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Part IV: Matroids and Submodular Functions

Matroids form an important tool in combinatorial optimization. Among other, they
apply to shortest and disjoint trees in undirected graphs, to bipartite matching, and
to directed cut covering.
Matroids were introduced by Whitney in 1935, and equivalent axiom systems were
considered in the 1930s by Nakasawa, Birkhoff, and van der Waerden. They were
motivated by questions from algebra, geometry, and graph theory. The importance
of matroids for combinatorial optimization was revealed by J. Edmonds in the 1960s,
who found efficient algorithms and min-max relations for optimization problems
involving matroids.
Matroids are exactly those structures where the greedy algorithm yields an opti-
mum solution. Edmonds discovered that matroids have an even stronger algorithmic
property: also optimization over intersections of two different matroids can be done
efficiently. It is closely related to matroid union. Among the consequences of ma-
troid intersection and union methods and results are min-max relations, polyhedral
characterizations, and algorithms for bipartite matching, common transversals, and
tree packing and covering. (In fact, tree packing and covering are best investigated
within the structures offered by matroids. This insight was obtained already in the
original paper of Nash-Williams on tree packing. That is why we discuss matroids
before Part V on trees and forests.)
While bipartite matching is generalized by matroid intersection, nonbipartite
matching is generalized by matroid matching. We prove in Chapter 43 Lovász’s
matroid matching theorem for linear matroids. For general matroids the problem
is intractable.
The rank function of a matroid is a special case of a submodular function. Submod-
ular functions give rise to a polyhedral generalization of matroids, the polymatroids.
Most of matroid theory can be lifted to the level of submodular functions and poly-
matroids. Next to having applications by its own, it will also be used in Part V
where we consider submodular functions defined on digraphs (Chapter 60). This
applies to directed variants of tree and cut packing and covering, and to graph
orientation and connectivity augmentation.
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Chapter 39

Matroids

This chapter gives the basic definitions, examples, and properties of ma-
troids. We use the shorthand notation

X + y := X ∪ {y} and X − y := X \ {y}.

39.1. Matroids

A pair (S, I) is called a matroid if S is a finite set and I is a nonempty
collection of subsets of S satisfying:

(39.1) (i) if I ∈ I and J ⊆ I, then J ∈ I,
(ii) if I, J ∈ I and |I| < |J |, then I + z ∈ I for some z ∈ J \ I.

(These axioms are given by Whitney [1935].)
Given a matroid M = (S, I), a subset I of S is called independent if I

belongs to I, and dependent otherwise. For U ⊆ S, a subset B of U is called
a base of U if B is an inclusionwise maximal independent subset of U . That
is, B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ U .

It is not difficult to see that, under condition (39.1)(i), condition (39.1)(ii)
is equivalent to:

(39.2) for any subset U of S, any two bases of U have the same size.

The common size of the bases of a subset U of S is called the rank of U ,
denoted by rM (U). If the matroid is clear from the context, we write r(U)
for rM (U).

A set is called simply a base if it is a base of S. The common size of all
bases is called the rank of the matroid. A subset of S is called spanning if
it contains a base as a subset. So bases are just the inclusionwise minimal
spanning sets, and also just the independent spanning sets. A circuit of a
matroid is an inclusionwise minimal dependent set. A loop is an element s
such that {s} is a circuit. Two elements s, t of S are called parallel if {s, t} is
a circuit.

Nakasawa [1935] showed the equivalence of axiom system (39.1) with an
ostensibly weaker system, which will be useful in proofs:
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Theorem 39.1. Let S be a finite set and let I be a nonempty collection of
subsets satisfying (39.1)(i). Then (39.1)(ii) is equivalent to:

(39.3) if I, J ∈ I and |I \ J | = 1, |J \ I| = 2, then I + z ∈ I for some
z ∈ J \ I.

Proof. Obviously, (39.1)(ii) implies (39.3). Conversely, (39.1)(ii) follows from
(39.3) by induction on |I \ J |, the case |I \ J | = 0 being trivial. If |I \ J | ≥ 1,
choose i ∈ I \ J . We apply the induction hypothesis twice: first to I − i and
J to find j ∈ J \ I with I − i + j ∈ I, and then to I − i + j and J to find
j′ ∈ J \ (I + j) with I − i + j + j′ ∈ I. Then by (39.3) applied to I and
I − i + j + j′, we have that I + j ∈ I or I + j′ ∈ I.

39.2. The dual matroid

With each matroid M , a dual matroid M∗ can be associated, in such a way
that (M∗)∗ = M . Let M = (S, I) be a matroid, and define

(39.4) I∗ := {I ⊆ S | S \ I is a spanning set of M}.

Then (Whitney [1935]):

Theorem 39.2. M∗ = (S, I∗) is a matroid.

Proof. Condition (39.1)(i) trivially holds for I∗. To see (39.1)(ii), consider
I, J ∈ I∗ with |I| < |J |. By definition of I∗, S \ J contains some base B of
M . As also S \ I contains some base of M , and as B \ I ⊆ S \ I, there exists
a base B′ of M with B \ I ⊆ B′ ⊆ S \ I. Then J \ I �⊆ B′, since otherwise
(as B ∩ I ⊆ I \ J , and as B \ I and J \ I are disjoint, since B ∩ J = ∅)

(39.5) |B| = |B ∩ I| + |B \ I| ≤ |I \ J | + |B \ I| < |J \ I| + |B \ I| ≤ |B′|,

which is a contradiction. As J \ I �⊆ B′, there is a z ∈ J \ I with z �∈ B′. So
B′ is disjoint from I + z. Hence I + z ∈ I∗.

The matroid M∗ is called the dual matroid of M . The bases of M∗ are
precisely the complements of the bases of M . This implies (M∗)∗ = M , which
justifies the name dual.

Theorem 39.3. The rank function rM∗ of the dual matroid M∗ satisfies, for
U ⊆ S:

(39.6) rM∗(U) = |U | + rM (S \ U) − rM (S).

Proof. Let B and B∗ denote the collections of bases of M and of M∗, respec-
tively. Then
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(39.7) rM∗(U) = max{|U ∩ A|
∣
∣ A ∈ B∗} = max{|U \ B|

∣
∣ B ∈ B}

= |U | − min{|B ∩ U |
∣
∣ B ∈ B}

= |U | − rM (S) + max{|B \ U |
∣
∣ B ∈ B}

= |U | − rM (S) + rM (S \ U).

The circuits of M∗ are called the cocircuits of M . They are the inclusion-
wise minimal sets intersecting each base of M (as they are the inclusionwise
minimal sets contained in no base of M∗, that is, not contained in the com-
plement of any base of M). The loops of M∗ are the coloops or bridges of M ,
and parallel elements of M∗ are called coparallel or in series in M .

Let M = (S, I) be a matroid, and suppose that we can test in polyno-
mial time if any subset of S is independent in M (or we have an oracle for
that). Then we can calculate, for any subset U of S, the rank rM (U) of U
in polynomial time (by growing an independent set (starting from ∅) to an
inclusionwise maximal independent subset of U). It follows that we can test
in polynomial time if any subset U of S in independent in M∗, just by testing
if rM (S \ U) = rM (S).

A matroid M = (S, I) is called connected if rM (U) + rM (S \ U) > rM (S)
for each nonempty proper subset U of S. This is equivalent to: for any two
elements s, t ∈ S there exists a circuit containing both s and t. One may derive
from (39.6) that a matroid M is connected if and only if M∗ is connected.

39.3. Deletion, contraction, and truncation

We can derive matroids from matroids by ‘deletion’ and ‘contraction’. Let
M = (S, I) be a matroid and let Y ⊆ S. Define

(39.8) I ′ := {Z | Z ⊆ Y, Z ∈ I}.
Then M ′ = (Y, I ′) is a matroid again, as directly follows from the matroid
axioms (39.1). M ′ is called the restriction of M to Y , denoted by M |Y . If
Y = S \ Z with Z ⊆ S, we say that M ′ arises by deleting Z, and denote M ′

by M \ Z. Clearly, the rank function of M |Y is the restriction of the rank
function of M to subsets of Y .

Contraction is the operation dual to deletion. Contracting Z means re-
placing M by (M∗ \ Z)∗. This matroid is denoted by M/Z. If Y = S \ Z,
then we denote M · Y := M/Z. Theorem 39.3 implies that the rank function
r′ of M/Z satisfies

(39.9) rM/Z(X) = r(X ∪ Z) − r(Z)

for X ⊆ S \ Z.
We can describe contraction as follows. Let Z ⊆ S and let X be a base of

Z. Then

(39.10) a subset I of S \ Z is independent in M/Z if and only if I ∪ X is
independent in M .
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Note that for disjoint subsets Y, Z of S one has (M \ Y ) \ Z = M \ (Y ∪
Z) and hence (M/Y )/Z = M/(Y ∪ Z). Moreover, deletion and contraction
commute, as for any two distinct x, y ∈ S and any Z ⊆ S \ {x, y} one has
(using (39.9)):

(39.11) rM\x/y(Z) = rM\x(Z∪{y})−rM\x({y}) = rM (Z∪{y})−rM ({y})
= rM/y(Z) = rM/y\x(Z).

If matroid M ′ arises from M by a series of deletions and contractions, M ′ is
called a minor of M .

The circuits of M |Y are exactly the circuits of M contained in Y , and
the circuits of M · Y are exactly the minimal nonempty sets C ∩ Y , where C
is a circuit of M .

Another operation is that of ‘truncation’. Let M = (S, I) be a matroid
and let k be a natural number. Define I ′ := {I ∈ I

∣
∣ |I| ≤ k}. Then (S, I ′)

is again a matroid, called the k-truncation of M .

39.4. Examples of matroids

We describe some basic classes of matroids.

Uniform matroids. An easy class of matroids is given by the uniform ma-
troids. They are determined by a set S and a number k: the independent sets
are the subsets I of S with |I| ≤ k. This trivially gives a matroid, called a
k-uniform matroid and denoted by Uk

n , where n := |S|.

Linear matroids (Grassmann [1862], Steinitz [1913]). Let A be an m × n
matrix. Let S := {1, . . . , n} and let I be the collection of all those subsets
I of S such that the columns of A with index in I are linearly independent.
That is, such that the submatrix of A consisting of the columns with index
in I has rank |I|.

Then (S, I) is a matroid (property (39.1)(ii) was proved by Grassmann
[1862] and by Steinitz [1913], and is called Steinitz’ exchange property). Con-
dition (39.1)(i) is trivial. To see condition (39.1)(ii), let I, J ∈ I with |I| < |J |.
Then I spans an |I|-dimensional space I. So J �⊆ I. Take j ∈ J \ I. Then
I + j ∈ I and j ∈ J \ I.

Any matroid obtained in this way, or isomorphic to such a matroid, is
called a linear matroid. If A has entries in a field F, then M is called repre-
sentable over F. We will also say that M is represented by (the columns of)
A, and A is called a representation of M .

Note that the rank rM (U) of any subset U of S is equal to the rank of
the matrix formed by the columns indexed by U .

The dual matroid of a matroid representable over a field F is again rep-
resentable over F. Indeed, we can assume that the matrix A is of the form
[Im B], where Im is the m × m identity matrix, and B is an m × (n − m)
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matrix. Then the dual matroid can be represented by the matrix [BT In−m],
as follows directly from elementary linear algebra. This implies that the class
of matroids representable over F is closed under taking minors.

MacLane [1936] (and also Lazarson [1958]) showed that nonlinear ma-
troids exist.

Binary matroids. A matroid representable over GF(2) — the field with
two elements — is called a binary matroid. For later purposes, we give some
characterizations of binary matroids. The following is direct (Whitney [1935]):

(39.12) a matroid M is binary if and only if for each choice of circuits
C1, . . . , Ct, the set C1
 · · · 
Ct can be partitioned into circuits.

In a binary matroid M , disjoint unions of circuits are called the cycles of M .
Of special interest is the Fano matroid F7, represented by the nonzero vectors
in GF(2)3.

Tutte [1958a,1958b] showed that the unique minor-minimal nonbinary
matroid is U2

4 , the 2-uniform matroid on 4 elements. (We follow the proof
suggested by A.M.H. Gerards.)

Theorem 39.4. A matroid is binary if and only if it has no U2
4 minor.

Proof. Necessity follows from the facts that the class of binary matroids is
closed under taking minors and that U2

4 is not binary.
To see sufficiency, we first show the following. Let M and N be matroids

on the same set S. Call a set wrong if it is a base of precisely one of M and
N . A far base is a common base B of M and N such that there is no wrong
set X with |B
X| = 2. We first show:

(39.13) if M and N are different and have a far base, then M or N has
a U2

4 minor.

Let M, N form a counterexample with S as small as possible. Let B be a far
base and X be a wrong set with |B
X| minimal. Then B ∪ X = S, since we
can delete S \ (B ∪ X). Similarly (by considering M∗ and N∗), B ∩ X = ∅.
Then, by the minimality of |B
X|, X is the only wrong set. By symmetry, we
may assume that X is a base of M . Then M has a base B′ with |B
B′| = 2.
By the uniqueness of X, B′ is also a base of N . By the minimality of |B
X|,
B′ is not far. Hence, by the uniqueness of X, |B′
X| = 2. So |S| = 4.

Let S = {a, b, c, d}, B = {a, b}, X = {c, d}. Since M �= U2
4 by assumption,

we may assume that {a, c} is not a base of M . Hence, since {a} and {c, d}
are independent in M , {a, d} is a base of M . Similarly, since {c} and {a, b}
are independent in M , {b, c} is a base of M .

Since B is far, {a, d} and {b, c} are bases also of N , and {a, c} is not a
base of N . So {c} is independent in N , implying that {c, a} or {c, d} is a base
of N , a contradiction. This proves (39.13).
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Now let M be a nonbinary matroid on a set S. Choose a base B of M .
Let {xb | b ∈ B} be a collection of linearly independent vectors over GF(2).
For each s ∈ S \ B, let Cs be the circuit contained in B ∪ {s}, and define

(39.14) xs :=
∑

b∈Cs\{s}
xb.

Let N be the binary matroid represented by {xs | s ∈ S}. Now for each b ∈ B
and each s ∈ S \ B one has that (B \ {b}) ∪ {s} is a base of M if and only if
it is a base of N . So B is a far base. Since N is binary, we know that N �= M
and that N has no U2

4 minor. Hence, by (39.13), M has a U2
4 minor.

Regular matroids. A matroid is called regular if it is representable over
each field. It is equivalent to requiring that it can be represented over R by
the columns of a totally unimodular matrix.

Regular matroids are characterized by Tutte [1958a,1958b] as those binary
matroids not having an F7 or F ∗

7 minor. (Gerards [1989b] gave a short proof.)
A basic decomposition theorem of Seymour [1980a] states that each reg-

ular matroid can be obtained by taking 1-, 2-, and 3-sums from graphic and
cographic matroids and from copies of a 10-element matroid called R10. (We
do not use this theorem in this book. Background can be found in the book
of Truemper [1992].)

Algebraic matroids (Steinitz [1910]). Let L be a field extension of a field
K and let S be a finite subset of L. Let I be the collection of all subsets
{s1, . . . , sn} of S that consist of algebraically independent elements over K.
That is, there is no nonzero polynomial p(x1, . . . , xn) ∈ K[x1, . . . , xn] with
p(s1, . . . , sn) = 0. Then (S, I) is a matroid, and matroids arising in this way
are called algebraic (over K). (Steinitz [1910] showed that (S, I) satisfies the
matroid axioms, although the term matroid was not yet introduced.)

To see that (S, I) is a matroid, we check (39.3). It suffices to show that
for all s1, . . . , sn ∈ S one has:

(39.15) if {s1, s2, s3, . . . , sn−1} ∈ I and {s3, . . . , sn−1, sn} ∈ I, then
{s1, s3, . . . , sn} ∈ I or {s2, s3, . . . , sn} ∈ I.

Suppose not. Then there exist nonzero polynomials p(x1, x3, . . . , xn) and
q(x2, x3, . . . , xn) over K with p(s1, s3, . . . , sn) = 0 and q(s2, s3, . . . , sn) = 0.
We may assume that p and q are irreducible. Moreover, since {s3, . . . , sn} ∈ I,
p and q are relatively prime. Define F := K(x1, x2, . . . , xn−1). So p and q be-
long to the Euclidean ring F [xn]. Let r be the g.c.d. of p and q in F [xn].
As p and q are relatively prime, we know r ∈ F , and hence we may as-
sume r ∈ K[x1, . . . , xn−1]. Now r = αp + βq for some α, β ∈ F [xn]. So
r(s1, . . . , sn−1) = 0, contradicting the fact that {s1, . . . , sn−1} ∈ I. This
proves (39.15).

Each linear matroid is algebraic (as we can consider the linear relations
between the elements as polynomials of rank 1), while Ingleton [1971] gave an
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example of a nonlinear algebraic matroid. Examples of nonalgebraic matroids
were given by Ingleton and Main [1975] and Lindström [1984,1986]. The class
of algebraic matroids can be easily seen to be closed under taking minors
(deletion is direct, while contraction of an element t corresponds to replacing
K by K(t)), but it is unknown if it is closed under duality.

In fact, for any field K, the class of matroids that are algebraic over K is
closed under taking minors, since Lindström [1989] showed that any matroid
algebraic over K(t) (for any t), is also algebraic over K.

For an in-depth survey on algebraic matroids, see Oxley [1992].

Graphic matroids (Birkhoff [1935c], Whitney [1935]). Let G = (V, E) be
a graph and let I be the collection of all subsets of E that form a forest.
Then M = (E, I) is a matroid. Condition (39.1)(i) is trivial. To see that
condition (39.2) holds, let F ⊆ E. Then, by definition, each base U of F is an
inclusionwise maximal forest contained in F . Hence U forms a spanning tree
in each component of the graph (V, F ). So U has |V |−k elements, where k is
the number of components of (V, F ). So each base of F has |V | − k elements,
proving (39.2).

The matroid M is called the cycle matroid of G, denoted by M(G). Any
matroid obtained in this way, or isomorphic to such a matroid, is called a
graphic matroid.

Trivially, the circuits of M(G), in the matroid sense, are exactly the cir-
cuits of G, in the graph sense. The bases of M(G) are exactly the inclusionwise
maximal forests F of G. So if G is connected, the bases are the spanning trees.

The rank function of M(G) can be described as follows. For each subset
F of E, let κ(V, F ) denote the number of components of the graph (V, F ).
Then for each F ⊆ E:

(39.16) rM(G)(F ) = |V | − κ(V, F ).

Note that deletion and contraction in the matroid correspond to deletion and
contraction of edges in the graph.

Graphic matroids are regular, that is, representable over any field: orient
the edges of G arbitrarily, and consider the V × E matrix L given by: Lv,e =
+1 if v is the head of e, Lv,e := −1 if v is the tail of e, and Lv,e := 0 otherwise
(for v ∈ V , e ∈ E). Then a subset F of E is a forest if and only if the set of
columns with index in F is linearly independent.

By a theorem of Tutte [1959], the graphic matroids are precisely those
regular matroids containing no M(K5)∗ and M(K3,3)∗ minor. (Alternative
proofs were given by Ghouila-Houri [1964] (Chapitre III), Seymour [1980d],
Truemper [1985], Wagner [1985], and Gerards [1995b].)

Cographic matroids (Whitney [1935]). The dual of the cycle matroid M(G)
of a graph G = (V, E) is called the cocycle matroid of G, and denoted by
M∗(G). Any matroid obtained in this way, or isomorphic to such a matroid,
is called a cographic matroid.
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So the bases of M∗(G) are the complements of maximal forests of G. (So
if G is connected, these are exactly the complements of the spanning trees in
G.)

Hence the independent sets are those edge sets F for which E \F contains
a maximal forest of G; that is, (V, E \F ) has the same number of components
as G.

A subset C of E is a circuit of M∗(G) if and only if C is an inclusionwise
minimal set with the property that (V, E \ C) has more components than G.
Hence C is a circuit of M∗(G) if and only if C is an inclusionwise minimal
nonempty cut in G.

The rank function of M∗(G) can be described as follows. Again, for each
subset F of E, let κ(V, F ) denote the number of components of the graph
(V, F ). Then (39.6) and (39.16) give that for each F ⊆ E:

(39.17) rM∗(G)(F ) = |F | − κ(V, E \ F ) + κ(V, E).

Let G be an (embedded) planar graph, and let G∗ be the dual planar
graph of G. Then the cycle matroid M(G∗) of G∗ is isomorphic to the cocycle
matroid M∗(G) of G.

A theorem of Whitney [1933] implies that a matroid is both graphic and
cographic if and only if it is isomorphic to the cycle matroid of a planar
graph.

Transversal matroids (Edmonds and Fulkerson [1965], Mirsky and Perfect
[1967]). Let X = (X1, . . . , Xn) be a family of subsets of a finite set S and
let I be the collection of all partial transversals of X . Then M = (S, I) is
a matroid, as follows directly from Corollary 22.4a. Any matroid obtained
in this way, or isomorphic to such a matroid, is called a transversal matroid
(induced by X ).

The bases of this matroid are the inclusionwise maximal partial transver-
sals. If X has a transversal, the bases of M are the transversals of X . In fact,
Theorem 22.5 implies that we can assume the latter situation:

(39.18) Let M be the transversal matroid induced by the family X . Then
X has a subfamily Y such that M is equal to the transversal
matroid induced by Y and such that Y has a transversal.

So we can assume that any transversal matroid has the transversals of a
family of sets as bases.

It follows from Kőnig’s matching theorem that the rank function r of the
transversal matroid induced by X is given by

(39.19) r(U) = min
T⊆U

(|U \ T | + |{i | Xi ∩ T �= ∅}|)

= min
I⊆{1,...,n}

(n − |I| +
∣
∣
⋃

i∈I

(Xi ∩ U)
∣
∣)

for U ⊆ S. This follows directly from Theorem 22.2 and Corollary 22.2a,
applied to the family (X1 ∩ U, . . . , Xn ∩ U).
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Piff and Welsh [1970] (cf. Atkin [1972]) showed that

(39.20) any transversal matroid is representable over all fields, except for
finitely many finite fields.

If the sets X1, . . . , Xm form a partition of S, one speaks of a partition
matroid. Trivially, each partition matroid is graphic and cographic (by con-
sidering a graph consisting of vertex-disjoint parallel classes of edges). Also
uniform matroids are special cases of transversal matroids.

Gammoids (Perfect [1968]). An extension of transversal matroids is obtained
by taking a directed graph D = (V, A) and subsets U and S of V . For
X, Y ⊆ V , call X linked to Y if |X| = |Y | and D has |X| vertex-disjoint
X − Y paths. (So X is the set of starting vertices of these paths, and Y the
set of end vertices.)

Let I be the collection of subsets I of S such that some subset of U is
linked to I. Then M = (S, I) is a matroid. This follows from Theorem 9.11:
let I, J ∈ I with |I| < |J |. Let T := I ∪ J . Let k be the maximum number
of disjoint U − T paths. So k ≥ |J | > |I|. By Theorem 9.11, there exist k
disjoint U − T paths covering I. Hence I + j ∈ I for some j ∈ J \ I. So M is
a matroid.

Matroids obtained in this way are called gammoids. If S = V , the gam-
moid is called a strict gammoid (induced by D, U). Hence:

(39.21) gammoids are exactly the restrictions of strict gammoids.

The bases of the strict gammoid induced by D, U are the subsets B of V such
that U is linked to B. In particular, U is a base.

From Menger’s theorem (Corollary 9.1a) one easily derives the following
formula for the rank function rM of M :

(39.22) rM (X) = min{|Y |
∣
∣ Y intersects each U − X path}

for X ⊆ S. (One may prove easily that the right-hand side of (39.22) satisfies
Theorem 39.8 below, thus proving again that M is a matroid.)

39.4a. Relations between transversal matroids and gammoids

Ingleton and Piff [1973] showed the following theorem (based on a duality of bi-
partite graphs and directed graphs similar to that described in Section 16.7c). The
proof provides an alternative proof that gammoids are indeed matroids.

Theorem 39.5. Strict gammoids are exactly the duals of the transversal matroids.

Proof. Let M be the strict gammoid induced by the directed graph D = (V,A)
and U ⊆ V . We can assume that (v, v) ∈ A for each v ∈ V . For each v ∈ V , let

(39.23) Xv := {u ∈ V | (u, v) ∈ A}.
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Let L be the transversal matroid induced by the family X := (Xv | v ∈ V \U). We
show that L = M∗.

As v ∈ Xv for each v ∈ V \ U , the set V \ U is a transversal of X . Hence the
bases of L are the transversals of X . As U is a base of the strict gammoid induced
by D,U , it suffices to show, for each B ⊆ V :

(39.24) U is linked to B in D if and only if V \B is a transversal of X .

To see necessity in (39.24), let U be linked to B in D and let P be a set of |U |
disjoint U −B paths. Then for each v ∈ V \U , let xv := u if v is entered by an arc
(u, v) in a path P in P and let xv := v otherwise. Then:

(39.25) (i) xv ∈ Xv, (ii) xv �= xv′ for v �= v′ ∈ V \ U , and (iii) {xv | v ∈
V \ U} = V \B.

So V \B is a transversal of X .
To see sufficiency in (39.24), let V \B be a transversal of X . Hence there exist

xv for v ∈ V \ U satisfying (39.25). Let A′ be the set of arcs (xv, v) of D with
v ∈ V \ U . Then V \ U is the set of vertices entered by an arc in A′, and V \ B is
the set of vertices left by an arc in A′. Hence U is linked to B in D.

This shows (39.24), and hence that M∗ = L. So the dual of a strict gammoid
is a transversal matroid.

To see that each transversal matroid is the dual of a strict gammoid, we show
that the construction described above can be reversed. Let L be the transversal
matroid induced by the family X = (Xi | i = 1, . . . ,m) of sets. By (39.18) we can
assume that X has a transversal. Hence we can assume that i ∈ Xi for i = 1, . . . ,m
(by renaming). Let V := X1 ∪ · · · ∪Xm and let

(39.26) A := {(u, v) | v ∈ {1, . . . ,m}, u ∈ Xv}.
Let D = (V,A) and define U := V \ {1, . . . ,m}. Since D,U and X are related as
in (39.23), we again have (39.25). So L is equal to the dual of the strict gammoid
induced by D,U .

This theorem has a number of implications for the interrelations of the classes
of transversal matroids and of gammoids. Consider the following class of matroids,
introduced by Ingleton and Piff [1973]. Let G = (V,E) be a bipartite graph, with
colour classes U and W . Let M = (V, I) be the transversal matroid induced by the
family ({v}∪N(v) | v ∈ U) (where N(v) is the set of neighbours of v). So B ⊆ V is
a base of M if and only if (U \B) ∪ (W ∩B) is matchable in G (that is, it induces
a subgraph of G having a perfect matching).

Any such matroid M is called a deltoid (induced by G,U,W ). Then M∗ is the
deltoid induced by G,W,U . So

(39.27) the dual of a deltoid is a deltoid again.

Now

(39.28) transversal matroids are exactly those matroids that are the restriction
of a deltoid.

Indeed, each deltoid is a transversal matroid, and hence the restriction of any deltoid
is a transversal matroid (as the class of transversal matroids is closed under taking
restrictions). Conversely, any transversal matroid, induced by (say) X1, . . . , Xm is
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the restriction to W of the deltoid induced by the bipartite graph G with colour
classes U := {1, . . . ,m} and W := X1 ∪ · · · ∪Xm, with i ∈ U and x ∈ W adjacent
if and only if x ∈ Xi. (Assuming without loss of generality that U ∩W = ∅.) This
shows (39.28).

Then (39.27) and (39.28) give with Theorem 39.5:

(39.29) the strict gammoids are exactly the contractions of the deltoids.

Indeed, the strict gammoids are the duals of transversal matroids, hence the duals
of restrictions of deltoids, and therefore the contractions of (the duals of) deltoids.

This gives:

Corollary 39.5a. The gammoids are exactly the contractions of the transversal
matroids.

Proof. Gammoids are the restrictions of strict gammoids, hence the restrictions of
contractions of deltoids, hence the contractions of restrictions of deltoids, therefore
the contractions of transversal matroids.

Similarly:

(39.30) the gammoids are exactly the minors of deltoids,

which implies (with (39.27)) a result of Mason [1972]:

(39.31) the class of gammoids is closed under taking minors and duals.

Theorem 39.5 also implies, with (39.20), that gammoids are representable over
all fields, except for a finite number of finite fields (Mason [1972]). In fact, Lindström
[1973] showed that any gammoid (S, I) is representable over each field with at least
2|S| elements.

Edmonds and Fulkerson [1965] showed that one gets a transversal matroid as
follows. Let G = (V,E) be an undirected graph and let S ⊆ V . Let I be the
collection of subsets of S which are covered by some matching in G. Then M =
(S, I) is a matroid (which is easy to show), called the matching matroid of G.
In fact, any matching matroid is a transversal matroid. To prove this, we may
assume S = V . Let D(G), A(G), C(G) form the Edmonds-Gallai decomposition of
G (Section 24.4b). Let K be the collection of components of G[D(G)]. Let X be the
family of sets

(39.32) {v} for each v ∈ A(G) ∪ C(G),
N(v) ∩D(G) for each v ∈ A(G),
K, repeated |K| − 1 times, for each K ∈ K.

Then M is equal to the transversal matroid induced by X , as is easy to derive from
the properties of the Edmonds-Gallai decomposition. A min-max relation for the
rank function is given by Theorem 24.6.

It is straightforward to see that, conversely, each transversal matroid is a match-
ing matroid, by taking G bipartite.
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39.5. Characterizing matroids by bases

In Section 39.1, the notion of matroid is defined by ‘axioms’ in terms of the
independent sets. There are several other axiom systems that characterize
matroids. In this and the next sections we give a number of them.

Clearly, a matroid is determined by the collection of its bases, since a set is
independent if and only if it is contained in a base. Conditions characterizing
a collection of bases of a matroid are given in the following theorem (Whitney
[1935]).

Theorem 39.6. Let S be a set and let B be a nonempty collection of subsets
of S. Then the following are equivalent:

(39.33) (i) B is the collection of bases of a matroid;
(ii) if B, B′ ∈ B and x ∈ B′ \ B, then B′ − x + y ∈ B for some

y ∈ B \ B′;
(iii) if B, B′ ∈ B and x ∈ B′ \ B, then B − y + x ∈ B for some

y ∈ B \ B′.

Proof. (i)⇒(ii): Let B be the collection of bases of a matroid (S, I). Then
all sets in B have the same size. Now let B, B′ ∈ B and x ∈ B′ \ B. Since
B′ − x ∈ I, there exists a y ∈ B \ B′ with B′′ := B′ − x + y ∈ I. Since
|B′′| = |B′|, we know B′′ ∈ B.

(iii)⇒(i): (iii) directly implies that no set in B is contained in another.
Let I be the collection of sets I with I ⊆ B for some B ∈ B. We check (39.3).
Let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let I \ J = {x}.

Consider sets B, B′ ∈ B with I ⊆ B, J ⊆ B′. If x ∈ B′, we are done.
So assume x �∈ B′. Then by (iii), B′ − y + x ∈ B for some y ∈ B′ \ B. As
|J \ I| = 2, there is a z ∈ J \ I with z �= y. Then I + z ⊆ B′ − y + x, and so
I + z ∈ I.

(ii)⇒(iii): By the foregoing we know that (iii) implies (ii). Now axioms
(ii) and (iii) interchange if we replace B by the collection of complements of
sets in B. Hence also the implication (ii)⇒(iii) holds.

The equivalence of (ii) and (iii) also follows from the fact that the collec-
tion of complements of bases of a matroid is the collection of bases of the dual
matroid. Conversely, Theorem 39.6 implies that the dual indeed is a matroid.

39.6. Characterizing matroids by circuits

A matroid is determined by the collection of its circuits, since a set is in-
dependent if and only if it contains no circuit. Conditions characterizing a
collection of circuits of a matroid are given in the following theorem (Whitney
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[1935] proved (i)⇔(iii), and Robertson and Weston [1958] (and also Lehman
[1964] and Asche [1966]) proved (i)⇔(ii)).

Theorem 39.7. Let S be a set and let C be a collection of nonempty subsets of
S, such that no two sets in C are contained in each other. Then the following
are equivalent:

(39.34) (i) C is the collection of circuits of a matroid;
(ii) if C, C ′ ∈ C with C �= C ′ and x ∈ C ∩ C ′, then (C ∪ C ′) \ {x}

contains a set in C;
(iii) if C, C ′ ∈ C, x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}

contains a set in C containing y.

Proof. (i)⇒(iii): Let C be the collection of circuits of a matroid (S, I) and
let B be its collection of bases. Let C, C ′ ∈ C, x ∈ C ∩C ′, and y ∈ C \C ′. We
can assume that S = C ∪C ′. Let B, B′ ∈ B with B ⊇ C −y and B′ ⊇ C ′ −x.
Then y �∈ B and x �∈ B′ (since C �⊆ B and C ′ �⊆ B′).

We can assume that y �∈ B′. Otherwise, y ∈ B′ \ B, and hence by (ii) of
Theorem 39.6, there exists a z ∈ B \ B′ with B′′ := B′ − y + z ∈ B. Then
z �= x, since otherwise C ′ ⊆ B′′. Hence, replacing B′ by B′′ gives y �∈ B′.

As y �∈ B′, we know B′ ∪ {y} �∈ I, and hence there exists a C ′′ ∈ C
contained in B′ ∪ {y}. As C ′′ �⊆ B′, we know y ∈ C ′′. Moreover, as x �∈ B′

we know x �∈ C ′′.

(iii)⇒(ii): is trivial.

(ii)⇒(i): Let I be the collection of sets containing no set in C as a subset.
We check (39.3). Let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Assume that
I + z �∈ I for each z ∈ J \ I. Let y be the element of I \ J . If J + y ∈ I,
then I ∪ J ∈ I, contradicting our assumption. So J + y contains a set C ∈ C.
Then C is the unique set in C contained in J + y. For suppose that there is
another, C ′ say. Again, y ∈ C ′, and hence by (39.34)(ii) there exists a C ′′ ∈ C
contained in (C ∪ C ′) \ {y}. But then C ′′ ⊆ J , a contradiction.

As C �⊆ I, C intersects J \ I. Choose x ∈ C ∩ (J \ I). Then X := J +y −x
contains no set in C (as C is the only set in C contained in J + y). So X ∈ I,
implying that I + z ∈ I for the z ∈ J \ I with z �= x.

This theorem implies the following important property for a matroid M =
(S, I):

(39.35) for any independent set I and any s ∈ S \ I there is at most one
circuit contained in I ∪ {s}.

39.6a. A characterization of Lehman

Lehman [1964] showed that the cocircuits of a matroid M are exactly the inclu-
sionwise minimal nonempty subsets D of S with |D ∩ C| �= 1 for each circuit C of
M .
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To show this, it suffices to show that

(39.36) (i) |D ∩ C| �= 1 for each cocircuit D and circuit C,
(ii) for each nonempty D ⊆ S, if |D ∩ C| �= 1 for each circuit C, then

D contains a cocircuit; that is, then D is dependent in M∗.

To see (i), suppose that D ∩C = {s} for some circuit C and cocircuit D. As D− s
is independent in M∗, M has a base B disjoint from D − s. Since C − s is disjoint
from D − s and since C − s ∈ I, we can assume that C − s ⊆ B. Then s �∈ B, and
so B is disjoint from D. This implies that D is independent in M∗, contradicting
the fact that D is a circuit in M∗. This shows (i).

To see (ii), let ∅ �= D ⊆ S with |D ∩ C| �= 1 for each circuit C. We show
that D is dependent in M∗. Suppose not. Then M has a base B disjoint from D.
Choose s ∈ D. Then B + s contains a circuit C with s ∈ C. Hence D ∩ C = {s},
contradicting our assumption, thus showing (ii).

39.7. Characterizing matroids by rank functions

The rank function of a matroid M = (S, I) is the function rM : P(S) → Z+
given by:

(39.37) rM (U) := max{|Z|
∣
∣ Z ∈ I, Z ⊆ U}

for U ⊆ S. Again, a matroid is determined by its rank function, as a set U
is independent if and only if r(U) = |U |. Conditions characterizing a rank
function are given by the following theorem (Whitney [1935]; necessity was
also shown (in a different terminology) by Bergmann [1929] and Nakasawa
[1935]):

Theorem 39.8. Let S be a set and let r : P(S) → Z+. Then r is the rank
function of a matroid if and only if for all T, U ⊆ S:

(39.38) (i) r(T ) ≤ r(U) ≤ |U | if T ⊆ U ,
(ii) r(T ∩ U) + r(T ∪ U) ≤ r(T ) + r(U).

Proof. Necessity. Let r be the rank function of a matroid (S, I). Choose
T, U ⊆ S. Clearly (39.38)(i) holds. To see (ii), let I be an inclusionwise
maximal set in I with I ⊆ T ∩ U and let J be an inclusionwise maximal set
in I with I ⊆ J ⊆ T∪U . Since (S, I) is a matroid, we know that r(T∩U) = |I|
and r(T ∪ U) = |J |. Then

(39.39) r(T ) + r(U) ≥ |J ∩ T | + |J ∩ U | = |J ∩ (T ∩ U)| + |J ∩ (T ∪ U)|
≥ |I| + |J | = r(T ∩ U) + r(T ∪ U);

that is, we have (39.38)(ii).

Sufficiency. Let I be the collection of subsets I of S with r(I) = |I|. We
show that (S, I) is a matroid, with rank function r.

Trivially, ∅ ∈ I. Moreover, if I ∈ I and J ⊆ I, then
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(39.40) r(J) ≥ r(I) − r(I \ J) ≥ |I| − |I \ J | = |J |.

So J ∈ I.
In order to check (39.3), let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let

J \ I = {z1, z2}. If I + z1, I + z2 �∈ I, we have r(I + z1) = r(I + z2) = |I|.
Then by (39.38)(ii),

(39.41) r(J) ≤ r(I + z1 + z2) ≤ r(I + z1) + r(I + z2) − r(I) = |I| < |J |,

contradicting the fact that J ∈ I.
So (S, I) is a matroid. Its rank function is r, since r(U) = max{|I|

∣
∣ I ⊆

U, I ∈ I} for each U ⊆ S. Here ≥ follows from (39.38)(i), since if I ⊆ U
and I ∈ I, then r(U) ≥ r(I) = |I|. Equality can be shown by induction on
|U |, the case U = ∅ being trivial. If U �= ∅, choose y ∈ U . By induction,
there is an I ⊆ U − y with I ∈ I and |I| = r(U − y). If r(U) = r(U − y)
we are done, so assume r(U) > r(U − y). Then I + y ∈ I, since r(I + y) ≥
r(I)+r(U)−r(U −y) ≥ |I|+1. Moreover, r(U) ≤ r(U −y)+r({y}) ≤ |I|+1.
This proves equality for U .

Set functions satisfying condition (39.38)(ii) are called submodular, and
will be studied in Chapter 44.

Whitney [1935] also showed that (39.38) is equivalent to:

(39.42) (i) r(∅) = 0,
(ii) r(U) ≤ r(U + s) ≤ r(U) + 1 for U ⊆ S, s ∈ S \ U ,
(iii) for all U ⊆ S, s, t ∈ S \ U , if r(U + s) = r(U + t) = r(U), then

r(U + s + t) = r(U).

The proof above in fact uses only these properties of r.
The following equivalent form of Theorem 39.8 will be useful.

Corollary 39.8a. Let S be a finite set and let I be a nonempty collection
of subsets of S, closed under taking subsets. For U ⊆ S, let r(U) be the
maximum size of a subset of U that belongs to I. Then (S, I) is a matroid if
and only if r satisfies (39.38)(ii) for all T, U ⊆ S.

Proof. Necessity follows directly from Theorem 39.8. To see sufficiency, it
is easy to see that r satisfies (39.38)(i). So by Theorem 39.8, r is the rank
function of some matroid M = (S, J ). Now: I ∈ J ⇐⇒ r(I) = |I| ⇐⇒
I ∈ I. Hence I = J , and so (S, I) is a matroid.

Note that if we can test in polynomial time if a given set is independent,
we can also test in polynomial time if a given set is a base, or a circuit, and
we can determine the rank of a given set in polynomial time.
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39.8. The span function and flats

With any matroid M = (S, I) we can define the span function spanM :
P(S) → P(S) as follows:

(39.43) spanM (T ) := {s ∈ S | rM (T ∪ {s}) = rM (T )}
for T ⊆ S. If the matroid M is clear from the context, we write span(T ) for
spanM (T ). Note that T ⊆ spanM (T ) and that

(39.44) rM (spanM (T )) = rM (T ).

This follows directly from the fact that if rM (Y ) > rM (T ), then rM (T∪{s}) >
rM (T ) for some s ∈ Y .

Note also that

(39.45) T is spanning ⇐⇒ spanM (T ) = S

for any T ⊆ S. To see =⇒, let T be spanning. Then for each s ∈ T : rM (T +
s) ≤ rM (S) = rM (T ). To see ⇐=, suppose spanM (T ) = S. Then rM (T ) =
rM (spanM (T )) = rM (S).

A flat in a matroid M = (S, I) is a subset F of S with spanM (F ) = F .
A matroid is determined by its collection of flats, as is shown by:

(39.46) a subset I of S is independent if and only if for each y ∈ I there
is a flat F with I − y ⊆ F and y �∈ F .

Indeed, if I is independent and y ∈ I, let F := spanM (I −y). Then F is a flat
containing I − y, but not y, since rM (F + y) ≥ rM (I) > rM (I − y) = rM (F ).
Conversely, if I is not independent, then y ∈ spanM (I − y) for some y ∈ I,
and hence each flat containing I − y also contains y.

39.8a. Characterizing matroids by span functions

It was observed by Mac Lane [1938] that the following characterizes span functions
of matroids (sufficiency was shown by van der Waerden [1937]).

Theorem 39.9. Let S be a finite set. A function span : P(S) → P(S) is the span
function of a matroid if and only if:

(39.47) (i) if T ⊆ S, then T ⊆ span(T );
(ii) if T, U ⊆ S and U ⊆ span(T ), then span(U) ⊆ span(T );
(iii) if T ⊆ S, t ∈ S \ T , and s ∈ span(T + t) \ span(T ), then t ∈

span(T + s).

Proof. Necessity. Let span be the span function of a matroid M = (S, I) with
rank function r. Clearly, (39.47)(i) is satisfied. To see (39.47)(ii), let U ⊆ span(T )
and s ∈ span(U). We show s ∈ span(T ). We can assume s �∈ T . Then, by the
submodularity of r,

(39.48) r(T ∪ {s}) ≤ r(T ∪ U ∪ {s}) ≤ r(T ∪ U) + r(U ∪ {s}) − r(U)
= r(T ∪ U) = r(T ).
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(The last equality follows from (39.44).) This shows that s ∈ span(T ).
To see (39.47)(iii), note that s ∈ span(T + t) \ span(T ) is equivalent to: r(T +

t+ s) = r(T + t) and r(T + s) > r(T ). Hence

(39.49) r(T + t+ s) = r(T + t) ≤ r(T ) + 1 ≤ r(T + s),

that is, t ∈ span(T + s). This shows necessity of the conditions (39.47).

Sufficiency. Let a function span satisfy (39.47), and define

(39.50) I := {I ⊆ S | s �∈ span(I − s) for each s ∈ I}.

We first show the following:

(39.51) if I ∈ I, then span(I) = I ∪ {t | I + t �∈ I}.

Indeed, if t ∈ span(I)\I, then I+ t �∈ I, by definition of I. Conversely, I ⊆ span(I)
by (39.47)(i). Moreover, if I + t �∈ I, then by definition of I, s ∈ span(I + t− s) for
some s ∈ I+ t. If s = t, then t ∈ span(I) and we are done. So assume s �= t; that is,
s ∈ I. As I ∈ I, we know that s �∈ span(I − s). So by (39.47)(iii) (for T := I − s),
t ∈ span(I), proving (39.51).

We now show that M = (S, I) is a matroid. Trivially, ∅ ∈ I. To see that
I is closed under taking subsets, let I ∈ I and J ⊆ I. We show that J ∈ I.
Suppose to the contrary that s ∈ span(J − s) for some s ∈ J . By (39.47)(ii),
span(J−s) ⊆ span(I−s). Hence s ∈ span(I−s), contradicting the fact that I ∈ I.

In order to check (39.3), let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let
I \J = {i} and J \I = {j1, j2}. Assume that I+ j1 �∈ I. That is, J+ i− j2 �∈ I, and
so, by (39.51) applied to J − j2, i ∈ span(J − j2). Therefore, I ⊆ span(J − j2), and
so span(I) ⊆ span(J − j2). So j2 �∈ span(I) (as J ∈ I), and therefore, by (39.51)
applied to I, I + j2 ∈ I.

So M is a matroid. We finally show that span = spanM . Choose T ⊆ S. To see
that span(T ) = spanM (T ), let I be a base of T (in M). Then (using (39.51)),

(39.52) spanM (T ) = I ∪ {x | I + x �∈ I} = span(I) ⊆ span(T ).

So we are done by showing span(T ) ⊆ span(I); that is, by (39.47)(ii), T ⊆ span(I).
Choose t ∈ T \I. By the maximality of I, we know I+ t �∈ I, and hence, by (39.51),
t ∈ span(I).

39.8b. Characterizing matroids by flats

Conditions characterizing collections of flats of a matroid are given in the following
theorem (Bergmann [1929]):

Theorem 39.10. Let S be a set and let F be a collection of subsets of S. Then F
is the collection of flats of a matroid if and only if:

(39.53) (i) S ∈ F ;
(ii) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;
(iii) if F ∈ F and t ∈ S \F , and F ′ is the smallest flat containing F + t,

then there is no flat F ′′ with F ⊂ F ′′ ⊂ F ′.
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Proof. Necessity. Let F be the collection of flats of a matroid M = (S, I). Condi-
tion (39.53)(i) is trivial, and condition (39.53)(ii) follows from spanM (F1 ∩ F2) ⊆
spanM (F1)∩ spanM (F2) = F1 ∩F2. To see (39.53)(iii), suppose that such an F ′′ ex-
ists. Choose s ∈ F ′′ \F . So s �∈ spanM (F ). As F ′ �⊆ F ′′, we have t �∈ spanM (F + s).
Therefore, by (39.47)(iii) for T := F , s �∈ spanM (F ) = F ′, a contradiction.

Sufficiency. Let F satisfy (39.53). For Y ⊆ S, let span(Y ) be the smallest set
in F containing Y . Since F ∈ F ⇐⇒ span(F ) = F , it suffices to show that
span satisfies the conditions (39.47). Here (39.47)(i) and (ii) are trivial. To see
(39.47)(iii), let T ⊆ S, t ∈ S \ T , and s ∈ span(T + t) \ span(T ). Then span(T ) ⊂
span(T + s) ⊆ span(T + t). Hence, by (39.53)(iii), span(T + s) = span(T + t), and
hence t ∈ span(T + s).

39.8c. Characterizing matroids in terms of lattices

Bergmann [1929] and Birkhoff [1935a] characterized matroids in terms of lattices.
A partially ordered set (L,≤) is called a lattice if

(39.54) (i) for all A,B ∈ L there is a unique element, called A ∧ B, satisfying
A ∧B ≤ A,B and C ≤ A ∧B for all C ≤ A,B;

(ii) for all A,B ∈ L there is a unique element, called A ∨ B, satisfying
A ∨B ≥ A,B and C ≥ A ∨B for all C ≥ A,B.

A ∧ B and A ∨ B are called the meet and join respectively of A and B. Here we
assume lattices to be finite. Then a lattice has a unique minimal element, denoted
by 0. The rank of an element A is the maximum number n of elements x1, . . . , xn

with 0 < x1 < · · · < xn = A. An element of rank 1 is called a point or atom.
Call a lattice a point lattice if each element is a join of points, and a matroid

lattice (or a geometric lattice) if it is isomorphic to the lattice of flats of a matroid.
Trivially, each matroid lattice is a point lattice. Moreover, a matroid without loops
and parallel elements is completely determined by the lattice of flats.

In the following theorem, the equivalence of (i) and (ii), and the implication
(ii)⇒(iv) are due (in a different terminology) to Bergmann [1929]; the equivalence
of (iii) and (iv) was shown by Birkhoff [1933], and the implication (iii)⇒(i) was
shown by Birkhoff [1935a].

In a partially ordered set (L,≤) an element y is said to cover an element x if
x < y and there is no z with x < z < y.

Theorem 39.11. For any finite point lattice (L,≤), with rank function r, the
following are equivalent:

(39.55) (i) L is a matroid lattice;
(ii) for each a ∈ L and each point p, if p �≤ a, then a ∨ p covers a;
(iii) for each a, b ∈ L, if a and b cover a ∧ b, then a ∨ b covers a and b;
(iv) r(a) + r(b) ≥ r(a ∨ b) + r(a ∧ b) for all a, b ∈ L.

Proof. (i)⇒(iv): Let L be the lattice of flats of a matroid M = (S, I), with rank
function rM . We can assume that M has no loops and no parallel elements. Then for
any flat F we have r(F ) = rM (F ), since rM (F ) is equal to the maximum number k
of nonempty flats F1 ⊂ · · · ⊂ Fk with Fk = F . So (iv) follows from Theorem 39.8.



Section 39.9. Further exchange properties 669

(iv)⇒(iii): We first show that (iv) implies that if b covers a, then r(b) = r(a)+1.
As b is a join of points, and as b covers a, we know that b = a∨p for some point p with
p �≤ a. Hence r(b) = r(a∨p) ≤ r(a)+ r(p)− r(a∧p) = r(a)+ r(p)− r(0) = r(a)+1.
As r(b) > r(a), we have r(b) = r(a) + 1.

To derive (iii) from (iv), let a and b cover a∧ b. Then r(a) = r(b) = r(a∧ b)+1.
Hence r(a ∨ b) ≤ r(a) + r(b) − r(a ∧ b) = r(a) + 1. Hence a ∨ b covers a. Similarly,
a ∨ b covers b.

(iii)⇒(ii): We derive (ii) from (iii) by induction on r(a). If a = 0, the statement
is trivial. If a > 0, let a′ be an element covered by a. Then, by induction, a′ ∨ p
covers a′. So a′ = a ∧ (a′ ∨ p). Hence by (iii), a ∨ (a′ ∨ p) = a ∨ p covers a.

(ii)⇒(i): Let S be the set of points of L, and for f ∈ L define Ff := {s ∈ S |
s ≤ f}. Let F := {Ff | f ∈ L}. Then for all f1, f2 ∈ L we have:

(39.56) f1 ≤ f2 ⇐⇒ Ff1 ⊆ Ff2 .

Here =⇒ is trivial, while ⇐= follows from the fact that for each f ∈ L we have
f =

∨
Ff , as L is a point lattice.

By (39.56), (L,≤) is isomorphic to (F ,⊆). Moreover, by (39.54)(i), Ff1∧f2 =
Ff1 ∩ Ff2 . So F is closed under intersections, implying (39.53)(ii), while (39.53)(i)
is trivial. Finally, (39.53)(iii) follows from (39.55)(ii).

Lattices satisfying (39.55)(iii) are called upper semimodular.

39.9. Further exchange properties

In this section we prove a number of exchange properties of bases, as a prepa-
ration to the forthcoming sections on matroid intersection algorithms.

An exchange property of bases, stronger than given in Theorem 39.6, is
(Brualdi [1969c]):

Theorem 39.12. Let M = (S, I) be a matroid. Let B1 and B2 be bases and
let x ∈ B1 \ B2. Then there exists a y ∈ B2 \ B1 such that both B1 − x + y
and B2 − y + x are bases.

Proof. Let C be the unique circuit in B2 +x (cf. (39.35)). Then (B1 ∪C)−x
is spanning, since x ∈ spanM (C − x) ⊆ spanM ((B1 ∪ C) − x), implying
span((B1 ∪ C) − x) = span(B1 ∪ C) = S.

Hence there is a base B3 with B1 − x ⊆ B3 ⊆ (B1 ∪ C) − x. So B3 =
B1 −x+ y for some y in C −x. Therefore, B2 − y +x is a base, as it contains
no circuit (since C is the only circuit in B2 + x).

Let M = (S, I) be a matroid. For any I ∈ I define the (bipartite) directed
graph DM (I) = (S, AM (I)), or briefly (S, A(I)), by:

(39.57) A(I) := {(y, z) | y ∈ I, z ∈ S \ I, I − y + z ∈ I}.
Repeated application of the exchange property described in Theorem 39.12
gives (Brualdi [1969c]):
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Corollary 39.12a. Let M = (S, I) be a matroid and let I, J ∈ I with
|I| = |J |. Then A(I) contains a perfect matching on I
J .1

Proof. By truncating M , we can assume that I and J are bases of M . We
prove the lemma by induction on |I \ J |. We can assume |I \ J | ≥ 1. Choose
y ∈ I \ J . By Theorem 39.12, I − y + z ∈ I and J − z + y ∈ I for some
z ∈ J \ I. By induction, applied to I and J ′ := J − z + y, A(I) has a perfect
matching N on I
J ′. Then N ∪ {(y, z)} is a perfect matching on I
J .

Corollary 39.12a implies the following characterization of maximum-
weight bases:

Corollary 39.12b. Let M = (S, I) be a matroid, let B be a base of M , and
let w : S → R be a weight function. Then B is a base of maximum weight
⇐⇒ w(B′) ≤ w(B) for every base B′ with |B′ \ B| = 1.

Proof. Necessity being trivial, we show sufficiency. Suppose to the contrary
that there is a base B′ with w(B′) > w(B). Let N be a perfect matching in
A(B) covering B
B′. As w(B′) > w(B), there is an edge (y, z) in N with
w(z) > w(y), where y ∈ B \ B′ and z ∈ B′ \ B. Hence w(B − y + z) > w(B),
contradicting the condition.

The following forms a counterpart to Corollary 39.12a (Krogdahl [1974,
1976,1977]):

Theorem 39.13. Let M = (S, I) be a matroid and let I ∈ I. Let J ⊆ S be
such that |I| = |J | and such that A(I) contains a unique perfect matching N
on I
J . Then J belongs to I.

Proof. Since N is unique, we can order N as (y1, z1), . . . , (yt, zt) such that
(yi, zj) �∈ A(I) if 1 ≤ i < j ≤ t. Suppose that J �∈ I, and let C be a circuit
contained in J . Choose the smallest i with zi ∈ C. Then (yi, z) �∈ A(I) for all
z ∈ C − zi (since z = zj for some j > i). Therefore, z ∈ span(I − yi) for all
z ∈ C − zi. So C − zi ⊆ span(I − yi), and therefore zi ∈ C ⊆ span(C − zi) ⊆
span(I − yi), contradicting the fact that I − yi + zi is independent.

This implies:

Corollary 39.13a. Let M = (S, I) be a matroid and let I ∈ I. Let J ⊆ S be
such that |I| = |J | and rM (I ∪J) = |I|, and such that A(I) contains a unique
perfect matching N on I
J . Let s �∈ I ∪ J with I + s ∈ I. Then J + s ∈ I.

Proof. Let t be a new element and let M ′ = (S ∪ {t}, I ′) be the matroid
with F ∈ I ′ if and only if F \ {t} ∈ I. Then N ′ := N ∪ {(t, s)} forms a
1 A perfect matching on a vertex set U in a digraph is a set of vertex-disjoint arcs such

that U is the set of tails and heads of these arcs.
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unique perfect matching on (I
J) ∪ {s, t} in DM ′(I ∪ {t}) (since there is no
arc from t to J \ I, as I + j �∈ I for all j ∈ J \ I, since rM (I ∪ J) = |I|). So
by Theorem 39.13, J ∪ {s} is independent in M ′, and hence in M .

39.9a. Further properties of bases

Bases satisfy the following exchange property, stronger than that described in The-
orem 39.12 (conjectured by G.-C. Rota, and proved by Brylawski [1973], Greene
[1973], Woodall [1974a]):

(39.58) if B1 and B2 are bases and B1 is partitioned into X1 and Y1, then B2

can be partitioned into X2 and Y2 such that X1 ∪ Y2 and Y1 ∪X2 are
bases.

This will be proved in Section 42.1a (using the matroid union theorem).
Other exchange properties of bases were given by Greene [1974a] and Kung

[1978a]. Decomposing exchanges was studied by Gabow [1976b].
In Schrijver [1979c] it was shown that the exchange property described in Corol-

lary 16.8b for bipartite graphs and, more generally, in Theorem 9.12 for directed
graphs, in fact characterizes systems that correspond to matroids.

To this end, let U and W be disjoint sets and let Λ be a collection of pairs
(X,Y ) with X ⊆ U and Y ⊆ W . Call (U,W,Λ) a bimatroid (or linking system) if:

(39.59) (i) (∅, ∅) ∈ Λ;
(ii) if (X,Y ) ∈ Λ and x ∈ X, then (X − x, Y − y) ∈ Λ for some y ∈ Y ;
(iii) if (X,Y ) ∈ Λ and y ∈ Y , then (X − x, Y − y) ∈ Λ for some x ∈ X;
(iv) if (X1, Y1), (X2, Y2) ∈ Λ, then there is an (X,Y ) ∈ Λ with X1 ⊆

X ⊆ X1 ∪X2 and Y2 ⊆ Y ⊆ Y1 ∪ Y2.

Note that (ii) and (iii) imply that |X| = |Y | for each (X,Y ) ∈ Λ.
To describe the relation with matroids, define:

(39.60) B := {(U \X) ∪ Y | (X,Y ) ∈ Λ}.
So B determines Λ. Then (Schrijver [1979c]):

(39.61) (U,W,Λ) is a bimatroid if and only if B is the collection of bases of a
matroid on U ∪W , with U ∈ B.

So bimatroids are in one-to-one correspondence with pairs (M,B) of a matroid M
and a base B of M , and the conditions (39.59) yield a characterization of matroids.
An equivalent axiom system characterizing matroids was given by Kung [1978b].

(Bapat [1994] gave an extension of Kőnig’s matching theorem to bimatroids.)

39.10. Further results and notes

39.10a. Further notes

Dilworth [1944] showed that if r : P(S) → Z satisfies (39.38) and r(U) ≥ 0 if U �= ∅,
then
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(39.62) I := {I ⊆ S | ∀ nonempty U ⊆ I : |U | ≤ r(U)}
is the collection of independent sets of a matroid M . Its rank function satisfies:

(39.63) rM (U) = min(r(U1) + · · · + r(Ut)),

where the minimum ranges over partitions of U into nonempty subsets U1, . . . , Ut

(t ≥ 0). If G = (V,E) is a graph, and we define r(F ) :=
∣
∣
⋃
F

∣
∣ − 1 for F ⊆ E, we

obtain the cycle matroid of G (this also was shown by Dilworth [1944]).2

Conforti and Laurent [1988] showed the following sharpening of Corollary 39.8a.
Let C be a collection of subsets of a set S and let f : C → Z+. Let I be the collection
of subsets T of S with |T ∩ U | ≤ f(U) for each U ∈ C. For T ⊆ S, let r(T ) be
the maximum size of a subset of T that belongs to I. Then (S, I) is a matroid if
and only if r satisfies the submodular inequality (39.38)(ii) for all Y, Z ∈ C with
Y ∩ Z �= ∅. In fact, in the right-hand side of this inequality, r may be replaced by
f .

Jensen and Korte [1982] showed that there is no polynomial-time algorithm to
find the minimum size of a circuit of a matroid, if the matroid is given by an oracle
for testing independence. For binary matroids (represented by binary vectors), the
problem of finding a minimum-size circuit was shown by Vardy [1997] to be NP-
complete (solving a problem of Berlekamp, McEliece, and van Tilborg [1978], who
showed the NP-completeness of finding the minimum size of a circuit containing
a given element of the matroid, and of finding a circuit of given size). If we know
that a matroid is binary, a vector representation can be derived by a polynomially
bounded number of calls from an independence testing oracle.

For further studies of the complexity of matroid properties, see Hausmann and
Korte [1978], Robinson and Welsh [1980], and Jensen and Korte [1982].

Extensions of matroid theory to infinite structures were considered by Rado
[1949a], Bleicher and Preston [1961], Johnson [1961], and Dlab [1962,1965].

Standard references on matroid theory are Welsh [1976] and Oxley [1992]. The
book by Truemper [1992] focuses on decomposition of matroids. Earlier texts were
given by Tutte [1965a,1971]. Elementary introductions to matroids were given by
Wilson [1972b,1973], and a survey with applications to electrical networks and
statics by Recski [1989]. Bixby [1982], Faigle [1987], Lee and Ryan [1992], and Bixby
and Cunningham [1995] survey matroid optimization and algorithms. White [1986,
1987,1992] offers a collection of surveys on matroids, and Kung [1986] is a source
book on matroids. Stern [1999] focuses on semimodular lattices. Books discussing
matroid optimization include Lawler [1976b], Papadimitriou and Steiglitz [1982],
Gondran and Minoux [1984], Nemhauser and Wolsey [1988], Parker and Rardin
[1988], Cook, Cunningham, Pulleyblank, and Schrijver [1998], and Korte and Vygen
[2000].

39.10b. Historical notes on matroids

The idea of a matroid, that is, of abstract dependence, seems to have been devel-
oped historically along a number of independent lines during the period 1900-1935.
Independently, different axiom systems were given, each of which is equivalent to

2 ⋃
F denotes the union of the edges (as sets) in F .



Section 39.10b. Historical notes on matroids 673

that of a matroid. It indicates the naturalness of the concept. Only at the end of
the 1930s a synthesis of the different streams was obtained.

There is a line, starting with the Dualgruppen (dual groups = lattices) of
Dedekind [1897,1900], introduced in order to study modules (= additive subgroups)
of numbers. They give rise to lattices satisfying what Dedekind called the Modulge-
setz (module law). Later, independently, Birkhoff [1933] studied such lattices, calling
them initially B-lattices, and later (after he had learned about Dedekind’s earlier
work), modular lattices. Both Dedekind and Birkhoff considered, in their studies
of modular lattices, an auxiliary property that characterizes so-called semimodular
lattices. If the lattice is a point lattice (that is, each element of the lattice is a join
of atoms (points)), then such semimodular lattices are exactly the lattices of flats
of a matroid. This connection was pointed out by Birkhoff [1935a] directly after
Whitney’s introduction of matroids.

A second line concerns exchange properties of bases. It starts with the new edi-
tion of the Ausdehnungslehre of Grassmann [1862], where he showed that each lin-
early independent set can be extended to a bases, using elements from a given base.
Next Steinitz [1910], in his fundamental paper Algebraische Theorie der Körper (Al-
gebraic Theory of Fields), showed that algebraic dependence has a number of basic
properties, which makes it into a matroid (like the equicardinality of bases), and he
derived some other properties from these basic properties (thus deriving essentially
properties of matroids). In a subsequent paper, Steinitz [1913] gave, as an auxil-
iary result, the property that is now called Steinitz’ exchange property for linearly
independent sets of vectors. Steinitz did not mention the similarities to his earlier
results on algebraic dependence. These similarities were observed by Haupt [1929a]
and van der Waerden [1930] in their books on ‘modern’ algebra. They formulated
properties shared by linear and algebraic dependence that are equivalent to ma-
troids. In the second edition of his book, van der Waerden [1937] condensed these
properties to three properties, and gave a unified treatment of linear and algebraic
dependence. Mac Lane [1938] observed the relation of this work to the work on
lattices and matroids.

A third line pursued the axiomatization of geometry, which clearly can be rooted
back to as early as Euclid. At the beginning of the 20th century this was consid-
ered by, among others, Hilbert and Veblen. Bergmann [1929] aimed at giving a
lattice-theoretical basis for affine geometry, and from lattice-theoretical conditions
equivalent to matroids (cf. Theorem 39.11 above) he derived a number of properties,
like the equicardinality of bases and the submodularity of the rank function. In their
book Grundlagen der Mathematik I (Foundations of Mathematics I), Hilbert and
Bernays [1934] gave axioms for the collinearity of triples of points, amounting to the
fact that any two distinct points belong to exactly one line. A direct extension of
these axioms to general dimensions gives the axioms described by Nakasawa [1935],
that are again equivalent to the matroid axioms. He introduced the concept of a B1-
space, equivalent to a matroid. In fact, the only reference in Nakasawa [1935] is to
the book Grundlagen der Elementargeometrie (Foundations of Elementary Geome-
try) of Thomsen [1933], in which a different axiom system, the Zyklenkalkül (cycle
calculus), was given (not equivalent to matroids). Nakasawa only gave subsets of
linear spaces as an example. In a sequel to his paper, Nakasawa [1936b] observed
that his axioms are equivalent to those of Whitney. The same axiom system as
Nakasawa’s, added with a continuity axiom, was given by Pauc [1937]. In Haupt,
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Nöbeling, and Pauc [1940] the concept of an Abhängigkeitsraum (dependence space)
based on these axioms was investigated.

The fourth ‘line’ was that of Whitney [1935], who introduced the notion of a
matroid as a concept by itself. He was motivated by generalizing certain separability
and duality phenomena in graphs, studied by him before. This led him to show that
each matroid has a dual. While Whitney showed the equivalence of several axiom
systems for matroids, he did not consider an axiom system based on a closure
operation or on flats. Whitney gave linear dependence as an example, but not
algebraic dependence. In a paper in the same year and journal, Birkhoff [1935a]
showed the relation of Whitney’s work with lattices.

We now discuss some historical papers more extensively, in a more or less
chronological order.

1894-1900: Dedekind: lattices

In the supplements to the fourth edition of Vorlesungen über Zahlentheorie (Lec-
tures on Number Theory) by Lejeune Dirichlet [1894], R. Dedekind introduced the
notion of a module as any nonempty set of (real or complex) numbers closed un-
der addition and subtraction, and he studied the lattice of all modules ordered by
inclusion. He called A divisible by B if A ⊆ B. Trivially, the lattice operations are
given by A ∧B = A ∩B and A ∨B = A+B. In fact, Dedekind denoted A ∩B by
A−B.

He gave the following ‘charakteristischen Satz’ (characteristic theorem):

Ist m theilbar durch d, und a ein beliebiger Modul, so ist

m + (a − d) = (m + a) − d. 3

In modern notation, for all a, b, c:

(39.64) if a ≤ c, then a ∨ (b ∧ c) = (a ∨ b) ∧ c,
which is now known as the modular law, and lattices obeying it are called modular
lattices.

Next, Dedekind [1897] introduced the notion of a lattice under the name Dual-
gruppe (dual group), motivated by similarities observed by him between operations
on modules and those for logical statements as given in the book Algebra der Logik
(Algebra of Logic) by Schröder [1890]. Dedekind mentioned, as examples, subsets
of a set, modules, ideals in a finite field, subgroups of a group, and all fields, and
he introduced the name module law for property (39.64):

ich will es daher das Modulgesetz nennen, und jede Dualgruppe, in welcher es
herrscht, mag eine Dualgruppe vom Modultypus heißen.4

3 If m is divisible by d, and a is an arbitrary module, then

m + (a − d) = (m + a) − d.

4 I will therefore call it the module law, and every dual group in which it holds, may be
called a dual group of module type.
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Dedekind [1900] continued the study of modular lattices, and showed that each
modular lattice allows a rank function r : M → Z+ with the property that for all
a, b:

(39.65) (i) r(0) = 0;
(ii) r(b) = r(a) + 1 if b covers a;
(iii) r(a ∧ b) + r(a ∨ b) = r(a) + r(b).

In fact, this characterizes modular lattices.
In proving (39.65), Dedekind showed that each modular lattice satisfies

(39.66) if a and b cover c, and a �= b, then a ∨ b covers a and b,

which is the property characterizing upper semimodular lattices, a structure equiv-
alent to matroids.

1862-1913: Grassmann, Steinitz: linear and algebraic dependence

The basic exchange property of linear independence was formulated by Grassmann
[1862], in his book Die Ausdehnungslehre, as follows (in his terminology, vectors are
quantities):

20. Wenn m Grössen a1, . . . am, die in keiner Zahlbeziehung zu einander stehen,
aus n Grössen b1, . . . bn numerisch ableitbar sind, so kann man stets zu den m
Grössen a1, . . . am noch (n − m) Grössen am+1, . . . an von der Art hinzufügen,
dass sich die Grössen b1, . . . bn auch aus a1, . . . an numerisch ableiten lassen,
und also das Gebiet der Grössen a1, . . . an identisch ist dem Gebiete der Grössen
b1, . . . bn; auch kann man jene (n−m) Grössen aus den Grössen b1, . . . bn selbst
entnehmen.5

This property was also given by Steinitz [1913] (see below), but before that,
Steinitz proved it for algebraic independence. In his fundamental paper Algebraische
Theorie der Körper (Algebraic Theory of Fields), Steinitz [1910] studied, in § 22,
algebraic dependence in field extensions. The statements proved are as follows,
where L is a field extension of field K. Throughout, a is algebraically dependent on
S if a is algebraic with respect to the field extension K(S); in other words, if there
is a nonzero polynomial p(x) ∈ K(S)[x] with p(a) = 0.

Calling a set a system, he first observed:

1. Hängt das Element a vom System S algebraisch ab, so gibt es ein endliches
Teilsystem S′ von S, von welchem a algebraisch abhängt.6

and next he showed:

2. Hängt S3 von S2, S2 von S1 algebraisch ab, so ist S3 algebraisch abhängig von
S1.7

5 20. If m quantities a1, . . . am, that stand in no number relation to each other, are
numerically derivable from n quantities b1, . . . bn, then one can always add to the m
quantities a1, . . . am another (n − m) quantities am+1, . . . an such that the quantities
b1, . . . bn can also be derived numerically from a1, . . . an, and that hence the domain of
the quantities a1, . . . an is identical to the domain of the quantities b1, . . . bn; one also
can take those (n − m) quantities from the quantities b1, . . . bn themselves.

6 1. If element a depends algebraically on the system S, then there is a finite subsystem
S′ of S on which a depends algebraically.

7 2. If S3 depends algebraically on S2, and S2 on S1, then S3 is algebraically dependent
on S1.
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He called two sets S1 and S2 equivalent if S1 depends algebraically on S2, and
conversely. A set is reducible if it has a proper subset equivalent to it. He showed:

3. Jedes Teilsystem eines irreduziblen Systems ist irreduzibel.
4. Jedes reduzible System enthält ein endliches reduzibles Teilsystem.8

and (after statement 5, saying that any two field extensions by equicardinal irre-
ducible systems are isomorphic):

6. Wird ein irreduzibles System S durch Hinzufügung eines Elementes a reduzibel,
so ist a von S algebraisch abhängig.9

From these properties, Steinitz derived:

7. Ist S ein (in bezug auf K) irreduzibles System, das Element a in bezug auf
K transzendent, aber von S algebraisch abhängig, so enthält S ein bestimmtes
endliches Teilsystem T von folgender Beschaffenheit: a ist von T algebraisch
abhängig; jedes Teilsystem von S, von welchem a algebraisch abhängt, enthält
das System T ; wird irgendein Element aus T durch a ersetzt, so geht S in ein
äquivalentes irreduzibles System über; keinem der übrigen Elemente von S kommt
diese Eigenschaft zu.10

Steinitz proved this using only the properties given above (together with the fact
that any s ∈ S is algebraically dependent on S). Moreover, he derived from 7, (what
is now called) Steinitz’ exchange property for algebraic dependence:

8. Es seien U und B endliche irreduzible Systeme von m bzw. n Elementen; es
sei n ≤ m und B algebraisch abhängig von U . Dann sind im Falle m = n die
Systeme U und B äquivalent, im Falle n < m aber ist U einem irreduziblen
System äquivalent, welches aus B und m − n Elementen aus U besteht.11

This in particular implies that any two equivalent irreducible systems have the same
size, and that the properties are equivalent to that determining a matroid.

In a subsequent paper, Steinitz [1913] proved a number of auxiliary statements
on linear equations. Among other things, he showed (in his terminology, vectors are
numbers, and a vector space is a module):

Besitzt der Modul M eine Basis von p Zahlen, und enthält er r linear unabhängige
Zahlen β1, . . . , βr, so besitzt er auch eine Basis von p Zahlen, unter denen die
Zahlen β1, . . . , βr sämtlich vorkommen.12

8 3. Every subsystem of an irreducible system is irreducible.
4. Every reducible system contains a finite reducible subsystem.

9 6. If an irreducible system S becomes reducible by adding an element a, then a is
algebraically dependent on S.

10 7. If S is an irreducible system (with respect to K), [and] the element a transcendent
with respect to K, but algebraically dependent on S, then S contains a certain finite
subsystem T with the following quality: a is algebraically dependent on T ; every subsys-
tem of S on which a depends algebraically, contains the system T ; if any element from
T is replaced by a, then S passes into an equivalent irreducible system; this property
belongs to none of the other elements of S .

11 8. Let U and B be finite irreducible systems of m and n elements respectively; let n ≤ m
and let B be algebraically dependent on U . Then, in case m = n, the systems U and
B are equivalent, but in case n < m, U is equivalent to an irreducible system which
consists of B and m − n elements from U .

12 If a module M possesses a base of p numbers, and it contains r linearly independent
numbers β1, . . . , βr, then it possesses also a base of p numbers, among which the num-
bers β1, . . . , βr all occur.
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Steinitz’ proof of this in fact gives a stronger result, known as Steinitz’ exchange
property : the new base is obtained by extending β1, . . . , βr with vectors from the
given base. So Steinitz came to the same result as Grassmann [1862] quoted above.
In his paper, Steinitz [1913] did not make a link with similar earlier results in
Steinitz [1910] on algebraic dependence.

1929: Bergmann

Inspired by Menger [1928a], who aimed at giving an axiomatic foundation for pro-
jective geometry on a lattice-theoretical basis, Bergmann [1929] gave an axiomatic
foundation of affine geometry, again on the basis of lattices. Bergmann’s article
contains a number of proofs that in fact concern matroids, while he assumed, but
not used, a complementation axiom (since he aimed at characterizing full affine
spaces, not subsets of it): for each pair of elements A ≤ B there exist C1 and C2

with A∨C1 = B, A∧C1 = 0, B ∧C2 = A, and B ∨C2 = 1. This obviously implies
(in the finite case) that

(39.67) each element of the lattice is a join of points.

(A point is a minimal nonzero element.) It is property (39.67) that Bergmann uses
in a number of subsequent arguments (and not the complementation axiom). His
further axiom is:

(39.68) for any element A and any point P of the lattice, there is no element
B with A < B < A ∨ P .

He called an ordered sequence (P1, . . . , Pn) of points a chain (Kette) (of an element
A), if Pi �≤ P1 ∨ · · · ∨Pi−1 for i = 1, . . . , n (and A = P1 ∨ · · · ∨Pn). He derived from
(39.67) and (39.68) that being a chain is independent of the order of the elements
in the chain, and that any two chains of an element A have the same length:

Satz: Alle Ketten eines Elementes A haben dieselbe Gliederzahl.13

He remarked that under condition (39.67), this in turn implies (39.68).
Denoting the length of any chain of A by |A|, Bergmann showed that it is equal

to the rank of A in the lattice, and he derived the submodular inequality:

|A| + |B| ≥ |A + B| + |A · B|.
(Bergmann denoted ∨ and ∧ by + and ·.) Thus he proved the submodularity of the
rank function of a matroid. These results were also given by Alt [1936] in Menger’s
mathematischen Kolloquium in Vienna on 1 March 1935 (cf. Menger [1936a,1936b]).

1929-1937: Haupt, van der Waerden

Inspired by the work of Steinitz, in the books Einführung in die Algebra (Introduc-
tion to Algebra) by Haupt [1929a,1929b] and Moderne Algebra (Modern Algebra)
by van der Waerden [1930], the analogies between proof methods for linear and
algebraic dependence were observed.

Haupt mentioned in his preface (after saying that his book will contain the
modern developments of algebra):
13 Theorem: All chains of an element A have the same number of members.



678 Chapter 39. Matroids

Demgemäß ist das vorliegende Buch durchweg beeinflußt von der bahnbrechenden
,,Algebraischen Theorie der Körper“ von Herrn E. Steinitz, was hier ein für allemal
hervorgehoben sei. Ferner stützt sich die Behandlung der linearen Gleichungen
(vgl. 9,1 bis 9,4), einer Anregung von Frl. E. Noether folgend, auf die von Herrn
E. Steinitz gegebene Darstellung (vgl. das Zitat in 9,0 ).14

(The quotation in Haupt’s ‘9,0 ’ is to Steinitz [1910,1913].)
A number of theorems on algebraic dependence were proved in Chapter 23

of Haupt [1929b] by referring to the proofs of the corresponding results on linear
dependence in Chapter 9 of Haupt [1929a]. In the introduction of his Chapter 9,
Haupt wrote:

Die Behandlung der linearen Gleichungen ist (soweit es geht) so angelegt, daß
sich ein Teil der dabei gewonnenen Sätze auf Systeme von algebraisch abhängigen
Elementen überträgt, was später (23,6) dargelegt wird.15

In the first edition of his book, van der Waerden [1930] listed the properties of
algebraic dependence:

Die Relation der algebraischen Abhängigkeit hat demnach die folgenden Eigen-
schaften:
1. a ist abhängig von sich selbst, d.h. von der Menge {a}.
2. Ist a abhängig von M , so hängt es auch von jeder Obermenge von M ab.
3. Ist a abhängig von M , so ist a schon von einer endlichen Untermenge
{m1, . . . , mn} von M (die auch leer sein kann) abhängig.
4. Wählt man diese Untermenge minimal, so ist jedes mi von a und den übrigen
mj abhängig.
Weiter gilt:
5. Ist a abhängig von M und jedes Element von M abhängig von N , so ist a
abhängig von N .16

Following Steinitz, van der Waerden called two sets equivalent if each element
of the one set depends algebraically on the other set, and vice versa, while a set is
irreducible if no element of it depends algebraically on the remaining.

Using only the properties 1-5, van der Waerden derived that each set contains
an irreducible set equivalent to it, and that if M ⊆ N , then each irreducible subset
of M equivalent to M can be extended to an irreducible subset of N equivalent
to N — in other words, inclusionwise minimal subsets of M equivalent to M are

14 Accordingly, the present book is invariably influenced by the pioneering ‘Algebraic The-
ory of Fields’ by Mr E. Steinitz, which be emphasized here once and for all. Further,
following a suggestion by Miss E. Noether, the treatment of linear equations (cf. 9,1 to
9,4) leans on the presentation by Mr E. Steinitz (cf. the quotation in 9,0 ).

15 The treatment of linear equations is (as far as it goes) made such that a part of the
theorems obtained therewith transfers to systems of algebraically dependent elements,
which will be discussed later (23,6).

16 The relation of algebraic dependence has therefore the following properties:
1. a is dependent on itself, that is, on the set {a}.
2. If a is dependent on M , then it also depends on every superset of M .
3. If a is dependent on M , then a is dependent already on a finite subset {m1, . . . , mn}

of M (that can also be empty).
4. If one chooses this subset minimal, then every mi is dependent on a and the

remaining mj .
Further it holds:
5. If a is dependent on M and every element of M is dependent on N , then a is

dependent on N .
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independent, and inclusionwise maximal independent subsets of M are equivalent
to M .

Van der Waerden [1930] also showed that two equivalent irreducible systems
have the same size, but in the proof he uses polynomials. This is not necessary,
since the properties 1-5 determine a matroid.

Van der Waerden noticed the analogy with linear dependence, treated in his §
28, where he uses specific facts on linear equations:

Tatsächlich gelten für die dort betrachtete lineare Abhängigkeit dieselben Regeln
1 bis 5, die für die algebraische Abhängigkeit in § 61 aufgestellt wurden; man
kann also alle Beweise wörtlich übertragen.17

In the second edition of his book, van der Waerden [1937] gave a unified treat-
ment of linear and algebraic dependence, slightly different from the first edition. As
for linear dependence he stated in § 33:

Drei Grundsätze genügen. Der erste ist ganz selbstverständlich.
Grundsatz 1. Jedes ui (i = 1, . . . , n) ist von u1, . . . , un linear abhängig.
Grundsatz 2. Ist v linear abhängig von u1, . . . , un, aber nicht von u1, . . . , un−1,
so ist un linear abhängig von u1, . . . , un−1, v.

[· · ·]
Grundsatz 3. Ist w linear abhängig von v1, . . . , vs und ist jedes vj (j = 1, . . . , s)
linear abhängig von u1, . . . , un, so ist w linear abhängig von u1, . . . , un.18

The same axioms are given in § 64 of van der Waerden [1937], with ‘linear’ replaced
by ‘algebraisch’.

Next, van der Waerden called elements u1, . . . , un (linearly or algebraically)
independent if none of them depend on the rest of them. Among the conse-
quences of these principles, he mentioned that if u1, . . . , un−1 are independent but
u1, . . . , un−1, un are not, then un is dependent on u1, . . . , un−1, and that each finite
system of elements u1, . . . , un contains a (possibly empty) independent subsystem
on which each ui is dependent. He called two systems u1, . . . , un and v1, . . . , vs

equivalent if each vk depends on u1, . . . , un and each ui depends on v1, . . . , vs, and
he now derived from the three principles that two equivalent independent systems
have the same size.

Mac Lane [1938] observed that the axioms introduced by Whitney [1935] and
those by van der Waerden [1937] determine equivalent structures.

1934: Hilbert, Bernays: collinearity axioms

Axiom systems for points and lines in a plane were given by Hilbert [1899] in his
book Grundlagen der Geometrie (Foundations of Geometry), and by Veblen [1904].

17 In fact, the same rules 1 to 5, that were formulated for algebraic dependence in § 61,
hold for the linear dependence considered there; one can transfer therefore all proofs
word for word.

18 Three principles suffice. The first one is fully self-evident.
Principle 1. Every ui (i = 1, . . . , n) is linearly dependent on u1, . . . , un.
Principle 2. If v is linearly dependent on u1, . . . , un, but not on u1, . . . , un−1, then

un is linearly dependent on u1, . . . , un−1, v.
[· · ·]

Principle 3. If w is linearly dependent on v1, . . . , vs and every vj (j = 1, . . . , s) is
linearly dependent on u1, . . . , un, then w is linearly dependent on u1, . . . , un.
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Basis is the axiom that any two distinct points are in exactly one line. Note that
this axiom determines precisely all matroids of rank at most 3 with no parallel
elements (by taking the lines as maximal flats).

One of the axioms of Veblen is:

Axiom VI. If points C and D (C �= D) lie on the line AB, then A lies on the line
CD.

This axiom corresponds to axiom 3) in the book Grundlagen der Mathematik
(Foundations of Mathematics) of Hilbert and Bernays [1934], who aim to make an
axiom system based on points only:

Dabei empfiehlt es sich für unseren Zweck, von dem Hilbertschen Axiomen-
system darin abzuweichen, daß wir nicht die Punkte und die Geraden als zwei
Systeme von Dingen zugrunde legen, sondern nur die Punkte als Individuen
nehmen.19

The axiom system of Hilbert and Bernays is in terms of a relation Gr to describe
collinearity of triples of points (where (x) stands for ∀x, (Ex) for ∃x, and P for the
negation of P ):

I. Axiome der Verknüpfung.
1) (x)(y)Gr(x, x, y)
,,x, x, y liegen stets auf einer Geraden.“
2) (x)(y)(z)(Gr(x, y, z) → Gr(y, x, z)&Gr(x, z, y)).
,,Wenn x, y, z auf einer Geraden liegen, so liegen stets auch y, x, z sowie auch
x, z, y auf einer Geraden.“
3) (x)(y)(z)(u)(Gr(x, y, z)&Gr(x, y, u)&x �= y → Gr(x, z, u)).
,,Wenn x, y, verschiedene Punkte sind und wenn x, y, z sowie x, y, u auf einer
Geraden liegen, so liegen stets auch x, z, u auf einer Geraden.“
4) (Ex)(Ey)(Ez)Gr(x, y, z).
,,Es gibt Punkte x, y, z, die nicht auf einer Geraden liegen.“20

The axioms 1) and 2) in fact tell that the relation Gr is determined by unordered
triples of distinct points. The exchange axiom 3) is a special case of the matroid
axiom for circuits in a matroid.

Hilbert and Bernays extended the system by axioms for a betweenness rela-
tion Zw for ordered triples of points, and a parallelism relation Par for ordered
quadruples of points.

19 At that it is advisable for our purpose to deviate from Hilbert’s axiom system in that
we do not lay the points and the lines as two systems of things as base, but take only
the points as individuals.

20 I. Axioms of connection.
1) (x)(y)Gr(x, x, y)
‘x, x, y always lie on a line.’
2) (x)(y)(z)(Gr(x, y, z) → Gr(y, x, z)&Gr(x, z, y)).
‘If x, y, z lie on a line, then also y, x, z as well as x, z, y always lie on a line.’
3) (x)(y)(z)(u)(Gr(x, y, z)&Gr(x, y, u)&x �= y → Gr(x, z, u)).
‘If x, y, are different points and if x, y, z as well as x, y, u lie on a line, then also x, z, u
always lie on a line.’
4) (Ex)(Ey)(Ez)Gr(x, y, z).
‘There are points x, y, z, that do not lie on a line.’
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1933–1935: Birkhoff: Lattices

In his paper ‘On the combination of subalgebras’, Birkhoff [1933] (‘Received 15
May 1933’) wrote:

The purpose of this paper is to provide a point of vantage from which to attack
combinatorial problems in what may be termed modern, synthetic, or abstract
algebra. In this spirit, a research has been made into the consequences and appli-
cations of seven or eight axioms, only one [V] of which itself is new.

The axioms are those for a lattice, added with axiom V, that amounts to (39.64)
above. Any lattice satisfying this condition is called by Birkhoff in this paper a ‘B-
lattice’. In an addendum, Birkhoff [1934b] mentioned that O. Ore had informed him
that part of his results had been obtained before by Dedekind [1900]. Therefore,
Birkhoff [1935b] renamed it to modular lattice.

Birkhoff [1933] mentioned, as examples, the classes of normal subgroups and
of characteristic subgroups of a group. Other examples mentioned are the ideals of
a ring, and the linear subspaces of Euclidean space. (Both examples actually give
sublattices of the lattice of all normal subgroups of the corresponding groups.)

Like Dedekind, Birkhoff [1933] showed that (39.64) implies (39.66). Lattices
satisfying (39.66) are called (upper) semimodular. Birkhoff showed that any upper
semimodular lattice has a rank function satisfying (39.65)(i) and (ii) and satisfying
the submodular law:

(39.69) r(a ∩ b) + r(a ∪ b) ≤ r(a) + r(b).

This characterizes upper semimodular lattices.
Birkhoff noticed that this implies that the modular lattices are exactly those

lattices satisfying both (39.66) and its symmetric form:

(39.70) if c covers a and b and a �= b, then a and b cover a ∧ b.
Birkhoff [1935c] showed that the partition lattice is upper semimodular, that is,

satisfies (39.66), and hence has a rank function satisfying the submodular inequal-
ity21. Thus the complete graph, and hence any graph, gives a geometric lattice (and
hence a matroid — however, Whitney’s work seems not to have been known yet to
Birkhoff at the time of writing this paper).

In a number of other papers, Birkhoff [1934a,1934c,1935b] made a further study
of modular lattices, and gave relations to projective geometries (in which the collec-
tion of all flats gives a modular lattice). Klein-Barmen [1937] further investigated
semimodular lattices (called by him Birkhoffsche Verbände (Birkhoff lattices)), of
which he found several lattice-theoretical characterizations.

1935: Whitney: Matroids

Whitney [1935] (presented to the American Mathematical Society, September 1934)
introduces the notion of matroid as follows:

21 In fact, Birkhoff [1935c] claimed the modular equality for the rank function of a partition
lattice (page 448), but this must be a typo, witness the formulation of, and the reference
in, the first footnote on that page.
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Let C1, C2, · · · , Cn be the columns of a matrix M . Any subset of these columns
is either linearly independent or linearly dependent; the subsets thus fall into two
classes. These classes are not arbitrary; for instance, the two following theorems
must hold:

(a) Any subset of an independent set is independent.
(b) If Np and Np+1 are independent sets of p and p +1 columns respec-
tively, then Np together with some column of Np+1 forms an indepen-
dent set of p + 1 columns.

There are other theorems not deducible from this; for in § 16 we give an example of
a system satisfying these two theorems but not representing any matrix. Further
theorems seem, however, to be quite difficult to find. Let us call a system obeying
(a) and (b) a “matroid.” The present paper is devoted to a study of the elementary
properties of matroids. The fundamental question of completely characterizing
systems which represent matrices is left unsolved. In place of the columns of a
matrix we may equally well consider points or vectors in a Euclidean space, or
polynomials, etc.

In the paper, Whitney observed that forests in a graph form the independent
sets of a matroid, for which reason he carried over various terms from graphs to
matroids.

Whitney described several equivalent axiom systems for the notion of matroid.
First, he showed that the rank function is characterized by (39.42), and he derived
that it is submodular. Next, he showed that the collection of bases is characterized
by (39.33)(ii), and the collection of circuits by (39.34)(iii). Moreover, he showed
that complementing all bases gives again a matroid, the dual matroid, and that
the dual of a linear matroid is again a linear matroid. In the paper, he also studied
separability and representability of matroids. The example given in Whitney’s § 16
(mentioned in the above quotation), is in fact the well-known Fano matroid — he
apparently did not consider matrices over GF(2). However, in an appendix of the
paper, he characterized the matroids representable by a matrix ‘of integers mod 2’:
a matroid is representable over GF(2) if and only if any sum (mod 2) of circuits
can be partitioned into circuits.

In a subsequent paper ‘Abstract linear independence and lattices’, Birkhoff
[1935a] pointed out the relations of Whitney’s work with Birkhoff’s earlier work on
semimodular lattices. He stated:

In a preceding paper, Hassler Whitney has shown that it is difficult to distinguish
theoretically between the properties of linear dependence of ordinary vectors, and
those of elements of a considerably wider class of systems, which he has called
“matroids.”
Now it is obviously impossible to incorporate all of the heterogeneous abstract
systems which are constantly being invented, into a body of systematic theory,
until they have been classified into two or three main species. The purpose of this
note is to correlate matroids with abstract systems of a very common type, which
I have called “lattices.”

Birkhoff showed that a lattice is isomorphic to the lattice of flats of a matroid if
and only if the lattice is semimodular, that is, satisfies (39.66), and each element is
a join of atoms.

In the paper ‘Some interpretations of abstract linear dependence in terms of
projective geometry’, MacLane [1936] gave a geometric interpretation of matroids.
He introduced the notion of a ‘schematic n-dimensional figure’, consisting of ‘k-
dimensional planes’ for k = 1, 2, . . .. Each such plane is a subset of an (abstract)
set of ‘points’, with the following axioms (for any appropriate k):
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(39.71) (i) any k points belonging to no k − 1-dimensional plane, belong to
a unique k-dimensional plane; moreover, this plane is contained in
any plane containing these k points;

(ii) every k-dimensional plane contains k points that belong to no k−1-
dimensional plane.

MacLane mentioned that there is a 1-1 correspondence between schematic figures
and the collections of flats of matroids. As a consequence he mentioned that a
schematic n-dimensional figure is completely determined by its collection of n− 1-
dimensional planes (as a matroid is determined by its hyperplanes = complements
of cocircuits).

1935: Nakasawa: Abhängigkeitsräume

In the paper Zur Axiomatik der linearen Abhängigkeit. I (On the axiomatics of
linear dependence. I) in Science Reports of the Tokyo Bunrika Daigaku (Tokyo
University of Literature and Science), Nakasawa [1935] introduced an axiom sys-
tem for dependence, that he proved to be equivalent to matroids (in a different
terminology).

He was motivated by an axiom system described by Thomsen [1933] in his
book Grundlagen der Elementargeometrie (Foundations of Elementary Geometry).
Thomsen’s ‘cycle calculus’ is an attempt to axiomatize relations (like coincidence,
orthogonality, parallelism) between geometric objects (points, lines, etc.). Thomsen
emphasized that existence questions often are inessential in elementary geometry:

In der Tat erscheinen uns ja auch die Existenzaussagen als ein verhältnismäßig
unwesentliches Beiwerk der Elementargeometrie. Ohne Zweifel empfinden wir als
die eigentlich inhaltsvollsten und die wichtigsten Einzelaussagen der Elementarge-
ometrie die von der folgenden reinen Form: ,,Wenn eine Reihe von geometrischen
Gebilden, d.h. eine Anzahl von Punkten, Geraden, usw., gegeben vorliegt, und
zwar derart, daß zwischen den gegebenen Punkten, Geraden usw. die und die ge-
ometrischen Lagebeziehungen bestehen (Koinzidenz, Senkrechtstehen, Parallel-
laufen, ,,Mittelpunkt sein“ und anderes mehr), dann ist eine notwendige Folge
dieser Annahme, daß auch noch diese bestimmte weitere geometrische Lage-
beziehung gleichzeitig besteht.“ In Sätzen dieser Form kommt nichts von Existen-
zaussagen vor. Was das Wichtigste ist, nicht in den Folgerungen. Dann aber auch
nicht in den Annahmen. Wir nehmen an: Wenn die und die Dinge in den und den
Beziehungen gegeben vorliegen..., usw. Wir machen aber keinerlei Voraussetzun-
gen darüber, ob eine solche Konfiguration in unserer Geometrie existieren kann.
Der Schluß ist nur: Wenn sie existieren, dann .... Falls die Konfiguration gar nicht
existiert, der Satz also gegenstandslos wird, betrachten wir ihn nach der üblichen
Konvention ,,gegenstandslos, also richtig“ als richtig.22

22 Indeed, also the existence statements seem to us a relatively inessential side issue of
elementary geometry. Undoubtedly, we find as the really most substantial and most
important special statements of elementary geometry those of the following pure form:
‘If a sequence of geometric creations, that is, a number of points, lines etc., are given
to us, and that in such a way, that those and those geometric position relations exist
between the given points, lines etc. (coincidence, orthogonality, parallelism, “being a
centre”, and other), then a necessary consequence of this assumption is that also this
certain further geometric position relation exists at the same time.’ In theorems of this
form, no existence statements occur. What is most important: not in the consequences.
But then neither in the assumptions. We assume: If those and those things are given
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Thomsen aimed at founding axiomatically ‘the partial geometry of all elementary
geometric theorems without existence statements’. To that end, he introduced the
concept of a cycle, which is an ordered finite sequence of abstract objects, which
can be thought of as points, lines, etc. Certain cycles are ‘correct’ and the other ‘in-
correct’ (essentially they represent a system of relations defining any binary group):

A) Axiom der Grundzyklen: Der Zyklus αα ist für jedes α richtig, der Zyklus α
für kein α.

B) Axiom des Löschens: β1β2 . . . βnαα → β1β2 . . . βn; in Worten: Aus der
Richtigkeit des Zyklus β1β2 . . . βnαα folgt auch die des Zyklus β1β2 . . . βn.

C) Axiom des Umstellens: β1β2 . . . βn → β2β3 . . . βnβ1.
D) Axiom des Umkehrens: β1β2 . . . βn−1βn → βnβn−1 . . . β2β1.
E) Axiom des Anfügens: β1β2 . . . βn und γ1γ2 . . . γr → β1β2 . . . βnγ1γ2 . . . γr.23

Axiom B) can be considered as a variant of Steinitz’ exchange property. With
the other axioms it implies that if β1 · · ·βnα and γ1 · · · γrα are cycles, then
β1 · · ·βnγ1 · · · γr is a cycle. Therefore, the set of all inclusionwise minimal nonempty
sets containing a cycle form the circuits of a matroid.

The purpose of Nakasawa [1935] is to generalize Thomsen’s axiom system:

In der vorliegenden Untersuchung soll ein Axiomensystem für eine neue For-
mulierung der linearen Abhängigkeit des n-dimensionalen projektiven Raumes
angegeben werden, indem wir hauptsächlich den Zyklenkalkül, den Herr G. Thom-
sen bei seiner Grundlegung der elementaren Geometrie hergestellt hat, hier in
einem noch abstrakteren Sinne verwenden.24

While Thomsen’s cycles relate to unions of circuits in a matroid, those of Nakasawa
form the dependent sets of a matroid. His axiom system can be considered as a direct
extension to higher dimensions of the collinearity axioms of Hilbert and Bernays
given above.

He called the structure der erste Verknüpfungsraum (the first connection space),
or a B1-Raum (B1-space), writing a1 · · · as for a1 · · · as = 0:

Grundannahme: Wir denken uns eine gewisse Menge der Elementen; B1 �
a1, a2, · · · , as, · · ·. Für gewisse Reihen der Elementen, die wir Zyklen nennen
wollen, denken wir dazu die Relationen “gelten” oder “gültig sein”, in Ze-
ichen a1 · · · as = 0, bzw. “nicht gelten” oder “nicht gültig sein”, in Zeichen
a1 · · · as �= 0. Diese Relationen sollen nun folgenden Axiomen genügen;

to us in those and those relations..., etc. We do not make any assumption on the fact
if such a configuration can exist in our geometry. The conclusion is only: If they exist,
then .... In case the configuration does not exist at all, and the theorem thus becomes
meaningless, we consider it by the usual convention ‘meaningless, hence correct’ as
correct.

23

A) Axiom of ground cycles: The cycle αα is correct for each α, the cycle α for no α.
B) Axiom of solving: β1β2 . . . βnαα → β1β2 . . . βn; in words: From the correctness of the

cycle β1β2 . . . βnαα follows that of the cycle β1β2 . . . βn.
C) Axiom of transposition: β1β2 . . . βn → β2β3 . . . βnβ1.
D) Axiom of inversion: β1β2 . . . βn−1βn → βnβn−1 . . . β2β1.
E) Axiom of addition: β1β2 . . . βn and γ1γ2 . . . γr → β1β2 . . . βnγ1γ2 . . . γr.

24 In the present research, an axiom system for a new formulation of linear dependence of
the n-dimensional projective space should be indicated, while we use here mainly the
cycle calculus, which Mr G. Thomsen has constructed in his foundation of elementary
geometry, in a still more abstract sense.
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Axiom 1. (Reflexivität) : aa.
Axiom 2. (Folgerung) : a1 · · · as → a1 · · · asx, (s = 1, 2, · · ·).
Axiom 3. (Vertauschung) : a1 · · · ai · · · as → ai · · · a1 · · · as,

(s = 2, 3, · · · ; i = 2, · · · , s).
Axiom 4. (Transitivität) : a1 · · · as �= 0, xa1 · · · as, a1 · · · asy

→ xa1 · · · as−1y, (s = 1, 2, · · ·).
Definition I. Eine solche Menge B1 heisst der erste Verknüpfungsraum, in kurzen
Worten, B1-Raum.25

Axiom 3 corresponds to condition (39.3).
Nakasawa introduced the concept of span, and he derived that any two inde-

pendent sets having the same span, have the same size. It implies that B1-spaces
are the same structures as matroids. Moreover, he gave a submodular law for a
rank concept.

In a second paper, Nakasawa [1936a] added a further axiom on intersections of
subspaces, yielding a ‘B2-space’, which corresponds to a projective space (in which
the rank is modular), and in a third paper, Nakasawa [1936b] observed that his
B1-spaces form the same structure as the matroids of Whitney.

1937-1940: Pauc, Haupt, Nöbeling

The axioms presented by Nakasawa were also given by Pauc [1937], added with
an axiom describing the limit behaviour of dependence, if the underlying set is
endowed with a topology:

Introduction axiomatique d’une notion de dépendance sur une classe lim-
ite. — Soit D un prédicat relatif aux systèmes finis non ordonnés de points d’une
classe limite L, assujetti aux axiomes (notation d’Hilbert-Bernays)

(A1) (x1)(x2)(D[x1, x2] ∼ (x1 = x2)),
(A2) (x1)(x2) . . . (xp)(y)(D[x1, x2, . . . , xp] → D[x1, x2, . . . , xp, y]),
(A3) (x1)(x2) . . . (xp)(y)(z)(D[x1, . . . , xp]& D[x1, . . . , xp, y]&

D[x1, . . . , xp, z] → D[x2, . . . , xp, y, z]),

(A4)






Quels que soient les points x1, x2, . . . , xp et la suite y1, y2, . . . , yq ,
. . . de L
( lim
q→∞ yq = y)&(q)D[x1, x2, . . . , xp, yq ] → D[x1, x2, . . . , xp, y].26

In a subsequent paper, Haupt, Nöbeling, and Pauc [1940] studied systems, called
A-Mannigfaltigkeit, (A-manifolds) that satisfy the axioms A1-A3. They mentioned

25 Basic assumption: We imagine ourselves a certain set of elements; B1 �
a1, a2, · · · , as, · · ·. For certain sequences of the elements, which we want to call cycles,
we think the relations on them ‘to hold ’ or ‘to be valid ’, in notation a1 · · · as = 0, and
‘not to hold ’ or ‘not to be valid ’, in notation a1 · · · as �= 0, respectively. These relations
now should satisfy the following axioms;

Axiom 1. (reflexivity) : aa.
Axiom 2. (deduction) : a1 · · · as → a1 · · · asx, (s = 1, 2, · · ·).
Axiom 3. (exchange) : a1 · · · ai · · · as → ai · · · a1 · · · as,

(s = 2, 3, · · · ; i = 2, · · · , s).
Axiom 4. (transitivity) : a1 · · · as �= 0, xa1 · · · as, a1 · · · asy

→ xa1 · · · as−1y, (s = 1, 2, · · ·).
Definition I. Such a set B1 is called the first connection space, in short, B1-space.

26 Axiomatic introduction of a notion of dependence on a limit class. — Let D
be a predicate relative to the finite unordered systems of points from a limit class L,
subject to the axioms (notation of Hilbert-Bernays)
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that this axiom system was indeed inspired by those for collinearity of Hilbert-
Bernays quoted above. They commented that its relation with Birkhoff’s lattices,
is analogous to the relation of the Hilbert-Bernays collinearity axioms with those
of Hilbert for points and lines.

Haupt, Nöbeling, and Pauc [1940] gave, as examples, linear and algebraic de-
pendence, and derived several basic facts (all bases have the same size, each inde-
pendent set is contained in a base, for each pair of bases B,B′ and x ∈ B \B′ there
is a y ∈ B′ \B such that B − x+ y is a base, and the rank is submodular).

The authors mentioned that they were informed by G. Köthe about the relations
of their work with the lattice formulation of algebraic dependence of Mac Lane
[1938], but no connection is made with Whitney’s matroid.

Among the further papers related to matroids are Menger [1936b], giving ax-
ioms for (full) affine spaces, and Wilcox [1939,1941,1942,1944] and Dilworth [1941a,
1941b,1944] on matroid lattices. The notion of M -symmetric lattice introduced by
Wilcox [1942] was shown in Wilcox [1944] to be equivalent to upper semimodular
lattice.

Rado

Rado was one of the first to take the independence structure as a source for further
theorems, and to connect it with matching type theorems and combinatorial opti-
mization. He had been interested in Kőnig-Hall type theorems (Rado [1933,1938]),
and in his paper Rado [1942], he extended Hall’s marriage theorem to transversals
that are independent in a given matroid — a precursor of matroid intersection. In
fact, with an elementary construction, Rado’s theorem implies the matroid union
theorem, and hence also the matroid intersection theorem (to be discussed in Chap-
ters 41 and 42).

Rado [1942] did not refer to any earlier literature when introducing the concept
of an independence relation, but the axioms are similar to those of Whitney for
the independent sets in a matroid. Rado mentioned only linear independence as a
special case.

He proved that a family of subsets of a matroid has an independent transversal
if and only if the union of any k of the subsets contains an independent set of size
k, for all k. Rado also showed that this theorem characterizes matroids.

Rado [1949a] extended the concept of matroid to infinite matroids, where he
says that he extends the axioms of Whitney [1935].

Rado [1957] showed that if the elements of a matroid are linearly ordered by ≤,
there is a unique minimal base {b1, . . . , br} with b1 < b2 < · · · < br such that for
each i = 1, . . . , r all elements s < bi belong to span({b1, . . . , bi−1}). Rado derived
that for any independent set {a1, . . . , ak} with a1 < · · · < ak one has bi ≤ ai

for i = 1, . . . , k. Therefore, the greedy method gives an optimum solution when

(A1) (x1)(x2)(D[x1, x2] ∼ (x1 = x2)),
(A2) (x1)(x2) . . . (xp)(y)(D[x1, x2, . . . , xp] → D[x1, x2, . . . , xp, y]),
(A3) (x1)(x2) . . . (xp)(y)(z)(D[x1, . . . , xp]& D[x1, . . . , xp, y]&

D[x1, . . . , xp, z] → D[x2, . . . , xp, y, z]),

(A4)






Whatever are the points x1, x2, . . . , xp and the sequence y1, y2, . . . , yq ,
. . . from L
( lim
q→∞ yq = y)&(q)D[x1, x2, . . . , xp, yq ] → D[x1, x2, . . . , xp, y].
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applied to find a minimum-weight base. Rado mentioned that it extends the work
of Bor̊uvka and Kruskal on finding a shortest spanning tree in a graph.

For notes on the history of matroid union, see Section 42.6f. For an excellent
survey of early literature on matroids, with reprints of basic articles, see Kung
[1986].



Chapter 40

The greedy algorithm and the
independent set polytope

We now pass to algorithmic and polyhedral aspects of matroids. We show
that the greedy algorithm characterizes matroids and that it implies a
characterization of the independent set polytope (the convex hull of the
incidence vectors of the independent sets).
Algorithmic and polyhedral aspects of the intersection of two matroids will
be studied in Chapter 41.

40.1. The greedy algorithm

Let I be a nonempty collection of subsets of a finite set S closed under
taking subsets. For any weight function w : S → R we want to find a set I
in I maximizing w(I). The greedy algorithm consists of setting I := ∅, and
next repeatedly choosing y ∈ S \ I with I ∪ {y} ∈ I and with w(y) as large
as possible. We stop if no such y exists.

For general collections I of this kind this need not lead to an optimum
solution. Indeed, matroids are precisely the structures where it always works,
as the following theorem shows (Rado [1957] (necessity) and Gale [1968] and
Edmonds [1971] (sufficiency)):

Theorem 40.1. Let I be a nonempty collection of subsets of a set S, closed
under taking subsets. Then the pair (S, I) is a matroid if and only if for each
weight function w : S → R+, the greedy algorithm leads to a set I in I of
maximum weight w(I).

Proof. Necessity. Let (S, I) be a matroid and let w : S → R+ be any weight
function on S. Call an independent set I good if it is contained in a maximum-
weight base. It suffices to show that if I is good, and y is an element in S \ I
with I + y ∈ I and with w(y) as large as possible, then I + y is good.

As I is good, there exists a maximum-weight base B ⊇ I. If y ∈ B, then
I + y is good again. If y �∈ B, then there exists a base B′ containing I + y
and contained in B + y. So B′ = B − z + y for some z ∈ B \ I. As w(y) is
chosen maximum and as I + z ∈ I since I + z ⊆ B, we know w(y) ≥ w(z).
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Hence w(B′) ≥ w(B), and therefore B′ is a maximum-weight base. So I + y
is good.

Sufficiency. Suppose that the greedy algorithm leads to an independent set
of maximum weight for each weight function w : S → R+. We show that
(S, I) is a matroid.

Condition (39.1)(i) is satisfied by assumption. To see condition (39.1)(ii),
let I, J ∈ I with |I| < |J |. Suppose that I + z �∈ I for each z ∈ J \ I.

Let k := |I|. Consider the following weight function w on S:

(40.1) w(s) :=







k + 2 if s ∈ I,
k + 1 if s ∈ J \ I,

0 if s ∈ S \ (I ∪ J).

Now in the first k iterations of the greedy algorithm we find the k elements
in I. By assumption, at any further iteration, we cannot choose any element
in J \ I. Hence any further element chosen, has weight 0. So the greedy
algorithm yields an independent set of weight k(k + 2).

However, J has weight at least |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2).
Hence the greedy algorithm does not give a maximum-weight independent
set, contradicting our assumption.

The theorem restricts w to nonnegative weight functions. However, it is
shown similarly that for matroids M = (S, I) and arbitrary weight functions
w : S → R, the greedy algorithm finds a maximum-weight base. By replacing
‘as large as possible’ in the greedy algorithm by ‘as small as possible’, one
obtains an algorithm finding a minimum-weight base in a matroid. Moreover,
by deleting elements of negative weight, the algorithm can be adapted to yield
an independent set of maximum weight, for any weight function w : S → R.

Throughout we assume that the matroid M = (S, I) is given by an algo-
rithm testing if a given subset of S belongs to I. We call this an independence
testing oracle. So the full list of all independent sets is not given explicitly
(such a list would increase the size of the input exponentially, making most
complexity issues meaningless).

In explicit applications, the matroid usually can be described by such a
polynomial-time algorithm (polynomial in |S|). For instance, we can test if
a given set of edges of a graph G = (V, E) is a forest in time polynomially
bounded by |V | + |E|. So the matroid (E, F) can be described by such an
algorithm.

Under these assumptions we have:

Corollary 40.1a. A maximum-weight independent set in a matroid can be
found in strongly polynomial time.

Proof. See above.
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Similarly, for minimum-weight bases:

Corollary 40.1b. A minimum-weight base in a matroid can be found in
strongly polynomial time.

Proof. See above.

40.2. The independent set polytope

The algorithmic results obtained in the previous section have interesting con-
sequences for polyhedra associated with matroids, as was shown by Edmonds
[1970b,1971,1979].

The independent set polytope Pindependent set(M) of a matroid M = (S, I)
is, by definition, the convex hull of the incidence vectors of the independent
sets of M . So Pindependent set(M) is a polytope in R

S .
Each vector x in Pindependent set(M) satisfies the following linear inequal-

ities:

(40.2) xs ≥ 0 for s ∈ S,
x(U) ≤ rM (U) for U ⊆ S,

because the incidence vector χI of any independent set I of M satisfies (40.2).
Note that x is an integer vector satisfying (40.2) if and only if x is the
incidence vector of some independent set of M .

Edmonds showed that system (40.2) fully determines the independent set
polytope, by deriving it from the following formula (yielding a good charac-
terization):

Theorem 40.2. Let M = (S, I) be a matroid, with rank function r. Then
for any weight function w : S → R+:

(40.3) max{w(I) | I ∈ I} =
n∑

i=1

λir(Ui),

where U1 ⊂ · · · ⊂ Un ⊆ S and where λi ≥ 0 satisfy

(40.4) w =
n∑

i=1

λiχ
Ui .

Proof. Order the elements of S as s1, . . . , sn such that w(s1) ≥ w(s2) ≥
· · · ≥ w(sn). Define

(40.5) Ui := {s1, . . . , si}

for i = 0, . . . , n, and

(40.6) I := {si | r(Ui) > r(Ui−1)}.
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So I is the output of the greedy algorithm. Hence I is a maximum-weight
independent set.

Next let:

(40.7) λi := w(si) − w(si+1) for i = 1, . . . , n − 1,
λn := w(sn).

This implies (40.3):

(40.8) w(I) =
∑

s∈I

w(s) =
n∑

i=1

w(si)(r(Ui) − r(Ui−1))

= w(sn)r(Un) +
n−1∑

i=1

(w(si) − w(si+1))r(Ui) =
n∑

i=1

λir(Ui).

By taking any ordering of S for which w is nonincreasing, (40.5) gives any
chain of subsets Ui satisfying (40.4) for some λi ≥ 0. Hence we have the
theorem.

This can be interpreted in terms of LP-duality. For any weight function
w : S → R, consider the linear programming problem

(40.9) maximize wTx,
subject to xs ≥ 0 (s ∈ S),

x(U) ≤ rM (U) (U ⊆ S),

and its dual:

(40.10) minimize
∑

U⊆S

yUrM (U),

subject to yU ≥ 0 (U ⊆ S),
∑

U⊆S

yUχU ≥ w.

Corollary 40.2a. If w : S → Z, then (40.9) and (40.10) have integer opti-
mum solutions.

Proof. We can assume that w(s) ≥ 0 for each s ∈ S (as neither the maximum
nor the minimum changes by resetting w(s) to 0 if negative). Then (40.4)
implies that the λi are integer. This gives integer optimum solutions of (40.9)
and (40.10).

In polyhedral terms, Theorem 40.2 implies:

Corollary 40.2b. The independent set polytope is determined by (40.2).

Proof. Immediately from Theorem 40.2 (with (40.10)).

Moreover, in TDI terms:
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Corollary 40.2c. System (40.2) is totally dual integral.

Proof. Immediately from Corollary 40.2a.

Similar results hold for the base polytope. For any matroid M , let
Pbase(M) be the base polytope of M , defined as the convex hull of the in-
cidence vectors of bases of M . Then:

Corollary 40.2d. The base polytope of a matroid M = (S, I) is determined
by

(40.11) xs ≥ 0 for s ∈ S,
x(U) ≤ rM (U) for U ⊆ S,
x(S) = rM (S).

Proof. This follows directly from Corollary 40.2b, since the base polytope
is the intersection of the independent set polytope with the hyperplane {x |
x(S) = rM (S)}, as an independent set I is a base if and only if |I| ≥ rM (S).

The corresponding TDI result reads:

Corollary 40.2e. System (40.11) is totally dual integral.

Proof. By Theorem 5.25 from Corollary 40.2c.

One can similarly describe the spanning set polytope Pspanning set(M) of
M , which is, by definition, the convex hull of the incidence vectors of the
spanning sets of M . It is determined by the system:

(40.12) 0 ≤ xs ≤ 1 for s ∈ S,
x(U) ≥ rM (S) − rM (S \ U) for U ⊆ S.

Corollary 40.2f. The spanning set polytope is determined by (40.12).

Proof. A subset U of S is spanning in M if and only if S \ U is independent
in M∗. Hence for any x ∈ R

S we have:

(40.13) x ∈ Pspanning set(M) ⇐⇒ 1 − x ∈ Pindependent set(M∗).

By Corollary 40.2b, 1 − x belongs to Pindependent set(M∗) if and only if x
satisfies:

(40.14) 1 − xs ≥ 0 for s ∈ S,
|U | − x(U) ≤ rM∗(U) for U ⊆ S.

Since rM∗(U) = |U | + rM (S \ U) − rM (S), the present corollary follows.

Corollary 40.2c gives similarly the TDI result:
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Corollary 40.2g. System (40.12) is totally dual integral.

Proof. By reduction to Corollary 40.2c, by a similar reduction as in the proof
of the previous corollary.

Note that

(40.15) Pbase(M) = Pindependent set(M) ∩ Pspanning set(M),
Pindependent set(M) = P ↓

base(M) ∩ [0, 1]S ,
Pspanning set(M) = P ↑

base(M) ∩ [0, 1]S .

The following consequence on the intersection of the base polytope with a
box was observed by Hell and Speer [1984]:

Corollary 40.2h. Let M = (S, I) be a matroid and let l, u ∈ R
S with l ≤ u.

Then there is an x ∈ Pbase(M) with l ≤ x ≤ u if and only if l ∈ P ↓
base(M)

and u ∈ P ↑
base(M).

Proof. Necessity being trivial, we show sufficiency. We may assume that
l, u ∈ [0, 1]S . So l ∈ Pindependent set(M) and u ∈ Pspanning set(M). Choose
l′, u′ such that l ≤ l′ ≤ u′ ≤ u, l′ ∈ Pindependent set(M), u′ ∈ Pspanning set(M),
and ‖u′ − l′‖1 minimal.

If l′ = u′ we are done, so assume that there is an s ∈ S with l′(s) < u′(s).
As we cannot increase l′(s), there is a T ⊆ S with s ∈ T and l′(T ) = r(T ).
Similarly, as we cannot decrease u′(s), there is a U ⊆ S with s �∈ U and
u′(S \ U) = r(S) − r(U). Then we have the contradiction

(40.16) l′(T ∩ U) + u′(T ∪ U) ≤ r(T ∩ U) + u′(S) + r(T ∪ U) − r(S)
≤ r(T ) + r(U) + u′(S) − r(S) = l′(T ) + u′(U)
< l′(T ∩ U) + u′(T ∪ U).

The last inequality follows from

(40.17) u′(T ∪ U) − u′(U) = u′(T \ U) > l′(T \ U) = l′(T ) − l′(T ∩ U),

since s ∈ T \ U and u′(s) > l′(s).

40.3. The most violated inequality

We now consider the problem to find, for any matroid M = (S, I) and any
x ∈ R

S
+ not in the independent set polytope of M , an inequality among (40.2)

most violated by x. That is, to find U ⊆ S maximizing x(U) − rM (U).
The following theorem implies a min-max relation for this (Edmonds

[1970b]):

Theorem 40.3. Let M = (S, I) be a matroid and let x ∈ R
S
+. Then
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(40.18) max{z(S) | z ∈ Pindependent set(M), z ≤ x}
= min{rM (U) + x(S \ U) | U ⊆ S}.

Proof. The inequality ≤ in (40.18) follows from

(40.19) z(S) = z(U) + z(S \ U) ≤ rM (U) + x(S \ U).

To see equality, let z attain the maximum. Then for each s ∈ S with zs < xs

there exists a U ⊆ S with s ∈ U and z(U) = rM (U) (otherwise we can
increase zs). Now the collection of sets U ⊆ S satisfying z(U) = rM (U) is
closed under taking unions (and intersections), since if z(T ) = rM (T ) and
z(U) = rM (U), then

(40.20) z(T ∪U) = z(T )+z(U)−z(T ∩U) ≥ rM (T )+rM (U)−rM (T ∩U)
≥ rM (T ∪ U).

Hence there exists a U ⊆ S such that z(U) = rM (U) and such that U contains
each s ∈ S with zs < xs. Hence:

(40.21) z(S) = z(U) + z(S \ U) = rM (U) + x(S \ U),

giving (40.18).

Cunningham [1984] showed that from an independence testing oracle for
a matroid one can derive a strongly polynomial time algorithm to find for
any given vector x, a maximum violated inequality for the independent set
polytope.

More strongly, Cunningham showed that one can solve the following prob-
lem in strongly polynomial time:

(40.22) given: a matroid M = (S, I), by an independence testing oracle,
and an x ∈ Q

S
+;

find: a z ∈ Pindependent set(M) with z ≤ x maximizing z(S),
with a decomposition of z as convex combination of incidence
vectors of independent sets, and a subset U of S satisfying
z(S) = rM (U) + x(S \ U).

By (40.18), the set U certifies that z maximizes z(S). In the algorithm
for (40.22), Cunningham utilized the ‘consistent breadth-first search’ based
on lexicographic order, given by Schönsleben [1980] and Lawler and Martel
[1982a].

To prove Cunningham’s result, we first show two lemmas. The first lemma
is used only to prove the second lemma. As in Section 39.9, we define for any
independent set I of a matroid M = (S, I):

(40.23) A(I) := {(y, z) | y ∈ I, z ∈ S \ I, I − y + z ∈ I}.

Lemma 40.4α. Let M = (S, I) be a matroid and let I ∈ I. Let (s, t) ∈ A(I),
define I ′ := I−s+t, and let (u, v) ∈ A(I ′)\A(I). Then t = u or (u, t) ∈ A(I),
and s = v or (s, v) ∈ A(I).
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Proof. By symmetry, it suffices to show that t = u or (u, t) ∈ A(I) (as we may
assume that I is a base, and hence the second part follows by duality). We
can assume that t �= u. Then t �= v, since v �∈ I ′ = I − s+ t, as (u, v) ∈ A(I ′).

If v = s, then I − u + t = I − u − s + t + v = I ′ − u + v ∈ I and hence
(u, t) ∈ A(I). If v �= s, then I −u ∈ I and I −u− s+ t+ v ∈ I, and therefore
I − u + t ∈ I or I − u + v ∈ I; that is, (u, v) ∈ A(I) or (u, t) ∈ A(I).

Lemma 40.4β. Let M = (S, I) be a matroid and let q be a new element.
For any I ∈ I, define

(40.24) Ã(I) := {(u, v) | u ∈ I + q, v ∈ S \ I, I − u + v ∈ I}.

Let (s, t) ∈ A(I), define I ′ := I − s + t, and let (u, v) ∈ Ã(I ′) \ Ã(I). Then
t = u or (u, t) ∈ Ã(I), and s = v or (s, v) ∈ Ã(I).

Proof. Let Ĩ := {J ⊆ S + q | J − q ∈ I}. Then the present lemma follows
from Lemma 40.4α applied to the matroid (S + q, Ĩ).

Now we can derive Cunningham’s result:

Theorem 40.4. Problem (40.22) is solvable in strongly polynomial time.

Proof. We keep a vector z ≤ x in the independent set polytope of M and a
decomposition

(40.25) z =
k∑

i=1

λiχ
Ii ,

with I1, . . . , Ik ∈ I, λ1, . . . , λk > 0, and
∑

i λi = 1. Initially z := 0, k := 1,
I1 := ∅, λ1 := 1.

Let

(40.26) T := {s ∈ S | zs < xs}.

Let q be a new element. For each i, define Ã(Ii) as in (40.24), and let D =
(S + q, A) be the directed graph with

(40.27) A := Ã(I1) ∪ · · · ∪ Ã(Ik).

Fix an arbitrary linear order of the elements of S + q, by setting S + q =
{1, . . . , n}.

Case 1: D has no q − T path. Let U be the set of s ∈ S for which D has
an s − T path. As T ⊆ U , we know z(S \ U) = x(S \ U). Also, as no arc of
D enters U , we have |U ∩ Ii| = rM (U) for all i, implying

(40.28) z(U) =
k∑

i=1

λi|U ∩ Ii| =
k∑

i=1

λirM (U) = rM (U).
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Hence z(S) = rM (U) + x(S \ U) as required.

Case 2: D has a q−T path. For each v ∈ S+q, let d(v) denote the distance
in D from q to v (set to ∞ if no q − v path exists). Choose a t ∈ T with d(t)
finite and maximal, and among these t we choose the largest t. Let (s, t) ∈ A,
with d(s) = d(t) − 1, and s largest. We can assume that (s, t) ∈ Ã(I1). Let

(40.29) α := min{xt − zt, λ1}
and define z′ by

(40.30) z′ := z + α(χt − χs) if s �= q, and z′ := z + αχt if s = q.

Let I ′
1 := I1 − s + t (so I ′

1 = I1 + t if s = q).
Then

(40.31) z′ = αχI′
1 + (λ1 − α)χI1 +

k∑

i=2

λiχ
Ii .

If α = λ1, we delete the second term. We obtain a decomposition of z′ as a
convex combination of at most k + 1 independent sets, and we can iterate.

Running time. We show that the number of iterations is at most |S|9. Con-
sider any iteration. Let d′ and A′ be the objects d and A of the next iteration.
We first show:

(40.32) for each v ∈ S + q: d′(v) ≥ d(v).

To show this, we can assume that d′(v) < ∞. We show (40.32) by induction on
d′(v), the case d′(v) = 0 being trivial (as it means v = q). Assume d′(v) > 0.
Let u be such that (u, v) ∈ A′ and d′(u) = d′(v) − 1. By induction we know
d′(u) ≥ d(u).

If (u, v) ∈ A, then d(v) ≤ d(u) + 1 ≤ d′(u) + 1 = d′(v), as required. If
(u, v) �∈ A, then (u, v) ∈ Ã(I ′

1) and (u, v) �∈ Ã(I1). By Lemma 40.4β, t = u

or (u, t) ∈ Ã(I1), and s = v or (s, v) ∈ Ã(I1). Hence

(40.33) d(v) ≤ d(s) + 1 = d(t) ≤ d(u) + 1 ≤ d′(u) + 1 = d′(v).

So d(v) ≤ d′(v). This shows (40.32).
Let β be the number of j = 1, . . . , k with (s, t) ∈ Ã(Ij). Let T ′, t′, s′, and

β′ be the objects T , t, s, β in the next iteration. We show:

(40.34) if d′(v) = d(v) for each v ∈ S + q, then (d′(t′), t′, s′, β′) is lexico-
graphically less than (d(t), t, s, β).

Indeed, if α = xt − zt, then T ′ = T − t + s or T ′ = T − t. So d′(t′) < d(t),
or d′(t′) = d(t) and t′ < t. If α < xt − zt, then T ′ = T + s or T ′ = T .
Moreover, α = λ1, so I1 has been omitted from the convex combination. So,
as t ∈ T ′ and d(s) < d(t), we know that t′ = t and d′(t′) = d(t). As t ∈ I ′

1, we
know (s′, t) �∈ Ã(I ′

1). Hence, as (s′, t) ∈ A′, we have (s′, t) ∈ Ã(Ij) for some
j = 2, . . . , k. Hence (s′, t) ∈ A. By the choice of s, we know s′ ≤ s. If s′ < s,
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we have (40.34), so assume s′ = s. Then β′ = β − 1, as (s, t) �∈ Ã(I ′
1). This

proves (40.34).
The number k of independent sets in the decomposition grows by 1 if

α = xt − zt < λ1. In that case, d′(v) = d(v) for each v ∈ S + q (by (40.32),
as A′ ⊇ A). Moreover, d′(t′) < d(t) or t′ < t (since T ′ ⊆ T − t + s). So k
does not exceed |S|4, and hence β is at most |S|4. Concluding, the number
of iterations is at most |S|9.

With Gaussian elimination, we can reduce the number k in each iteration
to at most |S| (by Carathéodory’s theorem). Incorporating this reduces the
number of iterations to |S|6.

Theorem 40.4 immediately implies that one can test if a given vector
belongs to the independent set polytope of a matroid:

Corollary 40.4a. Given a matroid M = (S, I) by an independence testing
oracle and an x ∈ Q

S, one can test in strongly polynomial time if x belongs
to Pindependent set(M), and if so, decompose x as a convex combination of
incidence vectors of independent sets.

Proof. Directly from Theorem 40.4.

One can derive a similar result for the spanning set polytope:

Corollary 40.4b. Given a matroid M = (S, I) by an independence testing
oracle and an x ∈ Q

S, one can test in strongly polynomial time if x belongs to
Pspanning set(M), and if so, decompose x as a convex combination of incidence
vectors of spanning sets.

Proof. x belongs to the spanning set polytope of M if and only if 1 − x
belongs to the independent set polytope of the dual matroid M∗. Also convex
combinations of spanning sets of M and independent sets of M∗ transfer to
each other by this operation. Since rM∗(U) = |U | + rM (S \ U) − rM (S) for
each U ⊆ S, also an independence testing oracle for M∗ is easily obtained
from one for M .

The theorem also implies that the following most violated inequality prob-
lem can be solved in strongly polynomial time:

(40.35) given: a matroid M = (S, I) by an independence testing oracle,
and a vector x ∈ Q

S ;
find: a subset U of S minimizing rM (U) − x(U).

Corollary 40.4c. The most violated inequality problem can be solved in
strongly polynomial time.
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Proof. Any negative component of x can be reset to 0, as this does not
change the problem. So we can assume that x ≥ 0. Then by Theorem 40.4
we can find a U ⊆ S minimizing rM (U) + x(S \ U) in strongly polynomial
time. This U is as required.

40.3a. Facets and adjacency on the independent set polytope

Let M = (S, I) be a matroid, with rank function r. Trivially, the independent
set polytope P of M is full-dimensional if and only if M has no loops. If P is
full-dimensional there is a unique minimal collection of linear inequalities defining
P (up to scalar multiplication), which corresponds to the facets of P . Edmonds
[1970b] found that this collection is given by the following theorem. Recall that a
subset F of S is called a flat if for all s in S \F one has r(F + s) > r(F ). A subset
F is called inseparable if there is no partition of F into nonempty sets F1 and F2

with r(F ) = r(F1) + r(F2). Then:

Theorem 40.5. If M is loopless, the following is a minimal system for the inde-
pendent set polytope of M :

(40.36) (i) xs ≥ 0 (s ∈ S),
(ii) x(F ) ≤ r(F ) (F is a nonempty inseparable flat).

Proof. As M is loopless, the independent set polytope of M is full-dimensional.
It is easy to see that (40.36) determines the independent set polytope, as any
other inequality x(U) ≤ r(U) is implied by the inequalities x(Fi) ≤ r(Fi), where
F1, . . . , Ft is a maximal partition of F := spanM (U) such that r(F1)+ · · ·+r(Ft) =
r(F ).

The irredundancy of collection (40.36) can be seen as follows. Each inequality
xs ≥ 0 is irredundant, since the vector −χs satisfies all other inequalities.

We show that also the inequalities (40.36)(ii) are irredundant, by showing that
for any two nonempty nonseparable flats T, U there exists a base I of T with
|I ∩ U | < r(U) (implying that the face determined by T is contained in no (other)
facet).

To show this, let I be a base of T with |I ∩ (T \ U)| = r(T \ U). Suppose
|I ∩ U | = r(U). Then

(40.37) r(U) ≥ r(T ∩ U) ≥ r(T ) − r(T \ U) = |I ∩ U | = r(U).

Hence we have equality throughout. This implies (as T is inseparable) that T \U = ∅
or T ∩ U = ∅, and that r(U) = r(T ∩ U). If T \ U = ∅, then T ⊂ U , and hence (as
T is a flat) r(U) > r(T ) ≥ r(T ∩ U), a contradiction. If T ∩ U = ∅, then r(U) =
r(T ∩ U) = 0, implying that U = ∅ (as M has no loops), again a contradiction.

It follows that the base polytope, which is the face {x ∈ P | x(S) = r(S)} of
P , has dimension |S| − 1 if and only if S is inseparable (that is, the matroid is
connected).

As for adjacency of vertices of the independent set polytope, we have:

Theorem 40.6. Let M = (S, I) be a loopless matroid and let I and J be distinct
independent sets. Then χI and χJ are adjacent vertices of the independent set
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polytope of M if and only if |I�J | = 1, or |I \ J | = |J \ I| = 1 and rM (I ∪ J) =
|I| = |J |.

Proof. To see sufficiency, note that the condition implies that I and J are the
only two independent sets with incidence vector x satisfying x(I ∩ J) = rM (I ∩ J),
xs = 0 for s �∈ I ∪ J , and (if |I�J | = 2) x(I ∪ J) = rM (I ∪ J). Hence I and J are
adjacent.

To see necessity, assume that χI and χJ are adjacent. If I is not a base of I ∪J ,
then I + j is independent for some j ∈ J \ I. Hence

(40.38) 1
2 (χI + χJ) = 1

2 (χI+j + χJ−j),

implying (as χI and χJ are adjacent) that I+j = J and J−j = I, that is |I�J | = 1.
So we can assume that I and J are bases of I∪J . Choose i ∈ I \J . By Theorem

39.12, there is a j ∈ J \ I such that I − i+ j and J − j + i are bases of I ∪ J . Then

(40.39) 1
2 (χI + χJ) = 1

2 (χI−i+j + χJ−j+i),

implying (as χI and χJ are adjacent) that I − i+ j = J and J − j + i = I, that is
we have the second alternative in the condition.

More on the combinatorial structure of the independent set polytope can be
found in Naddef and Pulleyblank [1981a].

40.3b. Further notes

Prodon [1984] showed that the separation problem for the independent set polytope
of a matching matroid can be solved by finding a minimum-capacity cut in an
auxiliary directed graph.

Frederickson and Solis-Oba [1997,1998] gave strongly polynomial-time algo-
rithm for measuring the sensitivity of the minimum weight of a base under per-
turbing the weight. (Related analysis was given by Libura [1991].)

Narayanan [1995] described a rounding technique for the independent set poly-
tope membership problem, leading to an O(n3r2)-time algorithm, where n is the
size of the underlying set of the matroid and r is the rank of the matroid.

A strongly polynomial-time algorithm maximizing certain convex objective
functions over the bases was given by Hassin and Tamir [1989].

For studies of structures where the greedy algorithm applies if condition (39.1)(i)
is deleted, see Faigle [1979,1984b], Hausmann, Korte, and Jenkyns [1980], Korte and
Lovász [1983,1984a,1984b,1984c,1985a,1985b,1989], Bouchet [1987a], Goecke [1988],
Dress and Wenzel [1990], Korte, Lovász, and Schrader [1991], Helman, Moret, and
Shapiro [1993], and Faigle and Kern [1996].
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Matroid intersection

Edmonds discovered that matroids have even more algorithmic power than
just that of the greedy method. He showed that there exist efficient algo-
rithms also for intersections of matroids. That is, a maximum-weight com-
mon independent set in two matroids can be found in strongly polynomial
time. Edmonds also found good min-max characterizations for matroid
intersection.
Matroid intersection yields a motivation for studying matroids: we may
apply it to two matroids from different classes of examples of matroids,
and thus we obtain methods that exceed the bounds of any particular
class.
We should note here that if M1 = (S, I1) and M2 = (S, I2) are matroids,
then (S, I1 ∩ I2) need not be a matroid. (An example with |S| = 3 is easy
to construct.)
Moreover, the problem of finding a maximum-size common independent
set in three matroids is NP-complete (as finding a Hamiltonian circuit in
a directed graph is a special case; also, finding a common transversal of
three partitions is a special case).

41.1. Matroid intersection theorem

Let M1 = (S, I1) and M2 = (S, I2) be two matroids, on the same set S.
Consider the collection I1 ∩I2 of common independent sets. The pair (S, I1 ∩
I2) is generally not a matroid again.

Edmonds [1970b] showed the following formula, for which he gave two
proofs — one based on linear programming duality and total unimodularity
(see the proof of Theorem 41.12 below), and one reducing it to the matroid
union theorem (see Corollary 42.1a and the remark thereafter). We give the
direct proof implicit in Brualdi [1971e].

Theorem 41.1 (matroid intersection theorem). Let M1 = (S, I1) and M2 =
(S, I2) be matroids, with rank functions r1 and r2, respectively. Then the
maximum size of a set in I1 ∩ I2 is equal to

(41.1) min
U⊆S

(r1(U) + r2(S \ U)).
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Proof. Let k be equal to (41.1). It is easy to see that the maximum is not
more than k, since for any common independent set I and any U ⊆ S:

(41.2) |I| = |I ∩ U | + |I \ U | ≤ r1(U) + r2(S \ U).

We prove equality by induction on |S|, the case |S| ≤ 1 being trivial. So
assume that |S| ≥ 2.

If minimum (41.1) is attained only by U = S or U = ∅, choose s ∈ S.
Then r1(U) + r2(S \ (U ∪ {s})) ≥ k for each U ⊆ S \ {s}, since otherwise
both U and U ∪ {s} would attain (41.1), whence {U, U ∪ {s}} = {∅, S},
contradicting the fact that |S| ≥ 2. Hence, by induction, M1 \ s and M2 \ s
have a common independent set of size k, implying the theorem.

So we can assume that (41.1) is attained by some U with ∅ �= U �= S.
Then M1|U and M2 · U have a common independent set I of size r1(U).
Otherwise, by induction, there exists a subset T of U with

(41.3) r1(U) > rM1|U (T )+rM2·U (U \T ) = r1(T )+r2(S \T )−r2(S \U),

contradicting the fact that U attains (41.1). Similarly, M1 ·(S\U) and M2|(S\
U) have a common independent set J of size r2(S \ U).

Now I ∪ J is a common independent set of M1 and M2. Indeed, I ∪ J
is independent in M1, as I is independent in M1|U and J is independent in
M1 · (S \ U) = M1/U (cf. (39.10)). Similarly, I ∪ J is independent in M2. As
|I ∪ J | = r1(U) + r2(S \ U), this proves the theorem.

This implies a characterization of the existence of a common base in two
matroids:

Corollary 41.1a. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank
functions r1 and r2, respectively, such that r1(S) = r2(S). Then M1 and M2
have a common base if and only if r1(U)+r2(S \U) ≥ r1(S) for each U ⊆ S.

Proof. Directly from Theorem 41.1.

It is easy to derive from the matroid intersection theorem a similar min-
max relation for the minimum size of a common spanning set:

Corollary 41.1b. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with
rank functions r1 and r2, respectively. Then the minimum size of a common
spanning set of M1 and M2 is equal to

(41.4) max
U⊆S

(r1(S) − r1(U) + r2(S) − r2(S \ U)).

Proof. The minimum is equal to the minimum of |B1 ∪ B2| where B1 and
B2 are bases of M1 and M2 respectively. Hence the minimum is equal to
r1(S) + r2(S) minus the maximum of |B1 ∩ B2| over such B1, B2. This last
maximum is characterized in the matroid intersection theorem, yielding the
present corollary.
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The following result of Rado [1942] (a generalization of Hall’s marriage
theorem (Theorem 22.1), and therefore sometimes called the Rado-Hall the-
orem) may be derived from the matroid intersection theorem, applied to M
and the transversal matroid M2 induced by X .

Corollary 41.1c (Rado’s theorem). Let M = (S, I) be a matroid, with rank
function r, and let X = (X1, . . . , Xn) be a family of subsets of S. Then X
has a transversal which is independent in M if and only if

(41.5) r(
⋃

i∈I

Xi) ≥ |I|

for each I ⊆ {1, . . . , n}.

Proof. Let r2 be the rank function of the transversal matroid M2 induced
by X . By the matroid intersection theorem, M and M2 have a common
independent set of size n if and only if

(41.6) r(U) + r2(S \ U) ≥ n for each U ⊆ S.

Now for each T ⊆ S one has (by Kőnig’s matching theorem (cf. Corollary
22.2a)):

(41.7) r2(T ) = min
I⊆{1,...,n}

(
∣
∣
⋃

i∈I

Xi ∩ T
∣
∣ + n − |I|).

So (41.6) is equivalent to:

(41.8) r(U) +
∣
∣
⋃

i∈I

Xi \ U
∣
∣ + n − |I| ≥ n

for all U ⊆ S and I ⊆ {1, . . . , n}. We can assume that U =
⋃

i∈I Xi, since
replacing U by

⋃

i∈I Xi does not increase the left-hand side in (41.8). So the
condition is equivalent to (41.5), proving the corollary.

Notes. Mirsky [1971a] gave an alternative proof of Rado’s theorem. Welsh [1970]
showed that, in turn, Rado’s theorem implies the matroid intersection theorem. Las
Vergnas [1970] gave an extension of Rado’s theorem. Rado [1942] (and also Welsh
[1971]) showed that Rado’s theorem in fact characterizes matroids. Perfect [1969a]
generalized Rado’s theorem to characterizing the maximum size of an independent
partial transversal. Related results are in Perfect [1971].

41.1a. Applications of the matroid intersection theorem

In this section we mention a number of applications of the matroid intersection
theorem. Further applications will be given in the next chapter on matroid union.

Kőnig’s theorems. Let G = (V,E) be a bipartite graph, with colour classes U1

and U2. For i = 1, 2, let Mi = (E, Ii) be the matroid with F ⊆ E independent if
and only if each vertex in Ui is covered by at most one edge in F .
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So M1 and M2 are partition matroids. The common independent sets in M1

and M2 are the matchings in G, and the common spanning sets are the edge covers
in G. For i = 1, 2 and F ⊆ E, the rank ri(F ) of F in Mi is equal to the number of
vertices in Ui covered by F .

By the matroid intersection theorem, the maximum size of a matching in G is
equal to the minimum of r1(F ) + r2(E \ F ) taken over F ⊆ E. This last is equal
to the minimum size of a vertex cover in G. So we have Kőnig’s matching theorem
(Theorem 16.2).

Similarly, by Corollary 41.1b, the minimum size of an edge cover in G (assuming
G has no isolated vertices), is equal to the maximum of |V | − r1(F ) − r2(E \ F )
taken over F ⊆ E. This last is equal to the maximum size of a stable set in G. So
we have the Kőnig-Rado edge cover theorem (Theorem 19.4).

Common transversals. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be families
of subsets of a finite set S. Then the matroid intersection theorem implies Theorem
23.1 of Ford and Fulkerson [1958c]: X and Y have a common transversal if and only
if

(41.9) |XI ∩ YJ | ≥ |I| + |J | −m

for all subsets I and J of {1, . . . ,m}, where XI :=
⋃

i∈I Xi and YJ :=
⋃

j∈J Yj .
To see this, let M1 and M2 be the transversal matroids induced by X and

Y respectively, with rank functions r1 and r2 say. So X and Y have a common
transversal if and only if M1 and M2 have a common independent set of size m. By
Theorem 41.1, this last holds if and only if r1(Z) + r2(S \ Z) ≥ m for each Z ⊆ S.
Using Kőnig’s matching theorem, this is equivalent to:

(41.10) min
I⊆{1,...,m}

(m− |I| + |XI ∩ Z|) + min
J⊆{1,...,m}

(m− |J | + |YJ \ Z|) ≥ m

for each Z ⊆ S. Equivalently, for all I, J ⊆ {1, . . . ,m}:

(41.11) min
Z⊆S

(m− |I| + |XI ∩ Z| +m− |J | + |YJ \ Z|) ≥ m.

As this minimum is attained by Z := YJ , this is equivalent to (41.9).

Coloured trees. Let G = (V,E) be a graph and let the edges of G be coloured
with k colours. That is, we have partitioned E into sets E1, . . . , Ek, called colours.
Then there exists a spanning tree with all edges coloured differently if and only if
G − F has at most t + 1 components, for any union F of t colours, for any t ≥ 0.
This follows from the matroid intersection theorem applied to the cycle matroid
M(G) of G and the partition matroid N induced by E1, . . . , Ek.

Indeed, M(G) and N have a common independent set of size |V |−1 if and only
if rM(G)(E \ F ) + rN (F ) ≥ |V | − 1 for each F ⊆ E. Now rN (F ) is equal to the
number of Ei intersecting F . So we can assume that F is equal to the union of t
of the Ei, with t := rN (F ). Moreover, rM(G)(E \ F ) is equal to |V | − κ(G − F ),
where κ(G−F ) is the number of components of G−F . So the requirement is that
|V | − κ(G− F ) + t ≥ |V | − 1. In other words, κ(G− F ) ≤ t+ 1.

Detachments. The following is a special case of a theorem of Nash-Williams [1985],
which he derived from the matroid intersection theorem — in fact it is a consequence
of the result on coloured trees given above.
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Let G = (V,E) be a graph and let b : V −→ Z+. Call a graph G̃ = (Ṽ , Ẽ)
a b-detachment of G if there is a function φ : Ṽ −→ V such that |φ−1(v)| = b(v)
for each v ∈ V , and such that there is a one-to-one function ψ : Ẽ −→ E with
ψ(e) = {φ(u), φ(v)} for each edge e = uv of G̃.

Then there exists a connected b-detachment if and only if

(41.12) b(U) + κ(G− U) ≤ |EU | + 1 for each U ⊆ V ,

where κ(G′) denotes the number of components of graph G′ and where EU denotes
the set of edges intersecting U .

To see this, let H = (Ṽ , E′) be the graph obtained from G by replacing each
vertex v by b(v) new vertices, and by connecting for each edge e = uv of G, the
b(u) new vertices associated with u with the b(v) new vertices associated with v.
We assign to these b(u)b(v) edges the ‘colour’ e.

Then there exists a connected b-detachment if and only if H has a spanning
tree in which all edges have a different colour. By the previous example, such a
spanning tree exists if and only if for each F ⊆ E, deleting from H the edges with
colour in F gives a graph H ′ with at most |F | + 1 components.

Now the number of components of H ′ is equal to the κ(G− F ) + b(IF ) − |IF |,
where IF denotes the set of isolated (hence loopless) vertices of G − F . So the
condition is equivalent to: κ(G − F ) − |F | + b(IF ) − |IF | ≤ 1. As κ(G − F ) − |F |
does not decrease by removing edges from F , we can assume that F is equal to the
set of edges incident with IF . So F is determined by U := IF , namely F = EU .
Then κ(G− F ) − |IF | = κ(G− U). So the condition is equivalent to (41.12).

41.1b. Woodall’s proof of the matroid intersection theorem

P.D. Seymour attributed the following proof of the matroid intersection theorem
to D.R. Woodall (cf. Seymour [1976a]):

Let k be the value of (41.1). Let x ∈ S be such that r1({x}) = r2({x}) = 1.
(If no such x exists the theorem is trivial, as in that case the minimum is 0.) Let
Y := S \ {x}. Now we may assume that the restrictions M1 \ x and M2 \ x have no
common independent set of size k. So, by induction,

(41.13) r1(A1) + r2(A2) ≤ k − 1,

for some partition A1, A2 of Y . Moreover, the contractions M1/x and M2/x have no
common independent set of size k−1 (otherwise we can add x to obtain a common
independent set of size k for M1 and M2). So, by induction,

(41.14) r1(B1 ∪ {x}) − 1 + r2(B2 ∪ {x}) − 1 ≤ k − 2

(cf. (39.9) above), for some partition B1, B2 of Y . However,

(41.15) r1(A1 ∩B1) + r1(A1 ∪B1 ∪ {x}) ≤ r1(A1) + r1(B1 ∪ {x}),
r2(A2 ∩B2) + r2(A2 ∪B2 ∪ {x}) ≤ r2(A2) + r2(B2 ∪ {x}),

by the submodularity (cf. (39.38)(ii)) of the rank functions. Moreover, by the defi-
nition of k,

(41.16) k ≤ r1(A1 ∩B1) + r2(A2 ∪B2 ∪ {x}),
k ≤ r1(A1 ∪B1 ∪ {x}) + r2(A2 ∩B2),

as A1 ∩B1, A2 ∪B2 ∪ {x} and A1 ∪B1 ∪ {x}, A2 ∩B2 form partitions of S. Adding
the inequalities in (41.13), (41.14), (41.15), and (41.16) gives a contradiction.
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41.2. Cardinality matroid intersection algorithm

A maximum-size common independent set can be found in polynomial time.
This result follows from the matroid union algorithm of Edmonds [1968],
since (as Edmonds [1970b] and Lawler [1970] observed) cardinality matroid
intersection can be reduced to matroid union.

We describe below the direct algorithm given by Aigner and Dowling
[1971] and Lawler [1975], based on finding paths in auxiliary graphs. A dif-
ferent algorithm was given by Edmonds [1979].

Note that the examples given in Section 41.1a provide applications for
the matroid intersection algorithm. We should note that in the algorithm we
require that in any matroid M = (S, I), we can test in polynomial time if any
subset of S belongs to I — no explicit list of all sets in I is required. Thus
complexity results are all relative to the complexity of testing independence.
As such a membership testing algorithm exists in each example mentioned,
we obtain polynomial-time algorithms for these special cases.

For any two matroids M1 = (S, I1) and M2 = (S, I2) and any I ∈ I1 ∩I2,
we define a directed graph DM1,M2(I), with vertex set S, as follows. For any
y ∈ I, x ∈ S \ I,

(41.17) (y, x) is an arc of DM1,M2(I) if and only if I − y + x ∈ I1,
(x, y) is an arc of DM1,M2(I) if and only if I − y + x ∈ I2.

These are all arcs of DM1,M2(I). So this graph is the union of the graphs
DM1(I) and the reverse of DM2(I) defined in Section 39.9.

The following is the base for finding a maximum-size common independent
set in two matroids.

Cardinality common independent set augmenting algorithm

input: matroids M1 = (S, I1) and M2 = (S, I2) and a set I ∈ I1 ∩ I2;
output: a set I ′ ∈ I1 ∩ I2 with |I ′| > |I| (if any).
description of the algorithm: Consider the sets

(41.18) X1 := {x ∈ S \ I | I ∪ {x} ∈ I1},
X2 := {x ∈ S \ I | I ∪ {x} ∈ I2}.

Moreover, consider the directed graph DM1,M2(I) defined above. There are
two cases.

Case 1: DM1,M2(I) has an X1 − X2 path P . (Possibly of length 0 if
X1 ∩ X2 �= ∅.) We take a shortest such path P (that is, with a minimum
number of arcs). Now output I ′ := I
V P .

Case 2: DM1,M2(I) has no X1 − X2 path. Then I is a maximum-size
common independent set.
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This finishes the description of the algorithm. The correctness of the al-
gorithm is given by the following two theorems.

Theorem 41.2. If Case 1 applies, then I ′ ∈ I1 ∩ I2.

Proof. Assume that Case 1 applies. By symmetry it suffices to show that I ′

belongs to I1.
Let P start at z0 ∈ X1. The arcs in P leaving I form the only matching

in DM1(I) with union equal to V P − z0, since otherwise P would have a
shortcut. Moreover, for each z ∈ V P \ I with z �= z0, one has I + z �∈ I1,
since otherwise z ∈ X1, and hence P would have a shortcut. So by Corollary
39.13a, I ′ belongs to I1.

Theorem 41.3. If Case 2 applies, then I is a maximum-size common inde-
pendent set.

Proof. As Case 2 applies, there is no X1 − X2 path in DM1,M2(I). Hence
there is a subset U of S with X1 ∩ U = ∅ and X2 ⊆ U , and such that no arc
enters U . We show

(41.19) rM1(U) + rM2(S \ U) ≤ |I|.

To this end, we first show

(41.20) rM1(U) ≤ |I ∩ U |.

Suppose that rM1(U) > |I ∩ U |. Then there exists an x in U \ I such that
(I ∩ U) ∪ {x} ∈ I1. Since I ∪ {x} �∈ I1 (as x �∈ X1), there is a y ∈ I \ U with
I − y + x ∈ I1. But then DM1(I) has an arc from y to x, contradicting the
facts that x ∈ U and y �∈ U and that no arc enters U .

This shows (41.20). Similarly, rM2(S\U) ≤ |I \U |. Hence we have (41.19).
So by the matroid intersection theorem, I is a maximum-size common inde-
pendent set.

Clearly, the running time of the algorithm is polynomially bounded, since
we can construct the auxiliary directed graph DM1,M2(I) and find the path
P (if any), in polynomial time. Therefore:

Theorem 41.4. A maximum-size common independent set in two matroids
can be found in polynomial time.

Proof. Directly from the above, as we can find a maximum-size common
independent set after applying at most |S| times the common independent
set augmenting algorithm.

The algorithm also yields a proof of the matroid intersection theorem
(Theorem 41.1 above): if the algorithm stops with set I, we obtain a set U
for which (41.19) holds.
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Notes. The above algorithm can be shown to take O(n2m(n+Q)) time, where n is
the maximum size of a common independent set, m is the size of the underlying set,
and Q is the time needed to test if a given set is independent (in either matroid).
Cunningham [1986] showed that if one chooses a shortest path as augmenting path,
the sum of the lengths of all augmenting paths chosen is O(n logn), which gives
an O(n3/2mQ)-time algorithm. This algorithm extends several of the ideas behind
the O(n1/2m) algorithm of Hopcroft, Karp, and Karzanov for cardinality bipartite
matching (see Section 16.4). For more efficient algorithms, see Gabow and Tarjan
[1984], Gusfield [1984], Gabow and Stallmann [1985], Frederickson and Srinivas
[1989], Gabow and Xu [1989,1996], and Fujishige and Zhang [1995].

The problem of finding a maximum-size common independent set in three ma-
troids is NP-complete, as finding a Hamiltonian circuit in a directed graph is a
special case (as was observed by Held and Karp [1970]). Another special case is
finding a common transversal of three collections of sets, which is also NP-complete
(Theorem 23.16). In particular, the k-intersection problem can be reduced to the
3-intersection problem (cf. Lawler [1976b]).

Barvinok [1995] gave an algorithm for finding a maximum-size common inde-
pendent set in k linear matroids, represented by given vectors over the rationals.
The running time is linear in the cardinality of the underlying set and singly poly-
nomial in the maximum rank of the matroids.

41.3. Weighted matroid intersection algorithm

Also a maximum-weight common independent set can be found in strongly
polynomial time. This result was announced by Edmonds [1970b], who pub-
lished an algorithm in Edmonds [1979]. An alternative algorithm (which we
describe below) was announced by Lawler [1970] and described in Lawler
[1975,1976b] — the correctness of this algorithm was proved by Krogdahl
[1974,1976], using the results described in Section 39.9. A similar algorithm
was described by Iri and Tomizawa [1976].

This algorithm is an extension of the cardinality matroid intersection
algorithm given in Section 41.2. In each iteration, instead of finding a path P
with a minimum number of arcs in DM1,M2(I), we will now require P to have
minimum length with respect to some length function defined on DM1,M2(I).

To describe the algorithm, if matroids M1 = (S, I1) and M2 = (S, I2)
and a weight function w : S → R are given, call a set I ∈ I1 ∩ I2 extreme if
w(J) ≤ w(I) for each J ∈ I1 ∩ I2 satisfying |J | = |I|.

Weighted common independent set augmenting algorithm

input: matroids M1 = (S, I1) and M2 = (S, I2), a weight function w : S →
Q, and an extreme common independent set I;
output: an extreme common independent set I ′ with |I ′| = |I| + 1 (if any).
description of the algorithm: Consider again the sets X1 and X2 and the
directed graph DM1,M2(I) on S, as in the cardinality case.

For any x ∈ S define the ‘length’ l(x) of x by:
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(41.21) l(x) :=
{

w(x) if x ∈ I,
−w(x) if x �∈ I.

The length of a path P , denoted by l(P ), is equal to the sum of the lengths
of the vertices traversed by P .

Case 1: DM1,M2(I) has an X1 − X2 path P . We choose P such that
l(P ) is minimal and such that (secondly) P has a minimum number of arcs
among all minimum-length X1 − X2 paths. Set I ′ := I
V P .

Case 2: DM1,M2(I) has no X1 − X2 path. Then there is no common
independent set larger than I.

This finishes the description of the algorithm. The correctness of the algo-
rithm if Case 2 applies follows directly from Theorem 41.3. In order to show
the correctness if Case 1 applies, we first prove the following basic property
of the length function l.

Lemma 41.5α. Let C be a directed circuit in DM1,M2(I) and let t ∈ V C.
Define J := I
V C. If J �∈ I1 ∩ I2, then there exists a directed circuit C ′

with V C ′ ⊂ V C such that l(V C ′) < 0, or l(V C ′) ≤ l(V C) and t ∈ V C ′.

Proof. By symmetry we can assume that J �∈ I1. Let N1 and N2 be the sets
of arcs in C belonging to DM1(I) and DM2(I) respectively. As J �∈ I1, there
exists, by Theorem 39.13, a matching N ′

1 in DM1(I) with union V C and with
N ′

1 �= N1. Consider the directed graph D = (V C, A) formed by the arcs in
N1, N ′

1 (taking arcs in N1 ∩N ′
1 parallel), and by the arcs in N2 taking each of

them twice (parallel). Then each vertex in V C is entered and left by exactly
two arcs of D. Moreover, since N ′

1 �= N1, D contains a directed circuit C1
with V C1 ⊂ V C (as N ′

1 contains a chord of C). As D is Eulerian, we can
extend this to a decomposition of A into directed circuits C1, . . . , Ck. Then

(41.22) χV C1 + · · · + χV Ck = 2 · χV C .

Since V C1 �= V C we know that V Cj = V C for at most one j. If, say V Ck =
V C, then (41.22) implies that either l(V Cj) < 0 for some j < k or l(V Cj) ≤
l(V C) for all j < k, implying the proposition.

Suppose next that V Cj �= V C for all j. If l(V Cj) < 0 for some j ≤ k we
are done. So assume l(V Cj) ≥ 0 for each j ≤ k. We can assume that C1 and
C2 traverse t. Then

(41.23) l(V C1) + l(V C2) ≤ l(V C1) + · · · + l(V Ck) = 2l(V C).

Hence l(V C1) ≤ l(V C) or l(V C2) ≤ l(V C), and again we are done.

This implies (Krogdahl [1976], Fujishige [1977a]):

Theorem 41.5. Let I ∈ I1 ∩I2. Then I is extreme if and only if DM1,M2(I)
has no directed circuit of negative length.
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Proof. To see necessity, suppose that DM1,M2(I) has a directed circuit C of
negative length. Choose C with |V C| minimal. Consider J := I
V C. Since
w(J) = w(I)− l(C) > w(I), while |J | = |I|, we know that J �∈ I1 ∩I2. Hence
by Lemma 41.5α, DM1,M2(I) has a negative-length directed circuit covering
fewer than |V C| vertices, contradicting our assumption.

To see sufficiency, consider a J ∈ I1 ∩ I2 with |J | = |I|. By Corollary
39.12a, both DM1(I) and DM2(I) have a perfect matching on I
J . These
two matchings together form a vertex-disjoint union of a number of directed
circuits C1, . . . , Ct. Then

(41.24) w(I) − w(J) =
t∑

j=1

l(V Cj) ≥ 0,

implying w(J) ≤ w(I). So I is extreme.

This theorem implies that we can find a shortest path P , in Case 1 of the
algorithm, in strongly polynomial time (with the Bellman-Ford method). It
also gives:

Theorem 41.6. If Case 1 applies, I ′ is an extreme common independent
set.

Proof. We first show that I ′ ∈ I1 ∩ I2. To this end, let t be a new element,
and extend (for each i = 1, 2), Mi to a matroid M ′

i = (S + t, I ′
i), where for

each T ⊆ S + t:

(41.25) T ∈ I ′
i if and only if T − t ∈ Ii.

Note that DM ′
1,M ′

2
(I + t) arises from DM1,M2(I) by extending it with a new

vertex t and adding arcs from t to each vertex in X1, and from each vertex
in X2 to t.

Let P be the path found in the algorithm. Define

(41.26) w(t) := l(t) := −l(P ).

As P is a shortest X1 − X2 path, this makes that DM ′
1,M ′

2
(I + t) has no

negative-length directed circuit. Hence, by Theorem 41.5, I + t is an extreme
common independent set of M ′

1 and M ′
2.

Let P run from z1 ∈ X1 to z2 ∈ X2. Extend P by the arcs (t, z1) and
(z2, t) to a directed circuit C. So J = (I + t)
V C. As P has a minimum
number of arcs among all shortest X1−X2 paths, and as DM ′

1,M ′
2
(I+t) has no

negative-length directed circuits, by Lemma 41.5α we know that J ∈ I1 ∩I2.
Moreover, J is extreme, since I + t is extreme and w(J) = w(I + t).

So the weighted common independent set augmenting algorithm is correct.
It obviously has strongly polynomially bounded running time. Therefore:
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Theorem 41.7. A maximum-weight common independent set in two ma-
troids can be found in strongly polynomial time.

Proof. Starting with the extreme common independent set I0 := ∅ we can
find iteratively extreme common independent sets I0, I1, . . . , Ik, where |Ii| = i
for i = 0, . . . , k and where Ik is a maximum-size common independent set.
Taking one among I0, . . . , Ik of maximum weight, we have a maximum-weight
common independent set.

The above algorithm gives a maximum-weight common independent set
of size k, for each k. In particular, a maximum-weight common base can be
found with the algorithm. Similarly for minimum-weight:

Theorem 41.8. A minimum-weight common base in two matroids can be
found in strongly polynomial time.

Proof. The last extreme common independent set in the above algorithm is
a maximum-weight common base. By flipping the signs of the weights, this
can be turned into a minimum-weight common base algorithm.

Notes. Frank [1981a] gave an O(τn3)-time implementation of this algorithm, where
τ is the time needed to test for any I ∈ Ii and any s ∈ S whether or not I∪{s} ∈ Ii,
and if not, to find a circuit of Mi contained in I ∪ {s}.

Clearly, a maximum-weight common independent set need not be a common
base, even if common bases exist and all weights are positive: Let S = {1, 2, 3}
and let Mi be the matroid on S with unique circuit S \ {i} (for i = 1, 2). Define
w(1) := w(2) := 1 and w(3) := 3. Then {3} is the unique maximum-weight common
independent set, while {1, 2} is the unique common base.

41.3a. Speeding up the weighted matroid intersection algorithm

The algorithm described in Section 41.3 is strongly polynomial-time, since we can
find a shortest path P in strongly polynomial time, as in each iteration the graph
DM1,M2(I) has no negative-length directed circuit. Hence we can apply the Bellman-
Ford method. To bound the running time, suppose that we can construct, for any
I ∈ I1 ∩I2 the graph DM1,M2(I) in time T . Then any iteration can be done in time
O(T + n3), where n := |S|.

We can improve this to O(T + n logn) as follows (Frank [1981a], Brezovec,
Cornuéjols, and Glover [1986]). The idea is that, in each iteration, with the extreme
common independent set I, we give a ‘certificate’ of extremity, by specifying a
potential for the length function; that is, a function p ∈ Q

S satisfying

(41.27) l(v) ≥ p(v) − p(u)

for each arc (u, v) of DM1,M2(I). By Theorem 41.5, such a potential certifies ex-
tremity of I. We call such a p a potential for I.

Having the potential, we can apply Dijkstra’s method instead of the Bellman-
Ford method, as with the potential we can transform the length function (if defined
on arcs) to a nonnegative length function.
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It is convenient to associate the following functions w1, w2 : S → R to p, w :
S → R:

(41.28) w1(v) = p(v) and w2(v) = w(v) − p(v) if v ∈ I,
w1(v) = w(v) + p(v) and w2(v) = −p(v) if v ∈ S \ I.

So w = w1 + w2. Then:

Theorem 41.9. Let I ∈ I1 ∩ I2 and let p, w,w1, w2 : S → R satisfy (41.28). Then
p is a potential for DM1,M2(I) if and only if for i = 1, 2 one has

(41.29) I maximizes wi(X) over all J ∈ Ii satisfying |J | = |I|.

Proof. The theorem follows easily with Corollary 39.12b. Indeed, there is an arc
(u, v) leaving I if and only if I − u+ v ∈ I1. Then

(41.30) w1(v) ≤ w1(u) ⇐⇒ l(v) ≥ p(v) − p(u),

since l(v) = −w(v) = −w2(v) − w1(v) and −w2(v) − w1(u) = p(v) − p(u).
Similarly, there is an arc (u, v) entering I if and only if I − v + u ∈ I2. Then

(41.31) w2(v) ≥ w2(u) ⇐⇒ l(v) ≥ p(v) − p(u),

since l(v) = w(v) = w2(v) + w1(v) and w2(u) + w1(v) = p(v) − p(u).

We trivially have a potential for I := ∅. Consider next an arbitrary iteration,
with as input a common independent set I and a potential p for I. Construct
DM1,M2(I) and l as before. Let P be an X1 − X2 path with l(P ) minimum, and,
under this condition, with |V P | minimum. (Using the potential described above,
we can find P with Dijkstra’s algorithm.) Let I ′ := I�V P .

We now reset the potential p such that for any v ∈ S with v reachable from
X1, p(v) is equal to the distance from X1 to v (= the minimum of l(V Q) over all
X1 − v paths Q in DM1,M2(I)).

Let w1 and w2 satisfy (41.28) with respect to I, (the new) p, and w. Then:

Theorem 41.10. w1, w2 satisfy (41.29) with respect to I ′.

Proof. Extend M1 and M2 to matroids M ′
1 = (S + t, I′

1) and M ′
2 = (S + t, I′

2)
as in (41.25). Let P run from z1 ∈ X1 to z2 ∈ X2. Define w(t) := l(t) := −l(P ),
p(t) := 0, w1(t) := 0, and w2(t) := w(t). Now it suffices to show:

(41.32) (i) wi(I + t) = wi(I ′) for i = 1, 2;
(ii) w1, w2 satisfy (41.29) with respect to M ′

1, M ′
2, and I + t.

Let C be the directed circuit obtained by extending P by the arcs (t, z1) and (z2, t).
Now, since I ′ = (I+ t)�V C, to show (41.32), it suffices to show, for each arc (u, v):

(41.33) if (u, v) leaves I + t, then w1(v) ≤ w1(u), with equality if (u, v) is on
C;
if (u, v) enters I + t, then w2(u) ≤ w2(v), with equality if (u, v) is on
C.

Note that for each arc (u, v) of DM′
1,M′

2
(I + t) one has p(v) ≤ p(u) + l(v), with

equality if (u, v) is on C. Hence, if (u, v) leaves I + t, then:
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(41.34) w1(v) = p(v) + w(v) = p(v) − l(v) ≤ p(u) = w1(u),

with equality if (u, v) is on C.
Similarly, if (u, v) enters I + t, then:

(41.35) w2(v) = w(v) − p(v) = l(v) − p(v) ≥ −p(u) = w2(u),

with equality if (u, v) is on C. This proves (41.33).

Using (41.28) and Theorem 41.9, we can obtain from w1, w2 a potential for I ′.
This implies:

Corollary 41.10a. A maximum-weight common independent set can be found in
time O(k(T+n logn)), where n := |S|, k is the maximum size of a common indepen-
dent set, and T is the time needed to find DM1,M2(I) for any common independent
set I.

Proof. Each iteration can be done in time O(T + n logn), since constructing the
graph DM1,M2(I) takes T time, implying that there are O(T ) arcs. Hence, by Corol-
lary 7.7a, a shortest X1 −X2 path P can be found in O(T + n logn) time. Hence
I ′, and a potential for I ′ can be found in time O(T + n logn).

Since there are k iterations, we have the time bound given.

In applications where the matroids are specifically given, one can often derive
a better time bound, by obtaining DM1,M2(I

′) not from scratch, but by adapting
DM1,M2(I). See also Brezovec, Cornuéjols, and Glover [1986] and Gabow and Xu
[1989,1996].

41.4. Intersection of the independent set polytopes

It turns out that the intersection of the independent set polytopes of two
matroids gives exactly the convex hull of the common independent sets, as
was shown by Edmonds [1970b]27.

We first prove a very useful theorem, due to Edmonds [1970b], which we
often will apply in this part. (A more general statement and interpretation
in terms of network matrices will be given in Section 13.4.)

A family C of sets is called laminar if

(41.36) Y ⊆ Z or Z ⊆ Y or Y ∩ Z = ∅

for all Y, Z ∈ C.

Theorem 41.11. Let C be the union of two laminar families of subsets of a
set X. Let A be the C × X incidence matrix of C. Then A is totally unimod-
ular.
27 Lawler [1976b] wrote that this result was announced by Edmonds ‘at least as long ago

as 1964’.
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Proof. Let A be a counterexample with |C| + |X| minimal, and (secondly)
with a minimal number of 1’s. Then A is nonsingular and has determinant
�= ±1. Let C1 and C2 be laminar families, with union C.

If each Ci consists of pairwise disjoint sets, then A is the incidence matrix
of a bipartite graph, added with some unit base vectors. Hence A is totally
unimodular, a contradiction.

If say C1 does not consist of pairwise disjoint sets, C1 contains a smallest
nonempty set Y that is contained in some other set Z in C1. Choose Z small-
est. Replacing Z by Z\Y , maintains laminarity of C1. As this does not change
the determinant of the corresponding matrix (as it amounts to subtracting
row indexed Y from row indexed Z), we would have a counterexample with
a smaller number of 1’s, a contradiction.

Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank func-
tions r1 and r2. By Corollary 40.2a, the intersection Pindependent set(M1) ∩
Pindependent set(M2) of the independent set polytopes associated with the ma-
troids M1 = (S, I1) and M2 = (S, I2) is determined by:

(41.37) (i) xs ≥ 0 for s ∈ S,
(ii) x(U) ≤ ri(U) for i = 1, 2 and U ⊆ S.

Trivially, this intersection contains the convex hull of the incidence vectors
of common independent sets of M1 and M2. We shall see that these two
polytopes are equal.

Basis is the following result of Edmonds [1970b], whose proof we follow (it
constitutes the base of a fundamental technique developed further in several
other results).

Theorem 41.12. System (41.37) is box-totally dual integral.

Proof. Choose w ∈ Z
S . Consider the linear programming problem dual to

maximizing wTx over the constraints (41.37)(ii):

(41.38) minimize
∑

U⊆S

(y1(U)r1(U) + y2(U)r2(U))

where y1, y2 ∈ R
P(S)
+ ,

∑

U⊆S

(y1(U) + y2(U))χU = w.

Let y1, y2 attain this minimum, such that

(41.39)
∑

U⊆S

(y1(U) + y2(U))|U ||S \ U |

is minimized. Define

(41.40) Fi := {U ⊆ S | yi(U) > 0},

for i = 1, 2. We show that for i = 1, 2, the collection Fi is a chain; that is,
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(41.41) if T, U ∈ Fi, then T ⊆ U or U ⊆ T .

Suppose not. Choose α := min{yi(T ), yi(U)}, and decrease yi(T ) and yi(U)
by α, and increase yi(T ∩ U) and yi(T ∪ U) by α. Since

(41.42) χT + χU = χT∩U + χT∪U ,

y1, y2 remains a feasible solution of (41.38); and since

(41.43) ri(T ) + ri(U) ≥ ri(T ∩ U) + ri(T ∪ U),

it remains optimum. However, sum (41.39) decreases (by Theorem 2.1), con-
tradicting the minimality assumption. So F1 and F2 are chains.

As the constraints in (41.37)(ii) corresponding to F1 and F2 form a totally
unimodular matrix (by Theorem 41.11), by Theorem 5.35 system (41.37)(ii)
is box-TDI, and hence (41.37) is box-TDI.

(The fact that the Fi can be taken to be chains also follows directly from the
proof method of Theorem 40.2.)

This implies a characterization of the common independent set polytope

(41.44) Pcommon independent set(M1, M2)

of two matroids M1 = (S, I1) and M2 = (S, I2), being the convex hull of the
incidence vectors of the common independent sets of M1 and M2:

Corollary 41.12a. Pcommon independent set(M1, M2) is determined by (41.37).

Proof. Directly from Theorem 41.12, since it implies that the vertices of
the polytope determined by (41.37) are integer, and hence are the incidence
vectors of common independent sets.

Another way of stating this is:

Corollary 41.12b.

(41.45) Pcommon independent set(M1, M2)
= Pindependent set(M1) ∩ Pindependent set(M2).

Proof. From Corollary 41.12a, using the fact that (41.37) is the union of the
constraints for the independent set polytopes of M1 and M2, by Corollary
40.2b.

The total dual integrality of (41.37) gives the following extension of the
matroid intersection theorem:

Corollary 41.12c. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with
rank functions r1 and r2, respectively, and let w ∈ Z

S
+. Then the maximum

value of w(I) over I ∈ I1 ∩ I2 is equal to the minimum value of
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(41.46) r1(U1) + · · · + r1(Uk) + r2(T1) + · · · + r2(Tl),

where U1 ⊆ · · · ⊆ Uk ⊆ S and T1 ⊆ · · · ⊆ Tl ⊆ S such that each element s of
S occurs in precisely w(s) sets among U1, . . . , Uk, T1, . . . , Tl.

Proof. Directly from Theorem 41.12 and its proof.

(Edmonds [1979] gave an algorithmic proof of this result.)
These corollaries cannot be extended to the intersection of the inde-

pendent set polytopes of three matroids. Let S = {1, 2, 3}, and for i =
1, 2, 3, let Mi be the matroid on S with S \ {i} as unique circuit. Then
Pindependent set(M1) ∩ Pindependent set(M2) ∩ Pindependent set(M3) contains the
all- 1

2 vector, while each integer vector in this intersection contains at most
one 1. So the intersection is not the convex hull of the common independent
sets.

Similar results hold for the common base polytope. For matroids M1 and
M2, let the common base polytope Pcommon base(M1, M2) be the convex hull
of the incidence vectors of common bases of M1 and M2. Then:

Corollary 41.12d. Pcommon base(M1, M2) = Pbase(M1) ∩ Pbase(M2).

Proof. Directly from the foregoing.

So the common base polytope is determined by:

(41.47) xs ≥ 0 for s ∈ S,
x(U) ≤ ri(U) for i = 1, 2 and U ⊆ S,
x(S) = ri(S) for i = 1, 2.

Corollary 41.12e. System (41.47) is box-TDI.

Proof. From Theorem 41.12, with Theorem 5.25.

Moreover, similar results hold for the common spanning set polytope.
For matroids M1 and M2, let the common spanning set polytope, in notation
Pcommon spanning set(M1, M2), be the convex hull of the incidence vectors of
common spanning sets of M1 and M2. Then:

Corollary 41.12f.

(41.48) Pcommon spanning set(M1, M2)
= Pspanning set(M1) ∩ Pspanning set(M2).

Proof. This can be reduced to Corollary 41.12b on the common independent
set polytope, by duality: x belongs to the spanning set polytope of Mi if and
only if 1 − x belongs to the independent set polytope of M∗

i .
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Similarly, x belongs to the common spanning set polytope of M1 and M2
if and only if 1 − x belongs to the common independent set polytope of M∗

1
and M∗

2 .

So the common spanning set polytope is determined by:

(41.49) 0 ≤ xs ≤ 1 for s ∈ S,
x(U) ≤ ri(S) − ri(S \ U) for i = 1, 2 and U ⊆ S.

Corollary 41.12g. System (41.49) is box-TDI.

Proof. Again, this can be derived from Theorem 41.12, by replacing x by
1 − x.

Another consequence of Theorem 41.12 is:

Corollary 41.12h. Let M1 = (S, I1) and M2 = (S, I2) be matroids and let
x ∈ R

S
+. Then

(41.50) max{z(S) | z ≤ x, z ∈ Pcommon independent set(M1, M2)}
= min{r(U) + x(S \ U) | U ⊆ S},

where r(U) denotes the maximum size of a common independent set contained
in U .

Proof. This follows from the box-total dual integrality of (41.37), using the
fact that r(U1 ∪ U2) ≤ r1(U1) + r2(U2) for disjoint U1, U2.

Cunningham [1984] showed that, if matroids M1 = (S, I1) and M2 =
(S, I2) are given by independence testing oracles, one can find in strongly
polynomial time for any x ∈ Q

S , optimum solutions of (41.50). This will
follow from the results in Section 47.4.

The result of Cunningham [1984] also implies:

Theorem 41.13. Given matroids M1 = (S, I1) and M2 = (S, I2) by indepen-
dence testing oracles, and given x ∈ Q

S, one can test in strongly polynomial
time if x belongs to the common independent set polytope, and if so, decom-
pose x as a convex combination of incidence vectors of common independent
sets.

Proof. Let ri be the rank function of Mi (i = 1, 2) and let r(U) :=
min{r1(U), r2(U)} for i = 1, 2. Let P be the common independent set poly-
tope. Corollaries 40.4a and 41.12b imply that one can test in strongly poly-
nomial time if x belongs to P .

So we can assume that x belongs to P . We decompose x as a convex
combination of incidence vectors of common independent sets. Iteratively
resetting x, we keep a collection U of subsets of S with x(U) = r(U) for each
U ∈ U . Initially, U := ∅. We describe the iteration.
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Define

(41.51) F := {y ∈ P | ∀s ∈ S : xs = 0 ⇒ ys = 0;∀U ∈ U : y(U) = r(U)}.

So F is a face of P containing x.
Find a common independent set I with χI ∈ F . This can be done by

finding a common independent set I ⊆ supp(x) maximizing wTx, where w :=
∑

U∈U χU . (Here supp(x) is the support of x; so supp(x) = {s ∈ S | xs > 0}.)
If x = χI we stop. Otherwise, define u := x − χI . Let λ be the largest

rational such that

(41.52) χI + λu

belongs to P .
We describe an inner iteration to find λ. We consider vectors z along the

halfline L = {χI + λu | λ ≥ 0}. First we let λ be the largest rational with
χI + λu ≥ 0, and set z := χI + λu.

We iteratively reset z. We check if z belongs to the common independent
set polytope, and if not, we find a U ⊆ S minimizing r(U) − z(U) (with
Corollary 40.4c). Let z′ be the (unique) vector on L achieving x(U) ≤ r(U)
with equality; that is, satisfying z′(U) = r(U).

Consider any inequality x(U ′) ≤ r(U ′) violated by z′. Then

(41.53) r(U ′) − |U ′ ∩ I| < r(U) − |U ∩ I|.

This can be seen by considering the function

(41.54) d(y) := (r(U) − y(U)) − (r(U ′) − y(U ′)).

We have d(z) ≤ 0 (since U minimizes r(U) − z(U)) and d(z′) > 0 (since
z′(U) = r(U) and z′(U ′) > r(U ′)). Hence, as d is linear, d(χI) > 0; that is,
we have (41.53). This implies that resetting z := z′, there are at most r(S)
inner iterations.

Let x′ be the final z found. If we apply no inner iteration, then x′
s = 0 for

some s ∈ I ⊆ supp(x) (since we chose λ largest with χI +λu ≥ 0). If we do at
least one inner iteration, we find a U such that x′ satisfies x′(U) = r(U) while
|U ∩ I| < r(U) (since x′ is the unique vector on L satisfying x′(U) = r(U)
and since x′ �= χI).

In the latter case, set U ′ := U ∪{U}; otherwise set U ′ := U . Then resetting
x to x′ and U to U ′, the dimension of F decreases (as χI does not belong to
the new F ). So the number of iterations is at most |S|. This shows that the
method is strongly polynomial-time.

41.4a. Facets of the common independent set polytope

Since the common independent set polytope of two matroids is the intersection of
their independent set polytopes, each facet-inducing inequality for the intersection
is facet-inducing for (at least) one of the independent set polytopes, but not nec-
essarily conversely. Giles [1975] characterized which inequalities are facet-inducing
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for the common independent set polytope. If this polytope is full-dimensional, then
each inequality xs ≥ 0 is facet-inducing. As for the other inequalities, Giles proved:

Theorem 41.14. Let M1 = (S, I1) and M2 = (S, I2) be loopless matroids, with
rank functions r1 and r2. For U ⊆ S, define r(U) := min{r1(U), r2(U)}. Then, for
U ⊆ S, the inequality

(41.55) x(U) ≤ r(U)

is facet-inducing for Pcommon independent set(M1,M2) if and only if there is no par-
tition of U into nonempty proper subsets U1, U2 with

(41.56) r(U) ≥ r(U1) + r(U2)

and there is no proper superset U ′ of U with r(U ′) ≤ r(U).

Proof. By symmetry, we can assume that r(U) = r1(U).
Necessity is easy: Assume that x(U) ≤ r1(U) is facet-inducing. If (41.56) would

hold, then each common independent set I with |I ∩U | = r1(U) satisfies |I ∩U1| =
r(U1) (since |I ∩ U1| = |I ∩ U | − |I ∩ U2| ≥ r(U) − r(U2) ≥ r(U1)). Hence each x
in the facet determined by x(U) ≤ r1(U) satisfies x(U1) = r(U1), a contradiction.
Similarly, if r(U ′) ≤ r1(U) for some proper superset U ′ of U , then each common
independent set I with |I ∩ U | = r1(U) satisfies |I ∩ U ′| = r(U ′), implying that
each x in the facet determined by x(U) ≤ r1(U) satisfies x(U ′) = r(U ′), again a
contradiction.

To see sufficiency, suppose that (41.55) satisfies the conditions, but is not facet-
inducing for the common independent set polytope. This implies that the inequality
x(U) ≤ r1(U) is implied by other inequalities in (41.37). So there exist λi : P(S) →
Q+ (for i = 1, 2) such that

(41.57)
∑

T∈P(S)

(λ1(T ) + λ2(T ))χT ≥ χU and

∑

T∈P(S)

(λ1(T )r1(T ) + λ2(T )r2(T )) ≤ r1(U),

and such that λi(U) = 0 for i = 1, 2. Let D be the least common denominator of the
values of the λi. Choose the λi such that D is as small as possible and (secondly)
such that

(41.58) D ·
∑

T⊆S

(λ1(T ) + λ2(T ))|T |(|S \ T | + 1)

is as small as possible. For i = 1, 2, define

(41.59) Fi := {T ⊆ S | λi(T ) > 0}.

We claim that for i = 1, 2:

(41.60) Fi is a chain.

Suppose to the contrary that T1, T2 ∈ Fi satisfy T1 �⊆ T2 �⊆ T1. Then decreasing
λi(T1) and λi(T2) by 1/D and increasing λi(T1 ∩ T2) and λi(T1 ∪ T2) by 1/D
maintains (41.57) but decreases (41.58). This would be a contradiction, except if
T1 ∩ T2 or T1 ∪ T2 equals U . If one of these sets equals U and D ≥ 2, we can
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reset λi(U) := 0, and multiply all values of λ1 and λ2 by D/(D − 1). This again
maintains (41.57) but decreases the least common divisor of the denominators. So
the contradiction would remain, except if D = 1. Then (41.57) implies ri(T1) +
ri(T2) ≤ r1(U). Now if T1 ∩ T2 = U , then U ⊂ T1 and

(41.61) r(T1) ≤ ri(T1) ≤ ri(T1) + ri(T2) ≤ r1(U),

contradicting the condition. If T1 ∪ T2 = U , then

(41.62) r(T1) + r(U \ T1) ≤ ri(T1) + ri(U \ T1) ≤ ri(T1) + ri(T2) ≤ r1(U),

again contradicting the condition.
This proves (41.60). As each Fi is a chain, the incidence matrix of F1 ∪ F2

is totally unimodular (by Theorem 41.11). Therefore, there are integer-valued λi

satisfying (41.57), with λi(T ) = 0 for T �∈ Fi. Then we can assume that |Fi| ≤ 1 for
i = 1, 2, since if T, T ′ ∈ Fi and T ⊂ T ′, we can decrease λi(T ) by 1 without violating
(41.57). If U ′ ∈ Fi with U ′ ⊃ U , then r(U ′) ≤ ri(U ′) ≤ r(U), contradicting
the condition. So each Fi contains a set Ui �⊇ U , implying r(U1) + r(U \ U1) ≤
r(U1) + r(U2) ≤ r1(U1) + r2(U2) ≤ r(U), again contradicting the condition.

This theorem can be seen to imply a variant of it, in which, instead of r(U) :=
min{r1(U), r2(U)}, we define

(41.63) r(U) := max{|I| ∣
∣ I ∈ I1 ∩ I2} = min

T⊆U
(r1(T ) + r2(U \ T )).

Fonlupt and Zemirline [1983] characterized the dimension of the common base
polytope of two matroids.

41.4b. Up and down hull of the common base polytope

We saw in Corollary 41.12d a characterization of the common base polytope
Pcommon base(M1,M2) of two matroids M1 = (S, I1) and M2 = (S, I2). The up
hull of this polytope:

(41.64) P ↑
common base(M1,M2) := Pcommon base(M1,M2) + R

S
+

was characterized by Cunningham [1977] and McDiarmid [1978] as follows (proving
a conjecture of Fulkerson [1971a]).

Let M1 = (S, I1) and M2 = (S, I2) be matroids having a common base. Then
P ↑

common base(M1,M2) is determined by:

(41.65) x(U) ≥ r(S) − r(S \ U) for U ⊆ S,

where r(Z) := the maximum size of a common independent set contained in Z. (A
weaker version of this was proved by Edmonds and Giles [1977].)

For a proof we refer to Section 46.7a, where it is also shown that (41.65) is TDI
(Gröflin and Hoffman [1981]). (Frank and Tardos [1984a] derived this, with a direct
algorithmic construction, from the total dual integrality of (41.47).)

Note that by the matroid intersection theorem, the inequalities (41.65) are
equivalent to:

(41.66) x(U) ≥ k − r1(A) − r2(B) for each partition U,A,B of S,



720 Chapter 41. Matroid intersection

where r1 and r2 are the rank functions of M1 and M2 respectively, and where k is
the size of a common base. This implies that if we add x ≤ 1 to (41.66) we obtain
the convex hull of the subsets of S that contain a common base.

Similarly, the down hull of the common base polytope:

(41.67) P ↓
common base(M1,M2) := Pcommon base(M1,M2) − R

S
+,

is determined by

(41.68) x(U) ≤ r1(S \A) + r2(S \B) − k for each partition U,A,B of S.

This can be derived from the description of the up hull of the common base polytope,
since

(41.69) P ↓
common base(M1,M2) = 1 − P ↑

common base(M
∗
1 ,M

∗
2 )

(where 1 stands for the all-one vector in R
S).

This implies that the convex hull of the incidence vectors of the subsets of
common bases is determined by x ≥ 0 and (41.68).

Cunningham [1984] gave a strongly polynomial-time algorithm to test if a vector
belongs to P ↑

common base(M1,M2), or to P ↓
common base(M1,M2), using only indepen-

dence testing oracles for M1 and M2.

41.5. Further results and notes

41.5a. Menger’s theorem for matroids

Tutte [1965b] showed a special case of the matroid intersection theorem, namely
when both M1 and M2 are minors of one matroid. Specialized to graphic matroids,
it gives the vertex-disjoint, undirected version of Menger’s theorem.

Let M = (E, I) be a matroid, with rank function r, and let U and W be disjoint
subsets of E. Then the maximum size of a common independent set in M/U \W
and M/W \ U is equal to the minimum value of

(41.70) r(X) − r(U) + r(E \X) − r(W )

taken over sets X with U ⊆ X ⊆ E \ W . This is the special case of the matroid
intersection theorem for the matroids M/U \ W and M/W \ U , since for Y ⊆
E \ (U ∪W ) one has

(41.71) rM/U\W (Y ) = r(Y ∪ U) − r(U),

and similarly for M/W \ U .
To see that this implies the vertex-disjoint, undirected version of Menger’s the-

orem, let G = (V,E) be a graph and let S and T be disjoint nonempty subsets of
V . We show that the above theorem implies that the maximum number of disjoint
S − T paths in G is equal to the minimum number of vertices intersecting each
S − T path.

To this end, we can assume that G is connected, and that E contains subsets
U and W such that (S,U) and (T,W ) are trees. (Adding appropriate edges does
not modify the result to be proved.)

Let M := M(G) be the cycle matroid of G. Define R := V \ (S ∪ T ). Then
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(41.72) the maximum number of disjoint S−T paths is at least the maximum
size of a common independent set I of M/U \W and M/W \U , minus
|R|.

(In fact, there is equality.)
To prove (41.72), let I be a maximum-size common independent inM/U\W and

M/W \U . So I is a forest. Consider any component K of I. Since I is independent
in M/U , K intersects S in at most one vertex. Similarly, K intersects T in at most
one vertex. Let p be the number of components K intersecting both S and T . By
deleting p edges we obtain a forest I ′ such that no component of I ′ intersects both
S and T . So |I ′| ≤ |R| (since I ′ remains a forest after contracting (in the graphical
sense) S ∪ T to one vertex). Hence p = |I| − |I ′| ≥ |I| − |R|. So we have (41.72).

On the other hand,

(41.73) the minimum size of a set of vertices intersecting each S − T path is
at most the minimum value of (41.70), minus |R|.

(Again, we have in fact equality.)
To prove (41.73), letX attain the minimum value of (41.70). So U ⊆ X ⊆ E\W .

Let K be the component of (V,X) containing S and let L be the component of
(V,E \X) containing T . We choose X with |K ∪ L| maximized.

Then K ∪ L = V . For suppose not. Then, as G is connected, there is an edge
e of G leaving K ∪ L. By symmetry, we can assume that e ∈ X. Let K′ be the
component of (V,X) containing e. So K′ �= K and E[K′] ∩ U = ∅. Resetting X by
X \E[K′], r(X) decreases by |K′|−1, while r(E \X) increases by at most |K′|−1.
So the new X again attains the minimum in (41.70), while K ∪ L increases. This
contradicts our maximality assumption.

So K ∪ L = V . Hence K ∩ L intersects each S − T path (since S ⊆ K and
T ⊆ L, and there is no edge connecting K \ L and L \K). Moreover

(41.74) |K ∩ L| = |K| + |L| − |V | ≤ (r(X) + 1) + (r(E \X) + 1) − |V |
= r(X) + r(E \X) − |V | + 2 = r(X) + r(E \X) − r(U) − r(W ) − |R|.

So we have (41.73).
Since the maximum number of disjoint S−T paths is trivially not more than the

minimum number of vertices intersecting all S − T paths, we thus obtain Menger’s
theorem (and also equality in (41.72) and (41.73)).

(Tomizawa [1976a] gave an algorithm for Menger’s theorem for matroids.)

41.5b. Exchange properties

Kundu and Lawler [1973] showed the following extension of the exchange property
of bipartite graphs given in Theorem 16.8. Let M1 = (S, I1) and M2 = (S, I2) be
matroids, with span functions span1 and span2. Then

(41.75) For any I1, I2 ∈ I1 ∩ I2 there exists an I ∈ I1 ∩ I2 with I1 ⊆ span1(I)
and I2 ⊆ span2(I).

(Theorem 16.8 is equivalent to the case where the Mi are partition matroids.)
To prove (41.75), choose I ∈ I1 ∩I2 with I1 ⊆ span1(I) and |I ∩ I2| maximized.

Suppose that I2 �⊆ span2(I). Choose s ∈ I2 \ span2(I) with I ∪ {s} ∈ I2. By
the maximality of |I ∩ I2| we know that I ∪ {s} �∈ I1. So M1 has a circuit C
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contained in I ∪ {s}. Since I2 ∈ I1 we know that C �⊆ I2. Choose t ∈ C \ I2.
Then for I ′ := I − t + s we have I ′ ∈ I1 ∩ I2, while span1(I

′) = span1(I). Since
|I ′ ∩ I2| > |I ∩ I2| this contradicts the maximality assumption.

A second exchange property was shown by Davies [1976]:

(41.76) Two matroids M1 and M2 have bases B1 and B2 (respectively) with
|B1 ∩B2| = k if and only if M1 has bases X1 and Y1 and M2 has bases
X2 and Y2 with |X1 ∩X2| ≤ k and |Y1 ∩ Y2| ≥ k.

To see this, we may assume that X2 = Y2, since if |X1 ∩ Y2| ≤ k we can reset
X2 := Y2, and if |X1 ∩ Y2| > k we can reset Y1 := X1 and exchange indices.

By (39.33)(ii), there exists a series of bases Z0, . . . , Zt of M1 such that Z0 = X1,
Zt = Y1, and |Zi−1�Zi| = 2 for i = 1, . . . , t. Hence

(41.77)
∣
∣|Zi−1 ∩X2| − |Zi ∩X2|

∣
∣ ≤ 1

for i = 1, . . . , t. Since |Z0 ∩X2| ≤ k and |Zt ∩X2| ≥ k, we know |Zi ∩X2| = k for
some i. This proves (41.76).

41.5c. Jump systems

A framework that includes both matroid intersection and maximum-size matching
was introduced by Bouchet and Cunningham [1995]. For x, y ∈ Z

n, let [x, y] be the
set of vectors z ∈ Z

n with ‖x− y‖1 = ‖x− z‖1 + ‖z − y‖1. So [x, y] consists of all
integer vectors z in the box x ∧ y ≤ z ≤ x ∨ y.

Call a vector z a step from x to y if z ∈ [x, y] and ‖z− x‖1 = 1. A jump system
is a finite subset J of Z

n satisfying the following axiom:

(41.78) if x, y ∈ J and z is a step from x to y, then z ∈ J or J contains a step
from z to y.

Trivially, for any jump system J and any x, y ∈ Z
n, the intersection J∩[x, y] is again

a jump system. Moreover, being a jump system is maintained under translations
by an integer vector and by reflections in a coordinate hyperplane. Bouchet and
Cunningham [1995] showed that the sum of jump systems is again a jump system
(attributing the proof below to A. Sebő):

Theorem 41.15. If J1 and J2 are jump systems in Z
n, then J1 + J2 is a jump

system.

Proof. For x, y ∈ J1 + J2 we prove (41.78) by induction on the minimum value of

(41.79) ‖y′ − x′‖1 + ‖y′′ − x′′‖1,

where x′, y′ ∈ J1, x′′, y′′ ∈ J2, x′ + x′′ = x, and y′ + y′′ = y.
Let z be a step from x to y. By reflection and permutation of coordinates, we

can assume that z = x+χ1. So x1 < y1. Hence, by symmetry of J1 and J2, we can
assume that x′

1 < y′
1. Next, by reflection, we can assume that x′ ≤ y′.

Now x′+χ1 is a step from x′ to y′. If x′+χ1 ∈ J1, then z = x′+χ1+x′′ ∈ J1+J2,
and we have (41.78). So we can assume that x′ +χ1 �∈ J1. Hence, by (41.78) applied
to J1, there is an i ∈ {1, . . . , n} with x̃′ := x′ + χ1 + χi ∈ J1 and x̃′ ≤ y′.

So z + χi = x̃′ + x′′ ∈ J1 + J2. If z + χi ∈ [x, y], we have (41.78). If z + χi �∈
[x, y], then as z ∈ [x, y], we have zi = yi. So z is a step from z + χi to y. Also,
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‖y′ − x̃′‖1 = ‖y′ − x′‖1 − 2. Hence, by our induction hypothesis applied to z + χi

and y, we have (41.78).

As Bouchet and Cunningham [1995] observed, this theorem implies that the
following two constructions give jump systems J ⊆ Z

V .
For any matroid M = (S, I), the set {χB | B base of M} is a jump system in

Z
S , as follows directly from the axioms (39.33). With Theorem 41.15, this implies

that for matroids M1 = (S, I1) and M2 = (S, I2), the set

(41.80) J := {χB1 − χB2 | Bi base of Mi (i = 1, 2)}
is a jump system.

Let G = (V,E) be an undirected graph and let

(41.81) J := {degF | F ⊆ E} ⊆ Z
V ;

that is, J is the collection of degree sequences of spanning subgraphs of G. Again,
J is a jump system. This follows from Theorem 41.15, since for each edge e = uv
the set {0, χ{u,v}} is trivially a jump system in Z

V and since J is the sum of these
jump systems.

Bouchet and Cunningham [1995] showed that the following greedy approach
finds, for any w ∈ R

n, a vector x ∈ J maximizing wTx. By reflecting, we can
assume that w ≥ 0. We can also assume that w1 ≥ w2 ≥ · · · ≥ wn. Let J0 := J ,
and for i = 1, . . . , n, let Ji be the set of vectors x in Ji−1 maximizing xi over Ji−1.
Trivially, Jn consists of one vector, y say. Then:

Theorem 41.16. y maximizes wTx over J .

Proof. It suffices to show that the maximum value of wTx over J1 is the same as
over J (since applying this to the jump systems J1, . . . , Jn gives the theorem). Let
the maximum over J be attained by x and over J1 by y. Suppose wTy < wTx.
So x �∈ J1, and hence x1 < y1. We choose x, y such that y1 − x1 is minimal. Let
z := x+ χ1. So z is a step from x to y.

Then wTz = wTx + w1 ≥ wTx. Hence z �∈ J , since otherwise we can replace x
by z, contradicting the minimality of y1 − x1. So, by (41.78), J contains a step u
from z to y. So u = z ± χi for some i ∈ {1, . . . , n}. Then

(41.82) wTu = wTz ± wi ≥ wTz − wi = wTx+ w1 − wi ≥ wTx.

So we can replace x by u, again contradicting the minimality of y1−x1 (as u1 > x1).

Lovász [1997] gave a min-max relation for the minimum l1-distance of an integer
vector to a jump system of special type. It can be considered as a common gener-
alization of the matroid intersection theorem (Theorem 41.1) and the Tutte-Berge
formula (Theorem 24.1).

For a survey, see Cunningham [2002].

41.5d. Further notes

A special case of the weighted matroid intersection algorithm (where one matroid
is a partition matroid) was studied by Brezovec, Cornuéjols, and Glover [1988].
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Data structures for on-line updating of matroid intersection solutions were given
by Frederickson and Srinivas [1984,1987], and a randomized parallel algorithm for
linear matroid intersection by Narayanan, Saran, and Vazirani [1992,1994].

An extension of matroid intersection to ‘supermatroid’ intersection was given
by Tardos [1990]. Fujishige [1977a] gave a primal approach to weighted matroid in-
tersection, and Shigeno and Iwata [1995] a dual approximation approach. Camerini
and Maffioli [1975,1978] studied 3-matroid intersection problems.
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Matroid union

Matroid union is closely related to matroid intersection, and most of the
basic matroid union results follow from basic matroid intersection results,
and vice versa. But matroid union also gives a shift in focus and offers a
number of specific algorithmic questions.

42.1. Matroid union theorem

The matroid union theorem will be derived from the following basic result
given by Nash-Williams [1967], suggested by earlier unpublished work of J.
Edmonds28:

Theorem 42.1. Let M ′ = (S′, I ′) be a matroid, with rank function r′, and
let f : S′ → S. Define

(42.1) I := {f(I ′) | I ′ ∈ I ′}
(where f(I ′) := {f(s) | s ∈ I ′}). Then M = (S, I) is a matroid, with rank
function r given by

(42.2) r(U) = min
T⊆U

(|U \ T | + r′(f−1(T )))

for U ⊆ S.

Proof. Trivially, I is nonempty and closed under taking subsets. To see
condition (39.1)(ii), let I, J ∈ I with |I| < |J |. Choose I ′, J ′ ∈ I ′ with
f(I ′) = I, f(J ′) = J , |I ′| = |I|, |J ′| = |J |, and |I ′ ∩ J ′| as large as possible.
As M ′ is a matroid, I ′ + j ∈ I ′ for some j ∈ J ′ \ I ′. If f(j) ∈ f(I ′),
say f(j) = f(i) for i ∈ I ′, replacing I ′ by I ′ − i + j would increase |I ′ ∩ J ′|,
contradicting our assumption. So f(j) ∈ J\I and f(I ′)+f(j) = f(I ′+j) ∈ I.
This proves (39.1)(ii), and hence M is a matroid.

The rank r(U) of a subset U of S is equal to the maximum size of a
common independent set in M ′ and the partition matroid N = (S′,J ) in-
duced by the family (f−1(s) | s ∈ U). By the matroid intersection theorem
(Theorem 41.1), this is equal to the right-hand side of (42.2).
28 as mentioned in the footnote on page 20 of Pym and Perfect [1970] (quoted in Section

42.6f below).
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(In his paper, Nash-Williams suggested a direct proof, by decomposing f as
a product of ‘elementary’ functions in which only two elements are merged.
Welsh [1970] observed that the rank formula (42.2) also follows directly from
Rado’s theorem (Corollary 41.1c) of Rado [1942].)

Theorem 42.1 implies the following result, formulated explicitly by Ed-
monds [1968] (and for all Mi equal by Nash-Williams [1967]).

Let M1 = (S1, I1), . . . , Mk = (Sk, Ik) be matroids. Define the union of
these matroids as M1 ∨ · · · ∨ Mk = (S1 ∪ · · · ∪ Sk, I1 ∨ · · · ∨ Ik), where

(42.3) I1 ∨ · · · ∨ Ik := {I1 ∪ . . . ∪ Ik | I1 ∈ I1, . . . , Ik ∈ Ik}.

Corollary 42.1a (matroid union theorem). Let M1 = (S1, I1), . . . , Mk =
(Sk, Ik) be matroids, with rank functions r1, . . . , rk, respectively. Then M1 ∨
· · · ∨ Mk is a matroid again, with rank function r given by:

(42.4) r(U) = min
T⊆U

(|U \ T | + r1(T ∩ S1) + · · · + rk(T ∩ Sk)).

for U ⊆ S1 ∪ · · · ∪ Sk.

Proof. To see that M1 ∨ · · · ∨ Mk is a matroid, let for each i, M ′
i = (S′

i, I ′
i)

be a copy of Mi with S′
1, . . . , S

′
k disjoint. Then trivially M ′

1 ∨ · · · ∨ M ′
k is a

matroid. Now define f : S′
1 ∪ · · · ∪ S′

k → S1 ∪ · · · ∪ Sk by, for i = 1, . . . , k and
s ∈ S′

i: f(s) is the original of s in Si. Then the matroid obtained in Theorem
42.1 is equal to M1 ∨ · · · ∨ Mk, proving that the latter indeed is a matroid,
and (42.4) follows from (42.2).

Conversely, the matroid intersection theorem may be derived from the
matroid union theorem (as was shown by Edmonds [1970b]): the maximum
size of a common independent set in two matroids M1 and M2, is equal to
the maximum size of an independent set in the union M1 ∨ M∗

2 , minus the
rank of M∗

2 .
Application of the matroid union theorem to a number of copies of the

same matroid gives the following results. First:

Corollary 42.1b. Let M = (S, I) be a matroid, with rank function r, and
let k ∈ Z+. Then the maximum size of the union of k independent sets is
equal to

(42.5) min
U⊆S

(|S \ U | + k · r(U)).

Proof. This follows by applying Corollary 42.1a to M1 = · · · = Mk = M .

This implies that the minimum number of independent sets (or bases)
needed to cover the underlying set is described by the following result of
Edmonds [1965c]29:
29 This result was also given, without proof, by Rado [1966], saying that the argument of

Horn [1955] for linear matroids can be extended to arbitrary matroids. The result con-
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Corollary 42.1c (matroid base covering theorem). Let M = (S, I) be a
matroid, with rank function r, and let k ∈ Z+. Then S can be covered by k
independent sets if and only if

(42.6) k · r(U) ≥ |U |

for each U ⊆ S.

Proof. M can be covered by k independent sets if and only if there is a union
of k independent sets of size |S|. By Corollary 42.1b, this is the case if and
only if

(42.7) min
U⊆S

(|S \ U | + k · r(U)) ≥ |S|,

that is, if and only if k · r(U) ≥ |U | for each subset U of S.

One similarly has for the maximum number of disjoint bases in a matroid
(Edmonds [1965a]):

Corollary 42.1d (matroid base packing theorem). Let M = (S, I) be a
matroid, with rank function r, and let k ∈ Z+. Then there exist k disjoint
bases if and only if

(42.8) k · (r(S) − r(U)) ≤ |S \ U |

for each U ⊆ S.

Proof. M has k disjoint bases if and only if the maximum size of the union
of k independent sets is equal to k · r(S). By Corollary 42.1b, this is the case
if and only if

(42.9) min
U⊆S

(|S \ U | + k · r(U)) ≥ k · r(S),

that is, if and only if |S \ U | ≥ k · (r(S) − r(U)) for each subset U of S.

The more general forms of Corollaries 42.1c and 42.1d, with different
matroids, were shown by Edmonds and Fulkerson [1965].

42.1a. Applications of the matroid union theorem

We describe a number of applications of the matroid union theorem. Further ap-
plications will follow in Chapter 51 on packing and covering of trees and forests.

Transversal matroids. Let X = (X1, . . . , Xn) be a family of subsets of a finite
set S, and define for each i = 1, . . . , n a matroid M on S by: Y is independent in
Mi if and only if Y ⊆ Xi and |Y | ≤ 1. Now the union M1 ∨ · · · ∨Mn is the same

firms a question of Rado [1962a,1962b] (in fact, the result also follows by an elementary
construction from Rado’s theorem (Corollary 41.1c) given in Rado [1942]).
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as the transversal matroid induced by X , so in this way one can prove again that
transversal matroids indeed are matroids.

Disjoint transversals. Let X = (X1, . . . , Xn) be a family of subsets of a finite set
S. Then X has k disjoint transversals if and only if

(42.10)
∣
∣
⋃

i∈I

Xi

∣
∣ ≥ k · |I|

for each I ⊆ {1, . . . , n}. This easy consequence of Hall’s marriage theorem (cf.
Theorem 22.10) can also be derived by applying the matroid base packing theorem
to the transversal matroid induced by X , using (39.19).

Similarly, it can be derived from the matroid base covering theorem that S can
be partitioned into k partial transversals of X if and only if

(42.11) k(n− |I|) ≥ |S \
⋃

i∈I

Xi|

for each I ⊆ {1, . . . , n} (cf. Theorem 22.12).

Vector spaces. A finite subset S of a vector space can be covered by k linearly
independent sets if and only if

(42.12) |U | ≤ k · rank(U) for each U ⊆ S.

This conjecture of K.F. Roth and R. Rado was shown by Horn [1955]30. It is the
special case of the matroid base covering theorem for linear matroids (see also
Section 42.1b below).

As a similar consequence of the matroid base packing theorem one has that
the n-dimensional vector space S over the field GF (q) contains k := �(qn − 1)/n�
disjoint bases. Indeed, for each U ⊆ S one has k(n−r(U)) ≤ qn−|U |, as |U | ≤ qr(U).

An exchange property of bases. The matroid union theorem also implies the
following stronger exchange property of bases of a matroid (stronger than given in
the ‘axioms’ in Theorem 39.6). In any matroid M = (S, I),

(42.13) for any two bases B1 and B2 and for any partition of B1 into X1 and
Y1, there is a partition of B2 into X2 and Y2 such that both X1 ∪ Y2

and X2 ∪ Y1 are bases.

This property was conjectured by G.-C. Rota, and proved by Brylawski [1973],
Greene [1973], and Woodall [1974a] — we follow the proof of McDiarmid [1975a].

Consider the matroids M1 := M/Y1 and M2 := M/X1. Note that M1 has
rank |X1| and that M2 has rank |Y1|. We must show that B2 is the union of an
independent set X2 of M1 and an independent set Y2 of M2. By the submodularity
of the rank functions ((39.38)(ii)) we have for each T ⊆ B2:

30 Horn [1955] thanked Rado ‘for improvements in the setting out of the argument’. The
result was also published, in the same journal, by Rado [1962a]. This paper does not
mention Horn’s paper. The proof by Rado [1962a] is the same as that of Horn [1955]
and uses the same notation. But Rado [1966] said that the theorem was first proved by
Horn [1955].
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(42.14) |B2 \ T | + rM1(T \ Y1) + rM2(T \X1)
= |B2 \ T | + r(T ∪ Y1) − |Y1| + r(T ∪X1) − |X1|
≥ r(T ) + r(T ∪ Y1 ∪X1) − |T | = |B2|.

Hence, by the matroid union theorem (Corollary 42.1a), we have the required result.
Repeated application of this exchange phenomenon implies the following strong-

er property, given by Greene and Magnanti [1975]:
(42.15) for any two bases B1 and B2 and any partition of B1 into X1, . . . , Xk,

there is a partition of B2 into Y1, . . . , Yk such that (B1 \Xi) ∪ Yi is a
base, for each i = 1, . . . , k.

This extends Corollary 39.12a, which is the special case where eachXi is a singleton.

42.1b. Horn’s proof

The proof of Horn [1955] of the matroid base covering theorem for linear matroids
directly extends to general matroids (as was observed by Rado [1966]):

Consider a counterexample to the matroid base covering theorem (Corollary
42.1c) with smallest |S|. For subsets S1, . . . , Sn of S, define inductively:

(42.16) [S1, . . . , Sn] :=
{
S if n = 0,
span([S1, . . . , Sn−1] ∩ Sn) if n ≥ 1.

By the minimality of |S|, we know that for each s ∈ S, S\{s} can be partitioned
into k independent sets I1, . . . , Ik. We first show:
(42.17) for each s ∈ S and I1, . . . , Ik partitioning S\{s}, there exist j1, . . . , jn ∈

{1, . . . , k} with s �∈ [Ij1 , . . . , Ijn ].
Indeed, choose j1, . . . , jn ∈ {1, . . . , k} with the rank of [Ij1 , . . . , Ijn ] as small as
possible. Define A := [Ij1 , . . . , Ijn ]. By the minimality of the rank of A, we have
r(A ∩ Ij) = r(A) for each j = 1, . . . , k. Hence, by (42.6),

(42.18) |A| ≤ k · r(A) =
k∑

j=1

r(A ∩ Ij) ≤
k∑

j=1

|A ∩ Ij | = |A \ {s}|.

So s �∈ A, proving (42.17).
Now choose s, I1, . . . , Ik, and j1, . . . , jn as in (42.17) with n as small as possible.

For t = 0, . . . , n, define
(42.19) Bt := [Ij1 , . . . , Ijt ].
As we have a counterexample, we know that s ∈ span(Ijn) (otherwise we can add s
to Ijn). Let C be the circuit in Ijn ∪ {s}. As s �∈ Bn = span(Bn−1 ∩ Ijn), we know
that C \ {s} is not contained in Bn−1 (otherwise C \ {s} ⊆ Bn−1 ∩ Ijn , and hence
s ∈ span(Bn−1 ∩ Ijn)). So we can choose z ∈ C \ {s} with z �∈ Bn−1.

Define I ′
jn

:= Ijn −z+s and I ′
j := Ij for j �= jn. Then I ′

1, . . . , I
′
k are independent

sets partitioning S \ {z}. Define, for t = 0, . . . , n:
(42.20) B′

t := [I ′
j1 , . . . , I

′
jt

].
By the minimality of n we know that z ∈ B′

n−1. Since z �∈ Bn−1, we have B′
n−1 �⊆

Bn−1. Choose the smallest q ≤ n− 1 with B′
q �⊆ Bq. Then q ≥ 1 and B′

q−1 ⊆ Bq−1.
By the minimality of n we know that s ∈ Bq (as q < n). So
(42.21) B′

q = span(B′
q−1 ∩ I ′

jq
) ⊆ span((Bq−1 ∩ Ijq ) ∪ {s}) ⊆ span(Bq) = Bq,

a contradiction.
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42.2. Polyhedral applications

The matroid base packing and covering theorems imply (in fact, are equiva-
lent to) the following polyhedral result:

Corollary 42.1e. For any matroid, the independent set polytope, the base
polytope, and the spanning set polytope have the integer decomposition prop-
erty.

Proof. Let M = (S, I) be a matroid. Choose k ∈ Z+ and an integer vector
x ∈ k·Pindependent set(M). Replace each element s of S by xs parallel elements,
thus obtaining the matroid N = (T, J ) say. Now for each U ⊆ T , one has
k · rN (U) ≥ |U |, since if W denotes the set of elements s in S such that U
intersects the parallel class of s, then

(42.22) rN (U) = rM (W ) ≥ x(W )/k ≥ |U |/k,

since x/k belongs to Pindependent set(M). So by the matroid base covering
theorem (Corollary 42.1c), T can be partitioned into k independent sets of
N . Hence x is the sum of k incidence vectors of independent sets of M .

To see that the base polytope has the integer decomposition property, let
x ∈ k · Pbase(M). By the above, x is the sum of the incidence vectors of k
independent sets. As x(S) = k ·r(S), each of these independent sets is a base.

One similarly derives from the matroid base packing theorem (Corollary
42.1d) that the spanning set polytope has the integer decomposition property.

The matroid base packing and covering theorems imply generalizations
to the capacitated case, by splitting elements into parallel elements. For the
matroid base covering theorem this gives:

Theorem 42.2. Let M = (S, I) be a matroid, with rank function r, and
let c : S → Z+. Then the minimum value of

∑

I∈I λI , where λ : I → Z+
satisfies

(42.23)
∑

I∈I
λIχ

I = c,

is equal to the maximum value of

(42.24)
⌈ c(U)
r(U)

⌉

taken over U ⊆ S with r(U) ≥ 1.

Proof. Directly from the matroid base covering theorem (Corollary 42.1c),
by splitting each s ∈ S into c(s) parallel elements.

In other words, the system defining the antiblocking polyhedron of the
independent set polytope:
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(42.25) xs ≥ 0 for s ∈ S,
x(I) ≤ 1 for I ∈ I,

has the integer rounding property (the optimum integer solution to the dual
of maximizing cTx over (42.25) has value equal to the upper integer part
of the value of the optimum (fractional) solution, for any integer objective
function c).

Similarly, the matroid base packing theorem gives:

Theorem 42.3. Let M = (S, I) be a matroid, with rank function r, and let
c : S → Z+. Let B be the collection of bases of M . Then the maximum value
of

∑

B∈B λB, where λ : B → Z+ satisfies

(42.26)
∑

B∈B
λBχB ≤ c,

is equal to the minimum value of

(42.27)
⌊ c(S \ U)
r(S) − r(U)

⌋

taken over U ⊆ S with r(S) − r(U) ≥ 1.

Proof. Directly from the matroid base packing theorem (Corollary 42.1d),
by splitting each s ∈ S into c(s) parallel elements.

In other words, the system defining the blocking polyhedron of the base
polytope:

(42.28) xs ≥ 0 for s ∈ S,
x(B) ≥ 1 for B ∈ B,

has the integer rounding property.
De Pina and Soares [2000] showed that, in Theorem 42.3, the number of

bases B with λB > 0 can be restricted to at most |S|+ r, where r is the rank
of M . This strengthens a result of Cook, Fonlupt, and Schrijver [1986].

42.3. Matroid union algorithm

A polynomial-time algorithm for partitioning a matroid in as few independent
sets as possible may be derived from the matroid intersection algorithm, with
the construction given in the proof of Theorem 42.1. A direct algorithm was
given by Edmonds [1968]. We give the algorithm described by Knuth [1973]
and Greene and Magnanti [1975], which is similar to the algorithm described
in Section 41.2 for cardinality matroid intersection.

Let M1 = (S, I1), . . . , (S, Ik) be matroids. Let Ii ∈ Ii, for i = 1, . . . , k,
with Ii ∩ Ij = ∅ if i �= j. Let D be the union of the graphs DMi(Ii) as defined
in Section 39.9.
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For each i, let Fi be the set of elements s �∈ Ii with Ii ∪ {s} ∈ Ii. Define
I := I1 ∪ · · · ∪ Ik, F := F1 ∪ · · · ∪ Fk, and I := I1 ∨ · · · ∨ Ik.

Theorem 42.4. For any s ∈ S \ I one has: I ∪ {s} ∈ I ⇐⇒ D has an
F − s path.

Proof. To see necessity, suppose that D has no F − s path. Let T be the set
of elements of S that can reach s in D. So s ∈ T , T ∩F = ∅, and no arc of D
enters T . Then ri(T ) = |Ii ∩ T | for each i = 1, . . . , k. Otherwise, there exists
a t ∈ T \ Ii with (Ii ∩ T ) ∪ {t} ∈ Ii. Since t �∈ F , Ii ∪ {t} �∈ Ii. So there is a
u ∈ Ii \ T with Ii − u + t ∈ Ii. But then (u, t) is an arc of D entering T , a
contradiction.

So ri(T ) = |Ii ∩ T | for each i. Hence r1(T ) + · · · + rk(T ) = |I ∩ T |. As
s ∈ T \ I, this implies (I ∩ T ) ∪ {s} �∈ I, and so I ∪ {s} �∈ I.

To see sufficiency, let P = (s0, s1, . . . , sp) be a shortest F − s path in D.
We can assume by symmetry that s0 ∈ F1; so s0 �∈ I1 and I1 ∪ {s0} ∈ I1.
Since P is a shortest path, for each i = 1, . . . , k, the set Ni of edges (sj−1, sj)
with j = 1, . . . , p and sj−1 ∈ Ii, forms a unique perfect matching in DMi(Ii)
on the set Si covered by Ni. So by Theorem 39.13, Ii
Si belongs to Ii for
each i. Moreover, by Corollary 39.13a, (I1
S1) ∪ {s0} ∈ I1. So I ∪ {s} ∈ I.

This implies that a maximum-size set in I1 ∨ · · · ∨ Ik can be found in
polynomial time (by greedily growing an independent set in M1 ∨ · · · ∨ Mk).
Similarly, we can find with the greedy algorithm a maximum-weight set in
I1 ∨ · · · ∨ Ik.

In particular, we can test if a given set is independent in M1 ∨ · · · ∨ Mk.
Cunningham [1986] gave an O((n3/2 + k)mQ + n1/2km) algorithm to find a
maximum-size set in I1 ∨ · · · ∨ Ik, where n is the maximum size of a set in
I1 ∨ · · · ∨ Ik, m is the size of the underlying set, and Q is the time needed to
test if a given set belongs to Ij for any given j.

These methods (including the reduction to matroid intersection) also im-
ply:

Theorem 42.5. Given a matroid M = (S, I) by an independence testing
oracle, we can find a maximum number of disjoint bases, and a minimum
number of independent sets covering S, in polynomial time.

Proof. See above.

42.4. The capacitated case: fractional packing and
covering of bases

The complexity of the capacitated and fractional cases of the above packing
and covering problems can be studied with the help of the strong polynomial-



Section 42.4. The capacitated case: fractional packing and covering of bases 733

time solvability of the most violated inequality problem for a matroid M =
(S, I), with rank function r:

(42.29) given: a vector x ∈ Q
S
+;

find: a subset U of S minimizing r(U) − x(U).

The strong polynomial-time solvability of this problem was shown in Corol-
lary 40.4c, and is a result of Cunningham [1984].

If x belongs to Pindependent set(M), we can decompose x as a convex com-
bination of incidence vectors of independent sets. This decomposition can be
found in strongly polynomial time, by Corollary 40.4a.

We now consider the problem of finding a maximum fractional packing of
bases subject to a given capacity function, and its dual, finding a minimum
fractional covering by independent sets of a demand function.

With a method given by Picard and Queyranne [1982a] and Padberg and
Wolsey [1984] one finds:

Theorem 42.6. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ Q

S
+, we can find the minimum value of λ such that

y ∈ λ · Pindependent set(M) in strongly polynomial time.

Proof. Let r be the rank function of M . We can assume that y does not
belong to the independent set polytope. Let L be the line through 0 and y.
We iteratively reset y as follows. By Corollary 40.4c, we can find a subset U
of S minimizing r(U) − y(U). Let y′ be the vector on L with y′(U) = r(U).

Now, for any U ′ ⊆ S, if y′ violates x(U ′) ≤ r(U ′), then r(U ′) < r(U),
since the function d(x) := (r(U) − x(U)) − (r(U ′) − x(U ′)) is nonpositive at
y and positive at y′, implying that it is positive at 0 (as d is linear in x).

We reset y := y′ and iterate, until y belongs to Pindependent set(M). So after
at most r(S) iterations the process terminates, with a y on the boundary
of Pindependent set(M). Comparing the final y with the original y gives the
required λ.

Theorem 42.6 implies an algorithm for capacitated fractional covering by
independent sets:

Corollary 42.6a. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ Q

S
+, we can find independent sets I1, . . . , Ik and rationals

λ1, . . . , λk ≥ 0 such that

(42.30) y = λ1χ
I1 + · · · + λkχIk

with λ1 + · · · + λk minimal, in strongly polynomial time.

Proof. Without loss of generality, y �= 0. By Theorem 51.7, we can find
the minimum value of λ such that y belongs to λ · Pindependent set(M). By
Corollary 40.4a, we can decompose 1

λ ·y as a convex combination of incidence
vectors of independent sets. This gives the required decomposition of y.
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One similarly shows for the spanning set polytope:

Theorem 42.7. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ Q

S
+, we can find the maximum value of λ such that

y ∈ λ · Pspanning set(M), in strongly polynomial time.

Proof. Let r be the rank function of M . By Corollary 40.2f, the spanning
set polytope of M is determined by the constraints 0 ≤ x ≤ 1 and

(42.31) r(U) − x(U) ≥ r(S) − x(S) for U ⊆ S.

We can assume that y �∈ Pspanning set(M) and that the support of y is a
spanning set. Let L be the line through 0 and y. We iteratively reset y as
follows.

Find a U ⊆ S minimizing r(U) − y(U) (this can be done in strongly
polynomial time, by Corollary 40.4c). If y does not belong to the spanning set
polytope, we know that y violates the constraint r(U)−x(U) ≥ r(S)−x(S).
Let y′ be the vector on L satisfying r(U) − y′(U) = r(S) − y′(S).

Now for any U ′ ⊆ S, if y′ violates r(U ′) − x(U ′) ≥ r(S) − x(S), then
r(U ′) > r(U), since the function d(x) := (r(U) − x(U)) − (r(U ′) − x(U ′)) is
nonpositive at y and positive at y′, implying that it is negative at 0 (as d is
linear in x).

We reset y := y′ and iterate, until y belongs to Pspanning set(M). So after
at most r(S) iterations the process terminates, in which case y is on the
boundary of Pspanning set(M). Comparing the final y with the original y gives
the required λ.

In turn, this gives an algorithm for capacitated fractional base packing:

Corollary 42.7a. Given a matroid M = (S, I) by an independence test-
ing oracle and given y ∈ Q

S
+, we can find bases B1, . . . , Bk and rationals

λ1, . . . , λk ≥ 0 such that

(42.32) y ≥ λ1χ
B1 + · · · + λkχBk

with λ1 + · · · + λk maximal, in strongly polynomial time.

Proof. By Theorem 42.7, we can find the maximum value of λ such that y
belongs to λ ·Pspanning set(M). If λ = 0, we take k = 0. If λ > 0, by Corollary
40.4b we can decompose 1

λ · y as a convex combination of incidence vectors
of spanning sets. This gives the required decomposition of y.

42.5. The capacitated case: integer packing and covering
of bases

It is not difficult to derive integer versions of the above algorithms, but they
are not strongly polynomial-time, as we round numbers in it. In fact, an
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integer packing or covering cannot be found in strongly polynomial time, as
it would imply a strongly polynomial-time algorithm for testing if an integer
k is even (which algorithm does not exist31): Let M be the 2-uniform matroid
on 3 elements and let k ∈ Z+. Then k is even if and only if M has 3

2k bases
containing each element of M at most k times.

Polynomial-time algorithms follow directly from the fractional versions
with the help of the matroid base packing and covering theorems.

Theorem 42.8. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ Z

S
+, we can find independent sets I1, . . . , It and integers

λ1, . . . , λt ≥ 0 such that

(42.33) y = λ1χ
I1 + · · · + λtχ

It

with λ1 + · · · + λt minimal, in polynomial time.

Proof. First find I1, . . . , Ik and λ1, . . . , λk as in Corollary 42.6a. We can
assume that k ≤ |S| (by Carathéodory’s theorem, applying Gaussian elimi-
nation). Let

(42.34) y′ :=
k∑

i=1

(λi − �λi�)χIi = y −
k∑

i=1

�λi�χIi .

So y′ is integer.
Replace each s ∈ S by y′(s) parallel elements, making matroid M ′ =

(S′, I ′). By Theorem 42.5, we can find a minimum number of independent
sets partitioning S′, in polynomial time (as y′(s) ≤ |S| for each s ∈ S). This
gives independent sets Ik+1, . . . , It of M .

Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution of
our problem. Trivially, (42.33) is satisfied (with λi replaced by �λi�). By the
matroid base covering theorem applied to M ′ (as (42.34) gives a fractional
decomposition of S′ into independent sets),

(42.35) t − k ≤
⌈

k∑

i=1

(λi − �λi�)
⌉

.

Therefore,

(42.36)
t∑

i=1

�λi� = (t − k) +
k∑

i=1

�λi� ≤
⌈

k∑

i=1

λi

⌉

,

31 For any strongly polynomial-time algorithm with one integer k as input, there is a
number L and a rational function q : Z → Q such that if k > L, then the output equals
q(k). (This can be proved by induction on the number of steps of the algorithm, which
is a fixed number as the input consists of only one number.) However, there do not exist
a rational function q and number L such that for k > L, q(k) = 0 if k is even, and
q(k) = 1 if k is odd.
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proving that the decomposition is optimum (cf. Theorem 42.2).

One similarly shows for packing bases:

Theorem 42.9. Given a matroid M = (S, I) by an independence testing ora-
cle and given y ∈ Z

S
+, we can find bases B1, . . . , Bt and integers λ1, . . . , λt ≥ 0

such that

(42.37) y ≥ λ1χ
B1 + · · · + λtχ

Bt

with λ1 + · · · + λt maximal, in polynomial time.

Proof. First find bases B1, . . . , Bk and λ1, . . . , λk as in Corollary 42.7a. Again
we can assume that k ≤ |S|. Let

(42.38) y′ :=
⌈

k∑

i=1

(λi − �λi�)χBi
⌉

.

Replace each s ∈ S by y′(s) parallel elements, making matroid M ′. By The-
orem 42.5, we can find a maximum number of disjoint bases in M ′ in poly-
nomial time (as y′(s) ≤ |S| for each s ∈ S). This gives bases Bk+1, . . . , Bt in
M .

Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution of
our problem. Trivially, (42.37) is satisfied (with λi replaced by �λi�). Again,
now by the matroid base packing theorem applied to M ′, using (42.38),

(42.39) t − k ≥
⌊

k∑

i=1

(λi − �λi�)
⌋

.

Therefore,

(42.40)
t∑

i=1

�λi� = (t − k) +
k∑

i=1

�λi� ≥
⌊

k∑

i=1

λi

⌋

,

proving that the decomposition is optimum (cf. Theorem 42.3).

De Pina and Soares [2000] showed that, in this theorem we can make the
additional condition that t ≤ |S| + r, where r is the rank of M .

42.6. Further results and notes

42.6a. Induction of matroids

An application of matroid intersection and union is the following ‘induction of
a matroid through a directed graph’, discovered by Perfect [1969b] (for bipartite
graphs) and Brualdi [1971c]. In fact, it forms a generalization of the basic Theorem
42.1.
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Let D = (V,A) be a directed graph, let U,W ⊆ V , and let M = (U, I) be a
matroid. Let J be the collection of subsets Y of W such that there exists an X ∈ I
with X linked to Y . (Set X is linked to Y if |X| = |Y | and D has |X| disjoint X−Y
paths.)

Then:

(42.41) N = (W,J ) is a matroid.

To show that N is a matroid, we can assume that U and W are disjoint. (Otherwise,
add a new vertex w′ and new arc (w,w′) for each w ∈ W .) Let L be the gammoid
induced by D,U,U ∪W . Then N = (M ∨ L)/U . Indeed, since U is independent in
L and hence in M ∨ L, a subset Y of W is independent in (M ∨ L)/U if and only
if Y ∪ U is independent in M ∨ L. This is easily seen to be equivalent to: Y ∈ J .
So N is a matroid.

The rank function rN of N can be described by (for Y ⊆ W ):

(42.42) rN (Y ) = min{rM (X)+|Z| ∣
∣ X ⊆ U,Z ⊆ V, Z intersects each U \X−Y

path}.

This can be derived from the matroid union theorem, but also (and simpler) from
the matroid intersection theorem, as follows. Let K be the gammoid induced by
D−1, Y, U , where D−1 arises from D by reversing the orientations of all arcs. Then
rN (Y ) is equal to the maximum size of a common independent set in M and K.
So, by the matroid intersection theorem (Theorem 41.1),

(42.43) rN (Y ) = min
X⊆U

(rM (X) + rK(U \X)),

which by Menger’s theorem is equal to the right-hand side of (42.42).
Applying the matroid intersection theorem again gives the following result of

Brualdi [1971e] (generalizing Brualdi [1970a]).
Let D = (V,A) be a directed graph, let U,W ⊆ V , and let M = (U, I) and

M ′ = (W, I′) be matroids. Then the maximum size of an independent set in M
that is linked to an independent set in M ′ is equal to the minimum value of

(42.44) rM (X) + |Z| + rM′(Y ),

where X ⊆ U , Y ⊆ W , and Z ⊆ V , such that Z intersects each U \X−W \Y path.
(This follows directly by considering the maximum size of a common independent
set in M ′ and N as defined above.)

Related results are given by McDiarmid [1975b] and Woodall [1975]. These
results are generalized in Schrijver [1979c]. For an algorithm, see Fujishige [1977b].

42.6b. List-colouring

Seymour [1998] showed the following matroid list-colouring theorem (cf. Section
20.9c):

Theorem 42.10. Let M = (S, I) be a matroid such that S can be partitioned into
k independent sets, and let m ∈ Z+. For each s ∈ S, let Ls ⊆ {1, . . . ,m} be a set
of size k. Then S can be partitioned into independent sets I1, . . . , Im such that for
each j = 1, . . . ,m: if s ∈ Ij, then j ∈ Ls.
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Proof. For each j = 1, . . . ,m, let Uj := {s ∈ S | j ∈ Ls}. We need to prove that
for all j, there exists an independent set Ij ⊆ Uj such that S = I1 ∪ · · · ∪ In.

Since S can be partitioned into k independent sets, we know that |X| ≤ k·rM (X)
for each X ⊆ S. Hence, for each T ⊆ S,

(42.45)
m∑

j=1

rM (Uj ∩ T ) ≥
m∑

j=1

1
k

|Uj ∩ T | = |T |,

since each s ∈ T belongs to k of the Uj . So by the matroid union theorem (Corollary
42.1a), applied to the matroids M |Uj , the independent sets Ij as required exist.

42.6c. Strongly base orderable matroids

In general it is not true that given two matroids M1 = (S, I1) and M2 = (S, I2)
such that S can be partitioned into k independent sets of M1, and also into k
independent sets of M2, then S can be partitioned into k common independent sets
of M1 and M2. This could yield a ‘matroid union intersection theorem’. However,
taking for M1 is the cycle matroid of K4 and for M2 the matroid with independent
sets all sets of pairwise intersecting edges of K4 (which is a partition matroid),
shows that the statement is false for k = 2.

But the assertion is true if both M1 and M2 belong to the class of so-called
strongly base orderable matroids, introduced by Brualdi [1970b]. A matroid M =
(S, I) is called strongly base orderable if for each two bases B1, B2 of M there exists
a bijection π : B1 → B2 such that for each subset X of B1 the set π(X) ∪ (B1 \X)
is a base again.

One easily checks that for such π, the function π|B1 ∩B2 is the identity map. It
is also straightforward to check that if M is strongly base orderable, then also the
dual of M and any contraction of M is strongly base orderable, and hence also any
restriction, and therefore any minor is strongly base orderable. Moreover, Brualdi
[1970b] showed:

Theorem 42.11. Any truncation of a strongly base orderable matroid is strongly
base orderable again.

Proof. Let M = (S, I) be a strongly base orderable matroid, with rank function
r, and let k := r(S) − 1. It suffices to show that the k-truncation of M is strongly
base orderable. Let I and J be independent sets of size k, and restrict M to I ∪ J .
If r(I ∪ J) = k, we are done, since then I and J are bases of the strongly base
orderable matroid M |I ∪ J . So suppose r(I ∪ J) = r(S) = k + 1, and let i ∈ I \ J
and j ∈ J \ I be such that I ∪ {j} and J ∪ {i} are bases of M . As M is strongly
base orderable, there exists a bijection π : I ∪ {j} → J ∪ {i} with the prescribed
exchange property. So π(j) = j and π(i) = i. Define π′ : I → J by π′(s) := π(s)
if s �= i, and π′(i) = j. We show that this bijection is as required. To prove this,
choose X ⊆ I. We must show that π′(X) ∪ (I \X) is independent.

If i �∈ X, then π′(X) = π(X), hence π′(X) ∪ (I \X) is independent, since

(42.46) π′(X) ∪ (I \X) = π(X) ∪ (I \X) ⊆ π(X) ∪ ((I ∪ {j}) \X)

and the last set is independent.
If i ∈ X, then π′(X) = π(X \ {i}) ∪ {j}, hence π′(X) ∪ (I \X) is independent,

since
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(42.47) π′(X)∪(I \X) = π(X \{i})∪{j}∪(I \X) = π(X \{i})∪((I∪{j})\X)
⊆ π(X \ {i}) ∪ ((I ∪ {j}) \ (X \ {i}))

and the last set is independent.

One also easily checks that strong base orderability is closed under making
parallel extensions. (Given a matroid M = (S, I) a parallel extension in s ∈ S is
obtained by extending S with some new element s′, and I with {(I \ {s}) ∪ {s′} |
s ∈ I ∈ I}.)

Since transversal matroids are strongly base orderable, also gammoids are
strongly base orderable (Brualdi [1971c]):

Theorem 42.12. Each gammoid is strongly base orderable.

Proof. Since strong base orderability is closed under taking contractions and since
each gammoid is a contraction of a transversal matroid (by Corollary 39.5a), it
suffices to show that any transversal matroid is strongly base orderable.

Let M be the transversal matroid induced by a family X = (X1, . . . , Xm) of
subsets of a set S. We may assume that X has a transversal (cf. (39.18)). Consider
two transversals T1 = {x1, . . . , xm} and T2 = {y1, . . . , ym} of X , where xi, yi ∈ Xi

for i = 1, . . . ,m.
Consider the bipartite graph on {1, . . . ,m} ∪ S with edges all pairs {i, s} with

i ∈ {1, . . . ,m} and s ∈ Xi (assuming without loss of generality that {1, . . . ,m}∩S =
∅). Then M1 := {{i, xi} | i = 1, . . . ,m} and M2 := {{i, yi} | i = 1, . . . ,m} are
matchings in G. Define π : T1 → T2 as follows. If s ∈ T1 ∩ T2, define π(s) := s. If
s ∈ T1 \ T2, let π(s) be the (other) end of the path in M1 ∪M2 starting at s. This
defines a bijection as required.

Brualdi [1971c] showed more generally that strong base orderability is main-
tained under induction of matroids through a directed graph, as described in Sec-
tion 42.6a. However, not every strongly base orderable matroid is a gammoid (cf.
Oxley [1992] p. 411).

Davies and McDiarmid [1976] (cf. McDiarmid [1976]) showed the following.

Theorem 42.13. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids, let k ∈ Z+, and suppose that S can be split into k independent sets of
M1, and also into k independent sets of M2. Then S can be split into k common
independent sets of M1 and M2.

Proof. In order to prove this, let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be
partitions of S into independent sets of M1 and M2, respectively, with

(42.48)
k∑

i=1

|Xi ∩ Yi|

as large as possible. If this sum is equal to |S| we are done, so suppose that this
sum is less than |S|. Hence there are i and j with Xi ∩ Yj �= ∅ and i �= j. Extend
Xi and Xj to bases Ci and Cj of M1. Similarly, extend Yi and Yj to bases Di

and Dj of M2. Since M1 and M2 are strongly base orderable, there exist bijections
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π1 : Ci → Cj and π2 : Di → Dj with the exchange property. So p1(s) = s for each
s ∈ Ci ∩ Cj and p2(s) = s for each s ∈ Di ∩Dj .

Let G be the bipartite graph with vertex set Ci ∪ Cj ∪Di ∪Dj , and edges the
pairs {s, π1(s)} with s in Ci \ Cj and the pairs {s, π2(s)} with s in Di \Dj . Split
the vertex set into colour classes S and T , say. Define

(42.49) X ′
i := S ∩ (Xi ∪Xj), X ′

j := T ∩ (Xi ∪Xj),
Y ′

i := S ∩ (Yi ∪ Yj), Y ′
j := T ∩ (Yi ∪ Yj).

So X ′
i ∩Y ′

j = ∅ and X ′
j ∩Y ′

i = ∅. Moreover, X ′
i and X ′

j are independent in M1, since,
by the exchange property of π, S ∩ (Ci ∪Cj) and T ∪ (Ci ∪Cj) are independent in
M1. Similarly, Y ′

i and Y ′
j are independent in M2.

So replacing the classes Xi and Xj of X by X ′
i and X ′

j , and the classes Yi and
Yj of Y by Y ′

i and Y ′
j yields partitions as required. However, since X ′

i ∩Y ′
j = ∅ and

X ′
j ∩ Y ′

i = ∅, we have

(42.50) |X ′
i ∩ Y ′

i | + |X ′
j ∩ Y ′

j | > |Xi ∩ Yi| + |Xj ∩ Yj |,
contradicting the maximality of (42.48).

The proof also shows that the required partition can be found in polynomial
time, provided that there is a polynomial-time algorithm to find the exchange bi-
jection π. (This is the case for transversal matroids induced by a given family of
sets.)

By the matroid base covering theorem (Corollary 42.1c), Theorem 42.13 is
equivalent to:

Corollary 42.13a. Let M1 = (S, I1) and M2 = (S, I2) be loopless, strongly base
orderable matroids, with rank functions r1 and r2. Then the minimum number of
common independent sets needed to cover S, is equal to

(42.51) max{⌈ |U |
ri(U)

⌉ | ∅ �= U ⊆ S, i = 1, 2}.

Proof. Directly from Theorem 42.13 with the matroid base covering theorem.

Applying Corollary 42.13a to transversal matroids gives Corollary 23.9a. Simi-
larly, it follows from Theorem 42.13 that:

Corollary 42.13b. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids, with rank functions r1 and r2, satisfying r1(S) = r2(S). Then M1 and
M2 have k disjoint common bases if and only if

(42.52) |S \ (T ∪ U)| ≥ k(r1(S) − r1(T ) − r2(U))

for all T, U ⊆ S.

Proof. Indeed, from Theorem 42.13 we have that M1 and M2 have k disjoint
common bases if and only if the matroids M1 ∨ · · · ∨M1 and M2 ∨ · · · ∨M2 (k-fold
unions) have a common independent set of size k · r1(S). By the matroid union and
intersection theorems, this last is equivalent to the condition stated in the present
corollary.
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By truncating M1 and M2 one has similar results if we replace ‘common bases’
by ‘common independent sets of size t’. Application to transversal matroids yields
Corollary 23.9d.

Another consequence of Theorem 42.13 is:

Corollary 42.13c. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids. Then M1 and M2 have k disjoint common spanning sets if and only if
both M1 and M2 have k disjoint bases.

Proof. This can be deduced as follows. Let Ni arise from the dual matroid of Mi

by replacing each element s of S by k − 1 parallel elements (for i = 1, 2). So N1

and N2 are strongly base orderable again, with an underlying ground set of size
(k − 1)|S|. Now M1 and M2 have k disjoint (common) spanning sets, if and only
if N1 and N2 have k (common) independent sets covering the underlying set. This
directly implies the present corollary.

Applying Corollary 42.13c to transversal matroids gives Theorem 23.11.

Corollary 42.13d. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids, with rank functions r1 and r2, satisfying r1(S) = r2(S). Then S can be
covered by k common bases of M1 and M2 if and only if

(42.53) k(r1(T ) + r2(U) − r1(S)) ≥ |T ∩ U |
for all T, U ⊆ S.

Proof. Condition (42.53) is equivalent to:

(42.54) (k − 1)|S \ (T ∪ U)| ≥ k(r∗
1(S) − r∗

1(T ) − r∗
2(U))

for all T, U ⊆ S. Let N1 and N2 be the matroids defined in the proof of Corollary
42.13c. By Corollary 42.13b, condition (42.54) implies that N1 and N2 contain k
disjoint common bases. So M∗

1 and M∗
2 have k common bases covering each element

at most k − 1 times. Hence M1 and M2 have k common bases covering S.

Applying Corollary 42.13d to transversal matroids gives Theorem 23.12.

42.6d. Blocking and antiblocking polyhedra

We next investigate the blocking and antiblocking polyhedra corresponding to in-
tersections of independent set polytopes of two matroids. Let M1 = (S, I1) and
M2 = (S, I2) be loopless matroids, with rank functions r1 and r2 respectively, and
independent set polytopes P1 and P2 respectively. So P1∩P2 is the convex hull of the
incidence vectors of common independent sets. Hence its antiblocking polyhedron
A(P1 ∩ P2) is determined by the linear inequalities

(42.55) xs ≥ 0 (s ∈ S),
x(I) ≤ 1 (I ∈ I1 ∩ I2).

Since P1 ∩ P2 is determined by the linear inequalities (41.37), A(P1 ∩ P2) consists
of all vectors x ≥ 0 for which there exists a y ≥ x which is a convex combination
of vectors
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(42.56)
1

ri(U)
χU

where U is a nonempty subset of S and i = 1, 2. Then A(P1 ∩ P2) gives rise to the
following linear programming duality equation, for c : S → R+:

(42.57) max{cTx | x ∈ A(P1 ∩ P2)} = max{ c(U)
ri(U)

| ∅ �= U ⊆ S; i = 1, 2}
= min{

∑

I∈I1∩I2

y(I) | y ∈ R
I1∩I2
+ ,

∑

I∈I1∩I2

y(I)χI ≥ c}.

For integer c, an integer optimum solution y need not exist (for instance, if |S| = 3,
ri(U) := min{|U |, 2}, and c = 1). That is, system (42.55) need not be totally dual
integral. In fact, it generally does not have the integer rounding property. That
is, it is not true, for each pair of matroids, that the minimum in (42.57) with y
restricted to be integer:

(42.58) min{
∑

I∈I1∩I2

y(I) | y ∈ Z
I1∩I2
+ ,

∑

I∈I1∩I2

y(I)χI ≥ c},

is equal to the upper integer part of the common value of (42.57). For instance,
take for M1 the cycle matroid of K4, and for M2 the matroid with independent sets
all sets of pairwise intersecting edges in K4, and let c = 1; then the common value
in (42.57) is 2, while (42.58) is equal to 3. However, Corollary 42.13a implies that
if M1 and M2 are strongly base orderable matroids, then (42.58) is equal to the
upper integer part of (42.57). That is, for strongly base orderable matroids, system
(42.57) has the integer rounding property.

Similar results hold if we consider the blocker B(Q1 ∩ Q2) of the intersection
of the spanning set polytopes Q1 and Q2 of M1 and M2. In particular, Corollary
42.13c implies that the system

(42.59) xs ≥ 0 (s ∈ S),
x(U) ≥ 1 (U common spanning set of M1 and M2)

has the integer rounding property, if M1 and M2 are strongly base orderable.
Moreover, Corollaries 42.13b and 42.13d imply that the systems

(42.60) xs ≥ 0 (s ∈ S),
x(B) ≥ 1 (B common base of M1 and M2)

and

(42.61) xs ≥ 0 (s ∈ S),
x(B) ≤ 1 (B common base of M1 and M2)

have the integer rounding property, if M1 and M2 are strongly base orderable. Here
the results of Section 41.4b are used: to prove that (42.60) has the integer rounding
property, let w ∈ Z

S
+. Let Q be the polytope determined by (42.60), let r(U) be the

maximum size of a common independent set contained in U , and let B denote the
collection of common bases. Then

(42.62) �min{wTx | x ∈ Q}�
= min{⌈ w(U)

r(S) − r(S \ U)
⌉ | U ⊆ S, r(S) > r(S \ U)}

= max{
∑

B∈B
yB | y ∈ Z

B
+,

∑

B∈B
yBχ

B ≤ w}.



Section 42.6f. Historical notes on matroid union 743

The first equality holds as the vertices of Q are given by the vectors

(42.63)
1

r(S) − r(S \ U)
χU ,

since Q is the blocking polyhedron of the common base polytope (cf. Section 41.4b).
The second equality follows from Corollary 42.13b, using the fact that strong base
orderability is maintained under adding parallel elements.

Related results on integer decomposition of the intersection of the independent
set polytopes of two strongly base orderable matroids can be found in McDiarmid
[1983].

42.6e. Further notes

Krogdahl [1976] observed that the following, general problem is solvable in polyno-
mial time, by reduction to matroid intersection: given matroids (S, I1), . . . , (S, Ik),
weight functions w1, . . . , wk ∈ R

S , and l ≤ k, find the maximum value of
w1(I1) + · · · + wk(Ik), where I1 ∈ I1, . . . , Ik ∈ Ik, with I1, . . . , Il disjoint and
Il+1, . . . , Ik disjoint, and with I1 ∪ . . . ∪ Il = Il+1 ∪ . . . ∪ Ik.

With matroid union, several new classes of matroids can be constructed. One of
them is formed by the bicircular matroids, which are the union of the cycle matroid
M(G) of a graph G = (V,E) and the matroid on E in which F ⊆ E is independent
if and only if |F | ≤ 1. The independent sets of this matroid are the edge sets
containing at most one circuit.

A randomized parallel algorithm for linear matroid union was given by Nara-
yanan, Saran, and Vazirani [1992,1994]. For matroid base packing algorithms, see
Knuth [1973] and Karger [1993,1998].

42.6f. Historical notes on matroid union

As the matroid base covering theorem can be derived by an elementary construction
from Rado’s theorem (proved by Rado [1942]), it is surprising that, for a long time,
it had remained an open question, posed by Rado himself.

In fact, it was Horn [1955] who showed that a set X of vectors is the union of
k linearly independent sets of vectors if and only if each finite subset Y of X has
rank at least |Y |/k. He mentioned that this was conjectured by K.F. Roth and R.
Rado, and he did not refer to matroids. Horn also acknowledged the help of Rado.

Surprisingly, the same theorem was also published by Rado [1962a] (in the same
journal). The proof method (including notation) is the same as that of Horn, but no
reference to Horn’s paper is given. Rado wondered if the theorem can be generalized
to matroids:

It can be seen that some steps of the argument can be adapted to the more general
situation of abstract independence functions but there does not appear to be an
obvious way of making the whole argument apply to the more general case.

Rado [1962b] presented the vector theorem at the International Congress of Math-
ematicians in Stockholm in 1962, where he mentioned again that its proof has not
yet been extended to ‘abstract independence relations’ (matroids). He wondered if
the property in fact would characterize linear matroids.
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Finally, two years later, at the Conference on General Algebra in Warsaw, 7–11
September 1964, Rado announced the base covering theorem. Simultaneously, there
was the Seminar on Matroids at the National Bureau of Standards in Washington,
D.C., 31 August–11 September 1964, where Edmonds [1965c] presented the base
covering theorem.

In the paper based on his lecture in Warsaw, Rado [1966] did not give a proof
of the matroid base cover theorem, but just said that the argument of Horn [1955]
can be adapted so as to yield the more general version (as we did in Section 42.1b).

The matroid base covering theorem generalizes also the min-max relation of
Nash-Williams [1964] for the minimum number of forests needed to cover the edges
of a graph. (As each graphic matroid is linear, this follows also from the result of
Horn [1955] described above.)

The basic unifying result (Theorem 42.1) on matroid union was given in Nash-
Williams [1967], which has as special case the matroid union theorem given by
Edmonds [1968]. In a footnote on page 20 of Pym and Perfect [1970], it is remarked
that:

Professor Nash-Williams has written to inform us that these results were sug-
gested by earlier unpublished work of Professor J. Edmonds on the relation be-
tween independence structures and submodular functions.

It seems in fact much easier to prove the matroid union theorem in general, than just
its special case for graphic matroids (for instance, the covering forests theorem).
It also generalizes theorems of Higgins [1959] on disjoint transversals (Theorem
22.11), and of Tutte [1961a] and Nash-Williams [1961b] on disjoint spanning trees
in a graph (Corollary 51.1a). (These papers mention no possible generalization to
matroids.)

Welsh [1976] mentioned on these results:

They illustrate perfectly the principle that mathematical generalization often lays
bare the important bits of information about the problem at hand.
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Matroid matching

We saw two generalizations of Kőnig’s matching theorem for bipartite
graphs: the Tutte-Berge formula on matchings in arbitrary graphs and
the matroid intersection theorem. This raises the demand for a common
generalization of these last two theorems. A solution to the following ma-
troid matching problem, posed by Lawler [1971b,1976b], could yield such
a generalization: given an undirected graph G = (S,E) and a matroid
M = (S, I), what is the maximum number of disjoint edges of G whose
union is independent in M?
By taking M trivial, the matroid matching problem reduces to the match-
ing problem, and by taking G regular of degree one, and M to be the
disjoint sum of two matroids defined on the two colour classes of the bi-
partite graph G, we obtain the matroid intersection problem.
However, the general matroid matching problem has been shown to be NP-
complete in the regular NP-framework, and unsolvable in polynomial time
in an oracle framework.
On the other hand, Lovász [1980b] gave a strongly polynomial-time al-
gorithm in case the matroid M is linear. Moreover, Lovász [1980a] gave
a min-max relation, which was extended by Dress and Lovász [1987] to
algebraic matroids.
No extension to the weighted case has been discovered, even not for the
linear case: no polyhedral characterization or polynomial-time algorithm
for finding a maximum-weight matroid matching has been found.

43.1. Infinite matroids

In this chapter, we need an extension of the notion of matroids to infinite
matroids. An infinite matroid is defined as a pair M = (S, I), where S is an
infinite set and I is a nonempty collection of subsets of S satisfying:

(43.1) (i) if I ∈ I and J ⊆ I, then J ∈ I,
(ii) if I ⊆ S and each finite subset of I belongs to I, then I belongs

to I;
(iii) if I, J are finite sets in I and |I| < |J |, then I ∪ {j} ∈ I for

some j ∈ J \ I.
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Standard matroid terminology transfers to infinite matroids. The sets in I
are called independent and those subsets of S not in I dependent. An inclu-
sionwise minimal dependent set is a circuit. By (43.1)(ii), each circuit of M
is finite. We will restrict ourselves to infinite matroids of finite rank. That is,
there is a finite upper bound on the size of the sets in I.

Examples of infinite matroids are linear spaces, where I is the collection
of linearly independent subsets, and field extensions L of a field K, where I
is the collection of subsets of L that are algebraically independent over K. In
fact, these are the only two classes of infinite matroids that we will consider.

We call a matroid M = (S, I) with S finite also a finite matroid.

43.2. Matroid matchings

Let (S, I) be a (finite or infinite) matroid, with rank function r and span
function span. Let E be a finite collection of unordered pairs from S, such
that each pair is an independent set of (S, I). For F ⊆ E define

(43.2) span(F ) := span(
⋃

F )

(where
⋃

F denotes the union of the pairs in F ), and

(43.3) r(F ) := r(span(F )).

Then for X, Y ⊆ E one has

(43.4) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ),

since

(43.5) r(X) + r(Y ) = r(span(X)) + r(span(Y ))
≥ r(span(X) ∩ span(Y )) + r(span(X) ∪ span(Y ))
≥ r(span(X ∩ Y )) + r(span(X ∪ Y )) = r(X ∩ Y ) + r(X ∪ Y ).

Call a subset M of E a matroid matching, or just a matching, if

(43.6) r(M) = 2|M |.

So M is a matroid matching if and only if M consists of disjoint pairs and
the union of the pairs in M belongs to I. Hence each subset of a matching
is a matching again. The maximum size of a matching in E is denoted by
ν(E), or just by ν. A matching of size ν(E) is called a base of E. (We should
be aware of the difference between a matching in a graph and a matroid
matching, and between a base of a matroid and a base of a collection of pairs
in a matroid. Below we will see moreover the notion of a circuit in a set of
pairs in a matroid. We will be careful to avoid confusion.32)

Consider the function s defined on subsets F of E by

(43.7) s(F ) := 2|F | − r(F ).
32 As we denote a matching by M , we denote a matroid, for the time being, just by (S, I).
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So a subset M of E is a matching if and only if s(M) = 0.
Then for all collections X and Y :

(43.8) (i) s(X) ≤ s(Y ) if X ⊆ Y ,
(ii) s(X) + s(Y ) ≤ s(X ∩ Y ) + s(X ∪ Y ).

Here (i) follows from

(43.9) r(Y ) ≤ r(X) + r(Y \ X) ≤ r(X) + 2|Y | − 2|X|.

(43.8)(ii) follows from (43.4).
(43.8) implies:

(43.10) each F ⊆ E contains a unique inclusionwise minimal subset X
with s(X) = s(F ).

For let F contain subsets X and Y with s(X) = s(Y ) = s(F ). Then by
(43.8)(i), s(X∩Y ) ≤ s(F ) and s(X∪Y ) = s(F ), and by (43.8)(ii), s(X∩Y ) ≥
s(X) + s(Y ) − s(X ∪ Y ) = s(F ). So s(X ∩ Y ) = s(F ).

43.3. Circuits

A subset C of E is called a circuit if it is an inclusionwise minimal set satis-
fying r(C) = 2|C| − 1. By (43.10):

(43.11) each F ⊆ E with r(F ) = 2|F | − 1 contains a unique circuit.

It implies that for each matching M and each e ∈ E with r(M + e) =
r(M)+1, there is a unique circuit contained in M +e. This circuit is denoted
by C(M, e), and is called a fundamental circuit (of M). (Here and below,
M + e := M ∪ {e} and M − e := M \ {e}.)

Such circuits have a useful exchange property:

(43.12) for each f ∈ C(M, e), M + e − f is a matching again.

Indeed, if M + e − f is not a matching, then s(M + e − f) ≥ 1. In fact,
s(M + e− f) = 1, since s(M + e− f) ≤ s(M + e) = 1. So M + e− f contains
a circuit C. As f �∈ C, we know C �= C(M, e), contradicting (43.11).

43.4. A special class of matroids

The min-max equality for matroid matching to be proved, holds for (finite
or infinite) matroids (S, I) satisfying the following condition:

(43.13) for each pair of circuits C1, C2 of (S, I) with C1 ∩ C2 �= ∅ and
r(C1 ∪C2) = |C1 ∪C2|−2, the intersection of span(C) taken over
all circuits C ⊆ C1 ∪ C2 has positive rank.
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Examples of such matroids will be seen in Section 43.6.
In (43.13), ‘circuits’ are meant in the original meaning: as subsets of S.

But the property transfers to subsets of E, as follows:

Lemma 43.1α. Let (S, I) be a matroid satisfying (43.13) and let E be a
collection of pairs from S. Then for each pair of circuits C1, C2 ⊆ E with
C1 ∩ C2 �= ∅ and s(C1 ∪ C2) = 2, the intersection of span(C) taken over all
circuits C ⊆ C1 ∪ C2 has positive rank.

Proof. Let F := C1∪C2. By assumption, s(F ) = 2. Each proper subcollection
F ′ of F satisfies s(F ′) ≤ 1, since if e ∈ Ci, then s(F − e) ≤ s(F ) + s(Ci −
e) − s(Ci) = 2 + 0 − 1 = 1.

Let C1, . . . , Ck be the circuits contained in F . We can assume that k ≥ 3
(otherwise the lemma trivially holds, since C1 ∩ C2 �= ∅ by assumption).

Then

(43.14) Ci ∪ Cj = F for all distinct i, j = 1, . . . , k,

since for any e ∈ F \ (Ci ∪ Cj) we would have that s(F − e) = 1 and that
F − e contains two distinct circuits, which contradicts (43.11).

An equivalent way of stating (43.14) is:

(43.15) F \ C1, . . . , F \ Ck are pairwise disjoint.

Now first assume that there exist distinct e, f ∈ F with e∩f �= ∅. Then |e∪
f | = 3, so {e, f} is a circuit, and therefore by (43.15), each Ci intersects {e, f}
(as k ≥ 3). So each span(Ci) contains e ∩ f , and therefore the intersection of
the span(Ci) is nonempty, as required.

So we can assume that the pairs in F are disjoint. Consider any i. Then
⋃

Ci is a subset of S, containing a unique circuit C ′
i (as subset of S). This

follows from:

(43.16) r(
⋃

Ci) =
∣
∣
⋃

Ci

∣
∣ − 1

(as Ci is a circuit in E), because (43.16) implies that
⋃

Ci contains an inde-
pendent set of size

∣
∣
⋃

Ci

∣
∣ − 1.

Then

(43.17) C ′
i �= C ′

j if i �= j.

Indeed, C ′
i intersects each pair in Ci, since for each e ∈ Ci the union of the

f ∈ Ci − e has rank 2|Ci − e|, hence is independent. As the pairs in F are
disjoint, this shows (43.17).

Moreover, if i �= j and h ∈ {1, . . . , k}, then

(43.18) C ′
h ⊆ C ′

i ∪ C ′
j .

Otherwise, choose x ∈ C ′
i, y ∈ C ′

j \ C ′
i, and z ∈ C ′

h \ (C ′
i ∪ C ′

j). So x, y, z ∈
span((C ′

i ∪ C ′
j ∪ C ′

h) \ {x, y, z}). Hence r(C ′
i ∪ C ′

j ∪ C ′
h) ≤ |C ′

i ∪ C ′
j ∪ C ′

h| − 3,
and so
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(43.19) r(F ) ≤ r(C ′
i ∪ C ′

j ∪ C ′
h) +

∣
∣
⋃

F
∣
∣ − |C ′

i ∪ C ′
j ∪ C ′

h| ≤
∣
∣
⋃

F
∣
∣ − 3,

a contradiction, since s(F ) = 2.
This proves (43.18), which implies that C ′

1 ∩ C ′
2 �= ∅ (since C ′

1 ⊆ C ′
2 ∪ C ′

3
and C ′

1 �⊆ C ′
3). Then by (43.13), the intersection of span(C ′

i) over all i has
positive rank. Hence the intersection of span(Ci) over all i has positive rank.

For any collection E of pairs from S, let HE be the hypergraph with
vertex set E and edges all fundamental circuits. The following theorem will
be used in deriving a general min-max relation.

Theorem 43.1. Let (S, I) be a matroid satisfying (43.13) and let E be a
collection of pairs from S such that the intersection of span(B) over all bases
B of E has rank 0. Then

(43.20) |B ∩ F | = � 1
2r(F )�

for each base B and each component F of HE.

Proof. I. Call two fundamental circuits C, D far if there exist a base B and
e, g ∈ E with r(B + e + g) = 2ν + 2 and with C = C(B, e) and D = C(B, g).
We first show:

(43.21) far fundamental circuits are disjoint.

Suppose to the contrary that there exist a base B and e, g ∈ E with r(B +
e+ g) = 2ν +2 and C(B, e)∩C(B, g) �= ∅. Let D := C(B, e)∪C(B, g). Then

(43.22) s(D) ≥ s(C(B, e)) + s(C(B, g)) − s(C(B, e) ∩ C(B, g)) = 2

and

(43.23) s(D) ≤ s(B + e + g) = 2.

So s(D) = 2. If C is any circuit contained in B + e + g, then C ⊆ D, since
otherwise s(C ∩ D) = 0, and hence

(43.24) 2 = 0 + s(B + e + g) ≥ s(C ∩ D) + s(C ∪ D) ≥ s(C) + s(D) = 3,

a contradiction.
By Lemma 43.1α, there is a nonloop p that is contained in span(C) for

each circuit C ⊆ D. By assumption, there is a base B′ with p �∈ span(B′).
Choose B′ with |B′∩(B+e+g)| maximal. Then r(B′+p) = 2ν+1 < r(B+e+
g), and hence f �⊆ span(B′ +p) for some f ∈ B+e+g. Then p �∈ span(B′ +f)
(since r(B′ + f) ≤ 2ν + 1), and therefore p �∈ span(C(B′, f)). So C(B′, f) is
not one of the circuits contained in B+e+g. Choose h ∈ C(B′, f)\(B+e+g).
Hence, resetting B′ to B′−h+f would give a larger intersection with B+e+g,
a contradiction. This shows (43.21).

II. We next show the theorem assuming that HE is connected. Suppose
to the contrary that r(E) ≥ 2ν(E) + 2. Then far fundamental circuits exist,
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since for any base B, there exist e, g ∈ E with r(B + e + g) = 2ν + 2, since
r(E) ≥ r(B) + 2. Then (43.21) implies, as HE is connected, that there exist
fundamental circuits C, C ′, D with C and D far, C ∩ C ′ �= ∅, and C ′ and D
not far.

Choose e ∈ C ∩ C ′ and f ∈ D. As C and D are far fundamental circuits,
there is a base B with r(B + e+ f) = 2ν +2 and C = C(B, e), D = C(B, f).
Also, as C ′ is a fundamental circuit, there is a base B′ with r(B′ +e) = 2ν+1
and C ′ = C(B′, e). Choose such a B′ with |B′ ∩ (B + f)| maximal.

As r(B + e + f) > r(B′ + e), there exists a g ∈ B + f with r(B′ +
e + g) = 2ν + 2. As C ′ and D are not far, C(B′, g) �= D = C(B, f). So
C(B′, g) �⊆ B + f , and hence there exists an h ∈ C(B′, g) \ (B + f). Set
B′′ := B′ − h + g. Then r(B′′ + h + e) = r(B′ + g + e) = 2ν + 2, and hence
r(B′′+e) = 2ν+1. As, by (43.21), C(B′, g) and C(B′, e) are disjoint, we know
h �∈ C(B′, e), so C(B′, e) ⊆ B′′ + e, and hence C(B′′, e) = C(B′, e) = C ′. As
|B′′∩(B+f)| > |B′∩(B+f)| this contradicts the maximality of |B′∩(B+f)|.

III. We finally prove the theorem in general. Let F be a component of
HE . Suppose that there is a base B of E with |B ∩ F | < � 1

2r(F )�. Then

(43.25) there is a base B of E and a base M of F with |M | > |B ∩ F |.

Otherwise, for each base B of E, B∩F is a base of F . Then HF consists of one
component (as each fundamental circuit of E contained in F is a fundamental
circuit of F ). Hence, by part II of this proof, |B ∩ F | = ν(F ) = � 1

2r(F )�,
contradicting our assumption.

So (43.25) holds. Choose B and M as in (43.25) with |M ∩ B| maximal.
Then

(43.26) span(M) ⊆ span(B),

since otherwise there is an e ∈ M with e �⊆ span(B), and we can choose
f ∈ C(B, e) \ M and replace B by B − f + e, thereby increasing |M ∩ B|,
contradicting the maximality of |M ∩ B|.

Moreover,

(43.27) for each e ∈ F with e �⊆ span(B), we have C(M, e) = C(B, e).

Otherwise, choose f ∈ C(B, e)\(M +e) and g ∈ C(M, e)\(B+e). Replacing
B and M by B − f + e and M − g + e respectively, increases |M ∩ B|, a
contradiction.

As M \ B �= ∅, there is an h ∈ M \ B. Then there is a base B′ of E with
h �⊆ span(B′) (as by the condition in the theorem, there is no nonloop that
is contained in the span of each base). We assume that we have chosen M ,
B, and B′ with |B ∩B′| maximal (under the primary condition that |M ∩B|
is maximum).

Since h �⊆ span(B′), we know by (43.26) that span(B) �= span(B′). Hence
there exists an e ∈ B′ with e �⊆ span(B).
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If e �∈ F , then C(B, e) is disjoint from F (as F is a component of HE).
Choose f ∈ C(B, e)\B′. Then replacing B by B −f +e maintains M , B ∩F ,
and M ∩ B, but increases |B ∩ B′|, contradicting our assumption.

So e ∈ F . By (43.27), C(B, e) = C(M, e). Choose f ∈ C(B, e) \ B′. Then
replacing M and B by M − f + e and B − f + e respectively, maintains |M |,
|B ∩ F |, and |M ∩ B|, but increases |B ∩ B′|, contradicting our assumption.

43.5. A min-max formula for maximum-size matroid
matching

We can now derive a min-max formula for the maximum size of a matching
in matroids satisfying (43.13) in an hereditary way, due to Lovász [1980a]:

Theorem 43.2 (matroid matching theorem). Let M = (S, I) be a (finite
or infinite) matroid (with rank function r) such that each contraction of M
satisfies (43.13). Let E be a finite set of pairs from S. Then the maximum
size ν(E) of a matching in E satisfies

(43.28) ν(E) = min(r(F ) +
k∑

i=1

� 1
2 (r(Fi) − r(F ))�),

where F, F1, . . . , Fk are flats such that F ⊆ Fi for i = 1, . . . , k, and such that
each e ∈ E is contained in some Fi.

Proof. We first show that ≤ holds in (43.28). Let B be a base of E, and
partition B into B1, . . . , Bk such that span(Bi) ⊆ Fi for i = 1, . . . , k. Define
F ′

i := span(Bi).
By induction on l we show that for each l = 0, . . . , k:

(43.29) r(F ∪ F ′
1 ∪ · · · ∪ F ′

l ) ≤ r(F ) +
l∑

i=1

(|Bi| + � 1
2 (r(F ∪ F ′

i ) − r(F ))�).

For l = 0 this is trivial. For l ≥ 1 we have (by induction and submodularity):

(43.30) r(F ∪ F ′
1 ∪ · · · ∪ F ′

l ) ≤ r(F ∪ F ′
1 ∪ · · · ∪ F ′

l−1) + r(F ∪ F ′
l ) − r(F )

≤ r(F ∪ F ′
l ) +

l−1∑

i=1

(|Bi| + � 1
2 (r(F ∪ F ′

i ) − r(F ))�)

≤ r(F ) +
l∑

i=1

(|Bi| + � 1
2 (r(F ∪ F ′

i ) − r(F ))�),

since

(43.31) r(F ∪ F ′
l ) ≤ r(F ) + |Bl| + 1

2 (r(F ∪ F ′
l ) − r(F )),
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as |Bl| = 1
2r(F ′

l ). This shows (43.29), which for l = k implies that ν(E) is at
most (43.28), since

(43.32) 2ν(E) ≤ r(F ∪ F ′
1 ∪ · · · ∪ F ′

k)

≤ r(F ) +
k∑

i=1

(

|Bi| +
⌊ 1

2 (r(F ∪ F ′
i ) − r(F ))

⌋)

= ν(E) + r(F ) +
l∑

i=1

⌊ 1
2 (r(F ∪ Fi) − r(F ))

⌋

.

Equality is shown by induction on r(M). First assume that there is a
nonloop p that is contained in span(B) for each base B of E. Let M ′ be the
matroid M/p obtained by contracting p. Let E′ be the set of pairs {s, t} in
E such that s, t �= p and such that s and t are not parallel in M ′. Let ν′ be
the maximum size of a base B′ ⊆ E′ with respect to M ′.

Then ν′ < ν(E). For suppose that ν′ ≥ ν(E). Let B′ be a base of E′ with
respect to M ′. As |B′| ≥ ν(E), B′ is also a base of E with respect to M .
As rM ′(B′) = 2|B′| = rM (B′), we have p �∈ spanM (B). This contradicts our
assumption.

So ν′ < ν(E). By induction, M ′ has flats F ′, F ′
1, . . . , F

′
k′ with F ′ ⊆ F ′

i for
i = 1, . . . , k′, such that each e ∈ E′ is contained in some F ′

i and such that

(43.33) ν′ = rM ′(F ′) +
k′

∑

i=1

� 1
2 (rM ′(F ′

i ) − rM ′(F ′))�.

Define F := spanM (F ′ + p) and Fi := spanM (F ′
i + p) for i = 1, . . . , k′.

Moreover, for each e ∈ E not occurring in E′, introduce a new Fi with
Fi := spanM (F + e). As p ∈ F , we have rM (Fi) ≤ rM (F ) + 1 for each of
these Fi.

This gives F, F1, . . . , Fk such that F ⊆ Fi for i = 1, . . . , k, such that each
e ∈ E is contained in some Fi and such that

(43.34) ν(E) ≥ ν′ + 1 = rM ′(F ′) + 1 +
k′

∑

i=1

� 1
2 (rM ′(F ′

i ) − rM ′(F ′))�

= r(F ) +
k∑

i=1

� 1
2 (r(Fi) − r(F ))�.

So we can assume that there is no nonloop p contained in span(B) for all
bases B of E. Let E1, . . . , Ek be the components of HE and let Fi := span(Ei)
for i = 1, . . . , k. Let B be a base of E. Then by (43.20),

(43.35) ν(E) = |B| =
k∑

i=1

|B ∩ Ei| =
k∑

i=1

� 1
2r(Fi)�.

So taking F := ∅ gives (43.28).
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43.6. Applications of the matroid matching theorem

We now consider specific classes of matroids satisfying (43.13), such that we
know that the min-max equality holds. First, the linear matroids (Lovász
[1980b]):

Corollary 43.2a. If E is a finite set of pairs from a linear space S, then
(43.28) holds, where flats are linear subspaces of S.

Proof. Let I be the collection of sets of linearly independent vectors in S. We
must show that each contraction of the infinite matroid M = (S, I) satisfies
(43.13). It suffices to show that M satisfies (43.13), since each contraction of
M is again coming from a linear space, up to loops and parallel elements.

Let C1 and C2 be intersecting circuits in M with r(C1∪C2) = |C1∪C2|−2.
As C1 is a circuit, there is a nonzero vector p in span(C1\C2)∩span(C1∩C2),
since r(C1 \ C2) + r(C1 ∩ C2) > r(C1). Consider any circuit C contained in
C1 ∪ C2.

Suppose p �∈ span(C). As p ∈ span(C1 \ C2) ∩ span(C1 ∩ C2), C misses
an element s ∈ C1 \ C2 and an element t ∈ C1 ∩ C2. Now t ∈ span(C2 − t)
and s ∈ span(C1 − s). Hence (C1 ∪ C2) − s − t spans C1 ∪ C2, and hence, as
C1 ∪C2 has rank |C1 ∪C2|−2, we have that (C1 ∪C2)− s− t is independent.
This contradicts the fact that C is contained in (C1 ∪ C2) − s − t.

Dress and Lovász [1987] proved that a similar result holds for algebraic de-
pendence in field extensions (where trK(E) denotes the transcendence degree
of

⋃
E over K):

Corollary 43.2b. Let E be a finite set of pairs from a field extension L of
a field K. Then the maximum number of disjoint pairs from E such that the
union is algebraically independent over K is equal to the minimum value of

(43.36) trK(F ) +
k∑

i=1

� 1
2 trF (Ei)�,

where F ranges over all field extensions of K in L and where E1, . . . , Ek

ranges over all partitions of E.

Proof. Let M = (L, I) be the infinite matroid with I consisting of all subsets
of L that are algebraically independent over K.

Similarly as for the previous corollary, it suffices to show that for any two
intersecting circuits C1 and C2 of M with r(C1 ∪ C2) = |C1 ∪ C2| − 2 there
is an α ∈ L \ span(K) such that α belongs to span(C) for each circuit C
contained in C1 ∪ C2.

Let I := C1 \ C2. Then

(43.37) I is a circuit in M/C2.
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To see this, trivially I is dependent in M/C2. Consider any circuit C ⊆
C1 ∪ C2 intersecting I. We must show that I ⊆ C. Suppose that there is
an s ∈ I \ C. As C intersects I, C misses at least one element of C2, say
t. So C ⊆ (C1 ∪ C2) − s − t. Now (C1 ∪ C2) − s − t spans C1 ∪ C2 (since
t ∈ span(C − t) and s ∈ span(C1 ∪C2 −s)). This implies that (C1 ∪C2)−s− t
is independent (as r(C1 ∪ C2) = |C1 ∪ C2| − 2), contradicting the fact that it
contains a circuit. This proves (43.37).

Let I = {s1, . . . , sn}. Since I is a circuit in M/C2, there exists an irre-
ducible polynomial p in span(C2)[x1, . . . , xn] with p(s1, . . . , sn) = 0. We can
choose p such that at least one coefficient of p equals 1. Note that p has at
least one coefficient, α say, that is not in span(K), since I is independent over
K. It therefore is enough to show that all coefficients of p belong to span(C)
for each circuit C contained in C1∪C2, since then α belongs to each span(C).

Choose a circuit C �= C2 with C ⊆ C1 ∪ C2. As I is a circuit in
M/C2, we have C \ C2 = I. So I is a circuit in M/(C ∩ C2). Hence
there exists an irreducible polynomial q in span(C ∩ C2)[x1, . . . , xn] with
q(s1, . . . , sn) = 0. As span(C ∩ C2) is algebraically closed in span(C2), q is
also irreducible in span(C2)[x1, . . . , xn]33. Then p and q are also irreducible
in span(C2)(x1, . . . , xn−1)[xn] (cf., for instance, Section IV:6 of Jacobson
[1951]). Therefore, p is a multiple of q in span(C2)(x1, . . . , xn−1); that is,
there are nonzero r, s ∈ span(C2)[x1, . . . , xn−1] with rp = sq. Hence by
the unique factorization theorem (cf., for instance, Section IV:6 of Jacob-
son [1951]), p = λq for some λ ∈ span(C2). As some coefficient of p equals 1,
λ ∈ span(C ∩ C2). Hence p ∈ span(C ∩ C2)[x1, . . . , xn].

(The property of algebraic matroids shown in this proof generalizes a property
shown by Ingleton and Main [1975].)

We also formulate the special case of graphic matroids:

Corollary 43.2c. Let G = (V, E) be a graph and let P be a partition of E
into pairs. Then the maximum size of a forest F ⊆ E that is the union of
classes of P is equal to the minimum value of

(43.38) 2|V | − 2|Q| + 2
k∑

i=1

� 1
2δQ(Ei)�,

33 This can be seen as follows. Let L be a field extension of field K, such that K is
algebraically closed in L. Then if p is an irreducible polynomial in K[x1, . . . , xn], then
p is irreducible also in L[x1, . . . , xn]. For suppose to the contrary that p = p1p2 for
nonconstant polynomials p1, p2 in L[x1, . . . , xn]. We can assume that p1 has at least
one coefficient in K. Hence, as p is irreducible in K[x1, . . . , xn], p1 has at least one
coefficient not in K. Choose a large enough natural number k such that substituting xi

by xki
for i = 1, . . . , n, transforms p1 to a polynomial p̃1 in L[x]\K[x]. Let p̃ ∈ K[x] be

obtained similarly from p. Now the algebraic closure of K contains all roots of p̃, hence
all roots of p̃1, and hence all coefficients of p̃1. As each element in L\K is transcendental
over K, we have a contradiction.



Section 43.6. Applications of the matroid matching theorem 755

where Q ranges over partitions of V into nonempty classes and where
E1, . . . , Ek ranges over partitions of E such that each Ei is a union of pairs in
P. In (43.38), δQ(Ei) denotes the size of a largest forest in the graph obtained
from (V, Ei) by contracting each class in Q to one vertex.

Proof. We apply Theorem 43.2 to the cycle matroid M of the graph H
obtained from the complete graph on V by adding a parallel edge for each
edge in E. Then (43.13) is satisfied for each contraction of M .

Now for each flat F of M there is a partition Q of V such that F is the
set of edges of H contained in a class of Q. The rank r(F ) of F (in M) is
equal to |V | − |Q|. For any E′ ⊆ E, the smallest flat F ′ containing F ∪ E′

has rank r(F ′) = δQ(E′) + r(F ). Hence the corollary follows from Theorem
43.2.

This corollary implies the following result on 3-uniform hypergraphs. A
hypergraph is a pair H = (V, E), where V is a finite set and E is a family of
subsets of V . The hypergraph is called k-uniform if |U | = k for each U ∈ E .

A subfamily F of E is called a forest if there do not exist distinct
v1, . . . , vt ∈ V and distinct U1, . . . , Ut ∈ F such that t ≥ 2 and vi−1, vi ∈ Ui

for i = 1, . . . , t, setting v0 := vt.
Corollary 43.2c implies a min-max relation for the maximum size of a

forest in a given 3-uniform hypergraph (Lovász [1980a]):

Corollary 43.2d. Let H = (V, E) be a 3-uniform hypergraph. Then the max-
imum size of a forest F ⊆ E is equal to the minimum value of

(43.39) |V | − |Q| +
∑

S∈Σ

� 1
2 (φQ(S) − 1)�,

where Q and Σ range over partitions of V and E, respectively. Here φQ(S)
denotes the number of classes of Q intersected by

⋃
S.

Proof. For each U ∈ E , choose two different pairs eU , fU ⊆ U , and let
G = (V, E) be the graph with edges all eU and fU . Let P be the partition of
E into the pairs eU , fU . Then the maximum size of a forest F ⊆ E is equal to
half of the maximum size of a forest in E that is the union of pairs in P. So
to see that Corollary 43.2c implies the present corollary, it suffices to show
that minimum (43.39) is equal to half of minimum (43.38).

First, let Q and Σ attain minimum (43.39). The partition Σ of E induces
a partition of E into classes {eU , fU | U ∈ S} for S ∈ Σ. One easily checks
that for each S ∈ Σ:

(43.40) δQ({eU , fU | U ∈ S}) ≤ φQ(S) − 1,

which implies that the minimum (43.39) is not less than half of minimum
(43.38).

Second, to see the reverse inequality, let Q, E1, . . . , Ek attain minimum
(43.38). Consider any i = 1, . . . , k. Let Q′ be the set of those classes in Q
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intersected by Ei and let t be the number of components of the hypergraph
(V, Q′ ∪ Ei). Then δQ(Ei) = |Q′| − t. The components partition Ei into
Ei,1, . . . , Ei,t. Then

(43.41) δQ(Ei) = |Q′| − t =
t∑

j=1

(φQ(Ei,j) − 1).

So letting Σ to be the partition of E into classes Si,j := {U | eU , fU ∈ Ei,j}
(for all i, j), we have that minimum (43.38) is not less than twice minimum
(43.39).

(Szigeti [1998a] gave a direct proof of this theorem for the case where the
hypergraph consists of all triangles of a given graph.)

Other applications of matroid matching are a derivation of Mader’s theo-
rem on maximum packings of T -paths (cf. Chapter 73), to rigidity (see Lovász
[1980a]), and to matching forests (an easy application, see Section 59.6b).

43.7. A Gallai theorem for matroid matching and
covering

We prove a Gallai-type theorem that relates the maximum size of a matroid
matching to the minimum number of pairs spanning the matroid.

Let E be a collection of pairs of elements from a matroid (S, I) such that
each pair is an independent set and such that span(E) = S. Call F ⊆ E a
matroid cover if span(F ) = S. Let ρ(E) be the minimum size of a matroid
cover. The following relation between ν(E) and ρ(E) was observed by Lovász
and extends Gallai’s theorem (Theorem 19.1):

Theorem 43.3. Let (S, I) be a matroid, with rank function r, and let E be
a collection of pairs from S spanning S. Then ν(E) + ρ(E) = r(S).

Proof. To see ≤, let M be matching of size ν(E). Then by adding at most
r(S) − r(M) pairs from E to M we obtain a matroid cover F . So ρ(E) ≤
|F | ≤ |M | + (r(S) − r(M)) = ν(E) + r(S) − 2ν(E) = r(S) − ν(E).

To see ≥, let F be a matroid cover of size ρ(E). Let M := F . As long
as M contains an element e with r(M − e) ≥ r(M) − 1, delete e from M .
We end up with a matching M . For suppose not. Let M ′ be a maximum-size
matching contained in M , and choose e ∈ M \M ′. Then r(M −e) ≤ r(M)−2
(otherwise we would delete e from M). Hence:

(43.42) r(M ′ + e) ≥ r(M ′) + r(M) − r(M − e) ≥ r(M ′) + 2 = 2|M ′| + 2.

So M ′ + e is a matching, contradicting the maximality of M ′.
So M is a matching. Each time we have deleted an edge from M , its rank

drops by at most 1. Hence r(M) ≥ r(S) − (|F | − |M |). Therefore ν(E) ≥
|M | = r(M) − |M | ≥ r(S) − |F | = r(S) − ρ(E).
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This theorem implies that formula (43.28) for the maximum size of a
matching yields a formula for the minimum number of lines spanning all
space.

43.8. Linear matroid matching algorithm

Jensen and Korte [1982] and Lovász [1981] showed that no polynomial-time
algorithm exists for the matroid matching problem in general (see Section
43.9). On the other hand, Lovász [1981] gave a strongly polynomial-time algo-
rithm for the matroid matching problem for linear matroids (an explicit repre-
sentation over a field is required). This extends, e.g., Edmonds’ polynomial-
time algorithm finding a maximum matching in an undirected graph (cf.
Section 24.2). It does not extend Edmonds’ algorithm for a maximum-size
common independent set in two matroids, as this algorithm also works for
nonlinear matroids.

Theorem 43.4. Given a set E of pairs of vectors in a linear space L, a
maximum-size matching can be found in strongly polynomial time.

Proof. The algorithm is a ‘brute-force’ polynomial-time algorithm, based on
collecting many matchings and utilizing standard linear-algebraic operations,
which can be performed in strongly polynomial time. Since we deal with
subsets of a vector space, we can use X + Y := {x + y | x ∈ X, y ∈ Y }. For
each X ⊆ L, span(X) is a subspace of L.

Throughout this proof, B will be a collection of matchings, all of the same
size ν (say). Define:

(43.43) KB :=
⋂

{span(B) | B ∈ B} and HB := the hypergraph with
vertex set E and edges all fundamental circuits of all B ∈ B.

We say that we improve B if we find, in strongly polynomial time, either
a matching B of size ν + 1, or of size ν such that KB �⊆ span(B), or of
size ν such that HB∪{B} has fewer components than HB. So replacing B by
{B} if |B| = ν + 1, and by B ∪ {B} if |B| = ν, we can have at most 2|E|
improvements.

I. We first show (where a component is called nontrivial if it has more than
one element):

(43.44) We can improve B if we have a union F of nontrivial components
of HB, a matching M ⊆ F , and a B ∈ B such that r(M ∪ A) >
|B ∩ F | + |M |, where A := span(B ∩ F ) ∩ KB.

Here and below, r(X ∪ Y ) := r(
⋃

X ∪ Y ) for X ⊆ E and Y ⊆ S.
To see (43.44), apply the first applicable case of the following five cases,

and then iterate. If Case 1 applies, we improve B. In any of the other cases,
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we reset B or M or both, add the reset B to B, and iterate with the reset B
and M . The input condition given in (43.44) is maintained, as will be shown
after describing the five cases.

Case 1: There is a B′ ∈ B and an e ∈ E such that B′ + e is a
matching, or such that C(B′, e) intersects both F and E \ F , or
such that KB �⊆ span(B′ − f + e) for some f ∈ C(B′, e). Output
B′ + e, B′, or B′ − f + e (thus we improve B).

Note that if Case 1 does not apply, then

(43.45) f �⊆ KB for each f ∈ F .

Indeed, as f is in a nontrivial component of HB, f is contained in some
fundamental circuit C(B′, e) for some B′ ∈ B. As Case 1 does not apply, we
know KB ⊆ span(B′ − f + e). Hence, if f ⊆ KB, then f ⊆ span(B′ − f + e),
hence 2ν + 1 = r(B′ + e) = r(B′ − f + e) = 2ν, a contradiction.

Case 2: There is an e ∈ F such that M + e is a matching and
r((M ∪ A) + e) ≥ r(M ∪ A) + 1. Reset M := M + e.

Case 3: span(M) �⊆ span(B). Choose e ∈ M with e �⊆ span(B), choose
f ∈ C(B, e) \ M , and reset B := B − f + e.

Case 4: There is an e ∈ F such that e �⊆ span(B) and C(B, e) �=
C(M, e). (Note: e �⊆ span(M) + A, since span(M) + A ⊆ span(B) (as Case
3 does not apply). So, as Case 2 does not apply, M + e is not a matching.
Hence C(M, E) is defined.)

Choose f ∈ C(B, e) \ (M + e) and g ∈ C(M, e) \ (B + e), and reset
B := B − f + e and M := M − g + e.

Case 5. Choose B′ ∈ B with span(M
(B ∩ F )) �⊆ span(B′) and with
|B ∩B′| maximal. (This is possible, since M �= B ∩F , since r((B ∩F )∪A) =
r(B ∩ F ) = 2|B ∩ F | and r(M ∪ A) > |B ∩ F | + |M | by assumption. As
M
(B ∩ F ) ⊆ F , such a B′ exists, by (43.45).)

Choose e ∈ B′ with e �⊆ span(B). (This is possible since span(M
(B ∩
F )) ⊆ span(B), so span(B) �= span(B′).)

Choose f ∈ C(B, e) \ B′. If e �∈ F , reset B := B − f + e. If e ∈ F ,
reset B := B − f + e and M := M − f + e. (Note that if e ∈ F , then
C(B, e) = C(M, e) as Case 4 does not apply.)

Running time. The number of iterations is polynomially bounded, since in
each iteration (except the last, where Case 1 applies), the vector (|M |, |M ∩
B|, |B ∩ B′|) increases lexicographically. Here it is important to note that
Case 5 does not modify the set M
(B ∩ F ), and increases the intersection
of this set with B′.

We finally prove that the resettings in Cases 2-5 indeed maintain the
condition given in (43.44). Let B̃, M̃ , and Ã denote B, M , and A after
resetting (taking B̃ or M̃ equal to B or M if they are not reset). We must
show

(43.46) r(M̃ ∪ Ã) > |B̃ ∩ F | + |M̃ |.
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Note that, as Case 1 does not apply, |B̃ ∩ F | = |B ∩ F |.
We first show:

(43.47) A ⊆ Ã.

This is equivalent to (since KB does not change, as Case 1 does not apply):

(43.48) A ⊆ span(B̃ ∩ F ).

This is trivial if B̃ ∩ F = B ∩ F . So we can assume that B̃ ∩ F �= B ∩ F .
Hence B̃ = B − f + e for some e, f ∈ F . Then (43.48) follows from

(43.49) r((B̃ ∩F )∪A) ≤ r((B̃ ∩F )∪A+ f)− 1 = r((B ∩F )∪A+ e)− 1
= r((B ∩ F ) + e) − 1 ≤ r(B ∩ F ) = 2|B ∩ F | = 2|B̃ ∩ F |
= r(B̃ ∩ F ).

Here the first inequality holds as f �⊆ span(B̃ ∩ F ) + A, since f �⊆ span(B̃)
and span(B̃ ∩ F ) + A ⊆ span(B̃). (We use that A ⊆ KB ⊆ span(B̃), as Case
1 does not apply.) The last inequality holds as (B ∩F )+ e is not a matching,
since it contains C(B, e) (as Case 1 does not apply). This shows (43.48), and
hence (43.47).

We finally show (43.46). In Case 2, we have B̃ = B, M̃ = M + e, and
Ã = A, and hence

(43.50) r(M̃ ∪ Ã) = r((M ∪ A) + e) ≥ r(M ∪ A) + 1 > |B ∩ F | + |M | + 1
= |B̃ ∩ F | + |M̃ |,

as required.
In Case 3, (43.47) implies (as M̃ = M) that r(M̃ ∪ Ã) ≥ r(M ∪ A) >

|B ∩ F | + |M | = |B̃ ∩ F | + |M |.
In Cases 4 and 5 we have M̃ = M − g + e (possible g = f). Then

(43.51) r(M̃ ∪ Ã) ≥ r(M̃ ∪A) ≥ r((M̃ ∪A)+ g)− 1 = r((M ∪A)+ e)− 1
≥ r(M ∪ A) > |B ∩ F | + |M | = |B̃ ∩ F | + |M̃ |.

The first inequality follows from (43.47). Next, e �⊆ span(M ∪ A) (as e �⊆
span(B) and as A ⊆ span(B) and span(M) ⊆ span(B), since Case 3 does not
apply). This gives the third inequality. To see the second inequality, suppose
it does not hold. Then M̃ + g is a matching, hence M + e is a matching.
Therefore, as Case 2 does not apply, r(M ∪A+ e) = r(M ∪A), contradicting
the fact that e �⊆ span(M ∪ A).

II. Secondly,

(43.52) we can improve B if KB = {0}, HB is connected, and ν <
� 1

2r(E)�.
(In this case, B can only be improved by finding a matching larger than B.)

The algorithm follows the framework of parts I and II in the proof of
Theorem 43.1. Again, the algorithm iteratively applies the first applicable
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case. Call two circuits C1, C2 far if there exist B ∈ B and e, g ∈ E with
r(B + e + g) = 2ν + 2 and C1 = C(B, e) and C2 = C(B, g).

Case 1: There exists a B ∈ B and e ∈ E such that B + e is a
matching of size ν + 1. Output B + e.

Case 2: There exist far circuits C1 and C2 with C1 ∩ C2 �= ∅. We
will create a matching of size ν + 1.

Let C1 = C(B, e) and C2 = C(B, g) for some B ∈ B with e, g ∈ E and
r(B+e+g) = 2ν+2. Define D := C1∪C2. As is shown in the proof of Corollary
43.2a, there is a p �= 0 contained in span(C) for each circuit C ⊆ D. Since
KB = {0}, there is a B′ ∈ B with p �∈ span(B′). Now r(B′ + p) = 2ν + 1 <
r(B + e + g), and hence f �⊆ span(B′ + p) for some f ∈ B + e + g. Then (as
B′ + f is not a matching, since Case 1 does not apply) p �∈ span(B′ + f),
and therefore p �∈ span(C(B′, f)). So C(B′, f) is not contained in B + e + g.
Choose h ∈ C(B′, f)\ (B +e+g). Hence, resetting B′ to B′ −h+f increases
|B′ ∩ (B + e + g)|. So iterating this, we finally obtain a matching larger than
ν.

Case 3. We show that we can create a matching of size ν + 1, or make
that Case 1 or 2 applies.

Far circuits exist, since for any base B, there exist e, g ∈ E with r(B+e+
g) = 2ν +2, since r(E) ≥ r(B)+2. Choose far circuits C, D that are closest34

together in the hypergraph HB. Assuming that Case 2 does not apply, we
know C∩D = ∅. Hence there is an intermediate set C ′ on a shortest path from
C to D. Let C = C(B, e), D = C(B, g), and C ′ = C(B′, f) for B, B′ ∈ B and
e, f, g ∈ E with r(B+e+g) = 2ν+2. We choose B′ such that |B′∩(B+e+g)|
is maximal. Choose h ∈ B + e + g with h �⊆ span(B′ + f).

C(B′, h) and C(B′, f) are disjoint, since otherwise we can apply Case 2.
Moreover,

(43.53) C(B′, h) �⊆ B + e + g,

Otherwise, C(B′, h) = C(B, e) or C(B′, h) = C(B, g). Hence C ′ and C or D
are far, contradicting the minimality of the distance of C and D.

Hence we have (43.53). Choose i ∈ C(B′, h) \ (B + e + g) and add B′′ :=
B′ − i + h to B. Iterate Case 3 with B′ replaced by B′′ (note that C ′ =
C(B′′, f)). As |B′′ ∩ B| > |B′ ∩ B|, the number of iterations of Case 3 is at
most ν.

III. Combination of the previous two algorithms implies:

(43.54) we can improve B if KB = {0} and ν < ν(E).

As ν < ν(E), there is a component F of HB with |B ∩ F | < ν(F ) ≤ � 1
2r(F )�

for at least one B ∈ B. If there exist B, B′ ∈ B with |B ∩ F | < |B′ ∩ F |, set
34 Here the distance of fundamental circuits C, D is the minimum length of a path con-

necting C and D. A path connecting C and D is a sequence C = C0, . . . , Ck = D of
fundamental circuits such that Ci−1 ∩ Ci �= ∅ for i = 1, . . . , k. Its length is k.
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M := B′ ∩ F . Otherwise (that is, if |B ∩ F | = |B′ ∩ F | for all B′ ∈ B), apply
(43.52) to B′ := {B ∩ F | B ∈ B} and B ∩ F for any B ∈ B, to obtain a
matching M ⊆ F with |M | = |B ∩ F | + 1.

Now applying (43.44) to B, F , B, and M improves B. (Since A ⊆ KB, we
have A = {0}, and hence r(M ∪ A) = r(M) = 2|M | > |M | + |B ∩ F |.)

IV. Finally:

(43.55) We can improve B if B �= ∅ and ν < ν(E).

Define F to be the union of all fundamental circuits of the B ∈ B. This
implies

(43.56) span(E \ F ) ⊆ KB.

If there exist B, B′ ∈ B with |B ∩ F | < |B′ ∩ F |, then applying (43.44) to
B and M := B′ ∩ F improves B. So we can assume that |B ∩ F | = β for all
B ∈ B. Choose B0 ∈ B with r(span(B0 ∩ F ) ∩ KB) maximal. Define

(43.57) A := span(B0 ∩ F ) ∩ KB, E′ := F/A, and ν′ := β − r(A).

For each B ∈ B there is a matching MB in (B ∩ F )/A of size ν′, since

(43.58) β − r(span(B ∩ F ) ∩ A) ≥ β − r(span(B ∩ F ) ∩ KB)
≥ β − r(span(B0 ∩ F ) ∩ KB) = β − r(A) = ν′.

Let B′ := {MB | B ∈ B}. Then KB′ = {0}, since

(43.59)
⋂

B∈B
span(B ∩ F ) ⊆ span(B0 ∩ F ) ∩

⋂

B∈B
span(B)

= span(B0 ∩ F ) ∩ KB = A.

Since ν(E) > ν we have ν(E′) > ν′. Indeed, let B′ be a matching in E of size
ν +1. Then B′/A contains a matching of size |B′ ∩F |− r(span(B′ ∩F )∩A).
Hence

(43.60) ν(E′) ≥ |B′ ∩ F | − r(span(B′ ∩ F ) ∩ A)
= |B′| − |B′ \ F | − r(span(B′ ∩ F ) ∩ A)
= |B′|− 1

2 (r(B′ \F )+r(span(B′ ∩F )∩A))− 1
2r(span(B′ ∩F )∩A)

≥ |B′| − 1
2r(KB) − 1

2r(A) > |B0| − 1
2r(KB) − 1

2r(A)
≥ |B0| − 1

2 (r(B0 \ F ) + r(A)) − 1
2r(A) = |B0 ∩ F | − r(A) = ν′.

The second inequality holds as span(B′\F ) and span(B′∩F )∩A are subspaces
of KB having intersection {0} (since B is a matching and as (43.56) holds).
The last inequality follows from

(43.61) r(KB) = r(span(B0) ∩ KB)
= r((span(B0 \ F ) + span(B0 ∩ F )) ∩ KB)
= r(span(B0 \ F ) + (span(B0 ∩ F ) ∩ KB))
= r(span(B0 \ F ) + r(span(B0 ∩ F ) ∩ KB)).

Here we use that
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(43.62) (span(B0 \ F ) + span(B0 ∩ F )) ∩ KB
= span(B0 \ F ) + (span(B0 ∩ F ) ∩ KB),

which holds since if x ∈ span(B0 \F ) and y ∈ span(B0 ∩F ) with x+y ∈ KB,
then y ∈ KB (since x ∈ span(B0 \ F ) ⊆ KB by (43.56)).

Now applying (43.54) repeatedly to B′, we finally find a matching M ′ in
E′ with |M ′| = ν′ + 1. It corresponds to a matching M in F with

(43.63) r(M ∪A) = 2|M |+r(A) = |M |+ν′+1+r(A) = |B0∩F |+|M |+1.

Then applying (43.44) improves B.

The proof also yields an alternative proof of Theorem 43.2.
While most of the matroids we meet in daily life are linear, it might yet

be interesting to extend the algorithm to the class of algebraic matroids. As
Dress and Lovász [1987] remark, this requires the development of algorithmic
techniques for algebraic matroids, for instance, for testing algebraic indepen-
dence, and for finding a point p in the intersection of certain flats. If such
techniques are available, pursuing the layout of the above algorithm for linear
matroids might yield a polynomial-time algorithm for algebraic matroids.

An augmenting path algorithm for linear matroid matching, of complexity
O(n3m) (where n := rank, m := |S|) was given by Stallmann and Gabow
[1984] and Gabow and Stallmann [1986] and an O(n4m)-time algorithm (by
solving a sequence of matroid intersection algorithms) by Orlin and Vande
Vate [1990] (these bounds can be improved to O(n2.376m) and O(n3.376m),
respectively, with fast matrix multiplication).

43.9. Matroid matching is not polynomial-time solvable
in general

Theorem 43.2 characterizes the matroid matching problem for algebraic ma-
troids, and one is challenged to extend this to general matroids. A main
objection to do this in a direct way is that in Theorem 43.2 a line of E may
intersect the flat F in a point not contained in the original matroid. So we
need to extend the matroid in some way, which is quite natural for linear
matroids, but, as Lovász remarks, ‘in general, there seems to be no hope to
extend the original matroid so as to achieve the validity of [Theorem 43.2].
The possibility of “simulating” the flat F inside the matroid seems to be a
difficult, and probably not only technical, question.’

Jensen and Korte [1982] and Lovász [1981] showed that, for matroids in
general, the matroid matching problem is not solvable in polynomial time,
if the matroid is given by an independence testing oracle (an oracle telling
if a given set is independent or not). The construction in both papers is as
follows.
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Let ν ∈ Z, let S be a set, and let E be a partition of S into pairs. Let M
be the matroid on S of rank 2ν, where T ⊆ S is independent if and only if
|T | ≤ 2ν − 1, or |T | = 2ν and T is not the union of ν pairs in E.

For each subset F of E of size ν, let MF be the matroid on S obtained
from M by adding

⋃
F as independent subset.

It is easy to check that M and each of the MF are matroids, and that E
has no matroid matching of size ν with respect to M , while F is the unique
matroid matching of size ν in MF .

Suppose now that we want to find the maximum size of a matroid match-
ing in a matroid, and that we know that the matroid is equal to M or to MF

for some ν-element F ⊆ E. Then we must ask the oracle for the independence
of

⋃
F for each ν-element subset F of E, in order to know if there exists a

matroid matching of size ν. This takes exponential time.
This example shows that the matroid matching problem even does not

belong to (oracle) co-NP, since any certificate that the matching number is at
most ν − 1, needs the oracle output that

⋃
F is dependent, for all ν-element

subsets F of E.
The example can be easily adapted to remove the oracle, and to obtain

a proper problem in NP that is NP-complete. Let G be an undirected graph
with vertex set V and let ν ∈ Z+. For each vertex v of G, let pv be a
pair of elements, such that pu ∩ pv = ∅ if u �= v. Let S :=

⋃

v∈V pv and
E := {pv|v ∈ V }. So E is a partition of S into pairs. Define a matroid on S
by extending the matroid M above by an independent set

(43.64) I :=
⋃

v∈C

pv

for each clique C of G with |C| = ν. Then E contains a matroid matching of
size ν if and only if G has a clique of size ν. As the maximum-size clique prob-
lem is NP-complete, also the matroid matching problem for such matroids is
NP-complete.

43.10. Further results and notes

43.10a. Optimal path-matching

Cunningham and Geelen [1996,1997] gave the following generalization of nonbipar-
tite matching and matroid intersection.

Let G = (V,E) be an undirected graph, let S1 and S2 be two disjoint stable
subsets of V , and let M1 = (S1, I1) and M2 = (S2, I2) be matroids, with rank
functions r1 and r2, such that r1(S2) = r2(S2) =: ρ. Define R := V \ (S1 ∪ S2). A
basic path-matching is a collection of ρ vertex-disjoint B1 − B2 paths, each having
all internal vertices in R, where B1 and B2 are bases of M1 and M2 respectively,
together with a perfect matching on the vertices of R not covered by these paths.
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If R = V , a basic path-matching is just a perfect matching. If R = ∅ and E
consists of disjoint edges linking S1 and S2, then a basic path-matching corresponds
to a common base.

Geelen and Cunningham showed that a basic path-matching exists if and only
if for each U1 ⊆ S1 ∪R and U2 ⊆ S2 ∪R such that there is no edge connecting two
sets among U1 ∩ U2, U1 \ U2, U2 \ U1, one has

(43.65) r1(S1 \ U1) + r2(S2 \ U2) + |R \ (U1 ∪ U2)| ≥ ρ+ o(G[U1 ∩ U2]),

where o(H) is the number of odd components of a graph H. Moreover, they gave a
polynomial-time algorithm to decide whether there exists a basic path-matching.

More generally, they introduced the concept of an independent path-matching,
which is a set F of edges such that each nonsingleton component of the graph
(V, F ) is an S1 ∪R− S2 ∪R path all of whose internal vertices are in R, and such
that the vertices in Si covered by the paths is independent in Mi (i = 1, 2). The
corresponding independent path-matching vector is the vector x ∈ Z

E
+ with x(e) = 0

if e �∈ F , x(e) = 2 if e ∈ F forms a component of (V, F ) with both ends of e in R,
and x(e) = 1 otherwise.

Geelen and Cunningham showed that the convex hull of the independent path-
matching vectors is determined by:

(43.66) xe ≥ 0 for e ∈ E,
x(δ(v)) ≤ 2 for v ∈ R,
x(E[U ]) ≤ |U ∩R| for U ⊆ V with U ∩ S1 = ∅ or U ∩ S2 = ∅,
x(E[U ]) ≤ |U | − 1 for U ⊆ R,
x(δ(U)) ≤ ri(U) for U ⊆ Si and i = 1, 2,

and that this system is TDI. It implies that the maximum of 1Tx over independent
path-matching vectors is equal to the minimum of

(43.67) r1(S1 \ U1) + r2(S2 \ U2) + |R \ (U1 ∪ U2)| + |R| − o(G[U1 ∩ U2])

over all Ui ⊆ Si ∪R (i = 1, 2) such that there is no edge connecting two sets among
U1 ∩U2, U1 \U2, U2 \U1. (A simplified proof of this was given by Frank and Szegő
[2002].)

Cunningham and Geelen argue that the set of inequalities (43.66) can be checked
in polynomial time, implying (with the ellipsoid method) that, for any weight func-
tion w, an independent path-matching vector x maximizing wTx can be found in
strongly polynomial time. A combinatorial algorithm for the unweighted version
was given by Spille and Weismantel [2002a,2002b].

For a survey, see Cunningham [2002].

43.10b. Further notes

Hochstättler and Kern [1989] showed that condition (43.13) is implied by the fol-
lowing:

(43.68) for any three flats A,B,C with

r(A ∪ C) − r(A) = r(B ∪ C) − r(B) = r(A ∪B ∪ C) − r(A ∪B),

one has

r(span(A ∪ C) ∩ span(B ∪ C)) − r(A ∩B) = r(A ∪ C) − r(A).
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Matroids with this property are called pseudomodular by Björner and Lovász [1987],
who proved that full linear matroids (infinite matroids determined by linear inde-
pendence of a linear space), full algebraic matroids (infinite matroids determined
by algebraic independence of a field extension of a field), and full graphic matroids
(cycle matroids of a complete graph) are pseudomodular. See also Lindström [1988],
Dress, Hochstättler, and Kern [1994], and Tan [1997].

A randomized parallel algorithm for linear matroid matching was given by Na-
rayanan, Saran, and Vazirani [1992,1994]. Stallmann and Gabow [1984] gave an
algorithm for graphic matroid matching with running time O(n2m), which was im-
proved by Gabow and Stallmann [1985] to O(nm log6 n). Tong, Lawler, and Vazi-
rani [1984] found a polynomial-time algorithm for weighted matroid matching for
gammoids (by reduction to weighted matching). Structural properties of matroid
matching, including an Edmonds-Gallai type decomposition, were given by Vande
Vate [1992], which paper also studied the matroid matching polytope and a frac-
tional relaxation of it.

The matroid matching problem generalizes the matchoid problem of J. Edmonds
(cf. Jenkyns [1974]): given a graph G = (V,E) and a matroid Mv = (δ(v), Iv) for
each v in V , what is the maximum number of edges such that the restriction to
δ(v) forms an independent set in Mv, for each v in V ?



Chapter 44

Submodular functions and
polymatroids

In this chapter we describe some of the basic properties of a second main
object of the present part, the submodular function. Each submodular func-
tion gives a polymatroid, which is a generalization of the independent set
polytope of a matroid. We prove as a main result the theorem of Edmonds
[1970b] that the vertices of a polymatroid are integer if and only if the
associated submodular function is integer.

44.1. Submodular functions and polymatroids

Let f be a set function on a set S, that is, a function defined on the collection
P(S) of all subsets of S. The function f is called submodular if

(44.1) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all subsets T, U of S. Similarly, f is called supermodular if −f is submodu-
lar, i.e., if f satisfies (44.1) with the opposite inequality sign. f is modular if f
is both submodular and supermodular, i.e., if f satisfies (44.1) with equality.

A set function f on S is called nondecreasing if f(T ) ≤ f(U) whenever
T ⊆ U ⊆ S, and nonincreasing if f(T ) ≥ f(U) whenever T ⊆ U ⊆ S.

As usual, denote for each function w : S → R and for each subset U of S,

(44.2) w(U) :=
∑

s∈U

w(s).

So w may be considered also as a set function on S, and one easily sees that
w is modular, and that each modular set function f on S with f(∅) = 0 may
be obtained in this way. (More generally, each modular set function f on S
satisfies f(U) = w(U) + γ (for U ⊆ S), for some unique function w : S → R

and some unique real number γ.)
In a sense, submodularity is the discrete analogue of convexity. If we

define, for any f : P(S) → R and any x ∈ S, a function δfx : P(S) → R

by: δfx(T ) := f(T ∪ {x}) − f(T ), then f is submodular if and only if δfx is
nonincreasing for each x ∈ S.

In other words:
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Theorem 44.1. A set function f on S is submodular if and only if

(44.3) f(U ∪ {s}) + f(U ∪ {t}) ≥ f(U) + f(U ∪ {s, t})

for each U ⊆ S and distinct s, t ∈ S \ U .

Proof. Necessity being trivial, we show sufficiency. We prove (44.1) by in-
duction on |T
U |, the case |T
U | ≤ 2 being trivial (if T ⊆ U or U ⊆ T )
or being implied by (44.3). If |T
U | ≥ 3, we may assume by symmetry that
|T \ U | ≥ 2. Choose t ∈ T \ U . Then, by induction,

(44.4) f(T ∪U)−f(T ) ≤ f((T \{t})∪U)−f(T \{t}) ≤ f(U)−f(T ∩U),

(as |T
((T \ {t}) ∪ U)| < |T
U | and |(T \ {t})
U | < |T
U |). This shows
(44.1).

Define two polyhedra associated with a set function f on S:

(44.5) Pf := {x ∈ R
S | x ≥ 0, x(U) ≤ f(U) for each U ⊆ S},

EPf := {x ∈ R
S | x(U) ≤ f(U) for each U ⊆ S}.

Note that Pf is nonempty if and only if f ≥ 0, and that EPf is nonempty if
and only if f(∅) ≥ 0.

If f is a submodular function, then Pf is called the polymatroid associated
with f , and EPf the extended polymatroid associated with f . A polyhedron
is called an (extended) polymatroid if it is the (extended) polymatroid as-
sociated with some submodular function. A polymatroid is bounded (since
0 ≤ xs ≤ f({s}) for each s ∈ S), and hence is a polytope.

The following observation presents a basic technique in proofs for sub-
modular functions, which we often use without further reference:

Theorem 44.2. Let f be a submodular set function on S and let x ∈ EPf .
Then the collection of sets U ⊆ S satisfying x(U) = f(U) is closed under
taking unions and intersections.

Proof. Suppose x(T ) = f(T ) and x(U) = f(U). Then

(44.6) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U) ≥ x(T ∩ U) + x(T ∪ U)
= x(T ) + x(U) = f(T ) + f(U),

implying that equality holds throughout. So x(T ∩ U) = f(T ∩ U) and x(T ∪
U) = f(T ∪ U).

A vector x in EPf (or in Pf ) is called a base vector of EPf (or of Pf ) if
x(S) = f(S). A base vector of f is a base vector of EPf . The set of all base
vectors of f is called the base polytope of EPf or of f . It is a face of EPf ,
and denoted by Bf . So

(44.7) Bf = {x ∈ R
S | x(U) ≤ f(U) for all U ⊆ S, x(S) = f(S)}.
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(It is a polytope, since xs = x(S) − x(S \ {s}) ≥ f(S) − f(S \ {s}) for each
s ∈ S.)

Let f be a submodular set function on S and let a ∈ R
S . Define the set

function f |a on S by

(44.8) (f |a)(U) := min
T⊆U

(f(T ) + a(U \ T ))

for U ⊆ S. It is easy to check that f |a again is submodular and that

(44.9) EPf |a = {x ∈ EPf | x ≤ a} and Pf |a = {x ∈ Pf | x ≤ a}.

It follows that if P is an (extended) polymatroid, then also the set P ∩{x |
x ≤ a} is an (extended) polymatroid, for any vector a. In fact, as Lovász
[1983c] observed, if f(∅) = 0, then f |a is the unique largest submodular
function f ′ satisfying f ′(∅) = 0, f ′ ≤ f , and f ′(U) ≤ a(U) for each U ⊆ V .

44.1a. Examples

Matroids. Let M = (S, I) be a matroid. Then the rank function r of M is sub-
modular and nondecreasing. In Theorem 39.8 we saw that a set function r on S
is the rank function of a matroid if and only if r is nonnegative, integer, nonde-
creasing and submodular with r(U) ≤ |U | for all U ⊆ S. (This last condition may
be replaced by: r(∅) = 0 and r({s}) ≤ 1 for each s in S.) Then the polymatroid
Pr associated with r is equal to the independent set polytope of M (by Corollary
40.2b).

A generalization is obtained by partitioning S into sets S1, . . . , Sk, and defining

(44.10) f(J) := r(
⋃

i∈J

Si)

for J ⊆ {1, . . . , k}. It is not difficult to show that each integer nondecreasing sub-
modular function f with f(∅) = 0 can be constructed in this way (see Section
44.6b).

As another generalization, if w : S → R+, define f(U) to be the maximum
of w(I) over I ∈ I with I ⊆ U . Then f is submodular. (To see this, write w =
λ1χ

T1 + · · · + λnχ
Tn , with ∅ �= T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊆ S. Then by (40.3), f(U) =∑n

i=1 λir(U ∩ Ti), implying that f is submodular.)
For more on the relation between submodular functions and matroids, see Sec-

tions 44.6a and 44.6b.

Matroid intersection. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank
functions r1 and r2 respectively. Then the function f given by

(44.11) f(U) := r1(U) + r2(S \ U)

for U ⊆ S, is submodular. By the matroid intersection theorem (Theorem 41.1),
the minimum value of f is equal to the maximum size of a common independent
set.

Set unions. Let T1, . . . , Tn be subsets of a finite set T and let S = {1, . . . , n}.
Define
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(44.12) f(U) :=
∣
∣

⋃

i∈U

Ti

∣
∣

for U ⊆ S. Then f is nondecreasing and submodular. More generally, for w : T →
R+, the function f defined by

(44.13) f(U) := w(
⋃

i∈U

Ti)

for U ⊆ S, is nondecreasing and submodular.
More generally, for any nondecreasing submodular set function g on T , the

function f defined by

(44.14) f(U) := g(
⋃

i∈U

Ti)

for U ⊆ S, again is nondecreasing and submodular.
Let G = (V,E) be the bipartite graph corresponding to T1, . . . , Tn. That is, G

has colour classes S and T , and s ∈ S and t ∈ T are adjacent if and only if t ∈ Ts.
Then we have: x ∈ Pf if and only if there exist z ∈ Pg and y : E → Z+ such that

(44.15) y(δ(v)) = x(v) for all v ∈ S,
y(δ(v)) = z(v) for all v ∈ T .

So y may be considered as an ‘assignment’ of a ‘supply’ z to a ‘demand’ x. If g and
x are integer we can take also y and z integer.

Directed graph cut functions. Let D = (V,A) be a directed graph and let
c : A → R+ be a ‘capacity’ function on A. Define

(44.16) f(U) := c(δout(U))

for U ⊆ V (where δout(U) denotes the set of arcs leaving U). Then f is submodular
(but in general not nondecreasing). A function f arising in this way is called a cut
function.

Hypergraph cut functions. Let (V, E) be a hypergraph. For U ⊆ V , let f(U)
be the number of edges E ∈ E split by U (that is, with both E ∩ U and E \ U
nonempty). Then f is submodular.

Directed hypergraph cut functions. Let V be a finite set and let (E1, F1), . . . ,
(Em, Fm) be pairs of subsets of V . For U ⊆ V , let f(U) be the number of indices
i with U ∩ Ei �= ∅ and Fi �⊆ U . Then f is submodular. (In proving this, we can
assume m = 1, since any sum of submodular functions is submodular again.)

More generally, we can choose c1, . . . , cm ∈ R+ and define

(44.17) f(U) =
∑

(ci | U ∩ Ei �= ∅, Fi �⊆ U)

for U ⊆ V . Again, f is submodular. This generalizes the previous two examples
(where Ei = Fi for each i or |Ei| = |Fi| = 1 for each i).

Maximal element. Let V be a finite set and let h : V → R. For nonempty U ⊆ V ,
define

(44.18) f(U) := max{h(u) | u ∈ U},
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and define f(∅) to be the minimum of h(v) over v ∈ V . Then f is submodular.

Subtree diameter. Let G = (V,E) be a forest (a graph without circuits), and for
each X ⊆ E define

(44.19) f(X) :=
∑

K

diameter(K),

where K ranges over the components of the graph (V,X). Here diameter(K) is the
length of a longest path in K. Then f is submodular (Tamir [1993]); that is:

(44.20) f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for X,Y ⊆ E.
To see this, denote, for any X ⊆ E, the set of vertices covered by X by V X.

We first show (44.20) for X,Y ⊆ E with (V X,X) and (V Y, Y ) connected and
V X ∩ V Y �= ∅. Note that in this case X ∩ Y and X ∪ Y give connected subgraphs
again.

The proof of (44.20) is based on the fact that for all s, t, u, v ∈ V one has:

(44.21) dist(s, u) + dist(t, v) ≥ dist(s, t) + dist(u, v)
or dist(t, u) + dist(s, v) ≥ dist(s, t) + dist(u, v),

where dist denotes the distance in G.
To prove (44.20), let P and Q be longest paths in X∩Y and X∪Y respectively.

If EQ is contained in X or in Y , then (44.20) follows, since P is contained in X
and in Y . So we can assume that EQ is contained neither in X nor in Y . Let Q
have ends u, v, with u ∈ V X and v ∈ V Y . Let P have ends s, t. So s, t, u ∈ V X
and s, t, v ∈ V Y . Hence (44.21) implies (44.20).

We now derive (44.20) for all X,Y ⊆ E. Let X and Y be the collections of edge
sets of the components of (V,X) and of (V, Y ) respectively. Let F be the family
made by the union of X and Y, taking the sets in X ∩ Y twice. Then

(44.22) f(X) + f(Y ) ≥
∑

Z∈F
f(Z).

We now modify F iteratively as follows. If Z,Z′ ∈ F , Z �⊆ Z′ �⊆ Z, and V Z∩V Z′ �=
∅, we replace Z,Z′ by Z ∩ Z′ and Z ∪ Z′. By (44.20), (44.22) is maintained. By
Theorem 2.1, these iterations stop. We delete the empty sets in the final F .

Then the inclusionwise maximal sets in F have union equal to X ∪ Y and form
the nonempty edge sets of the components of (V,X∪Y ). Similarly, the inclusionwise
minimal sets in F form the nonempty edge sets of the components of (V,X ∩ Y ).
So

(44.23)
∑

Z∈F
f(Z) = f(X ∩ Y ) + f(X ∪ Y ),

and we have (44.20).

Further examples. Choquet [1951,1955] showed that the classical Newtonian ca-
pacity in R

3 is submodular. Examples of submodular functions based on probabil-
ity are given by Fujishige [1978b] and Han [1979], and other examples by Lovász
[1983c].
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44.2. Optimization over polymatroids by the greedy
method

Edmonds [1970b] showed that one can optimize a linear function wTx over
an (extended) polymatroid by an extension of the greedy algorithm. The
submodular set function f on S is given by a value giving oracle, that is, by
an oracle that returns f(U) for any U ⊆ S.

Let f be a submodular set function on S, and suppose that we want to
maximize wTx over EPf , for some w : S → R. We can assume that EPf �= ∅,
that is f(∅) ≥ 0, and hence that f(∅) = 0 (since decreasing f(∅) maintains
submodularity). We can also assume that w ≥ 0, since if some component of
w is negative, the maximum value is unbounded.

Now order the elements in S as s1, . . . , sn such that w(s1) ≥ · · · ≥ w(sn).
Define

(44.24) Ui := {s1, . . . , si} for i = 0, . . . , n,

and define x ∈ R
S by

(44.25) x(si) := f(Ui) − f(Ui−1) for i = 1, . . . , n.

Then x maximizes wTx over EPf , as will be shown in the following theorem.
To prove it, consider the following linear programming duality equation:

(44.26) max{wTx | x ∈ EPf}
= min{

∑

T⊆S

y(T )f(T )|y ∈ R
P(S)
+ ,

∑

T∈P(S)

y(T )χT = w}.

Define:

(44.27) y(Ui) := w(si) − w(si+1) (i = 1, . . . , n − 1),
y(S) := w(sn),
y(T ) := 0 (T �= Ui for each i).

Theorem 44.3. Let f be a submodular set function on S with f(∅) = 0 and
let w : S → R+. Then x and y given by (44.25) and (44.27) are optimum
solutions of (44.26).

Proof. We first show that x belongs to EPf ; that is, x(T ) ≤ f(T ) for each
T ⊆ S. This is shown by induction on |T |, the case T = ∅ being trivial. Let
T �= ∅ and let k be the largest index with sk ∈ T . Then by induction,

(44.28) x(T \ {sk}) ≤ f(T \ {sk}).

Hence

(44.29) x(T ) ≤ f(T \{sk})+x(sk) = f(T \{sk})+f(Uk)−f(Uk−1) ≤ f(T )

(the last inequality follows from the submodularity of f). So x ∈ EPf .
Also, y is feasible for (44.26). Trivially, y ≥ 0. Moreover, for any i we have

by (44.27):
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(44.30)
∑

T	si

y(T ) =
∑

j≥i

y(Uj) = w(si).

So y is a feasible solution of (44.26).
Optimality of x and y follows from:

(44.31) wTx =
∑

s∈S

w(s)xs =
n∑

i=1

w(si)(f(Ui) − f(Ui−1))

=
n−1∑

i=1

f(Ui)(w(si) − w(si+1)) + f(S)w(sn) =
∑

T⊆S

y(T )f(T ).

The third equality follows from a straightforward reordering of the terms,
using that f(∅) = 0.

Note that if f is integer, then x is integer, and that if w is integer, then y
is integer. Moreover, if f is nondecreasing, then x is nonnegative. Hence, in
that case, x and y are optimum solutions of

(44.32) max{wTx | x ∈ Pf}
= min{

∑

T⊆S

y(T )f(T ) | y ∈ R
P(S)
+ ,

∑

T∈P(S)

y(T )χT ≥ w}.

Therefore:

Corollary 44.3a. Let f be a nondecreasing submodular set function on S
with f(∅) = 0 and let w : S → R+. Then x and y given by (44.25) and (44.27)
are optimum solutions for (44.32).

Proof. Directly from Theorem 44.3, using the fact that x ≥ 0 if f is nonde-
creasing.

As for complexity we have:

Corollary 44.3b. Given a submodular set function f on a set S (by a value
giving oracle) and a function w ∈ Q

S, we can find an x ∈ EPf maximizing
wTx in strongly polynomial time. If f is moreover nondecreasing, then x ∈ Pf

(and hence x maximizes wTx over Pf ).

Proof. By the extension of the greedy method given above.

The greedy algorithm can be interpreted geometrically as follows. Let w
be some linear objective function on S, with w(s1) ≥ . . . ≥ w(sn). Travel via
the vertices of Pf along the edges of Pf , by starting at the origin, as follows:
first go from the origin as far as possible (in Pf ) in the positive s1-direction,
say to vertex x1; next go from x1 as far as possible in the positive s2-direction,
say to x2, and so on. After n steps one reaches a vertex xn maximizing wTx
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over Pf . In fact, the effectiveness of this algorithm characterizes polymatroids
(Dunstan and Welsh [1973]).

44.3. Total dual integrality

Theorem 44.3 implies the box-total dual integrality of the following system:

(44.33) x(U) ≤ f(U) for U ⊆ S.

Corollary 44.3c. If f is submodular, then (44.33) is box-totally dual inte-
gral.

Proof. Consider the dual of maximizing wTx over (44.33), for some w ∈ Z
S
+.

By Theorem 44.3, it has an optimum solution y : P(S) → R+ with the
sets U ⊆ S having y(U) > 0 forming a chain. So these constraints give a
totally unimodular submatrix of the constraint matrix (by Theorem 41.11).
Therefore, by Theorem 5.35, (44.33) is box-TDI.

This gives the integrality of polyhedra:

Corollary 44.3d. For any integer submodular set function f , the polymatroid
Pf and the extended polymatroid EPf are integer.

Proof. Directly from Corollary 44.3c. (In fact, integer optimum solutions are
explicitly given by Theorem 44.3 and Corollary 44.3a.)

44.4. f is determined by EPf

Theorem 44.3 implies that for any extended polymatroid P there is a unique
submodular function f satisfying f(∅) = 0 and EPf = P , since:

Corollary 44.3e. Let f be a submodular set function on S with f(∅) = 0.
Then

(44.34) f(U) = max{x(U) | x ∈ EPf}
for each U ⊆ S.

Proof. Directly from Theorem 44.3 by taking w := χU .

So there is a one-to-one correspondence between nonempty extended poly-
matroids and submodular set functions f with f(∅) = 0. The correspondence
relates integer extended polymatroids with integer submodular functions.

There is a similar correspondence between nonempty polymatroids and
nondecreasing submodular set functions f with f(∅) = 0. For any (not nec-
essarily nondecreasing) nonnegative submodular set function f , define f̄ by:
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(44.35) f̄(∅) = 0,
f̄(U) = min

T⊇U
f(T ) for nonempty U ⊆ S.

It is easy to see that f̄ is nondecreasing and submodular and that Pf̄ =
Pf (Dunstan [1973]). In fact, f̄ is the unique nondecreasing submodular set
function associated with Pf , with f̄(∅) = 0, as (Kelley [1959]):

Corollary 44.3f. If f is a nondecreasing submodular function with f(∅) = 0,
then

(44.36) f(U) = max{x(U) | x ∈ Pf}
for each U ⊆ S.

Proof. This follows from Corollary 44.3a by taking w := χT .

This one-to-one correspondence between polymatroids and nondecreasing
submodular set functions f with f(∅) = 0 relates integer polymatroids to
integer such functions:

Corollary 44.3g. For each integer polymatroid P there exists a unique in-
teger nondecreasing submodular function f with f(∅) = 0 and P = Pf .

Proof. By Corollary 44.3d and (44.36).

By (44.36) we have for any nonnegative submodular set function f that
f̄(U) = max{x(U) | x ∈ Pf}. Since we can optimize over EPf in polynomial
time (with the greedy algorithm described above), with the ellipsoid method
we can optimize over Pf = EPf ∩ R

S
+ in polynomial time. Hence we can

calculate f̄(U) in polynomial time. Alternatively, calculating f̄(U) amounts
to minimizing the submodular function f ′(T ) := f(T ∪ U).

In fact f̄ is the largest among all nondecreasing submodular set functions
g on S with g(∅) = 0 and g ≤ f , as can be checked straightforwardly.

44.5. Supermodular functions and contrapolymatroids

Similar results hold for supermodular functions and the associated con-
trapolymatroids. Associate the following polyhedra with a set function g on
S:

(44.37) Qg := {x ∈ R
S | x ≥ 0, x(U) ≥ g(U) for each U ⊆ S},

EQg := {x ∈ R
S | x(U) ≥ g(U) for each U ⊆ S}.

If g is supermodular, then Qg and EQg are called the contrapolymatroid
and the extended contrapolymatroid associated with g, respectively. A vector
x ∈ EQg (or Qg) is called a base vector of EQg (or Qg) if x(S) = g(S). A
base vector of g is a base vector of EQg.
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Since EQg = −EP−g, we can reduce most problems on (extended) con-
trapolymatroids to (extended) polymatroids. Again we can minimize a linear
function wTx over EQg with the greedy algorithm, as described in Section
44.2. (In fact, we can apply the same formulas (44.25) and (44.27) for g in-
stead of f .) If g is nondecreasing, it yields a nonnegative optimum solution,
and hence a vector x minimizing wTx over Qg.

Similarly, the system

(44.38) x(U) ≥ g(U) for U ⊆ S

is box-TDI, as follows directly from the box-total dual integrality of

(44.39) x(U) ≤ −g(U) for U ⊆ S.

Let EPf be the extended polymatroid associated with the submodular
function f with f(∅) = 0. Let Bf be the face of base vectors of EPf , i.e.,

(44.40) Bf = {x ∈ EPf | x(S) = f(S)}.

A vector y ∈ R
S is called spanning if there exists an x in Bf with x ≤ y. Let

Q be the set of spanning vectors.
A vector y belongs to Q if and only if (f |y)(S) = f(S), that is (by (44.8)

and (44.9)) if and only if

(44.41) y(U) ≥ f(S) − f(S \ U)

for each U ⊆ S. So Q is equal to the contrapolymatroid EQg associated with
the submodular function g defined by g(U) := f(S) − f(S \ U) for U ⊆ S.
Then Bf is equal to the face of minimal elements of EQg.

There is a one-to-one correspondence between submodular set functions
f on S with f(∅) = 0 and supermodular set functions g on S with g(∅) = 0,
given by the relations

(44.42) g(U) = f(S) − f(S \ U) and f(U) = g(S) − g(S \ U)

for U ⊆ S.
Then the pair (−g,−Q) is related to the pair (f, P ) by a relation similar

to the duality relation of matroids (cf. Section 44.6f).

44.6. Further results and notes

44.6a. Submodular functions and matroids

Let P be the polymatroid associated with the nondecreasing integer submodular
set function f on S, with f(∅) = 0. Then the collection

(44.43) I := {I ⊆ S | χI ∈ P}
forms the collection of independent sets of a matroid M = (S, I) (this result was
announced by Edmonds and Rota [1966] and proved by Pym and Perfect [1970]).
By Corollary 40.2b, the subpolymatroid (cf. Section 44.6c)
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(44.44) P |1 = {x ∈ P | x ≤ 1}
is the convex hull of the incidence vectors of the independent sets of M . By (44.8),
the rank function r of M satisfies

(44.45) r(U) = min
T⊆U

(|U \ T | + f(T ))

for U ⊆ S.
As an example, if f is the submodular function given in the set union example in

Section 44.1a, we obtain the transversal matroid on {1, . . . , n} with I ⊆ {1, . . . , n}
independent if and only if the family (Ti | i ∈ I) has a transversal (Edmonds
[1970b]).

44.6b. Reducing integer polymatroids to matroids

In fact, each integer polymatroid can be derived from a matroid as follows (Helgason
[1974]). Let f be a nondecreasing submodular set function on S with f(∅) = 0.
Choose for each s in S, a set Xs of size f({s}), such that the sets Xs (s ∈ S) are
disjoint. Let X :=

⋃
s∈S Xs, and define a set function r on X by

(44.46) r(U) := min
T⊆S

(|U \
⋃

s∈T

Xs| + f(T ))

for U ⊆ X. One easily checks that r is the rank function of a matroid M (by
checking the axioms (39.38)), and that for each subset T of S

(44.47) f(T ) = r(
⋃

s∈T

Xs).

Therefore, f arises from the rank function of M , as in the Matroids example in
Section 44.1a. The polymatroid Pf associated with f is just the convex hull of all
vectors x for which there exists an independent set I in M with xs = |I ∩Xs| for
all s in S.

Given a nondecreasing submodular set function f on S with f(∅) = 0, Lovász
[1980a] called a subset U ⊆ S a matching if

(44.48) f(U) =
∑

s∈U

f({s}).

If f({s}) = 1 for each s in S, f is the rank function of a matroid, and U is a
matching if and only if U is independent in this matroid. If f({s}) = 2 for each
s in S, the elements of S correspond to certain flats of rank 2 in a matroid. Now
determining the maximum size of a matching is just the matroid matching problem
(cf. Chapter 43).

44.6c. The structure of polymatroids

Vertices of polymatroids (Edmonds [1970b], Shapley [1965,1971]). Let f be a
submodular set function on a set S = {s1, . . . , sn} with f(∅) = 0. Let Pf be the
polymatroid associated with f . It follows immediately from the greedy algorithm, as
in the proof of Corollary 44.3a, that the vertices of Pf are given by (for i = 1, . . . , n):
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(44.49) x(sπ(i)) =
{
f({sπ(1), . . . , sπ(i)}) − f({sπ(1), . . . , sπ(i−1)}) if i ≤ k,
0 if i > k,

where π ranges over all permutations of {1, . . . , n} and where k ranges over 0, . . . , n.
Similarly, for any submodular set function f on S with f(∅) = 0, the vertices

of the extended polymatroid EPf are given by

(44.50) x(sπ(i)) = f({sπ(1), . . . , sπ(i)}) − f({sπ(1), . . . , sπ(i−1)})

for i = 1, . . . , n, where π ranges over all permutations of {1, . . . , n}.
Topkis [1984] characterized adjacency of the vertices of a polymatroid, while

Bixby, Cunningham, and Topkis [1985] and Topkis [1992] gave further results on
vertices of and paths on a polymatroid and on related partial orders of S.

Facets of polymatroids. Let f be a nondecreasing submodular set function on S
with f(∅) = 0. One easily checks that Pf is full-dimensional if and only if f({s}) > 0
for all s in S. If Pf is full-dimensional there is a unique minimal collection of linear
inequalities defining Pf (clearly, up to scalar multiplication). They correspond to
the facets of Pf . Edmonds [1970b] found that this collection is given by the following
theorem. A subset U ⊆ S is called an f-flat if f(U ∪ {s}) > f(U) for all s ∈ S \ U ,
and U is called f-inseparable if there is no partition of U into nonempty sets U1

and U2 with f(U) = f(U1) + f(U2). Then:

Theorem 44.4. Let f be a nondecreasing submodular set function on S with f(∅) =
0 and f({s}) > 0 for each s ∈ S. The following is a minimal system determining
the polymatroid Pf :

(44.51) xs ≥ 0 (s ∈ S),
x(U) ≤ f(U) (U is a nonempty f -inseparable f -flat).

Proof. It is easy to see that (44.51) determines Pf , as any other inequality x(U) ≤
f(U) follows from (44.51). The irredundancy of collection (44.51) can be seen as
follows.

Clearly, each inequality xs ≥ 0 determines a facet. Next consider a nonempty
f -inseparable f -flat U . Suppose that the face determined by U is not a facet. Then
it is contained in another face, say determined by T . Let x be a vertex of Pf with
x(U \ T ) = f(U \ T ), x(U) = f(U), and x(S \ U) = 0. Such a vertex exists by the
greedy algorithm (cf. (44.49)).

Since x is on the face determined by U , it is also on the face determined by T .
So x(T ) = f(T ). Hence f(T ) = x(T ) = x(T ∩ U) = f(U) − f(U \ T ). So we have
equality throughout in:

(44.52) f(U \ T ) + f(T ) ≥ f(U \ T ) + f(T ∩ U) ≥ f(U).

This implies that U \ T = ∅ or T ∩ U = ∅ (as U is f -inseparable), and that
f(T ) = f(T ∩ U). If U \ T = ∅, then U ⊂ T , and hence (as U is an f -flat)
f(T ) > f(U) ≥ f(T ∩U), a contradiction. If T ∩U = ∅, then f(T ) = f(T ∩U) = 0,
implying that T = ∅, again a contradiction.

It follows that the face {x ∈ Pf | x(S) = f(S)} of maximal vectors in Pf is a
facet if and only if f(U) + f(S \ U) > f(S) for each proper nonempty subset U of
S. More generally, its codimension is equal to the number of inclusionwise minimal
nonempty sets U with f(U) + f(S \ U) = f(S) (cf. Fujishige [1984a]).
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Faces of polymatroids (Giles [1975]). We now extend the characterizations of
vertices and facets of polymatroids given above to arbitrary faces. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S
with f(∅) = 0. Suppose that P is full-dimensional. If ∅ �= S1 ⊂ · · · ⊂ Sk ⊆ T ⊆ S,
then

(44.53) F = {x ∈ P | x(S1) = f(S1), . . . , x(Sk) = f(Sk), x(S \ T ) = 0}
is a face of P of dimension at most |T | − k. (Indeed, F is nonempty by the char-
acterization (44.49) of vertices, while dim(F ) ≤ |T | − k, as the incidence vectors of
S1, . . . , Sk are linearly independent.)

In fact, each face has a representation (44.53). Indeed, let F be a face of P .
Define T = {s ∈ S | xs > 0 for some x in F}, and let S1 ⊂ · · · ⊂ Sk be any
maximal chain of nonempty subsets of T with the property that

(44.54) F ⊆ {x ∈ P | x(S1) = f(S1), . . . , x(Sk) = f(Sk), x(S \ T ) = 0}.
Then we have equality in (44.54), and dim(F ) = |T | − k. (Here a maximal chain is
a chain which is contained in no larger chain satisfying (44.54) — since the empty
chain satisfies (44.54), there exist maximal chains.)

In order to prove this assertion, suppose that F has dimension d. As the right-
hand side of (44.54) is a face of P of dimension at most |T | − k, it suffices to show
that d = |T | − k. Therefore, suppose d < |T | − k. Then there exists a subset U of S
such that x(U) = f(U) for all x in F , and such that the incidence vector of U ∩ T
is linearly independent of the incidence vectors of S1, . . . , Sk. That is, U ∩ T is not
the union of some of the sets Si \ Si−1 (i = 1, . . . , k). Since x(U ∩ T ) = x(U) =
f(U) ≥ f(U ∩T ) for all x in F , we may assume that U ⊆ T . Since the collection of
subsets U of S with x(U) = f(U) is closed under taking unions and intersections,
we may assume moreover that U is comparable with each of the sets in the chain
S1 ⊂ · · · ⊂ Sk. Hence U could be added to the chain to obtain a larger chain,
contradicting our assumption. So d = |T | − k.

Note that a chain S1 ⊂ · · · ⊂ Sk of nonempty subsets of T is a maximal chain
satisfying (44.54) if and only if there is equality in (44.54) and (setting S0 := ∅):

(44.55) f(Sk ∪ {s}) > f(Sk) for all s in T \ Sk, and each of the sets Si \ Si−1

is fi-inseparable, where fi is the submodular set function on Si \ Si−1

given by fi(U) := f(U ∪ Si−1) − f(Si−1) for U ⊆ Si \ Si−1.

This may be derived straightforwardly from the existence, by (44.49), of appropriate
vertices of F .

It is not difficult to show that if F has a representation (44.53), then F is the
direct sum of F1, . . . , Fk and Q, where Fi is the face of maximal vectors in the
polymatroid associated with fi (i = 1, . . . , k), and Q is the polymatroid associated
with the submodular set function g on T \ Sk given by g(U) := f(U ∪ Sk) − f(Sk)
for U ⊆ T \ Sk. Since dim(Fi) ≤ |Si \ Si−1| − 1 and dim(Q) ≤ |T \ Sk|, this yields
that dim(F ) = |T | − k if and only if dim(Fi) = |Si \ Si−1| − 1 (i = 1, . . . , k) and
dim(Q) = |T \Sk|. From this, characterization (44.55) can be derived again. It also
yields that if F , represented by (44.53), has dimension |T | − k, then the unordered
partition {S1, S2 \ S1, . . . , Sk \ Sk−1, T \ Sk} is the same for all maximal chains
S1 ⊂ · · · ⊂ Sk.

For a characterization of the faces of a polymatroid, see Fujishige [1984a].
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44.6d. Characterization of polymatroids

Let P be the polymatroid associated with the nondecreasing submodular set func-
tion f on S with f(∅) = 0. The following three observations are easily derived
from the representation (44.49) of vertices of P . (a) If x0 is a vertex of P , there
exists a vertex x1 of P such that x1 ≥ x0 and x1 has the form (44.49) with k = n.
(b) A vertex x1 of P can be represented as (44.49) with k = n if and only if
x1(S) = f(S). (c) The convex hull of the vertices x1 of P with x1(S) = f(S) is
the face {x ∈ P | x(S) = f(S)} of P . It follows directly from (a), (b) and (c) that
x ∈ P is a maximal element of P (with respect to ≤) if and only if x(S) = f(S).
So for each vector y in P there is a vector x in P with y ≤ x and x(S) = f(S).

Applying this to the subpolymatroids P |a = P ∩ {x | x ≤ a} (cf. Section 44.1),
one finds the following property of polymatroids:

(44.56) for each a ∈ R
S
+ there exists a number r(a) such that each maximal

vector x of P ∩ {x | x ≤ a} satisfies x(S) = r(a).

Here maximal is maximal in the partial order ≤ on vectors. The number r(a) is
called the rank of a, and any x with the properties mentioned in (44.56) is called a
base of a.

Edmonds [1970b] (cf. Dunstan [1973], Woodall [1974b]) noticed the following
(we follow the proof of Welsh [1976]):

Theorem 44.5. Let P ⊆ R
S
+. Then P is a polymatroid if and only if P is compact,

and satisfies (44.56) and

(44.57) if 0 ≤ y ≤ x ∈ P , then y ∈ P .

Proof. Necessity was observed above. To see sufficiency, let f be the set function
on S defined by

(44.58) f(U) := max{x(U) | x ∈ P}
for U ⊆ S. Then f is nonnegative and nondecreasing. Moreover, f is submodular.
To see this, consider T, U ⊆ S. Let x be a maximal vector in P satisfying xs = 0
if s �∈ T ∪ U , and let y be a maximal vector in P satisfying y(s) = 0 if s �∈ T ∩ U
and x ≤ y. Note that (44.56) and (44.58) imply that x(T ∩ U) = f(T ∩ U) and
y(T ∪ U) = f(T ∪ U). Hence

(44.59) f(T )+f(U) ≥ y(T )+y(U) = y(T ∩U)+y(T ∪U) ≥ x(T ∩U)+y(T ∪U)
= f(T ∩ U) + f(T ∪ U),

that is, f is submodular.
We finally show that P is equal to the polymatroid Pf associated to f . Clearly,

P ⊆ Pf , since if x ∈ P then x(U) ≤ f(U) for each U ⊆ S, by definition (44.58) of
f .

To see that Pf = P , suppose v ∈ Pf \P . Let u be a base of v (that is, a maximal
vector u ∈ P satisfying u ≤ v). Choose u such that the set

(44.60) U := {s ∈ S | us < vs}
is as large as possible. Since v �∈ P , we have u �= v, and hence U �= ∅. As v ∈ Pf ,
we know
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(44.61) u(U) < v(U) ≤ f(U).

Define

(44.62) w := 1
2 (u+ v).

So u ≤ w ≤ v. Hence u is a base of w, and each base of w is a base of v.
For any z ∈ R

S , define z′ as the projection of z on the subspace L := {x ∈ R
S |

xs = 0 if s ∈ S \ U}. That is:

(44.63) z′(s) := z(s) if s ∈ U , and z′(s) := 0 if s ∈ S \ U .

By definition of f , there is an x ∈ P with x(U) = f(U). We may assume that x ∈ L.
Choose y ∈ L with x ≤ y and u′ ≤ y. Then

(44.64) x(S) = x(U) = f(U) > u(U) = u′(U) = u′(S).

So r(y) > u′(S). Hence, by (44.56), there exists a base z of y with u′ ≤ z and
z(S) > u′(S). So u′

s < zs for at least one s ∈ U . This implies, since u′
s < w′

s for
each s ∈ S, that there is an a ∈ P with u′ ≤ a ≤ w′ and a �= u′, hence a(U) > u′(U).

Since a ≤ w′ ≤ w, there is a base b of w with a ≤ b. Then b(S) = u(S) (since
also u is a base of w) and b(U) ≥ a(U) > u′(U) = u(U). Hence bs < us = vs for
some s ∈ S \U . Moreover, bs ≤ ws < vs for each s ∈ U . So U is properly contained
in {s ∈ S | bs < vs}, contradicting the maximality of U .

(For an alternative characterization, see Welsh [1976].)
By (44.8) and (44.9) the rank of a is given by

(44.65) r(a) = min
U⊆S

(a(S \ U) + f(U))

(from this one may derive a ‘submodular law’ for r: r(a∧ b)+r(a∨ b) ≤ r(a)+r(b),
where ∧ and ∨ are the meet and join in the lattice (RS ,≤) (Edmonds [1970b])).

Since if P has integer vertices and a is integer, the intersection P |a = {x ∈ P |
x ≤ a} is integer again, we know that for integer polymatroids (44.56) also holds if
we restrict a and x to integer vectors. So if a is integer, then there exists an integer
vector x ≤ a in P with x(S) = r(a).

Theorem 44.5 yields an analogous characterization of extended polymatroids.
Let f be a submodular set function on S with f(∅) = 0. Choose c ∈ R

S
+ such that

(44.66) g(U) := f(U) + c(U)

is nonnegative for all U ⊆ S. Clearly, g again is submodular, and g(∅) = 0. Then the
extended polymatroid EPf associated with f and the polymatroid Pg associated
with g are related by:

(44.67) Pg = {x | x ≥ 0, x− c ∈ EPf} = (c+ EPf ) ∩ R
S
+.

Since Pg is a polymatroid, by (44.56) we know that EPf satisfies:

(44.68) for each a in R
S there exists a number r(a) such that each maximal

vector x in EPf ∩ {x ∈ R
S | x ≤ a} satisfies x(S) = r(a).

One easily derives from Theorem 44.5 that (44.68) together with

(44.69) if y ≤ x ∈ EPf , then y ∈ EPf ,

characterizes the class of all extended polymatroids among the closed subsets of
R

S .
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44.6e. Operations on submodular functions and polymatroids

The class of submodular set functions on a given set is closed under certain oper-
ations. Obviously, the sum of two submodular functions is submodular again. In
particular, adding a constant t to all values of a submodular function maintains
submodularity. Also the multiplication of a submodular function by a nonnega-
tive scalar maintains submodularity. Moreover, if f is a nondecreasing submod-
ular set function on S, and q is a real number, then the function f ′ given by
f ′(U) := min{q, f(U)} for U ⊆ S, is submodular again. (Monotonicity cannot be
deleted, as is shown by taking S := {a, b}, f(∅) = f(S) = 1, f({a}) = 0, f({b}) = 2,
and q = 1.)

It follows that the class of all submodular set functions on S forms a convex
cone C in R

P(S). This cone is polyhedral as the constraints (44.1) form a finite set
of linear inequalities defining C. Edmonds [1970b] raised the problem of determin-
ing the extreme rays of the cone of all nonnegative nondecreasing submodular set
functions f on S with f(∅) = 0. It is not difficult to show that the rank function
r of a matroid M determines an extreme ray of this cone if and only if r is not
the sum of the rank functions of two other matroids, i.e., if and only if M is the
sum of a connected matroid and a number of loops. But these do not represent
all extreme rays: if S = {1, . . . , 5} and w(1) = 2, w(s) = 1 for s ∈ S \ {1}, let
f(U) := min{3, w(U)} for U ⊆ S; then f is on an extreme ray, but cannot be
decomposed as the sum of rank functions of matroids (L. Lovász’s example; cf. also
Murty and Simon [1978] and Nguyen [1978]).

Lovász [1983c] observed that if f1 and f2 are submodular and f1 − f2 is nonde-
creasing, then min{f1, f2} is submodular.

Let f be a nonnegative submodular set function on S. Clearly, for any λ ≥ 0
we have Pλf = λPf (where λPf = {λx | x ∈ Pf}). If q ≥ 0, and f ′ is given by
f ′(U) = min{q, f(U)} for U ⊆ S, then f ′ is submodular and

(44.70) Pf ′ = {x ∈ Pf | x(S) ≤ q},
as can be checked easily. So the class of polymatroids is closed under intersections
with affine halfspaces of the form {x ∈ R

S | x(S) ≤ q}, for q ≥ 0.
Let f1 and f2 be nondecreasing submodular set functions on S, with f1(∅) =

f2(∅) = 0, and associated polymatroids P1 and P2 respectively. Let P be the poly-
matroid associated with f := f1 + f2. Then (McDiarmid [1975c]):

Theorem 44.6. Pf1+f2 = Pf1 + Pf2 .

Proof. It is easy to see that Pf1+f2 ⊇ Pf1 +Pf2 . To prove the reverse inclusion, let
x be a vertex of Pf1+f2 . Then x has the form (44.49). Hence, by taking the same
permutation π and the same k, x = x1 + x2 for certain vertices x1 of Pf1 and x2 of
Pf2 . Since Pf1 + Pf2 is convex it follows that Pf1+f2 = Pf1 + Pf2 .

In fact, if f1 and f2 are integer, each integer vector in Pf1 + Pf2 is the sum of
integer vectors in Pf1 and Pf2 — see Corollary 46.2c. Similarly, if f1 and f2 are
integer, each integer vector in EPf1 + EPf2 is the sum of integer vectors in EPf1

and EPf2 .
Faigle [1984a] derived from Theorem 44.6 that, for any submodular function f ,

if x, y ∈ Pf and x = x1 + x2 with x1, x2 ∈ Pf , then there exist y1, y2 ∈ Pf with
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y = y1+y2 and x1+y1, x2+y2 ∈ Pf . (Proof: y ∈ Pf ⊆ P2f−x = Pf−x1 +Pf−x2 .) An
integer version of this can be derived from Corollary 46.2c and generalizes (42.13).

If M1 = (S, I1) and M2 = (S, I2) are matroids, with rank functions r1 and
r2 and corresponding independent set polytopes P1 and P2, respectively, then by
Section 44.6c above, P1 + P2 is the convex hull of sums of incidence vectors of
independent sets in M1 and M2. Hence the 0,1 vectors in P1 + P2 are just the
incidence vectors of the sets I1 ∪ I2, for I1 ∈ I1 and I2 ∈ I2. Therefore, the
polyhedron

(44.71) (P1 + P2)|1 = {x ∈ P1 + P2 | x ≤ 1}
is the convex hull of the independent sets of M1∨M2. By Theorem 44.6 and (44.45),
it follows that the rank function r of M1 ∨M2 satisfies

(44.72) r(U) = min
T⊆U

(|U \ T | + r1(T ) + r2(T ))

for U ⊆ S. Thus we have derived the matroid union theorem (Corollary 42.1a).

44.6f. Duals of polymatroids

McDiarmid [1975c] described the following duality of polymatroids. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S with
f(∅) = 0 and let a be a vector in R

S with a ≥ x for all x in P (i.e., a(s) ≥ f({s})
for all s in S). Define

(44.73) f∗(U) := a(U) + f(S \ U) − f(S)

for U ⊆ S. One easily checks that f∗ again is nondecreasing and submodular, and
that f∗(∅) = 0. We call f∗ the dual of f (with respect to a). Then f∗∗ = f taking
the second dual with respect to the same a, as follows immediately from (44.73).

Let P ∗ be the polymatroid associated with f∗, and call P ∗ the dual polymatroid
of P (with respect to a). Now the maximal vertices of P and P ∗ are given by (44.49)
by choosing k = n. It follows that x is a maximal vertex of P if and only if a − x
is a maximal vertex of P ∗. Since the maximal vectors of a polymatroid form just
the convex hull of the maximal vertices, we may replace in the previous sentence
the word ‘vertex’ by ‘vector’. So the set of maximal vectors of P ∗ arises from the
set of maximal vectors of P by reflection in the point 1

2a.
Clearly, duals of matroids correspond in the obvious way to duals of the related

polymatroids (with respect to the vector 1).

44.6g. Induction of polymatroids

Let G = (V,E) be a bipartite graph, with colour classes S and T . Let f be a
nondecreasing submodular set function on S with f(∅) = 0, and define

(44.74) g(U) := f(N(U))

for U ⊆ T (cf. Section 44.1a). (As usual, N(U) denotes the set of vertices not in U
adjacent to at least one vertex in U .)

The function g again is nondecreasing and submodular. Similarly to Rado’s
theorem (Corollary 41.1c), one may prove that a vector x belongs to Pg if and only
if there exist y ∈ R

E
+ and z ∈ Pf such that
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(44.75) y(δ(t)) = xt (t ∈ T ),
y(δ(s)) = zs (s ∈ S).

Moreover, if f and g are integer, we can take y and z to be integer. This procedure
gives an ‘induction’ of polymatroids through bipartite graphs, and yields ‘Rado’s
theorem for polymatroids’ (cf. McDiarmid [1975c]).

In case f is the rank function of a matroid on S, a 0,1 vector x belongs to Pg if
and only if there exists a matching in G whose end vertices in S form an independent
set of the matroid, and the end vertices in T have x as incidence vector. So these
0,1 vectors determine a matroid on T , with rank function r given by

(44.76) r(U) = min
W⊆U

(|U \W | + f(N(W )))

for U ⊆ T (cf. (44.45) and (44.74)).
Another extension is the following. Let D = (V,A) be a directed graph and

let V be partitioned into classes S and T . Let furthermore a ‘capacity’ function
c : A → R+ be given. Define the set function g on T by

(44.77) g(U) := c(δout(U))

for U ⊆ T , where δout(U) denotes the set of arcs leaving U . Then g is nonnegative
and submodular, and it may be derived straightforwardly from the max-flow min-
cut theorem (Theorem 10.3) that a vector x in R

T
+ belongs to Pg if and only if

there exist T − S paths Q1, . . . , Qk and nonnegative numbers λ1, . . . , λk (for some
k), such that

(44.78)
k∑

i=1

λiχ
AQi ≤ c and

k∑

i=1

λiχ
b(Qi) = x,

where b(Qi) is the beginning vertex of Qi. If the c and x are integer, we can take
also the λi integer.

Here the function g in general is not nondecreasing, but the value

(44.79) ḡ(U) = min{g(W ) | U ⊆ W ⊆ T}
of the associated nondecreasing submodular function (cf. (44.35)) is equal to the
minimum capacity of a cut separating U and S, which is equal to the maximum
amount of flow from U to S, subject to the capacity function c (by the max-flow
min-cut theorem).

In an analogous way, one can construct polymatroids by taking vertex-capacities
instead of arc-capacities. Moreover, the notion of induction of polymatroids through
bipartite graphs can be extended in a natural way to the induction of polymatroids
through directed graphs (cf. McDiarmid [1975c], Schrijver [1978]).

44.6h. Lovász’s generalization of Kőnig’s matching theorem

Lovász [1970a] gave the following generalization of Kőnig’s matching theorem (The-
orem 16.2).

For a graph G = (V,E), U ⊆ V , and F ⊆ E, let NF (U) denote the set of
vertices not in U that are adjacent in (V, F ) to at least one vertex in U . Kőnig’s
matching theorem follows by taking g(X) := |X| in the following theorem.
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Theorem 44.7. Let G = (V,E) be a simple bipartite graph, with colour classes S
and T . Let g be a supermodular set function on S, such that g({v}) ≥ 0 for each
v ∈ S and such that

(44.80) g(U ∪ {v}) ≤ g(U) + g({v}) for nonempty U ⊆ S and v ∈ S \ U .

Then E has a subset F with degF (v) = g({v}) for each v ∈ V and |NF (U)| ≥ g(U)
for each nonempty U ⊆ S if and only if |NE(U)| ≥ g(U) for each nonempty U ⊆ S.

Proof. Necessity being trivial, we show sufficiency. Choose F ⊆ E such that

(44.81) |NF (U)| ≥ g(U)

for each nonempty U ⊆ S, with |F | as small as possible. We show that F is as
required.

Suppose to the contrary that degF (v) > g({v}) for some v ∈ S. By the min-
imality of F , for each edge e = vw ∈ F , there is a subset Ue of S with v ∈ Ue,
|NF (Ue)| = g(Ue), and w �∈ NF (Ue \ {v}). Since the function |NF (U)| is submod-
ular, the intersection U of the Ue over e ∈ δ(v) satisfies |NF (U)| = g(U) (using
(44.81)). Then no neighbour w of v is adjacent to U . Hence NF (v) and NF (U \{v})
are disjoint. Moreover, U �= {v}, since NF (U) = g(U) and NF ({v}) > g(v). This
gives the contradiction

(44.82) g(U) ≤ g(U \ {v}) + g({v}) < |NF (U \ {v})| + |NF (v)| = |NF (U)|.

For a derivation of this theorem with the Edmonds-Giles method, see Frank
and Tardos [1989].

44.6i. Further notes

Edmonds [1970b] and D.A. Higgs (as mentioned in Edmonds [1970b]) observed that
if f is a set function on a set S, we can define recursively a submodular function f̄
as follows:

(44.83) f̄(T ) := min{f(T ),min(f̄(S1) + f̄(S2) − f̄(S1 ∩ S2))},
where the second minimum ranges over all pairs S1, S2 of proper subsets of T with
S1 ∪ S2 = T .

Lovász [1983c] gave the following characterization of submodularity in terms of
convexity. Let f be a set function on S and define for each c ∈ R

S
+

(44.84) f̂(c) :=
k∑

i=1

λif(Ui),

where ∅ �= U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊆ S and λ1, . . . , λk > 0 are such that
c =

∑k
i=1 λiχ

Ui . Then f is submodular if and only if f̂ is convex. Similarly, f
is supermodular if and only if f̂ is concave. Related is the ‘subdifferential’ of a
submodular function, investigated by Fujishige [1984d].

Korte and Lovász [1985c] and Nakamura [1988a] studied polyhedral structures
where the greedy algorithm applies. Federgruen and Groenevelt [1986] extended the
greedy method for polymatroids to ‘weakly concave’ objective functions (instead
of linear functions). (Related work was reported by Bhattacharya, Georgiadis, and
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Tsoucas [1992].) Nakamura [1993] extended polymatroids and submodular functions
to ∆-polymatroids and ∆-submodular functions.

Gröflin and Liebling [1981] studied the following example of ‘transversal poly-
matroids’. Let G = (V,E) be an undirected graph, and define the submodular set
function f on E by f(F ) :=

∣
∣
⋃
F

∣
∣ for F ⊆ E. Then the vertices of the associ-

ated polymatroid are all {0, 1, 2} vectors x in R
E with the property that the set

F := {e ∈ E | xe ≥ 1} forms a forest each component of which contains at most
one edge e with xe = 2. If x is a maximal vertex, then each component contains
exactly one edge e with xe = 2.

Narayanan [1991] studied, for a given submodular function f on S, the lattice of
all partitions P of S into nonempty sets such that there exists a λ ∈ R for which P
attains min

∑
U∈P(f(U)−λ) (taken over all partitions P). Fujishige [1980b] studied

minimum values of submodular functions.
For results on the (NP-hard) problems of maximizing a submodular function and

of submodular set cover, see Fisher, Nemhauser, and Wolsey [1978], Nemhauser and
Wolsey [1978,1981], Nemhauser, Wolsey, and Fisher [1978], Wolsey [1982a,1982b],
Conforti and Cornuéjols [1984], and Fujito [1999].

Cunningham [1983], Fujishige [1983], and Nakamura [1988c] presented decom-
position theories for submodular functions. Benczúr and Frank [1999] considered
covering symmetric supermodular functions by graphs.

For surveys and books on polymatroids and submodular functions, see McDi-
armid [1975c], Welsh [1976], Lovász [1983c], Lawler [1985], Nemhauser and Wolsey
[1988], Fujishige [1991], Narayanan [1997], and Murota [2002]. For a survey on ap-
plications of submodular functions, see Frank [1993a].

Historically, submodular functions arose in lattice theory (Bergmann [1929],
Birkhoff [1933]), while submodularity of the rank function of a matroid was shown
by Bergmann [1929] and Whitney [1935]. Choquet [1951,1955] and Kelley [1959]
studied submodular functions in relation to the Newton capacity and to measures
in Boolean algebras. The relevance of submodularity for optimization was revealed
by Edmonds [1970b].

Several alternative names have been proposed for submodular functions, like
sub-valuation (Choquet [1955]), β-function (Edmonds [1970b]), and ground set rank
function (McDiarmid [1975c]). The set of integer vectors in an integer polymatroid
was called a hypermatroid by Helgason [1974] and Lovász [1977c]. A generaliza-
tion of polymatroids (called supermatroids) was studied by Dunstan, Ingleton, and
Welsh [1972].



Chapter 45

Submodular function
minimization

This chapter describes a strongly polynomial-time algorithm to find the
minimum value of a submodular function. It suffices that the submodular
function is given by a value giving oracle.
One application of submodular function minimization is optimizing over
the intersection of two polymatroids. This will be discussed in Chapter 47.

45.1. Submodular function minimization

It was shown by Grötschel, Lovász, and Schrijver [1981] that the minimum
value of a rational-valued submodular set function f on S can be found in
polynomial time, if f is given by a value giving oracle and an upper bound
B is given on the numerators and denominators of the values of f . The
running time is bounded by a polynomial in |S| and log B. This algorithm
is based on the ellipsoid method: we can assume that f(∅) = 0 (by resetting
f(U) := f(U) − f(∅) for all U ⊆ S); then with the greedy algorithm, we can
optimize over EPf in polynomial time (Corollary 44.3b), hence the separation
problem for EPf is solvable in polynomial time, hence also the separation
problem for

(45.1) P := EPf ∩ {x | x ≤ 0},

and therefore also the optimization problem for P . Now the maximum value
of x(S) over P is equal to the minimum value of f (by (44.8), (44.9), and
(44.34)).

Having a polynomial-time method to find the minimum value of a sub-
modular function, we can turn it into a polynomial-time method to find a
subset T of S minimizing f(T ): For each s ∈ S, we can determine if the
minimum value of f over all subsets of S is equal to the minimum value of f
over subsets of S \{s}. If so, we reset S := S \{s}. Doing this for all elements
of S, we are left with a set T minimizing f over all subsets of (the original)
S.

Grötschel, Lovász, and Schrijver [1988] showed that this algorithm can be
turned into a strongly polynomial-time method. Cunningham [1985b] gave a
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combinatorial, pseudo-polynomial-time algorithm for minimizing a submodu-
lar function f (polynomial in the size of the underlying set and the maximum
absolute value of f (assuming f to be integer)). Inspired by Cunningham’s
method, combinatorial strongly polynomial-time algorithms were found by
Iwata, Fleischer, and Fujishige [2000,2001] and Schrijver [2000a]. We will de-
scribe the latter algorithm.

45.2. Orders and base vectors

Let f be a submodular set function on a set S. In finding the minimum value
of f , we can assume f(∅) = 0, as resetting f(U) := f(U)−f(∅) for all U ⊆ S
does not change the problem. So throughout we assume that f(∅) = 0.

Moreover, we assume that f is given by a value giving oracle, that is, an
oracle that returns f(U) for any given subset U of S. We also assume that the
numbers returned by the oracle are rational (or belong to any ordered field in
which we can perform the elementary arithmetic operations algorithmically).

Recall that the base polytope Bf of f is defined as the set of base vectors
of f :

(45.2) Bf := {x ∈ R
S | x(U) ≤ f(U) for all U ⊆ S, x(S) = f(S)}.

Consider any total order ≺ on S.35 For any v ∈ S, denote

(45.3) v≺ := {u ∈ S | u ≺ v}.

Define a vector b≺ in R
S by:

(45.4) b≺(v) := f(v≺ ∪ {v}) − f(v≺)

for v ∈ S. Theorem 44.3 implies that b≺ belongs to Bf .
Note that b≺(U) = f(U) for each lower ideal U of ≺ (where a lower ideal

of ≺ is a subset U of S such that if v ∈ U and u ≺ v, then u ∈ U).

45.3. A subroutine

In this section we describe a subroutine that is important in the algorithm. It
replaces a total order ≺ by other total orders, thereby reducing some interval
(s, t]≺, where

(45.5) (s, t]≺ := {v | s ≺ v � t}

for s, t ∈ S.
Let ≺ be a total order on S. For any s, u ∈ S with s ≺ u, let ≺s,u be

the total order on S obtained from ≺ by resetting v ≺ u to u ≺ v for each
35 As usual, we use ≺ for strict inequality and � for nonstrict inequality. We refer to the

order by the strict inequality sign ≺.
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v satisfying s � v ≺ u. Thus in the ordering, we move u to the position just
before s. Hence (s, t]≺s,u = (s, t]≺ \ {u} if u ∈ (s, t]≺.

We show that there is a strongly polynomial-time subroutine that

(45.6) for any s, t ∈ S with s ≺ t, finds a δ ≥ 0 and describes b≺ +
δ(χt − χs) as a convex combination of the b≺s,u

for u ∈ (s, t]≺.

To describe the subroutine, we can assume that b≺ = 0, by replacing (tem-
porarily) f(U) by f(U) − b≺(U) for each U ⊆ S.

We investigate the signs of the vector b≺s,u

. We show that for each v ∈ S:

(45.7) b≺s,u

(v) ≤ 0 if s � v ≺ u,
b≺s,u

(v) ≥ 0 if v = u,
b≺s,u

(v) = 0 otherwise.

To prove this, observe that if T ⊆ U ⊆ S, then for any v ∈ S \ U we have by
the submodularity of f :

(45.8) f(U ∪ {v}) − f(U) ≤ f(T ∪ {v}) − f(T ).

To see (45.7), if s � v ≺ u, then by (45.8),

(45.9) b≺s,u

(v) = f(v≺s,u ∪ {v}) − f(v≺s,u) ≤ f(v≺ ∪ {v}) − f(v≺)
= b≺(v) = 0,

since v≺s,u = v≺ ∪ {u} ⊃ v≺.
Similarly,

(45.10) b≺s,u

(u) = f(u≺s,u ∪ {u}) − f(u≺s,u) ≥ f(u≺ ∪ {u}) − f(u≺)
= b≺(u) = 0,

since u≺s,u = s≺ ⊂ u≺.
Finally, if v ≺ s or u ≺ v, then v≺s,u = v≺, and hence b≺s,u

(v) = b≺(v) =
0. This shows (45.7).

By (45.7), the matrix M = (b≺s,u

(v))u,v with rows indexed by u ∈ (s, t]≺
and columns indexed by v ∈ S, in the order given by ≺, has the following,
partially triangular, shape, where + means that the entry is ≥ 0, and − that
the entry is ≤ 0:

s t
0 · · · 0 − + 0 · · · · · · · · · 0 0 0 · · · 0
...

... − − +
.. .

...
...

...
...

...
... − − − . . . . . .

...
...

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

...
...

...
...

...
. . . . . . 0 0

...
...

...
...

...
...

...
. . . + 0

...
...

t 0 · · · 0 − − − · · · · · · · · · − + 0 · · · 0
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As each row of M represents a vector b≺s,u

, to obtain (45.6) we must
describe δ(χt − χs) as a convex combination of the rows of M , for some
δ ≥ 0.

We call the + entries in the matrix the ‘diagonal’ elements. Now for each
row of M , the sum of its entries is 0, as b≺s,u

(S) = f(S) = b≺(S) = 0. Hence,
if a ‘diagonal’ element b≺s,u

(u) is equal to 0 for some u ∈ (s, t]≺, then the
corresponding row of M is all-zero. So in this case we can take δ = 0 in (45.6).

If b≺s,u

(u) > 0 for each u ∈ (s, t]≺ (that is, if each ‘diagonal’ element is
strictly positive), then χt−χs can be described as a nonnegative combination
of the rows of M (by the sign pattern of M and since the entries in each row
of M add up to 0). Hence δ(χt − χs) is a convex combination of the rows of
M for some δ > 0, yielding again (45.6).

45.4. Minimizing a submodular function

We now describe the algorithm to find the minimum value of a submodular
set function f on S. We assume f(∅) = 0 and S = {1, . . . , n}.

We iteratively update a vector x ∈ Bf , given as a convex combination

(45.11) x = λ1b
≺1 + · · · + λkb≺k ,

where the ≺i are total orders of S, and where the λi are positive and sum to
1. Initially, we choose an arbitrary total order ≺ and set x := b≺ (so k = 1
and ≺1=≺).

We describe the iteration. Consider the directed graph D = (S, A), with

(45.12) A := {(u, v) | ∃i = 1, . . . , k : u ≺i v}.

Define

(45.13) P := {v ∈ S | x(v) > 0} and N := {v ∈ S | x(v) < 0}.

Case 1: D has no path from P to N . Then let U be the set of vertices
of D that can reach N by a directed path. So N ⊆ U and U ∩P = ∅; that is,
U contains all negative components of x and no positive components. Hence
x(W ) ≥ x(U) for each W ⊆ S. As no arcs of D enter U , U is a lower ideal
of ≺i, and hence b≺i(U) = f(U), for each i = 1, . . . , k. Therefore, for each
W ⊆ S:

(45.14) f(U) =
k∑

i=1

λib
≺i(U) = x(U) ≤ x(W ) ≤ f(W ).

So U minimizes f .

Case 2: D has a path from P to N . Let d(v) denote the distance in D
from P to v (= minimum number of arcs in a directed path from P to v).
Set d(v) := ∞ if v is not reachable from P . Choose s, t ∈ S as follows.
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Let t be the element in N reachable from P with d(t) maximum, such
that t is largest. Let s be the element with (s, t) ∈ A, d(s) = d(t) − 1, and s
largest. Let α be the maximum of |(s, t]≺i | over i = 1, . . . , k. Reorder indices
such that |(s, t]≺1 | = α.

By (45.6), we can find δ ≥ 0 and describe

(45.15) b≺1 + δ(χt − χs)

as a convex combination of the b≺s,u
1 for u ∈ (s, t]≺1 . Then with (45.11) we

obtain

(45.16) y := x + λ1δ(χt − χs)

as a convex combination of b≺i (i = 2, . . . , k) and b≺s,u
1 (u ∈ (s, t]≺1).

Let x′ be the point on the line segment xy closest to y satisfying x′(t) ≤ 0.
(So x′(t) = 0 or x′ = y.) We can describe x′ as a convex combination of b≺i

(i = 1, . . . , k) and b≺s,u
1 (u ∈ (s, t]≺1). Moreover, if x′(t) < 0, then we can do

without b≺1 .
We reduce the number of terms in the convex decomposition of x′ to at

most |S| by linear algebra: any affine dependence of the vectors in the de-
composition yields a reduction of the number of terms in the decomposition,
as in the standard proof of Carathéodory’s theorem (subtract an appropriate
multiple of the linear expression giving the affine dependence, from the linear
expression giving the convex combination, such that all coefficients remain
nonnegative, and at least one becomes 0). As all b≺ belong to a hyperplane,
this reduces the number of terms to at most |S|.

Then reset x := x′ and iterate. This finishes the description of the algo-
rithm.

45.5. Running time of the algorithm

We show that the number of iterations is at most |S|6. Consider any iteration.
Let

(45.17) β := number of i ∈ {1, . . . , k} with |(s, t]≺i
| = α.

Let x′, d′, A′, P ′, N ′, t′, s′, α′, β′ be the objects x, d, A, P , N , t, s, α, β in
the next iteration (if any). Then

(45.18) for all v ∈ S, d′(v) ≥ d(v),

and

(45.19) if d′(v) = d(v) for all v ∈ S, then (d′(t′), t′, s′, α′, β′) is lexico-
graphically less than (d(t), t, s, α, β).

Since each of d(t), t, s, α, β is at most |S|, and since (if d(v) is unchanged for
all v) there are at most |S| pairs (d(t), t), (45.19) implies that in at most |S|4
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iterations d(v) increases for at least one v. Any fixed v can have at most |S|
such increases, and hence the number of iterations is at most |S|6.

In order to prove (45.18) and (45.19), notice that

(45.20) for each arc (v, w) ∈ A′ \ A we have s �1 w ≺1 v �1 t.

Indeed, as (v, w) �∈ A we have w ≺1 v. As (v, w) ∈ A′, we have v ≺s,u
1 w for

some u ∈ (s, t]≺1 . Hence the definition of ≺s,u
1 gives v = u and s �1 w ≺1 u.

This shows (45.20).
If (45.18) does not hold, then A′ \ A contains an arc (v, w) with d(w) ≥

d(v) + 2 (using that P ′ ⊆ P ). By (45.20), s �1 w ≺1 v �1 t, and so d(w) ≤
d(s) + 1 = d(t) ≤ d(v) + 1, a contradiction. This shows (45.18).

To prove (45.19), assume that d′(v) = d(v) for all v ∈ S. As x′(t′) < 0,
we have x(t′) < 0 or t′ = s. So by our criterion for choosing t (maximizing
(d(t), t) lexicographically), and since d(s) < d(t), we know that d(t′) ≤ d(t),
and that if d(t′) = d(t), then t′ ≤ t.

Next assume that moreover d(t′) = d(t) and t′ = t. As (s′, t) ∈ A′, and
as (by (45.20)) A′ \ A contains no arc entering t, we have (s′, t) ∈ A, and so
s′ ≤ s, by the maximality of s.

Finally assume that moreover s′ = s. As (s, t]≺s,u
1

is a proper subset of
(s, t]≺1 for each u ∈ (s, t]≺1 , we know that α′ ≤ α. Moreover, if α′ = α, then
β′ < β, since ≺1 does not occur anymore among the linear orders making the
convex combination, as x′(t) < 0. This proves (45.19).

We therefore have proved:

Theorem 45.1. Given a submodular function f by a value giving oracle, a
set U minimizing f(U) can be found in strongly polynomial time.

Proof. See above.

This algorithm performs the elementary arithmetic operations on func-
tion values, including multiplication and division (in order to solve certain
systems of linear equations). One would wish to have a ‘fully combinato-
rial’ algorithm, in which the function values are only compared, added, and
subtracted. The existence of such an algorithm was shown by Iwata [2002a,
2002c], by extending the algorithm of Iwata, Fleischer, and Fujishige [2000,
2001].

Notes. In the algorithm, we have chosen t and s largest possible, in some fixed
order of S. To obtain the above running time bound it only suffices to choose t
and s in a consistent way. That is, if the set of choices for t is the same as in the
previous iteration, then we should choose the same t — and similarly for s. This
roots in the idea of ‘consistent breadth-first search’ of Schönsleben [1980].

The observation that the number of iterations in the algorithm of Section 45.4
is O(|S|6) instead of O(|S|7) is due to L.K. Fleischer. Vygen [2002] showed that the
number of iterations can in fact be bounded by O(|S|5).
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The algorithm described above has been speeded up by Fleischer and Iwata
[2000,2002], by incorporating a push-relabel type of iteration based on approxi-
mate distances instead of precise distances (like Goldberg’s method for maximum
flow, given in Section 10.7). Iwata [2002b] combined the approaches of Iwata, Fleis-
cher, and Fujishige [2000,2001] and Schrijver [2000a] to obtain a faster algorithm.
A descent method for submodular function minimization based on an oracle for
membership of the base polytope was given by Fujishige and Iwata [2002].

Surveys and background on submodular function minimization are given by
Fleischer [2000b] and McCormick [2001].

45.6. Minimizing a symmetric submodular function

A set function f on S is called symmetric if f(U) = f(S \U) for each U ⊆ S.
The minimum of a symmetric submodular function f is attained by ∅, since
for each U ⊆ S one has

(45.21) 2f(U) = f(U) + f(S \ U) ≥ f(∅) + f(S) = 2f(∅).

By extending a method of Nagamochi and Ibaraki [1992b] for finding the
minimum nonempty cut in an undirected graph, Queyranne [1995,1998] gave
an easy combinatorial algorithm to find a nonempty proper subset U of S
minimizing f(U), where f is given by a value giving oracle. We may assume
that f(∅) = f(S) = 0, by resetting f(U) := f(U) − f(∅) for all U ⊆ S.

Call an ordering s1, . . . , sn of the elements of S a legal order of S for f ,
if, for each i = 1, . . . , n,

(45.22) f({s1, . . . , si−1, x}) − f({x})

is minimized over x ∈ S \ {s1, . . . , si−1} by x = si. One easily finds a legal
order, by O(|S|2) oracle calls (for the value of f).

Now the algorithm is (where a set U splits a set X if both X ∩ U and
X \ U are nonempty):

(45.23) Find a legal order (s1, . . . , sn) of S for f .
Determine (recursively) a nonempty proper subset T of S not
splitting {sn−1, sn}, minimizing f(T ). (This can be done by iden-
tifying sn−1 and sn.)
Then the minimum value of f(U) over nonempty proper subsets
U of S is equal to min{f(T ), f({sn})}.

The correctness of the algorithm follows from, for n ≥ 2:

(45.24) f(U) ≥ f({sn}) for each U ⊆ S splitting {sn−1, sn}.

This can be proved as follows. Define t0 := s1. For i = 1, . . . , n − 1, define
ti := sj , where j is the smallest index such that j > i and such that U
splits {si, sj}. For i = 0, . . . , n, let Ui := {s1, . . . , si}. Note that for each
i = 1, . . . , n − 1 one has
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(45.25) f(Ui−1 ∪ {ti}) − f({ti}) ≥ f(Ui−1 ∪ {ti−1}) − f({ti−1}),

since if ti−1 = ti this is trivial, and if ti−1 �= ti, then ti−1 = si, in which case
(45.25) follows from the legality of the order.

Moreover, for each i = 1, . . . , n − 1 (setting U := S \ U):

(45.26) f(Ui ∪ U) − f(Ui−1 ∪ U) + f(Ui ∪ U) − f(Ui−1 ∪ U)
≤ f(Ui ∪ {ti}) − f(Ui−1 ∪ {ti}).

In proving this, we may assume (by symmetry of U and U) that si ∈ U .
Then Ui ∪ U = Ui−1 ∪ U and ti ∈ U . So f(Ui ∪ {ti}) + f(Ui−1 ∪ U) ≥
f(Ui−1 ∪ {ti}) + f(Ui ∪ U), by submodularity. This gives (45.26).

Then we have:

(45.27) f(sn) − 2f(U)
= f(Un−1 ∪ U) + f(Un−1 ∪ U) − f(U0 ∪ U) − f(U0 ∪ U)

=
n−1∑

i=1

(f(Ui ∪ U) − f(Ui−1 ∪ U) + f(Ui ∪ U) − f(Ui−1 ∪ U))

≤
n−1∑

i=1

(f(Ui ∪ {ti}) − f(Ui−1 ∪ {ti}))

≤
n−1∑

i=1

(f(Ui ∪ {ti}) − f(Ui−1 ∪ {ti−1}) + f({ti−1}) − f({ti}))

= f(Un−1 ∪ {tn−1}) − f({tn−1}) − f({t0}) + f({t0}) = −f(sn)

(where the first inequality follows from (45.26), and the second inequality
from (45.25)). This shows (45.24).

Notes. Fujishige [1998] gave an alternative correctness proof. Nagamochi and
Ibaraki [1998] extended the algorithm to minimizing submodular functions f satis-
fying

(45.28) f(T ) + f(U) ≥ f(T \ U) + f(U \ T )

for all T, U ⊆ S. Rizzi [2000b] gave an extension.

45.7. Minimizing a submodular function over the odd
sets

From the strong polynomial-time solvability of submodular function mini-
mization, one can derive that also a set of odd cardinality minimizing f (over
the odd sets) is solvable in strongly polynomial time (Grötschel, Lovász, and
Schrijver [1981,1984a,1988] (the second paper corrects a wrong argument
given in the first paper)).

Theorem 45.2. Given a submodular set function f on S (by a value giving
oracle) and a nonempty subset T of S, one can find in strongly polynomial
time a set W ⊆ S minimizing f(W ) over W with |W ∩ T | odd.
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Proof. The case T odd can be reduced to the case T even as follows. Find
for each t ∈ T a subset Wt of S − t with Wt ∩ (T − t) odd, and minimizing
f(Wt). Moreover, find a subset U of S minimizing f(U) over U ⊇ T . Then
a set that attains the minimum among f(U) and the f(Wt), is an output as
required.

So we can assume that T is even. We describe a recursive algorithm. Say
that a set U splits T if both T ∩ U and T \ U are nonempty. First find a
set U minimizing f(U) over all subsets U of S splitting T . This can be done
by finding for all s, t ∈ T a set Us,t minimizing f(Us,t) over all subsets of
S containing s and not containing t (this amounts to submodular function
minimization), and taking for U a set that minimizes f(Us,t) over all such
s, t.

If U ∩ T is odd, we output W := U . If U ∩ T is even, then recursively
we find a set X minimizing f(X) over all X with X ∩ (T ∩ U) odd, and not
splitting T \ U . This can be done by shrinking T \ U to one element. Also,
recursively we can find a set Y minimizing f(Y ) over all Y with Y ∩ (T \ U)
odd, and not splitting T ∩ U . Output an X or Y attaining the minimum of
f(X) and f(Y ).

This gives a strongly polynomial-time algorithm as the total number of
recursive calls is at most |T |−2 (since 2+(|T ∩U |−2)+(|T \U |−2) = |T |−2).

To see the correctness, let W minimize f(W ) over those W with |W ∩ T |
odd. Suppose that f(W ) < f(X) and f(W ) < f(Y ). As f(W ) < f(X), W
splits T \ U , and hence W ∪ U splits T . Similarly, f(W ) < f(Y ) implies that
W ∩ U splits T .

Since W ∩T is odd and U ∩T is even, either (W ∩U)∩T or (W ∪U)∩T
is odd.

If (W ∩ U) ∩ T is odd, then f(W ∩ U) ≥ f(W ) (as W minimizes f(W )
over W with W ∩ T odd) and f(W ∪ U) ≥ f(U) (as W ∪ U splits T and
as U minimizes f(U) over U splitting T ). Hence, by the submodularity of f ,
f(W ∩ U) = f(W ). Since (W ∩ U) ∩ (T ∩ U) = (W ∩ U) ∩ T is odd and since
W ∩U does not split T \U , we have f(W ) = f(W ∩U) ≥ f(X), contradicting
our assumption.

If (W ∪ U) ∩ T is odd, a symmetric argument gives a contradiction.

This generalizes the strong polynomial-time solvability of finding a mini-
mum-capacity odd cut in a graph, proved by Padberg and Rao [1982] (Corol-
lary 25.6a). For a further generalization, see Section 49.11a.
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Polymatroid intersection

The intersection of two polymatroids behaves as nice as the intersection of
two matroids, as was shown by Edmonds again. We study in this chapter
min-max relations, polyhedral characterizations, and total dual integrality
results. In the next chapter we go over to the algorithmic questions.

46.1. Box-total dual integrality of polymatroid
intersection

We saw in Section 44.2 that the greedy algorithm yields a proof that an
integer-valued submodular function gives an integer polymatroid. The inter-
est of polymatroids for combinatorial optimization is enlarged by the funda-
mental result of Edmonds [1970b] that also the intersection of two integer
polymatroids is integer, thus generalizing the matroid intersection theorem.
In order to obtain this result, we first show a more general theorem (also due
to Edmonds [1970b]).

Consider, for submodular set functions f1, f2 on S, the system:

(46.1) x(U) ≤ f1(U) for U ⊆ S,
x(U) ≤ f2(U) for U ⊆ S.

Then:

Theorem 46.1. If f1 and f2 are submodular, then (46.1) is box-TDI.

Proof. Choose w : S → R. Let y1, y2 attain

(46.2) min{
∑

U⊆S

(y1(U)f1(U) + y2(U)f2(U)) | |

y1, y2 ∈ R
P(S)
+ ,

∑

U⊆S

(y1(U) + y2(U))χU = w}.

For i = 1, 2, define wi : S → R by

(46.3) wi :=
∑

U⊆S

yi(U)χU .

Then yi attains
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(46.4) min{
∑

U⊆S

yi(U)fi(U) | yi ∈ R
P(S)
+ ,

∑

U⊆S

yi(U)χU = wi}.

So by Theorem 44.3, we can assume that the collections

(46.5) Fi := {U ⊆ S | yi(U) > 0}

are chains. Hence, by Theorem 41.11, (46.2) has an optimum solution such
that the inequalities with positive coefficients have a totally unimodular con-
straint matrix. Therefore, by Theorem 5.35, (46.1) is box-TDI.

(This proof method is due to Edmonds [1970b].)

46.2. Consequences

Theorem 46.1 has the following consequences. First, the integrality of the
intersection of two polymatroids:

Corollary 46.1a (polymatroid intersection theorem). The intersection of
two integer (extended) polymatroids is box-integer.

Proof. If Pf1 and Pf2 are integer polymatroids, f1 and f2 can be taken to
be integer-valued, by Corollary 44.3g. Hence (46.1) determines a box-integer
polyhedron.

Next, a min-max relation:

Corollary 46.1b. Let f1 and f2 be submodular set functions on S with
f1(∅) = f2(∅) = 0. Then

(46.6) max{x(U) | x ∈ EPf1 ∩ EPf2} = min
T⊆U

(f1(T ) + f2(U \ T ))

for each U ⊆ S.

Proof. This follows by maximizing wTx over (46.1) for w := χU , and applying
Theorem 46.1.

Similarly, for (nonextended) polymatroids:

Corollary 46.1c. Let f1 and f2 be nondecreasing submodular set functions
on S with f1(∅) = f2(∅) = 0. Then

(46.7) max{x(U) | x ∈ Pf1 ∩ Pf2} = min
T⊆U

(f1(T ) + f2(U \ T ))

for each U ⊆ S.

Proof. As the previous corollary.
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Let f1 and f2 be submodular set functions on S with f1(∅) = f2(∅) = 0.
Define

(46.8) f(U) := min
T⊆U

(f1(T ) + f2(U \ T ))

for U ⊆ S. It is easy to see that a vector x belongs to Pf1 ∩Pf2 if and only if

(46.9) xs ≥ 0 (s ∈ S),
x(U) ≤ f(U) (U ⊆ S).

Moreover, system (46.9) is box-totally dual integral, since f(U) ≤ fi(U) for
each U ⊆ S and i = 1, 2.

A consequence is that Pf1 ∩Pf2 is integer if and only if f is integer. It may
occur that Pf1 and Pf2 are not integer (i.e., f1 and f2 are not integer), while
Pf1 ∩ Pf2 is integer (i.e., f is integer). For instance, take Pf1 = {(x1, x2) |
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 3

2} and Pf2 = {(x1, x2) | (x2, x1) ∈ Pf1}.
Many other results on polymatroid intersection may be deduced from

Theorem 46.1, by considering derived polymatroids (cf. McDiarmid [1978]).
For instance, if Pf1 and Pf2 are integer polymatroids in R

S , v and w are
integer vectors, and k and � are integers, then the polytope

(46.10) {x ∈ Pf1 ∩ Pf2 | v ≤ x ≤ w, k ≤ x(S) ≤ �}

is integer again. To see this, it suffices to show that the polytope Pf1∩Pf2∩{x |
x(S) = k} is integer for any integer k. We can reset f1(S) := min{f1(S), k}.
Then the polytope is a face of Pf1 ∩ Pf2 , and hence is integer. In fact, the
system determining (46.10) is box-TDI — see Corollary 49.12d.

The intersection of three integer polymatroids can have noninteger ver-
tices, as the following example shows. Let S = {1, 2, 3, 4} and let P1, P2 and
P3 be the following polymatroids:

(46.11) P1 := {x ∈ R
S | x ≥ 0, x({1, 2}) ≤ 1, x({3, 4}) ≤ 1},

P2 := {x ∈ R
S | x ≥ 0, x({1, 3}) ≤ 1, x({2, 4}) ≤ 1},

P3 := {x ∈ R
S | x ≥ 0, x({1, 4}) ≤ 1, x({2, 3}) ≤ 1}.

(So each Pi is the independent set polytope of a partition matroid.) Now the
vector ( 1

2 , 1
2 , 1

2 , 1
2 ) is in P1∩P2∩P3, but the only integer vectors in P1∩P2∩P3

are the 0,1 vectors with at most one 1.

46.3. Contrapolymatroid intersection

Similar results as in the previous sections can be shown for the intersection
of two contrapolymatroids. Such results can be proved similarly, or can be
derived from the corresponding results for polymatroids.

Consider the system, for set functions g1, g2 on S:

(46.12) x(U) ≥ g1(U) for U ⊆ S,
x(U) ≥ g2(U) for U ⊆ S.
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Then Theorem 46.1 gives:

Corollary 46.1d. If g1 and g2 are supermodular, then (46.12) is box-TDI.

Proof. This follows from the box-total dual integrality of (46.1) taking fi :=
−gi for i = 1, 2.

46.4. Intersecting a polymatroid and a
contrapolymatroid

Let S be a finite set. For set functions f and g on S consider the system

(46.13) x(U) ≤ f(U) for U ⊆ S,
x(U) ≥ g(U) for U ⊆ S.

Theorem 46.2. If f is submodular and g is supermodular, then system
(46.13) is box-TDI.

Proof. We can assume that f(∅) ≥ 0 and g(∅) ≤ 0. Choose w ∈ R
S , and

consider the dual problem of maximizing wTx over (46.13):

(46.14) min{
∑

U⊆S

y(U)f(U) −
∑

U⊆S

z(U)g(U) |

y, z ∈ R
P(S)
+ ,

∑

U⊆S

y(U)χU −
∑

U⊆S

z(U)χU = w}.

Let y, z attain this minimum. Define

(46.15) u :=
∑

U⊆S

y(U)χU and v :=
∑

U⊆S

z(U)χU .

So y attains

(46.16) min{
∑

U⊆S

y(U)f(U) | y ∈ R
P(S)
+ ,

∑

U⊆S

y(U)χU = u}

and z attains

(46.17) max{
∑

U⊆S

z(U)g(U) | z ∈ R
P(S)
+ ,

∑

U⊆S

z(U)χU = v}.

By Theorem 44.3, (46.16) has an optimum solution y with F := {U |
y(U) > 0} is a chain. Similarly, (46.17) has an optimum solution z with
G := {U | z(U) > 0} is a chain. Hence by Theorem 41.11, minimum (46.14)
has an optimum solution such that the inequalities corresponding to positive
coefficients have a totally unimodular constraint matrix. Hence by Theorem
5.35, (46.13) is box-TDI.

So for the intersection of a polymatroid and a contrapolymatroid one gets:
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Corollary 46.2a. The intersection of an integer extended polymatroid and
an integer extended contrapolymatroid is integer.

Proof. Directly from the fact that an integer extended polymatroid is the
solution set of x(U) ≤ f(U) (U ⊆ S) for some integer submodular set function
on S, and an integer extended contrapolymatroid is the solution set of x(U) ≥
g(U) (U ⊆ S) for some integer submodular set function on S. Hence, by
Theorem 46.2, the intersection is determined by a TDI system with integer
right-hand sides. So the intersection is integer.

46.5. Frank’s discrete sandwich theorem

Frank [1982b] showed the following ‘discrete sandwich theorem’ (analogous to
the ‘continuous sandwich theorem’, stating the existence of a linear function
between a convex and a concave function):

Corollary 46.2b (Frank’s discrete sandwich theorem). Let f be a submod-
ular and g a supermodular set function on S, with g ≤ f . Then there exists
a modular set function h on S with g ≤ h ≤ f . If f and g are integer, h can
be taken integer.

Proof. We can assume that g(∅) = 0 = f(∅), by resetting f(U) := f(U)−f(∅)
and g(U) := g(U) − f(∅), for each U ⊆ S, and g(∅) := 0.

Define f ′(U) := f(S) − g(S \ U) for each U ⊆ S. Then f ′ is submodular.
Now by Corollary 46.1b:

(46.18) max{x(S) | x(U) ≤ f(U), x(U) ≤ f ′(U) for each U ⊆ S}
= min{f(T ) + f ′(S \ T ) | T ⊆ S}.

The minimum is at least f(S), since f(T )+f ′(S \T ) = f(T )+f(S)−g(T ) ≥
f(S). Hence there exists an x ∈ R

S with x(U) ≤ f(U) and x(U) ≤ f ′(U)
for each U ⊆ S and with x(S) = f(S). Defining h(U) := x(U), gives the
modular function as required, since for each U ⊆ S:

(46.19) g(U) = f(S) − f ′(S \ U) ≤ x(S) − x(S \ U) = x(U) ≤ f(U).

If f and g are integer, we can choose x integer, implying that h is integer.

As Lovász [1983c] observed, the first part of this result can be derived from
the continuous sandwich theorem: define f̃ : R

S
+ → R by

(46.20) f̃(x) :=
k∑

i=1

λif(Ui),

where ∅ �= U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ S and λ1, . . . , λk > 0 are such that
x =

∑k
i=1 λiχ

Ui . Define g̃ similarly. Then f̃ is convex and g̃ is concave, and
g̃ ≤ f̃ . Hence there is a linear function h̃ satisfying g̃ ≤ h̃ ≤ f̃ . This gives the
function h as required.
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46.6. Integer decomposition

Integer polymatroids have the integer decomposition property. More gener-
ally:

Corollary 46.2c. Let P1, . . . , Pk be integer polymatroids. Then each integer
vector in P1+· · ·+Pk is a sum x1+· · ·+xk of integer vectors x1 ∈ P1, . . . , xk ∈
Pk.

Proof. It suffices to show this for k = 2; the general case follows by induc-
tion (as the sum of integer polymatroids is again an integer polymatroid,
by Theorem 44.6). Choose an integer vector x ∈ P1 + P2. Let Q be the
contrapolymatroid given by

(46.21) Q := x − P2.

Then P1 ∩ Q �= ∅, since x = x1 + x2 for some x1 ∈ P1 and x2 ∈ P2, implying
x1 ∈ P1 ∩ Q. Now Q is integer as x and P2 are integer. Hence by Corollary
46.2a, P1 ∩ Q contains an integer vector y. Then x − y ∈ P2, and so x is the
sum of y ∈ P1 and x − y ∈ P2.

This implies the integer decomposition property for integer polymatroids,
proved by Giles [1975] (also by Baum and Trotter [1981]):

Corollary 46.2d. An integer polymatroid has the integer decomposition
property.

Proof. Directly from Corollary 46.2c, by taking all Pi equal.

This gives the following integer rounding properties (Baum and Trotter
[1981]). Let Pf be the integer polymatroid determined by some integer sub-
modular set function f on S. Let B be the collection of integer base vectors
of Pf . Let B be the B × S incidence matrix. Then for each c ∈ Z

S
+, one has

(46.22) min{yT1 | y ∈ Z
B
+, yTB ≥ cT}

= �min{yT1 | y ∈ R
B
+, yTB ≥ cT}�.

Indeed, ≥ is trivial. To see equality, let k be equal to the right-hand side.
Then c ∈ k · Pf , and hence, by Corollary 46.2d, c ≤ b1 + · · · + bk for rows
b1, . . . , bk of B. This shows equality.

Note that the right-hand side in (46.22) is equal to �max{cTx | x ∈
A(Pf )}�, where A(Pf ) is the antiblocking polyhedron of Pf .

Similarly, one has:

(46.23) max{yT1 | y ∈ Z
B
+, yTB ≤ cT}

= �max{yT1 | y ∈ R
B
+, yTB ≤ cT}�.



Section 46.7a. Up and down hull of the common base vectors 801

Now the right-hand side is equal to �min{cTx | x ∈ B(Q)}�, where B(Q)
is the blocking polyhedron of Q := {x ∈ R

S | x(U) ≥ f(S) − f(S \ U) for
U ⊆ S}.

If f is the rank function of a matroid, then (46.22) describes the minimum
number of bases covering S, while (46.23) describes the maximum number of
disjoint bases.

46.7. Further results and notes

46.7a. Up and down hull of the common base vectors

Let f1 and f2 be nondecreasing submodular set functions on S, with f1(∅) = f2(∅) =
0 and f1(S) = f2(S), and let P1 and P2 be the associated polymatroids. Let F1

and F2 be the faces of base vectors of P1 and of P2, respectively. Suppose that
F1 ∩ F2 �= ∅, equivalently that

(46.24) f1(S) = f2(S) = max{x(S) | x ∈ P1 ∩ P2} = min
U⊆S

f1(U) + f2(S \ U).

Consider the polyhedra P and Q defined by

(46.25) P := {x ∈ R
S
+ | x ≤ y for some y in F1 ∩ F2},

Q := {x ∈ R
S
+ | x ≥ y for some y in F1 ∩ F2}.

So if f1 and f2 are the rank functions of matroids on S, then P is just the convex
hull of incidence vectors of subsets of S which are contained in a common base.

Note that F1 and F2 are the faces of minimal vectors in the contrapolymatroids
Q1 and Q2 associated with the supermodular set functions g1 and g2 on S given by

(46.26) gi(U) := fi(S) − fi(S \ U)

for U ⊆ S and i = 1, 2 (cf. Section 44.5). So P ⊆ P1 ∩ P2 and Q ⊆ Q1 ∩Q2.
Let the set functions f and g on S be defined by

(46.27) f(U) := max{x(U) | x ∈ P1 ∩ P2} = min
T⊆U

(f1(T ) + f2(U \ T )),

g(U) := min{x(U) | x ∈ Q1 ∩Q2} = max
T⊆U

(g1(T ) + g2(U \ T )),

for U ⊆ S (cf. Corollary 46.1c). Then f(S) = g(S) = f1(S) = f2(S) = g1(S) =
g2(S).

It is easy to see that if x belongs to Q, then

(46.28) x(U) ≥ f(S) − f(S \ U) for each U ⊆ S

(note that x ≥ 0 follows from (46.28) by taking U = {s}). Indeed, if x ≥ z with
z ∈ F1 ∩F2, then x(U) ≥ z(U) = f(S)−z(S \U) ≥ f(S)−f(S \U), as z ∈ P1 ∩P2.

Similarly, if x belongs to P , then

(46.29) xs ≥ 0 (s ∈ S),
x(U) ≤ g(S) − g(S \ U) (U ⊆ S).
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In fact, the systems (46.28) and (46.29) determine Q and P respectively. This
was shown by Cunningham [1977] and McDiarmid [1978], thus proving a conjecture
of Fulkerson [1971a] (cf. Weinberger [1976]).

Theorem 46.3. Polyhedron Q is determined by (46.28). Polyhedron P is deter-
mined by (46.29).

Proof. Consider x ∈ R
S
+ and let P ′

i be the polymatroid P ′
i := {y ∈ Pi | y ≤ x} for

i = 1, 2 (cf. Section 44.1). By (44.8), the submodular function f ′
i associated with

P ′
i is given by

(46.30) f ′
i(U) = min

T⊆U
(fi(T ) + x(U \ T ))

for U ⊆ S and i = 1, 2. Now x is in Q if and only if there is a vector z in P1 ∩ P2

with z ≤ x and z(S) = f(S), i.e., if and only if there is a vector z in P ′
1 ∩ P ′

2 with
z(S) = f(S). By (46.7) such a vector exists if and only if

(46.31) min
U⊆S

(f ′
1(U) + f ′

2(S \ U)) ≥ f(S).

Substituting (46.30) one finds that (46.31) is equivalent to (46.28).
The second statement of Theorem 46.3 is proved similarly.

This theorem has a self-refining character. If k is a rational number with k ≤
f(S) and if w ∈ Q, then

(46.32) {x ∈ R
S
+ | x ≥ z for some z in P1 ∩ P2 with z(S) = k}

= {x ∈ R
S
+ | x(U) ≥ k − f(S \ U) for all U ⊆ S}

and

(46.33) {x ∈ R
S
+ | x ≥ z for some z in F1 ∩ F2 with z ≤ w}

= {x ∈ R
S
+ |x(S \ (T ∪ U)) ≥ f(S) − w(U) − f(T ) for disjoint
T, U ⊆ S},

as can be seen by taking appropriate subpolymatroids of P1 and P2 (cf. also Mc-
Diarmid [1976,1978]).

This has the following applications. Let G = (V,E) be a bipartite graph, let
x ∈ R

E
+, and let k be a natural number. Then there exists a vector z ≤ x such that

z is a convex combination of incidence vectors of matchings in G of size k if and
only if

(46.34) x(E[U ]) ≥ k − |V | + |U |
for all U ⊆ V (where E[U ] denotes the set of edges spanned by U). This can be
derived as follows. Let V1 and V2 be the colour classes of G. For F ⊆ E, let fi(F )
be the number of vertices in Vi covered by F (for i = 1, 2). Then f(F ) equals
the maximum size of a matching in F , which is equal to the minimum number of
vertices covering F . Hence the inequalities x(F ) ≥ k− f(E \F ) (for F ⊆ E) follow
from x(E[U ]) ≥ k − |V \ U | (for U ⊆ V ).

Another application is Corollary 52.3a on the up hull of the r-arborescence
polytope (cf. Section 52.1a).

Gröflin and Hoffman [1981] gave a method to show the following:
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Theorem 46.4. (46.28) and (46.29) are box-TDI.

Proof. We prove that (46.28) is box-TDI. The box-total dual integrality of (46.29)
is proved similarly.

Let R be the collection of all pairs (T, U) of subsets of S with T ∩U = ∅. Then
the system

(46.35) x(S \ (T ∪ U)) ≥ f(S) − f1(T ) − f2(U) ((T, U) ∈ R)

is equivalent to (46.28), in the following sense: by (46.27), (46.35) determines Q,
and (46.35) contains all inequalities occurring in (46.28); moreover, all inequalities
in (46.35) satisfied with equality by some x ∈ Q, also occur in (46.28). Hence, if
(46.35) is box-totally dual integral, also (46.28) is box-totally dual integral. So it
suffices to show the box-total dual integrality of (46.35). To this end, let w ∈ Z

S
+,

and consider the dual of minimizing wTx over (46.35):

(46.36) max{
∑

(T,U)∈R
y(T, U)(f(S) − f1(T ) − f2(U)) |

y ∈ R
R
+ ,

∑

(T,U)∈R
y(T, U)χS\(T∪U) = w}.

We show that it is attained by an integer vector y if w is integer.
To this end, let y attain the maximum (46.36) such that

(46.37)
∑

(T,U)∈R
y(T, U)(|T | + |S \ U |)(|U | + |S \ T |)

is as small as possible. Then:

(46.38) if y(A,B) > 0 and y(C,D) > 0, then either A ⊆ C and B ⊇ D, or
A ⊇ C and B ⊆ D.

Suppose not. Define α := min{y(A,B), y(C,D)}. Define y′ : R → R+ by

(46.39) y′(A,B) := y(A,B) − α,
y′(C,D) := y(C,D) − α,
y′(A ∩ C,B ∪D) := y(A ∩ C,B ∪D) + α,
y′(A ∪ C,B ∩D) := y(A ∪ C,B ∩D) + α,

and let y′ coincide with y in the other components. One easily checks that

(46.40)
∑

(T,U)∈R
y′(T, U)χS\(T∪U) =

∑

(T,U)∈R
y(T, U)χS\(T∪U) and

∑

(T,U)∈R
y′(T, U)(f(S) − f1(T ) − f2(U))

≥
∑

(T,U)∈R
y(T, U)(f(S) − f1(T ) − f2(U)),

by the submodularity of f1 and f2. So y′ also attains the maximum (46.36). More-
over, one straightforwardly checks that replacing y by y′ decreases (46.37).36 This
contradicts our assumption, and therefore proves (46.38).
36 This can be seen with Theorem 2.1: Make a copy S̃ of S, and, for any U ⊆ S, let Ũ be

the set of copies of elements of U . Define XT,U := T ∪(S̃\Ũ). Then |T |+|S\U | = |XT,U |
and |U | + |S \ T | = |(S ∪ S̃) \ XT,U |. Moreover, for (A, B) and (C, D) in R we have
XA∩C,B∪D = XA,B ∩ XC,D and XA∪C,B∩D = XA,B ∪ XC,D. So the replacements
decrease (46.37) by Theorem 2.1, since XA,B �⊆ XC,D �⊆ XA,B .
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Let R0 := {(T, U) ∈ R | y(T, U) > 0} = {(T1, U1), . . . , (Tn, Un)} with T1 ⊆
· · · ⊆ Tn and Un ⊆ · · · ⊆ U1 (this is possible by (46.38)). Let M be the {0, 1}
matrix with rows indexed by R0 and columns indexed by S, such that M(T,U),s = 1
if and only if s /∈ T ∪U . Then for each s in S, the indices i for which M(Ti,Ui),s = 1
form a contiguous interval of {1, . . . , n}. Hence M is totally unimodular (as it is a
network matrix with directed tree being a directed path). So we have the box-total
dual integrality of (46.35) by Theorem 5.35.

Frank and Tardos [1984a] indicated a direct derivation of this theorem from the
total dual integrality of (46.1).

There are a number of straightforward corollaries. As for the integrality of
polyhedra:

Corollary 46.4a. If f (or, equivalently, g) is integer, then the polyhedra P , Q, and
F1 ∩ F2 are integer.

Proof. This follows directly from Theorem 46.4. Note that F1 ∩F2 is integer if and
only if P is integer.

Also a min-max relation follows:

Corollary 46.4b. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank
functions r1 and r2 and let k be the maximum size of a common independent set.
Then for any subset U of S,

(46.41) min
I

|U ∩ I| = max
S1,...,St

t∑

i=1

(k − r(S \ Si)),

where the minimum ranges over all common independent sets I with |I| = k, and
where the maximum ranges over all partitions of U into sets S1, . . . , St (t ≥ 0), and
where r(T ) denotes the maximum size of a common independent set contained in
T .

Proof. Apply Theorem 46.4, taking c := χU , fi := ri, and f := r.

It is not necessarily true that if F1∩F2 is integer, then also P1∩P2 (or Q1∩Q2) is
integer — i.e., that the converse implication of Corollary 46.4a holds. For instance,
if

(46.42) P1 := {(x, y, z)T | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 3
2 , x+ z ≤ 2},

P2 := {(x, y, z)T | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 3
2 , y + z ≤ 2},

then F1 ∩ F2 = {(1, 1, 1)T}, but ( 1
2 ,

1
2 ,

3
2 )T is a vertex of P1 ∩ P2.

Related results on integer decomposition of integer polymatroids in McDiarmid
[1983].

46.7b. Further notes

Giles [1975] characterized the facets of the intersection of two polymatroids. Ageev
[1988] studied the problem of maximizing a concave function over the intersection
of polymatroids.



Chapter 47

Polymatroid intersection
algorithmically

In this chapter we consider the problem of finding a vector of maximum
weight in the intersection of two (extended) polymatroids algorithmically.
We describe a strongly polynomial-time algorithm for this problem in four
stages (where f1 and f2 are submodular set functions on S):
• a strongly polynomial-time algorithm finding a maximum-size vector in
EPf1 ∩ EPf2 (Section 47.1),

• a strongly polynomial-time algorithm finding a common base vector of
f1 and f2 maximizing x(s) for some prescribed s ∈ S (Section 47.2),

• a polynomial-time algorithm finding a maximum-weight common base
vector of f1 and f2 (Section 47.3),

• a strongly polynomial-time algorithm finding a maximum-weight com-
mon base vector of f1 and f2 (Section 47.4).

At the base of the algorithms is submodular function minimization, which
leads back to the ‘consistent breadth-first search’ technique proposed in a
pioneering paper of Schönsleben [1980] on polymatroid intersection.

47.1. A maximum-size common vector in two
polymatroids

We first consider the problem:

(47.1) given: submodular set functions f1 and f2 on a set S (by value
giving oracles),

find: an x ∈ EPf1 ∩ EPf2 maximizing x(S), and a T ⊆ S with
x(S) = f1(T ) + f2(S \ T ).

So T certifies that x indeed maximizes x(S) over EPf1 ∩ EPf2 , since for any
x′ ∈ EPf1 ∩ EPf2 we have:

(47.2) x′(S) = x′(T ) + x′(S \ T ) ≤ f1(T ) + f2(S \ T ) = x(S).

On the other hand, x certifies that T minimizes f1(T ) + f2(S \ T ).
Then (Lawler and Martel [1982a], extending a weakly polynomial bound

of Schönsleben [1980]):
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Theorem 47.1. Problem (47.1) is solvable in strongly polynomial-time.

Proof. We can assume that f1(∅) = 0 and f2(∅) = 0. Define the submodular
set function f on S by

(47.3) f(U) := f1(U) + f2(S \ U) − f2(S)

for U ⊆ S. With the submodular function minimization algorithm described
in Section 45.4 we find a subset T of S minimizing f . So, by Corollary 46.1b,
f(T ) + f2(S) is equal to the maximum of x(S) over EPf1 ∩ EPf2 .

The submodular function minimization algorithm of Section 45.4 also
gives vertices b1, . . . , bk of EPf and λ1, . . . , λk ≥ 0 with λ1 + · · · + λk = 1
such that for

(47.4) y := λ1b1 + · · · + λkbk

we have y(T ) = f(T ), supp−(y) ⊆ T , and supp+(y) ⊆ S \T . (Here, as usual,
supp+(x) := {s ∈ S | x(s) > 0} and supp−(x) := {s ∈ S | x(s) < 0}.)

Now for each i = 1, . . . , k, we can find b′
i ∈ EPf1 and b′′

i ∈ EPf2

with bi = b′
i − b′′

i . Indeed, let u1, . . . , un be a total order of S generating
bi. (That is, bi(uj) = f({u1, . . . , uj}) − f({u1, . . . , uj−1}) for j = 1, . . . , n.
These orderings are also implied by the submodular function minimization
algorithm.) Let b′

i be the vertex of EPf1 generated by the order u1, . . . , un

(that is, b′
i(uj) = f1({u1, . . . , uj}) − f1({u1, . . . , uj−1}) for j = 1, . . . , n). Let

b′′
i be the vertex of EPf2 generated by the order un, un−1, . . . , u1 (that is,

b′′
i (uj) = f2({uj , . . . , un}) − f2({uj+1, . . . , un}) for j = 1, . . . , n). Then by

definition of f we have bi = b′
i − b′′

i , since for each j:

(47.5) bi(uj) = f({u1, . . . , uj}) − f({u1, . . . , uj−1})
= f1({u1, . . . , uj}) + f2({uj+1, . . . , un}) − f1({u1, . . . , uj−1})
−f2({uj , . . . , un}) = b′

i(uj) − b′′
i (uj).

Define

(47.6) x′ :=
k∑

i=1

λib
′
i, x′′ :=

k∑

i=1

λib
′′
i , and x := x′ ∧ x′′,

where ∧ stands for taking coordinatewise minimum. As x′ ∈ EPf1 and x′′ ∈
EPf2 , we know x ∈ EPf1 ∩EPf2 . Also, as y = x′ −x′′, we know that if u ∈ T ,
then y(u) ≤ 0, hence x′′(u) ≥ x′(u), and therefore x(u) = x′(u). Similarly, if
u ∈ S \ T , then x(u) = x′′(u). Hence

(47.7) x(S) = x(T )+x(S\T ) = x′(T )+x′′(S\T ) = (x′−x′′)(T )+x′′(S)
= y(T ) + x′′(S) = f(T ) + f2(S) = f1(T ) + f2(S \ T ),

as required.
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47.2. Maximizing a coordinate of a common base vector

Theorem 47.1 implies the strong polynomial-time solvability of:

(47.8) given: submodular set functions f1 and f2 on a set S (by value
giving oracles) and an element s ∈ S,

find: a common base vector x of f1 and f2 maximizing x(s), and
subsets S1 and S2 of S with S1 ∩ S2 = {s}, S1 ∪ S2 = S, and
x(Si) = fi(Si) for i = 1, 2.

This is a result of Frank [1984a]:

Theorem 47.2. Problem (47.8) is solvable in strongly polynomial time.

Proof. We can assume that f1(S) = f2(S) and that f1 and f2 have a common
base vector (this can be checked by Theorem 47.1). Hence

(47.9) f1(S) ≤ f1(U) + f2(S \ U)

for each U ⊆ S. Define S′ := S \ {s}.
First determine S1, S2 with S1∩S2 = {s} and S1∪S2 = S and minimizing

f1(S1) + f2(S2). This can be done by minimizing the submodular function
f1(U + s) + f2(S \ U) over U ⊆ S′.

Define

(47.10) α := f1(S1) + f2(S2) − f1(S).

For i = 1, 2 and U ⊆ S′, define

(47.11) gi(U) := min{fi(U), fi(U + s) − α}.

Then g1 and g2 are submodular set functions on S′, as is easy to check.
Moreover,

(47.12) gi(S′) = fi(S) − α.

To show this, we may assume that i = 1. Then we must show:

(47.13) f1(S′) ≥ f1(S) − α = 2f1(S) − f1(S1) − f2(S2).

Now f1(S1 \ {s}) + f2(S2) ≥ f1(S) (since f1 and f2 have a common base
vector) and f1(S1) − f1(S1 \ {s}) ≥ f1(S) − f1(S′) (by the submodularity of
f1). These two inequalities imply (47.13).

Then

(47.14) g1 and g2 have a common base vector.

Otherwise, S′ can be partitioned into sets R1 and R2 with

(47.15) g1(R1) + g2(R2) < g1(S′).

If g1(R1) = f1(R1) and g2(R2) = f2(R2), then (47.15) implies
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(47.16) 2f1(S) > f1(S1) + f2(S2) + f1(R1) + f2(R2)
≥ f1(S1 ∩ R1) + f1(S1 ∪ R1) + f2(S2 ∩ R2) + f2(S2 ∪ R2).

By symmetry, we can assume that f1(S) > f1(S1∩R1)+f2(S2∪R2). However,
S1 ∩ R1 and S2 ∪ R2 partition S, contradicting (47.9).

If g1(R1) = f1(R1) and g2(R2) = f2(R2 + s) − α, then (47.15) implies

(47.17) f1(S) − α > f1(R1) + f2(R2 + s) − α,

and hence f1(S) > f1(R1) + f2(R2 + s), contradicting (47.9).
If g1(R1) = f1(R1 + s) − α and g2(R2) = f2(R2 + s) − α, then (47.15)

implies

(47.18) f1(S) − α > f1(R1 + s) + f2(R2 + s) − 2α,

implying f1(S1) + f2(S2) > f1(R1 + s) + f2(R2 + s), contradicting the mini-
mality of f1(S1) + f2(S2). This proves (47.14).

By Theorem 47.1, we can find in strongly polynomial time a common base
vector x of g1 and g2. So x(S′) = g1(S′). Extend x to S by defining x(s) := α.
Then

(47.19) x is a common base vector of f1 and f2.

By symmetry, it suffices to show that x is a base vector of f1. First, x belongs
to EPf1 , since for each U ⊆ S′ we have

(47.20) x(U) ≤ g1(U) ≤ f1(U) and
x(U + s) = x(U) + α ≤ g1(U) + α ≤ f1(U + s).

Next, x is a base vector of f1, since

(47.21) x(S) = x(S′) + α = g1(S′) + α = f1(S),

by (47.12). This proves (47.19).
Moreover,

(47.22) x(Si) = fi(Si)

for i = 1, 2. Indeed (for i = 1),

(47.23) x(S1) = x(S) − x(S2 \ {s}) ≥ f1(S) − g2(S2 \ {s})
≥ f1(S) − f2(S2) + α = f1(S1).

This proves (47.22), which implies that x is a common base vector of f1
and f2 maximizing x(s), as for any common base vector z of f1 and f2 we
have

(47.24) z(s) = z(S1) + z(S2) − z(S) ≤ f1(S1) + f2(S2) − f1(S)
= x(S1) + x(S2) − x(S) = x(s).

So x, S1, and S2 have the required properties.



Section 47.3. Weighted polymatroid intersection in polynomial time 809

47.3. Weighted polymatroid intersection in polynomial
time

It may be shown with the ellipsoid method that the following problem is
solvable in polynomial time:

(47.25) given: submodular functions f1, f2 on a set S (by value giving
oracles) and a function w : S → Z,

find: a common base vector x of f1 and f2 maximizing wTx, and
w1, w2 : S → Z with w = w1 +w2 such that, for each i = 1, 2,
x maximizes wT

i x over all base vectors of fi.

Cunningham and Frank [1985] gave, with the help of Theorem 47.2, a com-
binatorial polynomial-time algorithm (using submodular function minimiza-
tion).

In order to describe this, we first give an auxiliary result concerning poly-
matroids. Let f be a submodular set function on S and let F be a face of
EPf . Define

(47.26) F ↓ := F − R
S
+.

Then F ↓ is an extended polymatroid again. Moreover, algorithmic properties
for F ↓ can be deduced from those for EPf :

Lemma 47.3α. Let f be a submodular set function on S, let w : S → Z+,
and let F be the set of vectors x in EPf maximizing wTx. Then there is a
submodular set function f ′ on S with F ↓ = EPf ′ . Moreover, if f is given by
a value giving oracle, f ′(U) can be computed in strongly polynomial time, for
any U ⊆ S.

Proof. We can assume that f(∅) = 0. Let ∅ �= T1 ⊂ T2 ⊂ · · · ⊂ Tk−1 ⊂ Tk =
S be the (unique) sets satisfying

(47.27) w = λ1χ
T1 + · · · + λkχTk ,

for some λ1, . . . , λk−1 > 0 and λk ≥ 0. Set T0 := ∅, and define f ′ by:

(47.28) f ′(U) :=
k∑

i=1

(f((U ∩ Ti) ∪ Ti−1) − f(Ti−1)),

for U ⊆ S. Then f ′ is submodular, as it is the sum of k submodular functions.
Also,

(47.29) f ′ ≤ f,

since for each U we have, by the submodularity of f :

(47.30) f ′(U) =
k∑

i=1

(f((U ∩ Ti) ∪ Ti−1) − f(Ti−1))

≤
k∑

i=1

(f(U ∩ Ti) − f(U ∩ Ti−1)) = f(U).
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We show:

(47.31) F ↓ = EPf ′ .

To see ⊆, it suffices to show that F ⊆ EPf ′ . Let x ∈ F . So x(Ti) = f(Ti) for
i = 0, . . . , k − 1. Hence

(47.32) x(U) =
k∑

i=1

x(U ∩ (Ti \Ti−1)) =
k∑

i=1

(x((U ∩Ti)∪Ti−1)−x(Ti−1))

≤
k∑

i=1

(f((U ∩ Ti) ∪ Ti−1) − f(Ti−1)) = f ′(U)

for each U ⊆ S. This proves that x ∈ EPf ′ .
To see ⊇ in (47.31), it suffices to show that any x ∈ EPf ′ with x(S) =

f ′(S) belongs to F . As f ′ ≤ f we know that x ∈ EPf . So it suffices to show
that x(Tj) = f(Tj) for j = 1, . . . , k (as this implies that x maximizes wTx
over EPf , by the greedy algorithm). Now, as f ′(S) = f(S):

(47.33) x(Tj) = x(S) − x(S \ Tj) ≥ f ′(S) − f ′(S \ Tj)

= f(S) −
k∑

i=1

(f((Ti \ Tj) ∪ Ti−1) − f(Ti−1))

= f(S) −
k∑

i=j+1

(f(Ti) − f(Ti−1)) = f(Tj).

This proves (47.31).

We also will use the following lemma:

Lemma 47.3β. Let f be a submodular set function on S, let w : S → Z, and
let F be the set of base vectors x of f maximizing wTx. Let U ⊆ S and let x
maximize x(U) over F . Then x maximizes (w + χU )Tx over all base vectors
of f .

Proof. Let w′ := w + χU . As x maximizes x(U) over F , we know that x

maximizes w′Tx over F . Also, some z ∈ F maximizes w′Tz over EPf , by
the greedy method, as there is an ordering of S in which both w and w′ are
monotonically nondecreasing, and so EPf has a vertex z maximizing both
wTz and w′Tz.

As w′Tx ≥ w′Tz, x maximizes w′Tx over EPf .

Now we can derive:

Theorem 47.3. Problem (47.25) is solvable in polynomial time.

Proof. We give a polynomial-time algorithm to transform a solution of
(47.25) for some w to a solution of (47.25) for w := w+χs, for any s ∈ S. This
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implies a polynomial-time algorithm for (47.25), since we can assume that
w ≥ 0, and since any w ≥ 0 can be obtained from w = 0 by a polynomially
bounded number of resettings w := 2w and w := w + χs for s ∈ S. Note
that for w = 0, (47.25) is trivial, and that a solution x, w1, w2 for w yields a
solution x, 2w1, 2w2 for 2w.

Let s ∈ S. Let x, w1, w2 be a solution of (47.25) for some w. For i = 1, 2,
let Fi be the set of all vectors x ∈ EPfi maximizing wT

i x and let f ′
i be a

submodular function satisfying F ↓
i = EPf ′

i
(Lemma 47.3α). Applying Theo-

rem 47.2 to f ′
1, f

′
2, we find a common base vector x′ of f ′

1 and f ′
2 maximiz-

ing x′(s), and subsets S1, S2 of S with S1 ∩ S2 = {s}, S1 ∪ S2 = S, and
x′(S1) = f ′

1(S1), x′(S2) = f ′
2(S2). Then x′ maximizes x′(S1) over EPf ′

1
, and

x′ maximizes x′(S2) over EPf ′
2
. Hence, by Lemma 47.3β, x′ is a base vector

of f ′
1 maximizing (w1+χS1)Tx′, and also, x′ is a base vector of f ′

2 maximizing
(w2 + χS2)Tx′. So

(47.34) x′, w′
1 := w1 + χS1 − χS , w′

2 := w2 + χS2 ,

gives a solution of (47.25) for w + χs.

47.4. Weighted polymatroid intersection in strongly
polynomial time

A general simultaneous diophantine approximation method of Frank and Tar-
dos [1985,1987] implies that (47.25) is strongly polynomial-time solvable. Fu-
jishige, Röck, and Zimmermann [1989] showed that from Theorem 47.3 a com-
binatorial strongly polynomial-time algorithm can be derived, by extending
the method of Tardos [1985a] for the minimum-cost circulation problem.

To prove this, we first show a sensitivity result. Let f1, f2 be submodular
set functions on S. Call a pair w1, w2 : S → R good if there exists an x that
maximizes wT

i x over EPfi , for both i = 1 and i = 2.

Lemma 47.4α. Let w : S → Q and let w1, w2 be a good pair with w =
w1 +w2. Then for any w̃ : S → Q with w̃ ≥ w there exists a good pair w̃1, w̃2
with w̃ = w̃1 + w̃2 and ‖w̃i − wi‖∞ ≤ ‖w̃ − w‖1 for i = 1, 2.

Proof. We can assume that w and w̃ are integer, and that ‖w̃ − w‖1 = 1 (as
the general case then follows inductively).

Let Fi be the set of all x maximizing wT
i x over EPfi . Let f ′

i be a submod-
ular function satisfying F ↓

i = EPf ′
i
. Let s be such that w̃(s) = w(s) + 1. By

the solvability of problem (47.8), there is a common base vector x of f ′
1 and

f ′
2 maximizing xs, and there exist S1, S2 with S1 ∩S2 = {s} and S1 ∪S2 = S

such that x(S1) = f ′
1(S1) and x(S2) = f ′

2(S2). Define

(47.35) w̃1 := w1 + χS1 − χS , w̃2 := w2 + χS2 .
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So w̃ = w̃1 + w̃2. By Lemma 47.3β, x maximizes w̃T
i x over EPfi for i = 1, 2.

Therefore, the pair w̃1, w̃2 is good. As ‖w̃i −wi‖∞ ≤ 1 for i = 1, 2, this proves
the lemma.

Theorem 47.4. Given submodular functions f1, f2 on a set S and w ∈ Q
S,

one can find a common base vector x of f1 and f2 maximizing wTx, in strongly
polynomial time.

Proof. Let be given submodular functions f1, f2 on a set S and a function
w : S → Q. We may assume that f1 and f2 have a common base vector.
(This can be checked by Theorem 47.1.)

We keep chains C1, C2 of subsets of S such that for i = 1, 2 and each
U ∈ Ci:

(47.36) x(U) = fi(U) for each common base vector x of f1 and f2 maxi-
mizing wTx,

and such that S ∈ C1 and S ∈ C2. Initially we set Ci := {S} for i = 1, 2. We
describe an iteration that either extends C1 or C2, or gives a solution x.

We can assume that, for i = 1, 2,

(47.37) each base vector x of fi satisfies x(U) = fi(U) for each U ∈ Ci.

Indeed, let Fi be the set of vectors x in EPfi
with x(U) = fi(U) for each

U ∈ Ci. So Fi is equal to the set of x ∈ EPfi
maximizing cT

i x, where ci :=
∑

U∈Ci
χU . By Lemma 47.3α, we can find f ′

i with F ↓
i = EPf ′

i
. By (47.36),

replacing the fi by f ′
i does not change the set of optimum solutions x of our

problem.
Let

(47.38) L := linear hull of {χU | U ∈ C1 ∪ C2}.

Determine y ∈ L minimizing

(47.39) ‖w − y‖∞.

This can be done in strongly polynomial time as follows. For i = 1, 2, let Pi

be the partition of S into nonempty classes such that u and v belong to the
same class if and only if there is no set in Ci containing exactly one of u, v.
Let D be the directed graph with vertex set P1 ∪P2 such that for each v ∈ S
there is an arc of length w(v) from U ∈ P1 to W ∈ P2 with v ∈ U ∩ W ,
and an arc of length −w(v) in the reverse direction. Determine the minimum
mean-length α of a directed circuit in D (cf. Section 8.5). It is the minimum
α for which there exist pi : Pi → Q such that

(47.40) −α ≤ w(v) + p1(U) − p2(W ) ≤ α

for each arc as described. Then

(47.41) y := −
∑

U∈P1

p1(U)χU +
∑

W∈P2

p2(W )χW
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minimizes (47.39).
Let α be the value of (47.39). If α = 0, then w ∈ L, and so

(47.42) w =
2∑

i=1

∑

U∈Ci

λi(U)χU

for functions λi : Ci → Q. Then for any common base vector x of f1 and f2
we have

(47.43) wTx =
2∑

i=1

∑

U∈Ci

λi(U)x(U) =
2∑

i=1

∑

U∈Ci

λi(U)fi(U).

So each common base vector is optimum. As we can find any common base
vector in strongly polynomial time (by Theorem 47.1), we have solved the
problem.

So we can assume that α > 0. Define w′ : S → Z by

(47.44) w′ := �5n2

α
(w − y)�,

where n := |S|. By definition of α, ‖w′‖∞ = 5n2. Hence by Theorem 47.3,
we can find in strongly polynomial time a common base vector x′ of f1 and
f2 and w′

1, w
′
2 : S → Z with w′ = w′

1 + w′
2 such that x′ is a base vector of fi

maximizing w′T
i x′, for i = 1, 2.

For i = 1, 2, we can determine a chain Di of subsets of S (with S ∈ Di)
and a function λi : Di → Z such that

(47.45) w′
i =

∑

W∈Di

λi(W )χW

and such that λi(W ) > 0 if W �= S. We show that

(47.46) there exist i ∈ {1, 2} and W ∈ Di with λi(W ) > 2n and χW �∈ L.

Suppose not. Let D′
i := {W ∈ Di | χW �∈ L}, and D′′

i := Di \ D′
i, for i = 1, 2.

So if W ∈ D′
i, then λi(W ) ≤ 2n. This gives the contradiction:

(47.47) 4n2 ≥ ‖
2∑

i=1

∑

W∈D′
i

λi(W )χW ‖∞ = ‖w′ −
2∑

i=1

∑

W∈D′′
i

λi(W )χW ‖∞

> ‖5n2

α
(w − y) −

2∑

i=1

∑

W∈D′′
i

λi(W )χW ‖∞ − 1 ≥ 5n2 − 1.

The last inequality holds as y minimizes ‖w − y‖∞ over y ∈ L.
This shows (47.46). We can assume that W ∈ D′

1 is such that λ1(W ) > 2n.
Then:

(47.48) each optimum common base vector x of f1 and f2 satisfies
x(W ) = f1(W ).
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To see this, let

(47.49) w̃ :=
5n2

α
(w − y).

Replacing w by w̃ does not change the set of optimum common base vectors,
since y belongs to L (implying (by our assumption (47.37)) that yTx is the
same for all common base vectors x of f1 and f2).

By Lemma 47.4α, there exists a good pair w̃1, w̃2 with w̃ = w̃1 + w̃2 and

(47.50) ‖w̃i − w′
i‖∞ ≤ ‖w̃ − w′‖1 < n

for i = 1, 2. Now for any v ∈ W and u ∈ S \ W we have w′
1(v) > w′

1(u) + 2n,
as λ1(W ) > 2n, and as λ1(W ′) ≥ 0 for each W ′ ∈ D1 \ {S}. Hence, by
(47.50), w̃1(v) > w̃1(u). So (by the greedy method) any base vector x of f1
maximizing w̃T

1 x satisfies x(W ) = f1(W ). This shows (47.48).
Let C1 = {U1 ⊂ U2 ⊂ · · · ⊂ Ut = S}. For j = 1, . . . , t, let Wj :=

(W ∩ Uj) ∪ Uj−1, where U0 := ∅. Then x(Wj) = f(Wj) for each optimum
common base vector x (since Wj arises by taking unions and intersections
from W , Uj , and Uj−1).

Moreover, Wj �∈ C1 for at least one j = 1, . . . , t, since

(47.51) χW =
t∑

j=1

(χWj − χUj−1)

while χW does not belong to L, implying that not all χWj belong to L, and
so some Wj does not belong to C1. So Wj can be added to C1, and we can
iterate.

From an optimum common base vector x, an optimum ‘dual solution’
w1, w2 can be derived, with a method of Cunningham and Frank [1985]. This
gives:

Corollary 47.4a. Problem (47.25) is solvable in strongly polynomial time.

Proof. By Theorem 47.4, we can find a common base vector x of f1 and
f2 maximizing wTx, in strongly polynomial time. Define a directed graph
D = (S, A) as follows.

For i = 1, 2, let Ai consist of all pairs (u, v) with u, v ∈ S such that for
each U ⊆ V :

(47.52) if x(U) = fi(U) and u ∈ U then v ∈ U .

We can find Ai in strongly polynomial time, by finding the minimum of
fi(U) − x(U) over subsets U of S with u ∈ U and v �∈ U (with any strongly
polynomial-time submodular function minimization algorithm).

Let D have arc set A := A1 ∪ A−1
2 (taking two parallel arcs from u to v

in case (u, v) ∈ A1 and (v, u) ∈ A2). Define a length function l on A by, for
(u, v) ∈ A:
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(47.53) l(u, v) :=
{

w(v) − w(u) for (u, v) ∈ A1,
0 for (v, u) ∈ A2.

We claim:

(47.54) D has no negative-length directed circuits.

For suppose that C is a negative-length directed circuit. We take such a C
with |AC| smallest. Then two consecutive arcs in C neither both belong to
A1 nor both belong to A−1

2 . For suppose that a = (t, u) and a′ = (u, v) are in
C and that they both belong to A1. Then (t, v) ∈ A1 and l(a)+ l(a′) = l(t, v),
contradicting the minimality of |AC|. This similarly gives a contradiction if
a, a′ ∈ A−1

2 .
So we can assume that C traverses the vertices u0, u1, . . . , uk in this order,

with u0 = uk, such that (ui−1, ui) belongs to A1 if i is odd, and to A−1
2 if

i is even. Let X := {u1, u3, . . . , uk−1} and Y := {u2, u4, . . . , uk}. As C has
negative length, we know l(AC) < 0, and hence w(X) < w(Y ).

By (47.52), for each i = 1, 2 and for each U ⊆ V with x(U) = fi(U) we
have |U ∩ Y | ≥ |U ∩ X|. Hence there exists an ε > 0 such that the vector

(47.55) x′ := x + ε(χX − χY )

belongs to EPf1 and to EPf2 . So, since x′(S) = x(S), x′ is again a common
base vector of f1 and f2. However, wTx′ = wTx + w(X) − w(Y ) > wTx,
contradicting the fact that x maximizes wTx. This proves (47.54).

By Theorem 8.7, we can find a potential p : S → Z for D with respect to
l, in strongly polynomial time. Then p satisfies

(47.56) p(v) − p(u) ≤ w(v) − w(u) for each (u, v) ∈ A1,
p(v) − p(u) ≥ 0 for each (u, v) ∈ A2.

Define w1 := w − p and w2 := p. We show that w1 and w2 are as required in
(47.25).

(47.56) implies that, for each i = 1, 2,

(47.57) if (u, v) ∈ Ai then wi(v) ≥ wi(u).

We show that (47.57) implies that, for each i = 1, 2, x is a base vector of fi

maximizing wT
i x, as required. We may assume i = 1.

Let µ and ν be the minimum and maximum value (respectively) of the
entries in w1. For j ∈ Z, let Uj := {v ∈ S | w1(v) ≥ µ + j}. Then, taking
k := ν − µ,

(47.58) w1 = µ · χS +
k∑

j=1

χUj .

Moreover,

(47.59) x(Uj) = f1(Uj) for each j = 1, . . . , k.
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Indeed, for all s ∈ Uj and t ∈ S \ Uj we have (s, t) �∈ A1 (by (47.57),
since w1(t) < µ + j ≤ w1(s)). Hence, by definition of A1, there is a set Ts,t

with s ∈ Ts,t, t �∈ Ts,t, and x(Ts,t) = f1(Ts,t). As the collection of sets U
with x(U) = f1(U) is closed under taking unions and intersections, (47.59)
follows.

Then for any base vector x′ of f1 we have

(47.60) wT
1 x′ = µx′(S) +

k∑

j=1

x′(Uj) ≤ µf1(S) +
k∑

j=1

f1(Uj).

By (47.59), we here have equality throughout for x′ := x, which proves that
x maximizes wT

1 x over all base vectors of f1.

Theorem 47.4 implies for (nonextended) polymatroids (extending a result
of Schönsleben [1980] for integer f1 and f2 for which there is a fixed K with
Pf1 ∩ Pf2 ⊆ [0, K]S):

Corollary 47.4b. Given submodular set functions f1, f2 on S (by value giv-
ing oracles) and a weight function w ∈ Q

S, we can find a maximum-weight
vector x ∈ Pf1 ∩ Pf2 in strongly polynomial time.

Proof. We can assume that f1(∅) = f2(∅) = 0 and that f1 and f2 are
nondecreasing (as we can replace fi(U) by minT⊇U fi(T )). Extend S with a
new element t to a set S′ := S + t. Define set functions f ′

1 and f ′
2 on S′ by:

(47.61) f ′
i(U) := fi(U) and f ′

i(U + t) := 0

for U ⊆ S and i = 1, 2. Then f ′
1 and f ′

2 are submodular (using the nonde-
creasingness of f1 and f2). Moreover, consider any x′ ∈ R

S′
with x′(S′) = 0.

Let x be the restriction of x′ to S. Then:

(47.62) x′ ∈ EPf ′
i

if and only if x ∈ Pfi .

Indeed, if x′ ∈ EPf ′
i
, then x′(s) ≥ 0 for each s ∈ S, since x′(S′ − s) ≤

f ′(S′ − s) = 0 and x′(S′) = 0, implying that x(s) = x′(s) ≥ 0. Moreover, for
each U ⊆ S one has x(U) = x′(U) ≤ f ′

i(U) = fi(U). So x ∈ Pfi
.

Conversely, if x ∈ Pf , then for each U ⊆ S one has x′(U) = x(U) ≤
fi(U) = f ′

i(U) and x′(U + t) = x(U) − x(S) = −x(S \ U) ≤ 0 = f ′
i(U + t).

So x′ ∈ EPf ′
i
. This proves (47.62).

Define w′ ∈ Q
S′

by w′(v) := w(v) if v ∈ S, and w′(t) := 0. By Theorem
47.4, we can find a common base vector x′ of f ′

1 and f ′
2 maximizing w′Tx′ in

strongly polynomial time. Let x be the restriction of x′ to S. By (47.62), x
maximizes wTx over Pf1 ∩ Pf2 .

Similarly for maximum-weight common base vectors in (nonextended)
polymatroids:



Section 47.4. Strongly polynomial time 817

Corollary 47.4c. Given submodular set functions f1, f2 on S (by value giv-
ing oracles) and a weight function w ∈ Q

S, we can find a maximum-weight
common base vector x of Pf1 and Pf2 in strongly polynomial time.

Proof. Again, we can assume that f1(∅) = f2(∅) = 0 and that f1 and f2
are nondecreasing. Then the present corollary follows directly from Theorem
47.4, since

(47.63) Pf1∩Pf2∩{x | x(S) = f1(S)} = EPf1∩EPf2∩{x | x(S) = f1(S)}.

Indeed, if x ∈ EPfi and x(S) = fi(S), then x ≥ 0, since for any s ∈ S one
has xs = x(S) − x(S − s) ≥ fi(S) − fi(S − s) ≥ 0.

Back to extended polymatroids, Corollary 47.4b yields that we can opti-
mize over the intersection of two extended polymatroids in strongly polyno-
mial time:

Corollary 47.4d. Given submodular set functions f1, f2 on S (by value giv-
ing oracles) and a weight function w ∈ Q

S
+, we can find a maximum-weight

vector x ∈ EPf1 ∩ EPf2 in strongly polynomial time.

Proof. We may assume that f1(∅) = f2(∅) = 0. Let

(47.64) L := max
i=1,2

(|fi(S)| +
∑

s∈S

|fi({s})|).

Then |fi(U)| ≤ L for each i = 1, 2 and U ⊆ S, since

(47.65) fi(U) ≤
∑

s∈U

fi({s}) ≤ L

and

(47.66) fi(U) ≥ fi(S) − fi(S \ U) ≥ fi(S) −
∑

s∈S\U

fi({s}) ≥ −L.

Let K := |S| · L + 1. Then for any vertex x of EPf1 ∩ EPf2 and any s ∈ S:

(47.67) x(s) > −K,

since x = A−1b for some totally unimodular matrix A and some vector b
whose entries are values of f1 and f2 (as in the proof of Theorem 46.1;
observe that the entries of A−1 belong to {0,±1}).

Define f ′
i(U) := fi(U) + K · |U |. Then

(47.68) EPf ′
i

= K · 1 + EPfi

for i = 1, 2. Hence, by (47.67), all vertices of EPf ′
1

∩ EPf ′
2

are nonnegative.
So any vector x maximizing wTx over Pf ′

1
∩ Pf ′

2
also maximizes wTx over

EPf ′
1

∩ EPf ′
2
. By Corollary 47.4b, x can be found in strongly polynomial

time.
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47.5. Contrapolymatroids

Similar results hold for intersections of contrapolymatroids, by reduction to
polymatroids. Given supermodular set functions g1 and g2 on S (by value
giving oracles) and a weight function w ∈ Q

S , we can find in strongly poly-
nomial time:

(47.69) (i) a minimum-weight vector in EQg1 ∩ EQg2 ,
(ii) a minimum-weight common base vector of EQg1 and EQg2 ,
(iii) a minimum-weight vector in Qg1 ∩ Qg2 , and
(iv) a minimum-weight common base vector of Qg1 and Qg2 .

Here (i) and (ii) follow from Corollary 47.4d and Theorem 47.4 applied to
the submodular functions −g1 and −g2. Moreover, (iii) and (iv) follow by
application of (i) and (ii) to the supermodular functions ḡi given by ḡi(U) =
maxT⊆U gi(T ) for U ⊆ S and i = 1, 2 (assuming without loss of generality
g1(∅) = g2(∅) = 0).

47.6. Intersecting a polymatroid and a
contrapolymatroid

Let f be a submodular, and g a supermodular, set function on S. The results
on polymatroid intersection also imply that

(47.70) a maximum-weight vector in the intersection of the extended
polymatroid EPf and the extended contrapolymatroid EQg can
be found in strongly polynomial time,

assuming that we have value giving oracles for f and g.
To see this, we can assume that f(∅) = g(∅) = 0 and g(S) ≤ f(S). Let t

be a new element. Define submodular set functions f1 and f2 on S + t by:

(47.71) f1(U) := f(U), f1(U+t) := f(U)−g(S), f2(U) := f(S)−g(S\U),
f2(U + t) := −g(S \ U),

for U ⊆ S. Reset f1(S + t) := 0. Then for each x ∈ R
S and λ ∈ R:

(47.72) (x, λ) is a common base vector of EPf1 and EPf2

⇐⇒ λ = −x(S) and x ∈ EPf ∩ EQg.

To see necessity, let (x, λ) be a common base vector of EPf1 and EPf2 . As
f1(S + t) = 0, we have λ = −x(S). Moreover, for any U ⊆ S, we have

(47.73) x(U) ≤ f1(U) = f(U) and
x(U) = x(S)−x(S\U) = −λ−x(S\U) ≥ −f2((S\U)+t) = g(U).

So x ∈ EPf ∩ EQg.
To see sufficiency, assume λ = −x(S) and x ∈ EPf ∩ EQg. Then for each

U ⊆ S we have:
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(47.74) x(U) ≤ f(U) = f1(U),
x(U + t) = x(U) + λ = x(U) − x(S) ≤ f(U) − g(S) = f1(U + t),
x(U) = x(S) − x(S \ U) ≤ f(S) − g(S \ U) = f2(U),
x(U + t) = x(U) + λ = x(U) − x(S) = −x(S \ U) ≤ −g(S \ U)
= f2(U + t).

So (x, λ) is a common base vector of EPf1 and EPf2 .
This shows (47.72), which implies that finding a minimum-weight vector

in EPf ∩EQg amounts to finding a minimum-weight common base vector of
EPf1 and EPf2 .

Similarly, we can find a modular function h satisfying g ≤ h ≤ f in
strongly polynomial time, if g ≤ f (Frank’s discrete sandwich theorem (Corol-
lary 46.2b)). To see this, let f1 and f2 be as above, and find an (x, λ) in
EPf1 ∩ EPf2 maximizing x(S) + λ. If x(S) + λ ≥ 0, then x ∈ EPf ∩ EQg,
that is x gives a modular function h with g ≤ h ≤ f .

47.6a. Further notes

Polymatroid intersection is a special case of submodular flow, as discussed in Chap-
ter 60. We therefore refer for further algorithmic work to the notes in Section 60.3e.

A preflow-push algorithm for finding a maximum common vector in the inter-
section of two polymatroids was presented by Fujishige and Zhang [1992].

Tardos, Tovey, and Trick [1986] gave an improved version of Cunningham and
Frank’s polynomial-time algorithm for weighted polymatroid intersection. Fujishige
[1978a] gave a (non-polynomial-time) algorithm for weighted polymatroid intersec-
tion. Optimizing over the intersection of a base polytope and an affine space was
considered by Hartvigsen [1996,1998a,2001a].

Frank [1984c] and Fujishige and Iwata [2000] gave surveys.
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Dilworth truncation

If a submodular function f has f(∅) < 0, the associated extended polyma-
troid is empty, as the conditions x(U) ≤ f(U) for all U include x(∅) < f(∅).
However, by ignoring the condition for U = ∅, the obtained polyhedron is
yet an extended polymatroid, for a different submodular function, denoted
by f̂ . This function f̂ is called the Dilworth truncation of f .

48.1. If f(∅) < 0

Let f be a submodular set function on S. If f(∅) < 0, the associated extended
polymatroid EPf is empty. However, by ignoring the empty set, we yet obtain
an extended polymatroid. (The interest in this goes back to Dilworth [1944].)

Consider the system

(48.1) x(U) ≤ f(U) for U ∈ P(S) \ {∅},

and the problem dual to maximizing wTx over (48.1), for w ∈ R
S
+:

(48.2) min{
∑

U∈P(S)\{∅}
y(U)f(U) |

y ∈ R
P(S)\{∅}
+ ,

∑

U∈P(S)\{∅}
y(U)χU = w}.

Recall that a collection F of sets is called laminar if

(48.3) T ∩ U = ∅ or T ⊆ U or U ⊆ T for all T, U ∈ F .

Then a basic result of Edmonds [1970b] is:

Theorem 48.1. If f is a submodular set function on S, then (48.2) has an
optimum solution y with F := {U ∈ P(S) \ {∅} | y(U) > 0} laminar.

Proof. Let y : P(S) \ {∅} → R+ achieve this minimum, with

(48.4)
∑

U∈P(S)\{∅}
y(U)|U ||S \ U |



Section 48.2. Dilworth truncation 821

as small as possible. Assume that F is not laminar, and choose T, U ∈ F
violating (48.3). Let α := min{y(T ), y(U)}. Decrease y(T ) and y(U) by α,
and increase y(T ∩ U) and y(T ∪ U) by α. Since

(48.5) χT∩U + χT∪U = χT + χU ,

y remains a feasible solution of (48.2). As moreover

(48.6) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U),

f remains optimum. However, by Theorem 2.1, sum (48.4) decreases, contra-
dicting our assumption.

This implies that system (48.1) is TDI. More generally, it implies the
box-total dual integrality of (48.1):

Corollary 48.1a. For any submodular set function f on S, system (48.1) is
box-totally dual integral.

Proof. Consider some w : S → Z+, and problem (48.2) dual to maximizing
wTx over (48.1). By Theorem 48.1, this minimum is attained by a y with F :=
{U ∈ P(S)\{∅} | y(U) > 0} laminar. Hence the constraints corresponding to
positive entries in y form a totally unimodular matrix (by Theorem 41.11).
Therefore, by Theorem 5.35, (48.1) is box-TDI.

Let EP ′
f denote the solution set of (48.1). So EP ′

f is nonempty for each
submodular function f . As for integrality we have:

Corollary 48.1b. If f is submodular and integer, then EP ′
f is integer.

Proof. Directly from Corollary 48.1a.

In fact, as we shall see in Section 48.2, EP ′
f is again an extended poly-

matroid.

48.2. Dilworth truncation

For each submodular function f , there exists a unique largest submodular
function f̂ with the property that f̂(U) ≤ f(U) for each nonempty U ⊆ S,
and f̂(∅) = 0. This follows from a method of Dilworth [1944].

Let f be a submodular set function on S. The Dilworth truncation f̂ :
P(S) → R of f is given by:

(48.7) f̂(U) := min{
∑

P∈P
f(P ) | P is a partition of U into nonempty

sets}
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for U ⊆ S. So f̂(∅) = 0 (as for U = ∅, only P = ∅ qualifies in (48.7)). Dunstan
[1976] showed:

Theorem 48.2. f̂ is submodular.

Proof. Choose T, U ⊆ S, and let P and Q be partitions of T and U (respec-
tively) into nonempty sets with

(48.8) f̂(T ) =
∑

P∈P
f(P ) and f̂(U) =

∑

Q∈Q
f(Q).

Consider the family F made by P and Q (taking a set twice if it occurs in
both partitions). We can transform F iteratively into a laminar family, by
replacing any X, Y ∈ F with X ∩ Y �= ∅ and X �⊆ Y �⊆ X by X ∩ Y, X ∪ Y .
In each iteration, the sum

(48.9)
∑

Z∈F
f(Z)

does not increase (as f is submodular). As at each iteration the sum

(48.10)
∑

Z∈F
|Z||S \ Z|

decreases (by Theorem 2.1), this process terminates. We end up with a lam-
inar family F .

The inclusionwise maximal sets in F form a partition R of T ∪ U , and
the remaining sets form a partition S of T ∩ U . Therefore,

(48.11) f̂(T ∪ U) + f̂(T ∩ U) ≤
∑

X∈R
f(X) +

∑

Y ∈S
f(Y )

≤
∑

P∈P
f(P ) +

∑

Q∈Q
f(Q) = f̂(T ) + f̂(U),

showing that f̂ is submodular.

Lovász [1983c] observed that f̂ is the unique largest among all submodular
set functions g on S with g(∅) = 0 and g(U) ≤ f(U) for U �= ∅. Indeed, each
subset U of S can be partitioned into nonempty sets U1, . . . , Ut such that

(48.12) g(U) ≤
t∑

i=1

g(Ui) ≤
t∑

i=1

f(Ui) = f̂(U)

(the first inequality follows from the submodularity of g, as g(∅) = 0).
Trivially, EPf̂ = EP ′

f . In particular, EP ′
f is an extended polymatroid.

Moreover, by (44.34),

Theorem 48.3.

(48.13) f̂(U) = max{x(U) | x ∈ EP ′
f}.
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Proof. By (44.34), since EP ′
f = EPf̂ .

f̂(U) can be computed in strongly polynomial time:

Theorem 48.4. If a submodular set function f on S is given by a value
giving oracle, then for each given U ⊆ S, f̂(U) can be computed in strongly
polynomial time.

Proof. We can assume that U = S. Order S = {s1, . . . , sn} arbitrarily. For
i = 1, . . . , n, define Ui := {s1, . . . , si}. Set x := 0. Iteratively, for i = 1, . . . , n,
determine

(48.14) µ := min{f(T ) − x(T ) | si ∈ T ⊆ Ui}

(with a submodular function minimization algorithm), and reset x(si) :=
x(si) + µ.

We end up with x ∈ EP ′
f and for each u ∈ S a subset Tu of S with u ∈ Tu

and x(Tu) = f(Tu). As the collection of subsets T of S with x(T ) = f(T ) is
closed under unions and intersections of intersecting sets (cf. Theorem 44.2),
we can modify the Tu in such a way that they form a partition U1, . . . , Uk of
S. Then f̂(S) = f(U1) + · · · + f(Uk), as x attains the maximum in (48.13).

As a consequence, given a submodular set function f on S (by a value
giving oracle), we can optimize over EP ′

f in strongly polynomial time (by
Corollary 44.3b, as EP ′

f = EPf̂ and as we can compute f̂).

48.2a. Applications and interpretations

Graphic matroids (Dilworth [1944], also Edmonds [1970b], Dunstan [1976]). Let
G = (V,E) be an undirected graph and let for each F ⊆ E, f(F ) be given by

(48.15) f(F ) :=
∣
∣ ⋃

F
∣
∣ − 1.

It is easily checked that the function f is submodular, and that the function f̂ as
given by (48.7) satisfies

(48.16) f̂(F ) = |V | minus the number of components of the graph (V, F ),

i.e., f̂ is the rank function of the cycle matroid of G.

Geometric interpretation. The operation of making f̂ from f can be interpreted
geometrically as follows (Lovász [1977c], Mason [1977,1981]).

Let F be a collection of flats (subspaces) in a projective space, and define for
each subset F ′ of F , the rank r(F ′) by

(48.17) r(F ′) := the (projective) dimension of
⋃ F ′.

One easily checks that r is nondecreasing and submodular and that r(∅) = 0. Now
let
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(48.18) f(F ′) := r(F ′) − 1

for F ′ ⊆ F , and consider the function f̂ . Then f̂ can be interpreted geometrically
as follows. Let H be some hyperplane ‘in general position’ in the projective space.
Then f̂(F ′) is equal to the projective dimension of H ∩ ⋃ F ′, i.e., f̂ is as given by
(48.17) if we replace F by {F ∩H | F ∈ F} (see Lovász [1977c] and Mason [1977,
1981]).

Rigidity. Let M = (S, I) be a loopless matroid, with rank function r. Let d be a
natural number. Define the set function f on S by

(48.19) f(U) := d · r(U) − d+ 1,

for U ⊆ S. Again, f is submodular and nondecreasing. Moreover, the function f̂ is
the rank function of a loopless matroid, as f̂({s}) = f({s}) = 1 for all s in S.

Let Md = (S, Id) be this matroid. Since EP ′
f = EPf̂ , a subset I of S is inde-

pendent in Md if and only if

(48.20) |U | ≤ d · r(U) − d+ 1

for all U ⊆ I.
In case M is the cycle matroid of a connected graph G = (V,E), this relates to

the following (cf. Crapo [1979] and Crapo and Whiteley [1978]). Let the vertices of
G be placed ‘in general position’ in the d-dimensional Euclidean space. Make the
edges ‘rigid bars’. Suppose now that the whole graph G is rigid (which only depends
on G and not on the embedding, since the vertices are ‘in general position’). Then
G is called rigid (in d dimensions). It is not difficult to see that the minimal sets F
of edges of G for which the subgraph (V, F ) is rigid, form the bases of a matroid.
For d = 1 this matroid is just the cycle matroid of G, as can be checked easily.
Laman [1970] (cf. Asimow and Roth [1978,1979]) showed that for d = 2, a graph
G = (V,E) is a base (i.e., a minimal rigid graph), if and only if

(48.21) (i) |E| = 2|V | − 3,
(ii) |E[U ]| ≤ 2|U | − 3, for each U ⊆ V .

Now if M is the cycle matroid of a rigid graph G, with rank function r, then (48.21)
(ii) is equivalent to

(48.22) |F | ≤ 2r(F ) − 1, for each subset F of E,

that is, by (48.20), to: E is independent in the matroid M2, as given above. Con-
dition (48.21)(i) implies that M2 has rank 2r(E) − 1. Hence, if G is rigid in 2
dimensions, then the bases of M2 are the minimally rigid subgraphs of G in 2
dimensions.

In general, the matroid of rigid subgraphs of a graph G = (V,E) (in d dimen-
sions) has rank d|V |−(

d+1
2

)
. However, it is not necessarily true that G is minimally

rigid in d dimensions if and only if G has d|V | − (
d+1
2

)
edges and each subgraph

(U,F ) of G has at most d|U | − (
d+1
2

)
edges. For instance, if G arises from glueing

two copies of the complete graph K5 together in two vertices, and deleting the edge
connecting these two vertices, then G is not rigid in 3 dimensions, but it satisfies the
conditions given above for d = 3. (These conditions are easily seen to be necessary.)

More on the relation between rigidity and matroid union can be found in White-
ley [1988].
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48.3. Intersection

Corollaries 48.1a and 48.1b on submodular functions f not necessarily sat-
isfying f(∅) ≥ 0, can be extended to pairs of functions. Let f1 and f2 be
submodular set functions on S, and consider the system

(48.23) x(U) ≤ fi(U) for U ∈ P(S) \ {∅} and i = 1, 2.

Then:

Theorem 48.5. System (48.23) is box-totally dual integral.

Proof. Choose w ∈ Z
S , and consider the problem dual to maximizing wTx

over (48.23):

(48.24) min{
∑

U∈P(S)\{∅}
(y1(U)f1(U) + y2(U)f2(U)) |

y1, y2 ∈ R
P(S)\{∅}
+ ,

∑

U∈P(S)\{∅}
(y1(U) + y2(U))χU = w}.

Let y1, y2 attain the minimum.
For i ∈ {1, 2}, define

(48.25) wi :=
∑

U∈P(S)\{∅}
yi(U)χU .

By Theorem 48.1, for each i = 1, 2,

(48.26) min{
∑

U∈P(S)\{∅}
yi(U)fi(U) |

yi ∈ R
P(S)\{∅}
+ ,

∑

U∈P(S)\{∅}
yi(U)χU = wi}

has an optimum solution yi with Fi := {U | yi(U) > 0} laminar.
These (modified) y1, y2 again are optimum in (48.24). As the constraints

corresponding to positive components of y1, y2 give a totally unimodular ma-
trix (by Theorem 41.11), Theorem 5.35 implies that system (48.23) is box-
TDI.

Theorem 48.5 implies primal integrality:

Corollary 48.5a. If f1 and f2 are submodular and integer, then EP ′
f1

∩EP ′
f2

is box-integer.

Proof. Directly from Theorem 48.5.

Given submodular functions f1 and f2 (by value giving oracles), we can
optimize over EP ′

f1
∩ EP ′

f2
in strongly polynomial time (by Corollary 47.4d,

as EP ′
f1

= EPf̂1
and EP ′

f2
= EPf̂2

).
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Submodularity more generally

We now discuss a number of generalizations of submodular functions,
namely those defined on a subcollection C of the collection of all subsets of a
set S. The results are similar to those for submodular functions defined on
all subsets on S. Often, the corresponding polyhedra form a polymatroid
for some derived submodular function defined on all subsets of S.
We consider three kinds of collections, in order of increasing generality:
lattice families, intersecting families, and crossing families.

49.1. Submodular functions on a lattice family

We first consider the generalization of submodular functions to those defined
on a ‘lattice family’.

Let S be a finite set. A family C of sets is called a lattice family if

(49.1) T ∩ U, T ∪ U ∈ C for all T, U ∈ C.

For a lattice family C, a function f : C → R is called submodular if

(49.2) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U)

for all T, U ∈ C. Consider the system

(49.3) x(U) ≤ f(U) for U ∈ C,

and the problem dual to maximizing wTx over (49.3), for w ∈ R
S :

(49.4) min{
∑

U∈C
y(U)f(U) | y ∈ R

C
+,

∑

U∈C
y(U)χU = w}.

Theorem 49.1. Let C be a lattice family, f : C → R a submodular function,
and w ∈ R

S. Then (49.4) has an optimum solution y with F := {U ∈ C |
y(U) > 0} a chain.

Proof. Let y : C → R+ achieve this minimum, with

(49.5)
∑

U∈C
y(U)|U ||S \ U |
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as small as possible. Assume that F is not a chain, and choose T, U ∈ F with
T �⊆ U and U �⊆ T . Let α := min{y(T ), y(U)}. Decrease y(T ) and y(U) by
α, and increase y(T ∩ U) and y(T ∪ U) by α. Since

(49.6) χT∩U + χT∪U = χT + χU ,

y remains a feasible solution of (49.4). As moreover

(49.7) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U),

f remains optimum. However, by Theorem 2.1, sum (49.5) decreases, contra-
dicting our assumption.

This implies the box-total dual integrality of (49.3):

Corollary 49.1a. If C is a lattice family and f : C → R is submodular, then
system (49.3) is box-TDI.

Proof. Consider some w : C → Z, and problem (49.4) dual to maximizing
wTx over (49.3). By Theorem 49.1, this minimum is attained by a y with
F := {U ∈ C | y(U) > 0} a chain. So the constraints corresponding to
positive components of y form a totally unimodular matrix (by Theorem
41.11). Hence by Theorem 5.35, (49.3) is box-TDI.

For any C ⊆ P(S) and f : C → R, define:

(49.8) Pf := {x ∈ R
S | x ≥ 0, x(U) ≤ f(U) for each U ∈ C},

EPf := {x ∈ R
S | x(U) ≤ f(U) for each U ∈ C}.

Then Corollary 49.1a implies:

Corollary 49.1b. If C is a lattice family and f : C → R is submodular and
integer, then EPf is box-integer.

Proof. Directly from Corollary 49.1a.

Another consequence of Theorem 49.1 is that a submodular function f
on a lattice family is uniquely determined by EPf (given the lattice family):

Corollary 49.1c. If C is a lattice family and f : C → R is submodular, then

(49.9) f(U) = max{x(U) | x ∈ EPf}

for each U ∈ C.

Proof. Let w := χU and let y attain minimum (49.4), with F := {T ∈ C |
y(T ) > 0} a chain. Since

(49.10) χU = w =
∑

T∈F
y(T )χT ,
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we know that F = {U} and y(U) = 1. So the maximum in (49.9) is equal to
∑

T∈C y(T )f(T ) = y(U)f(U) = f(U).

We note that for any lattice family C ⊆ P(S) with
⋃

C = S, and any
submodular function f : C → R, the polytope Pf is a polymatroid. Indeed,
define

(49.11) f ′(U) := min{f(T ) | T ∈ C, T ⊇ U}.

for U ⊆ S. Then f ′ is submodular, and Pf ′ = Pf .

49.2. Intersection

Also the intersection of two of the polyhedra EPf is tractable. Let S be a
finite set. For i = 1, 2, let Ci be a lattice family on S and let fi : Ci → R be
submodular. Consider the system

(49.12) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≤ f2(U) for U ∈ C2.

Then:

Corollary 49.1d. System (49.12) is box-TDI.

Proof. Choose w ∈ R
S , and consider the problem dual to maximizing wTx

over (49.12):

(49.13) min{
∑

U∈C1

y1(U)f1(U) +
∑

U∈C2

y2(U)f2(U) |

y1 ∈ R
C1
+ , y2 ∈ R

C2
+ ,

∑

U∈C1

y1(U)χU +
∑

U∈C2

y2(U)χU = w}.

Let y1, y2 attain the minimum.
For i ∈ {1, 2}, define

(49.14) wi :=
∑

U∈Ci

yi(U)χU .

By Theorem 49.1, for each i = 1, 2,

(49.15) min{
∑

U∈Ci

yi(U)fi(U) | yi ∈ R
Ci
+ ,

∑

U∈Ci

yi(U)χU = wi}

has an optimum solution yi with Fi := {U ∈ Ci | yi(U) > 0} a chain.
These y1, y2 again are optimum in (49.13). So, by Theorem 41.11, the con-

straints corresponding to positive components of y form a totally unimodular
matrix. Hence by Theorem 5.35, (49.12) is box-TDI.

This implies primal integrality:
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Corollary 49.1e. If f1 and f2 are submodular and integer, then EPf1 ∩EPf2

is box-integer.

Proof. Directly from Corollary 49.1d.

49.3. Complexity

To find the minimum of a submodular function f defined on a lattice family
C in polynomial time, just an oracle telling if a set U belongs to C, and
if so, giving f(U), is not sufficient: if C = {∅, T, S} for some T ⊆ S, with
f(∅) = f(S) = 0 and f(T ) = −1, we cannot find T by a polynomially
bounded number of oracle calls. So we need to have more information on C.

A lattice family C is fully characterized by the smallest set M and the
largest set L in C, together with the pre-order � on S defined by:

(49.16) u � v ⇐⇒ each U ∈ C containing v also contains u.

Then � is a pre-order (that is, it is reflexive and transitive). A subset U of
S belongs to C if and only if M ⊆ U ⊆ L and U is a lower ideal in � (that
is, if v ∈ U and u � v, then u ∈ U).

Hence C has a description of size O(|S|2), such that for given U ⊆ S one
can test in polynomial time if U belongs to C.

For U ⊆ S, define

(49.17) U↓ := {s ∈ S | ∃t ∈ U : s � t} and
U↑ := {s ∈ S | ∃t ∈ U : t � s}.

Set

(49.18) v↑ := {v}↑, v↓ := {v}↓, ṽ := v↑ ∩ v↓.

For any U ⊆ S, let U be the (unique) smallest set in C containing U ∩ L;
that is,

(49.19) U = (U ∩ L)↓ ∪ M.

So having L, M , and �, the set U can be determined in polynomial time.
Determine a number α > 0 such that

(49.20) α ≥ f(S \ v↑) − f((S \ v↑) ∪ ṽ) and α ≥ f(v↓) − f(v↓ \ ṽ)

for all v ∈ L \ M . Such an α can be found by at most 4|S| oracle calls.
Then α satisfies, for any X, Y ∈ C with X ⊆ Y :

(49.21) |f(Y ) − f(X)| ≤ α|Y \ X|.

To show this, we can assume that Y \ X = ṽ for some v ∈ L \ M . Then
f(Y ) − f(X) ≤ f(v↓) − f(v↓ \ ṽ) ≤ α and f(Y ) − f(X) ≥ f((S \ v↑) ∪ ṽ) −
f(S \ v↑) ≥ −α, implying (49.21).

Now define a function f̄ : P(S) → R by:
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(49.22) f̄(U) := f(U) + α|U
U |
for U ⊆ S.

Then:

Theorem 49.2. For any α > 0 satisfying (49.20) for all v ∈ L \ M , the
function f̄ is submodular.

Proof. First consider T, U ⊆ L. Then T ⊆ T and U ⊆ U , and hence:

(49.23) f̄(T ) + f̄(U) = f(T ) + α|T \ T | + f(U) + α|U \ U |
≥ f(T ∩U)+α|(T ∩U)\(T ∩U)|+f(T ∪U)+α|(T ∪U)\(T ∪U)|
≥ f(T ∩ U)+α|T ∩ U \ (T ∩U)|+ f(T ∪ U)+α|T ∪ U \ (T ∪U)|
= f̄(T ∩ U) + f̄(T ∪ U).

(The last inequality uses (49.21), since T ∩U ⊇ T ∩ U (while T ∪U = T ∪ U).)
Hence, for T, U ⊆ S one has:

(49.24) f̄(T ) + f̄(U) = f̄(T ∩ L) + α|T \ L| + f̄(U ∩ L) + α|U \ L|
≥ f̄((T ∩L)∩ (U ∩L))+ f̄((T ∩L)∪ (U ∩L))+α|T \L|+α|U \L|
= f̄((T ∩U)∩L)+ f̄((T ∪U)∩L)+α|(T ∩U)\L|+α|(T ∪U)\L|
= f̄(T ∩ U) + f̄(T ∪ U).

So f̄ is submodular.

The function f̄ enables us to reduce optimization problems on submodular
functions defined on a lattice family, to those defined on all subsets.

Minimization. By Theorem 45.1, the minimum of f̄ can be found in strongly
polynomial time. Hence

(49.25) if C is given by L, M , and �, and a submodular function f :
C → R is given by a value giving oracle, we can find a U ∈ C
minimizing f(U) in strongly polynomial time.

Indeed, if f̄ attains its minimum at U , then U ∈ C, since otherwise U �= U
and hence f̄(U) > f̄(U) (as α > 0), contradicting the fact that f̄ attains its
minimum at U . This shows (49.25).

Maximization over EPf . Given a lattice family C of subsets of a set S, a
submodular function f : C → R, and a weight function w ∈ Q

S , we can
maximize wTx over EPf , by adapting the greedy algorithm as follows.

Note that max{wTx | x ∈ EPf} is finite if and only if w ≥ 0, w(s) = 0
for each s ∈ S \ L, and

(49.26) u � v implies w(u) ≥ w(v)

for all u, v ∈ S. If (49.26) is not the case, the maximum value is infinite, since
if u � v, then for any x ∈ EPf , the vector x + λ(χv − χu) belongs to EPf

for all λ ≥ 0. Now, if w(v) > w(u), the weight increases to infinity along this
line, and therefore the maximum value is ∞.
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So we can check in strongly polynomial time if max{wTx | x ∈ EPf} is
finite, and therefore we can assume that it is finite. Moreover, we can assume
that L = S, since w(s) = 0 for each s ∈ S \L, and hence we can delete S \L.
Similarly, we can assume that ∅ ∈ C and f(∅) = 0. For if ∅ ∈ C and f(∅) < 0,
then EPf = ∅, and if f(∅) > 0, we can reset f(∅) := 0, without violating the
submodularity and without modifying EPf . If ∅ �∈ C, then we can add ∅ to
C and set f(∅) := 0, again maintaining submodularity and EPf . Finally, we
can assume that � is a partial order, since if u � v � u, then by (49.26),
w(u) = w(v), and each set in C either contains both u and v, or neither of
them. So we can merge u and v; and in fact we can merge any set ṽ to one
element.

Now let ≤ be a linear order such that for any u, v, if u � v or w(u) > w(v),
then u ≤ v. By (49.26), the latter defines a partial order. So ≤ is a linear
extension of it, and hence can be found in strongly polynomial time.

Let S = {s1, . . . , sn} with s1 < s2 < · · · < sn. For i = 0, . . . , n, define
Ui := {s1, . . . , si}. As ≤ is a linear extension of �, each Ui is a lower ideal
of �, and hence each Ui belongs to C. Define x(si) := f(Ui) − f(Ui−1) for
i = 1, . . . , n. Then x maximizes wTx over EPf .

To see this, let f̄ be defined as above. Then by Theorem 44.3, x belongs
to EPf̄ (as f and f̄ coincide on each Ui), and hence x belongs to EPf . To
see that x is optimum, we have for any z ∈ EPf :

(49.27) wTz =
n−1∑

i=1

z(Ui)(w(si) − w(si+1)) + z(S)w(sn)

≤
n−1∑

i=1

f(Ui)(w(si) − w(si+1)) + f(S)w(sn)

=
n∑

i=1

w(si)(f(Ui) − f(Ui−1)) =
n∑

i=1

w(si)x(si) = wTx.

This also gives a dual solution to the corresponding LP-formulation of the
problem.

Maximization over intersections. Let C1 and C2 be lattice families of subsets
of S and let f1 and f2 be submodular functions on C1 and C2 respectively.
Let Ci be specified by Li, Mi, and �i.

Find a number α > 0 satisfying (49.20) for both f = f1 and f = f2. So
by (49.21), α|S| + maxi=1,2 |fi(Li)| is an upper bound on |fi(U)| for each
i ∈ {1, 2} and each U ∈ Ci. Define

(49.28) K := |S|(α|S| + max
i=1,2

|fi(Li)|).

Now for i = 1, 2 and U ⊆ S, let f̄i(U) := fi(U)+K|U
U | (where U is taken
with respect to Ci). So f̄1 and f̄2 are submodular (by Theorem 49.2). Then:

(49.29) max{wTx | x ∈ EPf1 ∩ EPf2} = max{wTx | x ∈ EPf̄1
∩ EPf̄2

},
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if the first maximum is finite. Clearly ≥ holds in (49.29), since EPf̄i
⊆ EPfi

for i = 1, 2. To see equality, each face of EPf1 ∩ EPf2 is determined by
equations x(U) = fi(U) for i = 1, 2 and U ∈ Di, where Di is a chain of
sets in Ci. So it is determined by a system of linear equations with totally
unimodular constraint set and right-hand sides determined by function values
of f1 and f2. So each face contains a vector x with |xs| ≤ K for all s ∈ S
(by (49.28), since the inverse of a nonsingular totally unimodular matrix has
all its entries in {0,±1}). But any such x belongs to EPf̄1

∩ EPf̄2
, since for

i = 1, 2 and U ⊆ S, we have:

(49.30) x(U) ≤ x(U) + K|U
U | ≤ fi(U) + K|U
U | = f̄i(U)

(where U is taken with respect to Ci). So we have (49.29).
Therefore, by Corollary 47.4d, we can maximize wTx over EPf1 ∩ EPf2

in strongly polynomial time. Note that for any w ∈ Q
S , we can decide in

strongly polynomial time if the first maximum in (49.29) is finite. For this,
we should decide if there exist w1, w2 ∈ Q

S
+ such that w = w1 + w2 and such

that for i = 1, 2: wi(s) = 0 for s ∈ S \ Li and u �i v implies wi(u) ≥ wi(v)
for all u, v. This can be reduced to checking if a certain digraph with lengths
has no negative-length directed circuit.

49.4. Submodular functions on an intersecting family

We next consider functions defined on a broader class of collections, the in-
tersecting families, where the function satisfies a restricted form of submod-
ularity. It yields an extension of the Dilworth truncation studied in Chapter
48.

A family C of sets is called an intersecting family if for all T, U ∈ C one
has:

(49.31) if T ∩ U �= ∅, then T ∩ U, T ∪ U ∈ C.

Let C be an intersecting family. A function f : C → R is called submodular
on intersecting pairs, or intersecting submodular, if

(49.32) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all T, U ∈ C with T ∩ U �= ∅.
Consider the system

(49.33) x(U) ≤ f(U) for U ∈ C,

and the problem dual to maximizing wTx over (49.33), for w ∈ R
S :

(49.34) min{
∑

U∈C
y(U)f(U) | y ∈ R

C
+,

∑

U∈C
y(U)χU = w}.

Recall that a collection F of sets is called laminar if
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(49.35) T ∩ U = ∅ or T ⊆ U or U ⊆ T , for all T, U ∈ F .

A basic result (proved with a method due to Edmonds [1970b]) is:

Theorem 49.3. Let C be an intersecting family of subsets of a set S, let
f : C → R be intersecting submodular and let w ∈ R

S. Then (49.34) has an
optimum solution y with F := {U ∈ C | y(U) > 0} laminar.

Proof. Let y : C → R+ achieve this minimum, with

(49.36)
∑

U∈C
y(U)|U ||S \ U |

as small as possible. Assume that F is not laminar, and choose T, U ∈ F
violating (49.35). Let α := min{y(T ), y(U)}. Decrease y(T ) and y(U) by α,
and increase y(T ∩ U) and y(T ∪ U) by α. Since

(49.37) χT∩U + χT∪U = χT + χU ,

y remains a feasible solution of (49.34). As moreover

(49.38) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U),

f remains optimum. However, by Theorem 2.1, sum (49.36) decreases, con-
tradicting our assumption.

It gives the box-total dual integrality of (49.33):

Corollary 49.3a. Let C be an intersecting family of subsets of a set S and
let f : C → R be intersecting submodular. Then system (49.33) is box-TDI.

Proof. Consider problem (49.34) dual to maximizing wTx over (49.33). By
Theorem 49.3, this minimum is attained by a y with F := {U ∈ C | y(U) > 0}
laminar. As the matrix of constraints corresponding to F is totally unimod-
ular (Theorem 41.11), Theorem 5.35 gives the corollary.

49.5. Intersection

Again, these results can be extended in a natural way to pairs of functions,
by derivation from Theorem 49.3.

Corollary 49.3b. For i = 1, 2, let Ci be an intersecting family of subsets of
a set S and let fi : Ci → R be intersecting submodular. Then the system

(49.39) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≤ f2(U) for U ∈ C2,
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is box-TDI.

Proof. Choose w ∈ R
S , and consider the problem dual to maximizing wTx

over (49.39):

(49.40) min{
∑

U∈C1

y1(U)f1(U) +
∑

U∈C2

y2(U)f2(U) |

y1 ∈ R
C1
+ , y2 ∈ R

C2
+ ,

∑

U∈C1

y1(U)χU +
∑

U∈C2

y2(U)χU = w}.

Let y1, y2 attain the minimum. For i ∈ {1, 2}, define

(49.41) wi :=
∑

U∈Ci

yi(U)χU .

By Theorem 49.3,

(49.42) min{
∑

U∈Ci

yi(U)fi(U) | yi ∈ R
Ci
+ ,

∑

U∈Ci

yi(U)χU = wi}

has an optimum solution yi with Fi := {U ∈ Ci | yi(U) > 0} laminar.
As F1 ∪ F2 determine a totally unimodular matrix (by Theorem 41.11),

Theorem 5.35 implies that system (49.39) is box-TDI.

This implies the integrality of polyhedra:

Corollary 49.3c. If f1 and f2 are integer, then EPf1 ∩EPf2 is box-integer.

Proof. Directly from Corollary 49.3b.

49.6. From an intersecting family to a lattice family

Let C be an intersecting family of subsets of a set S and let f : C → R be
submodular on intersecting pairs. Let Č be the collection of all unions of sets
in C. Since C is closed under unions of intersecting sets, Č is equal to the
collection of disjoint unions of nonempty sets in C. It is not difficult to show
that Č is a lattice family and that ∅ ∈ Č.

Call a partition proper if its classes are nonempty. Define f̌ : Č → R by:

(49.43) f̌(U) := min{
∑

P∈P
f(P ) | P ⊆ C is a proper partition of U}.

for U ∈ Č. So f̌(∅) = 0. Then (Dunstan [1976]):

Theorem 49.4. f̌ is submodular.

Proof. Choose T, U ∈ Č, and let P and Q be partitions of T and U (respec-
tively) into nonempty sets in C with
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(49.44) f̌(T ) =
∑

P∈P
f(P ) and f̌(U) =

∑

Q∈Q
f(Q).

Consider the family F made by the union of P and Q (taking a set twice if
it occurs in both partitions). We can transform F iteratively into a laminar
family, by replacing any X, Y ∈ F with X ∩ Y �= ∅ and X �⊆ Y �⊆ X by
X ∩ Y, X ∪ Y . In each iteration, the sum

(49.45)
∑

Z∈F
f(Z)

does not increase (as f is submodular on intersecting pairs). As at each
iteration the sum

(49.46)
∑

Z∈F
|Z||S \ Z|

decreases (by Theorem 2.1), this process terminates. We end up with a lam-
inar family F .

The inclusionwise maximal sets in F form a partition R of T ∪ U , and
the remaining sets form a partition S of T ∩ U . Therefore,

(49.47) f̌(T ∪ U) + f̌(T ∩ U) ≤
∑

X∈R
f(X) +

∑

Y ∈S
f(Y )

≤
∑

P∈P
f(P ) +

∑

Q∈Q
f(Q) = f̌(T ) + f̌(U),

showing that f̌ is submodular.

Trivially, if ∅ �∈ C or if f(∅) ≥ 0, then EPf̌ = EPf . Hence, by (49.9),

(49.48) f̌(U) = max{x(U) | U ∈ EPf}.

As we shall see in Section 49.7, this enables us to calculate f̌ from a value
giving oracle, using the greedy algorithm.

49.7. Complexity

The results of the previous section enable us to reduce algorithmic problems
on intersecting submodular functions, to those on submodular functions on
lattice families.

If C is an intersecting family on S, then for each s ∈ S, the collection
Cs := {U ∈ C | s ∈ U} is a lattice family. So (like in Section 49.3) we can
assume that C is given by a representation of Cs for each s ∈ S, in terms of
the pre-order �s given by: u �s v if and only if each set in C containing s
and v also contains u, and by Ms :=

⋂
Cs and Ls :=

⋃
Cs; next to that we

should know if ∅ belongs to C.
We can derive the information on Č as follows:
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(49.49)
⋂

Č = ∅,
⋃

Č =
⋃

s∈S

Ls; u � v if and only if u ∈ Mv.

So we can decide in polynomial time if a set U belongs to Č.
For any intersecting submodular function f on C, the restriction fs of

f to Cs is submodular. So by the results of Section 49.3, we can find a set
minimizing f in strongly polynomial time.

For any U ∈ Č, we can calculate f̌(U), as defined in (49.43), in strongly
polynomial time, having a value giving oracle for f . To see this, we use (49.48).
We can assume that ∅ �∈ C.

Order the elements of U as t1, . . . , tk such that if Ltj
⊂ Lti

, then j < i.
For i = 0, . . . , k, let Ui := Lt1 ∪ · · · ∪ Lti

. So Uk = U .
Initially, set x(t) := 0 for each t ∈ U . Next, for i = 1, . . . , k, calculate

(49.50) µ := min{f(T ) − x(T ) | T ∈ C, ti ∈ T ⊆ Ui},

and reset x(ti) := x(ti)+µ. We prove, by induction on i, that for i = 0, 1, . . . , k
we have, after processing t1, . . . , ti:

(49.51) (i) x(T ) ≤ f(T ) for each T ∈ C with T ⊆ Ui,
(ii) for each j = 1, . . . , i there exists a T ∈ C with tj ∈ T ⊆ Ui and

x(T ) = f(T ).

For i = 0 this is trivial. Let i ≥ 1. Consider any T ∈ C with T ⊆ Ui. If ti ∈ T ,
then x(T ) ≤ f(T ), as at processing ti we have added µ to x(ti). If ti �∈ T ,
then T ⊆ Ui−1. For suppose that there exists a tj ∈ T with tj �∈ Ui−1. So
j > i and tj ∈ Lti

, and therefore Ltj
⊆ Lti

, implying Ltj
= Lti

(since if
Ltj

⊂ Lti , then j < i). But then ti ∈ Ltj ⊆ T , contradicting the fact that
ti �∈ T . So T ⊆ Ui−1. As ti �∈ T , x(T ) did not change at processing ti, and
hence we know x(T ) ≤ f(T ) by induction. This proves (49.51)(i).

To see (49.51)(ii), choose j ≤ i. If j = i, there exists after processing ti a
T as required, as we have added µ to x(ti). If j < i, by induction there exists
a T ∈ C with tj ∈ T ⊆ Ui−1 and x(T ) = f(T ) before processing ti. If ti �∈ T ,
x(T ) = f(T ) is maintained at processing ti. If ti ∈ T , then ti ∈ Ui−1, and
so ti ∈ Ltj for some j < i. Hence Lti ⊆ Ltj . So, by the choice of the order
of U , Lti = Ltj . Hence before processing ti we have x(T ′) ≤ f(T ′) for each
T ′ ⊆ Ui. So, as x(T ) = f(T ) and ti ∈ T , x(ti) is not modified at processing ti.
Therefore, x(T ) = f(T ) holds also after processing ti. This proves (49.51)(ii).

This shows (49.51), which gives, taking i = k, that x(T ) ≤ f(T ) for each
T ∈ C with T ⊆ U , and that for each t ∈ U , we have a T containing t with
x(T ) = f(T ). We can replace any two T and T ′ with T ∩ T ′ �= ∅ by T ∪ T ′.
We end up with a partition T of U with x(U) =

∑

T∈T f(T ). Hence we know

(49.52) f̌(U) ≥ x(U) =
∑

T∈T
x(T ) =

∑

T∈T
f(T ) ≥ f̌(U),

and therefore we have equality throughout.
Having this, we can reduce the problem of maximizing wTx over EPf ,

where f is intersecting submodular, to that of maximizing wTx over EPf̌ ,
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which can be done in strongly polynomial time by the results of Section 49.3.
Similarly for intersections of two such polyhedra EPf1 and EPf2 .

49.8. Intersecting a polymatroid and a
contrapolymatroid

For an intersecting family C, a function g : C → R is called supermodu-
lar on intersecting pairs, or intersecting supermodular, if −g is intersecting
submodular.

Let S be a finite set. Let C and D be collections of subsets of S and let
f : C → R and g : D → R. Consider the system

(49.53) x(U) ≤ f(U) for U ∈ C,
x(U) ≥ g(U) for U ∈ D.

Theorem 49.5. If C and D are intersecting families, f : C → R is inter-
secting submodular, and g : D → R is intersecting supermodular, then system
(49.53) is box-TDI.

Proof. Choose w ∈ Z
S , and consider the dual problem of maximizing wTx

over (49.53):

(49.54) min{
∑

U∈C
y(U)f(U) −

∑

U∈D
z(U)g(U) |

y ∈ R
C
+, z ∈ R

D
+,

∑

U∈C
y(U)χU −

∑

U∈D
z(U)χU = w}.

Let y, z attain this minimum. Define

(49.55) u :=
∑

U∈C
y(U)χU and v :=

∑

U∈D
z(U)χU .

So y attains

(49.56) min{
∑

U∈C
y(U)f(U) | y ∈ R

C
+,

∑

U∈C
y(U)χU = u}

and z attains

(49.57) max{
∑

U∈D
z(U)g(U) | z ∈ R

D
+,

∑

U∈D
z(U)χU = v}.

By Theorem 49.3, (49.56) has an optimum solution y with F := {U ∈ C |
y(U) > 0} laminar. Similarly, (49.57) has an optimum solution z with G :=
{U ∈ D | z(U) > 0} laminar. Now F and G determine a totally unimodular
submatrix (by Theorem 41.11), and hence by Theorem 5.35, (49.53) is box-
TDI.
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49.9. Submodular functions on a crossing family

Finally, we consider submodular functions defined on a crossing family. The
results discussed above for submodular functions on intersecting families do
not all transfer to crossing families. But certain restricted versions still hold.

A family C of subsets of a set S is called a crossing family if for all T, U ∈ C
one has:

(49.58) if T ∩ U �= ∅ and T ∪ U �= S, then T ∩ U, T ∪ U ∈ C.

A function f : C → R, defined on a crossing family C, is called submodular
on crossing pairs, or crossing submodular, if for all T, U ∈ C with T ∩ U �= ∅
and T ∪ U �= S:

(49.59) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U).

In general, the system

(49.60) x(U) ≤ f(U) for U ∈ C
is not TDI. For instance, if S = {1, 2, 3}, C = {{1, 2}, {1, 3}, {2, 3}}, from S,
and f(U) := 1 for each U ∈ C, then (49.60) not even determines an integer
polyhedron (as (1

2 , 1
2 , 1

2 )T is a vertex of it).
However, for any k ∈ R, the system

(49.61) x(U) ≤ f(U) for U ∈ C,
x(S) = k

is box-TDI. This can be done by reduction to Corollary 49.3a. Similarly for
pairs of such functions. This was shown by Frank [1982b,1984a] and Fujishige
[1984e].

Let C be a crossing family of subsets of a set S. Let Ĉ be the collection of
all nonempty intersections of sets in C (we allow the intersection of 0 sets, so
S ∈ Ĉ). Since C is a crossing family, we know

(49.62) Ĉ = {U | U �= ∅; ∃P ⊆ C : P is a copartition of S \ U},

where a copartition of U is a collection P of subsets of S such that the
collection {S \ T | T ∈ P} is a partition of U . We call the copartition proper
if T �= S for each T ∈ P.

Note that, in (49.62), restricting P to proper copartitions of S \ U , does
not modify Ĉ. We allow P = ∅, so S ∈ Ĉ.

Define f̂ : Ĉ → R by:

(49.63) f̂(U) := min{
∑

P∈P
f(P ) | P ⊆ C is a proper copartition of S \ U}

for U ∈ Ĉ. So f̂(S) = 0. Then:

Theorem 49.6. Ĉ is an intersecting family and f̂ is submodular on inter-
secting pairs.
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Proof. Define, for s ∈ S,

(49.64) Ĉs := {U ∈ Ĉ | s ∈ U} and D := {S \ U | s ∈ U ∈ C}.

As C is crossing, D is intersecting. Hence Ď is a lattice family. As Ĉs =
{S \ U | U ∈ Ď}, also Ĉs is a lattice family. As this is true for each s ∈ S, Ĉ
is intersecting.

To prove that f̂ is intersecting submodular, it suffices to show that for
each s ∈ S, the restriction f̂s of f̂ to Ĉs is submodular. Define g : D → R

by g(U) := f(S \ U) for U ∈ D. Then g is intersecting submodular (as f is
crossing submodular). Hence, by Theorem 49.4, ǧ is submodular on Ď. As
f̂s(U) = ǧ(S \ U) for U ∈ Ĉs, f̂s is submodular.

Fujishige [1984e] showed that the following box-TDI result can be derived
from Corollary 49.3a:

Theorem 49.7. Let C be a crossing family of subsets of S, let f : C → R

be crossing submodular, and let k ∈ R. Then system (49.61) is box-TDI and
determines the polyhedron of maximal vectors of EPf ′ for some submodular
function f ′ defined on a lattice family.

Proof. We can assume that k = 0, since, choosing any t ∈ S and resetting
f(U) := f(U) − k for all U ∈ C with t ∈ U , does not change the box-total
dual integrality of (49.61). We can also assume that ∅ �∈ C.

The box-total dual integrality of (49.61) follows from that of

(49.65) x(U) ≤ f̂(U) for U ∈ Ĉ,
x(S) = 0,

as (49.65) and (49.61) have the same solution set, and as each constraint
in (49.65) is a nonnegative integer combination of constraints in (49.61).
The box-total dual integrality of (49.65) follows from Corollary 49.3a (using
Theorem 5.25). It also shows that the solution set of (49.61) is the set of
maximal vectors of EPf ′ for some submodular function f ′ defined on a lattice
family.

Frank and Tardos [1984b] observed that this implies a relation with ma-
troids:

Corollary 49.7a. If C is a crossing family of subsets of a set S, f : C → Z

is crossing submodular, and k ∈ Z, then the collection

(49.66) {B ⊆ S
∣
∣ |B| = k, |B ∩ U | ≤ f(U) for each U ∈ C}

forms the collection of bases of a matroid (if nonempty).

Proof. Directly from Theorem 49.7, using the observations on (44.43) and
(49.11).
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Similarly, the box-total dual integrality of pairs of such systems follows:

Theorem 49.8. For i = 1, 2, let Ci be a crossing family of subsets of a set
S, let fi : Ci → R be crossing submodular, and let k ∈ R. Then the system

(49.67) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≤ f2(U) for U ∈ C2,
x(S) = k,

is box-TDI.

Proof. Similar to the proof of the previous theorem, by reduction to Corollary
49.3b.

This implies the integrality of polyhedra:

Corollary 49.8a. For i = 1, 2, let Ci be a crossing family of subsets of a set
S, let fi : Ci → R be crossing submodular, and let k ∈ R. If f1, f2, and k are
integer, system (49.67) determines a box-integer polyhedron.

Proof. Directly from Theorem 49.8.

49.10. Complexity

The reduction given in the proof of Theorem 49.6 also enables us to calculate
f̂(U) from a value giving oracle for f , similar to the proof in Section 49.7.
We assume that C is given by descriptions of the lattice families Cs,t := {U ∈
C | s ∈ U, t �∈ U} as in Section 49.3.

Note that

(49.68) EPf̂ ∩ {x | x(S) = 0} = EPf ∩ {x | x(S) = 0}.

This follows from the fact that if x ∈ EPf and x(S) = 0, then for any
U ∈ Ĉ and any proper copartition P = {U1, . . . , Up} of S \ U with f(U) =
∑

P∈P f(P ), one has:

(49.69) x(U) = −x(S \ U) = −
∑

P∈P
x(S \ P ) =

∑

P∈P
x(P ) ≤

∑

P∈P
f(P )

= f(U).

Having this, the problem of maximizing wTx over EPf ∩{x | x(S) = 0}, where
f is crossing submodular, is reduced to the problem of maximizing wTx over
EPf̂∩{x | x(S) = 0}. The latter problem can be solved in strongly polynomial
time by the results of Section 49.7. Similar results hold for intersections of
two such polyhedra:

Theorem 49.9. For crossing families C1, C2 of subsets of a set S, crossing
submodular functions f1 : C1 → Q and f2 : C2 → Q, k ∈ Q, and w ∈ Q

S, one
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can find an x ∈ EPf1 ∩ EPf2 with x(S) = k and maximizing wTx in strongly
polynomial time.

Proof. From the above.

If C is a crossing family and f : C → Q is crossing submodular, then we
can find its minimum value in polynomial time, as, for each s, t ∈ S, we can
minimize f over the lattice family {U ∈ C | s ∈ U, t �∈ U}, and take the
minimum of all these minima, and of the values in ∅ and S (if in C).

Hence we can decide in polynomial time if a given vector x ∈ Q
S belongs

to EPf , by testing if the minimum value of the crossing submodular function
g : C → Q defined by

(49.70) g(U) := f(U) − x(U)

for U ∈ C, is nonnegative.

49.10a. Nonemptiness of the base polyhedron

Let C be a crossing family of subsets of a set S and let f : C → R be crossing sub-
modular. We give a theorem of Fujishige [1984e] characterizing when EPf contains
a vector x with x(S) = 0. If S ∈ C and f(S) = 0, then the set EPf ∩{x | x(S) = 0}
is called the base polyhedron of f .

To give the characterization, again call a collection P ⊆ C a copartition of S if
the collection {S \ U | U ∈ P} is a partition of S.

Theorem 49.10. EPf contains a vector x satisfying x(S) = 0 if and only if

(49.71)
∑

U∈P
f(U) ≥ 0

for each partition or copartition P ⊆ C of S. If moreover f is integer, there exists
an integer such vector x.

Proof. The condition is necessary, since if x ∈ EPf satisfies x(S) = 0 and P ⊆ C
is a partition of S, then

(49.72)
∑

U∈P
f(U) ≥

∑

U∈P
x(U) = x(S) = 0.

Similarly, if P ⊆ C is a copartition of S, then

(49.73)
∑

U∈P
f(U) ≥

∑

U∈P
x(U) =

∑

U∈P
(x(S) − x(S \ U)) = |P|x(S) − x(S) = 0.

To see sufficiency, let D := Ĉ and g := f̂ (cf. (49.62)). By Theorem 49.6, D is an
intersecting family and g is intersecting submodular. Moreover, S ∈ D. Let E := Ď
and h := ǧ. By Theorem 49.4, E is a lattice family and h is submodular.

Now if EPh contains a vector x with x(S) = 0, then x ∈ EPg, and hence
x ∈ EPf (using x(S) = 0). So it suffices to show that EPh contains a vector x with
x(S) = 0.

By Corollary 49.1c, in order to show this, it suffices to show that h(S) ≥ 0. The
solution can be taken integer if f (hence h) is integer.

Suppose h(S) < 0. Since h = ǧ, D contains a proper partition P of S with
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(49.74) h(S) =
∑

U∈P
g(U).

Since g = f̂ , for each U ∈ P, C contains a proper copartition QU of S \U such that

(49.75) g(U) =
∑

T∈QU

f(T ).

Let F be the family consisting of the union of the QU over U ∈ P, taking multi-
plicities into account. Then

(49.76) (i) all elements of S are contained in the same number of sets in F ;
(ii)

∑

T∈F
f(T ) < 0.

Now apply the following operation as often as possible to F : if T,W ∈ F with
T ∩W �= ∅, T ∪W �= S, and T �⊆ W �⊆ T , replace T and W by T ∩W and T ∪W .
This maintains (49.76) and decreases

∑
T∈F |T ||S \ T | (by Theorem 2.1). So the

process terminates, and we end up with a cross-free family : for all T,W ∈ F we
have T ⊆ W or W ⊆ T or T ∩W = ∅ or T ∪W = S.

We show that F contains a partition or copartition P of S. By (49.71), F \
P again satisfies (49.76), and hence we can repeat. We end up with F empty, a
contradiction.

To show that F contains a partition or copartition of S, choose U ∈ F . If U = ∅
or U = S we are done (taking P := {U}). So we can assume that ∅ �= U �= S. Let
X be the collection of inclusionwise maximal subsets of S \U that belong to F . Let
Y be the collection of inclusionwise minimal supersets of S \ U that belong to F .
Since F is cross-free and U �= ∅, the sets in X are pairwise disjoint. Similarly, the
complements of the sets in Y are pairwise disjoint.

If
⋃X = S \ U , then X ∪ {U} is a partition of S as required. If

⋂Y = S \ U ,
then Y ∪ {U} is a copartition of S as required. So we can assume that there exist
s ∈ (S \U) \⋃X and t ∈ U ∩⋂Y. Since each element of S is contained in the same
number of sets in F , and since s �∈ U , and t ∈ U , there exists a T ∈ F with s ∈ T
and t �∈ T . So T �⊆ U �⊆ T .

Hence T ∩ U = ∅ or T ∪ U = S. However, if T ∩ U = ∅, then T is contained
in some set in X , and hence s ∈ T ⊆ ⋃X , a contradiction. If T ∪ U = S, then T
contains some set in Y, and hence t �∈ T ⊇ ⋂Y, again a contradiction.

This theorem will be used in proving Theorem 61.8.
Fujishige and Tomizawa [1983] characterized the vertices of the base polyhedron

of a submodular function defined on a lattice family.

49.11. Further results and notes

49.11a. Minimizing a submodular function over a subcollection of
a lattice family

In Section 45.7 we saw that the minimum of a submodular function over the odd
subsets can be found in strongly polynomial time. A generalization of minimizing a
submodular function over the odd subsets (cf. Section 45.7), was given by Grötschel,
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Lovász, and Schrijver [1981,1984a] (the latter paper corrects a serious flaw in the
first paper found by A. Frank). This was extended by Goemans and Ramakrishnan
[1995] to the following.

Let C be a lattice family and let D be a subcollection of C with the following
property:

(49.77) for all X,Y ∈ C \ D: X ∩ Y ∈ D ⇐⇒ X ∪ Y ∈ D.

Examples are: D := {X ∈ C ∣
∣ |X| �≡ q(mod p)} for some natural numbers p, q, and

D := C \ A for some antichain or some sublattice A ⊆ C.
To prove that for a submodular function on C, the minimum over D can be

found in strongly polynomial time, Goemans and Ramakrishnan gave the following
interesting lemma:

Lemma 49.11α. Let C be a lattice family, let f be a submodular function on C, let
D ⊆ C satisfy (49.77), and let U minimize f(U) over U ∈ D. If U �= ∅, then there
exists a u ∈ U such that f(W ) ≥ f(U) for each subset W of U with W ∈ C and
u ∈ W .

Proof. Suppose not. Then for each u ∈ U there exists a Wu ∈ C satisfying u ∈
Wu ⊆ U and f(Wu) < f(U). Choose each Wu inclusionwise maximal with this
property. Then

(49.78) f(
⋂

u∈T

Wu) < f(U)

for each nonempty T ⊆ U . To prove this, choose a counterexample T with |T |
minimal. Then |T | > 1, since f(Wu) < f(U) for each u ∈ U . Choose t ∈ T . Since⋂

u∈T Wu �= ⋂
u∈T−t Wu by the minimality of T , we know that

⋂
u∈T−t Wu �⊆ Wt,

and hence Wt is a proper subset of (
⋂

u∈T−t Wu) ∪ Wt. So by the maximality of
Wt, f((

⋂
u∈T−t Wu) ∪Wt) ≥ f(U). Hence

(49.79) f(U) ≤ f(
⋂

u∈T

Wu) = f((
⋂

u∈T−t

Wu) ∩Wt)

≤ f(
⋂

u∈T−t

Wu) + f(Wt) − f((
⋂

u∈T−t

Wu) ∪Wt)

< f(U) + f(U) − f(U) = f(U),

a contradiction.
This shows (49.78), which implies

(49.80)
⋂

u∈T

Wu �∈ D

for each nonempty T ⊆ U .
This can be extended to:

(49.81) X := (
⋂

u∈T

Wu) ∩ (
⋃

u∈V

Wu) �∈ D

for all disjoint T, V ⊆ U with V nonempty. Suppose to the contrary that X ∈
D. Choose such X with |V | minimal. By (49.80), |V | ≥ 2. Choose v ∈ V . The
minimality of V gives
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(49.82) (
⋂

u∈T

Wu) ∩Wv �∈ D and (
⋂

u∈T

Wu) ∩ (
⋃

u∈V \{v}
Wu) �∈ D.

By assumption, the union of these sets belongs to D. Hence, by (49.77), also their
intersection belongs to D; that is

(49.83) (
⋂

u∈T∪{v}
Wu) ∩ (

⋃

u∈V \{v}
Wu) ∈ D

This contradicts the minimality of |V |.
This proves (49.81), which gives for T := ∅ and V := U a contradiction, since

then X = U ∈ D.

This lemma is used in proving the following theorem, where we assume that C
is given as in Section 49.3, f is given by a value giving oracle, and D is given by an
oracle telling if any given set in C belongs to D:

Theorem 49.11. Given a submodular function f on a lattice family C, and a
subcollection D of C satisfying (49.77), a set U minimizing f(U) over U ∈ D can
be found in strongly polynomial time.

Proof. We describe the algorithm. For all distinct s, t ∈ S define

(49.84) Cs,t := {U ∈ C | s ∈ U, t �∈ U}.
Let Us,t be the inclusionwise minimal set minimizing f over Cs,t. (Us,t can be found
by minimizing a slight perturbation of f .) Choose in

(49.85) {∅, S} ∪ {Us,t | s, t ∈ S}
a U ∈ D minimizing f . Then U minimizes f over D.

To see this, we must show that set (49.85) contains a set minimizing f over D.
Let W be a set minimizing f over D, with |W | minimal. If W ∈ {∅, S} we are done.
So we can assume that W �∈ {∅, S}. By Lemma 49.11α (applied to the function
f̃(X) := f(S \ X) for X ⊆ S), there exists an element t ∈ S \ W such that each
T ⊇ W with t �∈ T satisfies f(T ) ≥ f(W ).

The lemma also gives the existence of an s ∈ W such that each T ⊂ W with s ∈
T satisfies f(T ) > f(W ). Indeed, for small enough ε > 0, W minimizes f(X)+ε|X|
over X ∈ D. Hence, by Lemma 49.11α, there exists an s ∈ W such that each
T ⊆ W with s ∈ T satisfies f(T )+ ε|T | ≥ f(W )+ ε|W |. This implies f(T ) > f(W )
if T �= W .

We show that W = Us,t. Indeed, W minimizes f over Cs,t, since

(49.86) f(Us,t) ≥ f(W ∩Us,t) + f(W ∪Us,t) − f(W ) ≥ f(W ) + f(W ) − f(W )
= f(W ).

Moreover, W ⊆ Us,t, as otherwise W ∩Us,t ⊂ W , implying that the second inequal-
ity in (49.86) would be strict.

So f(W ) = f(Us,t), and hence, by the minimality of Us,t, we have W = Us,t.

It is interesting to note that this algorithm implies that the set {∅, S} ∪ {Us,t |
s, t ∈ S} contains a set minimizing f over D, for any nonempty subcollection D of
C satisfying (49.77).
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Goemans and Ramakrishnan showed that if C and D are symmetric (that is,
U ∈ C ⇐⇒ S \ U ∈ C, and similarly for D) and ∅ �∈ D, then (49.77) is equivalent
to: if X,Y ∈ C \ D are disjoint, then X ∪ Y ∈ C \ D.

Related work was reported by Benczúr and Fülöp [2000].

49.11b. Generalized polymatroids

We now describe a generalization, given by Frank [1984b], that comprises sub-
and supermodular functions, and (extended) polymatroids and contrapolymatroids.
(Hassin [1978,1982] described the case C = D = P(S).)

Let C and D be intersecting families of subsets of a finite set S and let f : C → R

and g : D → R. We say that the pair (f, g) is paramodular if

(49.87) (i) f is submodular on intersecting pairs,
(ii) g is supermodular on intersecting pairs,
(iii) if T ∈ C and U ∈ D with T \ U �= ∅ and U \ T �= ∅, then T \ U ∈ C

and U \ T ∈ D, and

f(T \ U) − g(U \ T ) ≤ f(T ) − g(U).

If (f, g) is paramodular, the solution set P of the system (for x ∈ R
S):

(49.88) x(U) ≤ f(U) for U ∈ C,
x(U) ≥ g(U) for U ∈ D,

is called a generalized polymatroid (determined by (f, g)).
Generalized polymatroids generalize polymatroids (where g(U) = 0 for each

U ⊆ S), extended polymatroids (where D = ∅), contrapolymatroids (where C = ∅
and g({s}) ≥ 0 for each s ∈ S), and extended contrapolymatroids (where C = ∅).

The intersection of a generalized polymatroid with a ‘box’ {x | d ≤ x ≤ c}
(for d, c ∈ R

S) is again a generalized polymatroid: we can add {s} to C and to D
if necessary, and (re)define f({s}) := w(s) and g({s}) := d(s), if necessary. This
transformation does not violate the paramodularity of (f, g).

Another transformation is as follows. Let P ⊆ R
S be a generalized polymatroid

and let κ, λ ∈ R. Let t be a new element and let S′ := S ∪ {t}. Let P ′ be the
polyhedron in R

S′
given by

(49.89) P ′ := {(x, η) | x ∈ P, λ ≤ x(S) + η ≤ κ}.
Then P ′ again is a generalized polymatroid, determined by the functions obtained
by extending C and D with S′ and extending f, g with the values f(S′) := κ and
g(S′) := λ.

The class of generalized polymatroids is closed under projections. That is, for
any generalized polymatroid P ⊆ R

S and any t ∈ S, the set

(49.90) P ′ := {x ∈ R
S−t | ∃η : (x, η) ∈ P}

is again a generalized polymatroid. This will be shown as Corollary 49.13c.
The following theorem will imply that system (49.88) is TDI. Hence, if f and g

are integer, then P is integer.

Theorem 49.12. System (49.88) is box-TDI.

Proof. Let t be a new element. Define
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(49.91) B := C ∪ {(S \D) ∪ {t} | D ∈ D}.
Then B is a crossing family of subsets of S∪{t}. Define e : B → R by: e(C) := f(C)
for C ∈ C and e((S \D)∪{t}) := −g(D) for D ∈ D. Then e is crossing submodular.
Hence, by Theorem 49.7, system

(49.92) x(U) ≤ e(U) for U ∈ B,
x(S ∪ {t}) = 0,

is box-TDI. Therefore, by Theorem 5.27, system (49.88) is box-TDI.

This gives for the integrality of generalized polymatroids:

Corollary 49.12a. If (f, g) is paramodular and f and g are integer, the generalized
polymatroid is box-integer.

Proof. Directly from Theorem 49.12.

More generally one has the box-total dual integrality of the system

(49.93) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≥ g1(U) for U ∈ D1,
x(U) ≤ f2(U) for U ∈ C2,
x(U) ≥ g2(U) for U ∈ D2,

for pairs of paramodular pairs (fi, gi):

Corollary 49.12b. For i = 1, 2, let Ci and Di be intersecting families and let
fi : Ci → R, gi : Di → R form a paramodular pair. Then system (49.93) is box-
TDI.

Proof. Similar to the proof of Theorem 49.12, by reduction to Theorem 49.8.

This gives for primal integrality:

Corollary 49.12c. If f1, g1, f2 and g2 are integer, the intersection of the associated
generalized polymatroids is box-integer.

Proof. Directly from Corollary 49.12b.

Another consequence is the following box-TDI result of McDiarmid [1978]:

Corollary 49.12d. Let f1 and f2 be submodular set functions on a set S and let
λ, κ ∈ R. Then the system

(49.94) x(U) ≤ f1(U) for U ⊆ S,
x(U) ≤ f2(U) for U ⊆ S,
λ ≤ x(S) ≤ κ,

is box-TDI.

Proof. Redefine f1(S) := min{f1(S), κ}, and define g1 : {S} → R by g1(S) := λ,
and g2 : ∅ → R. Then (f1, g1) and (f2, g2) are paramodular pairs, and the box-total
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dual integrality of (49.94) is equivalent to the box-total dual integrality of (49.93).

From Corollary 49.12c one can derive that the intersection of two integer gen-
eralized polymatroids is integer again. To prove this, we show that for any integer
generalized polymatroid P there exists a paramodular pair (f, g) determining P ,
with f and g integer.

Let P be a generalized polymatroid, determined by the paramodular pair (f, g)
of functions f : C → R and g : D → R, where C and D are intersecting families. For
any U ⊆ S, define

(49.95) f̃(U) := max{x(U) | x ∈ P} and g̃(U) := min{x(U) | x ∈ P}.

So f̃ and g̃ are integer if P is integer.
Let

(49.96) C̃ := {U ∈ C | f̃(U) < ∞} and D̃ := {U ∈ D | g̃(U) > −∞}.

We restrict f̃ and g̃ to C̃ and D̃ respectively. We show that (f̃ , g̃) is a paramodular
pair determining P .

It is convenient to note that if w ∈ R
S with w = w1 + w2, then

(49.97) max{wTx | x ∈ P} ≤ max{wT
1x | x ∈ P} + max{wT

2x | x ∈ P}.

Theorem 49.13. For any generalized polymatroid P , C̃ and D̃ are intersecting
families, and the pair (f̃ , g̃) is paramodular and determines P .

Proof. We first show the following. Let w ∈ Z
S and let λ > 0 be such that ws ≤ λ

for each s ∈ S. Let U := {s ∈ S | w(s) = λ} and w′ := w − χU . Then

(49.98) max{wTx | x ∈ P} = max{w′Tx | x ∈ P} + f̃(U).

Here ≤ follows from (49.97), by definition of f̃ . Equality is proved by induction on
|U |, the case U = ∅ being trivial; so let U �= ∅.

Let y, z be an optimum solution to the dual of max{wTx | x ∈ P}:

(49.99) min{
∑

T∈C
yT f(T ) −

∑

T∈D
zT g(T ) |

y ∈ R
C
+, z ∈ R

D
+ ,

∑

T∈C
yTχ

T −
∑

T∈D
zTχ

T = w}.

Define F := {T ∈ C | yT > 0} and G := {T ∈ D | zT > 0}. Similarly to Theorem
49.3, we can assume that F ∪ G is laminar.

Choose u ∈ U , and let W be an inclusionwise minimal set in F containing
u. (Such a set exists, as w(s) = λ > 0.) Let H be the collection of inclusionwise
maximal sets in G contained in W − u. As G is laminar, the sets in H are disjoint.
Moreover, each t ∈ W \ U is contained in some set in H: since w(t) < w(u) and
since every set in F containing u also contains t (as t ∈ W ), there exists an X ∈ G
with t ∈ X and u �∈ X; as F ∪ G is laminar, we know that X ⊆ W − u.

Now let Y := W \ ⋃ H. So Y is a nonempty subset of U . Define w′′ := w−χY ,
let y′ be obtained from y by decreasing y(W ) by 1, and let z′ be obtained from z
by decreasing y(H) by 1 for each H ∈ H. So (since χY = χW − ∑

H∈H χH)
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(49.100)
∑

T∈C
y′(T )χT −

∑

T∈D
z′(T )χT = w′′

and

(49.101) f̃(Y ) ≤ f(W ) −
∑

H∈H
g(H).

Moreover, setting U ′ := U \ Y , we have (by (49.97))

(49.102) f̃(U) ≤ f̃(Y ) + f̃(U ′),

and by our induction hypothesis, as |U ′| < |U |,
(49.103) max{w′′Tx | x ∈ P} = max{w′Tx | x ∈ P} + f̃(U ′).

Hence

(49.104) max{wTx | x ∈ P} =
∑

T∈C
y(T )f(T ) −

∑

T∈D
z(T )g(T )

=
∑

T∈C
y′(T )f(T ) −

∑

T∈D
z′(T )g(T ) + f(W ) −

∑

H∈H
g(H)

≥ max{w′′Tx | x ∈ P} + f̃(Y ) = max{w′Tx | x ∈ P} + f̃(U ′) + f̃(Y )
≥ max{w′Tx | x ∈ P} + f̃(U),

thus proving (49.98).
We next derive that f̃ is submodular on intersecting pairs. Choose X,Y ∈ C̃

with X ∩ Y �= ∅. Define w := χX + χY . Then by (49.98) and (49.97),

(49.105) f̃(X ∩ Y ) + f̃(X ∪ Y ) = max{wTx | x ∈ P} ≤ f̃(X) + f̃(Y ).

So C̃ is an intersecting family and f̃ is submodular on intersecting pairs. By symme-
try, it follows that D̃ is an intersecting family and g̃ is supermodular on intersecting
pairs.

Finally, to see that (f, g) is paramodular, let X ∈ C and Y ∈ D. Define w :=
χX − χY . Again, by (49.98) and (49.97),

(49.106) f̃(X \ Y ) − g̃(Y \X) = max{wTx | x ∈ P} ≤ f̃(X) − g̃(Y ).

So C̃ and D̃ are intersecting families, and the pair (f̃ , g̃) is paramodular. It deter-
mines P , since P is determined by upper and lower bounds on x(U) for subsets U
of S.

Corollary 49.12a implies:

Corollary 49.13a. A generalized polymatroid P is integer if and only if there is a
paramodular pair (f, g) defining P with f and g integer.

Proof. Sufficiency follows from Corollary 49.12a. Necessity follows from Theorem
49.13, as P is determined by (f̃ , g̃), where f̃ and g̃ are integer if P is integer.

A second consequence is:

Corollary 49.13b. The intersection of two integer generalized polymatroids is in-
teger.
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Proof. Directly by combining Corollaries 49.12c and 49.13a.

We should note that the collections C̃ and D̃ found in the proof of Theorem
49.13 are lattice families and that f̃ and g̃ are sub- and supermodular respectively.
Moreover, f̃(T \ U) − g̃(U \ T ) ≤ f̃(T ) − g̃(U) for each pair T ∈ C̃, U ∈ D̃.

This implies that projections of generalized polymatroids are again generalized
polymatroids (Frank [1984b]):

Corollary 49.13c. Let P ⊆ R
S be a generalized polymatroid and let t ∈ S. Define

S′ := S − t. Then the projection

(49.107) P ′ := {x ∈ R
S′ | ∃η : (x, η) ∈ P}

is again a generalized polymatroid.

Proof. We can assume that P is nonempty, that C and D are lattice families, and
that P is determined by a paramodular pair (f, g) = (f̃ , g̃) as above. Let C′ and D′

be the collections of sets in C and D respectively not containing t. Let f ′ := f |C′

and g′ := g|D′.
Trivially, (f ′, g′) is a paramodular pair. We claim that P ′ is equal to the gener-

alized polymatroid Q determined by (f ′, g′). Trivially, P ′ ⊆ Q. To see the reverse
inclusion, let x ∈ Q. Let η′ be the largest real such that x(T − t) + η′ ≤ f(T ) for
each T ∈ C \C′. Let η′′ be the smallest real such that x(U − t)+η′′ ≥ g(U) for each
U ∈ D \ D′.

If x �∈ P ′, then η′ < η′′, and hence there exist T ∈ C and U ∈ D with t ∈ T ∩U
and f(T ) − x(T − t) < g(U) − x(U − t). Hence

(49.108) x(T \ U) − x(U \ T ) = x(T − t) − x(U − t) > f(T ) − g(U)
≥ f(T \ U) − g(U \ T ).

This contradicts the fact that x(T \ U) ≤ f(T \ U) and x(U \ T ) ≥ g(U \ T ), as
x ∈ Q.

For results on the dimension of generalized polymatroids, see Frank and Tardos
[1988], which paper surveys generalized polymatroids and submodular flows. More
results on generalized polymatroids are reported by Fujishige [1984b], Nakamura
[1988b], Naitoh and Fujishige [1992], and Tamir [1995].

49.11c. Supermodular colourings

A colouring-type of result on supermodular functions was shown by Schrijver [1985].
We give the proof based on generalized polymatroids found by Tardos [1985b].

Theorem 49.14. Let C1 and C2 be intersecting families of subsets of a set S, let
g1 : C1 → Z and g2 : C2 → Z be intersecting supermodular, and let k ∈ Z+ with
k ≥ 1. Then S can be partitioned into classes L1, . . . , Lk such that

(49.109) gi(U) ≤ |{j ∈ {1, . . . , k} | Lj ∩ U �= ∅}|
for each i = 1, 2 and each U ∈ Ci if and only if

(49.110) gi(U) ≤ min{k, |U |}
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for each i = 1, 2 and each U ∈ Ci.

Proof. Necessity is easy. Sufficiency is shown by induction on k, the case k = 0
being trivial. By induction, it suffices to find a subset L of S such that

(49.111) |U \ L| ≥ gi(U) − 1 and, if gi(U) = k, then U ∩ L �= ∅.

Indeed, in that case we can apply induction to the functions g′
i : C′

i → Z on C′
i :=

{U \ L | U ∈ C}, defined by

(49.112) g′
i(U \ L) :=

{
gi(U) − 1 if U ∩ L �= ∅,
gi(U) if U ∩ L = ∅,

for U ∈ Ci.
For i = 1, 2, consider the system:

(49.113) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(U) ≤ |U | − gi(U) + 1 for U ∈ Ci,
(iii) x(U) ≥ 1 for U ∈ Ci with gi(U) = k.

This system determines an integer generalized polymatroid. This can be seen as
follows. Let Di be the collection of inclusionwise minimal sets in {U ∈ Ci | gi(U) =
k}. So Di consists of disjoint sets (as Ci is intersecting and as gi(U) ≤ k for each
U ∈ Ci). Let

(49.114) C′
i := {U ∈ Ci | ∀T ∈ Di : U ⊆ T or T ∩ U = ∅}.

Then (49.113) has the same solution set as:

(49.115) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(U) ≤ |U | − gi(U) + 1 for U ∈ C′

i,
(iii) x(U) ≥ 1 for U ∈ Di.

Indeed, (49.115)(iii) implies (49.113)(iii) (as x ≥ 0). Moreover, for any U ∈ Ci with
T ∩ U �= ∅ for some T ∈ Di, one has

(49.116) gi(T ∩ U) ≥ gi(T ) + gi(U) − gi(T ∪ U) ≥ gi(U)

(as gi(T ∪ U) ≤ k = gi(T )). So with (49.115)(iii) we have:

(49.117) x(U) ≤ x(T ∩ U) + |U \ T | ≤ |T ∩ U | − gi(T ∩ U) + 1 + |U \ T |
≤ |U | − gi(U) + 1

(as xs ≤ 1 for all x ∈ U \ T ). Hence (49.113) and (49.115) have the same solution
set.

Now (49.115) is a system defining a generalized polymatroid, as one easily
checks (condition (49.87)(iii) follows, since if T ∈ C′

i and U ∈ Di with T \ U �= ∅
and U\T �= ∅, then, by definition of C′

i, T and U are disjoint, and then the inequality
in (49.87)(iii) is trivial). It is integer, as the right-hand sides in (49.115) are integer.

Also, the intersection of these generalized polymatroids for i = 1 and i = 2
is nonempty, since the vector x := k−1 · 1 belongs to it. (49.115)(i) and (iii) hold
trivially. To see (ii), we have

(49.118) x(U) = 1
k
|U | = |U |− k−1

k
|U | ≤ |U |− k−1

k
gi(U) = |U |− gi(U)+ 1

k
gi(U)

≤ |U | − gi(U) + 1.
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Therefore, the intersection contains an integer vector x, which is, by (49.115)(i),
the incidence vector of some subset L of S satisfying (49.111), as required.

This theorem generalizes edge-colouring theorems for bipartite graphs G =
(V,E). Let V1 and V2 be the colour classes of G. Let Ci := {δ(v) | v ∈ Vi} for
i = 1, 2. If we define gi(δ(v)) := |δ(v)| for v ∈ Vi (i = 1, 2), Theorem 49.14 reduces
to Kőnig’s edge-colouring theorem (Theorem 20.1). If gi(δ(v)) is set to the minimum
degree of G, we obtain Theorem 20.5, and if it is set to the minimum of k and |δ(v)|,
we obtain Theorem 20.6.

Theorem 49.14 can also be used in proving the ‘disjoint bibranchings theorem’
(Theorem 54.11 — see Section 54.7a). Szigeti [1999] gave a generalization of The-
orem 49.14.

49.11d. Further notes

Let S and T be disjoint sets. A function f : P(S)×P(T ) → R is called bisubmodular
if

(49.119) f(X1 ∩X2, Y1 ∪ Y2) + f(X1 ∪X2, Y1 ∩ Y2) ≤ f(X1, Y1) + f(X2, Y2)

for all X1, X2 ⊆ S and Y1, Y2 ⊆ T .
Bisubmodular functions were studied by Kung [1978b] and Schrijver [1978,

1979c]. Most of the results can be obtained from those for submodular functions,
by considering the submodular set function f ′ on S ∪ T defined by f ′(X ∪ Y ) :=
f((S \X)∪Y ) for X ⊆ S and Y ⊆ T . Similarly for bisupermodular functions, where
the inequality sign in (49.119) is reversed.

For an interesting related result of Frank and Jordán [1995b] yielding Győri’s
theorem, see Section 60.3d.

Fujishige [1984c] gave a framework that includes Theorem 46.2 on the total
dual integrality of the intersection of a polymatroid and a contrapolymatroid sys-
tem, Corollary 46.2b on the existence of a modular function between a sub- and
a supermodular function, and Theorem 49.13 on the total dual integrality of the
generalized polymatroid constraints (but not the total dual integrality of the inter-
section of two polymatroids). Fujishige [1984b] described generalized polymatroids
as projections of base polyhedra of submodular functions.

Chandrasekaran and Kabadi [1988] introduced the concept of a generalized sub-
modular function as a function f : R → R, where R := {(T, U) | T, U ⊆ S, T ∩U =
∅} for some set S, satisfying

(49.120) f(A,B) + f(C,D)
≥ f(A ∩ C,B ∩D) + f((A \D) ∪ (C \B), (B \ C) ∪ (D \A))

for all (A,B), (C,D) ∈ R. They showed that the system

(49.121) x(T ) − x(U) ≤ f(T, U) for (T, U) ∈ R
is box-TDI, and that for any w ∈ R

S , an x maximizing wTx over (49.121) can be
found by a variant of the greedy method. Unions of two such systems need not
define an integer polyhedron if the functions are integer, as is shown by an example
with |S| = 2. A similar framework was considered by Nakamura [1990]. More results
can be found in Dress and Havel [1986], Bouchet [1987a,1995], Bouchet, Dress, and
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Havel [1992], Ando and Fujishige [1996], Fujishige [1997], and Fujishige and Iwata
[2001].

It is direct to represent a lattice family on a set S of size n in O(n2) space (just
by giving all pairs (u, v) for which each set in the family containing u also contains
v). Gabow [1993b,1995c] gave an O(n2) representation for intersecting and crossing
families. Related results were found by Fleiner and Jordán [1999].

Tardos [1985b] also studied generalized matroids, which form the special case of
generalized polymatroids with 0, 1 vertices. An instance of it we saw in the proof
of Theorem 49.14.

More results on submodularity are given by Fujishige [1980b,1984f,1984g,1988],
Nakamura [1988b,1988c,1993], Kabadi and Chandrasekaran [1990], Iwata [1995],
Iwata, Murota, and Shigeno [1997], and Murota [1998]. Generalizations were studied
by Qi [1988b] and Kashiwabara, Nakamura, and Takabatake [1999].
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