs, with

(63.78)
∑

(X,Y )∈Ft,u

(k − |V \ (X ∪ Y )|) = γ,
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and with t �∈ X or u �∈ Y for all (X,Y ) ∈ Ft,u.
Concatenating these collections Ft,u for all t ∈ T , u ∈ U , and adding the

pair (T,U), we obtain a family G of good pairs satisfying:

(63.79) (i) for each x ∈ T , y ∈ U , there are at most |T ||U | pairs (X,Y )
in G with x ∈ X and y ∈ Y ;

(ii)
∑

(X,Y )∈G
(k − |V \ (X ∪ Y )|) > γ|T ||U |.

Among all families G satisfying (63.79), we choose one minimizing

(63.80)
∑

(X,Y )∈G
(|X| + |V \ Y |)(|Y | + |V \X|).

Then

(63.81) for all (X,Y ), (X ′, Y ′) ∈ G one has X ∩X ′ = ∅ or Y ∩ Y ′ = ∅ or
X ⊆ X ′, Y ′ ⊆ Y or X ′ ⊆ X,Y ⊆ Y ′.

Suppose not. Replace (X,Y ) and (X ′, Y ′) by (X ∩ X ′, Y ∪ Y ′) and (X ∪
X ′, Y ∩ Y ′). This maintains (63.79), while (63.80) decreases19, contradicting
our assumption. This proves (63.81).

Now consider the partial order ≤ on pairs (X,Y ) of subsets of V , defined
by (X,Y ) ≤ (X ′, Y ′) if X ⊆ X ′, Y ′ ⊆ Y . For each pair (X,Y ), let its ‘weight’
w(X,Y ) be the number of times (X,Y ) occurs in G, and let its ‘length’ l(X,Y )
be equal to k−|V \(X∪Y )|. Then by (63.79)(i), any chain has weight at most
|T ||U |. By (63.79)(ii), the sum of l(X,Y )w(X,Y ) over (X,Y ) ∈ G is more
than γ|T ||U |. Hence, by the length-width inequality for partially ordered sets
(Theorem 14.5), G contains an antichain F of length more than γ. Then F
is a good collection by (63.81). This contradicts the definition of γ.

The theorem implies that the minimum size of a k-vertex-connector for a
given directed graph D = (V,A) is equal to the minimum value of

(63.82)
∑

u,v∈V

xu,v

subject to

(63.83) (i) xu,v ≥ 0 for all u, v ∈ V ,
(ii)

∑

u∈X

∑

v∈Y

xu,v ≥ k − |V \ (X ∪ Y )|

for all disjoint nonempty X,Y ⊆ V
with no arc from X to Y .

19 This can be seen with Theorem 2.1: Make a copy Ṽ of V , and let Ỹ be the set of
copies of elements of Y . Define ZX,Y := X ∪ (Ṽ \ Ỹ ). Then |X| + |V \ Y | = |ZX,Y |
and |Y | + |V \ X| = |(V ∪ Ṽ ) \ ZX,Y |. Moreover, for (X, Y ) and (X′, Y ′) we have
ZX∩X′,Y ∪Y ′ = ZX,Y ∩ZX′,Y ′ and ZX∪X′,Y ∩Y ′ = ZX,Y ∪ZX′,Y ′ . So the replacements
decrease (63.80) by Theorem 2.1.
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This can be seen by observing that Theorem 63.11 implies that this LP-
problem has integer primal and dual solutions of equal value.

As Frank and Jordán [1995b] pointed out, this implies that a minimum-
size k-vertex-connector can be found in polynomial time with the ellipsoid
method, as follows.

Since the conditions (63.83) can be checked in polynomial time, the ellip-
soid method (as we discuss below) implies that the minimum size of a k-arc-
connector can be determined in polynomial time. Then an explicit minimum-
size k-vertex-connector can be found by testing, for each pair u, v ∈ V ,
whether augmenting D by the new arc (u, v) decreases the minimum size
of a k-arc-connector. If so, we add (u, v) to D and iterate.

The ellipsoid method applies, since given xu,v ≥ 0 (u, v ∈ V ), we can test
if (63.83)(ii) holds. Indeed, let B be a set of new arcs forming a complete
directed graph on V . Define a capacity function c on A∪B by: c(a) := ∞ for
each a ∈ A and c(b) = xu,v for each arc b ∈ B from u to v. Then (63.83)(ii)
is equivalent to: for each s, t ∈ V there is an s − t flow fs,t in (V,A ∪ B)
subject to c of value k, such that for any vertex v �= s, t, the amount of flow
traversing v is at most 1 (since the set of arcs in B from X to Y , together
with the vertices in V \ (X ∪ Y ), form a mixed arc/vertex-cut separating s
and t). As this can be tested in polynomial time, we have a polynomial-time
test for (63.83).

In fact, we can transform the problem into a linear programming problem
of polynomial size, by including the flow variables fs,t(a) (for s, t ∈ V and a ∈
A∪B), into the LP-problem. Thus the minimum size of a k-arc-connector can
be described as the solution of a linear programming problem of polynomial
size.

There is no combinatorial polynomial-time algorithm known to find a
minimum-size k-vertex-connector for a given directed graph. (Frank and
Jordán [1995a] describe a combinatorial polynomial-time algorithm for find-
ing a minimum-size 2-vertex-connector for a strongly connected directed
graph. Frank and Jordán [1999] extended it to a polynomial-time algorithm
(for any fixed k) to find a minimum-size k-vertex-connector.)

Notes. Frank and Jordán [1995b] also showed that a directed graph D = (V, A)
has a k-vertex-connector B with all in- and outdegrees at most k − κ(D) (where
κ(D) denotes the vertex-connectivity of D).

Frank [1994a] gave the following conjecture:

(63.84) (?) Let D = (V, A) be a simple acyclic directed graph. Then the min-
imum size of a k-vertex-connector for D is equal to the maximum of∑

v∈V max{0, k − degin(v)} and
∑

v∈V max{0, k − degout(v)}. (?)

An O(kn)-time algorithm finding a minimum-size k-vertex-connector for a
rooted tree was given by Masuzawa, Hagihara, and Tokura [1987]. Frank [1994a]
observed that this result easily extends to branchings.

Approximation algorithms for the minimum size of a k-vertex-connector for a
directed graph were given by Jordán [1993a].



Section 63.6. Making an undirected graph k-vertex-connected 1077

63.6. Making an undirected graph k-vertex-connected

Let (V,E) and (V, F ) be undirected graphs. The set F is called a k-vertex-
connector for G if the graph (V,E ∪ F ) is k-vertex-connected.

Trivially, the minimum size of a 1-vertex-connector for an undirected
graph G is equal to one less than the number of components of G.

The minimum size of a 2-vertex-connector for undirected graphs was given
by Eswaran and Tarjan [1976] and Plesńık [1976]. To this end, call a block
pendant if it contains exactly one cut vertex of G. Moreover, call a block
isolated if it contains no cut vertex of G. So an isolated block is a component
of G.

Theorem 63.12. Let G = (V,E) be a non-2-vertex-connected undirected
graph, with p pendant blocks and q isolated blocks. Let d be the maximum
number of components of G− v, maximized over v ∈ V . Then the minimum
size of a 2-vertex-connector for G is equal to

(63.85) k := max{d− 1, � 1
2p
 + q}.

Proof. One needs at least d−1 edges, since for any v ∈ V , after deleting v the
augmented graph should be connected. Any block containing no cut vertex
should be incident with at least two new edges, and any block containing one
cut vertex should be incident with at least one new edges. Hence the number
of new edges is at least 1

2p+ q, and hence at least k.
To show that k can be attained, choose a counterexample G with k min-

imal. Then G is connected. Otherwise, we can choose two blocks B,B′ from
different components of G such that each of B,B′ is pendant or isolated. We
can choose a non-cut vertex from each of B,B′, and connect them by a new
edge to obtain graph G′. After that, k has decreased by exactly 1, and we
can apply induction to G′, implying the theorem.

So G is connected, and hence q = 0 (as G is not 2-vertex-connected).
Moreover, k ≥ 2, since otherwise p ≤ 2, and we can add one edge to make G
2-vertex-connected.

Let U be the set of vertices v for which G−v has at least three components
and let W be the set of vertices v for which G− v has k+ 1 components. So
W ⊆ U . Moreover, |U | ≥ 2, since otherwise we can add d− 1 edges to make
G connected.

We show:

(63.86) there exist two distinct pendant blocks B,B′ such that each B−
B′ path traverses all vertices in W and at least two vertices in U .

If |W | ≤ 1, this is trivial. So we may assume that |W | ≥ 2. Then, as W ⊆ U ,
it suffices to show that there exists a path traversing all vertices in W . If
such a path would not exist, there exists a subset X of W with |X| = 3
that is not on a path. Then for each v ∈ X, one component K of G − v
contains X \ {v}. So for each v ∈ X, G − v has k components disjoint from
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X. Moreover, for distinct v, v′ ∈ X, if K and K ′ are components of G − v
and G − v′ (respectively) each disjoint from X, then K ∩K ′ = ∅. Since for
each v ∈ X and each component K of G − v, K ∪ {v} contains at least one
pendant block, we know p ≥ 3k ≥ 3� 1

2p
, contradicting the fact that p > 0.
This shows (63.86). Now augment G by an edge connecting non-cut ver-

tices in B and B′, giving graph G′. As this augmentation decreases k (by
the conditions given in (63.86)), we would obtain a counterexample with k
smaller.

This proof directly gives a polynomial-time algorithm to find a minimum-
size 2-vertex-connector for G. Eswaran and Tarjan [1976] mention that a
linear-time implementation of this algorithm was communicated to them in
1973 by R. Pecherer and A. Rosenthal — see Rosenthal and Goldner [1977].
(See also Hsu and Ramachandran [1991,1993].)

An equivalent form of Theorem 63.12 is:

Corollary 63.12a. Let G = (V,E) be a non-2-vertex-connected graph. Then
G has a 2-vertex-connector of size at most γ if and only if for each vertex v,
G− v has at most γ + 1 components and

(63.87)
∑

U∈P
(2 − |N(U)|) ≤ 2γ

for each collection P of disjoint nonempty subsets U of V with |U | ≤ |V |−3.

Proof. Directly from Theorem 63.12.

Jackson and Jordán [2001] showed that for each fixed k, a minimum-size
k-vertex-connector for an undirected graph can be found in polynomial time.

Notes. Watanabe and Nakamura [1988,1993] give a characterization of the min-
imum size of a 3-vertex-connector, and Watanabe and Nakamura [1993] describe
an O(n(n + m)2)-time algorithm (for a sketch, see Watanabe and Nakamura [1988,
1990]). Hsu and Ramachandran [1991] gave a linear-time algorithm for this prob-
lem. Hsu [1992,2000] gave an almost-linear-time algorithm to find a minimum-size
4-vertex-connector for a 3-connected undirected graph.

Note that the natural extensions of Corollary 63.12a does not hold for k-vertex-
connectors with k ≥ 4, as is shown by the complete bipartite graph K3,3.

For approximation algorithms, see Jordán [1993b,1995,1997a], Khuller and
Thurimella [1993], Cheriyan and Thurimella [1996b,1999], Nutov and Penn [1997],
Penn and Shasha-Krupnik [1997], and Jackson and Jordán [2000].

63.6a. Further notes

Corollary 53.6b implies the following characterization for connectivity augmenta-
tion, due to Frank [1979b].
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Theorem 63.13. Let D = (V, A) be a digraph, let r ∈ V , and let k ∈ Z+ be such
that D contains k disjoint r-arborescences. Moreover, let D′ = (V, A′) and l ∈ Z

A′
+ .

Then the minimum of l(C) where C ⊆ A′ such that the digraph (V, A ∪ C) (taking
arcs multiple) has k + 1 disjoint r-arborescences is equal to the maximum size t
of a family of nonempty subsets U1, . . . , Ut of V \ {r} such that din

D (Uj) = k for
j = 1, . . . , t and such that each arc a of D′ enters at most l(a) of the Uj.

Proof. Consider the digraph D′′ = (V, A′′) with A′′ := A ∪ A′ (taking multiple
arcs for arcs occurring both in A and in A′). Now the minimum in this corollary is
equal to the minimum of

∑
a∈A′ l(a)xa where x ∈ Z

A′′
satisfies

(63.88) 0 ≤ xa ≤ 1 if a ∈ A′,
x(δin

D′(U)) ≥ k + 1 − din
D (U) for each nonempty U ⊆ V \ {r}.

Since (63.88) is TDI by Corollary 53.6b, this minimum is equal to the maximum
described in the present corollary.

The problem of making a bipartite directed graph strongly connected while
preserving bipartiteness is considered by Gabow and Jordán [1999,2000a]. Aug-
menting the arc-connectivity while preserving bipartiteness is studied by Gabow
and Jordán [2000b]. Making a bipartite undirected graph k-edge-connected while
preserving bipartiteness, and, more generally, edge-connectivity augmentation with
partition constraints, is studied by Bang-Jensen, Gabow, Jordan, and Szigeti [1998,
1999].

For the ‘successive augmentation problem’, see Cheng and Jordán [1999]. For
NP-completeness and approximation results for connectivity augmentation, see
Frederickson and Ja’Ja’ [1981,1982]. Frank and Király [2001] studied problems that
combine graph orientation and connectivity augmentation.

Planar graph connectivity augmentation was considered by Provan and Burk
[1999].

Ishii, Nagamochi, and Ibaraki [1997,1998b,1998a,1999,2000,2001] considered the
problem of making an undirected graph both k-vertex- and l-edge-connected.

For surveys on connectivity augmentation, see Frank [1993a,1994a], Jordán
[1994,1997b], and Nagamochi [2000].
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