Part IV

Matroids and Submodular
Functions

Part IV: Matroids and Submodular Functions

Matroids form an important tool in combinatorial optimization. Among other, they apply to shortest and disjoint trees in undirected graphs, to bipartite matching, and to directed cut covering.
Matroids were introduced by Whitney in 1935, and equivalent axiom systems were considered in the 1930s by Nakasawa, Birkhoff, and van der Waerden. They were motivated by questions from algebra, geometry, and graph theory. The importance of matroids for combinatorial optimization was revealed by J. Edmonds in the 1960s, who found efficient algorithms and min-max relations for optimization problems involving matroids.
Matroids are exactly those structures where the greedy algorithm yields an optimum solution. Edmonds discovered that matroids have an even stronger algorithmic property: also optimization over intersections of two different matroids can be done efficiently. It is closely related to matroid union. Among the consequences of matroid intersection and union methods and results are min-max relations, polyhedral characterizations, and algorithms for bipartite matching, common transversals, and tree packing and covering. (In fact, tree packing and covering are best investigated within the structures offered by matroids. This insight was obtained already in the original paper of Nash-Williams on tree packing. That is why we discuss matroids before Part V on trees and forests.)
While bipartite matching is generalized by matroid intersection, nonbipartite matching is generalized by matroid matching. We prove in Chapter 43 Lovász's matroid matching theorem for linear matroids. For general matroids the problem is intractable.
The rank function of a matroid is a special case of a submodular function. Submodular functions give rise to a polyhedral generalization of matroids, the polymatroids. Most of matroid theory can be lifted to the level of submodular functions and polymatroids. Next to having applications by its own, it will also be used in Part V where we consider submodular functions defined on digraphs (Chapter 60). This applies to directed variants of tree and cut packing and covering, and to graph orientation and connectivity augmentation.

Chapters:

39. Matroids 651
40. The greedy algorithm and the independent set polytope 688
41. Matroid intersection 700
42. Matroid union 725
43. Matroid matching 745
44. Submodular functions and polymatroids 766
45. Submodular function minimization 786
46. Polymatroid intersection 795
47. Polymatroid intersection algorithmically 805
48. Dilworth truncation 820
49. Submodularity more generally 826

Chapter 39

Matroids

This chapter gives the basic definitions, examples, and properties of matroids. We use the shorthand notation

$$
X+y:=X \cup\{y\} \text { and } X-y:=X \backslash\{y\} .
$$

39.1. Matroids

A pair (S, \mathcal{I}) is called a matroid if S is a finite set and \mathcal{I} is a nonempty collection of subsets of S satisfying:
(i) if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$,
(ii) if $I, J \in \mathcal{I}$ and $|I|<|J|$, then $I+z \in \mathcal{I}$ for some $z \in J \backslash I$.
(These axioms are given by Whitney [1935].)
Given a matroid $M=(S, \mathcal{I})$, a subset I of S is called independent if I belongs to \mathcal{I}, and dependent otherwise. For $U \subseteq S$, a subset B of U is called a base of U if B is an inclusionwise maximal independent subset of U. That is, $B \in \mathcal{I}$ and there is no $Z \in \mathcal{I}$ with $B \subset Z \subseteq U$.

It is not difficult to see that, under condition (39.1)(i), condition (39.1)(ii) is equivalent to:
(39.2) for any subset U of S, any two bases of U have the same size.

The common size of the bases of a subset U of S is called the rank of U, denoted by $r_{M}(U)$. If the matroid is clear from the context, we write $r(U)$ for $r_{M}(U)$.

A set is called simply a base if it is a base of S. The common size of all bases is called the rank of the matroid. A subset of S is called spanning if it contains a base as a subset. So bases are just the inclusionwise minimal spanning sets, and also just the independent spanning sets. A circuit of a matroid is an inclusionwise minimal dependent set. A loop is an element s such that $\{s\}$ is a circuit. Two elements s, t of S are called parallel if $\{s, t\}$ is a circuit.

Nakasawa [1935] showed the equivalence of axiom system (39.1) with an ostensibly weaker system, which will be useful in proofs:

Theorem 39.1. Let S be a finite set and let \mathcal{I} be a nonempty collection of subsets satisfying (39.1)(i). Then (39.1)(ii) is equivalent to:

$$
\begin{align*}
& \text { if } I, J \in \mathcal{I} \text { and }|I \backslash J|=1,|J \backslash I|=2 \text {, then } I+z \in \mathcal{I} \text { for some } \tag{39.3}\\
& z \in J \backslash I \text {. }
\end{align*}
$$

Proof. Obviously, (39.1)(ii) implies (39.3). Conversely, (39.1)(ii) follows from (39.3) by induction on $|I \backslash J|$, the case $|I \backslash J|=0$ being trivial. If $|I \backslash J| \geq 1$, choose $i \in I \backslash J$. We apply the induction hypothesis twice: first to $I-i$ and J to find $j \in J \backslash I$ with $I-i+j \in \mathcal{I}$, and then to $I-i+j$ and J to find $j^{\prime} \in J \backslash(I+j)$ with $I-i+j+j^{\prime} \in \mathcal{I}$. Then by (39.3) applied to I and $I-i+j+j^{\prime}$, we have that $I+j \in \mathcal{I}$ or $I+j^{\prime} \in \mathcal{I}$.

39.2. The dual matroid

With each matroid M, a dual matroid M^{*} can be associated, in such a way that $\left(M^{*}\right)^{*}=M$. Let $M=(S, \mathcal{I})$ be a matroid, and define

$$
\begin{equation*}
\mathcal{I}^{*}:=\{I \subseteq S \mid S \backslash I \text { is a spanning set of } M\} . \tag{39.4}
\end{equation*}
$$

Then (Whitney [1935]):
Theorem 39.2. $M^{*}=\left(S, \mathcal{I}^{*}\right)$ is a matroid.
Proof. Condition (39.1)(i) trivially holds for \mathcal{I}^{*}. To see (39.1)(ii), consider $I, J \in \mathcal{I}^{*}$ with $|I|<|J|$. By definition of $\mathcal{I}^{*}, S \backslash J$ contains some base B of M. As also $S \backslash I$ contains some base of M, and as $B \backslash I \subseteq S \backslash I$, there exists a base B^{\prime} of M with $B \backslash I \subseteq B^{\prime} \subseteq S \backslash I$. Then $J \backslash I \nsubseteq B^{\prime}$, since otherwise (as $B \cap I \subseteq I \backslash J$, and as $B \backslash I$ and $J \backslash I$ are disjoint, since $B \cap J=\emptyset$)

$$
\begin{equation*}
|B|=|B \cap I|+|B \backslash I| \leq|I \backslash J|+|B \backslash I|<|J \backslash I|+|B \backslash I| \leq\left|B^{\prime}\right| \tag{39.5}
\end{equation*}
$$

which is a contradiction. As $J \backslash I \nsubseteq B^{\prime}$, there is a $z \in J \backslash I$ with $z \notin B^{\prime}$. So B^{\prime} is disjoint from $I+z$. Hence $I+z \in \mathcal{I}^{*}$.

The matroid M^{*} is called the dual matroid of M. The bases of M^{*} are precisely the complements of the bases of M. This implies $\left(M^{*}\right)^{*}=M$, which justifies the name dual.

Theorem 39.3. The rank function $r_{M^{*}}$ of the dual matroid M^{*} satisfies, for $U \subseteq S:$

$$
\begin{equation*}
r_{M^{*}}(U)=|U|+r_{M}(S \backslash U)-r_{M}(S) . \tag{39.6}
\end{equation*}
$$

Proof. Let \mathcal{B} and \mathcal{B}^{*} denote the collections of bases of M and of M^{*}, respectively. Then

$$
\begin{align*}
& r_{M^{*}}(U)=\max \left\{|U \cap A| \mid A \in \mathcal{B}^{*}\right\}=\max \{|U \backslash B| \mid B \in \mathcal{B}\} \tag{39.7}\\
& =|U|-\min \{|B \cap U| \mid B \in \mathcal{B}\} \\
& =|U|-r_{M}(S)+\max \{|B \backslash U| \mid B \in \mathcal{B}\} \\
& =|U|-r_{M}(S)+r_{M}(S \backslash U)
\end{align*}
$$

The circuits of M^{*} are called the cocircuits of M. They are the inclusionwise minimal sets intersecting each base of M (as they are the inclusionwise minimal sets contained in no base of M^{*}, that is, not contained in the complement of any base of $M)$. The loops of M^{*} are the coloops or bridges of M, and parallel elements of M^{*} are called coparallel or in series in M.

Let $M=(S, \mathcal{I})$ be a matroid, and suppose that we can test in polynomial time if any subset of S is independent in M (or we have an oracle for that). Then we can calculate, for any subset U of S, the rank $r_{M}(U)$ of U in polynomial time (by growing an independent set (starting from \emptyset) to an inclusionwise maximal independent subset of U). It follows that we can test in polynomial time if any subset U of S in independent in M^{*}, just by testing if $r_{M}(S \backslash U)=r_{M}(S)$.

A matroid $M=(S, \mathcal{I})$ is called connected if $r_{M}(U)+r_{M}(S \backslash U)>r_{M}(S)$ for each nonempty proper subset U of S. This is equivalent to: for any two elements $s, t \in S$ there exists a circuit containing both s and t. One may derive from (39.6) that a matroid M is connected if and only if M^{*} is connected.

39.3. Deletion, contraction, and truncation

We can derive matroids from matroids by 'deletion' and 'contraction'. Let $M=(S, \mathcal{I})$ be a matroid and let $Y \subseteq S$. Define

$$
\begin{equation*}
\mathcal{I}^{\prime}:=\{Z \mid Z \subseteq Y, Z \in \mathcal{I}\} \tag{39.8}
\end{equation*}
$$

Then $M^{\prime}=\left(Y, \mathcal{I}^{\prime}\right)$ is a matroid again, as directly follows from the matroid axioms (39.1). M^{\prime} is called the restriction of M to Y, denoted by $M \mid Y$. If $Y=S \backslash Z$ with $Z \subseteq S$, we say that M^{\prime} arises by deleting Z, and denote M^{\prime} by $M \backslash Z$. Clearly, the rank function of $M \mid Y$ is the restriction of the rank function of M to subsets of Y.

Contraction is the operation dual to deletion. Contracting Z means replacing M by $\left(M^{*} \backslash Z\right)^{*}$. This matroid is denoted by M / Z. If $Y=S \backslash Z$, then we denote $M \cdot Y:=M / Z$. Theorem 39.3 implies that the rank function r^{\prime} of M / Z satisfies

$$
\begin{equation*}
r_{M / Z}(X)=r(X \cup Z)-r(Z) \tag{39.9}
\end{equation*}
$$

for $X \subseteq S \backslash Z$.
We can describe contraction as follows. Let $Z \subseteq S$ and let X be a base of Z. Then
(39.10) a subset I of $S \backslash Z$ is independent in M / Z if and only if $I \cup X$ is independent in M.

Note that for disjoint subsets Y, Z of S one has $(M \backslash Y) \backslash Z=M \backslash(Y \cup$ $Z)$ and hence $(M / Y) / Z=M /(Y \cup Z)$. Moreover, deletion and contraction commute, as for any two distinct $x, y \in S$ and any $Z \subseteq S \backslash\{x, y\}$ one has (using (39.9)):

$$
\begin{align*}
& r_{M \backslash x / y}(Z)=r_{M \backslash x}(Z \cup\{y\})-r_{M \backslash x}(\{y\})=r_{M}(Z \cup\{y\})-r_{M}(\{y\}) \tag{39.11}\\
& =r_{M / y}(Z)=r_{M / y \backslash x}(Z) .
\end{align*}
$$

If matroid M^{\prime} arises from M by a series of deletions and contractions, M^{\prime} is called a minor of M.

The circuits of $M \mid Y$ are exactly the circuits of M contained in Y, and the circuits of $M \cdot Y$ are exactly the minimal nonempty sets $C \cap Y$, where C is a circuit of M.

Another operation is that of 'truncation'. Let $M=(S, \mathcal{I})$ be a matroid and let k be a natural number. Define $\mathcal{I}^{\prime}:=\{I \in \mathcal{I}| | I \mid \leq k\}$. Then $\left(S, \mathcal{I}^{\prime}\right)$ is again a matroid, called the k-truncation of M.

39.4. Examples of matroids

We describe some basic classes of matroids.
Uniform matroids. An easy class of matroids is given by the uniform matroids. They are determined by a set S and a number k : the independent sets are the subsets I of S with $|I| \leq k$. This trivially gives a matroid, called a k-uniform matroid and denoted by U_{n}^{k}, where $n:=|S|$.

Linear matroids (Grassmann [1862], Steinitz [1913]). Let A be an $m \times n$ matrix. Let $S:=\{1, \ldots, n\}$ and let \mathcal{I} be the collection of all those subsets I of S such that the columns of A with index in I are linearly independent. That is, such that the submatrix of A consisting of the columns with index in I has rank $|I|$.

Then (S, \mathcal{I}) is a matroid (property (39.1)(ii) was proved by Grassmann [1862] and by Steinitz [1913], and is called Steinitz' exchange property). Condition (39.1)(i) is trivial. To see condition (39.1)(ii), let $I, J \in \mathcal{I}$ with $|I|<|J|$. Then I spans an $|I|$-dimensional space \bar{I}. So $J \nsubseteq \bar{I}$. Take $j \in J \backslash \bar{I}$. Then $I+j \in \mathcal{I}$ and $j \in J \backslash I$.

Any matroid obtained in this way, or isomorphic to such a matroid, is called a linear matroid. If A has entries in a field \mathbb{F}, then M is called representable over \mathbb{F}. We will also say that M is represented by (the columns of) A, and A is called a representation of M.

Note that the rank $r_{M}(U)$ of any subset U of S is equal to the rank of the matrix formed by the columns indexed by U.

The dual matroid of a matroid representable over a field \mathbb{F} is again representable over \mathbb{F}. Indeed, we can assume that the matrix A is of the form [$\left.\begin{array}{ll}I_{m} & B\end{array}\right]$, where I_{m} is the $m \times m$ identity matrix, and B is an $m \times(n-m)$
matrix. Then the dual matroid can be represented by the matrix $\left[B^{\top} \quad I_{n-m}\right]$, as follows directly from elementary linear algebra. This implies that the class of matroids representable over \mathbb{F} is closed under taking minors.

MacLane [1936] (and also Lazarson [1958]) showed that nonlinear matroids exist.

Binary matroids. A matroid representable over GF(2) - the field with two elements - is called a binary matroid. For later purposes, we give some characterizations of binary matroids. The following is direct (Whitney [1935]):
(39.12) a matroid M is binary if and only if for each choice of circuits C_{1}, \ldots, C_{t}, the set $C_{1} \triangle \cdots \Delta C_{t}$ can be partitioned into circuits.
In a binary matroid M, disjoint unions of circuits are called the cycles of M. Of special interest is the Fano matroid F_{7}, represented by the nonzero vectors in $\mathrm{GF}(2)^{3}$.

Tutte [1958a,1958b] showed that the unique minor-minimal nonbinary matroid is U_{4}^{2}, the 2-uniform matroid on 4 elements. (We follow the proof suggested by A.M.H. Gerards.)

Theorem 39.4. A matroid is binary if and only if it has no U_{4}^{2} minor.
Proof. Necessity follows from the facts that the class of binary matroids is closed under taking minors and that U_{4}^{2} is not binary.

To see sufficiency, we first show the following. Let M and N be matroids on the same set S. Call a set wrong if it is a base of precisely one of M and N. A far base is a common base B of M and N such that there is no wrong set X with $|B \triangle X|=2$. We first show:
if M and N are different and have a far base, then M or N has a U_{4}^{2} minor.

Let M, N form a counterexample with S as small as possible. Let B be a far base and X be a wrong set with $|B \triangle X|$ minimal. Then $B \cup X=S$, since we can delete $S \backslash(B \cup X)$. Similarly (by considering M^{*} and $\left.N^{*}\right), B \cap X=\emptyset$. Then, by the minimality of $|B \triangle X|, X$ is the only wrong set. By symmetry, we may assume that X is a base of M. Then M has a base B^{\prime} with $\left|B \triangle B^{\prime}\right|=2$. By the uniqueness of X, B^{\prime} is also a base of N. By the minimality of $|B \triangle X|$, B^{\prime} is not far. Hence, by the uniqueness of $X,\left|B^{\prime} \triangle X\right|=2$. So $|S|=4$.

Let $S=\{a, b, c, d\}, B=\{a, b\}, X=\{c, d\}$. Since $M \neq U_{4}^{2}$ by assumption, we may assume that $\{a, c\}$ is not a base of M. Hence, since $\{a\}$ and $\{c, d\}$ are independent in $M,\{a, d\}$ is a base of M. Similarly, since $\{c\}$ and $\{a, b\}$ are independent in $M,\{b, c\}$ is a base of M.

Since B is far, $\{a, d\}$ and $\{b, c\}$ are bases also of N, and $\{a, c\}$ is not a base of N. So $\{c\}$ is independent in N, implying that $\{c, a\}$ or $\{c, d\}$ is a base of N, a contradiction. This proves (39.13).

Now let M be a nonbinary matroid on a set S. Choose a base B of M. Let $\left\{x_{b} \mid b \in B\right\}$ be a collection of linearly independent vectors over $\mathrm{GF}(2)$. For each $s \in S \backslash B$, let C_{s} be the circuit contained in $B \cup\{s\}$, and define

$$
\begin{equation*}
x_{s}:=\sum_{b \in C_{s} \backslash\{s\}} x_{b} . \tag{39.14}
\end{equation*}
$$

Let N be the binary matroid represented by $\left\{x_{s} \mid s \in S\right\}$. Now for each $b \in B$ and each $s \in S \backslash B$ one has that $(B \backslash\{b\}) \cup\{s\}$ is a base of M if and only if it is a base of N. So B is a far base. Since N is binary, we know that $N \neq M$ and that N has no U_{4}^{2} minor. Hence, by (39.13), M has a U_{4}^{2} minor.

Regular matroids. A matroid is called regular if it is representable over each field. It is equivalent to requiring that it can be represented over \mathbb{R} by the columns of a totally unimodular matrix.

Regular matroids are characterized by Tutte [1958a,1958b] as those binary matroids not having an F_{7} or F_{7}^{*} minor. (Gerards [1989b] gave a short proof.)

A basic decomposition theorem of Seymour [1980a] states that each regular matroid can be obtained by taking 1-, 2 -, and 3 -sums from graphic and cographic matroids and from copies of a 10 -element matroid called R_{10}. (We do not use this theorem in this book. Background can be found in the book of Truemper [1992].)

Algebraic matroids (Steinitz [1910]). Let L be a field extension of a field K and let S be a finite subset of L. Let \mathcal{I} be the collection of all subsets $\left\{s_{1}, \ldots, s_{n}\right\}$ of S that consist of algebraically independent elements over K. That is, there is no nonzero polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in K\left[x_{1}, \ldots, x_{n}\right]$ with $p\left(s_{1}, \ldots, s_{n}\right)=0$. Then (S, \mathcal{I}) is a matroid, and matroids arising in this way are called algebraic (over K). (Steinitz [1910] showed that (S, \mathcal{I}) satisfies the matroid axioms, although the term matroid was not yet introduced.)

To see that (S, \mathcal{I}) is a matroid, we check (39.3). It suffices to show that for all $s_{1}, \ldots, s_{n} \in S$ one has:

$$
\begin{align*}
& \text { if }\left\{s_{1}, s_{2}, s_{3}, \ldots, s_{n-1}\right\} \in \mathcal{I} \text { and }\left\{s_{3}, \ldots, s_{n-1}, s_{n}\right\} \in \mathcal{I} \text {, then } \tag{39.15}\\
& \left\{s_{1}, s_{3}, \ldots, s_{n}\right\} \in \mathcal{I} \text { or }\left\{s_{2}, s_{3}, \ldots, s_{n}\right\} \in \mathcal{I} \text {. }
\end{align*}
$$

Suppose not. Then there exist nonzero polynomials $p\left(x_{1}, x_{3}, \ldots, x_{n}\right)$ and $q\left(x_{2}, x_{3}, \ldots, x_{n}\right)$ over K with $p\left(s_{1}, s_{3}, \ldots, s_{n}\right)=0$ and $q\left(s_{2}, s_{3}, \ldots, s_{n}\right)=0$. We may assume that p and q are irreducible. Moreover, since $\left\{s_{3}, \ldots, s_{n}\right\} \in \mathcal{I}$, p and q are relatively prime. Define $F:=K\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. So p and q belong to the Euclidean ring $F\left[x_{n}\right]$. Let r be the g.c.d. of p and q in $F\left[x_{n}\right]$. As p and q are relatively prime, we know $r \in F$, and hence we may assume $r \in K\left[x_{1}, \ldots, x_{n-1}\right]$. Now $r=\alpha p+\beta q$ for some $\alpha, \beta \in F\left[x_{n}\right]$. So $r\left(s_{1}, \ldots, s_{n-1}\right)=0$, contradicting the fact that $\left\{s_{1}, \ldots, s_{n-1}\right\} \in \mathcal{I}$. This proves (39.15).

Each linear matroid is algebraic (as we can consider the linear relations between the elements as polynomials of rank 1), while Ingleton [1971] gave an
example of a nonlinear algebraic matroid. Examples of nonalgebraic matroids were given by Ingleton and Main [1975] and Lindström [1984,1986]. The class of algebraic matroids can be easily seen to be closed under taking minors (deletion is direct, while contraction of an element t corresponds to replacing K by $K(t)$), but it is unknown if it is closed under duality.

In fact, for any field K, the class of matroids that are algebraic over K is closed under taking minors, since Lindström [1989] showed that any matroid algebraic over $K(t)$ (for any t), is also algebraic over K.

For an in-depth survey on algebraic matroids, see Oxley [1992].
Graphic matroids (Birkhoff [1935c], Whitney [1935]). Let $G=(V, E)$ be a graph and let \mathcal{I} be the collection of all subsets of E that form a forest. Then $M=(E, \mathcal{I})$ is a matroid. Condition (39.1)(i) is trivial. To see that condition (39.2) holds, let $F \subseteq E$. Then, by definition, each base U of F is an inclusionwise maximal forest contained in F. Hence U forms a spanning tree in each component of the graph (V, F). So U has $|V|-k$ elements, where k is the number of components of (V, F). So each base of F has $|V|-k$ elements, proving (39.2).

The matroid M is called the cycle matroid of G, denoted by $M(G)$. Any matroid obtained in this way, or isomorphic to such a matroid, is called a graphic matroid.

Trivially, the circuits of $M(G)$, in the matroid sense, are exactly the circuits of G, in the graph sense. The bases of $M(G)$ are exactly the inclusionwise maximal forests F of G. So if G is connected, the bases are the spanning trees.

The rank function of $M(G)$ can be described as follows. For each subset F of E, let $\kappa(V, F)$ denote the number of components of the graph (V, F). Then for each $F \subseteq E$:

$$
\begin{equation*}
r_{M(G)}(F)=|V|-\kappa(V, F) . \tag{39.16}
\end{equation*}
$$

Note that deletion and contraction in the matroid correspond to deletion and contraction of edges in the graph.

Graphic matroids are regular, that is, representable over any field: orient the edges of G arbitrarily, and consider the $V \times E$ matrix L given by: $L_{v, e}=$ +1 if v is the head of $e, L_{v, e}:=-1$ if v is the tail of e, and $L_{v, e}:=0$ otherwise (for $v \in V, e \in E$). Then a subset F of E is a forest if and only if the set of columns with index in F is linearly independent.

By a theorem of Tutte [1959], the graphic matroids are precisely those regular matroids containing no $M\left(K_{5}\right)^{*}$ and $M\left(K_{3,3}\right)^{*}$ minor. (Alternative proofs were given by Ghouila-Houri [1964] (Chapitre III), Seymour [1980d], Truemper [1985], Wagner [1985], and Gerards [1995b].)

Cographic matroids (Whitney [1935]). The dual of the cycle matroid $M(G)$ of a graph $G=(V, E)$ is called the cocycle matroid of G, and denoted by $M^{*}(G)$. Any matroid obtained in this way, or isomorphic to such a matroid, is called a cographic matroid.

So the bases of $M^{*}(G)$ are the complements of maximal forests of G. (So if G is connected, these are exactly the complements of the spanning trees in G.)

Hence the independent sets are those edge sets F for which $E \backslash F$ contains a maximal forest of G; that is, $(V, E \backslash F)$ has the same number of components as G.

A subset C of E is a circuit of $M^{*}(G)$ if and only if C is an inclusionwise minimal set with the property that $(V, E \backslash C)$ has more components than G. Hence C is a circuit of $M^{*}(G)$ if and only if C is an inclusionwise minimal nonempty cut in G.

The rank function of $M^{*}(G)$ can be described as follows. Again, for each subset F of E, let $\kappa(V, F)$ denote the number of components of the graph (V, F). Then (39.6) and (39.16) give that for each $F \subseteq E$:

$$
\begin{equation*}
r_{M^{*}(G)}(F)=|F|-\kappa(V, E \backslash F)+\kappa(V, E) \tag{39.17}
\end{equation*}
$$

Let G be an (embedded) planar graph, and let G^{*} be the dual planar graph of G. Then the cycle matroid $M\left(G^{*}\right)$ of G^{*} is isomorphic to the cocycle matroid $M^{*}(G)$ of G.

A theorem of Whitney [1933] implies that a matroid is both graphic and cographic if and only if it is isomorphic to the cycle matroid of a planar graph.

Transversal matroids (Edmonds and Fulkerson [1965], Mirsky and Perfect [1967]). Let $\mathcal{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a family of subsets of a finite set S and let \mathcal{I} be the collection of all partial transversals of \mathcal{X}. Then $M=(S, \mathcal{I})$ is a matroid, as follows directly from Corollary 22.4a. Any matroid obtained in this way, or isomorphic to such a matroid, is called a transversal matroid (induced by \mathcal{X}).

The bases of this matroid are the inclusionwise maximal partial transversals. If \mathcal{X} has a transversal, the bases of M are the transversals of \mathcal{X}. In fact, Theorem 22.5 implies that we can assume the latter situation:
(39.18) Let M be the transversal matroid induced by the family \mathcal{X}. Then \mathcal{X} has a subfamily \mathcal{Y} such that M is equal to the transversal matroid induced by \mathcal{Y} and such that \mathcal{Y} has a transversal.
So we can assume that any transversal matroid has the transversals of a family of sets as bases.

It follows from Kőnig's matching theorem that the rank function r of the transversal matroid induced by \mathcal{X} is given by

$$
\begin{align*}
& r(U)=\min _{T \subseteq U}\left(|U \backslash T|+\left|\left\{i \mid X_{i} \cap T \neq \emptyset\right\}\right|\right) \tag{39.19}\\
& =\min _{I \subseteq\{1, \ldots, n\}}\left(n-|I|+\left|\bigcup_{i \in I}\left(X_{i} \cap U\right)\right|\right)
\end{align*}
$$

for $U \subseteq S$. This follows directly from Theorem 22.2 and Corollary 22.2a, applied to the family $\left(X_{1} \cap U, \ldots, X_{n} \cap U\right)$.

Piff and Welsh [1970] (cf. Atkin [1972]) showed that
(39.20) any transversal matroid is representable over all fields, except for finitely many finite fields.

If the sets X_{1}, \ldots, X_{m} form a partition of S, one speaks of a partition matroid. Trivially, each partition matroid is graphic and cographic (by considering a graph consisting of vertex-disjoint parallel classes of edges). Also uniform matroids are special cases of transversal matroids.

Gammoids (Perfect [1968]). An extension of transversal matroids is obtained by taking a directed graph $D=(V, A)$ and subsets U and S of V. For $X, Y \subseteq V$, call X linked to Y if $|X|=|Y|$ and D has $|X|$ vertex-disjoint $X-Y$ paths. (So X is the set of starting vertices of these paths, and Y the set of end vertices.)

Let \mathcal{I} be the collection of subsets I of S such that some subset of U is linked to I. Then $M=(S, \mathcal{I})$ is a matroid. This follows from Theorem 9.11: let $I, J \in \mathcal{I}$ with $|I|<|J|$. Let $T:=I \cup J$. Let k be the maximum number of disjoint $U-T$ paths. So $k \geq|J|>|I|$. By Theorem 9.11, there exist k disjoint $U-T$ paths covering I. Hence $I+j \in \mathcal{I}$ for some $j \in J \backslash I$. So M is a matroid.

Matroids obtained in this way are called gammoids. If $S=V$, the gammoid is called a strict gammoid (induced by D, U). Hence:
(39.21) gammoids are exactly the restrictions of strict gammoids.

The bases of the strict gammoid induced by D, U are the subsets B of V such that U is linked to B. In particular, U is a base.

From Menger's theorem (Corollary 9.1a) one easily derives the following formula for the rank function r_{M} of M :

$$
\begin{equation*}
r_{M}(X)=\min \{|Y| \mid Y \text { intersects each } U-X \text { path }\} \tag{39.22}
\end{equation*}
$$

for $X \subseteq S$. (One may prove easily that the right-hand side of (39.22) satisfies Theorem 39.8 below, thus proving again that M is a matroid.)

39.4a. Relations between transversal matroids and gammoids

Ingleton and Piff [1973] showed the following theorem (based on a duality of bipartite graphs and directed graphs similar to that described in Section 16.7c). The proof provides an alternative proof that gammoids are indeed matroids.

Theorem 39.5. Strict gammoids are exactly the duals of the transversal matroids.
Proof. Let M be the strict gammoid induced by the directed graph $D=(V, A)$ and $U \subseteq V$. We can assume that $(v, v) \in A$ for each $v \in V$. For each $v \in V$, let

$$
\begin{equation*}
X_{v}:=\{u \in V \mid(u, v) \in A\} . \tag{39.23}
\end{equation*}
$$

Let L be the transversal matroid induced by the family $\mathcal{X}:=\left(X_{v} \mid v \in V \backslash U\right)$. We show that $L=M^{*}$.

As $v \in X_{v}$ for each $v \in V \backslash U$, the set $V \backslash U$ is a transversal of \mathcal{X}. Hence the bases of L are the transversals of \mathcal{X}. As U is a base of the strict gammoid induced by D, U, it suffices to show, for each $B \subseteq V$:
(39.24) $\quad U$ is linked to B in D if and only if $V \backslash B$ is a transversal of \mathcal{X}.

To see necessity in (39.24), let U be linked to B in D and let \mathcal{P} be a set of $|U|$ disjoint $U-B$ paths. Then for each $v \in V \backslash U$, let $x_{v}:=u$ if v is entered by an arc (u, v) in a path P in \mathcal{P} and let $x_{v}:=v$ otherwise. Then:

$$
\begin{align*}
& \text { (i) } x_{v} \in X_{v}, \text { (ii) } x_{v} \neq x_{v^{\prime}} \text { for } v \neq v^{\prime} \in V \backslash U \text {, and (iii) }\left\{x_{v} \mid v \in\right. \tag{39.25}\\
& V \backslash U\}=V \backslash B .
\end{align*}
$$

So $V \backslash B$ is a transversal of \mathcal{X}.
To see sufficiency in (39.24), let $V \backslash B$ be a transversal of \mathcal{X}. Hence there exist x_{v} for $v \in V \backslash U$ satisfying (39.25). Let A^{\prime} be the set of $\operatorname{arcs}\left(x_{v}, v\right)$ of D with $v \in V \backslash U$. Then $V \backslash U$ is the set of vertices entered by an arc in A^{\prime}, and $V \backslash B$ is the set of vertices left by an arc in A^{\prime}. Hence U is linked to B in D.

This shows (39.24), and hence that $M^{*}=L$. So the dual of a strict gammoid is a transversal matroid.

To see that each transversal matroid is the dual of a strict gammoid, we show that the construction described above can be reversed. Let L be the transversal matroid induced by the family $\mathcal{X}=\left(X_{i} \mid i=1, \ldots, m\right)$ of sets. By (39.18) we can assume that \mathcal{X} has a transversal. Hence we can assume that $i \in X_{i}$ for $i=1, \ldots, m$ (by renaming). Let $V:=X_{1} \cup \cdots \cup X_{m}$ and let

$$
\begin{equation*}
A:=\left\{(u, v) \mid v \in\{1, \ldots, m\}, u \in X_{v}\right\} . \tag{39.26}
\end{equation*}
$$

Let $D=(V, A)$ and define $U:=V \backslash\{1, \ldots, m\}$. Since D, U and \mathcal{X} are related as in (39.23), we again have (39.25). So L is equal to the dual of the strict gammoid induced by D, U.

This theorem has a number of implications for the interrelations of the classes of transversal matroids and of gammoids. Consider the following class of matroids, introduced by Ingleton and Piff [1973]. Let $G=(V, E)$ be a bipartite graph, with colour classes U and W. Let $M=(V, \mathcal{I})$ be the transversal matroid induced by the family $(\{v\} \cup N(v) \mid v \in U$) (where $N(v)$ is the set of neighbours of v). So $B \subseteq V$ is a base of M if and only if $(U \backslash B) \cup(W \cap B)$ is matchable in G (that is, it induces a subgraph of G having a perfect matching).

Any such matroid M is called a deltoid (induced by G, U, W). Then M^{*} is the deltoid induced by G, W, U. So
the dual of a deltoid is a deltoid again.
Now
transversal matroids are exactly those matroids that are the restriction of a deltoid.
Indeed, each deltoid is a transversal matroid, and hence the restriction of any deltoid is a transversal matroid (as the class of transversal matroids is closed under taking restrictions). Conversely, any transversal matroid, induced by (say) X_{1}, \ldots, X_{m} is
the restriction to W of the deltoid induced by the bipartite graph G with colour classes $U:=\{1, \ldots, m\}$ and $W:=X_{1} \cup \cdots \cup X_{m}$, with $i \in U$ and $x \in W$ adjacent if and only if $x \in X_{i}$. (Assuming without loss of generality that $U \cap W=\emptyset$.) This shows (39.28).

Then (39.27) and (39.28) give with Theorem 39.5:
(39.29) the strict gammoids are exactly the contractions of the deltoids.

Indeed, the strict gammoids are the duals of transversal matroids, hence the duals of restrictions of deltoids, and therefore the contractions of (the duals of) deltoids. This gives:

Corollary 39.5a. The gammoids are exactly the contractions of the transversal matroids.

Proof. Gammoids are the restrictions of strict gammoids, hence the restrictions of contractions of deltoids, hence the contractions of restrictions of deltoids, therefore the contractions of transversal matroids.

Similarly:
(39.30) the gammoids are exactly the minors of deltoids,
which implies (with (39.27)) a result of Mason [1972]:
(39.31) the class of gammoids is closed under taking minors and duals.

Theorem 39.5 also implies, with (39.20), that gammoids are representable over all fields, except for a finite number of finite fields (Mason [1972]). In fact, Lindström [1973] showed that any gammoid (S, \mathcal{I}) is representable over each field with at least $2^{|S|}$ elements.

Edmonds and Fulkerson [1965] showed that one gets a transversal matroid as follows. Let $G=(V, E)$ be an undirected graph and let $S \subseteq V$. Let \mathcal{I} be the collection of subsets of S which are covered by some matching in G. Then $M=$ (S, \mathcal{I}) is a matroid (which is easy to show), called the matching matroid of G. In fact, any matching matroid is a transversal matroid. To prove this, we may assume $S=V$. Let $D(G), A(G), C(G)$ form the Edmonds-Gallai decomposition of G (Section 24.4b). Let \mathcal{K} be the collection of components of $G[D(G)]$. Let \mathcal{X} be the family of sets

$$
\begin{array}{ll}
\{v\} & \text { for each } v \in A(G) \cup C(G), \tag{39.32}\\
N(v) \cap D(G) & \text { for each } v \in A(G) \\
K, \text { repeated }|K|-1 \text { times, } & \text { for each } K \in \mathcal{K} .
\end{array}
$$

Then M is equal to the transversal matroid induced by \mathcal{X}, as is easy to derive from the properties of the Edmonds-Gallai decomposition. A min-max relation for the rank function is given by Theorem 24.6.

It is straightforward to see that, conversely, each transversal matroid is a matching matroid, by taking G bipartite.

39.5. Characterizing matroids by bases

In Section 39.1, the notion of matroid is defined by 'axioms' in terms of the independent sets. There are several other axiom systems that characterize matroids. In this and the next sections we give a number of them.

Clearly, a matroid is determined by the collection of its bases, since a set is independent if and only if it is contained in a base. Conditions characterizing a collection of bases of a matroid are given in the following theorem (Whitney [1935]).

Theorem 39.6. Let S be a set and let \mathcal{B} be a nonempty collection of subsets of S. Then the following are equivalent:
(39.33) (i) \mathcal{B} is the collection of bases of a matroid;
(ii) if $B, B^{\prime} \in \mathcal{B}$ and $x \in B^{\prime} \backslash B$, then $B^{\prime}-x+y \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$;
(iii) if $B, B^{\prime} \in \mathcal{B}$ and $x \in B^{\prime} \backslash B$, then $B-y+x \in \mathcal{B}$ for some $y \in B \backslash B^{\prime}$.

Proof. (i) \Rightarrow (ii): Let \mathcal{B} be the collection of bases of a matroid (S, \mathcal{I}). Then all sets in \mathcal{B} have the same size. Now let $B, B^{\prime} \in \mathcal{B}$ and $x \in B^{\prime} \backslash B$. Since $B^{\prime}-x \in \mathcal{I}$, there exists a $y \in B \backslash B^{\prime}$ with $B^{\prime \prime}:=B^{\prime}-x+y \in \mathcal{I}$. Since $\left|B^{\prime \prime}\right|=\left|B^{\prime}\right|$, we know $B^{\prime \prime} \in \mathcal{B}$.
$($ iii $) \Rightarrow(\mathrm{i}):($ iii) directly implies that no set in \mathcal{B} is contained in another. Let \mathcal{I} be the collection of sets I with $I \subseteq B$ for some $B \in \mathcal{B}$. We check (39.3). Let $I, J \in \mathcal{I}$ with $|I \backslash J|=1$ and $|J \backslash I|=2$. Let $I \backslash J=\{x\}$.

Consider sets $B, B^{\prime} \in \mathcal{B}$ with $I \subseteq B, J \subseteq B^{\prime}$. If $x \in B^{\prime}$, we are done. So assume $x \notin B^{\prime}$. Then by (iii), $B^{\prime}-y+x \in \mathcal{B}$ for some $y \in B^{\prime} \backslash B$. As $|J \backslash I|=2$, there is a $z \in J \backslash I$ with $z \neq y$. Then $I+z \subseteq B^{\prime}-y+x$, and so $I+z \in \mathcal{I}$.
(ii) \Rightarrow (iii): By the foregoing we know that (iii) implies (ii). Now axioms (ii) and (iii) interchange if we replace \mathcal{B} by the collection of complements of sets in \mathcal{B}. Hence also the implication (ii) \Rightarrow (iii) holds.

The equivalence of (ii) and (iii) also follows from the fact that the collection of complements of bases of a matroid is the collection of bases of the dual matroid. Conversely, Theorem 39.6 implies that the dual indeed is a matroid.

39.6. Characterizing matroids by circuits

A matroid is determined by the collection of its circuits, since a set is independent if and only if it contains no circuit. Conditions characterizing a collection of circuits of a matroid are given in the following theorem (Whitney
[1935] proved (i) $\Leftrightarrow($ iii), and Robertson and Weston [1958] (and also Lehman [1964] and Asche [1966]) proved (i) $\Leftrightarrow(\mathrm{ii})$).

Theorem 39.7. Let S be a set and let \mathcal{C} be a collection of nonempty subsets of S, such that no two sets in \mathcal{C} are contained in each other. Then the following are equivalent:
(39.34) (i) \mathcal{C} is the collection of circuits of a matroid;
(ii) if $C, C^{\prime} \in \mathcal{C}$ with $C \neq C^{\prime}$ and $x \in C \cap C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C};
(iii) if $C, C^{\prime} \in \mathcal{C}, x \in C \cap C^{\prime}$, and $y \in C \backslash C^{\prime}$, then $\left(C \cup C^{\prime}\right) \backslash\{x\}$ contains a set in \mathcal{C} containing y.

Proof. (i) \Rightarrow (iii): Let \mathcal{C} be the collection of circuits of a matroid (S, \mathcal{I}) and let \mathcal{B} be its collection of bases. Let $C, C^{\prime} \in \mathcal{C}, x \in C \cap C^{\prime}$, and $y \in C \backslash C^{\prime}$. We can assume that $S=C \cup C^{\prime}$. Let $B, B^{\prime} \in \mathcal{B}$ with $B \supseteq C-y$ and $B^{\prime} \supseteq C^{\prime}-x$. Then $y \notin B$ and $x \notin B^{\prime}$ (since $C \nsubseteq B$ and $C^{\prime} \nsubseteq B^{\prime}$).

We can assume that $y \notin B^{\prime}$. Otherwise, $y \in B^{\prime} \backslash B$, and hence by (ii) of Theorem 39.6, there exists a $z \in B \backslash B^{\prime}$ with $B^{\prime \prime}:=B^{\prime}-y+z \in \mathcal{B}$. Then $z \neq x$, since otherwise $C^{\prime} \subseteq B^{\prime \prime}$. Hence, replacing B^{\prime} by $B^{\prime \prime}$ gives $y \notin B^{\prime}$.

As $y \notin B^{\prime}$, we know $B^{\prime} \cup\{y\} \notin \mathcal{I}$, and hence there exists a $C^{\prime \prime} \in \mathcal{C}$ contained in $B^{\prime} \cup\{y\}$. As $C^{\prime \prime} \nsubseteq B^{\prime}$, we know $y \in C^{\prime \prime}$. Moreover, as $x \notin B^{\prime}$ we know $x \notin C^{\prime \prime}$.
(iii) \Rightarrow (ii): is trivial.
(ii) \Rightarrow (i): Let \mathcal{I} be the collection of sets containing no set in \mathcal{C} as a subset. We check (39.3). Let $I, J \in \mathcal{I}$ with $|I \backslash J|=1$ and $|J \backslash I|=2$. Assume that $I+z \notin \mathcal{I}$ for each $z \in J \backslash I$. Let y be the element of $I \backslash J$. If $J+y \in \mathcal{I}$, then $I \cup J \in \mathcal{I}$, contradicting our assumption. So $J+y$ contains a set $C \in \mathcal{C}$. Then C is the unique set in \mathcal{C} contained in $J+y$. For suppose that there is another, C^{\prime} say. Again, $y \in C^{\prime}$, and hence by (39.34)(ii) there exists a $C^{\prime \prime} \in \mathcal{C}$ contained in $\left(C \cup C^{\prime}\right) \backslash\{y\}$. But then $C^{\prime \prime} \subseteq J$, a contradiction.

As $C \nsubseteq I, C$ intersects $J \backslash I$. Choose $x \in C \cap(J \backslash I)$. Then $X:=J+y-x$ contains no set in \mathcal{C} (as C is the only set in \mathcal{C} contained in $J+y$). So $X \in \mathcal{I}$, implying that $I+z \in \mathcal{I}$ for the $z \in J \backslash I$ with $z \neq x$.

This theorem implies the following important property for a matroid $M=$ (S, \mathcal{I}) :
(39.35) for any independent set I and any $s \in S \backslash I$ there is at most one circuit contained in $I \cup\{s\}$.

39.6a. A characterization of Lehman

Lehman [1964] showed that the cocircuits of a matroid M are exactly the inclusionwise minimal nonempty subsets D of S with $|D \cap C| \neq 1$ for each circuit C of M.

To show this, it suffices to show that
(i) $|D \cap C| \neq 1$ for each cocircuit D and circuit C,
(ii) for each nonempty $D \subseteq S$, if $|D \cap C| \neq 1$ for each circuit C, then D contains a cocircuit; that is, then D is dependent in M^{*}.

To see (i), suppose that $D \cap C=\{s\}$ for some circuit C and cocircuit D. As $D-s$ is independent in M^{*}, M has a base B disjoint from $D-s$. Since $C-s$ is disjoint from $D-s$ and since $C-s \in \mathcal{I}$, we can assume that $C-s \subseteq B$. Then $s \notin B$, and so B is disjoint from D. This implies that D is independent in M^{*}, contradicting the fact that D is a circuit in M^{*}. This shows (i).

To see (ii), let $\emptyset \neq D \subseteq S$ with $|D \cap C| \neq 1$ for each circuit C. We show that D is dependent in M^{*}. Suppose not. Then M has a base B disjoint from D. Choose $s \in D$. Then $B+s$ contains a circuit C with $s \in C$. Hence $D \cap C=\{s\}$, contradicting our assumption, thus showing (ii).

39.7. Characterizing matroids by rank functions

The rank function of a matroid $M=(S, \mathcal{I})$ is the function $r_{M}: \mathcal{P}(S) \rightarrow \mathbb{Z}_{+}$ given by:

$$
\begin{equation*}
r_{M}(U):=\max \{|Z| \mid Z \in \mathcal{I}, Z \subseteq U\} \tag{39.37}
\end{equation*}
$$

for $U \subseteq S$. Again, a matroid is determined by its rank function, as a set U is independent if and only if $r(U)=|U|$. Conditions characterizing a rank function are given by the following theorem (Whitney [1935]; necessity was also shown (in a different terminology) by Bergmann [1929] and Nakasawa [1935]):

Theorem 39.8. Let S be a set and let $r: \mathcal{P}(S) \rightarrow \mathbb{Z}_{+}$. Then r is the rank function of a matroid if and only if for all $T, U \subseteq S$:
(i) $r(T) \leq r(U) \leq|U|$ if $T \subseteq U$,
(ii) $r(T \cap U)+r(T \cup U) \leq r(T)+r(U)$.

Proof. Necessity. Let r be the rank function of a matroid (S, \mathcal{I}). Choose $T, U \subseteq S$. Clearly (39.38)(i) holds. To see (ii), let I be an inclusionwise maximal set in \mathcal{I} with $I \subseteq T \cap U$ and let J be an inclusionwise maximal set in \mathcal{I} with $I \subseteq J \subseteq T \cup U$. Since (S, \mathcal{I}) is a matroid, we know that $r(T \cap U)=|I|$ and $r(T \cup U)=|J|$. Then

$$
\begin{align*}
& r(T)+r(U) \geq|J \cap T|+|J \cap U|=|J \cap(T \cap U)|+|J \cap(T \cup U)| \tag{39.39}\\
& \geq|I|+|J|=r(T \cap U)+r(T \cup U)
\end{align*}
$$

that is, we have (39.38)(ii).
Sufficiency. Let \mathcal{I} be the collection of subsets I of S with $r(I)=|I|$. We show that (S, \mathcal{I}) is a matroid, with rank function r.

Trivially, $\emptyset \in \mathcal{I}$. Moreover, if $I \in \mathcal{I}$ and $J \subseteq I$, then

$$
\begin{equation*}
r(J) \geq r(I)-r(I \backslash J) \geq|I|-|I \backslash J|=|J| \tag{39.40}
\end{equation*}
$$

So $J \in \mathcal{I}$.
In order to check (39.3), let $I, J \in \mathcal{I}$ with $|I \backslash J|=1$ and $|J \backslash I|=2$. Let $J \backslash I=\left\{z_{1}, z_{2}\right\}$. If $I+z_{1}, I+z_{2} \notin \mathcal{I}$, we have $r\left(I+z_{1}\right)=r\left(I+z_{2}\right)=|I|$. Then by (39.38)(ii),

$$
\begin{equation*}
r(J) \leq r\left(I+z_{1}+z_{2}\right) \leq r\left(I+z_{1}\right)+r\left(I+z_{2}\right)-r(I)=|I|<|J| \tag{39.41}
\end{equation*}
$$

contradicting the fact that $J \in \mathcal{I}$.
So (S, \mathcal{I}) is a matroid. Its rank function is r, since $r(U)=\max \{|I| \mid I \subseteq$ $U, I \in \mathcal{I}\}$ for each $U \subseteq S$. Here \geq follows from (39.38)(i), since if $I \subseteq U$ and $I \in \mathcal{I}$, then $r(U) \geq r(I)=|I|$. Equality can be shown by induction on $|U|$, the case $U=\emptyset$ being trivial. If $U \neq \emptyset$, choose $y \in U$. By induction, there is an $I \subseteq U-y$ with $I \in \mathcal{I}$ and $|I|=r(U-y)$. If $r(U)=r(U-y)$ we are done, so assume $r(U)>r(U-y)$. Then $I+y \in \mathcal{I}$, since $r(I+y) \geq$ $r(I)+r(U)-r(U-y) \geq|I|+1$. Moreover, $r(U) \leq r(U-y)+r(\{y\}) \leq|I|+1$. This proves equality for U.

Set functions satisfying condition (39.38)(ii) are called submodular, and will be studied in Chapter 44.

Whitney [1935] also showed that (39.38) is equivalent to:
(i) $r(\emptyset)=0$,
(ii) $r(U) \leq r(U+s) \leq r(U)+1$ for $U \subseteq S, s \in S \backslash U$,
(iii) for all $U \subseteq S, s, t \in S \backslash U$, if $r(U+s)=r(U+t)=r(U)$, then $r(U+s+t)=r(U)$.

The proof above in fact uses only these properties of r.
The following equivalent form of Theorem 39.8 will be useful.
Corollary 39.8a. Let S be a finite set and let \mathcal{I} be a nonempty collection of subsets of S, closed under taking subsets. For $U \subseteq S$, let $r(U)$ be the maximum size of a subset of U that belongs to \mathcal{I}. Then (S, \mathcal{I}) is a matroid if and only if r satisfies (39.38)(ii) for all $T, U \subseteq S$.

Proof. Necessity follows directly from Theorem 39.8. To see sufficiency, it is easy to see that r satisfies (39.38)(i). So by Theorem 39.8, r is the rank function of some matroid $M=(S, \mathcal{J})$. Now: $I \in \mathcal{J} \Longleftrightarrow r(I)=|I| \Longleftrightarrow$ $I \in \mathcal{I}$. Hence $\mathcal{I}=\mathcal{J}$, and so (S, \mathcal{I}) is a matroid.

Note that if we can test in polynomial time if a given set is independent, we can also test in polynomial time if a given set is a base, or a circuit, and we can determine the rank of a given set in polynomial time.

39.8. The span function and flats

With any matroid $M=(S, \mathcal{I})$ we can define the span function span_{M} : $\mathcal{P}(S) \rightarrow \mathcal{P}(S)$ as follows:

$$
\begin{equation*}
\operatorname{span}_{M}(T):=\left\{s \in S \mid r_{M}(T \cup\{s\})=r_{M}(T)\right\} \tag{39.43}
\end{equation*}
$$

for $T \subseteq S$. If the matroid M is clear from the context, we write $\operatorname{span}(T)$ for $\operatorname{span}_{M}(T)$. Note that $T \subseteq \operatorname{span}_{M}(T)$ and that

$$
\begin{equation*}
r_{M}\left(\operatorname{span}_{M}(T)\right)=r_{M}(T) \tag{39.44}
\end{equation*}
$$

This follows directly from the fact that if $r_{M}(Y)>r_{M}(T)$, then $r_{M}(T \cup\{s\})>$ $r_{M}(T)$ for some $s \in Y$.

Note also that

$$
\begin{equation*}
T \text { is spanning } \Longleftrightarrow \operatorname{span}_{M}(T)=S \tag{39.45}
\end{equation*}
$$

for any $T \subseteq S$. To see \Longrightarrow, let T be spanning. Then for each $s \in T: r_{M}(T+$ $s) \leq r_{M}(S)=r_{M}(T)$. To see \Longleftarrow, suppose $\operatorname{span}_{M}(T)=S$. Then $r_{M}(T)=$ $r_{M}\left(\operatorname{span}_{M}(T)\right)=r_{M}(S)$.

A flat in a matroid $M=(S, \mathcal{I})$ is a subset F of S with $\operatorname{span}_{M}(F)=F$. A matroid is determined by its collection of flats, as is shown by:
(39.46) a subset I of S is independent if and only if for each $y \in I$ there is a flat F with $I-y \subseteq F$ and $y \notin F$.
Indeed, if I is independent and $y \in I$, let $F:=\operatorname{span}_{M}(I-y)$. Then F is a flat containing $I-y$, but not y, since $r_{M}(F+y) \geq r_{M}(I)>r_{M}(I-y)=r_{M}(F)$. Conversely, if I is not independent, then $y \in \operatorname{span}_{M}(I-y)$ for some $y \in I$, and hence each flat containing $I-y$ also contains y.

39.8a. Characterizing matroids by span functions

It was observed by Mac Lane [1938] that the following characterizes span functions of matroids (sufficiency was shown by van der Waerden [1937]).

Theorem 39.9. Let S be a finite set. A function span: $\mathcal{P}(S) \rightarrow \mathcal{P}(S)$ is the span function of a matroid if and only if:
(i) if $T \subseteq S$, then $T \subseteq \operatorname{span}(T)$;
(ii) if $T, U \subseteq S$ and $U \subseteq \operatorname{span}(T)$, then $\operatorname{span}(U) \subseteq \operatorname{span}(T)$;
(iii) if $T \subseteq S, t \in S \backslash T$, and $s \in \operatorname{span}(T+t) \backslash \operatorname{span}(T)$, then $t \in$ $\operatorname{span}(T+s)$.

Proof. Necessity. Let span be the span function of a matroid $M=(S, \mathcal{I})$ with rank function r. Clearly, (39.47)(i) is satisfied. To see (39.47)(ii), let $U \subseteq \operatorname{span}(T)$ and $s \in \operatorname{span}(U)$. We show $s \in \operatorname{span}(T)$. We can assume $s \notin T$. Then, by the submodularity of r,

$$
\begin{align*}
& r(T \cup\{s\}) \leq r(T \cup U \cup\{s\}) \leq r(T \cup U)+r(U \cup\{s\})-r(U) \tag{39.48}\\
& =r(T \cup U)=r(T) .
\end{align*}
$$

(The last equality follows from (39.44).) This shows that $s \in \operatorname{span}(T)$.
To see (39.47)(iii), note that $s \in \operatorname{span}(T+t) \backslash \operatorname{span}(T)$ is equivalent to: $r(T+$ $t+s)=r(T+t)$ and $r(T+s)>r(T)$. Hence
(39.49) $\quad r(T+t+s)=r(T+t) \leq r(T)+1 \leq r(T+s)$,
that is, $t \in \operatorname{span}(T+s)$. This shows necessity of the conditions (39.47).
Sufficiency. Let a function span satisfy (39.47), and define

$$
\begin{equation*}
\mathcal{I}:=\{I \subseteq S \mid s \notin \operatorname{span}(I-s) \text { for each } s \in I\} . \tag{39.50}
\end{equation*}
$$

We first show the following:

$$
\begin{equation*}
\text { if } I \in \mathcal{I} \text {, then } \operatorname{span}(I)=I \cup\{t \mid I+t \notin \mathcal{I}\} \text {. } \tag{39.51}
\end{equation*}
$$

Indeed, if $t \in \operatorname{span}(I) \backslash I$, then $I+t \notin \mathcal{I}$, by definition of \mathcal{I}. Conversely, $I \subseteq \operatorname{span}(I)$ by (39.47)(i). Moreover, if $I+t \notin \mathcal{I}$, then by definition of $\mathcal{I}, s \in \operatorname{span}(I+t-s)$ for some $s \in I+t$. If $s=t$, then $t \in \operatorname{span}(I)$ and we are done. So assume $s \neq t$; that is, $s \in I$. As $I \in \mathcal{I}$, we know that $s \notin \operatorname{span}(I-s)$. So by (39.47)(iii) (for $T:=I-s$), $t \in \operatorname{span}(I)$, proving (39.51).

We now show that $M=(S, \mathcal{I})$ is a matroid. Trivially, $\emptyset \in \mathcal{I}$. To see that \mathcal{I} is closed under taking subsets, let $I \in \mathcal{I}$ and $J \subseteq I$. We show that $J \in \mathcal{I}$. Suppose to the contrary that $s \in \operatorname{span}(J-s)$ for some $s \in J$. By (39.47)(ii), $\operatorname{span}(J-s) \subseteq \operatorname{span}(I-s)$. Hence $s \in \operatorname{span}(I-s)$, contradicting the fact that $I \in \mathcal{I}$.

In order to check (39.3), let $I, J \in \mathcal{I}$ with $|I \backslash J|=1$ and $|J \backslash I|=2$. Let $I \backslash J=\{i\}$ and $J \backslash I=\left\{j_{1}, j_{2}\right\}$. Assume that $I+j_{1} \notin \mathcal{I}$. That is, $J+i-j_{2} \notin \mathcal{I}$, and so, by (39.51) applied to $J-j_{2}, i \in \operatorname{span}\left(J-j_{2}\right)$. Therefore, $I \subseteq \operatorname{span}\left(J-j_{2}\right)$, and so $\operatorname{span}(I) \subseteq \operatorname{span}\left(J-j_{2}\right)$. So $j_{2} \notin \operatorname{span}(I)$ (as $\left.J \in \mathcal{I}\right)$, and therefore, by (39.51) applied to $I, I+j_{2} \in \mathcal{I}$.

So M is a matroid. We finally show that span $=\operatorname{span}_{M}$. Choose $T \subseteq S$. To see that $\operatorname{span}(T)=\operatorname{span}_{M}(T)$, let I be a base of T (in M). Then (using (39.51)),

$$
\begin{equation*}
\operatorname{span}_{M}(T)=I \cup\{x \mid I+x \notin \mathcal{I}\}=\operatorname{span}(I) \subseteq \operatorname{span}(T) \tag{39.52}
\end{equation*}
$$

So we are done by showing $\operatorname{span}(T) \subseteq \operatorname{span}(I)$; that is, by (39.47)(ii), $T \subseteq \operatorname{span}(I)$. Choose $t \in T \backslash I$. By the maximality of I, we know $I+t \notin \mathcal{I}$, and hence, by (39.51), $t \in \operatorname{span}(I)$.

39.8b. Characterizing matroids by flats

Conditions characterizing collections of flats of a matroid are given in the following theorem (Bergmann [1929]):

Theorem 39.10. Let S be a set and let \mathcal{F} be a collection of subsets of S. Then \mathcal{F} is the collection of flats of a matroid if and only if:
(i) $S \in \mathcal{F}$;
(ii) if $F_{1}, F_{2} \in \mathcal{F}$, then $F_{1} \cap F_{2} \in \mathcal{F}$;
(iii) if $F \in \mathcal{F}$ and $t \in S \backslash F$, and F^{\prime} is the smallest flat containing $F+t$, then there is no flat $F^{\prime \prime}$ with $F \subset F^{\prime \prime} \subset F^{\prime}$.

Proof. Necessity. Let \mathcal{F} be the collection of flats of a matroid $M=(S, \mathcal{I})$. Condition (39.53)(i) is trivial, and condition (39.53)(ii) follows from $\operatorname{span}_{M}\left(F_{1} \cap F_{2}\right) \subseteq$ $\operatorname{span}_{M}\left(F_{1}\right) \cap \operatorname{span}_{M}\left(F_{2}\right)=F_{1} \cap F_{2}$. To see (39.53)(iii), suppose that such an $F^{\prime \prime}$ exists. Choose $s \in F^{\prime \prime} \backslash F$. So $s \notin \operatorname{span}_{M}(F)$. As $F^{\prime} \nsubseteq F^{\prime \prime}$, we have $t \notin \operatorname{span}_{M}(F+s)$. Therefore, by (39.47)(iii) for $T:=F, s \notin \operatorname{span}_{M}(F)=F^{\prime}$, a contradiction.

Sufficiency. Let \mathcal{F} satisfy (39.53). For $Y \subseteq S$, let $\operatorname{span}(Y)$ be the smallest set in \mathcal{F} containing Y. Since $F \in \mathcal{F} \Longleftrightarrow \operatorname{span}(F)=F$, it suffices to show that span satisfies the conditions (39.47). Here (39.47)(i) and (ii) are trivial. To see (39.47)(iii), let $T \subseteq S, t \in S \backslash T$, and $s \in \operatorname{span}(T+t) \backslash \operatorname{span}(T)$. Then $\operatorname{span}(T) \subset$ $\operatorname{span}(T+s) \subseteq \operatorname{span}(T+t)$. Hence, by (39.53)(iii), $\operatorname{span}(T+s)=\operatorname{span}(T+t)$, and hence $t \in \operatorname{span}(T+s)$.

39.8c. Characterizing matroids in terms of lattices

Bergmann [1929] and Birkhoff [1935a] characterized matroids in terms of lattices. A partially ordered set (L, \leq) is called a lattice if
(39.54) (i) for all $A, B \in L$ there is a unique element, called $A \wedge B$, satisfying $A \wedge B \leq A, B$ and $C \leq A \wedge B$ for all $C \leq A, B$;
(ii) for all $A, B \in L$ there is a unique element, called $A \vee B$, satisfying $A \vee B \geq A, B$ and $C \geq A \vee B$ for all $C \geq A, B$.
$A \wedge B$ and $A \vee B$ are called the meet and join respectively of A and B. Here we assume lattices to be finite. Then a lattice has a unique minimal element, denoted by 0 . The rank of an element A is the maximum number n of elements x_{1}, \ldots, x_{n} with $0<x_{1}<\cdots<x_{n}=A$. An element of rank 1 is called a point or atom.

Call a lattice a point lattice if each element is a join of points, and a matroid lattice (or a geometric lattice) if it is isomorphic to the lattice of flats of a matroid. Trivially, each matroid lattice is a point lattice. Moreover, a matroid without loops and parallel elements is completely determined by the lattice of flats.

In the following theorem, the equivalence of (i) and (ii), and the implication (ii) \Rightarrow (iv) are due (in a different terminology) to Bergmann [1929]; the equivalence of (iii) and (iv) was shown by Birkhoff [1933], and the implication (iii) \Rightarrow (i) was shown by Birkhoff [1935a].

In a partially ordered set (L, \leq) an element y is said to cover an element x if $x<y$ and there is no z with $x<z<y$.

Theorem 39.11. For any finite point lattice (L, \leq), with rank function r, the following are equivalent:
(i) L is a matroid lattice;
(ii) for each $a \in L$ and each point p, if $p \not \leq a$, then $a \vee p$ covers a;
(iii) for each $a, b \in L$, if a and b cover $a \wedge b$, then $a \vee b$ covers a and b;
(iv) $r(a)+r(b) \geq r(a \vee b)+r(a \wedge b)$ for all $a, b \in L$.

Proof. (i) \Rightarrow (iv): Let L be the lattice of flats of a matroid $M=(S, \mathcal{I})$, with rank function r_{M}. We can assume that M has no loops and no parallel elements. Then for any flat F we have $r(F)=r_{M}(F)$, since $r_{M}(F)$ is equal to the maximum number k of nonempty flats $F_{1} \subset \cdots \subset F_{k}$ with $F_{k}=F$. So (iv) follows from Theorem 39.8.
(iv) \Rightarrow (iii): We first show that (iv) implies that if b covers a, then $r(b)=r(a)+1$. As b is a join of points, and as b covers a, we know that $b=a \vee p$ for some point p with $p \not \leq a$. Hence $r(b)=r(a \vee p) \leq r(a)+r(p)-r(a \wedge p)=r(a)+r(p)-r(0)=r(a)+1$. As $r(b)>r(a)$, we have $r(b)=r(a)+1$.

To derive (iii) from (iv), let a and b cover $a \wedge b$. Then $r(a)=r(b)=r(a \wedge b)+1$. Hence $r(a \vee b) \leq r(a)+r(b)-r(a \wedge b)=r(a)+1$. Hence $a \vee b$ covers a. Similarly, $a \vee b$ covers b.
(iii) \Rightarrow (ii): We derive (ii) from (iii) by induction on $r(a)$. If $a=0$, the statement is trivial. If $a>0$, let a^{\prime} be an element covered by a. Then, by induction, $a^{\prime} \vee p$ covers a^{\prime}. So $a^{\prime}=a \wedge\left(a^{\prime} \vee p\right)$. Hence by (iii), $a \vee\left(a^{\prime} \vee p\right)=a \vee p$ covers a.
(ii) \Rightarrow (i): Let S be the set of points of L, and for $f \in L$ define $F_{f}:=\{s \in S \mid$ $s \leq f\}$. Let $\mathcal{F}:=\left\{F_{f} \mid f \in L\right\}$. Then for all $f_{1}, f_{2} \in L$ we have:

$$
\begin{equation*}
f_{1} \leq f_{2} \Longleftrightarrow F_{f_{1}} \subseteq F_{f_{2}} \tag{39.56}
\end{equation*}
$$

Here \Longrightarrow is trivial, while \Longleftarrow follows from the fact that for each $f \in L$ we have $f=\bigvee F_{f}$, as L is a point lattice.

By (39.56), (L, \leq) is isomorphic to (\mathcal{F}, \subseteq). Moreover, by (39.54)(i), $F_{f_{1} \wedge f_{2}}=$ $F_{f_{1}} \cap F_{f_{2}}$. So \mathcal{F} is closed under intersections, implying (39.53)(ii), while (39.53)(i) is trivial. Finally, (39.53)(iii) follows from (39.55)(ii).

Lattices satisfying (39.55)(iii) are called upper semimodular.

39.9. Further exchange properties

In this section we prove a number of exchange properties of bases, as a preparation to the forthcoming sections on matroid intersection algorithms.

An exchange property of bases, stronger than given in Theorem 39.6, is (Brualdi [1969c]):

Theorem 39.12. Let $M=(S, \mathcal{I})$ be a matroid. Let B_{1} and B_{2} be bases and let $x \in B_{1} \backslash B_{2}$. Then there exists a $y \in B_{2} \backslash B_{1}$ such that both $B_{1}-x+y$ and $B_{2}-y+x$ are bases.

Proof. Let C be the unique circuit in $B_{2}+x($ cf. $(39.35))$. Then $\left(B_{1} \cup C\right)-x$ is spanning, since $x \in \operatorname{span}_{M}(C-x) \subseteq \operatorname{span}_{M}\left(\left(B_{1} \cup C\right)-x\right)$, implying $\operatorname{span}\left(\left(B_{1} \cup C\right)-x\right)=\operatorname{span}\left(B_{1} \cup C\right)=S$.

Hence there is a base B_{3} with $B_{1}-x \subseteq B_{3} \subseteq\left(B_{1} \cup C\right)-x$. So $B_{3}=$ $B_{1}-x+y$ for some y in $C-x$. Therefore, $B_{2}-y+x$ is a base, as it contains no circuit (since C is the only circuit in $B_{2}+x$).

Let $M=(S, \mathcal{I})$ be a matroid. For any $I \in \mathcal{I}$ define the (bipartite) directed graph $D_{M}(I)=\left(S, A_{M}(I)\right)$, or briefly $(S, A(I))$, by:

$$
\begin{equation*}
A(I):=\{(y, z) \mid y \in I, z \in S \backslash I, I-y+z \in \mathcal{I}\} \tag{39.57}
\end{equation*}
$$

Repeated application of the exchange property described in Theorem 39.12 gives (Brualdi [1969c]):

Corollary 39.12a. Let $M=(S, \mathcal{I})$ be a matroid and let $I, J \in \mathcal{I}$ with $|I|=|J|$. Then $A(I)$ contains a perfect matching on $I \triangle J .{ }^{1}$
Proof. By truncating M, we can assume that I and J are bases of M. We prove the lemma by induction on $|I \backslash J|$. We can assume $|I \backslash J| \geq 1$. Choose $y \in I \backslash J$. By Theorem 39.12, $I-y+z \in \mathcal{I}$ and $J-z+y \in \mathcal{I}$ for some $z \in J \backslash I$. By induction, applied to I and $J^{\prime}:=J-z+y, A(I)$ has a perfect matching N on $I \triangle J^{\prime}$. Then $N \cup\{(y, z)\}$ is a perfect matching on $I \triangle J$.

Corollary 39.12a implies the following characterization of maximumweight bases:

Corollary 39.12b. Let $M=(S, \mathcal{I})$ be a matroid, let B be a base of M, and let $w: S \rightarrow \mathbb{R}$ be a weight function. Then B is a base of maximum weight $\Longleftrightarrow w\left(B^{\prime}\right) \leq w(B)$ for every base B^{\prime} with $\left|B^{\prime} \backslash B\right|=1$.

Proof. Necessity being trivial, we show sufficiency. Suppose to the contrary that there is a base B^{\prime} with $w\left(B^{\prime}\right)>w(B)$. Let N be a perfect matching in $A(B)$ covering $B \triangle B^{\prime}$. As $w\left(B^{\prime}\right)>w(B)$, there is an edge (y, z) in N with $w(z)>w(y)$, where $y \in B \backslash B^{\prime}$ and $z \in B^{\prime} \backslash B$. Hence $w(B-y+z)>w(B)$, contradicting the condition.

The following forms a counterpart to Corollary 39.12a (Krogdahl [1974, 1976,1977]):

Theorem 39.13. Let $M=(S, \mathcal{I})$ be a matroid and let $I \in \mathcal{I}$. Let $J \subseteq S$ be such that $|I|=|J|$ and such that $A(I)$ contains a unique perfect matching N on $I \triangle J$. Then J belongs to \mathcal{I}.

Proof. Since N is unique, we can order N as $\left(y_{1}, z_{1}\right), \ldots,\left(y_{t}, z_{t}\right)$ such that $\left(y_{i}, z_{j}\right) \notin A(I)$ if $1 \leq i<j \leq t$. Suppose that $J \notin \mathcal{I}$, and let C be a circuit contained in J. Choose the smallest i with $z_{i} \in C$. Then $\left(y_{i}, z\right) \notin A(I)$ for all $z \in C-z_{i}$ (since $z=z_{j}$ for some $j>i$). Therefore, $z \in \operatorname{span}\left(I-y_{i}\right)$ for all $z \in C-z_{i}$. So $C-z_{i} \subseteq \operatorname{span}\left(I-y_{i}\right)$, and therefore $z_{i} \in C \subseteq \operatorname{span}\left(C-z_{i}\right) \subseteq$ $\operatorname{span}\left(I-y_{i}\right)$, contradicting the fact that $I-y_{i}+z_{i}$ is independent.

This implies:
Corollary 39.13a. Let $M=(S, \mathcal{I})$ be a matroid and let $I \in \mathcal{I}$. Let $J \subseteq S$ be such that $|I|=|J|$ and $r_{M}(I \cup J)=|I|$, and such that $A(I)$ contains a unique perfect matching N on $I \triangle J$. Let $s \notin I \cup J$ with $I+s \in \mathcal{I}$. Then $J+s \in \mathcal{I}$.

Proof. Let t be a new element and let $M^{\prime}=\left(S \cup\{t\}, \mathcal{I}^{\prime}\right)$ be the matroid with $F \in \mathcal{I}^{\prime}$ if and only if $F \backslash\{t\} \in \mathcal{I}$. Then $N^{\prime}:=N \cup\{(t, s)\}$ forms a

[^0]unique perfect matching on $(I \triangle J) \cup\{s, t\}$ in $D_{M^{\prime}}(I \cup\{t\})$ (since there is no arc from t to $J \backslash I$, as $I+j \notin \mathcal{I}$ for all $j \in J \backslash I$, since $\left.r_{M}(I \cup J)=|I|\right)$. So by Theorem 39.13, $J \cup\{s\}$ is independent in M^{\prime}, and hence in M.

39.9a. Further properties of bases

Bases satisfy the following exchange property, stronger than that described in Theorem 39.12 (conjectured by G.-C. Rota, and proved by Brylawski [1973], Greene [1973], Woodall [1974a]):
(39.58) if B_{1} and B_{2} are bases and B_{1} is partitioned into X_{1} and Y_{1}, then B_{2} can be partitioned into X_{2} and Y_{2} such that $X_{1} \cup Y_{2}$ and $Y_{1} \cup X_{2}$ are bases.

This will be proved in Section 42.1a (using the matroid union theorem).
Other exchange properties of bases were given by Greene [1974a] and Kung [1978a]. Decomposing exchanges was studied by Gabow [1976b].

In Schrijver [1979c] it was shown that the exchange property described in Corollary 16.8 b for bipartite graphs and, more generally, in Theorem 9.12 for directed graphs, in fact characterizes systems that correspond to matroids.

To this end, let U and W be disjoint sets and let Λ be a collection of pairs (X, Y) with $X \subseteq U$ and $Y \subseteq W$. Call (U, W, Λ) a bimatroid (or linking system) if:
(i) $(\emptyset, \emptyset) \in \Lambda$;
(ii) if $(X, Y) \in \Lambda$ and $x \in X$, then $(X-x, Y-y) \in \Lambda$ for some $y \in Y$;
(iii) if $(X, Y) \in \Lambda$ and $y \in Y$, then $(X-x, Y-y) \in \Lambda$ for some $x \in X$;
(iv) if $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right) \in \Lambda$, then there is an $(X, Y) \in \Lambda$ with $X_{1} \subseteq$ $X \subseteq X_{1} \cup X_{2}$ and $Y_{2} \subseteq Y \subseteq Y_{1} \cup Y_{2}$.
Note that (ii) and (iii) imply that $|X|=|Y|$ for each $(X, Y) \in \Lambda$.
To describe the relation with matroids, define:

$$
\begin{equation*}
\mathcal{B}:=\{(U \backslash X) \cup Y \mid(X, Y) \in \Lambda\} . \tag{39.60}
\end{equation*}
$$

So \mathcal{B} determines Λ. Then (Schrijver [1979c]):
(39.61) (U, W, Λ) is a bimatroid if and only if \mathcal{B} is the collection of bases of a matroid on $U \cup W$, with $U \in \mathcal{B}$.
So bimatroids are in one-to-one correspondence with pairs (M, B) of a matroid M and a base B of M, and the conditions (39.59) yield a characterization of matroids. An equivalent axiom system characterizing matroids was given by Kung [1978b].
(Bapat [1994] gave an extension of Kőnig's matching theorem to bimatroids.)

39.10. Further results and notes

39.10a. Further notes

Dilworth [1944] showed that if $r: \mathcal{P}(S) \rightarrow \mathbb{Z}$ satisfies (39.38) and $r(U) \geq 0$ if $U \neq \emptyset$, then

$$
\begin{equation*}
\mathcal{I}:=\{I \subseteq S \mid \forall \text { nonempty } U \subseteq I:|U| \leq r(U)\} \tag{39.62}
\end{equation*}
$$

is the collection of independent sets of a matroid M. Its rank function satisfies:

$$
\begin{equation*}
r_{M}(U)=\min \left(r\left(U_{1}\right)+\cdots+r\left(U_{t}\right)\right) \tag{39.63}
\end{equation*}
$$

where the minimum ranges over partitions of U into nonempty subsets U_{1}, \ldots, U_{t} $(t \geq 0)$. If $G=(V, E)$ is a graph, and we define $r(F):=|\bigcup F|-1$ for $F \subseteq E$, we obtain the cycle matroid of G (this also was shown by Dilworth [1944]). ${ }^{2}$

Conforti and Laurent [1988] showed the following sharpening of Corollary 39.8a. Let \mathcal{C} be a collection of subsets of a set S and let $f: \mathcal{C} \rightarrow \mathbb{Z}_{+}$. Let \mathcal{I} be the collection of subsets T of S with $|T \cap U| \leq f(U)$ for each $U \in \mathcal{C}$. For $T \subseteq S$, let $r(T)$ be the maximum size of a subset of T that belongs to \mathcal{I}. Then (S, \mathcal{I}) is a matroid if and only if r satisfies the submodular inequality (39.38)(ii) for all $Y, Z \in \mathcal{C}$ with $Y \cap Z \neq \emptyset$. In fact, in the right-hand side of this inequality, r may be replaced by f.

Jensen and Korte [1982] showed that there is no polynomial-time algorithm to find the minimum size of a circuit of a matroid, if the matroid is given by an oracle for testing independence. For binary matroids (represented by binary vectors), the problem of finding a minimum-size circuit was shown by Vardy [1997] to be NPcomplete (solving a problem of Berlekamp, McEliece, and van Tilborg [1978], who showed the NP-completeness of finding the minimum size of a circuit containing a given element of the matroid, and of finding a circuit of given size). If we know that a matroid is binary, a vector representation can be derived by a polynomially bounded number of calls from an independence testing oracle.

For further studies of the complexity of matroid properties, see Hausmann and Korte [1978], Robinson and Welsh [1980], and Jensen and Korte [1982].

Extensions of matroid theory to infinite structures were considered by Rado [1949a], Bleicher and Preston [1961], Johnson [1961], and Dlab [1962,1965].

Standard references on matroid theory are Welsh [1976] and Oxley [1992]. The book by Truemper [1992] focuses on decomposition of matroids. Earlier texts were given by Tutte [1965a,1971]. Elementary introductions to matroids were given by Wilson [1972b,1973], and a survey with applications to electrical networks and statics by Recski [1989]. Bixby [1982], Faigle [1987], Lee and Ryan [1992], and Bixby and Cunningham [1995] survey matroid optimization and algorithms. White [1986, 1987,1992] offers a collection of surveys on matroids, and Kung [1986] is a source book on matroids. Stern [1999] focuses on semimodular lattices. Books discussing matroid optimization include Lawler [1976b], Papadimitriou and Steiglitz [1982], Gondran and Minoux [1984], Nemhauser and Wolsey [1988], Parker and Rardin [1988], Cook, Cunningham, Pulleyblank, and Schrijver [1998], and Korte and Vygen [2000].

39.10b. Historical notes on matroids

The idea of a matroid, that is, of abstract dependence, seems to have been developed historically along a number of independent lines during the period 1900-1935. Independently, different axiom systems were given, each of which is equivalent to

[^1]that of a matroid. It indicates the naturalness of the concept. Only at the end of the 1930s a synthesis of the different streams was obtained.

There is a line, starting with the Dualgruppen (dual groups $=$ lattices) of Dedekind [1897,1900], introduced in order to study modules (= additive subgroups) of numbers. They give rise to lattices satisfying what Dedekind called the Modulgesetz (module law). Later, independently, Birkhoff [1933] studied such lattices, calling them initially B-lattices, and later (after he had learned about Dedekind's earlier work), modular lattices. Both Dedekind and Birkhoff considered, in their studies of modular lattices, an auxiliary property that characterizes so-called semimodular lattices. If the lattice is a point lattice (that is, each element of the lattice is a join of atoms (points)), then such semimodular lattices are exactly the lattices of flats of a matroid. This connection was pointed out by Birkhoff [1935a] directly after Whitney's introduction of matroids.

A second line concerns exchange properties of bases. It starts with the new edition of the Ausdehnungslehre of Grassmann [1862], where he showed that each linearly independent set can be extended to a bases, using elements from a given base. Next Steinitz [1910], in his fundamental paper Algebraische Theorie der Körper (Algebraic Theory of Fields), showed that algebraic dependence has a number of basic properties, which makes it into a matroid (like the equicardinality of bases), and he derived some other properties from these basic properties (thus deriving essentially properties of matroids). In a subsequent paper, Steinitz [1913] gave, as an auxiliary result, the property that is now called Steinitz' exchange property for linearly independent sets of vectors. Steinitz did not mention the similarities to his earlier results on algebraic dependence. These similarities were observed by Haupt [1929a] and van der Waerden [1930] in their books on 'modern' algebra. They formulated properties shared by linear and algebraic dependence that are equivalent to matroids. In the second edition of his book, van der Waerden [1937] condensed these properties to three properties, and gave a unified treatment of linear and algebraic dependence. Mac Lane [1938] observed the relation of this work to the work on lattices and matroids.

A third line pursued the axiomatization of geometry, which clearly can be rooted back to as early as Euclid. At the beginning of the 20 th century this was considered by, among others, Hilbert and Veblen. Bergmann [1929] aimed at giving a lattice-theoretical basis for affine geometry, and from lattice-theoretical conditions equivalent to matroids (cf. Theorem 39.11 above) he derived a number of properties, like the equicardinality of bases and the submodularity of the rank function. In their book Grundlagen der Mathematik I (Foundations of Mathematics I), Hilbert and Bernays [1934] gave axioms for the collinearity of triples of points, amounting to the fact that any two distinct points belong to exactly one line. A direct extension of these axioms to general dimensions gives the axioms described by Nakasawa [1935], that are again equivalent to the matroid axioms. He introduced the concept of a $\mathcal{B}_{1^{-}}$ space, equivalent to a matroid. In fact, the only reference in Nakasawa [1935] is to the book Grundlagen der Elementargeometrie (Foundations of Elementary Geometry) of Thomsen [1933], in which a different axiom system, the Zyklenkalkül (cycle calculus), was given (not equivalent to matroids). Nakasawa only gave subsets of linear spaces as an example. In a sequel to his paper, Nakasawa [1936b] observed that his axioms are equivalent to those of Whitney. The same axiom system as Nakasawa's, added with a continuity axiom, was given by Pauc [1937]. In Haupt,

Nöbeling, and Pauc [1940] the concept of an Abhängigkeitsraum (dependence space) based on these axioms was investigated.

The fourth 'line' was that of Whitney [1935], who introduced the notion of a matroid as a concept by itself. He was motivated by generalizing certain separability and duality phenomena in graphs, studied by him before. This led him to show that each matroid has a dual. While Whitney showed the equivalence of several axiom systems for matroids, he did not consider an axiom system based on a closure operation or on flats. Whitney gave linear dependence as an example, but not algebraic dependence. In a paper in the same year and journal, Birkhoff [1935a] showed the relation of Whitney's work with lattices.

We now discuss some historical papers more extensively, in a more or less chronological order.

1894-1900: Dedekind: lattices

In the supplements to the fourth edition of Vorlesungen über Zahlentheorie (Lectures on Number Theory) by Lejeune Dirichlet [1894], R. Dedekind introduced the notion of a module as any nonempty set of (real or complex) numbers closed under addition and subtraction, and he studied the lattice of all modules ordered by inclusion. He called A divisible by B if $A \subseteq B$. Trivially, the lattice operations are given by $A \wedge B=A \cap B$ and $A \vee B=A+B$. In fact, Dedekind denoted $A \cap B$ by $A-B$.

He gave the following 'charakteristischen Satz' (characteristic theorem):
Ist m theilbar durch d, und a ein beliebiger Modul, so ist

$$
m+(a-d)=(m+a)-d .^{3}
$$

In modern notation, for all a, b, c :

$$
\begin{equation*}
\text { if } a \leq c \text {, then } a \vee(b \wedge c)=(a \vee b) \wedge c \text {, } \tag{39.64}
\end{equation*}
$$

which is now known as the modular law, and lattices obeying it are called modular lattices.

Next, Dedekind [1897] introduced the notion of a lattice under the name Dualgruppe (dual group), motivated by similarities observed by him between operations on modules and those for logical statements as given in the book Algebra der Logik (Algebra of Logic) by Schröder [1890]. Dedekind mentioned, as examples, subsets of a set, modules, ideals in a finite field, subgroups of a group, and all fields, and he introduced the name module law for property (39.64):
ich will es daher das Modulgesetz nennen, und jede Dualgruppe, in welcher es herrscht, mag eine Dualgruppe vom Modultypus heißen. ${ }^{4}$
${ }^{3}$ If m is divisible by d, and a is an arbitrary module, then

$$
m+(a-d)=(m+a)-d
$$

[^2]Dedekind [1900] continued the study of modular lattices, and showed that each modular lattice allows a rank function $r: M \rightarrow \mathbb{Z}_{+}$with the property that for all a, b :
(i) $r(0)=0$;
(ii) $r(b)=r(a)+1$ if b covers a;
(iii) $r(a \wedge b)+r(a \vee b)=r(a)+r(b)$.

In fact, this characterizes modular lattices.
In proving (39.65), Dedekind showed that each modular lattice satisfies
(39.66) if a and b cover c, and $a \neq b$, then $a \vee b$ covers a and b,
which is the property characterizing upper semimodular lattices, a structure equivalent to matroids.

1862-1913: Grassmann, Steinitz: linear and algebraic dependence
The basic exchange property of linear independence was formulated by Grassmann [1862], in his book Die Ausdehnungslehre, as follows (in his terminology, vectors are quantities):
20. Wenn m Grössen $a_{1}, \ldots a_{m}$, die in keiner Zahlbeziehung zu einander stehen, aus n Grössen $b_{1}, \ldots b_{n}$ numerisch ableitbar sind, so kann man stets $z u$ den m Grössen $a_{1}, \ldots a_{m}$ noch $(n-m)$ Grössen $a_{m+1}, \ldots a_{n}$ von der Art hinzufügen, dass sich die Grössen $b_{1}, \ldots b_{n}$ auch aus $a_{1}, \ldots a_{n}$ numerisch ableiten lassen, und also das Gebiet der Grössen $a_{1}, \ldots a_{n}$ identisch ist dem Gebiete der Grössen $b_{1}, \ldots b_{n}$; auch kann man jene $(n-m)$ Grössen aus den Grössen $b_{1}, \ldots b_{n}$ selbst entnehmen. ${ }^{5}$

This property was also given by Steinitz [1913] (see below), but before that, Steinitz proved it for algebraic independence. In his fundamental paper Algebraische Theorie der Körper (Algebraic Theory of Fields), Steinitz [1910] studied, in § 22, algebraic dependence in field extensions. The statements proved are as follows, where L is a field extension of field K. Throughout, a is algebraically dependent on S if a is algebraic with respect to the field extension $K(S)$; in other words, if there is a nonzero polynomial $p(x) \in K(S)[x]$ with $p(a)=0$.

Calling a set a system, he first observed:

1. Hängt das Element a vom System S algebraisch ab, so gibt es ein endliches Teilsystem S^{\prime} von S, von welchem a algebraisch abhängt. ${ }^{6}$
and next he showed:
2. Hängt S_{3} von S_{2}, S_{2} von S_{1} algebraisch ab, so ist S_{3} algebraisch abhängig von $S_{1} .^{7}$
[^3]He called two sets S_{1} and S_{2} equivalent if S_{1} depends algebraically on S_{2}, and conversely. A set is reducible if it has a proper subset equivalent to it. He showed:
3. Jedes Teilsystem eines irreduziblen Systems ist irreduzibel.
4. Jedes reduzible System enthält ein endliches reduzibles Teilsystem. ${ }^{8}$
and (after statement 5, saying that any two field extensions by equicardinal irreducible systems are isomorphic):

```
6. Wird ein irreduzibles System \(S\) durch Hinzufügung eines Elementes a reduzibel, so ist a von \(S\) algebraisch abhängig. \({ }^{9}\)
```

From these properties, Steinitz derived:
7. Ist S ein (in bezug auf K) irreduzibles System, das Element a in bezug auf K transzendent, aber von S algebraisch abhängig, so enthält S ein bestimmtes endliches Teilsystem T von folgender Beschaffenheit: a ist von T algebraisch abhängig; jedes Teilsystem von S, von welchem a algebraisch abhängt, enthält das System T; wird irgendein Element aus T durch a ersetzt, so geht S in ein äquivalentes irreduzibles System über; keinem der übrigen Elemente von S kommt diese Eigenschaft zu. ${ }^{10}$

Steinitz proved this using only the properties given above (together with the fact that any $s \in S$ is algebraically dependent on S). Moreover, he derived from 7, (what is now called) Steinitz' exchange property for algebraic dependence:
8. Es seien U und B endliche irreduzible Systeme von m bzw. n Elementen; es sei $n \leq m$ und B algebraisch abhängig von U. Dann sind im Falle $m=n$ die Systeme U und B äquivalent, im Falle $n<m$ aber ist U einem irreduziblen System äquivalent, welches aus B und $m-n$ Elementen aus U besteht. ${ }^{11}$

This in particular implies that any two equivalent irreducible systems have the same size, and that the properties are equivalent to that determining a matroid.

In a subsequent paper, Steinitz [1913] proved a number of auxiliary statements on linear equations. Among other things, he showed (in his terminology, vectors are numbers, and a vector space is a module):

> Besitzt der Modul M eine Basis von p Zahlen, und enthält er r linear unabhängige Zahlen $\beta_{1}, \ldots, \beta_{r}$, so besitzt er auch eine Basis von p Zahlen, unter denen die Zahlen $\beta_{1}, \ldots, \beta_{r}$ sämtlich vorkommen. ${ }^{12}$

[^4]Steinitz' proof of this in fact gives a stronger result, known as Steinitz' exchange property: the new base is obtained by extending $\beta_{1}, \ldots, \beta_{r}$ with vectors from the given base. So Steinitz came to the same result as Grassmann [1862] quoted above. In his paper, Steinitz [1913] did not make a link with similar earlier results in Steinitz [1910] on algebraic dependence.

1929: Bergmann

Inspired by Menger [1928a], who aimed at giving an axiomatic foundation for projective geometry on a lattice-theoretical basis, Bergmann [1929] gave an axiomatic foundation of affine geometry, again on the basis of lattices. Bergmann's article contains a number of proofs that in fact concern matroids, while he assumed, but not used, a complementation axiom (since he aimed at characterizing full affine spaces, not subsets of it): for each pair of elements $A \leq B$ there exist C_{1} and C_{2} with $A \vee C_{1}=B, A \wedge C_{1}=0, B \wedge C_{2}=A$, and $B \vee C_{2}=1$. This obviously implies (in the finite case) that
(39.67) each element of the lattice is a join of points.
(A point is a minimal nonzero element.) It is property (39.67) that Bergmann uses in a number of subsequent arguments (and not the complementation axiom). His further axiom is:
(39.68) for any element A and any point P of the lattice, there is no element B with $A<B<A \vee P$.
He called an ordered sequence (P_{1}, \ldots, P_{n}) of points a chain (Kette) (of an element A), if $P_{i} \not \leq P_{1} \vee \cdots \vee P_{i-1}$ for $i=1, \ldots, n$ (and $A=P_{1} \vee \cdots \vee P_{n}$). He derived from (39.67) and (39.68) that being a chain is independent of the order of the elements in the chain, and that any two chains of an element A have the same length:

Satz: Alle Ketten eines Elementes A haben dieselbe Gliederzahl. ${ }^{13}$
He remarked that under condition (39.67), this in turn implies (39.68).
Denoting the length of any chain of A by $|A|$, Bergmann showed that it is equal to the rank of A in the lattice, and he derived the submodular inequality:

$$
|A|+|B| \geq|A+B|+|A \cdot B|
$$

(Bergmann denoted \vee and \wedge by + and \cdot.) Thus he proved the submodularity of the rank function of a matroid. These results were also given by Alt [1936] in Menger's mathematischen Kolloquium in Vienna on 1 March 1935 (cf. Menger [1936a,1936b]).

1929-1937: Haupt, van der Waerden

Inspired by the work of Steinitz, in the books Einführung in die Algebra (Introduction to Algebra) by Haupt [1929a,1929b] and Moderne Algebra (Modern Algebra) by van der Waerden [1930], the analogies between proof methods for linear and algebraic dependence were observed.

Haupt mentioned in his preface (after saying that his book will contain the modern developments of algebra):

[^5]Demgemäß ist das vorliegende Buch durchweg beeinflußt von der bahnbrechenden ,,Algebraischen Theorie der Körper " von Herrn E. Steinitz, was hier ein für allemal hervorgehoben sei. Ferner stützt sich die Behandlung der linearen Gleichungen (vgl. 9,1 bis 9,4), einer Anregung von Frl. E. Noether folgend, auf die von Herrn E. Steinitz gegebene Darstellung (vgl. das Zitat in 9,0). ${ }^{14}$
(The quotation in Haupt's ' 9,0 ' is to Steinitz [1910,1913].)
A number of theorems on algebraic dependence were proved in Chapter 23 of Haupt [1929b] by referring to the proofs of the corresponding results on linear dependence in Chapter 9 of Haupt [1929a]. In the introduction of his Chapter 9, Haupt wrote:

Die Behandlung der linearen Gleichungen ist (soweit es geht) so angelegt, daß sich ein Teil der dabei gewonnenen Sätze auf Systeme von algebraisch abhängigen Elementen überträgt, was später (23,6) dargelegt wird. ${ }^{15}$

In the first edition of his book, van der Waerden [1930] listed the properties of algebraic dependence:

Die Relation der algebraischen Abhängigkeit hat demnach die folgenden Eigenschaften:

1. a ist abhängig von sich selbst, d.h. von der Menge $\{a\}$.
2. Ist a abhängig von M, so hängt es auch von jeder Obermenge von $M \mathrm{ab}$.
3. Ist a abhängig von M, so ist a schon von einer endlichen Untermenge $\left\{m_{1}, \ldots, m_{n}\right\}$ von M (die auch leer sein kann) abhängig.
4. Wählt man diese Untermenge minimal, so ist jedes m_{i} von a und den übrigen m_{j} abhängig.
Weiter gilt:
5. Ist a abhängig von M und jedes Element von M abhängig von N, so ist a abhängig von $N .{ }^{16}$

Following Steinitz, van der Waerden called two sets equivalent if each element of the one set depends algebraically on the other set, and vice versa, while a set is irreducible if no element of it depends algebraically on the remaining.

Using only the properties 1-5, van der Waerden derived that each set contains an irreducible set equivalent to it, and that if $M \subseteq N$, then each irreducible subset of M equivalent to M can be extended to an irreducible subset of N equivalent to N - in other words, inclusionwise minimal subsets of M equivalent to M are

[^6]independent, and inclusionwise maximal independent subsets of M are equivalent to M.

Van der Waerden [1930] also showed that two equivalent irreducible systems have the same size, but in the proof he uses polynomials. This is not necessary, since the properties 1-5 determine a matroid.

Van der Waerden noticed the analogy with linear dependence, treated in his § 28, where he uses specific facts on linear equations:

Tatsächlich gelten für die dort betrachtete lineare Abhängigkeit dieselben Regeln 1 bis 5, die für die algebraische Abhängigkeit in § 61 aufgestellt wurden; man kann also alle Beweise wörtlich übertragen. ${ }^{17}$
In the second edition of his book, van der Waerden [1937] gave a unified treatment of linear and algebraic dependence, slightly different from the first edition. As for linear dependence he stated in § 33:

Drei Grundsätze genügen. Der erste ist ganz selbstverständlich.
Grundsatz 1. Jedes $u_{i}(i=1, \ldots, n)$ ist von u_{1}, \ldots, u_{n} linear abhängig.
Grundsatz 2. Ist v linear abhängig von u_{1}, \ldots, u_{n}, aber nicht von u_{1}, \ldots, u_{n-1},
so ist u_{n} linear abhängig von $u_{1}, \ldots, u_{n-1}, v$.
[...]
Grundsatz 3. Ist w linear abhängig von v_{1}, \ldots, v_{s} und ist jedes $v_{j}(j=1, \ldots, s)$
linear abhängig von u_{1}, \ldots, u_{n}, so ist w linear abhängig von $u_{1}, \ldots, u_{n} .{ }^{18}$
The same axioms are given in § 64 of van der Waerden [1937], with 'linear' replaced by 'algebraisch'.

Next, van der Waerden called elements u_{1}, \ldots, u_{n} (linearly or algebraically) independent if none of them depend on the rest of them. Among the consequences of these principles, he mentioned that if u_{1}, \ldots, u_{n-1} are independent but $u_{1}, \ldots, u_{n-1}, u_{n}$ are not, then u_{n} is dependent on u_{1}, \ldots, u_{n-1}, and that each finite system of elements u_{1}, \ldots, u_{n} contains a (possibly empty) independent subsystem on which each u_{i} is dependent. He called two systems u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{s} equivalent if each v_{k} depends on u_{1}, \ldots, u_{n} and each u_{i} depends on v_{1}, \ldots, v_{s}, and he now derived from the three principles that two equivalent independent systems have the same size.

Mac Lane [1938] observed that the axioms introduced by Whitney [1935] and those by van der Waerden [1937] determine equivalent structures.

1934: Hilbert, Bernays: collinearity axioms

Axiom systems for points and lines in a plane were given by Hilbert [1899] in his book Grundlagen der Geometrie (Foundations of Geometry), and by Veblen [1904].

[^7]Basis is the axiom that any two distinct points are in exactly one line. Note that this axiom determines precisely all matroids of rank at most 3 with no parallel elements (by taking the lines as maximal flats).

One of the axioms of Veblen is:
Axiom VI. If points C and $D(C \neq D)$ lie on the line $A B$, then A lies on the line $C D$.

This axiom corresponds to axiom 3) in the book Grundlagen der Mathematik (Foundations of Mathematics) of Hilbert and Bernays [1934], who aim to make an axiom system based on points only:

Dabei empfiehlt es sich für unseren Zweck, von dem Hilbertschen Axiomensystem darin abzuweichen, daß wir nicht die Punkte und die Geraden als zwei Systeme von Dingen zugrunde legen, sondern nur die Punkte als Individuen nehmen. ${ }^{19}$

The axiom system of Hilbert and Bernays is in terms of a relation $G r$ to describe collinearity of triples of points (where (x) stands for $\forall x,(E x)$ for $\exists x$, and \bar{P} for the negation of P):

> I. Axiome der Verknüpfung.

1) $(x)(y) G r(x, x, y)$
,, x, x, y liegen stets auf einer Geraden."
2) $(x)(y)(z)(G r(x, y, z) \rightarrow G r(y, x, z) \& G r(x, z, y))$.
,,Wenn x, y, z auf einer Geraden liegen, so liegen stets auch y, x, z sowie auch x, z, y auf einer Geraden. "
3) $(x)(y)(z)(u)(G r(x, y, z) \& G r(x, y, u) \& x \neq y \rightarrow G r(x, z, u))$.
,,Wenn x, y, verschiedene Punkte sind und wenn x, y, z sowie x, y, u auf einer
Geraden liegen, so liegen stets auch x, z, u auf einer Geraden."
4) $(E x)(E y)(E z) \overline{G r(x, y, z)}$.
,,Es gibt Punkte x, y, z, die nicht auf einer Geraden liegen. "20
The axioms 1) and 2) in fact tell that the relation $G r$ is determined by unordered triples of distinct points. The exchange axiom 3) is a special case of the matroid axiom for circuits in a matroid.

Hilbert and Bernays extended the system by axioms for a betweenness relation $Z w$ for ordered triples of points, and a parallelism relation Par for ordered quadruples of points.

```
19 At that it is advisable for our purpose to deviate from Hilbert's axiom system in that
    we do not lay the points and the lines as two systems of things as base, but take only
    the points as individuals.
20
    I. Axioms of connection.
    1) \((x)(y) G r(x, x, y)\)
    ' \(x, x, y\) always lie on a line.'
    2) \((x)(y)(z)(G r(x, y, z) \rightarrow G r(y, x, z) \& G r(x, z, y))\).
    'If \(x, y, z\) lie on a line, then also \(y, x, z\) as well as \(x, z, y\) always lie on a line.'
    3) \((x)(y)(z)(u)(G r(x, y, z) \& G r(x, y, u) \& x \neq y \rightarrow G r(x, z, u))\).
    'If \(x, y\), are different points and if \(x, y, z\) as well as \(x, y, u\) lie on a line, then also \(x, z, u\)
    always lie on a line.'
    4) \((E x)(E y)(E z) \overline{G r(x, y, z)}\).
    'There are points \(x, y, z\), that do not lie on a line.'
```


1933-1935: Birkhoff: Lattices

In his paper 'On the combination of subalgebras', Birkhoff [1933] ('Received 15 May 1933') wrote:

The purpose of this paper is to provide a point of vantage from which to attack combinatorial problems in what may be termed modern, synthetic, or abstract algebra. In this spirit, a research has been made into the consequences and applications of seven or eight axioms, only one [V] of which itself is new.

The axioms are those for a lattice, added with axiom V, that amounts to (39.64) above. Any lattice satisfying this condition is called by Birkhoff in this paper a ' B lattice'. In an addendum, Birkhoff [1934b] mentioned that O. Ore had informed him that part of his results had been obtained before by Dedekind [1900]. Therefore, Birkhoff [1935b] renamed it to modular lattice.

Birkhoff [1933] mentioned, as examples, the classes of normal subgroups and of characteristic subgroups of a group. Other examples mentioned are the ideals of a ring, and the linear subspaces of Euclidean space. (Both examples actually give sublattices of the lattice of all normal subgroups of the corresponding groups.)

Like Dedekind, Birkhoff [1933] showed that (39.64) implies (39.66). Lattices satisfying (39.66) are called (upper) semimodular. Birkhoff showed that any upper semimodular lattice has a rank function satisfying (39.65)(i) and (ii) and satisfying the submodular law:

$$
\begin{equation*}
r(a \cap b)+r(a \cup b) \leq r(a)+r(b) \tag{39.69}
\end{equation*}
$$

This characterizes upper semimodular lattices.
Birkhoff noticed that this implies that the modular lattices are exactly those lattices satisfying both (39.66) and its symmetric form:
(39.70) if c covers a and b and $a \neq b$, then a and b cover $a \wedge b$.

Birkhoff [1935c] showed that the partition lattice is upper semimodular, that is, satisfies (39.66), and hence has a rank function satisfying the submodular inequality 21. Thus the complete graph, and hence any graph, gives a geometric lattice (and hence a matroid - however, Whitney's work seems not to have been known yet to Birkhoff at the time of writing this paper).

In a number of other papers, Birkhoff [1934a,1934c,1935b] made a further study of modular lattices, and gave relations to projective geometries (in which the collection of all flats gives a modular lattice). Klein-Barmen [1937] further investigated semimodular lattices (called by him Birkhoffsche Verbände (Birkhoff lattices)), of which he found several lattice-theoretical characterizations.

1935: Whitney: Matroids

Whitney [1935] (presented to the American Mathematical Society, September 1934) introduces the notion of matroid as follows:

[^8]Let $C_{1}, C_{2}, \cdots, C_{n}$ be the columns of a matrix M. Any subset of these columns is either linearly independent or linearly dependent; the subsets thus fall into two classes. These classes are not arbitrary; for instance, the two following theorems must hold:
(a) Any subset of an independent set is independent.
(b) If N_{p} and N_{p+1} are independent sets of p and $p+1$ columns respec-
tively, then N_{p} together with some column of N_{p+1} forms an independent set of $p+1$ columns.
There are other theorems not deducible from this; for in $\S 16$ we give an example of a system satisfying these two theorems but not representing any matrix. Further theorems seem, however, to be quite difficult to find. Let us call a system obeying (a) and (b) a "matroid." The present paper is devoted to a study of the elementary properties of matroids. The fundamental question of completely characterizing systems which represent matrices is left unsolved. In place of the columns of a matrix we may equally well consider points or vectors in a Euclidean space, or polynomials, etc.

In the paper, Whitney observed that forests in a graph form the independent sets of a matroid, for which reason he carried over various terms from graphs to matroids.

Whitney described several equivalent axiom systems for the notion of matroid. First, he showed that the rank function is characterized by (39.42), and he derived that it is submodular. Next, he showed that the collection of bases is characterized by (39.33)(ii), and the collection of circuits by (39.34)(iii). Moreover, he showed that complementing all bases gives again a matroid, the dual matroid, and that the dual of a linear matroid is again a linear matroid. In the paper, he also studied separability and representability of matroids. The example given in Whitney's § 16 (mentioned in the above quotation), is in fact the well-known Fano matroid - he apparently did not consider matrices over GF(2). However, in an appendix of the paper, he characterized the matroids representable by a matrix 'of integers mod 2': a matroid is representable over $\operatorname{GF}(2)$ if and only if any sum (mod 2) of circuits can be partitioned into circuits.

In a subsequent paper 'Abstract linear independence and lattices', Birkhoff [1935a] pointed out the relations of Whitney's work with Birkhoff's earlier work on semimodular lattices. He stated:

In a preceding paper, Hassler Whitney has shown that it is difficult to distinguish theoretically between the properties of linear dependence of ordinary vectors, and those of elements of a considerably wider class of systems, which he has called "matroids."
Now it is obviously impossible to incorporate all of the heterogeneous abstract systems which are constantly being invented, into a body of systematic theory, until they have been classified into two or three main species. The purpose of this note is to correlate matroids with abstract systems of a very common type, which I have called "lattices."

Birkhoff showed that a lattice is isomorphic to the lattice of flats of a matroid if and only if the lattice is semimodular, that is, satisfies (39.66), and each element is a join of atoms.

In the paper 'Some interpretations of abstract linear dependence in terms of projective geometry', MacLane [1936] gave a geometric interpretation of matroids. He introduced the notion of a 'schematic n-dimensional figure', consisting of ' k dimensional planes' for $k=1,2, \ldots$. Each such plane is a subset of an (abstract) set of 'points', with the following axioms (for any appropriate k):
(i) any k points belonging to no $k-1$-dimensional plane, belong to a unique k-dimensional plane; moreover, this plane is contained in any plane containing these k points;
(ii) every k-dimensional plane contains k points that belong to no $k-1$ dimensional plane.

MacLane mentioned that there is a 1-1 correspondence between schematic figures and the collections of flats of matroids. As a consequence he mentioned that a schematic n-dimensional figure is completely determined by its collection of $n-1$ dimensional planes (as a matroid is determined by its hyperplanes $=$ complements of cocircuits).

1935: Nakasawa: Abhängigkeitsräume

In the paper Zur Axiomatik der linearen Abhängigkeit. I (On the axiomatics of linear dependence. I) in Science Reports of the Tokyo Bunrika Daigaku (Tokyo University of Literature and Science), Nakasawa [1935] introduced an axiom system for dependence, that he proved to be equivalent to matroids (in a different terminology).

He was motivated by an axiom system described by Thomsen [1933] in his book Grundlagen der Elementargeometrie (Foundations of Elementary Geometry). Thomsen's 'cycle calculus' is an attempt to axiomatize relations (like coincidence, orthogonality, parallelism) between geometric objects (points, lines, etc.). Thomsen emphasized that existence questions often are inessential in elementary geometry:

In der Tat erscheinen uns ja auch die Existenzaussagen als ein verhältnismäßig unwesentliches Beiwerk der Elementargeometrie. Ohne Zweifel empfinden wir als die eigentlich inhaltsvollsten und die wichtigsten Einzelaussagen der Elementargeometrie die von der folgenden reinen Form: ,,Wenn eine Reihe von geometrischen Gebilden, d.h. eine Anzahl von Punkten, Geraden, usw., gegeben vorliegt, und zwar derart, daß zwischen den gegebenen Punkten, Geraden usw. die und die geometrischen Lagebeziehungen bestehen (Koinzidenz, Senkrechtstehen, Parallellaufen, „Mittelpunkt sein" und anderes mehr), dann ist eine notwendige Folge dieser Annahme, daß auch noch diese bestimmte weitere geometrische Lagebeziehung gleichzeitig besteht. "In Sätzen dieser Form kommt nichts von Existenzaussagen vor. Was das Wichtigste ist, nicht in den Folgerungen. Dann aber auch nicht in den Annahmen. Wir nehmen an: Wenn die und die Dinge in den und den Beziehungen gegeben vorliegen..., usw. Wir machen aber keinerlei Voraussetzungen darüber, ob eine solche Konfiguration in unserer Geometrie existieren kann. Der Schluß ist nur: Wenn sie existieren, dann Falls die Konfiguration gar nicht existiert, der Satz also gegenstandslos wird, betrachten wir ihn nach der üblichen Konvention ,,gegenstandslos, also richtig" als richtig. ${ }^{22}$

[^9]Thomsen aimed at founding axiomatically 'the partial geometry of all elementary geometric theorems without existence statements'. To that end, he introduced the concept of a cycle, which is an ordered finite sequence of abstract objects, which can be thought of as points, lines, etc. Certain cycles are 'correct' and the other 'incorrect' (essentially they represent a system of relations defining any binary group):
A) Axiom der Grundzyklen: Der Zyklus $\alpha \alpha$ ist für jedes α richtig, der Zyklus α für kein α.
B) Axiom des Löschens: $\beta_{1} \beta_{2} \ldots \beta_{n} \alpha \alpha \rightarrow \beta_{1} \beta_{2} \ldots \beta_{n}$; in Worten: Aus der Richtigkeit des Zyklus $\beta_{1} \beta_{2} \ldots \beta_{n} \alpha \alpha$ folgt auch die des Zyklus $\beta_{1} \beta_{2} \ldots \beta_{n}$.
C) Axiom des Umstellens: $\beta_{1} \beta_{2} \ldots \beta_{n} \rightarrow \beta_{2} \beta_{3} \ldots \beta_{n} \beta_{1}$.
D) Axiom des Umkehrens: $\beta_{1} \beta_{2} \ldots \beta_{n-1} \beta_{n} \rightarrow \beta_{n} \beta_{n-1} \ldots \beta_{2} \beta_{1}$.
E) Axiom des Anfügens: $\beta_{1} \beta_{2} \ldots \beta_{n}$ und $\gamma_{1} \gamma_{2} \ldots \gamma_{r} \rightarrow \beta_{1} \beta_{2} \ldots \beta_{n} \gamma_{1} \gamma_{2} \ldots \gamma_{r} .{ }^{23}$

Axiom B) can be considered as a variant of Steinitz' exchange property. With the other axioms it implies that if $\beta_{1} \cdots \beta_{n} \alpha$ and $\gamma_{1} \cdots \gamma_{r} \alpha$ are cycles, then $\beta_{1} \cdots \beta_{n} \gamma_{1} \cdots \gamma_{r}$ is a cycle. Therefore, the set of all inclusionwise minimal nonempty sets containing a cycle form the circuits of a matroid.

The purpose of Nakasawa [1935] is to generalize Thomsen's axiom system:
In der vorliegenden Untersuchung soll ein Axiomensystem für eine neue Formulierung der linearen Abhängigkeit des n-dimensionalen projektiven Raumes angegeben werden, indem wir hauptsächlich den Zyklenkalkül, den Herr G. Thomsen bei seiner Grundlegung der elementaren Geometrie hergestellt hat, hier in einem noch abstrakteren Sinne verwenden. ${ }^{24}$

While Thomsen's cycles relate to unions of circuits in a matroid, those of Nakasawa form the dependent sets of a matroid. His axiom system can be considered as a direct extension to higher dimensions of the collinearity axioms of Hilbert and Bernays given above.

He called the structure der erste Verknüpfungsraum (the first connection space), or a \mathcal{B}_{1}-Raum (\mathcal{B}_{1}-space), writing $a_{1} \cdots a_{s}$ for $a_{1} \cdots a_{s}=0$:

Grundannahme: Wir denken uns eine gewisse Menge der Elementen; $\mathcal{B}_{1} \ni$ $a_{1}, a_{2}, \cdots, a_{s}, \cdots$. Für gewisse Reihen der Elementen, die wir Zyklen nennen wollen, denken wir dazu die Relationen "gelten" oder "gültig sein", in Zeichen $a_{1} \cdots a_{s}=0$, bzw. "nicht gelten" oder "nicht gültig sein", in Zeichen $a_{1} \cdots a_{s} \neq 0$. Diese Relationen sollen nun folgenden Axiomen genügen;
to us in those and those relations..., etc. We do not make any assumption on the fact if such a configuration can exist in our geometry. The conclusion is only: If they exist, then In case the configuration does not exist at all, and the theorem thus becomes meaningless, we consider it by the usual convention 'meaningless, hence correct' as correct.
23
A) Axiom of ground cycles: The cycle $\alpha \alpha$ is correct for each α, the cycle α for no α.
B) Axiom of solving: $\beta_{1} \beta_{2} \ldots \beta_{n} \alpha \alpha \rightarrow \beta_{1} \beta_{2} \ldots \beta_{n}$; in words: From the correctness of the cycle $\beta_{1} \beta_{2} \ldots \beta_{n} \alpha \alpha$ follows that of the cycle $\beta_{1} \beta_{2} \ldots \beta_{n}$.
C) Axiom of transposition: $\beta_{1} \beta_{2} \ldots \beta_{n} \rightarrow \beta_{2} \beta_{3} \ldots \beta_{n} \beta_{1}$.
D) Axiom of inversion: $\beta_{1} \beta_{2} \ldots \beta_{n-1} \beta_{n} \rightarrow \beta_{n} \beta_{n-1} \ldots \beta_{2} \beta_{1}$.
E) Axiom of addition: $\beta_{1} \beta_{2} \ldots \beta_{n}$ and $\gamma_{1} \gamma_{2} \ldots \gamma_{r} \rightarrow \beta_{1} \beta_{2} \ldots \beta_{n} \gamma_{1} \gamma_{2} \ldots \gamma_{r}$.
${ }^{24}$ In the present research, an axiom system for a new formulation of linear dependence of the n-dimensional projective space should be indicated, while we use here mainly the cycle calculus, which Mr G. Thomsen has constructed in his foundation of elementary geometry, in a still more abstract sense.

```
Axiom 1. (Reflexivität) : \(a a\).
Axiom 2. (Folgerung) : \(a_{1} \cdots a_{s} \rightarrow a_{1} \cdots a_{s} x,(s=1,2, \cdots)\).
Axiom 3. (Vertauschung) : \(a_{1} \cdots a_{i} \cdots a_{s} \rightarrow a_{i} \cdots a_{1} \cdots a_{s}\),
    \((s=2,3, \cdots ; i=2, \cdots, s)\).
Axiom 4. (Transitivität)
\(a_{1} \cdots a_{s} \neq 0, x a_{1} \cdots a_{s}, a_{1} \cdots a_{s} y\)
    \(\rightarrow x a_{1} \cdots a_{s-1} y,(s=1,2, \cdots)\).
```

Definition I. Eine solche Menge \mathcal{B}_{1} heisst der erste Verknüpfungsraum, in kurzen Worten, \mathcal{B}_{1}-Raum. ${ }^{25}$

Axiom 3 corresponds to condition (39.3).
Nakasawa introduced the concept of span, and he derived that any two independent sets having the same span, have the same size. It implies that \mathcal{B}_{1}-spaces are the same structures as matroids. Moreover, he gave a submodular law for a rank concept.

In a second paper, Nakasawa [1936a] added a further axiom on intersections of subspaces, yielding a ' \mathcal{B}_{2}-space', which corresponds to a projective space (in which the rank is modular), and in a third paper, Nakasawa [1936b] observed that his \mathcal{B}_{1}-spaces form the same structure as the matroids of Whitney.

1937-1940: Pauc, Haupt, Nöbeling

The axioms presented by Nakasawa were also given by Pauc [1937], added with an axiom describing the limit behaviour of dependence, if the underlying set is endowed with a topology:

Introduction axiomatique d'une notion de dépendance sur une classe limite. - Soit D un prédicat relatif aux systèmes finis non ordonnés de points d'une classe limite \mathcal{L}, assujetti aux axiomes (notation d'Hilbert-Bernays)

$$
\left.\begin{array}{cc}
\left(\mathrm{A}_{1}\right) & \left(x_{1}\right)\left(x_{2}\right)\left(D\left[x_{1}, x_{2}\right] \sim\left(x_{1}=x_{2}\right)\right), \\
\left(\mathrm{A}_{2}\right) & \left(x_{1}\right)\left(x_{2}\right) \ldots\left(x_{p}\right)(y)\left(D\left[x_{1}, x_{2}, \ldots, x_{p}\right] \rightarrow D\left[x_{1}, x_{2}, \ldots, x_{p}, y\right]\right), \\
\left(\mathrm{A}_{3}\right) & \left(x_{1}\right)\left(x_{2}\right) \ldots\left(x_{p}\right)(y)(z)\left(D\left[x_{1}, \ldots, x_{p}\right] \& D\left[x_{1}, \ldots, x_{p}, y\right] \&\right. \\
\left.D\left[x_{1}, \ldots, x_{p}, z\right] \rightarrow D\left[x_{2}, \ldots, x_{p}, y, z\right]\right),
\end{array}\right] \begin{gathered}
\text { Quels que soient les points } x_{1}, x_{2}, \ldots, x_{p} \text { et la suite } y_{1}, y_{2}, \ldots, y_{q}, \\
\left(\mathrm{~A}_{4}\right) \quad\left\{\begin{array}{c}
\text { de } \mathcal{L} \\
\left(\lim _{q \rightarrow \infty} y_{q}=y\right) \&(q) D\left[x_{1}, x_{2}, \ldots, x_{p}, y_{q}\right] \rightarrow D\left[x_{1}, x_{2}, \ldots, x_{p}, y\right] .{ }^{26}
\end{array}\right.
\end{gathered}
$$

In a subsequent paper, Haupt, Nöbeling, and Pauc [1940] studied systems, called A-Mannigfaltigkeit, (A-manifolds) that satisfy the axioms $\mathrm{A}_{1}-\mathrm{A}_{3}$. They mentioned

[^10]that this axiom system was indeed inspired by those for collinearity of HilbertBernays quoted above. They commented that its relation with Birkhoff's lattices, is analogous to the relation of the Hilbert-Bernays collinearity axioms with those of Hilbert for points and lines.

Haupt, Nöbeling, and Pauc [1940] gave, as examples, linear and algebraic dependence, and derived several basic facts (all bases have the same size, each independent set is contained in a base, for each pair of bases B, B^{\prime} and $x \in B \backslash B^{\prime}$ there is a $y \in B^{\prime} \backslash B$ such that $B-x+y$ is a base, and the rank is submodular).

The authors mentioned that they were informed by G. Köthe about the relations of their work with the lattice formulation of algebraic dependence of Mac Lane [1938], but no connection is made with Whitney's matroid.

Among the further papers related to matroids are Menger [1936b], giving axioms for (full) affine spaces, and Wilcox [1939,1941,1942,1944] and Dilworth [1941a, 1941b, 1944] on matroid lattices. The notion of M-symmetric lattice introduced by Wilcox [1942] was shown in Wilcox [1944] to be equivalent to upper semimodular lattice.

Rado

Rado was one of the first to take the independence structure as a source for further theorems, and to connect it with matching type theorems and combinatorial optimization. He had been interested in Kőnig-Hall type theorems (Rado [1933,1938]), and in his paper Rado [1942], he extended Hall's marriage theorem to transversals that are independent in a given matroid - a precursor of matroid intersection. In fact, with an elementary construction, Rado's theorem implies the matroid union theorem, and hence also the matroid intersection theorem (to be discussed in Chapters 41 and 42).

Rado [1942] did not refer to any earlier literature when introducing the concept of an independence relation, but the axioms are similar to those of Whitney for the independent sets in a matroid. Rado mentioned only linear independence as a special case.

He proved that a family of subsets of a matroid has an independent transversal if and only if the union of any k of the subsets contains an independent set of size k, for all k. Rado also showed that this theorem characterizes matroids.

Rado [1949a] extended the concept of matroid to infinite matroids, where he says that he extends the axioms of Whitney [1935].

Rado [1957] showed that if the elements of a matroid are linearly ordered by \leq, there is a unique minimal base $\left\{b_{1}, \ldots, b_{r}\right\}$ with $b_{1}<b_{2}<\cdots<b_{r}$ such that for each $i=1, \ldots, r$ all elements $s<b_{i}$ belong to $\operatorname{span}\left(\left\{b_{1}, \ldots, b_{i-1}\right\}\right)$. Rado derived that for any independent set $\left\{a_{1}, \ldots, a_{k}\right\}$ with $a_{1}<\cdots<a_{k}$ one has $b_{i} \leq a_{i}$ for $i=1, \ldots, k$. Therefore, the greedy method gives an optimum solution when
$\left(\mathrm{A}_{1}\right)$
$\left(\mathrm{A}_{2}\right)$
$\left(x_{1}\right)\left(x_{2}\right) \ldots\left(x_{p}\right)(y)\left(D\left[x_{1}, x_{2}, \ldots, x_{p}\right] \rightarrow D\left[x_{1}, x_{2}, \ldots, x_{p}, y\right]\right)$,
$\left(x_{1}\right)\left(x_{2}\right) \ldots\left(x_{p}\right)(y)(z)\left(\overline{D\left[x_{1}, \ldots, x_{p}\right]} \& D\left[x_{1}, \ldots, x_{p}, y\right] \&\right.$
$\left.D\left[x_{1}, \ldots, x_{p}, z\right] \rightarrow D\left[x_{2}, \ldots, x_{p}, y, z\right]\right)$,
$\left(\mathrm{A}_{4}\right) \quad\left\{\begin{array}{l}\text { Whatever are the points } x_{1}, x_{2}, \ldots, x_{p} \text { and the sequence } y_{1}, y_{2}, \ldots, y_{q}, \\ \ldots \text { from } \mathcal{L} \\ \left(\lim _{q \rightarrow \infty} y_{q}=y\right) \&(q) D\left[x_{1}, x_{2}, \ldots, x_{p}, y_{q}\right] \rightarrow D\left[x_{1}, x_{2}, \ldots, x_{p}, y\right] .\end{array}\right.$
applied to find a minimum-weight base. Rado mentioned that it extends the work of Borůvka and Kruskal on finding a shortest spanning tree in a graph.

For notes on the history of matroid union, see Section 42.6f. For an excellent survey of early literature on matroids, with reprints of basic articles, see Kung [1986].

Chapter 40

The greedy algorithm and the independent set polytope

Abstract

We now pass to algorithmic and polyhedral aspects of matroids. We show that the greedy algorithm characterizes matroids and that it implies a characterization of the independent set polytope (the convex hull of the incidence vectors of the independent sets). Algorithmic and polyhedral aspects of the intersection of two matroids will be studied in Chapter 41.

40.1. The greedy algorithm

Let \mathcal{I} be a nonempty collection of subsets of a finite set S closed under taking subsets. For any weight function $w: S \rightarrow \mathbb{R}$ we want to find a set I in \mathcal{I} maximizing $w(I)$. The greedy algorithm consists of setting $I:=\emptyset$, and next repeatedly choosing $y \in S \backslash I$ with $I \cup\{y\} \in \mathcal{I}$ and with $w(y)$ as large as possible. We stop if no such y exists.

For general collections \mathcal{I} of this kind this need not lead to an optimum solution. Indeed, matroids are precisely the structures where it always works, as the following theorem shows (Rado [1957] (necessity) and Gale [1968] and Edmonds [1971] (sufficiency)):

Theorem 40.1. Let \mathcal{I} be a nonempty collection of subsets of a set S, closed under taking subsets. Then the pair (S, \mathcal{I}) is a matroid if and only if for each weight function $w: S \rightarrow \mathbb{R}_{+}$, the greedy algorithm leads to a set I in \mathcal{I} of maximum weight $w(I)$.

Proof. Necessity. Let (S, \mathcal{I}) be a matroid and let $w: S \rightarrow \mathbb{R}_{+}$be any weight function on S. Call an independent set I good if it is contained in a maximumweight base. It suffices to show that if I is good, and y is an element in $S \backslash I$ with $I+y \in \mathcal{I}$ and with $w(y)$ as large as possible, then $I+y$ is good.

As I is good, there exists a maximum-weight base $B \supseteq I$. If $y \in B$, then $I+y$ is good again. If $y \notin B$, then there exists a base B^{\prime} containing $I+y$ and contained in $B+y$. So $B^{\prime}=B-z+y$ for some $z \in B \backslash I$. As $w(y)$ is chosen maximum and as $I+z \in \mathcal{I}$ since $I+z \subseteq B$, we know $w(y) \geq w(z)$.

Hence $w\left(B^{\prime}\right) \geq w(B)$, and therefore B^{\prime} is a maximum-weight base. So $I+y$ is good.

Sufficiency. Suppose that the greedy algorithm leads to an independent set of maximum weight for each weight function $w: S \rightarrow \mathbb{R}_{+}$. We show that (S, \mathcal{I}) is a matroid.

Condition (39.1)(i) is satisfied by assumption. To see condition (39.1)(ii), let $I, J \in \mathcal{I}$ with $|I|<|J|$. Suppose that $I+z \notin \mathcal{I}$ for each $z \in J \backslash I$.

Let $k:=|I|$. Consider the following weight function w on S :

$$
w(s):=\left\{\begin{array}{cl}
k+2 & \text { if } s \in I \tag{40.1}\\
k+1 & \text { if } s \in J \backslash I \\
0 & \text { if } s \in S \backslash(I \cup J) .
\end{array}\right.
$$

Now in the first k iterations of the greedy algorithm we find the k elements in I. By assumption, at any further iteration, we cannot choose any element in $J \backslash I$. Hence any further element chosen, has weight 0 . So the greedy algorithm yields an independent set of weight $k(k+2)$.

However, J has weight at least $|J|(k+1) \geq(k+1)(k+1)>k(k+2)$. Hence the greedy algorithm does not give a maximum-weight independent set, contradicting our assumption.

The theorem restricts w to nonnegative weight functions. However, it is shown similarly that for matroids $M=(S, \mathcal{I})$ and arbitrary weight functions $w: S \rightarrow \mathbb{R}$, the greedy algorithm finds a maximum-weight base. By replacing 'as large as possible' in the greedy algorithm by 'as small as possible', one obtains an algorithm finding a minimum-weight base in a matroid. Moreover, by deleting elements of negative weight, the algorithm can be adapted to yield an independent set of maximum weight, for any weight function $w: S \rightarrow \mathbb{R}$.

Throughout we assume that the matroid $M=(S, \mathcal{I})$ is given by an algorithm testing if a given subset of S belongs to \mathcal{I}. We call this an independence testing oracle. So the full list of all independent sets is not given explicitly (such a list would increase the size of the input exponentially, making most complexity issues meaningless).

In explicit applications, the matroid usually can be described by such a polynomial-time algorithm (polynomial in $|S|$). For instance, we can test if a given set of edges of a graph $G=(V, E)$ is a forest in time polynomially bounded by $|V|+|E|$. So the matroid (E, \mathcal{F}) can be described by such an algorithm.

Under these assumptions we have:
Corollary 40.1a. A maximum-weight independent set in a matroid can be found in strongly polynomial time.

Proof. See above.

Similarly, for minimum-weight bases:
Corollary 40.1b. A minimum-weight base in a matroid can be found in strongly polynomial time.

Proof. See above.

40.2. The independent set polytope

The algorithmic results obtained in the previous section have interesting consequences for polyhedra associated with matroids, as was shown by Edmonds [1970b,1971,1979].

The independent set polytope $P_{\text {independent set }}(M)$ of a matroid $M=(S, \mathcal{I})$ is, by definition, the convex hull of the incidence vectors of the independent sets of M. So $P_{\text {independent set }}(M)$ is a polytope in \mathbb{R}^{S}.

Each vector x in $P_{\text {independent set }}(M)$ satisfies the following linear inequalities:

$$
\begin{array}{ll}
x_{s} \geq 0 & \text { for } s \in S \tag{40.2}\\
x(U) \leq r_{M}(U) & \text { for } U \subseteq S
\end{array}
$$

because the incidence vector χ^{I} of any independent set I of M satisfies (40.2). Note that x is an integer vector satisfying (40.2) if and only if x is the incidence vector of some independent set of M.

Edmonds showed that system (40.2) fully determines the independent set polytope, by deriving it from the following formula (yielding a good characterization):

Theorem 40.2. Let $M=(S, \mathcal{I})$ be a matroid, with rank function r. Then for any weight function $w: S \rightarrow \mathbb{R}_{+}$:

$$
\begin{equation*}
\max \{w(I) \mid I \in \mathcal{I}\}=\sum_{i=1}^{n} \lambda_{i} r\left(U_{i}\right) \tag{40.3}
\end{equation*}
$$

where $U_{1} \subset \cdots \subset U_{n} \subseteq S$ and where $\lambda_{i} \geq 0$ satisfy

$$
\begin{equation*}
w=\sum_{i=1}^{n} \lambda_{i} \chi^{U_{i}} \tag{40.4}
\end{equation*}
$$

Proof. Order the elements of S as s_{1}, \ldots, s_{n} such that $w\left(s_{1}\right) \geq w\left(s_{2}\right) \geq$ $\cdots \geq w\left(s_{n}\right)$. Define
(40.5) $\quad U_{i}:=\left\{s_{1}, \ldots, s_{i}\right\}$
for $i=0, \ldots, n$, and
(40.6) $\quad I:=\left\{s_{i} \mid r\left(U_{i}\right)>r\left(U_{i-1}\right)\right\}$.

So I is the output of the greedy algorithm. Hence I is a maximum-weight independent set.

Next let:

$$
\begin{align*}
& \lambda_{i}:=w\left(s_{i}\right)-w\left(s_{i+1}\right) \text { for } i=1, \ldots, n-1 \tag{40.7}\\
& \lambda_{n}:=w\left(s_{n}\right)
\end{align*}
$$

This implies (40.3):

$$
\begin{align*}
& w(I)=\sum_{s \in I} w(s)=\sum_{i=1}^{n} w\left(s_{i}\right)\left(r\left(U_{i}\right)-r\left(U_{i-1}\right)\right) \tag{40.8}\\
& =w\left(s_{n}\right) r\left(U_{n}\right)+\sum_{i=1}^{n-1}\left(w\left(s_{i}\right)-w\left(s_{i+1}\right)\right) r\left(U_{i}\right)=\sum_{i=1}^{n} \lambda_{i} r\left(U_{i}\right) .
\end{align*}
$$

By taking any ordering of S for which w is nonincreasing, (40.5) gives any chain of subsets U_{i} satisfying (40.4) for some $\lambda_{i} \geq 0$. Hence we have the theorem.

This can be interpreted in terms of LP-duality. For any weight function $w: S \rightarrow \mathbb{R}$, consider the linear programming problem

$$
\begin{array}{lll}
\operatorname{maximize} & w^{\top} x \tag{40.9}\\
\text { subject to } & x_{s} \geq 0 & (s \in S) \\
& x(U) \leq r_{M}(U) & (U \subseteq S)
\end{array}
$$

and its dual:
(40.10) minimize $\sum_{U \subseteq S} y_{U} r_{M}(U)$,
subject to $\quad y_{U} \geq 0 \quad(U \subseteq S)$,

$$
\sum_{U \subseteq S} y_{U} \chi^{U} \geq w
$$

Corollary 40.2a. If $w: S \rightarrow \mathbb{Z}$, then (40.9) and (40.10) have integer optimum solutions.

Proof. We can assume that $w(s) \geq 0$ for each $s \in S$ (as neither the maximum nor the minimum changes by resetting $w(s)$ to 0 if negative). Then (40.4) implies that the λ_{i} are integer. This gives integer optimum solutions of (40.9) and (40.10).

In polyhedral terms, Theorem 40.2 implies:
Corollary 40.2b. The independent set polytope is determined by (40.2).
Proof. Immediately from Theorem 40.2 (with (40.10)).
Moreover, in TDI terms:

692 Chapter 40. The greedy algorithm and the independent set polytope
Corollary 40.2c. System (40.2) is totally dual integral.
Proof. Immediately from Corollary 40.2a.
Similar results hold for the base polytope. For any matroid M, let $P_{\text {base }}(M)$ be the base polytope of M, defined as the convex hull of the incidence vectors of bases of M. Then:

Corollary 40.2d. The base polytope of a matroid $M=(S, \mathcal{I})$ is determined by

$$
\begin{array}{ll}
x_{s} \geq 0 & \text { for } s \in S, \tag{40.11}\\
x(U) \leq r_{M}(U) & \text { for } U \subseteq S, \\
x(S)=r_{M}(S) . &
\end{array}
$$

Proof. This follows directly from Corollary 40.2 b , since the base polytope is the intersection of the independent set polytope with the hyperplane $\{x \mid$ $\left.x(S)=r_{M}(S)\right\}$, as an independent set I is a base if and only if $|I| \geq r_{M}(S)$.

The corresponding TDI result reads:
Corollary 40.2e. System (40.11) is totally dual integral.
Proof. By Theorem 5.25 from Corollary 40.2c.
One can similarly describe the spanning set polytope $P_{\text {spanning set }}(M)$ of M, which is, by definition, the convex hull of the incidence vectors of the spanning sets of M. It is determined by the system:

$$
\begin{array}{ll}
0 \leq x_{s} \leq 1 & \text { for } s \in S \tag{40.12}\\
x(U) \geq r_{M}(S)-r_{M}(S \backslash U) & \text { for } U \subseteq S
\end{array}
$$

Corollary 40.2f. The spanning set polytope is determined by (40.12).
Proof. A subset U of S is spanning in M if and only if $S \backslash U$ is independent in M^{*}. Hence for any $x \in \mathbb{R}^{S}$ we have:

$$
\begin{equation*}
x \in P_{\text {spanning set }}(M) \Longleftrightarrow \mathbf{1}-x \in P_{\text {independent set }}\left(M^{*}\right) \tag{40.13}
\end{equation*}
$$

By Corollary $40.2 \mathrm{~b}, \mathbf{1}-x$ belongs to $P_{\text {independent set }}\left(M^{*}\right)$ if and only if x satisfies:
$\begin{array}{lll}\text { (40.14) } & 1-x_{s} \geq 0 \\ & |U|-x(U) \leq r_{M^{*}}(U) & \text { for } s \in S, \\ \text { for } U \subseteq S .\end{array}$
Since $r_{M^{*}}(U)=|U|+r_{M}(S \backslash U)-r_{M}(S)$, the present corollary follows.
Corollary 40.2c gives similarly the TDI result:

Corollary 40.2g. System (40.12) is totally dual integral.
Proof. By reduction to Corollary 40.2c, by a similar reduction as in the proof of the previous corollary.

Note that

$$
\begin{align*}
& P_{\text {base }}(M)=P_{\text {independent set }}(M) \cap P_{\text {spanning set }}(M), \tag{40.15}\\
& P_{\text {independent set }}(M)=P_{\text {base }}^{\downarrow}(M) \cap[0,1]^{S}, \\
& P_{\text {spanning set }}(M)=P_{\text {base }}^{\uparrow}(M) \cap[0,1]^{S} .
\end{align*}
$$

The following consequence on the intersection of the base polytope with a box was observed by Hell and Speer [1984]:

Corollary 40.2h. Let $M=(S, \mathcal{I})$ be a matroid and let l, $u \in \mathbb{R}^{S}$ with $l \leq u$. Then there is an $x \in P_{\text {base }}(M)$ with $l \leq x \leq u$ if and only if $l \in P_{\text {base }}^{\downarrow}(M)$ and $u \in P_{\text {base }}^{\uparrow}(M)$.

Proof. Necessity being trivial, we show sufficiency. We may assume that $l, u \in[0,1]^{S}$. So $l \in P_{\text {independent set }}(M)$ and $u \in P_{\text {spanning set }}(M)$. Choose l^{\prime}, u^{\prime} such that $l \leq l^{\prime} \leq u^{\prime} \leq u, l^{\prime} \in P_{\text {independent set }}(M), u^{\prime} \in P_{\text {spanning set }}(M)$, and $\left\|u^{\prime}-l^{\prime}\right\|_{1}$ minimal.

If $l^{\prime}=u^{\prime}$ we are done, so assume that there is an $s \in S$ with $l^{\prime}(s)<u^{\prime}(s)$. As we cannot increase $l^{\prime}(s)$, there is a $T \subseteq S$ with $s \in T$ and $l^{\prime}(T)=r(T)$. Similarly, as we cannot decrease $u^{\prime}(s)$, there is a $U \subseteq S$ with $s \notin U$ and $u^{\prime}(S \backslash U)=r(S)-r(U)$. Then we have the contradiction
(40.16) $\quad l^{\prime}(T \cap U)+u^{\prime}(T \cup U) \leq r(T \cap U)+u^{\prime}(S)+r(T \cup U)-r(S)$

$$
\leq r(T)+r(U)+u^{\prime}(S)-r(S)=l^{\prime}(T)+u^{\prime}(U)
$$

$$
<l^{\prime}(T \cap U)+u^{\prime}(T \cup U)
$$

The last inequality follows from

$$
\begin{equation*}
u^{\prime}(T \cup U)-u^{\prime}(U)=u^{\prime}(T \backslash U)>l^{\prime}(T \backslash U)=l^{\prime}(T)-l^{\prime}(T \cap U) \tag{40.17}
\end{equation*}
$$

since $s \in T \backslash U$ and $u^{\prime}(s)>l^{\prime}(s)$.

40.3. The most violated inequality

We now consider the problem to find, for any matroid $M=(S, \mathcal{I})$ and any $x \in \mathbb{R}_{+}^{S}$ not in the independent set polytope of M, an inequality among (40.2) most violated by x. That is, to find $U \subseteq S$ maximizing $x(U)-r_{M}(U)$.

The following theorem implies a min-max relation for this (Edmonds [1970b]):

Theorem 40.3. Let $M=(S, \mathcal{I})$ be a matroid and let $x \in \mathbb{R}_{+}^{S}$. Then

$$
\begin{align*}
& \max \left\{z(S) \mid z \in P_{\text {independent set }}(M), z \leq x\right\} \tag{40.18}\\
& =\min \left\{r_{M}(U)+x(S \backslash U) \mid U \subseteq S\right\}
\end{align*}
$$

Proof. The inequality \leq in (40.18) follows from

$$
\begin{equation*}
z(S)=z(U)+z(S \backslash U) \leq r_{M}(U)+x(S \backslash U) \tag{40.19}
\end{equation*}
$$

To see equality, let z attain the maximum. Then for each $s \in S$ with $z_{s}<x_{s}$ there exists a $U \subseteq S$ with $s \in U$ and $z(U)=r_{M}(U)$ (otherwise we can increase z_{s}). Now the collection of sets $U \subseteq S$ satisfying $z(U)=r_{M}(U)$ is closed under taking unions (and intersections), since if $z(T)=r_{M}(T)$ and $z(U)=r_{M}(U)$, then

$$
\begin{align*}
& z(T \cup U)=z(T)+z(U)-z(T \cap U) \geq r_{M}(T)+r_{M}(U)-r_{M}(T \cap U) \tag{40.20}\\
& \geq r_{M}(T \cup U) .
\end{align*}
$$

Hence there exists a $U \subseteq S$ such that $z(U)=r_{M}(U)$ and such that U contains each $s \in S$ with $z_{s}<x_{s}$. Hence:

$$
\begin{equation*}
z(S)=z(U)+z(S \backslash U)=r_{M}(U)+x(S \backslash U) \tag{40.21}
\end{equation*}
$$

giving (40.18).
Cunningham [1984] showed that from an independence testing oracle for a matroid one can derive a strongly polynomial time algorithm to find for any given vector x, a maximum violated inequality for the independent set polytope.

More strongly, Cunningham showed that one can solve the following problem in strongly polynomial time:
(40.22) given: a matroid $M=(S, \mathcal{I})$, by an independence testing oracle, and an $x \in \mathbb{Q}_{+}^{S}$;
find: a $z \in P_{\text {independent set }}(M)$ with $z \leq x$ maximizing $z(S)$, with a decomposition of z as convex combination of incidence vectors of independent sets, and a subset U of S satisfying $z(S)=r_{M}(U)+x(S \backslash U)$.
By (40.18), the set U certifies that z maximizes $z(S)$. In the algorithm for (40.22), Cunningham utilized the 'consistent breadth-first search' based on lexicographic order, given by Schönsleben [1980] and Lawler and Martel [1982a].

To prove Cunningham's result, we first show two lemmas. The first lemma is used only to prove the second lemma. As in Section 39.9, we define for any independent set I of a matroid $M=(S, \mathcal{I})$:

$$
\begin{equation*}
A(I):=\{(y, z) \mid y \in I, z \in S \backslash I, I-y+z \in \mathcal{I}\} \tag{40.23}
\end{equation*}
$$

Lemma 40.4 α. Let $M=(S, \mathcal{I})$ be a matroid and let $I \in \mathcal{I}$. Let $(s, t) \in A(I)$, define $I^{\prime}:=I-s+t$, and let $(u, v) \in A\left(I^{\prime}\right) \backslash A(I)$. Then $t=u$ or $(u, t) \in A(I)$, and $s=v$ or $(s, v) \in A(I)$.

Proof. By symmetry, it suffices to show that $t=u$ or $(u, t) \in A(I)$ (as we may assume that I is a base, and hence the second part follows by duality). We can assume that $t \neq u$. Then $t \neq v$, since $v \notin I^{\prime}=I-s+t$, as $(u, v) \in A\left(I^{\prime}\right)$.

If $v=s$, then $I-u+t=I-u-s+t+v=I^{\prime}-u+v \in \mathcal{I}$ and hence $(u, t) \in A(I)$. If $v \neq s$, then $I-u \in \mathcal{I}$ and $I-u-s+t+v \in \mathcal{I}$, and therefore $I-u+t \in \mathcal{I}$ or $I-u+v \in \mathcal{I}$; that is, $(u, v) \in A(I)$ or $(u, t) \in A(I)$.

Lemma 40.4 β. Let $M=(S, \mathcal{I})$ be a matroid and let q be a new element. For any $I \in \mathcal{I}$, define

$$
\begin{equation*}
\widetilde{A}(I):=\{(u, v) \mid u \in I+q, v \in S \backslash I, I-u+v \in \mathcal{I}\} . \tag{40.24}
\end{equation*}
$$

Let $(s, t) \in A(I)$, define $I^{\prime}:=I-s+t$, and let $(u, v) \in \widetilde{A}\left(I^{\prime}\right) \backslash \widetilde{A}(I)$. Then $t=u$ or $(u, t) \in \widetilde{A}(I)$, and $s=v$ or $(s, v) \in \widetilde{A}(I)$.

Proof. Let $\widetilde{\mathcal{I}}:=\{J \subseteq S+q \mid J-q \in \mathcal{I}\}$. Then the present lemma follows from Lemma 40.4α applied to the matroid $(S+q, \widetilde{\mathcal{I}})$.

Now we can derive Cunningham's result:
Theorem 40.4. Problem (40.22) is solvable in strongly polynomial time.
Proof. We keep a vector $z \leq x$ in the independent set polytope of M and a decomposition

$$
\begin{equation*}
z=\sum_{i=1}^{k} \lambda_{i} \chi^{I_{i}} \tag{40.25}
\end{equation*}
$$

with $I_{1}, \ldots, I_{k} \in \mathcal{I}, \lambda_{1}, \ldots, \lambda_{k}>0$, and $\sum_{i} \lambda_{i}=1$. Initially $z:=\mathbf{0}, k:=1$, $I_{1}:=\emptyset, \lambda_{1}:=1$.

Let
(40.26) $\quad T:=\left\{s \in S \mid z_{s}<x_{s}\right\}$.

Let q be a new element. For each i, define $\widetilde{A}\left(I_{i}\right)$ as in (40.24), and let $D=$ $(S+q, A)$ be the directed graph with

$$
\begin{equation*}
A:=\widetilde{A}\left(I_{1}\right) \cup \cdots \cup \widetilde{A}\left(I_{k}\right) \tag{40.27}
\end{equation*}
$$

Fix an arbitrary linear order of the elements of $S+q$, by setting $S+q=$ $\{1, \ldots, n\}$.

Case 1: \boldsymbol{D} has no $\boldsymbol{q}-\boldsymbol{T}$ path. Let U be the set of $s \in S$ for which D has an $s-T$ path. As $T \subseteq U$, we know $z(S \backslash U)=x(S \backslash U)$. Also, as no arc of D enters U, we have $\left|U \cap I_{i}\right|=r_{M}(U)$ for all i, implying

$$
\begin{equation*}
z(U)=\sum_{i=1}^{k} \lambda_{i}\left|U \cap I_{i}\right|=\sum_{i=1}^{k} \lambda_{i} r_{M}(U)=r_{M}(U) \tag{40.28}
\end{equation*}
$$

Hence $z(S)=r_{M}(U)+x(S \backslash U)$ as required.
Case 2: \boldsymbol{D} has a $\boldsymbol{q}-\boldsymbol{T}$ path. For each $v \in S+q$, let $d(v)$ denote the distance in D from q to v (set to ∞ if no $q-v$ path exists). Choose a $t \in T$ with $d(t)$ finite and maximal, and among these t we choose the largest t. Let $(s, t) \in A$, with $d(s)=d(t)-1$, and s largest. We can assume that $(s, t) \in \widetilde{A}\left(I_{1}\right)$. Let
(40.29) $\quad \alpha:=\min \left\{x_{t}-z_{t}, \lambda_{1}\right\}$
and define z^{\prime} by

$$
\begin{equation*}
z^{\prime}:=z+\alpha\left(\chi^{t}-\chi^{s}\right) \text { if } s \neq q, \text { and } z^{\prime}:=z+\alpha \chi^{t} \text { if } s=q . \tag{40.30}
\end{equation*}
$$

Let $I_{1}^{\prime}:=I_{1}-s+t\left(\right.$ so $I_{1}^{\prime}=I_{1}+t$ if $\left.s=q\right)$.
Then

$$
\begin{equation*}
z^{\prime}=\alpha \chi^{I_{1}^{\prime}}+\left(\lambda_{1}-\alpha\right) \chi^{I_{1}}+\sum_{i=2}^{k} \lambda_{i} \chi^{I_{i}} . \tag{40.31}
\end{equation*}
$$

If $\alpha=\lambda_{1}$, we delete the second term. We obtain a decomposition of z^{\prime} as a convex combination of at most $k+1$ independent sets, and we can iterate.

Running time. We show that the number of iterations is at most $|S|^{9}$. Consider any iteration. Let d^{\prime} and A^{\prime} be the objects d and A of the next iteration. We first show:
(40.32) for each $v \in S+q: d^{\prime}(v) \geq d(v)$.

To show this, we can assume that $d^{\prime}(v)<\infty$. We show (40.32) by induction on $d^{\prime}(v)$, the case $d^{\prime}(v)=0$ being trivial (as it means $v=q$). Assume $d^{\prime}(v)>0$. Let u be such that $(u, v) \in A^{\prime}$ and $d^{\prime}(u)=d^{\prime}(v)-1$. By induction we know $d^{\prime}(u) \geq d(u)$.

If $(u, v) \in A$, then $d(v) \leq d(u)+1 \leq d^{\prime}(u)+1=d^{\prime}(v)$, as required. If $(u, v) \notin A$, then $(u, v) \in \widetilde{A}\left(I_{1}^{\prime}\right)$ and $(u, v) \notin \widetilde{A}\left(I_{1}\right)$. By Lemma $40.4 \beta, t=u$ or $(u, t) \in \widetilde{A}\left(I_{1}\right)$, and $s=v$ or $(s, v) \in \widetilde{A}\left(I_{1}\right)$. Hence
(40.33)

$$
d(v) \leq d(s)+1=d(t) \leq d(u)+1 \leq d^{\prime}(u)+1=d^{\prime}(v) .
$$

So $d(v) \leq d^{\prime}(v)$. This shows (40.32).
Let β be the number of $j=1, \ldots, k$ with $(s, t) \in \widetilde{A}\left(I_{j}\right)$. Let $T^{\prime}, t^{\prime}, s^{\prime}$, and β^{\prime} be the objects T, t, s, β in the next iteration. We show:
if $d^{\prime}(v)=d(v)$ for each $v \in S+q$, then $\left(d^{\prime}\left(t^{\prime}\right), t^{\prime}, s^{\prime}, \beta^{\prime}\right)$ is lexicographically less than $(d(t), t, s, \beta)$.
Indeed, if $\alpha=x_{t}-z_{t}$, then $T^{\prime}=T-t+s$ or $T^{\prime}=T-t$. So $d^{\prime}\left(t^{\prime}\right)<d(t)$, or $d^{\prime}\left(t^{\prime}\right)=d(t)$ and $t^{\prime}<t$. If $\alpha<x_{t}-z_{t}$, then $T^{\prime}=T+s$ or $T^{\prime}=T$. Moreover, $\alpha=\lambda_{1}$, so I_{1} has been omitted from the convex combination. So, as $t \in T^{\prime}$ and $d(s)<d(t)$, we know that $t^{\prime}=t$ and $d^{\prime}\left(t^{\prime}\right)=d(t)$. As $t \in I_{1}^{\prime}$, we know $\left(s^{\prime}, t\right) \notin \widetilde{A}\left(I_{1}^{\prime}\right)$. Hence, as $\left(s^{\prime}, t\right) \in A^{\prime}$, we have $\left(s^{\prime}, t\right) \in \widetilde{A}\left(I_{j}\right)$ for some $j=2, \ldots, k$. Hence $\left(s^{\prime}, t\right) \in A$. By the choice of s, we know $s^{\prime} \leq s$. If $s^{\prime}<s$,
we have (40.34), so assume $s^{\prime}=s$. Then $\beta^{\prime}=\beta-1$, as $(s, t) \notin \widetilde{A}\left(I_{1}^{\prime}\right)$. This proves (40.34).

The number k of independent sets in the decomposition grows by 1 if $\alpha=x_{t}-z_{t}<\lambda_{1}$. In that case, $d^{\prime}(v)=d(v)$ for each $v \in S+q$ (by (40.32), as $A^{\prime} \supseteq A$). Moreover, $d^{\prime}\left(t^{\prime}\right)<d(t)$ or $t^{\prime}<t$ (since $\left.T^{\prime} \subseteq T-t+s\right)$. So k does not exceed $|S|^{4}$, and hence β is at most $|S|^{4}$. Concluding, the number of iterations is at most $|S|^{9}$.

With Gaussian elimination, we can reduce the number k in each iteration to at most $|S|$ (by Carathéodory's theorem). Incorporating this reduces the number of iterations to $|S|^{6}$.

Theorem 40.4 immediately implies that one can test if a given vector belongs to the independent set polytope of a matroid:

Corollary 40.4a. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and an $x \in \mathbb{Q}^{S}$, one can test in strongly polynomial time if x belongs to $P_{\text {independent set }}(M)$, and if so, decompose x as a convex combination of incidence vectors of independent sets.

Proof. Directly from Theorem 40.4.
One can derive a similar result for the spanning set polytope:
Corollary 40.4b. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and an $x \in \mathbb{Q}^{S}$, one can test in strongly polynomial time if x belongs to $P_{\text {spanning set }}(M)$, and if so, decompose x as a convex combination of incidence vectors of spanning sets.

Proof. x belongs to the spanning set polytope of M if and only if $\mathbf{1}-x$ belongs to the independent set polytope of the dual matroid M^{*}. Also convex combinations of spanning sets of M and independent sets of M^{*} transfer to each other by this operation. Since $r_{M^{*}}(U)=|U|+r_{M}(S \backslash U)-r_{M}(S)$ for each $U \subseteq S$, also an independence testing oracle for M^{*} is easily obtained from one for M.

The theorem also implies that the following most violated inequality problem can be solved in strongly polynomial time:
(40.35) given: a matroid $M=(S, \mathcal{I})$ by an independence testing oracle, and a vector $x \in \mathbb{Q}^{S}$;
find: a subset U of S minimizing $r_{M}(U)-x(U)$.
Corollary 40.4c. The most violated inequality problem can be solved in strongly polynomial time.

Proof. Any negative component of x can be reset to 0 , as this does not change the problem. So we can assume that $x \geq \mathbf{0}$. Then by Theorem 40.4 we can find a $U \subseteq S$ minimizing $r_{M}(U)+x(S \backslash U)$ in strongly polynomial time. This U is as required.

40.3a. Facets and adjacency on the independent set polytope

Let $M=(S, \mathcal{I})$ be a matroid, with rank function r. Trivially, the independent set polytope P of M is full-dimensional if and only if M has no loops. If P is full-dimensional there is a unique minimal collection of linear inequalities defining P (up to scalar multiplication), which corresponds to the facets of P. Edmonds [1970b] found that this collection is given by the following theorem. Recall that a subset F of S is called a flat if for all s in $S \backslash F$ one has $r(F+s)>r(F)$. A subset F is called inseparable if there is no partition of F into nonempty sets F_{1} and F_{2} with $r(F)=r\left(F_{1}\right)+r\left(F_{2}\right)$. Then:

Theorem 40.5. If M is loopless, the following is a minimal system for the independent set polytope of M :
(i) $\quad x_{s} \geq 0 \quad(s \in S)$,
(ii) $\quad x(F) \leq r(F) \quad$ (F is a nonempty inseparable flat).

Proof. As M is loopless, the independent set polytope of M is full-dimensional. It is easy to see that (40.36) determines the independent set polytope, as any other inequality $x(U) \leq r(U)$ is implied by the inequalities $x\left(F_{i}\right) \leq r\left(F_{i}\right)$, where F_{1}, \ldots, F_{t} is a maximal partition of $F:=\operatorname{span}_{M}(U)$ such that $r\left(F_{1}\right)+\cdots+r\left(F_{t}\right)=$ $r(F)$.

The irredundancy of collection (40.36) can be seen as follows. Each inequality $x_{s} \geq 0$ is irredundant, since the vector $-\chi^{s}$ satisfies all other inequalities.

We show that also the inequalities (40.36)(ii) are irredundant, by showing that for any two nonempty nonseparable flats T, U there exists a base I of T with $|I \cap U|<r(U)$ (implying that the face determined by T is contained in no (other) facet).

To show this, let I be a base of T with $|I \cap(T \backslash U)|=r(T \backslash U)$. Suppose $|I \cap U|=r(U)$. Then

$$
\begin{equation*}
r(U) \geq r(T \cap U) \geq r(T)-r(T \backslash U)=|I \cap U|=r(U) \tag{40.37}
\end{equation*}
$$

Hence we have equality throughout. This implies (as T is inseparable) that $T \backslash U=\emptyset$ or $T \cap U=\emptyset$, and that $r(U)=r(T \cap U)$. If $T \backslash U=\emptyset$, then $T \subset U$, and hence (as T is a flat) $r(U)>r(T) \geq r(T \cap U)$, a contradiction. If $T \cap U=\emptyset$, then $r(U)=$ $r(T \cap U)=0$, implying that $U=\emptyset$ (as M has no loops), again a contradiction.

It follows that the base polytope, which is the face $\{x \in P \mid x(S)=r(S)\}$ of P, has dimension $|S|-1$ if and only if S is inseparable (that is, the matroid is connected).

As for adjacency of vertices of the independent set polytope, we have:
Theorem 40.6. Let $M=(S, \mathcal{I})$ be a loopless matroid and let I and J be distinct independent sets. Then χ^{I} and χ^{J} are adjacent vertices of the independent set
polytope of M if and only if $|I \triangle J|=1$, or $|I \backslash J|=|J \backslash I|=1$ and $r_{M}(I \cup J)=$ $|I|=|J|$.

Proof. To see sufficiency, note that the condition implies that I and J are the only two independent sets with incidence vector x satisfying $x(I \cap J)=r_{M}(I \cap J)$, $x_{s}=0$ for $s \notin I \cup J$, and (if $\left.|I \triangle J|=2\right) x(I \cup J)=r_{M}(I \cup J)$. Hence I and J are adjacent.

To see necessity, assume that χ^{I} and χ^{J} are adjacent. If I is not a base of $I \cup J$, then $I+j$ is independent for some $j \in J \backslash I$. Hence

$$
\begin{equation*}
\frac{1}{2}\left(\chi^{I}+\chi^{J}\right)=\frac{1}{2}\left(\chi^{I+j}+\chi^{J-j}\right) \tag{40.38}
\end{equation*}
$$

implying (as χ^{I} and χ^{J} are adjacent) that $I+j=J$ and $J-j=I$, that is $|I \triangle J|=1$.
So we can assume that I and J are bases of $I \cup J$. Choose $i \in I \backslash J$. By Theorem 39.12, there is a $j \in J \backslash I$ such that $I-i+j$ and $J-j+i$ are bases of $I \cup J$. Then

$$
\begin{equation*}
\frac{1}{2}\left(\chi^{I}+\chi^{J}\right)=\frac{1}{2}\left(\chi^{I-i+j}+\chi^{J-j+i}\right) \tag{40.39}
\end{equation*}
$$

implying (as χ^{I} and χ^{J} are adjacent) that $I-i+j=J$ and $J-j+i=I$, that is we have the second alternative in the condition.

More on the combinatorial structure of the independent set polytope can be found in Naddef and Pulleyblank [1981a].

40.3b. Further notes

Prodon [1984] showed that the separation problem for the independent set polytope of a matching matroid can be solved by finding a minimum-capacity cut in an auxiliary directed graph.

Frederickson and Solis-Oba [1997,1998] gave strongly polynomial-time algorithm for measuring the sensitivity of the minimum weight of a base under perturbing the weight. (Related analysis was given by Libura [1991].)

Narayanan [1995] described a rounding technique for the independent set polytope membership problem, leading to an $O\left(n^{3} r^{2}\right)$-time algorithm, where n is the size of the underlying set of the matroid and r is the rank of the matroid.

A strongly polynomial-time algorithm maximizing certain convex objective functions over the bases was given by Hassin and Tamir [1989].

For studies of structures where the greedy algorithm applies if condition (39.1)(i) is deleted, see Faigle [1979,1984b], Hausmann, Korte, and Jenkyns [1980], Korte and Lovász [1983,1984a,1984b,1984c,1985a,1985b,1989], Bouchet [1987a], Goecke [1988], Dress and Wenzel [1990], Korte, Lovász, and Schrader [1991], Helman, Moret, and Shapiro [1993], and Faigle and Kern [1996].

Chapter 41

Matroid intersection

Abstract

Edmonds discovered that matroids have even more algorithmic power than just that of the greedy method. He showed that there exist efficient algorithms also for intersections of matroids. That is, a maximum-weight common independent set in two matroids can be found in strongly polynomial time. Edmonds also found good min-max characterizations for matroid intersection. Matroid intersection yields a motivation for studying matroids: we may apply it to two matroids from different classes of examples of matroids, and thus we obtain methods that exceed the bounds of any particular class. We should note here that if $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ are matroids, then $\left(S, \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)$ need not be a matroid. (An example with $|S|=3$ is easy to construct.) Moreover, the problem of finding a maximum-size common independent set in three matroids is NP-complete (as finding a Hamiltonian circuit in a directed graph is a special case; also, finding a common transversal of three partitions is a special case).

41.1. Matroid intersection theorem

Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be two matroids, on the same set S. Consider the collection $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ of common independent sets. The pair ($S, \mathcal{I}_{1} \cap$ \mathcal{I}_{2}) is generally not a matroid again.

Edmonds [1970b] showed the following formula, for which he gave two proofs - one based on linear programming duality and total unimodularity (see the proof of Theorem 41.12 below), and one reducing it to the matroid union theorem (see Corollary 42.1a and the remark thereafter). We give the direct proof implicit in Brualdi [1971e].

Theorem 41.1 (matroid intersection theorem). Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=$ $\left(S, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2}, respectively. Then the maximum size of a set in $\mathcal{I}_{1} \cap \mathcal{I}_{2}$ is equal to

$$
\begin{equation*}
\min _{U \subseteq S}\left(r_{1}(U)+r_{2}(S \backslash U)\right) \tag{41.1}
\end{equation*}
$$

Proof. Let k be equal to (41.1). It is easy to see that the maximum is not more than k, since for any common independent set I and any $U \subseteq S$:

$$
\begin{equation*}
|I|=|I \cap U|+|I \backslash U| \leq r_{1}(U)+r_{2}(S \backslash U) . \tag{41.2}
\end{equation*}
$$

We prove equality by induction on $|S|$, the case $|S| \leq 1$ being trivial. So assume that $|S| \geq 2$.

If minimum (41.1) is attained only by $U=S$ or $U=\emptyset$, choose $s \in S$. Then $r_{1}(U)+r_{2}(S \backslash(U \cup\{s\})) \geq k$ for each $U \subseteq S \backslash\{s\}$, since otherwise both U and $U \cup\{s\}$ would attain (41.1), whence $\{U, U \cup\{s\}\}=\{\emptyset, S\}$, contradicting the fact that $|S| \geq 2$. Hence, by induction, $M_{1} \backslash s$ and $M_{2} \backslash s$ have a common independent set of size k, implying the theorem.

So we can assume that (41.1) is attained by some U with $\emptyset \neq U \neq S$. Then $M_{1} \mid U$ and $M_{2} \cdot U$ have a common independent set I of size $r_{1}(U)$. Otherwise, by induction, there exists a subset T of U with

$$
\begin{equation*}
r_{1}(U)>r_{M_{1} \mid U}(T)+r_{M_{2} \cdot U}(U \backslash T)=r_{1}(T)+r_{2}(S \backslash T)-r_{2}(S \backslash U), \tag{41.3}
\end{equation*}
$$

contradicting the fact that U attains (41.1). Similarly, $M_{1} \cdot(S \backslash U)$ and $M_{2} \mid(S \backslash$ $U)$ have a common independent set J of size $r_{2}(S \backslash U)$.

Now $I \cup J$ is a common independent set of M_{1} and M_{2}. Indeed, $I \cup J$ is independent in M_{1}, as I is independent in $M_{1} \mid U$ and J is independent in $M_{1} \cdot(S \backslash U)=M_{1} / U$ (cf. (39.10)). Similarly, $I \cup J$ is independent in M_{2}. As $|I \cup J|=r_{1}(U)+r_{2}(S \backslash U)$, this proves the theorem.

This implies a characterization of the existence of a common base in two matroids:

Corollary 41.1a. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2}, respectively, such that $r_{1}(S)=r_{2}(S)$. Then M_{1} and M_{2} have a common base if and only if $r_{1}(U)+r_{2}(S \backslash U) \geq r_{1}(S)$ for each $U \subseteq S$.

Proof. Directly from Theorem 41.1.
It is easy to derive from the matroid intersection theorem a similar minmax relation for the minimum size of a common spanning set:

Corollary 41.1b. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2}, respectively. Then the minimum size of a common spanning set of M_{1} and M_{2} is equal to

$$
\begin{equation*}
\max _{U \subseteq S}\left(r_{1}(S)-r_{1}(U)+r_{2}(S)-r_{2}(S \backslash U)\right) \tag{41.4}
\end{equation*}
$$

Proof. The minimum is equal to the minimum of $\left|B_{1} \cup B_{2}\right|$ where B_{1} and B_{2} are bases of M_{1} and M_{2} respectively. Hence the minimum is equal to $r_{1}(S)+r_{2}(S)$ minus the maximum of $\left|B_{1} \cap B_{2}\right|$ over such B_{1}, B_{2}. This last maximum is characterized in the matroid intersection theorem, yielding the present corollary.

The following result of Rado [1942] (a generalization of Hall's marriage theorem (Theorem 22.1), and therefore sometimes called the Rado-Hall theorem) may be derived from the matroid intersection theorem, applied to M and the transversal matroid M_{2} induced by \mathcal{X}.

Corollary 41.1c (Rado's theorem). Let $M=(S, \mathcal{I})$ be a matroid, with rank function r, and let $\mathcal{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a family of subsets of S. Then \mathcal{X} has a transversal which is independent in M if and only if

$$
\begin{equation*}
r\left(\bigcup_{i \in I} X_{i}\right) \geq|I| \tag{41.5}
\end{equation*}
$$

for each $I \subseteq\{1, \ldots, n\}$.
Proof. Let r_{2} be the rank function of the transversal matroid M_{2} induced by \mathcal{X}. By the matroid intersection theorem, M and M_{2} have a common independent set of size n if and only if

$$
\begin{equation*}
r(U)+r_{2}(S \backslash U) \geq n \text { for each } U \subseteq S \tag{41.6}
\end{equation*}
$$

Now for each $T \subseteq S$ one has (by Kőnig's matching theorem (cf. Corollary 22.2a)):

$$
\begin{equation*}
r_{2}(T)=\min _{I \subseteq\{1, \ldots, n\}}\left(\left|\bigcup_{i \in I} X_{i} \cap T\right|+n-|I|\right) . \tag{41.7}
\end{equation*}
$$

So (41.6) is equivalent to:

$$
\begin{equation*}
r(U)+\left|\bigcup_{i \in I} X_{i} \backslash U\right|+n-|I| \geq n \tag{41.8}
\end{equation*}
$$

for all $U \subseteq S$ and $I \subseteq\{1, \ldots, n\}$. We can assume that $U=\bigcup_{i \in I} X_{i}$, since replacing U by $\bigcup_{i \in I} X_{i}$ does not increase the left-hand side in (41.8). So the condition is equivalent to (41.5), proving the corollary.

Notes. Mirsky [1971a] gave an alternative proof of Rado's theorem. Welsh [1970] showed that, in turn, Rado's theorem implies the matroid intersection theorem. Las Vergnas [1970] gave an extension of Rado's theorem. Rado [1942] (and also Welsh [1971]) showed that Rado's theorem in fact characterizes matroids. Perfect [1969a] generalized Rado's theorem to characterizing the maximum size of an independent partial transversal. Related results are in Perfect [1971].

41.1a. Applications of the matroid intersection theorem

In this section we mention a number of applications of the matroid intersection theorem. Further applications will be given in the next chapter on matroid union.

Kőnig's theorems. Let $G=(V, E)$ be a bipartite graph, with colour classes U_{1} and U_{2}. For $i=1,2$, let $M_{i}=\left(E, \mathcal{I}_{i}\right)$ be the matroid with $F \subseteq E$ independent if and only if each vertex in U_{i} is covered by at most one edge in F.

So M_{1} and M_{2} are partition matroids. The common independent sets in M_{1} and M_{2} are the matchings in G, and the common spanning sets are the edge covers in G. For $i=1,2$ and $F \subseteq E$, the rank $r_{i}(F)$ of F in M_{i} is equal to the number of vertices in U_{i} covered by F.

By the matroid intersection theorem, the maximum size of a matching in G is equal to the minimum of $r_{1}(F)+r_{2}(E \backslash F)$ taken over $F \subseteq E$. This last is equal to the minimum size of a vertex cover in G. So we have Kőnig's matching theorem (Theorem 16.2).

Similarly, by Corollary 41.1b, the minimum size of an edge cover in G (assuming G has no isolated vertices), is equal to the maximum of $|V|-r_{1}(F)-r_{2}(E \backslash F)$ taken over $F \subseteq E$. This last is equal to the maximum size of a stable set in G. So we have the Kőnig-Rado edge cover theorem (Theorem 19.4).

Common transversals. Let $\mathcal{X}=\left(X_{1}, \ldots, X_{m}\right)$ and $\mathcal{Y}=\left(Y_{1}, \ldots, Y_{m}\right)$ be families of subsets of a finite set S. Then the matroid intersection theorem implies Theorem 23.1 of Ford and Fulkerson [1958c]: \mathcal{X} and \mathcal{Y} have a common transversal if and only if

$$
\begin{equation*}
\left|X_{I} \cap Y_{J}\right| \geq|I|+|J|-m \tag{41.9}
\end{equation*}
$$

for all subsets I and J of $\{1, \ldots, m\}$, where $X_{I}:=\bigcup_{i \in I} X_{i}$ and $Y_{J}:=\bigcup_{j \in J} Y_{j}$.
To see this, let M_{1} and M_{2} be the transversal matroids induced by \mathcal{X} and \mathcal{Y} respectively, with rank functions r_{1} and r_{2} say. So \mathcal{X} and \mathcal{Y} have a common transversal if and only if M_{1} and M_{2} have a common independent set of size m. By Theorem 41.1, this last holds if and only if $r_{1}(Z)+r_{2}(S \backslash Z) \geq m$ for each $Z \subseteq S$. Using Kőnig's matching theorem, this is equivalent to:

$$
\begin{equation*}
\min _{I \subseteq\{1, \ldots, m\}}\left(m-|I|+\left|X_{I} \cap Z\right|\right)+\min _{J \subseteq\{1, \ldots, m\}}\left(m-|J|+\left|Y_{J} \backslash Z\right|\right) \geq m \tag{41.10}
\end{equation*}
$$

for each $Z \subseteq S$. Equivalently, for all $I, J \subseteq\{1, \ldots, m\}$:

$$
\begin{equation*}
\min _{Z \subseteq S}\left(m-|I|+\left|X_{I} \cap Z\right|+m-|J|+\left|Y_{J} \backslash Z\right|\right) \geq m \tag{41.11}
\end{equation*}
$$

As this minimum is attained by $Z:=Y_{J}$, this is equivalent to (41.9).
Coloured trees. Let $G=(V, E)$ be a graph and let the edges of G be coloured with k colours. That is, we have partitioned E into sets E_{1}, \ldots, E_{k}, called colours. Then there exists a spanning tree with all edges coloured differently if and only if $G-F$ has at most $t+1$ components, for any union F of t colours, for any $t \geq 0$. This follows from the matroid intersection theorem applied to the cycle matroid $M(G)$ of G and the partition matroid N induced by E_{1}, \ldots, E_{k}.

Indeed, $M(G)$ and N have a common independent set of size $|V|-1$ if and only if $r_{M(G)}(E \backslash F)+r_{N}(F) \geq|V|-1$ for each $F \subseteq E$. Now $r_{N}(F)$ is equal to the number of E_{i} intersecting F. So we can assume that F is equal to the union of t of the E_{i}, with $t:=r_{N}(F)$. Moreover, $r_{M(G)}(E \backslash F)$ is equal to $|V|-\kappa(G-F)$, where $\kappa(G-F)$ is the number of components of $G-F$. So the requirement is that $|V|-\kappa(G-F)+t \geq|V|-1$. In other words, $\kappa(G-F) \leq t+1$.

Detachments. The following is a special case of a theorem of Nash-Williams [1985], which he derived from the matroid intersection theorem - in fact it is a consequence of the result on coloured trees given above.

Let $G=(V, E)$ be a graph and let $b: V \longrightarrow \mathbb{Z}_{+}$. Call a graph $\widetilde{G}=(\widetilde{V}, \widetilde{E})$ a b-detachment of G if there is a function $\phi: \widetilde{V} \longrightarrow V$ such that $\left|\phi^{-1}(v)\right|=b(v)$ for each $v \in V$, and such that there is a one-to-one function $\psi: \widetilde{E} \longrightarrow E$ with $\psi(e)=\{\phi(u), \phi(v)\}$ for each edge $e=u v$ of \widetilde{G}.

Then there exists a connected b-detachment if and only if

$$
\begin{equation*}
b(U)+\kappa(G-U) \leq\left|E_{U}\right|+1 \text { for each } U \subseteq V, \tag{41.12}
\end{equation*}
$$

where $\kappa\left(G^{\prime}\right)$ denotes the number of components of graph G^{\prime} and where E_{U} denotes the set of edges intersecting U.

To see this, let $H=\left(V, E^{\prime}\right)$ be the graph obtained from G by replacing each vertex v by $b(v)$ new vertices, and by connecting for each edge $e=u v$ of G, the $b(u)$ new vertices associated with u with the $b(v)$ new vertices associated with v. We assign to these $b(u) b(v)$ edges the 'colour' e.

Then there exists a connected b-detachment if and only if H has a spanning tree in which all edges have a different colour. By the previous example, such a spanning tree exists if and only if for each $F \subseteq E$, deleting from H the edges with colour in F gives a graph H^{\prime} with at most $|F|+1$ components.

Now the number of components of H^{\prime} is equal to the $\kappa(G-F)+b\left(I_{F}\right)-\left|I_{F}\right|$, where I_{F} denotes the set of isolated (hence loopless) vertices of $G-F$. So the condition is equivalent to: $\kappa(G-F)-|F|+b\left(I_{F}\right)-\left|I_{F}\right| \leq 1$. As $\kappa(G-F)-|F|$ does not decrease by removing edges from F, we can assume that F is equal to the set of edges incident with I_{F}. So F is determined by $U:=I_{F}$, namely $F=E_{U}$. Then $\kappa(G-F)-\left|I_{F}\right|=\kappa(G-U)$. So the condition is equivalent to (41.12).

41.1b. Woodall's proof of the matroid intersection theorem

P.D. Seymour attributed the following proof of the matroid intersection theorem to D.R. Woodall (cf. Seymour [1976a]):

Let k be the value of (41.1). Let $x \in S$ be such that $r_{1}(\{x\})=r_{2}(\{x\})=1$. (If no such x exists the theorem is trivial, as in that case the minimum is 0 .) Let $Y:=S \backslash\{x\}$. Now we may assume that the restrictions $M_{1} \backslash x$ and $M_{2} \backslash x$ have no common independent set of size k. So, by induction,

$$
\begin{equation*}
r_{1}\left(A_{1}\right)+r_{2}\left(A_{2}\right) \leq k-1 \tag{41.13}
\end{equation*}
$$

for some partition A_{1}, A_{2} of Y. Moreover, the contractions M_{1} / x and M_{2} / x have no common independent set of size $k-1$ (otherwise we can add x to obtain a common independent set of size k for M_{1} and M_{2}). So, by induction,

$$
\begin{equation*}
r_{1}\left(B_{1} \cup\{x\}\right)-1+r_{2}\left(B_{2} \cup\{x\}\right)-1 \leq k-2 \tag{41.14}
\end{equation*}
$$

(cf. (39.9) above), for some partition B_{1}, B_{2} of Y. However,

$$
\begin{align*}
& r_{1}\left(A_{1} \cap B_{1}\right)+r_{1}\left(A_{1} \cup B_{1} \cup\{x\}\right) \leq r_{1}\left(A_{1}\right)+r_{1}\left(B_{1} \cup\{x\}\right), \tag{41.15}\\
& r_{2}\left(A_{2} \cap B_{2}\right)+r_{2}\left(A_{2} \cup B_{2} \cup\{x\}\right) \leq r_{2}\left(A_{2}\right)+r_{2}\left(B_{2} \cup\{x\}\right),
\end{align*}
$$

by the submodularity (cf. (39.38)(ii)) of the rank functions. Moreover, by the definition of k,

$$
\begin{align*}
& k \leq r_{1}\left(A_{1} \cap B_{1}\right)+r_{2}\left(A_{2} \cup B_{2} \cup\{x\}\right), \tag{41.16}\\
& k \leq r_{1}\left(A_{1} \cup B_{1} \cup\{x\}\right)+r_{2}\left(A_{2} \cap B_{2}\right),
\end{align*}
$$

as $A_{1} \cap B_{1}, A_{2} \cup B_{2} \cup\{x\}$ and $A_{1} \cup B_{1} \cup\{x\}, A_{2} \cap B_{2}$ form partitions of S. Adding the inequalities in (41.13), (41.14), (41.15), and (41.16) gives a contradiction.

41.2. Cardinality matroid intersection algorithm

A maximum-size common independent set can be found in polynomial time. This result follows from the matroid union algorithm of Edmonds [1968], since (as Edmonds [1970b] and Lawler [1970] observed) cardinality matroid intersection can be reduced to matroid union.

We describe below the direct algorithm given by Aigner and Dowling [1971] and Lawler [1975], based on finding paths in auxiliary graphs. A different algorithm was given by Edmonds [1979].

Note that the examples given in Section 41.1a provide applications for the matroid intersection algorithm. We should note that in the algorithm we require that in any matroid $M=(S, \mathcal{I})$, we can test in polynomial time if any subset of S belongs to \mathcal{I} - no explicit list of all sets in \mathcal{I} is required. Thus complexity results are all relative to the complexity of testing independence. As such a membership testing algorithm exists in each example mentioned, we obtain polynomial-time algorithms for these special cases.

For any two matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ and any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$, we define a directed graph $D_{M_{1}, M_{2}}(I)$, with vertex set S, as follows. For any $y \in I, x \in S \backslash I$,
(y, x) is an arc of $D_{M_{1}, M_{2}}(I)$ if and only if $I-y+x \in \mathcal{I}_{1}$,
(x, y) is an arc of $D_{M_{1}, M_{2}}(I)$ if and only if $I-y+x \in \mathcal{I}_{2}$.

These are all arcs of $D_{M_{1}, M_{2}}(I)$. So this graph is the union of the graphs $D_{M_{1}}(I)$ and the reverse of $D_{M_{2}}(I)$ defined in Section 39.9.

The following is the base for finding a maximum-size common independent set in two matroids.

Cardinality common independent set augmenting algorithm

input: matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ and a set $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$;
output: a set $I^{\prime} \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ with $\left|I^{\prime}\right|>|I|$ (if any).
description of the algorithm: Consider the sets

$$
\begin{align*}
& X_{1}:=\left\{x \in S \backslash I \mid I \cup\{x\} \in \mathcal{I}_{1}\right\}, \tag{41.18}\\
& X_{2}:=\left\{x \in S \backslash I \mid I \cup\{x\} \in \mathcal{I}_{2}\right\} .
\end{align*}
$$

Moreover, consider the directed graph $D_{M_{1}, M_{2}}(I)$ defined above. There are two cases.

Case 1: $\boldsymbol{D}_{M_{1}, M_{2}}(\boldsymbol{I})$ has an $\boldsymbol{X}_{1}-\boldsymbol{X}_{\mathbf{2}}$ path \boldsymbol{P}. (Possibly of length 0 if $X_{1} \cap X_{2} \neq \emptyset$.) We take a shortest such path P (that is, with a minimum number of arcs). Now output $I^{\prime}:=I \triangle V P$.

Case 2: $D_{M_{1}, M_{2}}(I)$ has no $\boldsymbol{X}_{1}-\boldsymbol{X}_{\mathbf{2}}$ path. Then I is a maximum-size common independent set.

This finishes the description of the algorithm. The correctness of the algorithm is given by the following two theorems.

Theorem 41.2. If Case 1 applies, then $I^{\prime} \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.
Proof. Assume that Case 1 applies. By symmetry it suffices to show that I^{\prime} belongs to \mathcal{I}_{1}.

Let P start at $z_{0} \in X_{1}$. The arcs in P leaving I form the only matching in $D_{M_{1}}(I)$ with union equal to $V P-z_{0}$, since otherwise P would have a shortcut. Moreover, for each $z \in V P \backslash I$ with $z \neq z_{0}$, one has $I+z \notin \mathcal{I}_{1}$, since otherwise $z \in X_{1}$, and hence P would have a shortcut. So by Corollary 39.13a, I^{\prime} belongs to \mathcal{I}_{1}.

Theorem 41.3. If Case 2 applies, then I is a maximum-size common independent set.

Proof. As Case 2 applies, there is no $X_{1}-X_{2}$ path in $D_{M_{1}, M_{2}}(I)$. Hence there is a subset U of S with $X_{1} \cap U=\emptyset$ and $X_{2} \subseteq U$, and such that no arc enters U. We show

$$
\begin{equation*}
r_{M_{1}}(U)+r_{M_{2}}(S \backslash U) \leq|I| \tag{41.19}
\end{equation*}
$$

To this end, we first show

$$
\begin{equation*}
r_{M_{1}}(U) \leq|I \cap U| . \tag{41.20}
\end{equation*}
$$

Suppose that $r_{M_{1}}(U)>|I \cap U|$. Then there exists an x in $U \backslash I$ such that $(I \cap U) \cup\{x\} \in \mathcal{I}_{1}$. Since $I \cup\{x\} \notin \mathcal{I}_{1}$ (as $\left.x \notin X_{1}\right)$, there is a $y \in I \backslash U$ with $I-y+x \in \mathcal{I}_{1}$. But then $D_{M_{1}}(I)$ has an arc from y to x, contradicting the facts that $x \in U$ and $y \notin U$ and that no arc enters U.

This shows (41.20). Similarly, $r_{M_{2}}(S \backslash U) \leq|I \backslash U|$. Hence we have (41.19). So by the matroid intersection theorem, I is a maximum-size common independent set.

Clearly, the running time of the algorithm is polynomially bounded, since we can construct the auxiliary directed graph $D_{M_{1}, M_{2}}(I)$ and find the path P (if any), in polynomial time. Therefore:

Theorem 41.4. A maximum-size common independent set in two matroids can be found in polynomial time.

Proof. Directly from the above, as we can find a maximum-size common independent set after applying at most $|S|$ times the common independent set augmenting algorithm.

The algorithm also yields a proof of the matroid intersection theorem (Theorem 41.1 above): if the algorithm stops with set I, we obtain a set U for which (41.19) holds.

Notes. The above algorithm can be shown to take $O\left(n^{2} m(n+Q)\right)$ time, where n is the maximum size of a common independent set, m is the size of the underlying set, and Q is the time needed to test if a given set is independent (in either matroid). Cunningham [1986] showed that if one chooses a shortest path as augmenting path, the sum of the lengths of all augmenting paths chosen is $O(n \log n)$, which gives an $O\left(n^{3 / 2} m Q\right)$-time algorithm. This algorithm extends several of the ideas behind the $O\left(n^{1 / 2} m\right)$ algorithm of Hopcroft, Karp, and Karzanov for cardinality bipartite matching (see Section 16.4). For more efficient algorithms, see Gabow and Tarjan [1984], Gusfield [1984], Gabow and Stallmann [1985], Frederickson and Srinivas [1989], Gabow and Xu [1989,1996], and Fujishige and Zhang [1995].

The problem of finding a maximum-size common independent set in three matroids is NP-complete, as finding a Hamiltonian circuit in a directed graph is a special case (as was observed by Held and Karp [1970]). Another special case is finding a common transversal of three collections of sets, which is also NP-complete (Theorem 23.16). In particular, the k-intersection problem can be reduced to the 3 -intersection problem (cf. Lawler [1976b]).

Barvinok [1995] gave an algorithm for finding a maximum-size common independent set in k linear matroids, represented by given vectors over the rationals. The running time is linear in the cardinality of the underlying set and singly polynomial in the maximum rank of the matroids.

41.3. Weighted matroid intersection algorithm

Also a maximum-weight common independent set can be found in strongly polynomial time. This result was announced by Edmonds [1970b], who published an algorithm in Edmonds [1979]. An alternative algorithm (which we describe below) was announced by Lawler [1970] and described in Lawler [1975,1976b] - the correctness of this algorithm was proved by Krogdahl [1974,1976], using the results described in Section 39.9. A similar algorithm was described by Iri and Tomizawa [1976].

This algorithm is an extension of the cardinality matroid intersection algorithm given in Section 41.2. In each iteration, instead of finding a path P with a minimum number of arcs in $D_{M_{1}, M_{2}}(I)$, we will now require P to have minimum length with respect to some length function defined on $D_{M_{1}, M_{2}}(I)$.

To describe the algorithm, if matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ and a weight function $w: S \rightarrow \mathbb{R}$ are given, call a set $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ extreme if $w(J) \leq w(I)$ for each $J \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ satisfying $|J|=|I|$.

Weighted common independent set augmenting algorithm

input: matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$, a weight function $w: S \rightarrow$ \mathbb{Q}, and an extreme common independent set I;
output: an extreme common independent set I^{\prime} with $\left|I^{\prime}\right|=|I|+1$ (if any). description of the algorithm: Consider again the sets X_{1} and X_{2} and the directed graph $D_{M_{1}, M_{2}}(I)$ on S, as in the cardinality case.

For any $x \in S$ define the 'length' $l(x)$ of x by:

$$
l(x):=\left\{\begin{align*}
w(x) & \text { if } x \in I \tag{41.21}\\
-w(x) & \text { if } x \notin I
\end{align*}\right.
$$

The length of a path P, denoted by $l(P)$, is equal to the sum of the lengths of the vertices traversed by P.

Case 1: $\boldsymbol{D}_{M_{1}, M_{2}}(\boldsymbol{I})$ has an $\boldsymbol{X}_{\mathbf{1}}-\boldsymbol{X}_{\mathbf{2}}$ path \boldsymbol{P}. We choose P such that $l(P)$ is minimal and such that (secondly) P has a minimum number of arcs among all minimum-length $X_{1}-X_{2}$ paths. Set $I^{\prime}:=I \triangle V P$.

Case 2: $D_{M_{1}, M_{2}}(\boldsymbol{I})$ has no $X_{1}-X_{2}$ path. Then there is no common independent set larger than I.

This finishes the description of the algorithm. The correctness of the algorithm if Case 2 applies follows directly from Theorem 41.3. In order to show the correctness if Case 1 applies, we first prove the following basic property of the length function l.

Lemma 41.5 α. Let C be a directed circuit in $D_{M_{1}, M_{2}}(I)$ and let $t \in V C$. Define $J:=I \triangle V C$. If $J \notin \mathcal{I}_{1} \cap \mathcal{I}_{2}$, then there exists a directed circuit C^{\prime} with $V C^{\prime} \subset V C$ such that $l\left(V C^{\prime}\right)<0$, or $l\left(V C^{\prime}\right) \leq l(V C)$ and $t \in V C^{\prime}$.

Proof. By symmetry we can assume that $J \notin \mathcal{I}_{1}$. Let N_{1} and N_{2} be the sets of arcs in C belonging to $D_{M_{1}}(I)$ and $D_{M_{2}}(I)$ respectively. As $J \notin \mathcal{I}_{1}$, there exists, by Theorem 39.13, a matching N_{1}^{\prime} in $D_{M_{1}}(I)$ with union $V C$ and with $N_{1}^{\prime} \neq N_{1}$. Consider the directed graph $D=(V C, A)$ formed by the arcs in N_{1}, N_{1}^{\prime} (taking arcs in $N_{1} \cap N_{1}^{\prime}$ parallel), and by the arcs in N_{2} taking each of them twice (parallel). Then each vertex in $V C$ is entered and left by exactly two arcs of D. Moreover, since $N_{1}^{\prime} \neq N_{1}, D$ contains a directed circuit C_{1} with $V C_{1} \subset V C$ (as N_{1}^{\prime} contains a chord of C). As D is Eulerian, we can extend this to a decomposition of A into directed circuits C_{1}, \ldots, C_{k}. Then

$$
\begin{equation*}
\chi^{V C_{1}}+\cdots+\chi^{V C_{k}}=2 \cdot \chi^{V C} \tag{41.22}
\end{equation*}
$$

Since $V C_{1} \neq V C$ we know that $V C_{j}=V C$ for at most one j. If, say $V C_{k}=$ $V C$, then (41.22) implies that either $l\left(V C_{j}\right)<0$ for some $j<k$ or $l\left(V C_{j}\right) \leq$ $l(V C)$ for all $j<k$, implying the proposition.

Suppose next that $V C_{j} \neq V C$ for all j. If $l\left(V C_{j}\right)<0$ for some $j \leq k$ we are done. So assume $l\left(V C_{j}\right) \geq 0$ for each $j \leq k$. We can assume that C_{1} and C_{2} traverse t. Then

$$
\begin{equation*}
l\left(V C_{1}\right)+l\left(V C_{2}\right) \leq l\left(V C_{1}\right)+\cdots+l\left(V C_{k}\right)=2 l(V C) \tag{41.23}
\end{equation*}
$$

Hence $l\left(V C_{1}\right) \leq l(V C)$ or $l\left(V C_{2}\right) \leq l(V C)$, and again we are done.
This implies (Krogdahl [1976], Fujishige [1977a]):
Theorem 41.5. Let $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. Then I is extreme if and only if $D_{M_{1}, M_{2}}(I)$ has no directed circuit of negative length.

Proof. To see necessity, suppose that $D_{M_{1}, M_{2}}(I)$ has a directed circuit C of negative length. Choose C with $|V C|$ minimal. Consider $J:=I \triangle V C$. Since $w(J)=w(I)-l(C)>w(I)$, while $|J|=|I|$, we know that $J \notin \mathcal{I}_{1} \cap \mathcal{I}_{2}$. Hence by Lemma $41.5 \alpha, D_{M_{1}, M_{2}}(I)$ has a negative-length directed circuit covering fewer than $|V C|$ vertices, contradicting our assumption.

To see sufficiency, consider a $J \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ with $|J|=|I|$. By Corollary 39.12a, both $D_{M_{1}}(I)$ and $D_{M_{2}}(I)$ have a perfect matching on $I \triangle J$. These two matchings together form a vertex-disjoint union of a number of directed circuits C_{1}, \ldots, C_{t}. Then

$$
\begin{equation*}
w(I)-w(J)=\sum_{j=1}^{t} l\left(V C_{j}\right) \geq 0 \tag{41.24}
\end{equation*}
$$

implying $w(J) \leq w(I)$. So I is extreme.
This theorem implies that we can find a shortest path P, in Case 1 of the algorithm, in strongly polynomial time (with the Bellman-Ford method). It also gives:

Theorem 41.6. If Case 1 applies, I^{\prime} is an extreme common independent set.

Proof. We first show that $I^{\prime} \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$. To this end, let t be a new element, and extend (for each $i=1,2), M_{i}$ to a matroid $M_{i}^{\prime}=\left(S+t, \mathcal{I}_{i}^{\prime}\right)$, where for each $T \subseteq S+t$:
(41.25) $T \in \mathcal{I}_{i}^{\prime}$ if and only if $T-t \in \mathcal{I}_{i}$.

Note that $D_{M_{1}^{\prime}, M_{2}^{\prime}}(I+t)$ arises from $D_{M_{1}, M_{2}}(I)$ by extending it with a new vertex t and adding arcs from t to each vertex in X_{1}, and from each vertex in X_{2} to t.

Let P be the path found in the algorithm. Define

$$
\begin{equation*}
w(t):=l(t):=-l(P) \tag{41.26}
\end{equation*}
$$

As P is a shortest $X_{1}-X_{2}$ path, this makes that $D_{M_{1}^{\prime}, M_{2}^{\prime}}(I+t)$ has no negative-length directed circuit. Hence, by Theorem 41.5, $I+t$ is an extreme common independent set of M_{1}^{\prime} and M_{2}^{\prime}.

Let P run from $z_{1} \in X_{1}$ to $z_{2} \in X_{2}$. Extend P by the $\operatorname{arcs}\left(t, z_{1}\right)$ and $\left(z_{2}, t\right)$ to a directed circuit C. So $J=(I+t) \triangle V C$. As P has a minimum number of arcs among all shortest $X_{1}-X_{2}$ paths, and as $D_{M_{1}^{\prime}, M_{2}^{\prime}}(I+t)$ has no negative-length directed circuits, by Lemma 41.5α we know that $J \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$.

Moreover, J is extreme, since $I+t$ is extreme and $w(J)=w(I+t)$.
So the weighted common independent set augmenting algorithm is correct. It obviously has strongly polynomially bounded running time. Therefore:

Theorem 41.7. A maximum-weight common independent set in two matroids can be found in strongly polynomial time.

Proof. Starting with the extreme common independent set $I_{0}:=\emptyset$ we can find iteratively extreme common independent sets $I_{0}, I_{1}, \ldots, I_{k}$, where $\left|I_{i}\right|=i$ for $i=0, \ldots, k$ and where I_{k} is a maximum-size common independent set. Taking one among I_{0}, \ldots, I_{k} of maximum weight, we have a maximum-weight common independent set.

The above algorithm gives a maximum-weight common independent set of size k, for each k. In particular, a maximum-weight common base can be found with the algorithm. Similarly for minimum-weight:

Theorem 41.8. A minimum-weight common base in two matroids can be found in strongly polynomial time.

Proof. The last extreme common independent set in the above algorithm is a maximum-weight common base. By flipping the signs of the weights, this can be turned into a minimum-weight common base algorithm.

Notes. Frank [1981a] gave an $O\left(\tau n^{3}\right)$-time implementation of this algorithm, where τ is the time needed to test for any $I \in \mathcal{I}_{i}$ and any $s \in S$ whether or not $I \cup\{s\} \in \mathcal{I}_{i}$, and if not, to find a circuit of M_{i} contained in $I \cup\{s\}$.

Clearly, a maximum-weight common independent set need not be a common base, even if common bases exist and all weights are positive: Let $S=\{1,2,3\}$ and let M_{i} be the matroid on S with unique circuit $S \backslash\{i\}$ (for $i=1,2$). Define $w(1):=w(2):=1$ and $w(3):=3$. Then $\{3\}$ is the unique maximum-weight common independent set, while $\{1,2\}$ is the unique common base.

41.3a. Speeding up the weighted matroid intersection algorithm

The algorithm described in Section 41.3 is strongly polynomial-time, since we can find a shortest path P in strongly polynomial time, as in each iteration the graph $D_{M_{1}, M_{2}}(I)$ has no negative-length directed circuit. Hence we can apply the BellmanFord method. To bound the running time, suppose that we can construct, for any $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ the graph $D_{M_{1}, M_{2}}(I)$ in time T. Then any iteration can be done in time $O\left(T+n^{3}\right)$, where $n:=|S|$.

We can improve this to $O(T+n \log n)$ as follows (Frank [1981a], Brezovec, Cornuéjols, and Glover [1986]). The idea is that, in each iteration, with the extreme common independent set I, we give a 'certificate' of extremity, by specifying a potential for the length function; that is, a function $p \in \mathbb{Q}^{S}$ satisfying

$$
\begin{equation*}
l(v) \geq p(v)-p(u) \tag{41.27}
\end{equation*}
$$

for each arc (u, v) of $D_{M_{1}, M_{2}}(I)$. By Theorem 41.5, such a potential certifies extremity of I. We call such a p a potential for I.

Having the potential, we can apply Dijkstra's method instead of the BellmanFord method, as with the potential we can transform the length function (if defined on arcs) to a nonnegative length function.

It is convenient to associate the following functions $w_{1}, w_{2}: S \rightarrow \mathbb{R}$ to $p, w:$ $S \rightarrow \mathbb{R}$:

$$
\begin{align*}
& w_{1}(v)=p(v) \text { and } w_{2}(v)=w(v)-p(v) \text { if } v \in I \tag{41.28}\\
& w_{1}(v)=w(v)+p(v) \text { and } w_{2}(v)=-p(v) \text { if } v \in S \backslash I
\end{align*}
$$

So $w=w_{1}+w_{2}$. Then:

Theorem 41.9. Let $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ and let $p, w, w_{1}, w_{2}: S \rightarrow \mathbb{R}$ satisfy (41.28). Then p is a potential for $D_{M_{1}, M_{2}}(I)$ if and only if for $i=1,2$ one has

$$
\begin{equation*}
I \text { maximizes } w_{i}(X) \text { over all } J \in \mathcal{I}_{i} \text { satisfying }|J|=|I| \tag{41.29}
\end{equation*}
$$

Proof. The theorem follows easily with Corollary 39.12b. Indeed, there is an arc (u, v) leaving I if and only if $I-u+v \in \mathcal{I}_{1}$. Then

$$
\begin{equation*}
w_{1}(v) \leq w_{1}(u) \Longleftrightarrow l(v) \geq p(v)-p(u) \tag{41.30}
\end{equation*}
$$

since $l(v)=-w(v)=-w_{2}(v)-w_{1}(v)$ and $-w_{2}(v)-w_{1}(u)=p(v)-p(u)$.
Similarly, there is an $\operatorname{arc}(u, v)$ entering I if and only if $I-v+u \in \mathcal{I}_{2}$. Then

$$
\begin{equation*}
w_{2}(v) \geq w_{2}(u) \Longleftrightarrow l(v) \geq p(v)-p(u) \tag{41.31}
\end{equation*}
$$

since $l(v)=w(v)=w_{2}(v)+w_{1}(v)$ and $w_{2}(u)+w_{1}(v)=p(v)-p(u)$.
We trivially have a potential for $I:=\emptyset$. Consider next an arbitrary iteration, with as input a common independent set I and a potential p for I. Construct $D_{M_{1}, M_{2}}(I)$ and l as before. Let P be an $X_{1}-X_{2}$ path with $l(P)$ minimum, and, under this condition, with $|V P|$ minimum. (Using the potential described above, we can find P with Dijkstra's algorithm.) Let $I^{\prime}:=I \triangle V P$.

We now reset the potential p such that for any $v \in S$ with v reachable from $X_{1}, p(v)$ is equal to the distance from X_{1} to $v(=$ the minimum of $l(V Q)$ over all $X_{1}-v$ paths Q in $\left.D_{M_{1}, M_{2}}(I)\right)$.

Let w_{1} and w_{2} satisfy (41.28) with respect to I, (the new) p, and w. Then:
Theorem 41.10. w_{1}, w_{2} satisfy (41.29) with respect to I^{\prime}.
Proof. Extend M_{1} and M_{2} to matroids $M_{1}^{\prime}=\left(S+t, \mathcal{I}_{1}^{\prime}\right)$ and $M_{2}^{\prime}=\left(S+t, \mathcal{I}_{2}^{\prime}\right)$ as in (41.25). Let P run from $z_{1} \in X_{1}$ to $z_{2} \in X_{2}$. Define $w(t):=l(t):=-l(P)$, $p(t):=0, w_{1}(t):=0$, and $w_{2}(t):=w(t)$. Now it suffices to show:
(i) $w_{i}(I+t)=w_{i}\left(I^{\prime}\right)$ for $i=1,2$;
(ii) w_{1}, w_{2} satisfy (41.29) with respect to $M_{1}^{\prime}, M_{2}^{\prime}$, and $I+t$.

Let C be the directed circuit obtained by extending P by the $\operatorname{arcs}\left(t, z_{1}\right)$ and $\left(z_{2}, t\right)$. Now, since $I^{\prime}=(I+t) \triangle V C$, to show (41.32), it suffices to show, for each arc (u, v) :
if (u, v) leaves $I+t$, then $w_{1}(v) \leq w_{1}(u)$, with equality if (u, v) is on C;
if (u, v) enters $I+t$, then $w_{2}(u) \leq w_{2}(v)$, with equality if (u, v) is on C.
Note that for each arc (u, v) of $D_{M_{1}^{\prime}, M_{2}^{\prime}}(I+t)$ one has $p(v) \leq p(u)+l(v)$, with equality if (u, v) is on C. Hence, if $(u, v)^{2}$ leaves $I+t$, then:

$$
\begin{equation*}
w_{1}(v)=p(v)+w(v)=p(v)-l(v) \leq p(u)=w_{1}(u) \tag{41.34}
\end{equation*}
$$

with equality if (u, v) is on C.
Similarly, if (u, v) enters $I+t$, then:

$$
\begin{equation*}
w_{2}(v)=w(v)-p(v)=l(v)-p(v) \geq-p(u)=w_{2}(u) \tag{41.35}
\end{equation*}
$$

with equality if (u, v) is on C. This proves (41.33).
Using (41.28) and Theorem 41.9, we can obtain from w_{1}, w_{2} a potential for I^{\prime}. This implies:

Corollary 41.10a. A maximum-weight common independent set can be found in time $O(k(T+n \log n))$, where $n:=|S|, k$ is the maximum size of a common independent set, and T is the time needed to find $D_{M_{1}, M_{2}}(I)$ for any common independent set I.

Proof. Each iteration can be done in time $O(T+n \log n)$, since constructing the graph $D_{M_{1}, M_{2}}(I)$ takes T time, implying that there are $O(T)$ arcs. Hence, by Corollary 7.7a, a shortest $X_{1}-X_{2}$ path P can be found in $O(T+n \log n)$ time. Hence I^{\prime}, and a potential for I^{\prime} can be found in time $O(T+n \log n)$.

Since there are k iterations, we have the time bound given.
In applications where the matroids are specifically given, one can often derive a better time bound, by obtaining $D_{M_{1}, M_{2}}\left(I^{\prime}\right)$ not from scratch, but by adapting $D_{M_{1}, M_{2}}(I)$. See also Brezovec, Cornuéjols, and Glover [1986] and Gabow and Xu [1989,1996].

41.4. Intersection of the independent set polytopes

It turns out that the intersection of the independent set polytopes of two matroids gives exactly the convex hull of the common independent sets, as was shown by Edmonds [1970b] ${ }^{27}$.

We first prove a very useful theorem, due to Edmonds [1970b], which we often will apply in this part. (A more general statement and interpretation in terms of network matrices will be given in Section 13.4.)

A family \mathcal{C} of sets is called laminar if

$$
\begin{equation*}
Y \subseteq Z \text { or } Z \subseteq Y \text { or } Y \cap Z=\emptyset \tag{41.36}
\end{equation*}
$$

for all $Y, Z \in \mathcal{C}$.
Theorem 41.11. Let \mathcal{C} be the union of two laminar families of subsets of a set X. Let A be the $\mathcal{C} \times X$ incidence matrix of \mathcal{C}. Then A is totally unimodular.

[^11]Proof. Let A be a counterexample with $|\mathcal{C}|+|X|$ minimal, and (secondly) with a minimal number of 1 's. Then A is nonsingular and has determinant $\neq \pm 1$. Let \mathcal{C}_{1} and \mathcal{C}_{2} be laminar families, with union \mathcal{C}.

If each \mathcal{C}_{i} consists of pairwise disjoint sets, then A is the incidence matrix of a bipartite graph, added with some unit base vectors. Hence A is totally unimodular, a contradiction.

If say \mathcal{C}_{1} does not consist of pairwise disjoint sets, \mathcal{C}_{1} contains a smallest nonempty set Y that is contained in some other set Z in \mathcal{C}_{1}. Choose Z smallest. Replacing Z by $Z \backslash Y$, maintains laminarity of \mathcal{C}_{1}. As this does not change the determinant of the corresponding matrix (as it amounts to subtracting row indexed Y from row indexed Z), we would have a counterexample with a smaller number of 1's, a contradiction.

Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2}. By Corollary 40.2a, the intersection $P_{\text {independent set }}\left(M_{1}\right) \cap$ $P_{\text {independent set }}\left(M_{2}\right)$ of the independent set polytopes associated with the matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ is determined by:

$$
\begin{equation*}
\text { (i) } \quad x_{s} \geq 0 \quad \text { for } s \in S \tag{41.37}
\end{equation*}
$$

(ii) $\quad x(U) \leq r_{i}(U) \quad$ for $i=1,2$ and $U \subseteq S$.

Trivially, this intersection contains the convex hull of the incidence vectors of common independent sets of M_{1} and M_{2}. We shall see that these two polytopes are equal.

Basis is the following result of Edmonds [1970b], whose proof we follow (it constitutes the base of a fundamental technique developed further in several other results).

Theorem 41.12. System (41.37) is box-totally dual integral.
Proof. Choose $w \in \mathbb{Z}^{S}$. Consider the linear programming problem dual to maximizing $w^{\top} x$ over the constraints (41.37)(ii):

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{U \subseteq S}\left(y_{1}(U) r_{1}(U)+y_{2}(U) r_{2}(U)\right) \tag{41.38}\\
\text { where } & y_{1}, y_{2} \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \\
& \sum_{U \subseteq S}\left(y_{1}(U)+y_{2}(U)\right) \chi^{U}=w .
\end{array}
$$

Let y_{1}, y_{2} attain this minimum, such that

$$
\begin{equation*}
\sum_{U \subseteq S}\left(y_{1}(U)+y_{2}(U)\right)|U||S \backslash U| \tag{41.39}
\end{equation*}
$$

is minimized. Define

$$
\begin{equation*}
\mathcal{F}_{i}:=\left\{U \subseteq S \mid y_{i}(U)>0\right\} \tag{41.40}
\end{equation*}
$$

for $i=1,2$. We show that for $i=1,2$, the collection \mathcal{F}_{i} is a chain; that is,

$$
\begin{equation*}
\text { if } T, U \in \mathcal{F}_{i}, \text { then } T \subseteq U \text { or } U \subseteq T \text {. } \tag{41.41}
\end{equation*}
$$

Suppose not. Choose $\alpha:=\min \left\{y_{i}(T), y_{i}(U)\right\}$, and decrease $y_{i}(T)$ and $y_{i}(U)$ by α, and increase $y_{i}(T \cap U)$ and $y_{i}(T \cup U)$ by α. Since

$$
\begin{equation*}
\chi^{T}+\chi^{U}=\chi^{T \cap U}+\chi^{T \cup U} \tag{41.42}
\end{equation*}
$$

y_{1}, y_{2} remains a feasible solution of (41.38); and since

$$
\begin{equation*}
r_{i}(T)+r_{i}(U) \geq r_{i}(T \cap U)+r_{i}(T \cup U) \tag{41.43}
\end{equation*}
$$

it remains optimum. However, sum (41.39) decreases (by Theorem 2.1), contradicting the minimality assumption. So \mathcal{F}_{1} and \mathcal{F}_{2} are chains.

As the constraints in (41.37)(ii) corresponding to \mathcal{F}_{1} and \mathcal{F}_{2} form a totally unimodular matrix (by Theorem 41.11), by Theorem 5.35 system (41.37)(ii) is box-TDI, and hence (41.37) is box-TDI.
(The fact that the \mathcal{F}_{i} can be taken to be chains also follows directly from the proof method of Theorem 40.2.)

This implies a characterization of the common independent set polytope

$$
\begin{equation*}
P_{\text {common independent set }}\left(M_{1}, M_{2}\right) \tag{41.44}
\end{equation*}
$$

of two matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$, being the convex hull of the incidence vectors of the common independent sets of M_{1} and M_{2} :

Corollary 41.12a. $P_{\text {common independent set }}\left(M_{1}, M_{2}\right)$ is determined by (41.37).
Proof. Directly from Theorem 41.12, since it implies that the vertices of the polytope determined by (41.37) are integer, and hence are the incidence vectors of common independent sets.

Another way of stating this is:

Corollary 41.12b.

$$
\begin{align*}
& P_{\text {common independent set }}\left(M_{1}, M_{2}\right) \tag{41.45}\\
& =P_{\text {independent set }}\left(M_{1}\right) \cap P_{\text {independent set }}\left(M_{2}\right) .
\end{align*}
$$

Proof. From Corollary 41.12a, using the fact that (41.37) is the union of the constraints for the independent set polytopes of M_{1} and M_{2}, by Corollary 40.2b.

The total dual integrality of (41.37) gives the following extension of the matroid intersection theorem:

Corollary 41.12c. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2}, respectively, and let $w \in \mathbb{Z}_{+}^{S}$. Then the maximum value of $w(I)$ over $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ is equal to the minimum value of

$$
\begin{equation*}
r_{1}\left(U_{1}\right)+\cdots+r_{1}\left(U_{k}\right)+r_{2}\left(T_{1}\right)+\cdots+r_{2}\left(T_{l}\right) \tag{41.46}
\end{equation*}
$$

where $U_{1} \subseteq \cdots \subseteq U_{k} \subseteq S$ and $T_{1} \subseteq \cdots \subseteq T_{l} \subseteq S$ such that each element s of S occurs in precisely $w(s)$ sets among $U_{1}, \ldots, U_{k}, T_{1}, \ldots, T_{l}$.

Proof. Directly from Theorem 41.12 and its proof.
(Edmonds [1979] gave an algorithmic proof of this result.)
These corollaries cannot be extended to the intersection of the independent set polytopes of three matroids. Let $S=\{1,2,3\}$, and for $i=$ $1,2,3$, let M_{i} be the matroid on S with $S \backslash\{i\}$ as unique circuit. Then $P_{\text {independent set }}\left(M_{1}\right) \cap P_{\text {independent set }}\left(M_{2}\right) \cap P_{\text {independent set }}\left(M_{3}\right)$ contains the all- $\frac{1}{2}$ vector, while each integer vector in this intersection contains at most one 1. So the intersection is not the convex hull of the common independent sets.

Similar results hold for the common base polytope. For matroids M_{1} and M_{2}, let the common base polytope $P_{\text {common base }}\left(M_{1}, M_{2}\right)$ be the convex hull of the incidence vectors of common bases of M_{1} and M_{2}. Then:

Corollary 41.12d. $P_{\text {common base }}\left(M_{1}, M_{2}\right)=P_{\text {base }}\left(M_{1}\right) \cap P_{\text {base }}\left(M_{2}\right)$.
Proof. Directly from the foregoing.
So the common base polytope is determined by:

$$
\begin{array}{ll}
x_{s} \geq 0 & \text { for } s \in S \tag{41.47}\\
x(U) \leq r_{i}(U) & \text { for } i=1,2 \text { and } U \subseteq S, \\
x(S)=r_{i}(S) & \text { for } i=1,2
\end{array}
$$

Corollary 41.12e. System (41.47) is box-TDI.
Proof. From Theorem 41.12, with Theorem 5.25.
Moreover, similar results hold for the common spanning set polytope. For matroids M_{1} and M_{2}, let the common spanning set polytope, in notation $P_{\text {common spanning set }}\left(M_{1}, M_{2}\right)$, be the convex hull of the incidence vectors of common spanning sets of M_{1} and M_{2}. Then:

Corollary 41.12f.

$$
\begin{align*}
& P_{\text {common spanning set }}\left(M_{1}, M_{2}\right) \tag{41.48}\\
& =P_{\text {spanning set }}\left(M_{1}\right) \cap P_{\text {spanning set }}\left(M_{2}\right) .
\end{align*}
$$

Proof. This can be reduced to Corollary 41.12b on the common independent set polytope, by duality: x belongs to the spanning set polytope of M_{i} if and only if $\mathbf{1}-x$ belongs to the independent set polytope of M_{i}^{*}.

Similarly, x belongs to the common spanning set polytope of M_{1} and M_{2} if and only if $\mathbf{1}-x$ belongs to the common independent set polytope of M_{1}^{*} and M_{2}^{*}.

So the common spanning set polytope is determined by:

$$
\begin{array}{ll}
0 \leq x_{s} \leq 1 & \text { for } s \in S \tag{41.49}\\
x(U) \leq r_{i}(S)-r_{i}(S \backslash U) & \text { for } i=1,2 \text { and } U \subseteq S
\end{array}
$$

Corollary 41.12g. System (41.49) is box-TDI.
Proof. Again, this can be derived from Theorem 41.12, by replacing x by $1-x$.

Another consequence of Theorem 41.12 is:
Corollary 41.12h. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids and let $x \in \mathbb{R}_{+}^{S}$. Then
(41.50) $\max \left\{z(S) \mid z \leq x, z \in P_{\text {common independent set }}\left(M_{1}, M_{2}\right)\right\}$

$$
=\min \{r(U)+x(S \backslash U) \mid U \subseteq S\}
$$

where $r(U)$ denotes the maximum size of a common independent set contained in U.

Proof. This follows from the box-total dual integrality of (41.37), using the fact that $r\left(U_{1} \cup U_{2}\right) \leq r_{1}\left(U_{1}\right)+r_{2}\left(U_{2}\right)$ for disjoint U_{1}, U_{2}.

Cunningham [1984] showed that, if matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=$ $\left(S, \mathcal{I}_{2}\right)$ are given by independence testing oracles, one can find in strongly polynomial time for any $x \in \mathbb{Q}^{S}$, optimum solutions of (41.50). This will follow from the results in Section 47.4.

The result of Cunningham [1984] also implies:
Theorem 41.13. Given matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ by independence testing oracles, and given $x \in \mathbb{Q}^{S}$, one can test in strongly polynomial time if x belongs to the common independent set polytope, and if so, decompose x as a convex combination of incidence vectors of common independent sets.

Proof. Let r_{i} be the rank function of $M_{i}(i=1,2)$ and let $r(U):=$ $\min \left\{r_{1}(U), r_{2}(U)\right\}$ for $i=1,2$. Let P be the common independent set polytope. Corollaries 40.4 a and 41.12 b imply that one can test in strongly polynomial time if x belongs to P.

So we can assume that x belongs to P. We decompose x as a convex combination of incidence vectors of common independent sets. Iteratively resetting x, we keep a collection \mathcal{U} of subsets of S with $x(U)=r(U)$ for each $U \in \mathcal{U}$. Initially, $\mathcal{U}:=\emptyset$. We describe the iteration.

Define

$$
\begin{equation*}
F:=\left\{y \in P \mid \forall s \in S: x_{s}=0 \Rightarrow y_{s}=0 ; \forall U \in \mathcal{U}: y(U)=r(U)\right\} \tag{41.51}
\end{equation*}
$$

So F is a face of P containing x.
Find a common independent set I with $\chi^{I} \in F$. This can be done by finding a common independent set $I \subseteq \operatorname{supp}(x)$ maximizing $w^{\top} x$, where $w:=$ $\sum_{U \in \mathcal{U}} \chi^{U}$. $\left(\operatorname{Here} \operatorname{supp}(x)\right.$ is the support of $x ; \operatorname{so} \operatorname{supp}(x)=\left\{s \in S \mid x_{s}>0\right\}$.)

If $x=\chi^{I}$ we stop. Otherwise, define $u:=x-\chi^{I}$. Let λ be the largest rational such that

$$
\begin{equation*}
\chi^{I}+\lambda u \tag{41.52}
\end{equation*}
$$

belongs to P.
We describe an inner iteration to find λ. We consider vectors z along the halfline $L=\left\{\chi^{I}+\lambda u \mid \lambda \geq 0\right\}$. First we let λ be the largest rational with $\chi^{I}+\lambda u \geq \mathbf{0}$, and set $z:=\chi^{I}+\lambda u$.

We iteratively reset z. We check if z belongs to the common independent set polytope, and if not, we find a $U \subseteq S$ minimizing $r(U)-z(U)$ (with Corollary 40.4c). Let z^{\prime} be the (unique) vector on L achieving $x(U) \leq r(U)$ with equality; that is, satisfying $z^{\prime}(U)=r(U)$.

Consider any inequality $x\left(U^{\prime}\right) \leq r\left(U^{\prime}\right)$ violated by z^{\prime}. Then

$$
\begin{equation*}
r\left(U^{\prime}\right)-\left|U^{\prime} \cap I\right|<r(U)-|U \cap I| \tag{41.53}
\end{equation*}
$$

This can be seen by considering the function

$$
\begin{equation*}
d(y):=(r(U)-y(U))-\left(r\left(U^{\prime}\right)-y\left(U^{\prime}\right)\right) \tag{41.54}
\end{equation*}
$$

We have $d(z) \leq 0$ (since U minimizes $r(U)-z(U))$ and $d\left(z^{\prime}\right)>0$ (since $z^{\prime}(U)=r(U)$ and $\left.z^{\prime}\left(U^{\prime}\right)>r\left(U^{\prime}\right)\right)$. Hence, as d is linear, $d\left(\chi^{I}\right)>0$; that is, we have (41.53). This implies that resetting $z:=z^{\prime}$, there are at most $r(S)$ inner iterations.

Let x^{\prime} be the final z found. If we apply no inner iteration, then $x_{s}^{\prime}=0$ for some $s \in I \subseteq \operatorname{supp}(x)$ (since we chose λ largest with $\chi^{I}+\lambda u \geq \mathbf{0}$). If we do at least one inner iteration, we find a U such that x^{\prime} satisfies $x^{\prime}(U)=r(U)$ while $|U \cap I|<r(U)$ (since x^{\prime} is the unique vector on L satisfying $x^{\prime}(U)=r(U)$ and since $\left.x^{\prime} \neq \chi^{I}\right)$.

In the latter case, set $\mathcal{U}^{\prime}:=\mathcal{U} \cup\{U\}$; otherwise set $\mathcal{U}^{\prime}:=\mathcal{U}$. Then resetting x to x^{\prime} and \mathcal{U} to \mathcal{U}^{\prime}, the dimension of F decreases (as χ^{I} does not belong to the new F). So the number of iterations is at most $|S|$. This shows that the method is strongly polynomial-time.

41.4a. Facets of the common independent set polytope

Since the common independent set polytope of two matroids is the intersection of their independent set polytopes, each facet-inducing inequality for the intersection is facet-inducing for (at least) one of the independent set polytopes, but not necessarily conversely. Giles [1975] characterized which inequalities are facet-inducing
for the common independent set polytope. If this polytope is full-dimensional, then each inequality $x_{s} \geq 0$ is facet-inducing. As for the other inequalities, Giles proved:

Theorem 41.14. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be loopless matroids, with rank functions r_{1} and r_{2}. For $U \subseteq S$, define $r(U):=\min \left\{r_{1}(U), r_{2}(U)\right\}$. Then, for $U \subseteq S$, the inequality

$$
\begin{equation*}
x(U) \leq r(U) \tag{41.55}
\end{equation*}
$$

is facet-inducing for $P_{\text {common independent set }}\left(M_{1}, M_{2}\right)$ if and only if there is no partition of U into nonempty proper subsets U_{1}, U_{2} with

$$
\begin{equation*}
r(U) \geq r\left(U_{1}\right)+r\left(U_{2}\right) \tag{41.56}
\end{equation*}
$$

and there is no proper superset U^{\prime} of U with $r\left(U^{\prime}\right) \leq r(U)$.
Proof. By symmetry, we can assume that $r(U)=r_{1}(U)$.
Necessity is easy: Assume that $x(U) \leq r_{1}(U)$ is facet-inducing. If (41.56) would hold, then each common independent set I with $|I \cap U|=r_{1}(U)$ satisfies $\left|I \cap U_{1}\right|=$ $r\left(U_{1}\right)$ (since $\left|I \cap U_{1}\right|=|I \cap U|-\left|I \cap U_{2}\right| \geq r(U)-r\left(U_{2}\right) \geq r\left(U_{1}\right)$). Hence each x in the facet determined by $x(U) \leq r_{1}(U)$ satisfies $x\left(U_{1}\right)=r\left(U_{1}\right)$, a contradiction. Similarly, if $r\left(U^{\prime}\right) \leq r_{1}(U)$ for some proper superset U^{\prime} of U, then each common independent set I with $|I \cap U|=r_{1}(U)$ satisfies $\left|I \cap U^{\prime}\right|=r\left(U^{\prime}\right)$, implying that each x in the facet determined by $x(U) \leq r_{1}(U)$ satisfies $x\left(U^{\prime}\right)=r\left(U^{\prime}\right)$, again a contradiction.

To see sufficiency, suppose that (41.55) satisfies the conditions, but is not facetinducing for the common independent set polytope. This implies that the inequality $x(U) \leq r_{1}(U)$ is implied by other inequalities in (41.37). So there exist $\lambda_{i}: \mathcal{P}(S) \rightarrow$ $\mathbb{Q}_{+}($for $i=1,2)$ such that

$$
\begin{align*}
& \sum_{T \in \mathcal{P}(S)}\left(\lambda_{1}(T)+\lambda_{2}(T)\right) \chi^{T} \geq \chi^{U} \text { and } \tag{41.57}\\
& \sum_{T \in \mathcal{P}(S)}\left(\lambda_{1}(T) r_{1}(T)+\lambda_{2}(T) r_{2}(T)\right) \leq r_{1}(U)
\end{align*}
$$

and such that $\lambda_{i}(U)=0$ for $i=1,2$. Let D be the least common denominator of the values of the λ_{i}. Choose the λ_{i} such that D is as small as possible and (secondly) such that

$$
\begin{equation*}
D \cdot \sum_{T \subseteq S}\left(\lambda_{1}(T)+\lambda_{2}(T)\right)|T|(|S \backslash T|+1) \tag{41.58}
\end{equation*}
$$

is as small as possible. For $i=1,2$, define

$$
\begin{equation*}
\mathcal{F}_{i}:=\left\{T \subseteq S \mid \lambda_{i}(T)>0\right\} \tag{41.59}
\end{equation*}
$$

We claim that for $i=1,2$:

$$
\begin{equation*}
\mathcal{F}_{i} \text { is a chain. } \tag{41.60}
\end{equation*}
$$

Suppose to the contrary that $T_{1}, T_{2} \in \mathcal{F}_{i}$ satisfy $T_{1} \nsubseteq T_{2} \nsubseteq T_{1}$. Then decreasing $\lambda_{i}\left(T_{1}\right)$ and $\lambda_{i}\left(T_{2}\right)$ by $1 / D$ and increasing $\lambda_{i}\left(T_{1} \cap T_{2}\right)$ and $\lambda_{i}\left(T_{1} \cup T_{2}\right)$ by $1 / D$ maintains (41.57) but decreases (41.58). This would be a contradiction, except if $T_{1} \cap T_{2}$ or $T_{1} \cup T_{2}$ equals U. If one of these sets equals U and $D \geq 2$, we can
reset $\lambda_{i}(U):=0$, and multiply all values of λ_{1} and λ_{2} by $D /(D-1)$. This again maintains (41.57) but decreases the least common divisor of the denominators. So the contradiction would remain, except if $D=1$. Then (41.57) implies $r_{i}\left(T_{1}\right)+$ $r_{i}\left(T_{2}\right) \leq r_{1}(U)$. Now if $T_{1} \cap T_{2}=U$, then $U \subset T_{1}$ and

$$
\begin{equation*}
r\left(T_{1}\right) \leq r_{i}\left(T_{1}\right) \leq r_{i}\left(T_{1}\right)+r_{i}\left(T_{2}\right) \leq r_{1}(U), \tag{41.61}
\end{equation*}
$$

contradicting the condition. If $T_{1} \cup T_{2}=U$, then

$$
\begin{equation*}
r\left(T_{1}\right)+r\left(U \backslash T_{1}\right) \leq r_{i}\left(T_{1}\right)+r_{i}\left(U \backslash T_{1}\right) \leq r_{i}\left(T_{1}\right)+r_{i}\left(T_{2}\right) \leq r_{1}(U), \tag{41.62}
\end{equation*}
$$

again contradicting the condition.
This proves (41.60). As each \mathcal{F}_{i} is a chain, the incidence matrix of $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is totally unimodular (by Theorem 41.11). Therefore, there are integer-valued λ_{i} satisfying (41.57), with $\lambda_{i}(T)=0$ for $T \notin \mathcal{F}_{i}$. Then we can assume that $\left|\mathcal{F}_{i}\right| \leq 1$ for $i=1,2$, since if $T, T^{\prime} \in \mathcal{F}_{i}$ and $T \subset T^{\prime}$, we can decrease $\lambda_{i}(T)$ by 1 without violating (41.57). If $U^{\prime} \in \mathcal{F}_{i}$ with $U^{\prime} \supset U$, then $r\left(U^{\prime}\right) \leq r_{i}\left(U^{\prime}\right) \leq r(U)$, contradicting the condition. So each \mathcal{F}_{i} contains a set $U_{i} \nsupseteq U$, implying $r\left(U_{1}\right)+r\left(U \backslash U_{1}\right) \leq$ $r\left(U_{1}\right)+r\left(U_{2}\right) \leq r_{1}\left(U_{1}\right)+r_{2}\left(U_{2}\right) \leq r(U)$, again contradicting the condition.

This theorem can be seen to imply a variant of it, in which, instead of $r(U):=$ $\min \left\{r_{1}(U), r_{2}(U)\right\}$, we define

$$
\begin{equation*}
r(U):=\max \left\{|I| \mid I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right\}=\min _{T \subseteq U}\left(r_{1}(T)+r_{2}(U \backslash T)\right) . \tag{41.63}
\end{equation*}
$$

Fonlupt and Zemirline [1983] characterized the dimension of the common base polytope of two matroids.

41.4b. Up and down hull of the common base polytope

We saw in Corollary 41.12d a characterization of the common base polytope $P_{\text {common base }}\left(M_{1}, M_{2}\right)$ of two matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$. The up hull of this polytope:

$$
\begin{equation*}
P_{\text {common base }}^{\uparrow}\left(M_{1}, M_{2}\right):=P_{\text {common base }}\left(M_{1}, M_{2}\right)+\mathbb{R}_{+}^{S} \tag{41.64}
\end{equation*}
$$

was characterized by Cunningham [1977] and McDiarmid [1978] as follows (proving a conjecture of Fulkerson [1971a]).

Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids having a common base. Then $P_{\text {co }}^{\uparrow}$ $P_{\text {common base }}^{\uparrow}\left(M_{1}, M_{2}\right)$ is determined by:
(41.65) $\quad x(U) \geq r(S)-r(S \backslash U)$ for $U \subseteq S$,
where $r(Z):=$ the maximum size of a common independent set contained in Z. (A weaker version of this was proved by Edmonds and Giles [1977].)

For a proof we refer to Section 46.7a, where it is also shown that (41.65) is TDI (Gröflin and Hoffman [1981]). (Frank and Tardos [1984a] derived this, with a direct algorithmic construction, from the total dual integrality of (41.47).)

Note that by the matroid intersection theorem, the inequalities (41.65) are equivalent to:

$$
\begin{equation*}
x(U) \geq k-r_{1}(A)-r_{2}(B) \text { for each partition } U, A, B \text { of } S, \tag{41.66}
\end{equation*}
$$

where r_{1} and r_{2} are the rank functions of M_{1} and M_{2} respectively, and where k is the size of a common base. This implies that if we add $x \leq \mathbf{1}$ to (41.66) we obtain the convex hull of the subsets of S that contain a common base.

Similarly, the down hull of the common base polytope:

$$
\begin{equation*}
P_{\text {common base }}^{\downarrow}\left(M_{1}, M_{2}\right):=P_{\text {common base }}\left(M_{1}, M_{2}\right)-\mathbb{R}_{+}^{S} \tag{41.67}
\end{equation*}
$$

is determined by

$$
\begin{equation*}
x(U) \leq r_{1}(S \backslash A)+r_{2}(S \backslash B)-k \text { for each partition } U, A, B \text { of } S \tag{41.68}
\end{equation*}
$$

This can be derived from the description of the up hull of the common base polytope, since

$$
\begin{equation*}
P_{\text {common base }}^{\downarrow}\left(M_{1}, M_{2}\right)=\mathbf{1}-P_{\text {common base }}^{\uparrow}\left(M_{1}^{*}, M_{2}^{*}\right) \tag{41.69}
\end{equation*}
$$

(where 1 stands for the all-one vector in \mathbb{R}^{S}).
This implies that the convex hull of the incidence vectors of the subsets of common bases is determined by $x \geq \mathbf{0}$ and (41.68).

Cunningham [1984] gave a strongly polynomial-time algorithm to test if a vector belongs to $P_{\text {common base }}^{\uparrow}\left(M_{1}, M_{2}\right)$, or to $P_{\text {common base }}^{\downarrow}\left(M_{1}, M_{2}\right)$, using only independence testing oracles for M_{1} and M_{2}.

41.5. Further results and notes

41.5a. Menger's theorem for matroids

Tutte [1965b] showed a special case of the matroid intersection theorem, namely when both M_{1} and M_{2} are minors of one matroid. Specialized to graphic matroids, it gives the vertex-disjoint, undirected version of Menger's theorem.

Let $M=(E, \mathcal{I})$ be a matroid, with rank function r, and let U and W be disjoint subsets of E. Then the maximum size of a common independent set in $M / U \backslash W$ and $M / W \backslash U$ is equal to the minimum value of

$$
\begin{equation*}
r(X)-r(U)+r(E \backslash X)-r(W) \tag{41.70}
\end{equation*}
$$

taken over sets X with $U \subseteq X \subseteq E \backslash W$. This is the special case of the matroid intersection theorem for the matroids $M / U \backslash W$ and $M / W \backslash U$, since for $Y \subseteq$ $E \backslash(U \cup W)$ one has

$$
\begin{equation*}
r_{M / U \backslash W}(Y)=r(Y \cup U)-r(U) \tag{41.71}
\end{equation*}
$$

and similarly for $M / W \backslash U$.
To see that this implies the vertex-disjoint, undirected version of Menger's theorem, let $G=(V, E)$ be a graph and let S and T be disjoint nonempty subsets of V. We show that the above theorem implies that the maximum number of disjoint $S-T$ paths in G is equal to the minimum number of vertices intersecting each $S-T$ path.

To this end, we can assume that G is connected, and that E contains subsets U and W such that (S, U) and (T, W) are trees. (Adding appropriate edges does not modify the result to be proved.)

Let $M:=M(G)$ be the cycle matroid of G. Define $R:=V \backslash(S \cup T)$. Then
the maximum number of disjoint $S-T$ paths is at least the maximum size of a common independent set I of $M / U \backslash W$ and $M / W \backslash U$, minus $|R|$.
(In fact, there is equality.)
To prove (41.72), let I be a maximum-size common independent in $M / U \backslash W$ and $M / W \backslash U$. So I is a forest. Consider any component K of I. Since I is independent in $M / U, K$ intersects S in at most one vertex. Similarly, K intersects T in at most one vertex. Let p be the number of components K intersecting both S and T. By deleting p edges we obtain a forest I^{\prime} such that no component of I^{\prime} intersects both S and T. So $\left|I^{\prime}\right| \leq|R|$ (since I^{\prime} remains a forest after contracting (in the graphical sense) $S \cup T$ to one vertex). Hence $p=|I|-\left|I^{\prime}\right| \geq|I|-|R|$. So we have (41.72).

On the other hand,
(41.73) the minimum size of a set of vertices intersecting each $S-T$ path is at most the minimum value of (41.70), minus $|R|$.
(Again, we have in fact equality.)
To prove (41.73), let X attain the minimum value of (41.70). So $U \subseteq X \subseteq E \backslash W$. Let K be the component of (V, X) containing S and let L be the component of $(V, E \backslash X)$ containing T. We choose X with $|K \cup L|$ maximized.

Then $K \cup L=V$. For suppose not. Then, as G is connected, there is an edge e of G leaving $K \cup L$. By symmetry, we can assume that $e \in X$. Let K^{\prime} be the component of (V, X) containing e. So $K^{\prime} \neq K$ and $E\left[K^{\prime}\right] \cap U=\emptyset$. Resetting X by $X \backslash E\left[K^{\prime}\right], r(X)$ decreases by $\left|K^{\prime}\right|-1$, while $r(E \backslash X)$ increases by at most $\left|K^{\prime}\right|-1$. So the new X again attains the minimum in (41.70), while $K \cup L$ increases. This contradicts our maximality assumption.

So $K \cup L=V$. Hence $K \cap L$ intersects each $S-T$ path (since $S \subseteq K$ and $T \subseteq L$, and there is no edge connecting $K \backslash L$ and $L \backslash K$). Moreover

$$
\begin{align*}
& |K \cap L|=|K|+|L|-|V| \leq(r(X)+1)+(r(E \backslash X)+1)-|V| \tag{41.74}\\
& =r(X)+r(E \backslash X)-|V|+2=r(X)+r(E \backslash X)-r(U)-r(W)-|R|
\end{align*}
$$

So we have (41.73).
Since the maximum number of disjoint $S-T$ paths is trivially not more than the minimum number of vertices intersecting all $S-T$ paths, we thus obtain Menger's theorem (and also equality in (41.72) and (41.73)).
(Tomizawa [1976a] gave an algorithm for Menger's theorem for matroids.)

41.5b. Exchange properties

Kundu and Lawler [1973] showed the following extension of the exchange property of bipartite graphs given in Theorem 16.8. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids, with span functions span_{1} and span_{2}. Then
(41.75) For any $I_{1}, I_{2} \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ there exists an $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ with $I_{1} \subseteq \operatorname{span}_{1}(I)$ and $I_{2} \subseteq \operatorname{span}_{2}(I)$.
(Theorem 16.8 is equivalent to the case where the M_{i} are partition matroids.)
To prove (41.75), choose $I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$ with $I_{1} \subseteq \operatorname{span}_{1}(I)$ and $\left|I \cap I_{2}\right|$ maximized. Suppose that $I_{2} \nsubseteq \operatorname{span}_{2}(I)$. Choose $s \in I_{2} \backslash \operatorname{span}_{2}(I)$ with $I \cup\{s\} \in \mathcal{I}_{2}$. By the maximality of $\left|I \cap I_{2}\right|$ we know that $I \cup\{s\} \notin \mathcal{I}_{1}$. So M_{1} has a circuit C
contained in $I \cup\{s\}$. Since $I_{2} \in \mathcal{I}_{1}$ we know that $C \nsubseteq I_{2}$. Choose $t \in C \backslash I_{2}$. Then for $I^{\prime}:=I-t+s$ we have $I^{\prime} \in \mathcal{I}_{1} \cap \mathcal{I}_{2}$, while $\operatorname{span}_{1}\left(I^{\prime}\right)=\operatorname{span}_{1}(I)$. Since $\left|I^{\prime} \cap I_{2}\right|>\left|I \cap I_{2}\right|$ this contradicts the maximality assumption.

A second exchange property was shown by Davies [1976]:
Two matroids M_{1} and M_{2} have bases B_{1} and B_{2} (respectively) with $\left|B_{1} \cap B_{2}\right|=k$ if and only if M_{1} has bases X_{1} and Y_{1} and M_{2} has bases X_{2} and Y_{2} with $\left|X_{1} \cap X_{2}\right| \leq k$ and $\left|Y_{1} \cap Y_{2}\right| \geq k$.

To see this, we may assume that $X_{2}=Y_{2}$, since if $\left|X_{1} \cap Y_{2}\right| \leq k$ we can reset $X_{2}:=Y_{2}$, and if $\left|X_{1} \cap Y_{2}\right|>k$ we can reset $Y_{1}:=X_{1}$ and exchange indices.

By (39.33)(ii), there exists a series of bases Z_{0}, \ldots, Z_{t} of M_{1} such that $Z_{0}=X_{1}$, $Z_{t}=Y_{1}$, and $\left|Z_{i-1} \triangle Z_{i}\right|=2$ for $i=1, \ldots, t$. Hence
(41.77) $\quad\left|\left|Z_{i-1} \cap X_{2}\right|-\left|Z_{i} \cap X_{2}\right|\right| \leq 1$
for $i=1, \ldots, t$. Since $\left|Z_{0} \cap X_{2}\right| \leq k$ and $\left|Z_{t} \cap X_{2}\right| \geq k$, we know $\left|Z_{i} \cap X_{2}\right|=k$ for some i. This proves (41.76).

41.5c. Jump systems

A framework that includes both matroid intersection and maximum-size matching was introduced by Bouchet and Cunningham [1995]. For $x, y \in \mathbb{Z}^{n}$, let $[x, y]$ be the set of vectors $z \in \mathbb{Z}^{n}$ with $\|x-y\|_{1}=\|x-z\|_{1}+\|z-y\|_{1}$. So $[x, y]$ consists of all integer vectors z in the box $x \wedge y \leq z \leq x \vee y$.

Call a vector z a step from x to y if $z \in[x, y]$ and $\|z-x\|_{1}=1$. A jump system is a finite subset J of \mathbb{Z}^{n} satisfying the following axiom:

$$
\begin{align*}
& \text { if } x, y \in J \text { and } z \text { is a step from } x \text { to } y \text {, then } z \in J \text { or } J \text { contains a step } \tag{41.78}\\
& \text { from } z \text { to } y .
\end{align*}
$$

Trivially, for any jump system J and any $x, y \in \mathbb{Z}^{n}$, the intersection $J \cap[x, y]$ is again a jump system. Moreover, being a jump system is maintained under translations by an integer vector and by reflections in a coordinate hyperplane. Bouchet and Cunningham [1995] showed that the sum of jump systems is again a jump system (attributing the proof below to A. Sebő):

Theorem 41.15. If J_{1} and J_{2} are jump systems in \mathbb{Z}^{n}, then $J_{1}+J_{2}$ is a jump system.

Proof. For $x, y \in J_{1}+J_{2}$ we prove (41.78) by induction on the minimum value of

$$
\begin{equation*}
\left\|y^{\prime}-x^{\prime}\right\|_{1}+\left\|y^{\prime \prime}-x^{\prime \prime}\right\|_{1} \tag{41.79}
\end{equation*}
$$

where $x^{\prime}, y^{\prime} \in J_{1}, x^{\prime \prime}, y^{\prime \prime} \in J_{2}, x^{\prime}+x^{\prime \prime}=x$, and $y^{\prime}+y^{\prime \prime}=y$.
Let z be a step from x to y. By reflection and permutation of coordinates, we can assume that $z=x+\chi^{1}$. So $x_{1}<y_{1}$. Hence, by symmetry of J_{1} and J_{2}, we can assume that $x_{1}^{\prime}<y_{1}^{\prime}$. Next, by reflection, we can assume that $x^{\prime} \leq y^{\prime}$.

Now $x^{\prime}+\chi^{1}$ is a step from x^{\prime} to y^{\prime}. If $x^{\prime}+\chi^{1} \in J_{1}$, then $z=x^{\prime}+\chi^{1}+x^{\prime \prime} \in J_{1}+J_{2}$, and we have (41.78). So we can assume that $x^{\prime}+\chi^{1} \notin J_{1}$. Hence, by (41.78) applied to J_{1}, there is an $i \in\{1, \ldots, n\}$ with $\tilde{x}^{\prime}:=x^{\prime}+\chi^{1}+\chi^{i} \in J_{1}$ and $\tilde{x}^{\prime} \leq y^{\prime}$.

So $z+\chi^{i}=\tilde{x}^{\prime}+x^{\prime \prime} \in J_{1}+J_{2}$. If $z+\chi^{i} \in[x, y]$, we have (41.78). If $z+\chi^{i} \notin$ $[x, y]$, then as $z \in[x, y]$, we have $z_{i}=y_{i}$. So z is a step from $z+\chi^{i}$ to y. Also,
$\left\|y^{\prime}-\tilde{x}^{\prime}\right\|_{1}=\left\|y^{\prime}-x^{\prime}\right\|_{1}-2$. Hence, by our induction hypothesis applied to $z+\chi^{i}$ and y, we have (41.78).

As Bouchet and Cunningham [1995] observed, this theorem implies that the following two constructions give jump systems $J \subseteq \mathbb{Z}^{V}$.

For any matroid $M=(S, \mathcal{I})$, the set $\left\{\chi^{B} \mid B\right.$ base of $\left.M\right\}$ is a jump system in \mathbb{Z}^{S}, as follows directly from the axioms (39.33). With Theorem 41.15, this implies that for matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$, the set

$$
\begin{equation*}
J:=\left\{\chi^{B_{1}}-\chi^{B_{2}} \mid B_{i} \text { base of } M_{i}(i=1,2)\right\} \tag{41.80}
\end{equation*}
$$

is a jump system.
Let $G=(V, E)$ be an undirected graph and let

$$
\begin{equation*}
J:=\left\{\operatorname{deg}_{F} \mid F \subseteq E\right\} \subseteq \mathbb{Z}^{V} \tag{41.81}
\end{equation*}
$$

that is, J is the collection of degree sequences of spanning subgraphs of G. Again, J is a jump system. This follows from Theorem 41.15, since for each edge $e=u v$ the set $\left\{\mathbf{0}, \chi^{\{u, v\}}\right\}$ is trivially a jump system in \mathbb{Z}^{V} and since J is the sum of these jump systems.

Bouchet and Cunningham [1995] showed that the following greedy approach finds, for any $w \in \mathbb{R}^{n}$, a vector $x \in J$ maximizing $w^{\top} x$. By reflecting, we can assume that $w \geq \mathbf{0}$. We can also assume that $w_{1} \geq w_{2} \geq \cdots \geq w_{n}$. Let $J_{0}:=J$, and for $i=1, \ldots, n$, let J_{i} be the set of vectors x in J_{i-1} maximizing x_{i} over J_{i-1}. Trivially, J_{n} consists of one vector, y say. Then:

Theorem 41.16. y maximizes $w^{\top} x$ over J.
Proof. It suffices to show that the maximum value of $w^{\top} x$ over J_{1} is the same as over J (since applying this to the jump systems J_{1}, \ldots, J_{n} gives the theorem). Let the maximum over J be attained by x and over J_{1} by y. Suppose $w^{\top} y<w^{\top} x$. So $x \notin J_{1}$, and hence $x_{1}<y_{1}$. We choose x, y such that $y_{1}-x_{1}$ is minimal. Let $z:=x+\chi^{1}$. So z is a step from x to y.

Then $w^{\top} z=w^{\top} x+w_{1} \geq w^{\top} x$. Hence $z \notin J$, since otherwise we can replace x by z, contradicting the minimality of $y_{1}-x_{1}$. So, by (41.78), J contains a step u from z to y. So $u=z \pm \chi^{i}$ for some $i \in\{1, \ldots, n\}$. Then

$$
\begin{equation*}
w^{\top} u=w^{\top} z \pm w_{i} \geq w^{\top} z-w_{i}=w^{\top} x+w_{1}-w_{i} \geq w^{\top} x \tag{41.82}
\end{equation*}
$$

So we can replace x by u, again contradicting the minimality of $y_{1}-x_{1}$ (as $u_{1}>x_{1}$).

Lovász [1997] gave a min-max relation for the minimum l_{1}-distance of an integer vector to a jump system of special type. It can be considered as a common generalization of the matroid intersection theorem (Theorem 41.1) and the Tutte-Berge formula (Theorem 24.1).

For a survey, see Cunningham [2002].

41.5d. Further notes

A special case of the weighted matroid intersection algorithm (where one matroid is a partition matroid) was studied by Brezovec, Cornuéjols, and Glover [1988].

Data structures for on-line updating of matroid intersection solutions were given by Frederickson and Srinivas [1984,1987], and a randomized parallel algorithm for linear matroid intersection by Narayanan, Saran, and Vazirani [1992,1994].

An extension of matroid intersection to 'supermatroid' intersection was given by Tardos [1990]. Fujishige [1977a] gave a primal approach to weighted matroid intersection, and Shigeno and Iwata [1995] a dual approximation approach. Camerini and Maffioli [1975,1978] studied 3-matroid intersection problems.

Chapter 42

Matroid union

Abstract

Matroid union is closely related to matroid intersection, and most of the basic matroid union results follow from basic matroid intersection results, and vice versa. But matroid union also gives a shift in focus and offers a number of specific algorithmic questions.

42.1. Matroid union theorem

The matroid union theorem will be derived from the following basic result given by Nash-Williams [1967], suggested by earlier unpublished work of J. Edmonds ${ }^{28}$:

Theorem 42.1. Let $M^{\prime}=\left(S^{\prime}, \mathcal{I}^{\prime}\right)$ be a matroid, with rank function r^{\prime}, and let $f: S^{\prime} \rightarrow S$. Define

$$
\begin{equation*}
\mathcal{I}:=\left\{f\left(I^{\prime}\right) \mid I^{\prime} \in \mathcal{I}^{\prime}\right\} \tag{42.1}
\end{equation*}
$$

(where $f\left(I^{\prime}\right):=\left\{f(s) \mid s \in I^{\prime}\right\}$). Then $M=(S, \mathcal{I})$ is a matroid, with rank function r given by

$$
\begin{equation*}
r(U)=\min _{T \subseteq U}\left(|U \backslash T|+r^{\prime}\left(f^{-1}(T)\right)\right) \tag{42.2}
\end{equation*}
$$

for $U \subseteq S$.
Proof. Trivially, \mathcal{I} is nonempty and closed under taking subsets. To see condition (39.1)(ii), let $I, J \in \mathcal{I}$ with $|I|<|J|$. Choose $I^{\prime}, J^{\prime} \in \mathcal{I}^{\prime}$ with $f\left(I^{\prime}\right)=I, f\left(J^{\prime}\right)=J,\left|I^{\prime}\right|=|I|,\left|J^{\prime}\right|=|J|$, and $\left|I^{\prime} \cap J^{\prime}\right|$ as large as possible. As M^{\prime} is a matroid, $I^{\prime}+j \in \mathcal{I}^{\prime}$ for some $j \in J^{\prime} \backslash I^{\prime}$. If $f(j) \in f\left(I^{\prime}\right)$, say $f(j)=f(i)$ for $i \in I^{\prime}$, replacing I^{\prime} by $I^{\prime}-i+j$ would increase $\left|I^{\prime} \cap J^{\prime}\right|$, contradicting our assumption. So $f(j) \in J \backslash I$ and $f\left(I^{\prime}\right)+f(j)=f\left(I^{\prime}+j\right) \in \mathcal{I}$. This proves (39.1)(ii), and hence M is a matroid.

The rank $r(U)$ of a subset U of S is equal to the maximum size of a common independent set in M^{\prime} and the partition matroid $N=\left(S^{\prime}, \mathcal{J}\right)$ induced by the family $\left(f^{-1}(s) \mid s \in U\right)$. By the matroid intersection theorem (Theorem 41.1), this is equal to the right-hand side of (42.2).

[^12](In his paper, Nash-Williams suggested a direct proof, by decomposing f as a product of 'elementary' functions in which only two elements are merged. Welsh [1970] observed that the rank formula (42.2) also follows directly from Rado's theorem (Corollary 41.1c) of Rado [1942].)

Theorem 42.1 implies the following result, formulated explicitly by Edmonds [1968] (and for all M_{i} equal by Nash-Williams [1967]).

Let $M_{1}=\left(S_{1}, \mathcal{I}_{1}\right), \ldots, M_{k}=\left(S_{k}, \mathcal{I}_{k}\right)$ be matroids. Define the union of these matroids as $M_{1} \vee \cdots \vee M_{k}=\left(S_{1} \cup \cdots \cup S_{k}, \mathcal{I}_{1} \vee \cdots \vee \mathcal{I}_{k}\right)$, where

$$
\begin{equation*}
\mathcal{I}_{1} \vee \cdots \vee \mathcal{I}_{k}:=\left\{I_{1} \cup \ldots \cup I_{k} \mid I_{1} \in \mathcal{I}_{1}, \ldots, I_{k} \in \mathcal{I}_{k}\right\} . \tag{42.3}
\end{equation*}
$$

Corollary 42.1a (matroid union theorem). Let $M_{1}=\left(S_{1}, \mathcal{I}_{1}\right), \ldots, M_{k}=$ $\left(S_{k}, \mathcal{I}_{k}\right)$ be matroids, with rank functions r_{1}, \ldots, r_{k}, respectively. Then $M_{1} \vee$ $\cdots \vee M_{k}$ is a matroid again, with rank function r given by:

$$
\begin{equation*}
r(U)=\min _{T \subseteq U}\left(|U \backslash T|+r_{1}\left(T \cap S_{1}\right)+\cdots+r_{k}\left(T \cap S_{k}\right)\right) . \tag{42.4}
\end{equation*}
$$

for $U \subseteq S_{1} \cup \cdots \cup S_{k}$.
Proof. To see that $M_{1} \vee \cdots \vee M_{k}$ is a matroid, let for each $i, M_{i}^{\prime}=\left(S_{i}^{\prime}, \mathcal{I}_{i}^{\prime}\right)$ be a copy of M_{i} with $S_{1}^{\prime}, \ldots, S_{k}^{\prime}$ disjoint. Then trivially $M_{1}^{\prime} \vee \cdots \vee M_{k}^{\prime}$ is a matroid. Now define $f: S_{1}^{\prime} \cup \cdots \cup S_{k}^{\prime} \rightarrow S_{1} \cup \cdots \cup S_{k}$ by, for $i=1, \ldots, k$ and $s \in S_{i}^{\prime}: f(s)$ is the original of s in S_{i}. Then the matroid obtained in Theorem 42.1 is equal to $M_{1} \vee \cdots \vee M_{k}$, proving that the latter indeed is a matroid, and (42.4) follows from (42.2).

Conversely, the matroid intersection theorem may be derived from the matroid union theorem (as was shown by Edmonds [1970b]): the maximum size of a common independent set in two matroids M_{1} and M_{2}, is equal to the maximum size of an independent set in the union $M_{1} \vee M_{2}^{*}$, minus the rank of M_{2}^{*}.

Application of the matroid union theorem to a number of copies of the same matroid gives the following results. First:

Corollary 42.1b. Let $M=(S, \mathcal{I})$ be a matroid, with rank function r, and let $k \in \mathbb{Z}_{+}$. Then the maximum size of the union of k independent sets is equal to

$$
\begin{equation*}
\min _{U \subseteq S}(|S \backslash U|+k \cdot r(U)) \tag{42.5}
\end{equation*}
$$

Proof. This follows by applying Corollary 42.1a to $M_{1}=\cdots=M_{k}=M$.
This implies that the minimum number of independent sets (or bases) needed to cover the underlying set is described by the following result of Edmonds [1965c] ${ }^{29}$:

[^13]Corollary 42.1c (matroid base covering theorem). Let $M=(S, \mathcal{I})$ be a matroid, with rank function r, and let $k \in \mathbb{Z}_{+}$. Then S can be covered by k independent sets if and only if

$$
\begin{equation*}
k \cdot r(U) \geq|U| \tag{42.6}
\end{equation*}
$$

for each $U \subseteq S$.
Proof. M can be covered by k independent sets if and only if there is a union of k independent sets of size $|S|$. By Corollary 42.1 b , this is the case if and only if

$$
\begin{equation*}
\min _{U \subseteq S}(|S \backslash U|+k \cdot r(U)) \geq|S| \tag{42.7}
\end{equation*}
$$

that is, if and only if $k \cdot r(U) \geq|U|$ for each subset U of S.
One similarly has for the maximum number of disjoint bases in a matroid (Edmonds [1965a]):

Corollary 42.1d (matroid base packing theorem). Let $M=(S, \mathcal{I})$ be a matroid, with rank function r, and let $k \in \mathbb{Z}_{+}$. Then there exist k disjoint bases if and only if

$$
\begin{equation*}
k \cdot(r(S)-r(U)) \leq|S \backslash U| \tag{42.8}
\end{equation*}
$$

for each $U \subseteq S$.
Proof. M has k disjoint bases if and only if the maximum size of the union of k independent sets is equal to $k \cdot r(S)$. By Corollary 42.1 b , this is the case if and only if

$$
\begin{equation*}
\min _{U \subseteq S}(|S \backslash U|+k \cdot r(U)) \geq k \cdot r(S) \tag{42.9}
\end{equation*}
$$

that is, if and only if $|S \backslash U| \geq k \cdot(r(S)-r(U))$ for each subset U of S.
The more general forms of Corollaries 42.1c and 42.1d, with different matroids, were shown by Edmonds and Fulkerson [1965].

42.1a. Applications of the matroid union theorem

We describe a number of applications of the matroid union theorem. Further applications will follow in Chapter 51 on packing and covering of trees and forests.

Transversal matroids. Let $\mathcal{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a family of subsets of a finite set S, and define for each $i=1, \ldots, n$ a matroid M on S by: Y is independent in M_{i} if and only if $Y \subseteq X_{i}$ and $|Y| \leq 1$. Now the union $M_{1} \vee \cdots \vee M_{n}$ is the same

[^14]as the transversal matroid induced by \mathcal{X}, so in this way one can prove again that transversal matroids indeed are matroids.

Disjoint transversals. Let $\mathcal{X}=\left(X_{1}, \ldots, X_{n}\right)$ be a family of subsets of a finite set S. Then \mathcal{X} has k disjoint transversals if and only if

$$
\begin{equation*}
\left|\bigcup_{i \in I} X_{i}\right| \geq k \cdot|I| \tag{42.10}
\end{equation*}
$$

for each $I \subseteq\{1, \ldots, n\}$. This easy consequence of Hall's marriage theorem (cf. Theorem 22.10) can also be derived by applying the matroid base packing theorem to the transversal matroid induced by \mathcal{X}, using (39.19).

Similarly, it can be derived from the matroid base covering theorem that S can be partitioned into k partial transversals of \mathcal{X} if and only if

$$
\begin{equation*}
k(n-|I|) \geq\left|S \backslash \bigcup_{i \in I} X_{i}\right| \tag{42.11}
\end{equation*}
$$

for each $I \subseteq\{1, \ldots, n\}$ (cf. Theorem 22.12).
Vector spaces. A finite subset S of a vector space can be covered by k linearly independent sets if and only if

$$
\begin{equation*}
|U| \leq k \cdot \operatorname{rank}(U) \text { for each } U \subseteq S \tag{42.12}
\end{equation*}
$$

This conjecture of K.F. Roth and R. Rado was shown by Horn [1955] ${ }^{30}$. It is the special case of the matroid base covering theorem for linear matroids (see also Section 42.1 b below).

As a similar consequence of the matroid base packing theorem one has that the n-dimensional vector space S over the field $G F(q)$ contains $k:=\left\lfloor\left(q^{n}-1\right) / n\right\rfloor$ disjoint bases. Indeed, for each $U \subseteq S$ one has $k(n-r(U)) \leq q^{n}-|U|$, as $|U| \leq q^{r(U)}$.

An exchange property of bases. The matroid union theorem also implies the following stronger exchange property of bases of a matroid (stronger than given in the 'axioms' in Theorem 39.6). In any matroid $M=(S, \mathcal{I})$,
(42.13) for any two bases B_{1} and B_{2} and for any partition of B_{1} into X_{1} and Y_{1}, there is a partition of B_{2} into X_{2} and Y_{2} such that both $X_{1} \cup Y_{2}$ and $X_{2} \cup Y_{1}$ are bases.
This property was conjectured by G.-C. Rota, and proved by Brylawski [1973], Greene [1973], and Woodall [1974a] - we follow the proof of McDiarmid [1975a].

Consider the matroids $M_{1}:=M / Y_{1}$ and $M_{2}:=M / X_{1}$. Note that M_{1} has rank $\left|X_{1}\right|$ and that M_{2} has rank $\left|Y_{1}\right|$. We must show that B_{2} is the union of an independent set X_{2} of M_{1} and an independent set Y_{2} of M_{2}. By the submodularity of the rank functions ((39.38)(ii)) we have for each $T \subseteq B_{2}$:

[^15]\[

$$
\begin{align*}
& \left|B_{2} \backslash T\right|+r_{M_{1}}\left(T \backslash Y_{1}\right)+r_{M_{2}}\left(T \backslash X_{1}\right) \tag{42.14}\\
& =\left|B_{2} \backslash T\right|+r\left(T \cup Y_{1}\right)-\left|Y_{1}\right|+r\left(T \cup X_{1}\right)-\left|X_{1}\right| \\
& \geq r(T)+r\left(T \cup Y_{1} \cup X_{1}\right)-|T|=\left|B_{2}\right| .
\end{align*}
$$
\]

Hence, by the matroid union theorem (Corollary 42.1a), we have the required result.
Repeated application of this exchange phenomenon implies the following stronger property, given by Greene and Magnanti [1975]:
for any two bases B_{1} and B_{2} and any partition of B_{1} into X_{1}, \ldots, X_{k}, there is a partition of B_{2} into Y_{1}, \ldots, Y_{k} such that $\left(B_{1} \backslash X_{i}\right) \cup Y_{i}$ is a base, for each $i=1, \ldots, k$.
This extends Corollary 39.12a, which is the special case where each X_{i} is a singleton.

42.1b. Horn's proof

The proof of Horn [1955] of the matroid base covering theorem for linear matroids directly extends to general matroids (as was observed by Rado [1966]):

Consider a counterexample to the matroid base covering theorem (Corollary 42.1c) with smallest $|S|$. For subsets S_{1}, \ldots, S_{n} of S, define inductively:

$$
\left[S_{1}, \ldots, S_{n}\right]:= \begin{cases}S & \text { if } n=0 \tag{42.16}\\ \operatorname{span}\left(\left[S_{1}, \ldots, S_{n-1}\right] \cap S_{n}\right) & \text { if } n \geq 1\end{cases}
$$

By the minimality of $|S|$, we know that for each $s \in S, S \backslash\{s\}$ can be partitioned into k independent sets I_{1}, \ldots, I_{k}. We first show:
(42.17) \quad for each $s \in S$ and I_{1}, \ldots, I_{k} partitioning $S \backslash\{s\}$, there exist $j_{1}, \ldots, j_{n} \in$ $\{1, \ldots, k\}$ with $s \notin\left[I_{j_{1}}, \ldots, I_{j_{n}}\right]$.
Indeed, choose $j_{1}, \ldots, j_{n} \in\{1, \ldots, k\}$ with the rank of $\left[I_{j_{1}}, \ldots, I_{j_{n}}\right]$ as small as possible. Define $A:=\left[I_{j_{1}}, \ldots, I_{j_{n}}\right]$. By the minimality of the rank of A, we have $r\left(A \cap I_{j}\right)=r(A)$ for each $j=1, \ldots, k$. Hence, by (42.6),

$$
\begin{equation*}
|A| \leq k \cdot r(A)=\sum_{j=1}^{k} r\left(A \cap I_{j}\right) \leq \sum_{j=1}^{k}\left|A \cap I_{j}\right|=|A \backslash\{s\}| . \tag{42.18}
\end{equation*}
$$

So $s \notin A$, proving (42.17).
Now choose s, I_{1}, \ldots, I_{k}, and j_{1}, \ldots, j_{n} as in (42.17) with n as small as possible. For $t=0, \ldots, n$, define
(42.19) $\quad B_{t}:=\left[I_{j_{1}}, \ldots, I_{j_{t}}\right]$.

As we have a counterexample, we know that $s \in \operatorname{span}\left(I_{j_{n}}\right)$ (otherwise we can add s to $\left.I_{j_{n}}\right)$. Let C be the circuit in $I_{j_{n}} \cup\{s\}$. As $s \notin B_{n}=\operatorname{span}\left(B_{n-1} \cap I_{j_{n}}\right)$, we know that $C \backslash\{s\}$ is not contained in B_{n-1} (otherwise $C \backslash\{s\} \subseteq B_{n-1} \cap I_{j_{n}}$, and hence $\left.s \in \operatorname{span}\left(B_{n-1} \cap I_{j_{n}}\right)\right)$. So we can choose $z \in C \backslash\{s\}$ with $z \notin B_{n-1}$.

Define $I_{j_{n}}^{\prime}:=I_{j_{n}}-z+s$ and $I_{j}^{\prime}:=I_{j}$ for $j \neq j_{n}$. Then $I_{1}^{\prime}, \ldots, I_{k}^{\prime}$ are independent sets partitioning $S \backslash\{z\}$. Define, for $t=0, \ldots, n$:
(42.20) $\quad B_{t}^{\prime}:=\left[I_{j_{1}}^{\prime}, \ldots, I_{j_{t}}^{\prime}\right]$.

By the minimality of n we know that $z \in B_{n-1}^{\prime}$. Since $z \notin B_{n-1}$, we have $B_{n-1}^{\prime} \nsubseteq$ B_{n-1}. Choose the smallest $q \leq n-1$ with $B_{q}^{\prime} \nsubseteq B_{q}$. Then $q \geq 1$ and $B_{q-1}^{\prime} \subseteq B_{q-1}$. By the minimality of n we know that $s \in B_{q}$ (as $q<n$). So

$$
\begin{equation*}
B_{q}^{\prime}=\operatorname{span}\left(B_{q-1}^{\prime} \cap I_{j_{q}}^{\prime}\right) \subseteq \operatorname{span}\left(\left(B_{q-1} \cap I_{j_{q}}\right) \cup\{s\}\right) \subseteq \operatorname{span}\left(B_{q}\right)=B_{q}, \tag{42.21}
\end{equation*}
$$

a contradiction.

42.2. Polyhedral applications

The matroid base packing and covering theorems imply (in fact, are equivalent to) the following polyhedral result:

Corollary 42.1e. For any matroid, the independent set polytope, the base polytope, and the spanning set polytope have the integer decomposition property.

Proof. Let $M=(S, \mathcal{I})$ be a matroid. Choose $k \in \mathbb{Z}_{+}$and an integer vector $x \in k \cdot P_{\text {independent set }}(M)$. Replace each element s of S by x_{s} parallel elements, thus obtaining the matroid $N=(T, \mathcal{J})$ say. Now for each $U \subseteq T$, one has $k \cdot r_{N}(U) \geq|U|$, since if W denotes the set of elements s in S such that U intersects the parallel class of s, then

$$
\begin{equation*}
r_{N}(U)=r_{M}(W) \geq x(W) / k \geq|U| / k, \tag{42.22}
\end{equation*}
$$

since x / k belongs to $P_{\text {independent set }}(M)$. So by the matroid base covering theorem (Corollary 42.1c), T can be partitioned into k independent sets of N. Hence x is the sum of k incidence vectors of independent sets of M.

To see that the base polytope has the integer decomposition property, let $x \in k \cdot P_{\text {base }}(M)$. By the above, x is the sum of the incidence vectors of k independent sets. As $x(S)=k \cdot r(S)$, each of these independent sets is a base.

One similarly derives from the matroid base packing theorem (Corollary 42.1d) that the spanning set polytope has the integer decomposition property.

The matroid base packing and covering theorems imply generalizations to the capacitated case, by splitting elements into parallel elements. For the matroid base covering theorem this gives:

Theorem 42.2. Let $M=(S, \mathcal{I})$ be a matroid, with rank function r, and let $c: S \rightarrow \mathbb{Z}_{+}$. Then the minimum value of $\sum_{I \in \mathcal{I}} \lambda_{I}$, where $\lambda: \mathcal{I} \rightarrow \mathbb{Z}_{+}$ satisfies

$$
\begin{equation*}
\sum_{I \in \mathcal{I}} \lambda_{I} \chi^{I}=c, \tag{42.23}
\end{equation*}
$$

is equal to the maximum value of
(42.24) $\left\lceil\frac{c(U)}{r(U)}\right\rceil$
taken over $U \subseteq S$ with $r(U) \geq 1$.
Proof. Directly from the matroid base covering theorem (Corollary 42.1c), by splitting each $s \in S$ into $c(s)$ parallel elements.

In other words, the system defining the antiblocking polyhedron of the independent set polytope:

$$
\begin{array}{ll}
x_{s} \geq 0 & \text { for } s \in S \tag{42.25}\\
x(I) \leq 1 & \text { for } I \in \mathcal{I}
\end{array}
$$

has the integer rounding property (the optimum integer solution to the dual of maximizing $c^{\top} x$ over (42.25) has value equal to the upper integer part of the value of the optimum (fractional) solution, for any integer objective function c).

Similarly, the matroid base packing theorem gives:
Theorem 42.3. Let $M=(S, \mathcal{I})$ be a matroid, with rank function r, and let $c: S \rightarrow \mathbb{Z}_{+}$. Let \mathcal{B} be the collection of bases of M. Then the maximum value of $\sum_{B \in \mathcal{B}} \lambda_{B}$, where $\lambda: \mathcal{B} \rightarrow \mathbb{Z}_{+}$satisfies

$$
\begin{equation*}
\sum_{B \in \mathcal{B}} \lambda_{B} \chi^{B} \leq c \tag{42.26}
\end{equation*}
$$

is equal to the minimum value of
(42.27) $\left\lfloor\frac{c(S \backslash U)}{r(S)-r(U)}\right\rfloor$
taken over $U \subseteq S$ with $r(S)-r(U) \geq 1$.
Proof. Directly from the matroid base packing theorem (Corollary 42.1d), by splitting each $s \in S$ into $c(s)$ parallel elements.

In other words, the system defining the blocking polyhedron of the base polytope:

$$
\begin{array}{ll}
x_{s} \geq 0 & \text { for } s \in S \tag{42.28}\\
x(B) \geq 1 & \text { for } B \in \mathcal{B}
\end{array}
$$

has the integer rounding property.
De Pina and Soares [2000] showed that, in Theorem 42.3, the number of bases B with $\lambda_{B}>0$ can be restricted to at most $|S|+r$, where r is the rank of M. This strengthens a result of Cook, Fonlupt, and Schrijver [1986].

42.3. Matroid union algorithm

A polynomial-time algorithm for partitioning a matroid in as few independent sets as possible may be derived from the matroid intersection algorithm, with the construction given in the proof of Theorem 42.1. A direct algorithm was given by Edmonds [1968]. We give the algorithm described by Knuth [1973] and Greene and Magnanti [1975], which is similar to the algorithm described in Section 41.2 for cardinality matroid intersection.

Let $M_{1}=\left(S, \mathcal{I}_{1}\right), \ldots,\left(S, \mathcal{I}_{k}\right)$ be matroids. Let $I_{i} \in \mathcal{I}_{i}$, for $i=1, \ldots, k$, with $I_{i} \cap I_{j}=\emptyset$ if $i \neq j$. Let D be the union of the graphs $D_{M_{i}}\left(I_{i}\right)$ as defined in Section 39.9.

For each i, let F_{i} be the set of elements $s \notin I_{i}$ with $I_{i} \cup\{s\} \in \mathcal{I}_{i}$. Define $I:=I_{1} \cup \cdots \cup I_{k}, F:=F_{1} \cup \cdots \cup F_{k}$, and $\mathcal{I}:=\mathcal{I}_{1} \vee \cdots \vee \mathcal{I}_{k}$.

Theorem 42.4. For any $s \in S \backslash I$ one has: $I \cup\{s\} \in \mathcal{I} \Longleftrightarrow D$ has an $F-s$ path.

Proof. To see necessity, suppose that D has no $F-s$ path. Let T be the set of elements of S that can reach s in D. So $s \in T, T \cap F=\emptyset$, and no arc of D enters T. Then $r_{i}(T)=\left|I_{i} \cap T\right|$ for each $i=1, \ldots, k$. Otherwise, there exists a $t \in T \backslash I_{i}$ with $\left(I_{i} \cap T\right) \cup\{t\} \in \mathcal{I}_{i}$. Since $t \notin F, I_{i} \cup\{t\} \notin \mathcal{I}_{i}$. So there is a $u \in I_{i} \backslash T$ with $I_{i}-u+t \in \mathcal{I}_{i}$. But then (u, t) is an arc of D entering T, a contradiction.

So $r_{i}(T)=\left|I_{i} \cap T\right|$ for each i. Hence $r_{1}(T)+\cdots+r_{k}(T)=|I \cap T|$. As $s \in T \backslash I$, this implies $(I \cap T) \cup\{s\} \notin \mathcal{I}$, and so $I \cup\{s\} \notin \mathcal{I}$.

To see sufficiency, let $P=\left(s_{0}, s_{1}, \ldots, s_{p}\right)$ be a shortest $F-s$ path in D. We can assume by symmetry that $s_{0} \in F_{1}$; so $s_{0} \notin I_{1}$ and $I_{1} \cup\left\{s_{0}\right\} \in \mathcal{I}_{1}$. Since P is a shortest path, for each $i=1, \ldots, k$, the set N_{i} of edges $\left(s_{j-1}, s_{j}\right)$ with $j=1, \ldots, p$ and $s_{j-1} \in I_{i}$, forms a unique perfect matching in $D_{M_{i}}\left(I_{i}\right)$ on the set S_{i} covered by N_{i}. So by Theorem 39.13, $I_{i} \triangle S_{i}$ belongs to \mathcal{I}_{i} for each i. Moreover, by Corollary 39.13a, $\left(I_{1} \triangle S_{1}\right) \cup\left\{s_{0}\right\} \in \mathcal{I}_{1}$. So $I \cup\{s\} \in \mathcal{I}$.

This implies that a maximum-size set in $\mathcal{I}_{1} \vee \cdots \vee \mathcal{I}_{k}$ can be found in polynomial time (by greedily growing an independent set in $M_{1} \vee \cdots \vee M_{k}$). Similarly, we can find with the greedy algorithm a maximum-weight set in $\mathcal{I}_{1} \vee \cdots \vee \mathcal{I}_{k}$.

In particular, we can test if a given set is independent in $M_{1} \vee \cdots \vee M_{k}$. Cunningham [1986] gave an $O\left(\left(n^{3 / 2}+k\right) m Q+n^{1 / 2} k m\right)$ algorithm to find a maximum-size set in $\mathcal{I}_{1} \vee \cdots \vee \mathcal{I}_{k}$, where n is the maximum size of a set in $\mathcal{I}_{1} \vee \cdots \vee \mathcal{I}_{k}, m$ is the size of the underlying set, and Q is the time needed to test if a given set belongs to \mathcal{I}_{j} for any given j.

These methods (including the reduction to matroid intersection) also imply:

Theorem 42.5. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle, we can find a maximum number of disjoint bases, and a minimum number of independent sets covering S, in polynomial time.

Proof. See above.

42.4. The capacitated case: fractional packing and covering of bases

The complexity of the capacitated and fractional cases of the above packing and covering problems can be studied with the help of the strong polynomial-
time solvability of the most violated inequality problem for a matroid $M=$ (S, \mathcal{I}), with rank function r :
(42.29) given: a vector $x \in \mathbb{Q}_{+}^{S}$;
find: a subset U of S minimizing $r(U)-x(U)$.
The strong polynomial-time solvability of this problem was shown in Corollary 40.4 c , and is a result of Cunningham [1984].

If x belongs to $P_{\text {independent set }}(M)$, we can decompose x as a convex combination of incidence vectors of independent sets. This decomposition can be found in strongly polynomial time, by Corollary 40.4a.

We now consider the problem of finding a maximum fractional packing of bases subject to a given capacity function, and its dual, finding a minimum fractional covering by independent sets of a demand function.

With a method given by Picard and Queyranne [1982a] and Padberg and Wolsey [1984] one finds:

Theorem 42.6. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and given $y \in \mathbb{Q}_{+}^{S}$, we can find the minimum value of λ such that $y \in \lambda \cdot P_{\text {independent set }}(M)$ in strongly polynomial time.

Proof. Let r be the rank function of M. We can assume that y does not belong to the independent set polytope. Let L be the line through 0 and y. We iteratively reset y as follows. By Corollary 40.4c, we can find a subset U of S minimizing $r(U)-y(U)$. Let y^{\prime} be the vector on L with $y^{\prime}(U)=r(U)$.

Now, for any $U^{\prime} \subseteq S$, if y^{\prime} violates $x\left(U^{\prime}\right) \leq r\left(U^{\prime}\right)$, then $r\left(U^{\prime}\right)<r(U)$, since the function $d(x):=(r(U)-x(U))-\left(r\left(U^{\prime}\right)-x\left(U^{\prime}\right)\right)$ is nonpositive at y and positive at y^{\prime}, implying that it is positive at 0 (as d is linear in x).

We reset $y:=y^{\prime}$ and iterate, until y belongs to $P_{\text {independent set }}(M)$. So after at most $r(S)$ iterations the process terminates, with a y on the boundary of $P_{\text {independent set }}(M)$. Comparing the final y with the original y gives the required λ.

Theorem 42.6 implies an algorithm for capacitated fractional covering by independent sets:

Corollary 42.6a. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and given $y \in \mathbb{Q}_{+}^{S}$, we can find independent sets I_{1}, \ldots, I_{k} and rationals $\lambda_{1}, \ldots, \lambda_{k} \geq 0$ such that

$$
\begin{equation*}
y=\lambda_{1} \chi^{I_{1}}+\cdots+\lambda_{k} \chi^{I_{k}} \tag{42.30}
\end{equation*}
$$

with $\lambda_{1}+\cdots+\lambda_{k}$ minimal, in strongly polynomial time.
Proof. Without loss of generality, $y \neq \mathbf{0}$. By Theorem 51.7, we can find the minimum value of λ such that y belongs to $\lambda \cdot P_{\text {independent set }}(M)$. By Corollary 40.4a, we can decompose $\frac{1}{\lambda} \cdot y$ as a convex combination of incidence vectors of independent sets. This gives the required decomposition of y.

One similarly shows for the spanning set polytope:
Theorem 42.7. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and given $y \in \mathbb{Q}_{+}^{S}$, we can find the maximum value of λ such that $y \in \lambda \cdot P_{\text {spanning set }}(M)$, in strongly polynomial time.

Proof. Let r be the rank function of M. By Corollary 40.2f, the spanning set polytope of M is determined by the constraints $\mathbf{0} \leq x \leq \mathbf{1}$ and

$$
\begin{equation*}
r(U)-x(U) \geq r(S)-x(S) \text { for } U \subseteq S \tag{42.31}
\end{equation*}
$$

We can assume that $y \notin P_{\text {spanning set }}(M)$ and that the support of y is a spanning set. Let L be the line through 0 and y. We iteratively reset y as follows.

Find a $U \subseteq S$ minimizing $r(U)-y(U)$ (this can be done in strongly polynomial time, by Corollary 40.4c). If y does not belong to the spanning set polytope, we know that y violates the constraint $r(U)-x(U) \geq r(S)-x(S)$. Let y^{\prime} be the vector on L satisfying $r(U)-y^{\prime}(U)=r(S)-y^{\prime}(S)$.

Now for any $U^{\prime} \subseteq S$, if y^{\prime} violates $r\left(U^{\prime}\right)-x\left(U^{\prime}\right) \geq r(S)-x(S)$, then $r\left(U^{\prime}\right)>r(U)$, since the function $d(x):=(r(U)-x(U))-\left(r\left(U^{\prime}\right)-x\left(U^{\prime}\right)\right)$ is nonpositive at y and positive at y^{\prime}, implying that it is negative at 0 (as d is linear in x).

We reset $y:=y^{\prime}$ and iterate, until y belongs to $P_{\text {spanning set }}(M)$. So after at most $r(S)$ iterations the process terminates, in which case y is on the boundary of $P_{\text {spanning set }}(M)$. Comparing the final y with the original y gives the required λ.

In turn, this gives an algorithm for capacitated fractional base packing:
Corollary 42.7a. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and given $y \in \mathbb{Q}_{+}^{S}$, we can find bases B_{1}, \ldots, B_{k} and rationals $\lambda_{1}, \ldots, \lambda_{k} \geq 0$ such that

$$
\begin{equation*}
y \geq \lambda_{1} \chi^{B_{1}}+\cdots+\lambda_{k} \chi^{B_{k}} \tag{42.32}
\end{equation*}
$$

with $\lambda_{1}+\cdots+\lambda_{k}$ maximal, in strongly polynomial time.
Proof. By Theorem 42.7, we can find the maximum value of λ such that y belongs to $\lambda \cdot P_{\text {spanning set }}(M)$. If $\lambda=0$, we take $k=0$. If $\lambda>0$, by Corollary 40.4b we can decompose $\frac{1}{\lambda} \cdot y$ as a convex combination of incidence vectors of spanning sets. This gives the required decomposition of y.

42.5. The capacitated case: integer packing and covering of bases

It is not difficult to derive integer versions of the above algorithms, but they are not strongly polynomial-time, as we round numbers in it. In fact, an
integer packing or covering cannot be found in strongly polynomial time, as it would imply a strongly polynomial-time algorithm for testing if an integer k is even (which algorithm does not exist ${ }^{31}$): Let M be the 2 -uniform matroid on 3 elements and let $k \in \mathbb{Z}_{+}$. Then k is even if and only if M has $\frac{3}{2} k$ bases containing each element of M at most k times.

Polynomial-time algorithms follow directly from the fractional versions with the help of the matroid base packing and covering theorems.

Theorem 42.8. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and given $y \in \mathbb{Z}_{+}^{S}$, we can find independent sets I_{1}, \ldots, I_{t} and integers $\lambda_{1}, \ldots, \lambda_{t} \geq 0$ such that

$$
\begin{equation*}
y=\lambda_{1} \chi^{I_{1}}+\cdots+\lambda_{t} \chi^{I_{t}} \tag{42.33}
\end{equation*}
$$

with $\lambda_{1}+\cdots+\lambda_{t}$ minimal, in polynomial time.
Proof. First find I_{1}, \ldots, I_{k} and $\lambda_{1}, \ldots, \lambda_{k}$ as in Corollary 42.6a. We can assume that $k \leq|S|$ (by Carathéodory's theorem, applying Gaussian elimination). Let

$$
\begin{equation*}
y^{\prime}:=\sum_{i=1}^{k}\left(\lambda_{i}-\left\lfloor\lambda_{i}\right\rfloor\right) \chi^{I_{i}}=y-\sum_{i=1}^{k}\left\lfloor\lambda_{i}\right\rfloor \chi^{I_{i}} . \tag{42.34}
\end{equation*}
$$

So y^{\prime} is integer.
Replace each $s \in S$ by $y^{\prime}(s)$ parallel elements, making matroid $M^{\prime}=$ $\left(S^{\prime}, \mathcal{I}^{\prime}\right)$. By Theorem 42.5, we can find a minimum number of independent sets partitioning S^{\prime}, in polynomial time (as $y^{\prime}(s) \leq|S|$ for each $s \in S$). This gives independent sets I_{k+1}, \ldots, I_{t} of M.

Setting $\lambda_{i}:=1$ for $i=k+1, \ldots, t$, we show that this gives a solution of our problem. Trivially, (42.33) is satisfied (with λ_{i} replaced by $\left\lfloor\lambda_{i}\right\rfloor$). By the matroid base covering theorem applied to M^{\prime} (as (42.34) gives a fractional decomposition of S^{\prime} into independent sets),

$$
\begin{equation*}
t-k \leq\left\lceil\sum_{i=1}^{k}\left(\lambda_{i}-\left\lfloor\lambda_{i}\right\rfloor\right)\right\rceil . \tag{42.35}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sum_{i=1}^{t}\left\lfloor\lambda_{i}\right\rfloor=(t-k)+\sum_{i=1}^{k}\left\lfloor\lambda_{i}\right\rfloor \leq\left\lceil\sum_{i=1}^{k} \lambda_{i}\right\rceil \tag{42.36}
\end{equation*}
$$

[^16]proving that the decomposition is optimum (cf. Theorem 42.2).
One similarly shows for packing bases:
Theorem 42.9. Given a matroid $M=(S, \mathcal{I})$ by an independence testing oracle and given $y \in \mathbb{Z}_{+}^{S}$, we can find bases B_{1}, \ldots, B_{t} and integers $\lambda_{1}, \ldots, \lambda_{t} \geq 0$ such that
(42.37) $\quad y \geq \lambda_{1} \chi^{B_{1}}+\cdots+\lambda_{t} \chi^{B_{t}}$
with $\lambda_{1}+\cdots+\lambda_{t}$ maximal, in polynomial time.
Proof. First find bases B_{1}, \ldots, B_{k} and $\lambda_{1}, \ldots, \lambda_{k}$ as in Corollary 42.7a. Again we can assume that $k \leq|S|$. Let
\[

$$
\begin{equation*}
y^{\prime}:=\left\lceil\sum_{i=1}^{k}\left(\lambda_{i}-\left\lfloor\lambda_{i}\right\rfloor\right) \chi^{B_{i}}\right\rceil . \tag{42.38}
\end{equation*}
$$

\]

Replace each $s \in S$ by $y^{\prime}(s)$ parallel elements, making matroid M^{\prime}. By Theorem 42.5 , we can find a maximum number of disjoint bases in M^{\prime} in polynomial time (as $y^{\prime}(s) \leq|S|$ for each $s \in S$). This gives bases B_{k+1}, \ldots, B_{t} in M.

Setting $\lambda_{i}:=1$ for $i=k+1, \ldots, t$, we show that this gives a solution of our problem. Trivially, (42.37) is satisfied (with λ_{i} replaced by $\left\lfloor\lambda_{i}\right\rfloor$). Again, now by the matroid base packing theorem applied to M^{\prime}, using (42.38),

$$
\begin{equation*}
t-k \geq\left\lfloor\sum_{i=1}^{k}\left(\lambda_{i}-\left\lfloor\lambda_{i}\right\rfloor\right)\right\rfloor . \tag{42.39}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sum_{i=1}^{t}\left\lfloor\lambda_{i}\right\rfloor=(t-k)+\sum_{i=1}^{k}\left\lfloor\lambda_{i}\right\rfloor \geq\left\lfloor\sum_{i=1}^{k} \lambda_{i}\right\rfloor \tag{42.40}
\end{equation*}
$$

proving that the decomposition is optimum (cf. Theorem 42.3).
De Pina and Soares [2000] showed that, in this theorem we can make the additional condition that $t \leq|S|+r$, where r is the rank of M.

42.6. Further results and notes

42.6a. Induction of matroids

An application of matroid intersection and union is the following 'induction of a matroid through a directed graph', discovered by Perfect [1969b] (for bipartite graphs) and Brualdi [1971c]. In fact, it forms a generalization of the basic Theorem 42.1.

Let $D=(V, A)$ be a directed graph, let $U, W \subseteq V$, and let $M=(U, \mathcal{I})$ be a matroid. Let \mathcal{J} be the collection of subsets Y of W such that there exists an $X \in \mathcal{I}$ with X linked to Y. (Set X is linked to Y if $|X|=|Y|$ and D has $|X|$ disjoint $X-Y$ paths.)

Then:

$$
\begin{equation*}
N=(W, \mathcal{J}) \text { is a matroid. } \tag{42.41}
\end{equation*}
$$

To show that N is a matroid, we can assume that U and W are disjoint. (Otherwise, add a new vertex w^{\prime} and new $\operatorname{arc}\left(w, w^{\prime}\right)$ for each $w \in W$.) Let L be the gammoid induced by $D, U, U \cup W$. Then $N=(M \vee L) / U$. Indeed, since U is independent in L and hence in $M \vee L$, a subset Y of W is independent in $(M \vee L) / U$ if and only if $Y \cup U$ is independent in $M \vee L$. This is easily seen to be equivalent to: $Y \in \mathcal{J}$. So N is a matroid.

The rank function r_{N} of N can be described by (for $Y \subseteq W$):

$$
\begin{align*}
& r_{N}(Y)=\min \left\{r_{M}(X)+|Z| \mid X \subseteq U, Z \subseteq V, Z \text { intersects each } U \backslash X-Y\right. \tag{42.42}\\
& \text { path }\} .
\end{align*}
$$

This can be derived from the matroid union theorem, but also (and simpler) from the matroid intersection theorem, as follows. Let K be the gammoid induced by D^{-1}, Y, U, where D^{-1} arises from D by reversing the orientations of all arcs. Then $r_{N}(Y)$ is equal to the maximum size of a common independent set in M and K. So, by the matroid intersection theorem (Theorem 41.1),

$$
\begin{equation*}
r_{N}(Y)=\min _{X \subseteq U}\left(r_{M}(X)+r_{K}(U \backslash X)\right) \tag{42.43}
\end{equation*}
$$

which by Menger's theorem is equal to the right-hand side of (42.42).
Applying the matroid intersection theorem again gives the following result of Brualdi [1971e] (generalizing Brualdi [1970a]).

Let $D=(V, A)$ be a directed graph, let $U, W \subseteq V$, and let $M=(U, \mathcal{I})$ and $M^{\prime}=\left(W, \mathcal{I}^{\prime}\right)$ be matroids. Then the maximum size of an independent set in M that is linked to an independent set in M^{\prime} is equal to the minimum value of

$$
\begin{equation*}
r_{M}(X)+|Z|+r_{M^{\prime}}(Y) \tag{42.44}
\end{equation*}
$$

where $X \subseteq U, Y \subseteq W$, and $Z \subseteq V$, such that Z intersects each $U \backslash X-W \backslash Y$ path. (This follows directly by considering the maximum size of a common independent set in M^{\prime} and N as defined above.)

Related results are given by McDiarmid [1975b] and Woodall [1975]. These results are generalized in Schrijver [1979c]. For an algorithm, see Fujishige [1977b].

42.6b. List-colouring

Seymour [1998] showed the following matroid list-colouring theorem (cf. Section 20.9c):

Theorem 42.10. Let $M=(S, \mathcal{I})$ be a matroid such that S can be partitioned into k independent sets, and let $m \in \mathbb{Z}_{+}$. For each $s \in S$, let $L_{s} \subseteq\{1, \ldots, m\}$ be a set of size k. Then S can be partitioned into independent sets I_{1}, \ldots, I_{m} such that for each $j=1, \ldots, m$: if $s \in I_{j}$, then $j \in L_{s}$.

Proof. For each $j=1, \ldots, m$, let $U_{j}:=\left\{s \in S \mid j \in L_{s}\right\}$. We need to prove that for all j, there exists an independent set $I_{j} \subseteq U_{j}$ such that $S=I_{1} \cup \cdots \cup I_{n}$.

Since S can be partitioned into k independent sets, we know that $|X| \leq k \cdot r_{M}(X)$ for each $X \subseteq S$. Hence, for each $T \subseteq S$,

$$
\begin{equation*}
\sum_{j=1}^{m} r_{M}\left(U_{j} \cap T\right) \geq \sum_{j=1}^{m} \frac{1}{k}\left|U_{j} \cap T\right|=|T| \tag{42.45}
\end{equation*}
$$

since each $s \in T$ belongs to k of the U_{j}. So by the matroid union theorem (Corollary 42.1a), applied to the matroids $M \mid U_{j}$, the independent sets I_{j} as required exist.

42.6c. Strongly base orderable matroids

In general it is not true that given two matroids $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ such that S can be partitioned into k independent sets of M_{1}, and also into k independent sets of M_{2}, then S can be partitioned into k common independent sets of M_{1} and M_{2}. This could yield a 'matroid union intersection theorem'. However, taking for M_{1} is the cycle matroid of K_{4} and for M_{2} the matroid with independent sets all sets of pairwise intersecting edges of K_{4} (which is a partition matroid), shows that the statement is false for $k=2$.

But the assertion is true if both M_{1} and M_{2} belong to the class of so-called strongly base orderable matroids, introduced by Brualdi [1970b]. A matroid $M=$ (S, \mathcal{I}) is called strongly base orderable if for each two bases B_{1}, B_{2} of M there exists a bijection $\pi: B_{1} \rightarrow B_{2}$ such that for each subset X of B_{1} the set $\pi(X) \cup\left(B_{1} \backslash X\right)$ is a base again.

One easily checks that for such π, the function $\pi \mid B_{1} \cap B_{2}$ is the identity map. It is also straightforward to check that if M is strongly base orderable, then also the dual of M and any contraction of M is strongly base orderable, and hence also any restriction, and therefore any minor is strongly base orderable. Moreover, Brualdi [1970b] showed:

Theorem 42.11. Any truncation of a strongly base orderable matroid is strongly base orderable again.

Proof. Let $M=(S, \mathcal{I})$ be a strongly base orderable matroid, with rank function r, and let $k:=r(S)-1$. It suffices to show that the k-truncation of M is strongly base orderable. Let I and J be independent sets of size k, and restrict M to $I \cup J$. If $r(I \cup J)=k$, we are done, since then I and J are bases of the strongly base orderable matroid $M \mid I \cup J$. So suppose $r(I \cup J)=r(S)=k+1$, and let $i \in I \backslash J$ and $j \in J \backslash I$ be such that $I \cup\{j\}$ and $J \cup\{i\}$ are bases of M. As M is strongly base orderable, there exists a bijection $\pi: I \cup\{j\} \rightarrow J \cup\{i\}$ with the prescribed exchange property. So $\pi(j)=j$ and $\pi(i)=i$. Define $\pi^{\prime}: I \rightarrow J$ by $\pi^{\prime}(s):=\pi(s)$ if $s \neq i$, and $\pi^{\prime}(i)=j$. We show that this bijection is as required. To prove this, choose $X \subseteq I$. We must show that $\pi^{\prime}(X) \cup(I \backslash X)$ is independent.

If $i \notin X$, then $\pi^{\prime}(X)=\pi(X)$, hence $\pi^{\prime}(X) \cup(I \backslash X)$ is independent, since
(42.46) $\quad \pi^{\prime}(X) \cup(I \backslash X)=\pi(X) \cup(I \backslash X) \subseteq \pi(X) \cup((I \cup\{j\}) \backslash X)$
and the last set is independent.
If $i \in X$, then $\pi^{\prime}(X)=\pi(X \backslash\{i\}) \cup\{j\}$, hence $\pi^{\prime}(X) \cup(I \backslash X)$ is independent, since

$$
\begin{align*}
& \pi^{\prime}(X) \cup(I \backslash X)=\pi(X \backslash\{i\}) \cup\{j\} \cup(I \backslash X)=\pi(X \backslash\{i\}) \cup((I \cup\{j\}) \backslash X) \tag{42.47}\\
& \subseteq \pi(X \backslash\{i\}) \cup((I \cup\{j\}) \backslash(X \backslash\{i\}))
\end{align*}
$$

and the last set is independent.
One also easily checks that strong base orderability is closed under making parallel extensions. (Given a matroid $M=(S, \mathcal{I})$ a parallel extension in $s \in S$ is obtained by extending S with some new element s^{\prime}, and \mathcal{I} with $\left\{(I \backslash\{s\}) \cup\left\{s^{\prime}\right\} \mid\right.$ $s \in I \in \mathcal{I}\}$.)

Since transversal matroids are strongly base orderable, also gammoids are strongly base orderable (Brualdi [1971c]):

Theorem 42.12. Each gammoid is strongly base orderable.
Proof. Since strong base orderability is closed under taking contractions and since each gammoid is a contraction of a transversal matroid (by Corollary 39.5a), it suffices to show that any transversal matroid is strongly base orderable.

Let M be the transversal matroid induced by a family $\mathcal{X}=\left(X_{1}, \ldots, X_{m}\right)$ of subsets of a set S. We may assume that \mathcal{X} has a transversal (cf. (39.18)). Consider two transversals $T_{1}=\left\{x_{1}, \ldots, x_{m}\right\}$ and $T_{2}=\left\{y_{1}, \ldots, y_{m}\right\}$ of \mathcal{X}, where $x_{i}, y_{i} \in X_{i}$ for $i=1, \ldots, m$.

Consider the bipartite graph on $\{1, \ldots, m\} \cup S$ with edges all pairs $\{i, s\}$ with $i \in\{1, \ldots, m\}$ and $s \in X_{i}$ (assuming without loss of generality that $\{1, \ldots, m\} \cap S=$ $\emptyset)$. Then $M_{1}:=\left\{\left\{i, x_{i}\right\} \mid i=1, \ldots, m\right\}$ and $M_{2}:=\left\{\left\{i, y_{i}\right\} \mid i=1, \ldots, m\right\}$ are matchings in G. Define $\pi: T_{1} \rightarrow T_{2}$ as follows. If $s \in T_{1} \cap T_{2}$, define $\pi(s):=s$. If $s \in T_{1} \backslash T_{2}$, let $\pi(s)$ be the (other) end of the path in $M_{1} \cup M_{2}$ starting at s. This defines a bijection as required.

Brualdi [1971c] showed more generally that strong base orderability is maintained under induction of matroids through a directed graph, as described in Section 42.6a. However, not every strongly base orderable matroid is a gammoid (cf. Oxley [1992] p. 411).

Davies and McDiarmid [1976] (cf. McDiarmid [1976]) showed the following.
Theorem 42.13. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be strongly base orderable matroids, let $k \in \mathbb{Z}_{+}$, and suppose that S can be split into k independent sets of M_{1}, and also into k independent sets of M_{2}. Then S can be split into k common independent sets of M_{1} and M_{2}.

Proof. In order to prove this, let $\mathcal{X}=\left(X_{1}, \ldots, X_{k}\right)$ and $\mathcal{Y}=\left(Y_{1}, \ldots, Y_{k}\right)$ be partitions of S into independent sets of M_{1} and M_{2}, respectively, with

$$
\begin{equation*}
\sum_{i=1}^{k}\left|X_{i} \cap Y_{i}\right| \tag{42.48}
\end{equation*}
$$

as large as possible. If this sum is equal to $|S|$ we are done, so suppose that this sum is less than $|S|$. Hence there are i and j with $X_{i} \cap Y_{j} \neq \emptyset$ and $i \neq j$. Extend X_{i} and X_{j} to bases C_{i} and C_{j} of M_{1}. Similarly, extend Y_{i} and Y_{j} to bases D_{i} and D_{j} of M_{2}. Since M_{1} and M_{2} are strongly base orderable, there exist bijections
$\pi_{1}: C_{i} \rightarrow C_{j}$ and $\pi_{2}: D_{i} \rightarrow D_{j}$ with the exchange property. So $p_{1}(s)=s$ for each $s \in C_{i} \cap C_{j}$ and $p_{2}(s)=s$ for each $s \in D_{i} \cap D_{j}$.

Let G be the bipartite graph with vertex set $C_{i} \cup C_{j} \cup D_{i} \cup D_{j}$, and edges the pairs $\left\{s, \pi_{1}(s)\right\}$ with s in $C_{i} \backslash C_{j}$ and the pairs $\left\{s, \pi_{2}(s)\right\}$ with s in $D_{i} \backslash D_{j}$. Split the vertex set into colour classes S and T, say. Define

$$
\begin{align*}
& X_{i}^{\prime}:=S \cap\left(X_{i} \cup X_{j}\right), X_{j}^{\prime}:=T \cap\left(X_{i} \cup X_{j}\right), \tag{42.49}\\
& Y_{i}^{\prime}:=S \cap\left(Y_{i} \cup Y_{j}\right), Y_{j}^{\prime}:=T \cap\left(Y_{i} \cup Y_{j}\right) .
\end{align*}
$$

So $X_{i}^{\prime} \cap Y_{j}^{\prime}=\emptyset$ and $X_{j}^{\prime} \cap Y_{i}^{\prime}=\emptyset$. Moreover, X_{i}^{\prime} and X_{j}^{\prime} are independent in M_{1}, since, by the exchange property of $\pi, S \cap\left(C_{i} \cup C_{j}\right)$ and $T \cup\left(C_{i} \cup C_{j}\right)$ are independent in M_{1}. Similarly, Y_{i}^{\prime} and Y_{j}^{\prime} are independent in M_{2}.

So replacing the classes X_{i} and X_{j} of \mathcal{X} by X_{i}^{\prime} and X_{j}^{\prime}, and the classes Y_{i} and Y_{j} of \mathcal{Y} by Y_{i}^{\prime} and Y_{j}^{\prime} yields partitions as required. However, since $X_{i}^{\prime} \cap Y_{j}^{\prime}=\emptyset$ and $X_{j}^{\prime} \cap Y_{i}^{\prime}=\emptyset$, we have

$$
\begin{equation*}
\left|X_{i}^{\prime} \cap Y_{i}^{\prime}\right|+\left|X_{j}^{\prime} \cap Y_{j}^{\prime}\right|>\left|X_{i} \cap Y_{i}\right|+\left|X_{j} \cap Y_{j}\right|, \tag{42.50}
\end{equation*}
$$

contradicting the maximality of (42.48).
The proof also shows that the required partition can be found in polynomial time, provided that there is a polynomial-time algorithm to find the exchange bijection π. (This is the case for transversal matroids induced by a given family of sets.)

By the matroid base covering theorem (Corollary 42.1c), Theorem 42.13 is equivalent to:

Corollary 42.13a. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be loopless, strongly base orderable matroids, with rank functions r_{1} and r_{2}. Then the minimum number of common independent sets needed to cover S, is equal to

$$
\begin{equation*}
\max \left\{\left.\left\lceil\frac{|U|}{r_{i}(U)}\right\rceil \right\rvert\, \emptyset \neq U \subseteq S, i=1,2\right\} \tag{42.51}
\end{equation*}
$$

Proof. Directly from Theorem 42.13 with the matroid base covering theorem.
Applying Corollary 42.13a to transversal matroids gives Corollary 23.9a. Similarly, it follows from Theorem 42.13 that:

Corollary 42.13b. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be strongly base orderable matroids, with rank functions r_{1} and r_{2}, satisfying $r_{1}(S)=r_{2}(S)$. Then M_{1} and M_{2} have k disjoint common bases if and only if

$$
\begin{equation*}
|S \backslash(T \cup U)| \geq k\left(r_{1}(S)-r_{1}(T)-r_{2}(U)\right) \tag{42.52}
\end{equation*}
$$

for all $T, U \subseteq S$.
Proof. Indeed, from Theorem 42.13 we have that M_{1} and M_{2} have k disjoint common bases if and only if the matroids $M_{1} \vee \cdots \vee M_{1}$ and $M_{2} \vee \cdots \vee M_{2}$ (k-fold unions) have a common independent set of size $k \cdot r_{1}(S)$. By the matroid union and intersection theorems, this last is equivalent to the condition stated in the present corollary.

By truncating M_{1} and M_{2} one has similar results if we replace 'common bases' by 'common independent sets of size t '. Application to transversal matroids yields Corollary 23.9d.

Another consequence of Theorem 42.13 is:
Corollary 42.13c. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be strongly base orderable matroids. Then M_{1} and M_{2} have k disjoint common spanning sets if and only if both M_{1} and M_{2} have k disjoint bases.

Proof. This can be deduced as follows. Let N_{i} arise from the dual matroid of M_{i} by replacing each element s of S by $k-1$ parallel elements (for $i=1,2$). So N_{1} and N_{2} are strongly base orderable again, with an underlying ground set of size $(k-1)|S|$. Now M_{1} and M_{2} have k disjoint (common) spanning sets, if and only if N_{1} and N_{2} have k (common) independent sets covering the underlying set. This directly implies the present corollary.

Applying Corollary 42.13c to transversal matroids gives Theorem 23.11.

Corollary 42.13d. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be strongly base orderable matroids, with rank functions r_{1} and r_{2}, satisfying $r_{1}(S)=r_{2}(S)$. Then S can be covered by k common bases of M_{1} and M_{2} if and only if

$$
\begin{equation*}
k\left(r_{1}(T)+r_{2}(U)-r_{1}(S)\right) \geq|T \cap U| \tag{42.53}
\end{equation*}
$$

for all $T, U \subseteq S$.
Proof. Condition (42.53) is equivalent to:

$$
\begin{equation*}
(k-1)|S \backslash(T \cup U)| \geq k\left(r_{1}^{*}(S)-r_{1}^{*}(T)-r_{2}^{*}(U)\right) \tag{42.54}
\end{equation*}
$$

for all $T, U \subseteq S$. Let N_{1} and N_{2} be the matroids defined in the proof of Corollary 42.13c. By Corollary 42.13b, condition (42.54) implies that N_{1} and N_{2} contain k disjoint common bases. So M_{1}^{*} and M_{2}^{*} have k common bases covering each element at most $k-1$ times. Hence M_{1} and M_{2} have k common bases covering S.

Applying Corollary 42.13d to transversal matroids gives Theorem 23.12.

42.6d. Blocking and antiblocking polyhedra

We next investigate the blocking and antiblocking polyhedra corresponding to intersections of independent set polytopes of two matroids. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be loopless matroids, with rank functions r_{1} and r_{2} respectively, and independent set polytopes P_{1} and P_{2} respectively. So $P_{1} \cap P_{2}$ is the convex hull of the incidence vectors of common independent sets. Hence its antiblocking polyhedron $A\left(P_{1} \cap P_{2}\right)$ is determined by the linear inequalities

$$
\begin{array}{ll}
x_{s} \geq 0 & (s \in S) \tag{42.55}\\
x(I) \leq 1 & \left(I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}\right)
\end{array}
$$

Since $P_{1} \cap P_{2}$ is determined by the linear inequalities (41.37), $A\left(P_{1} \cap P_{2}\right)$ consists of all vectors $x \geq \mathbf{0}$ for which there exists a $y \geq x$ which is a convex combination of vectors

$$
\begin{equation*}
\frac{1}{r_{i}(U)} \chi^{U} \tag{42.56}
\end{equation*}
$$

where U is a nonempty subset of S and $i=1,2$. Then $A\left(P_{1} \cap P_{2}\right)$ gives rise to the following linear programming duality equation, for $c: S \rightarrow \mathbb{R}_{+}$:

$$
\begin{align*}
& \max \left\{c^{\top} x \mid x \in A\left(P_{1} \cap P_{2}\right)\right\}=\max \left\{\left.\frac{c(U)}{r_{i}(U)} \right\rvert\, \emptyset \neq U \subseteq S ; i=1,2\right\} \tag{42.57}\\
& =\min \left\{\sum_{I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}} y(I) \mid y \in \mathbb{R}_{+}^{\mathcal{I}_{+} \cap \mathcal{I}_{2}}, \sum_{I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}} y(I) \chi^{I} \geq c\right\} .
\end{align*}
$$

For integer c, an integer optimum solution y need not exist (for instance, if $|S|=3$, $r_{i}(U):=\min \{|U|, 2\}$, and $c=1$). That is, system (42.55) need not be totally dual integral. In fact, it generally does not have the integer rounding property. That is, it is not true, for each pair of matroids, that the minimum in (42.57) with y restricted to be integer:

$$
\begin{equation*}
\min \left\{\sum_{I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}} y(I) \mid y \in \mathbb{Z}_{+}^{\mathcal{I}_{1} \cap \mathcal{I}_{2}}, \sum_{I \in \mathcal{I}_{1} \cap \mathcal{I}_{2}} y(I) \chi^{I} \geq c\right\}, \tag{42.58}
\end{equation*}
$$

is equal to the upper integer part of the common value of (42.57). For instance, take for M_{1} the cycle matroid of K_{4}, and for M_{2} the matroid with independent sets all sets of pairwise intersecting edges in K_{4}, and let $c=\mathbf{1}$; then the common value in (42.57) is 2, while (42.58) is equal to 3 . However, Corollary 42.13a implies that if M_{1} and M_{2} are strongly base orderable matroids, then (42.58) is equal to the upper integer part of (42.57). That is, for strongly base orderable matroids, system (42.57) has the integer rounding property.

Similar results hold if we consider the blocker $B\left(Q_{1} \cap Q_{2}\right)$ of the intersection of the spanning set polytopes Q_{1} and Q_{2} of M_{1} and M_{2}. In particular, Corollary 42.13 c implies that the system

$$
\begin{array}{ll}
x_{s} \geq 0 & (s \in S) \tag{42.59}\\
x(U) \geq 1 & \left(U \text { common spanning set of } M_{1} \text { and } M_{2}\right)
\end{array}
$$

has the integer rounding property, if M_{1} and M_{2} are strongly base orderable.
Moreover, Corollaries 42.13b and 42.13 d imply that the systems

$$
\begin{array}{ll}
x_{s} \geq 0 & (s \in S), \tag{42.60}\\
x(B) \geq 1 & \left(B \text { common base of } M_{1} \text { and } M_{2}\right)
\end{array}
$$

and

$$
\begin{array}{ll}
x_{s} \geq 0 & (s \in S), \tag{42.61}\\
x(B) \leq 1 & \left(B \text { common base of } M_{1} \text { and } M_{2}\right)
\end{array}
$$

have the integer rounding property, if M_{1} and M_{2} are strongly base orderable. Here the results of Section 41.4 b are used: to prove that (42.60) has the integer rounding property, let $w \in \mathbb{Z}_{+}^{S}$. Let Q be the polytope determined by (42.60), let $r(U)$ be the maximum size of a common independent set contained in U, and let \mathcal{B} denote the collection of common bases. Then

$$
\begin{align*}
& \left\lceil\min \left\{w^{\top} x \mid x \in Q\right\}\right\rceil \tag{42.62}\\
& =\min \left\{\left.\left\lceil\frac{w(U)}{r(S)-r(S \backslash U)}\right\rceil \right\rvert\, U \subseteq S, r(S)>r(S \backslash U)\right\} \\
& =\max \left\{\sum_{B \in \mathcal{B}} y_{B} \mid y \in \mathbb{Z}_{+}^{\mathcal{B}}, \sum_{B \in \mathcal{B}} y_{B} \chi^{B} \leq w\right\} .
\end{align*}
$$

The first equality holds as the vertices of Q are given by the vectors

$$
\begin{equation*}
\frac{1}{r(S)-r(S \backslash U)} \chi^{U} \tag{42.63}
\end{equation*}
$$

since Q is the blocking polyhedron of the common base polytope (cf. Section 41.4 b). The second equality follows from Corollary 42.13 b , using the fact that strong base orderability is maintained under adding parallel elements.

Related results on integer decomposition of the intersection of the independent set polytopes of two strongly base orderable matroids can be found in McDiarmid [1983].

42.6e. Further notes

Krogdahl [1976] observed that the following, general problem is solvable in polynomial time, by reduction to matroid intersection: given matroids $\left(S, \mathcal{I}_{1}\right), \ldots,\left(S, \mathcal{I}_{k}\right)$, weight functions $w_{1}, \ldots, w_{k} \in \mathbb{R}^{S}$, and $l \leq k$, find the maximum value of $w_{1}\left(I_{1}\right)+\cdots+w_{k}\left(I_{k}\right)$, where $I_{1} \in \mathcal{I}_{1}, \ldots, I_{k} \in \mathcal{I}_{k}$, with I_{1}, \ldots, I_{l} disjoint and I_{l+1}, \ldots, I_{k} disjoint, and with $I_{1} \cup \ldots \cup I_{l}=I_{l+1} \cup \ldots \cup I_{k}$.

With matroid union, several new classes of matroids can be constructed. One of them is formed by the bicircular matroids, which are the union of the cycle matroid $M(G)$ of a graph $G=(V, E)$ and the matroid on E in which $F \subseteq E$ is independent if and only if $|F| \leq 1$. The independent sets of this matroid are the edge sets containing at most one circuit.

A randomized parallel algorithm for linear matroid union was given by Narayanan, Saran, and Vazirani [1992,1994]. For matroid base packing algorithms, see Knuth [1973] and Karger [1993,1998].

42.6f. Historical notes on matroid union

As the matroid base covering theorem can be derived by an elementary construction from Rado's theorem (proved by Rado [1942]), it is surprising that, for a long time, it had remained an open question, posed by Rado himself.

In fact, it was Horn [1955] who showed that a set X of vectors is the union of k linearly independent sets of vectors if and only if each finite subset Y of X has rank at least $|Y| / k$. He mentioned that this was conjectured by K.F. Roth and R. Rado, and he did not refer to matroids. Horn also acknowledged the help of Rado.

Surprisingly, the same theorem was also published by Rado [1962a] (in the same journal). The proof method (including notation) is the same as that of Horn, but no reference to Horn's paper is given. Rado wondered if the theorem can be generalized to matroids:

It can be seen that some steps of the argument can be adapted to the more general situation of abstract independence functions but there does not appear to be an obvious way of making the whole argument apply to the more general case.

Rado [1962b] presented the vector theorem at the International Congress of Mathematicians in Stockholm in 1962, where he mentioned again that its proof has not yet been extended to 'abstract independence relations' (matroids). He wondered if the property in fact would characterize linear matroids.

Finally, two years later, at the Conference on General Algebra in Warsaw, 7-11 September 1964, Rado announced the base covering theorem. Simultaneously, there was the Seminar on Matroids at the National Bureau of Standards in Washington, D.C., 31 August-11 September 1964, where Edmonds [1965c] presented the base covering theorem.

In the paper based on his lecture in Warsaw, Rado [1966] did not give a proof of the matroid base cover theorem, but just said that the argument of Horn [1955] can be adapted so as to yield the more general version (as we did in Section 42.1b).

The matroid base covering theorem generalizes also the min-max relation of Nash-Williams [1964] for the minimum number of forests needed to cover the edges of a graph. (As each graphic matroid is linear, this follows also from the result of Horn [1955] described above.)

The basic unifying result (Theorem 42.1) on matroid union was given in NashWilliams [1967], which has as special case the matroid union theorem given by Edmonds [1968]. In a footnote on page 20 of Pym and Perfect [1970], it is remarked that:

Professor Nash-Williams has written to inform us that these results were suggested by earlier unpublished work of Professor J. Edmonds on the relation between independence structures and submodular functions.

It seems in fact much easier to prove the matroid union theorem in general, than just its special case for graphic matroids (for instance, the covering forests theorem). It also generalizes theorems of Higgins [1959] on disjoint transversals (Theorem 22.11), and of Tutte [1961a] and Nash-Williams [1961b] on disjoint spanning trees in a graph (Corollary 51.1a). (These papers mention no possible generalization to matroids.)

Welsh [1976] mentioned on these results:
They illustrate perfectly the principle that mathematical generalization often lays bare the important bits of information about the problem at hand.

Chapter 43

Matroid matching

Abstract

We saw two generalizations of Kőnig's matching theorem for bipartite graphs: the Tutte-Berge formula on matchings in arbitrary graphs and the matroid intersection theorem. This raises the demand for a common generalization of these last two theorems. A solution to the following matroid matching problem, posed by Lawler [1971b,1976b], could yield such a generalization: given an undirected graph $G=(S, E)$ and a matroid $M=(S, \mathcal{I})$, what is the maximum number of disjoint edges of G whose union is independent in M ? By taking M trivial, the matroid matching problem reduces to the matching problem, and by taking G regular of degree one, and M to be the disjoint sum of two matroids defined on the two colour classes of the bipartite graph G, we obtain the matroid intersection problem. However, the general matroid matching problem has been shown to be NPcomplete in the regular NP-framework, and unsolvable in polynomial time in an oracle framework. On the other hand, Lovász [1980b] gave a strongly polynomial-time algorithm in case the matroid M is linear. Moreover, Lovász [1980a] gave a min-max relation, which was extended by Dress and Lovász [1987] to algebraic matroids. No extension to the weighted case has been discovered, even not for the linear case: no polyhedral characterization or polynomial-time algorithm for finding a maximum-weight matroid matching has been found.

43.1. Infinite matroids

In this chapter, we need an extension of the notion of matroids to infinite matroids. An infinite matroid is defined as a pair $M=(S, \mathcal{I})$, where S is an infinite set and \mathcal{I} is a nonempty collection of subsets of S satisfying:
(i) if $I \in \mathcal{I}$ and $J \subseteq I$, then $J \in \mathcal{I}$,
(ii) if $I \subseteq S$ and each finite subset of I belongs to \mathcal{I}, then I belongs to \mathcal{I};
(iii) if I, J are finite sets in \mathcal{I} and $|I|<|J|$, then $I \cup\{j\} \in \mathcal{I}$ for some $j \in J \backslash I$.

Standard matroid terminology transfers to infinite matroids. The sets in \mathcal{I} are called independent and those subsets of S not in \mathcal{I} dependent. An inclusionwise minimal dependent set is a circuit. By (43.1)(ii), each circuit of M is finite. We will restrict ourselves to infinite matroids of finite rank. That is, there is a finite upper bound on the size of the sets in \mathcal{I}.

Examples of infinite matroids are linear spaces, where \mathcal{I} is the collection of linearly independent subsets, and field extensions L of a field K, where \mathcal{I} is the collection of subsets of L that are algebraically independent over K. In fact, these are the only two classes of infinite matroids that we will consider.

We call a matroid $M=(S, \mathcal{I})$ with S finite also a finite matroid.

43.2. Matroid matchings

Let (S, \mathcal{I}) be a (finite or infinite) matroid, with rank function r and span function span. Let E be a finite collection of unordered pairs from S, such that each pair is an independent set of (S, \mathcal{I}). For $F \subseteq E$ define

$$
\begin{equation*}
\operatorname{span}(F):=\operatorname{span}(\bigcup F) \tag{43.2}
\end{equation*}
$$

(where $\bigcup F$ denotes the union of the pairs in F), and

$$
\begin{equation*}
r(F):=r(\operatorname{span}(F)) \tag{43.3}
\end{equation*}
$$

Then for $X, Y \subseteq E$ one has

$$
\begin{equation*}
r(X)+r(Y) \geq r(X \cap Y)+r(X \cup Y), \tag{43.4}
\end{equation*}
$$

since

$$
\begin{align*}
& r(X)+r(Y)=r(\operatorname{span}(X))+r(\operatorname{span}(Y)) \tag{43.5}\\
& \geq r(\operatorname{span}(X) \cap \operatorname{span}(Y))+r(\operatorname{span}(X) \cup \operatorname{span}(Y)) \\
& \geq r(\operatorname{span}(X \cap Y))+r(\operatorname{span}(X \cup Y))=r(X \cap Y)+r(X \cup Y) .
\end{align*}
$$

Call a subset M of E a matroid matching, or just a matching, if

$$
\begin{equation*}
r(M)=2|M| . \tag{43.6}
\end{equation*}
$$

So M is a matroid matching if and only if M consists of disjoint pairs and the union of the pairs in M belongs to \mathcal{I}. Hence each subset of a matching is a matching again. The maximum size of a matching in E is denoted by $\nu(E)$, or just by ν. A matching of size $\nu(E)$ is called a base of E. (We should be aware of the difference between a matching in a graph and a matroid matching, and between a base of a matroid and a base of a collection of pairs in a matroid. Below we will see moreover the notion of a circuit in a set of pairs in a matroid. We will be careful to avoid confusion. ${ }^{32}$)

Consider the function s defined on subsets F of E by
(43.7)

$$
s(F):=2|F|-r(F) .
$$

[^17]So a subset M of E is a matching if and only if $s(M)=0$.
Then for all collections X and Y :
(i) $s(X) \leq s(Y)$ if $X \subseteq Y$,
(ii) $s(X)+s(Y) \leq s(X \cap Y)+s(X \cup Y)$.

Here (i) follows from

$$
\begin{equation*}
r(Y) \leq r(X)+r(Y \backslash X) \leq r(X)+2|Y|-2|X| \tag{43.9}
\end{equation*}
$$

(43.8)(ii) follows from (43.4).
(43.8) implies:
(43.10) each $F \subseteq E$ contains a unique inclusionwise minimal subset X with $s(X)=s(F)$.
For let F contain subsets X and Y with $s(X)=s(Y)=s(F)$. Then by (43.8)(i), $s(X \cap Y) \leq s(F)$ and $s(X \cup Y)=s(F)$, and by (43.8)(ii), $s(X \cap Y) \geq$ $s(X)+s(Y)-s(X \cup Y)=s(F)$. So $s(X \cap Y)=s(F)$.

43.3. Circuits

A subset C of E is called a circuit if it is an inclusionwise minimal set satisfying $r(C)=2|C|-1$. By (43.10):
(43.11) each $F \subseteq E$ with $r(F)=2|F|-1$ contains a unique circuit.

It implies that for each matching M and each $e \in E$ with $r(M+e)=$ $r(M)+1$, there is a unique circuit contained in $M+e$. This circuit is denoted by $C(M, e)$, and is called a fundamental circuit (of M). (Here and below, $M+e:=M \cup\{e\}$ and $M-e:=M \backslash\{e\}$.

Such circuits have a useful exchange property:

$$
\begin{equation*}
\text { for each } f \in C(M, e), M+e-f \text { is a matching again. } \tag{43.12}
\end{equation*}
$$

Indeed, if $M+e-f$ is not a matching, then $s(M+e-f) \geq 1$. In fact, $s(M+e-f)=1$, since $s(M+e-f) \leq s(M+e)=1$. So $M+e-f$ contains a circuit C. As $f \notin C$, we know $C \neq C(M, e)$, contradicting (43.11).

43.4. A special class of matroids

The min-max equality for matroid matching to be proved, holds for (finite or infinite) matroids (S, \mathcal{I}) satisfying the following condition:
(43.13) for each pair of circuits C_{1}, C_{2} of (S, \mathcal{I}) with $C_{1} \cap C_{2} \neq \emptyset$ and $r\left(C_{1} \cup C_{2}\right)=\left|C_{1} \cup C_{2}\right|-2$, the intersection of span (C) taken over all circuits $C \subseteq C_{1} \cup C_{2}$ has positive rank.

Examples of such matroids will be seen in Section 43.6.
In (43.13), 'circuits' are meant in the original meaning: as subsets of S. But the property transfers to subsets of E, as follows:

Lemma 43.1 α. Let (S, \mathcal{I}) be a matroid satisfying (43.13) and let E be a collection of pairs from S. Then for each pair of circuits $C_{1}, C_{2} \subseteq E$ with $C_{1} \cap C_{2} \neq \emptyset$ and $s\left(C_{1} \cup C_{2}\right)=2$, the intersection of $\operatorname{span}(C)$ taken over all circuits $C \subseteq C_{1} \cup C_{2}$ has positive rank.

Proof. Let $F:=C_{1} \cup C_{2}$. By assumption, $s(F)=2$. Each proper subcollection F^{\prime} of F satisfies $s\left(F^{\prime}\right) \leq 1$, since if $e \in C_{i}$, then $s(F-e) \leq s(F)+s\left(C_{i}-\right.$ $e)-s\left(C_{i}\right)=2+0-1=1$.

Let C_{1}, \ldots, C_{k} be the circuits contained in F. We can assume that $k \geq 3$ (otherwise the lemma trivially holds, since $C_{1} \cap C_{2} \neq \emptyset$ by assumption).

Then

$$
\begin{equation*}
C_{i} \cup C_{j}=F \text { for all distinct } i, j=1, \ldots, k, \tag{43.14}
\end{equation*}
$$

since for any $e \in F \backslash\left(C_{i} \cup C_{j}\right)$ we would have that $s(F-e)=1$ and that $F-e$ contains two distinct circuits, which contradicts (43.11).

An equivalent way of stating (43.14) is:

$$
\begin{equation*}
F \backslash C_{1}, \ldots, F \backslash C_{k} \text { are pairwise disjoint. } \tag{43.15}
\end{equation*}
$$

Now first assume that there exist distinct $e, f \in F$ with $e \cap f \neq \emptyset$. Then $\mid e \cup$ $f \mid=3$, so $\{e, f\}$ is a circuit, and therefore by (43.15), each C_{i} intersects $\{e, f\}$ (as $k \geq 3$). So each $\operatorname{span}\left(C_{i}\right)$ contains $e \cap f$, and therefore the intersection of the $\operatorname{span}\left(C_{i}\right)$ is nonempty, as required.

So we can assume that the pairs in F are disjoint. Consider any i. Then $\bigcup C_{i}$ is a subset of S, containing a unique circuit C_{i}^{\prime} (as subset of S). This follows from:

$$
\begin{equation*}
r\left(\bigcup C_{i}\right)=\left|\bigcup C_{i}\right|-1 \tag{43.16}
\end{equation*}
$$

(as C_{i} is a circuit in E), because (43.16) implies that $\bigcup C_{i}$ contains an independent set of size $\left|\bigcup C_{i}\right|-1$.

Then

$$
\begin{equation*}
C_{i}^{\prime} \neq C_{j}^{\prime} \text { if } i \neq j \tag{43.17}
\end{equation*}
$$

Indeed, C_{i}^{\prime} intersects each pair in C_{i}, since for each $e \in C_{i}$ the union of the $f \in C_{i}-e$ has rank $2\left|C_{i}-e\right|$, hence is independent. As the pairs in F are disjoint, this shows (43.17).

Moreover, if $i \neq j$ and $h \in\{1, \ldots, k\}$, then

$$
\begin{equation*}
C_{h}^{\prime} \subseteq C_{i}^{\prime} \cup C_{j}^{\prime} \tag{43.18}
\end{equation*}
$$

Otherwise, choose $x \in C_{i}^{\prime}, y \in C_{j}^{\prime} \backslash C_{i}^{\prime}$, and $z \in C_{h}^{\prime} \backslash\left(C_{i}^{\prime} \cup C_{j}^{\prime}\right)$. So $x, y, z \in$ $\operatorname{span}\left(\left(C_{i}^{\prime} \cup C_{j}^{\prime} \cup C_{h}^{\prime}\right) \backslash\{x, y, z\}\right)$. Hence $r\left(C_{i}^{\prime} \cup C_{j}^{\prime} \cup C_{h}^{\prime}\right) \leq\left|C_{i}^{\prime} \cup C_{j}^{\prime} \cup C_{h}^{\prime}\right|-3$, and so

$$
\begin{equation*}
r(F) \leq r\left(C_{i}^{\prime} \cup C_{j}^{\prime} \cup C_{h}^{\prime}\right)+|\cup F|-\left|C_{i}^{\prime} \cup C_{j}^{\prime} \cup C_{h}^{\prime}\right| \leq|\bigcup F|-3 \tag{43.19}
\end{equation*}
$$

a contradiction, since $s(F)=2$.
This proves (43.18), which implies that $C_{1}^{\prime} \cap C_{2}^{\prime} \neq \emptyset$ (since $C_{1}^{\prime} \subseteq C_{2}^{\prime} \cup C_{3}^{\prime}$ and $\left.C_{1}^{\prime} \nsubseteq C_{3}^{\prime}\right)$. Then by (43.13), the intersection of $\operatorname{span}\left(C_{i}^{\prime}\right)$ over all i has positive rank. Hence the intersection of $\operatorname{span}\left(C_{i}\right)$ over all i has positive rank.

For any collection E of pairs from S, let H_{E} be the hypergraph with vertex set E and edges all fundamental circuits. The following theorem will be used in deriving a general min-max relation.

Theorem 43.1. Let (S, \mathcal{I}) be a matroid satisfying (43.13) and let E be a collection of pairs from S such that the intersection of $\operatorname{span}(B)$ over all bases B of E has rank 0. Then

$$
\begin{equation*}
|B \cap F|=\left\lfloor\frac{1}{2} r(F)\right\rfloor \tag{43.20}
\end{equation*}
$$

for each base B and each component F of H_{E}.
Proof. I. Call two fundamental circuits C, D far if there exist a base B and $e, g \in E$ with $r(B+e+g)=2 \nu+2$ and with $C=C(B, e)$ and $D=C(B, g)$. We first show:
(43.21) far fundamental circuits are disjoint.

Suppose to the contrary that there exist a base B and $e, g \in E$ with $r(B+$ $e+g)=2 \nu+2$ and $C(B, e) \cap C(B, g) \neq \emptyset$. Let $D:=C(B, e) \cup C(B, g)$. Then
(43.22) $\quad s(D) \geq s(C(B, e))+s(C(B, g))-s(C(B, e) \cap C(B, g))=2$
and

$$
\begin{equation*}
s(D) \leq s(B+e+g)=2 \tag{43.23}
\end{equation*}
$$

So $s(D)=2$. If C is any circuit contained in $B+e+g$, then $C \subseteq D$, since otherwise $s(C \cap D)=0$, and hence
(43.24) $2=0+s(B+e+g) \geq s(C \cap D)+s(C \cup D) \geq s(C)+s(D)=3$,
a contradiction.
By Lemma 43.1α, there is a nonloop p that is contained in $\operatorname{span}(C)$ for each circuit $C \subseteq D$. By assumption, there is a base B^{\prime} with $p \notin \operatorname{span}\left(B^{\prime}\right)$. Choose B^{\prime} with $\left|B^{\prime} \cap(B+e+g)\right|$ maximal. Then $r\left(B^{\prime}+p\right)=2 \nu+1<r(B+e+$ $g)$, and hence $f \nsubseteq \operatorname{span}\left(B^{\prime}+p\right)$ for some $f \in B+e+g$. Then $p \notin \operatorname{span}\left(B^{\prime}+f\right)$ (since $\left.r\left(B^{\prime}+f\right) \leq 2 \nu+1\right)$, and therefore $p \notin \operatorname{span}\left(C\left(B^{\prime}, f\right)\right)$. So $C\left(B^{\prime}, f\right)$ is not one of the circuits contained in $B+e+g$. Choose $h \in C\left(B^{\prime}, f\right) \backslash(B+e+g)$. Hence, resetting B^{\prime} to $B^{\prime}-h+f$ would give a larger intersection with $B+e+g$, a contradiction. This shows (43.21).
II. We next show the theorem assuming that H_{E} is connected. Suppose to the contrary that $r(E) \geq 2 \nu(E)+2$. Then far fundamental circuits exist,
since for any base B, there exist $e, g \in E$ with $r(B+e+g)=2 \nu+2$, since $r(E) \geq r(B)+2$. Then (43.21) implies, as H_{E} is connected, that there exist fundamental circuits C, C^{\prime}, D with C and D far, $C \cap C^{\prime} \neq \emptyset$, and C^{\prime} and D not far.

Choose $e \in C \cap C^{\prime}$ and $f \in D$. As C and D are far fundamental circuits, there is a base B with $r(B+e+f)=2 \nu+2$ and $C=C(B, e), D=C(B, f)$. Also, as C^{\prime} is a fundamental circuit, there is a base B^{\prime} with $r\left(B^{\prime}+e\right)=2 \nu+1$ and $C^{\prime}=C\left(B^{\prime}, e\right)$. Choose such a B^{\prime} with $\left|B^{\prime} \cap(B+f)\right|$ maximal.

As $r(B+e+f)>r\left(B^{\prime}+e\right)$, there exists a $g \in B+f$ with $r\left(B^{\prime}+\right.$ $e+g)=2 \nu+2$. As C^{\prime} and D are not far, $C\left(B^{\prime}, g\right) \neq D=C(B, f)$. So $C\left(B^{\prime}, g\right) \nsubseteq B+f$, and hence there exists an $h \in C\left(B^{\prime}, g\right) \backslash(B+f)$. Set $B^{\prime \prime}:=B^{\prime}-h+g$. Then $r\left(B^{\prime \prime}+h+e\right)=r\left(B^{\prime}+g+e\right)=2 \nu+2$, and hence $r\left(B^{\prime \prime}+e\right)=2 \nu+1$. As, by (43.21), $C\left(B^{\prime}, g\right)$ and $C\left(B^{\prime}, e\right)$ are disjoint, we know $h \notin C\left(B^{\prime}, e\right)$, so $C\left(B^{\prime}, e\right) \subseteq B^{\prime \prime}+e$, and hence $C\left(B^{\prime \prime}, e\right)=C\left(B^{\prime}, e\right)=C^{\prime}$. As $\left|B^{\prime \prime} \cap(B+f)\right|>\left|B^{\prime} \cap(B+f)\right|$ this contradicts the maximality of $\left|B^{\prime} \cap(B+f)\right|$.
III. We finally prove the theorem in general. Let F be a component of H_{E}. Suppose that there is a base B of E with $|B \cap F|<\left\lfloor\frac{1}{2} r(F)\right\rfloor$. Then
(43.25) there is a base B of E and a base M of F with $|M|>|B \cap F|$.

Otherwise, for each base B of $E, B \cap F$ is a base of F. Then H_{F} consists of one component (as each fundamental circuit of E contained in F is a fundamental circuit of $F)$. Hence, by part II of this proof, $|B \cap F|=\nu(F)=\left\lfloor\frac{1}{2} r(F)\right\rfloor$, contradicting our assumption.

So (43.25) holds. Choose B and M as in (43.25) with $|M \cap B|$ maximal. Then
(43.26) $\quad \operatorname{span}(M) \subseteq \operatorname{span}(B)$,
since otherwise there is an $e \in M$ with $e \nsubseteq \operatorname{span}(B)$, and we can choose $f \in C(B, e) \backslash M$ and replace B by $B-f+e$, thereby increasing $|M \cap B|$, contradicting the maximality of $|M \cap B|$.

Moreover,
(43.27) for each $e \in F$ with $e \nsubseteq \operatorname{span}(B)$, we have $C(M, e)=C(B, e)$.

Otherwise, choose $f \in C(B, e) \backslash(M+e)$ and $g \in C(M, e) \backslash(B+e)$. Replacing B and M by $B-f+e$ and $M-g+e$ respectively, increases $|M \cap B|$, a contradiction.

As $M \backslash B \neq \emptyset$, there is an $h \in M \backslash B$. Then there is a base B^{\prime} of E with $h \nsubseteq \operatorname{span}\left(B^{\prime}\right)$ (as by the condition in the theorem, there is no nonloop that is contained in the span of each base). We assume that we have chosen M, B, and B^{\prime} with $\left|B \cap B^{\prime}\right|$ maximal (under the primary condition that $|M \cap B|$ is maximum).

Since $h \nsubseteq \operatorname{span}\left(B^{\prime}\right)$, we know by (43.26) that $\operatorname{span}(B) \neq \operatorname{span}\left(B^{\prime}\right)$. Hence there exists an $e \in B^{\prime}$ with $e \nsubseteq \operatorname{span}(B)$.

If $e \notin F$, then $C(B, e)$ is disjoint from F (as F is a component of H_{E}). Choose $f \in C(B, e) \backslash B^{\prime}$. Then replacing B by $B-f+e$ maintains $M, B \cap F$, and $M \cap B$, but increases $\left|B \cap B^{\prime}\right|$, contradicting our assumption.

So $e \in F$. By (43.27), $C(B, e)=C(M, e)$. Choose $f \in C(B, e) \backslash B^{\prime}$. Then replacing M and B by $M-f+e$ and $B-f+e$ respectively, maintains $|M|$, $|B \cap F|$, and $|M \cap B|$, but increases $\left|B \cap B^{\prime}\right|$, contradicting our assumption.

43.5. A min-max formula for maximum-size matroid matching

We can now derive a min-max formula for the maximum size of a matching in matroids satisfying (43.13) in an hereditary way, due to Lovász [1980a]:

Theorem 43.2 (matroid matching theorem). Let $M=(S, \mathcal{I})$ be a (finite or infinite) matroid (with rank function r) such that each contraction of M satisfies (43.13). Let E be a finite set of pairs from S. Then the maximum size $\nu(E)$ of a matching in E satisfies

$$
\begin{equation*}
\nu(E)=\min \left(r(F)+\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(r\left(F_{i}\right)-r(F)\right)\right\rfloor\right) \tag{43.28}
\end{equation*}
$$

where F, F_{1}, \ldots, F_{k} are flats such that $F \subseteq F_{i}$ for $i=1, \ldots, k$, and such that each $e \in E$ is contained in some F_{i}.

Proof. We first show that \leq holds in (43.28). Let B be a base of E, and partition B into B_{1}, \ldots, B_{k} such that $\operatorname{span}\left(B_{i}\right) \subseteq F_{i}$ for $i=1, \ldots, k$. Define $F_{i}^{\prime}:=\operatorname{span}\left(B_{i}\right)$.

By induction on l we show that for each $l=0, \ldots, k$:

$$
\begin{equation*}
r\left(F \cup F_{1}^{\prime} \cup \cdots \cup F_{l}^{\prime}\right) \leq r(F)+\sum_{i=1}^{l}\left(\left|B_{i}\right|+\left\lfloor\frac{1}{2}\left(r\left(F \cup F_{i}^{\prime}\right)-r(F)\right)\right\rfloor\right) \tag{43.29}
\end{equation*}
$$

For $l=0$ this is trivial. For $l \geq 1$ we have (by induction and submodularity):

$$
\begin{align*}
& r\left(F \cup F_{1}^{\prime} \cup \cdots \cup F_{l}^{\prime}\right) \leq r\left(F \cup F_{1}^{\prime} \cup \cdots \cup F_{l-1}^{\prime}\right)+r\left(F \cup F_{l}^{\prime}\right)-r(F) \tag{43.30}\\
& \leq r\left(F \cup F_{l}^{\prime}\right)+\sum_{i=1}^{l-1}\left(\left|B_{i}\right|+\left\lfloor\frac{1}{2}\left(r\left(F \cup F_{i}^{\prime}\right)-r(F)\right)\right\rfloor\right) \\
& \leq r(F)+\sum_{i=1}^{l}\left(\left|B_{i}\right|+\left\lfloor\frac{1}{2}\left(r\left(F \cup F_{i}^{\prime}\right)-r(F)\right)\right\rfloor\right),
\end{align*}
$$

since

$$
\begin{equation*}
r\left(F \cup F_{l}^{\prime}\right) \leq r(F)+\left|B_{l}\right|+\frac{1}{2}\left(r\left(F \cup F_{l}^{\prime}\right)-r(F)\right), \tag{43.31}
\end{equation*}
$$

as $\left|B_{l}\right|=\frac{1}{2} r\left(F_{l}^{\prime}\right)$. This shows (43.29), which for $l=k$ implies that $\nu(E)$ is at most (43.28), since

$$
\begin{align*}
& 2 \nu(E) \leq r\left(F \cup F_{1}^{\prime} \cup \cdots \cup F_{k}^{\prime}\right) \tag{43.32}\\
& \leq r(F)+\sum_{i=1}^{k}\left(\left|B_{i}\right|+\left\lfloor\frac{1}{2}\left(r\left(F \cup F_{i}^{\prime}\right)-r(F)\right)\right\rfloor\right) \\
& =\nu(E)+r(F)+\sum_{i=1}^{l}\left\lfloor\frac{1}{2}\left(r\left(F \cup F_{i}\right)-r(F)\right)\right\rfloor .
\end{align*}
$$

Equality is shown by induction on $r(M)$. First assume that there is a nonloop p that is contained in $\operatorname{span}(B)$ for each base B of E. Let M^{\prime} be the matroid M / p obtained by contracting p. Let E^{\prime} be the set of pairs $\{s, t\}$ in E such that $s, t \neq p$ and such that s and t are not parallel in M^{\prime}. Let ν^{\prime} be the maximum size of a base $B^{\prime} \subseteq E^{\prime}$ with respect to M^{\prime}.

Then $\nu^{\prime}<\nu(E)$. For suppose that $\nu^{\prime} \geq \nu(E)$. Let B^{\prime} be a base of E^{\prime} with respect to M^{\prime}. As $\left|B^{\prime}\right| \geq \nu(E), B^{\prime}$ is also a base of E with respect to M. As $r_{M^{\prime}}\left(B^{\prime}\right)=2\left|B^{\prime}\right|=r_{M}\left(B^{\prime}\right)$, we have $p \notin \operatorname{span}_{M}(B)$. This contradicts our assumption.

So $\nu^{\prime}<\nu(E)$. By induction, M^{\prime} has flats $F^{\prime}, F_{1}^{\prime}, \ldots, F_{k^{\prime}}^{\prime}$ with $F^{\prime} \subseteq F_{i}^{\prime}$ for $i=1, \ldots, k^{\prime}$, such that each $e \in E^{\prime}$ is contained in some F_{i}^{\prime} and such that

$$
\begin{equation*}
\nu^{\prime}=r_{M^{\prime}}\left(F^{\prime}\right)+\sum_{i=1}^{k^{\prime}}\left\lfloor\frac{1}{2}\left(r_{M^{\prime}}\left(F_{i}^{\prime}\right)-r_{M^{\prime}}\left(F^{\prime}\right)\right)\right\rfloor . \tag{43.33}
\end{equation*}
$$

Define $F:=\operatorname{span}_{M}\left(F^{\prime}+p\right)$ and $F_{i}:=\operatorname{span}_{M}\left(F_{i}^{\prime}+p\right)$ for $i=1, \ldots, k^{\prime}$. Moreover, for each $e \in E$ not occurring in E^{\prime}, introduce a new F_{i} with $F_{i}:=\operatorname{span}_{M}(F+e)$. As $p \in F$, we have $r_{M}\left(F_{i}\right) \leq r_{M}(F)+1$ for each of these F_{i}.

This gives F, F_{1}, \ldots, F_{k} such that $F \subseteq F_{i}$ for $i=1, \ldots, k$, such that each $e \in E$ is contained in some F_{i} and such that

$$
\begin{align*}
& \nu(E) \geq \nu^{\prime}+1=r_{M^{\prime}}\left(F^{\prime}\right)+1+\sum_{i=1}^{k^{\prime}}\left\lfloor\frac{1}{2}\left(r_{M^{\prime}}\left(F_{i}^{\prime}\right)-r_{M^{\prime}}\left(F^{\prime}\right)\right)\right\rfloor \tag{43.34}\\
& =r(F)+\sum_{i=1}^{k}\left\lfloor\frac{1}{2}\left(r\left(F_{i}\right)-r(F)\right)\right\rfloor .
\end{align*}
$$

So we can assume that there is no nonloop p contained in $\operatorname{span}(B)$ for all bases B of E. Let E_{1}, \ldots, E_{k} be the components of H_{E} and let $F_{i}:=\operatorname{span}\left(E_{i}\right)$ for $i=1, \ldots, k$. Let B be a base of E. Then by (43.20),

$$
\begin{equation*}
\nu(E)=|B|=\sum_{i=1}^{k}\left|B \cap E_{i}\right|=\sum_{i=1}^{k}\left\lfloor\frac{1}{2} r\left(F_{i}\right)\right\rfloor . \tag{43.35}
\end{equation*}
$$

So taking $F:=\emptyset$ gives (43.28).

43.6. Applications of the matroid matching theorem

We now consider specific classes of matroids satisfying (43.13), such that we know that the min-max equality holds. First, the linear matroids (Lovász [1980b]):

Corollary 43.2a. If E is a finite set of pairs from a linear space S, then (43.28) holds, where flats are linear subspaces of S.

Proof. Let \mathcal{I} be the collection of sets of linearly independent vectors in S. We must show that each contraction of the infinite matroid $M=(S, \mathcal{I})$ satisfies (43.13). It suffices to show that M satisfies (43.13), since each contraction of M is again coming from a linear space, up to loops and parallel elements.

Let C_{1} and C_{2} be intersecting circuits in M with $r\left(C_{1} \cup C_{2}\right)=\left|C_{1} \cup C_{2}\right|-2$. As C_{1} is a circuit, there is a nonzero vector p in $\operatorname{span}\left(C_{1} \backslash C_{2}\right) \cap \operatorname{span}\left(C_{1} \cap C_{2}\right)$, since $r\left(C_{1} \backslash C_{2}\right)+r\left(C_{1} \cap C_{2}\right)>r\left(C_{1}\right)$. Consider any circuit C contained in $C_{1} \cup C_{2}$.

Suppose $p \notin \operatorname{span}(C)$. As $p \in \operatorname{span}\left(C_{1} \backslash C_{2}\right) \cap \operatorname{span}\left(C_{1} \cap C_{2}\right), C$ misses an element $s \in C_{1} \backslash C_{2}$ and an element $t \in C_{1} \cap C_{2}$. Now $t \in \operatorname{span}\left(C_{2}-t\right)$ and $s \in \operatorname{span}\left(C_{1}-s\right)$. Hence $\left(C_{1} \cup C_{2}\right)-s-t$ spans $C_{1} \cup C_{2}$, and hence, as $C_{1} \cup C_{2}$ has rank $\left|C_{1} \cup C_{2}\right|-2$, we have that $\left(C_{1} \cup C_{2}\right)-s-t$ is independent. This contradicts the fact that C is contained in $\left(C_{1} \cup C_{2}\right)-s-t$.

Dress and Lovász [1987] proved that a similar result holds for algebraic dependence in field extensions (where $\operatorname{tr}_{K}(E)$ denotes the transcendence degree of $\bigcup E$ over K):

Corollary 43.2b. Let E be a finite set of pairs from a field extension L of a field K. Then the maximum number of disjoint pairs from E such that the union is algebraically independent over K is equal to the minimum value of

$$
\begin{equation*}
\operatorname{tr}_{K}(F)+\sum_{i=1}^{k}\left\lfloor\frac{1}{2} \operatorname{tr}_{F}\left(E_{i}\right)\right\rfloor, \tag{43.36}
\end{equation*}
$$

where F ranges over all field extensions of K in L and where E_{1}, \ldots, E_{k} ranges over all partitions of E.

Proof. Let $M=(L, \mathcal{I})$ be the infinite matroid with \mathcal{I} consisting of all subsets of L that are algebraically independent over K.

Similarly as for the previous corollary, it suffices to show that for any two intersecting circuits C_{1} and C_{2} of M with $r\left(C_{1} \cup C_{2}\right)=\left|C_{1} \cup C_{2}\right|-2$ there is an $\alpha \in L \backslash \operatorname{span}(K)$ such that α belongs to $\operatorname{span}(C)$ for each circuit C contained in $C_{1} \cup C_{2}$.

Let $I:=C_{1} \backslash C_{2}$. Then
(43.37) $\quad I$ is a circuit in M / C_{2}.

To see this, trivially I is dependent in M / C_{2}. Consider any circuit $C \subseteq$ $C_{1} \cup C_{2}$ intersecting I. We must show that $I \subseteq C$. Suppose that there is an $s \in I \backslash C$. As C intersects I, C misses at least one element of C_{2}, say t. So $C \subseteq\left(C_{1} \cup C_{2}\right)-s-t$. Now $\left(C_{1} \cup C_{2}\right)-s-t$ spans $C_{1} \cup C_{2}$ (since $t \in \operatorname{span}(C-t)$ and $\left.s \in \operatorname{span}\left(C_{1} \cup C_{2}-s\right)\right)$. This implies that $\left(C_{1} \cup C_{2}\right)-s-t$ is independent (as $r\left(C_{1} \cup C_{2}\right)=\left|C_{1} \cup C_{2}\right|-2$), contradicting the fact that it contains a circuit. This proves (43.37).

Let $I=\left\{s_{1}, \ldots, s_{n}\right\}$. Since I is a circuit in M / C_{2}, there exists an irreducible polynomial p in $\operatorname{span}\left(C_{2}\right)\left[x_{1}, \ldots, x_{n}\right]$ with $p\left(s_{1}, \ldots, s_{n}\right)=0$. We can choose p such that at least one coefficient of p equals 1 . Note that p has at least one coefficient, α say, that is not in $\operatorname{span}(K)$, since I is independent over K. It therefore is enough to show that all coefficients of p belong to $\operatorname{span}(C)$ for each circuit C contained in $C_{1} \cup C_{2}$, since then α belongs to each span (C).

Choose a circuit $C \neq C_{2}$ with $C \subseteq C_{1} \cup C_{2}$. As I is a circuit in M / C_{2}, we have $C \backslash C_{2}=I$. So I is a circuit in $M /\left(C \cap C_{2}\right)$. Hence there exists an irreducible polynomial q in $\operatorname{span}\left(C \cap C_{2}\right)\left[x_{1}, \ldots, x_{n}\right]$ with $q\left(s_{1}, \ldots, s_{n}\right)=0$. As $\operatorname{span}\left(C \cap C_{2}\right)$ is algebraically closed in $\operatorname{span}\left(C_{2}\right), q$ is also irreducible in $\operatorname{span}\left(C_{2}\right)\left[x_{1}, \ldots, x_{n}\right]^{33}$. Then p and q are also irreducible in $\operatorname{span}\left(C_{2}\right)\left(x_{1}, \ldots, x_{n-1}\right)\left[x_{n}\right]$ (cf., for instance, Section IV: 6 of Jacobson [1951]). Therefore, p is a multiple of q in $\operatorname{span}\left(C_{2}\right)\left(x_{1}, \ldots, x_{n-1}\right)$; that is, there are nonzero $r, s \in \operatorname{span}\left(C_{2}\right)\left[x_{1}, \ldots, x_{n-1}\right]$ with $r p=s q$. Hence by the unique factorization theorem (cf., for instance, Section IV:6 of Jacobson [1951]), $p=\lambda q$ for some $\lambda \in \operatorname{span}\left(C_{2}\right)$. As some coefficient of p equals 1 , $\lambda \in \operatorname{span}\left(C \cap C_{2}\right)$. Hence $p \in \operatorname{span}\left(C \cap C_{2}\right)\left[x_{1}, \ldots, x_{n}\right]$.
(The property of algebraic matroids shown in this proof generalizes a property shown by Ingleton and Main [1975].)

We also formulate the special case of graphic matroids:
Corollary 43.2c. Let $G=(V, E)$ be a graph and let \mathcal{P} be a partition of E into pairs. Then the maximum size of a forest $F \subseteq E$ that is the union of classes of \mathcal{P} is equal to the minimum value of

$$
\begin{equation*}
2|V|-2|\mathcal{Q}|+2 \sum_{i=1}^{k}\left\lfloor\frac{1}{2} \delta_{\mathcal{Q}}\left(E_{i}\right)\right\rfloor, \tag{43.38}
\end{equation*}
$$

[^18]where \mathcal{Q} ranges over partitions of V into nonempty classes and where E_{1}, \ldots, E_{k} ranges over partitions of E such that each E_{i} is a union of pairs in \mathcal{P}. In (43.38), $\delta_{\mathcal{Q}}\left(E_{i}\right)$ denotes the size of a largest forest in the graph obtained from $\left(V, E_{i}\right)$ by contracting each class in \mathcal{Q} to one vertex.

Proof. We apply Theorem 43.2 to the cycle matroid M of the graph H obtained from the complete graph on V by adding a parallel edge for each edge in E. Then (43.13) is satisfied for each contraction of M.

Now for each flat F of M there is a partition \mathcal{Q} of V such that F is the set of edges of H contained in a class of \mathcal{Q}. The rank $r(F)$ of F (in M) is equal to $|V|-|\mathcal{Q}|$. For any $E^{\prime} \subseteq E$, the smallest flat F^{\prime} containing $F \cup E^{\prime}$ has rank $r\left(F^{\prime}\right)=\delta_{\mathcal{Q}}\left(E^{\prime}\right)+r(F)$. Hence the corollary follows from Theorem 43.2.

This corollary implies the following result on 3 -uniform hypergraphs. A hypergraph is a pair $H=(V, \mathcal{E})$, where V is a finite set and \mathcal{E} is a family of subsets of V. The hypergraph is called k-uniform if $|U|=k$ for each $U \in \mathcal{E}$.

A subfamily \mathcal{F} of \mathcal{E} is called a forest if there do not exist distinct $v_{1}, \ldots, v_{t} \in V$ and distinct $U_{1}, \ldots, U_{t} \in \mathcal{F}$ such that $t \geq 2$ and $v_{i-1}, v_{i} \in U_{i}$ for $i=1, \ldots, t$, setting $v_{0}:=v_{t}$.

Corollary 43.2c implies a min-max relation for the maximum size of a forest in a given 3-uniform hypergraph (Lovász [1980a]):

Corollary 43.2d. Let $H=(V, \mathcal{E})$ be a 3 -uniform hypergraph. Then the maximum size of a forest $\mathcal{F} \subseteq \mathcal{E}$ is equal to the minimum value of

$$
\begin{equation*}
|V|-|\mathcal{Q}|+\sum_{\mathcal{S} \in \Sigma}\left\lfloor\frac{1}{2}\left(\phi_{\mathcal{Q}}(\mathcal{S})-1\right)\right\rfloor \tag{43.39}
\end{equation*}
$$

where \mathcal{Q} and Σ range over partitions of V and \mathcal{E}, respectively. Here $\phi_{\mathcal{Q}}(\mathcal{S})$ denotes the number of classes of \mathcal{Q} intersected by $\bigcup \mathcal{S}$.

Proof. For each $U \in \mathcal{E}$, choose two different pairs $e_{U}, f_{U} \subseteq U$, and let $G=(V, E)$ be the graph with edges all e_{U} and f_{U}. Let \mathcal{P} be the partition of E into the pairs e_{U}, f_{U}. Then the maximum size of a forest $\mathcal{F} \subseteq \mathcal{E}$ is equal to half of the maximum size of a forest in E that is the union of pairs in \mathcal{P}. So to see that Corollary 43.2 c implies the present corollary, it suffices to show that minimum (43.39) is equal to half of minimum (43.38).

First, let \mathcal{Q} and Σ attain minimum (43.39). The partition Σ of \mathcal{E} induces a partition of E into classes $\left\{e_{U}, f_{U} \mid U \in \mathcal{S}\right\}$ for $\mathcal{S} \in \Sigma$. One easily checks that for each $\mathcal{S} \in \Sigma$:

$$
\begin{equation*}
\delta_{\mathcal{Q}}\left(\left\{e_{U}, f_{U} \mid U \in \mathcal{S}\right\}\right) \leq \phi_{\mathcal{Q}}(\mathcal{S})-1 \tag{43.40}
\end{equation*}
$$

which implies that the minimum (43.39) is not less than half of minimum (43.38).

Second, to see the reverse inequality, let $\mathcal{Q}, E_{1}, \ldots, E_{k}$ attain minimum (43.38). Consider any $i=1, \ldots, k$. Let \mathcal{Q}^{\prime} be the set of those classes in \mathcal{Q}
intersected by E_{i} and let t be the number of components of the hypergraph $\left(V, \mathcal{Q}^{\prime} \cup E_{i}\right)$. Then $\delta_{\mathcal{Q}}\left(E_{i}\right)=\left|\mathcal{Q}^{\prime}\right|-t$. The components partition E_{i} into $E_{i, 1}, \ldots, E_{i, t}$. Then

$$
\begin{equation*}
\delta_{\mathcal{Q}}\left(E_{i}\right)=\left|\mathcal{Q}^{\prime}\right|-t=\sum_{j=1}^{t}\left(\phi_{\mathcal{Q}}\left(E_{i, j}\right)-1\right) . \tag{43.41}
\end{equation*}
$$

So letting Σ to be the partition of \mathcal{E} into classes $\mathcal{S}_{i, j}:=\left\{U \mid e_{U}, f_{U} \in E_{i, j}\right\}$ (for all i, j), we have that minimum (43.38) is not less than twice minimum (43.39).
(Szigeti [1998a] gave a direct proof of this theorem for the case where the hypergraph consists of all triangles of a given graph.)

Other applications of matroid matching are a derivation of Mader's theorem on maximum packings of T-paths (cf. Chapter 73), to rigidity (see Lovász [1980a]), and to matching forests (an easy application, see Section 59.6b).

43.7. A Gallai theorem for matroid matching and covering

We prove a Gallai-type theorem that relates the maximum size of a matroid matching to the minimum number of pairs spanning the matroid.

Let E be a collection of pairs of elements from a matroid (S, \mathcal{I}) such that each pair is an independent set and such that $\operatorname{span}(E)=S$. Call $F \subseteq E$ a matroid cover if $\operatorname{span}(F)=S$. Let $\rho(E)$ be the minimum size of a matroid cover. The following relation between $\nu(E)$ and $\rho(E)$ was observed by Lovász and extends Gallai's theorem (Theorem 19.1):

Theorem 43.3. Let (S, \mathcal{I}) be a matroid, with rank function r, and let E be a collection of pairs from S spanning S. Then $\nu(E)+\rho(E)=r(S)$.

Proof. To see \leq, let M be matching of size $\nu(E)$. Then by adding at most $r(S)-r(M)$ pairs from E to M we obtain a matroid cover F. So $\rho(E) \leq$ $|F| \leq|M|+(r(S)-r(M))=\nu(E)+r(S)-2 \nu(E)=r(S)-\nu(E)$.

To see \geq, let F be a matroid cover of size $\rho(E)$. Let $M:=F$. As long as M contains an element e with $r(M-e) \geq r(M)-1$, delete e from M. We end up with a matching M. For suppose not. Let M^{\prime} be a maximum-size matching contained in M, and choose $e \in M \backslash M^{\prime}$. Then $r(M-e) \leq r(M)-2$ (otherwise we would delete e from M). Hence:

$$
\begin{equation*}
r\left(M^{\prime}+e\right) \geq r\left(M^{\prime}\right)+r(M)-r(M-e) \geq r\left(M^{\prime}\right)+2=2\left|M^{\prime}\right|+2 \tag{43.42}
\end{equation*}
$$

So $M^{\prime}+e$ is a matching, contradicting the maximality of M^{\prime}.
So M is a matching. Each time we have deleted an edge from M, its rank drops by at most 1 . Hence $r(M) \geq r(S)-(|F|-|M|)$. Therefore $\nu(E) \geq$ $|M|=r(M)-|M| \geq r(S)-|F|=r(S)-\rho(E)$.

This theorem implies that formula (43.28) for the maximum size of a matching yields a formula for the minimum number of lines spanning all space.

43.8. Linear matroid matching algorithm

Jensen and Korte [1982] and Lovász [1981] showed that no polynomial-time algorithm exists for the matroid matching problem in general (see Section 43.9). On the other hand, Lovász [1981] gave a strongly polynomial-time algorithm for the matroid matching problem for linear matroids (an explicit representation over a field is required). This extends, e.g., Edmonds' polynomialtime algorithm finding a maximum matching in an undirected graph (cf. Section 24.2). It does not extend Edmonds' algorithm for a maximum-size common independent set in two matroids, as this algorithm also works for nonlinear matroids.

Theorem 43.4. Given a set E of pairs of vectors in a linear space L, a maximum-size matching can be found in strongly polynomial time.

Proof. The algorithm is a 'brute-force' polynomial-time algorithm, based on collecting many matchings and utilizing standard linear-algebraic operations, which can be performed in strongly polynomial time. Since we deal with subsets of a vector space, we can use $X+Y:=\{x+y \mid x \in X, y \in Y\}$. For each $X \subseteq L, \operatorname{span}(X)$ is a subspace of L.

Throughout this proof, \mathcal{B} will be a collection of matchings, all of the same size ν (say). Define:
$K_{\mathcal{B}}:=\bigcap\{\operatorname{span}(B) \mid B \in \mathcal{B}\}$ and $H_{\mathcal{B}}:=$ the hypergraph with
vertex set E and edges all fundamental circuits of all $B \in \mathcal{B}$.

We say that we improve \mathcal{B} if we find, in strongly polynomial time, either a matching B of size $\nu+1$, or of size ν such that $K_{\mathcal{B}} \nsubseteq \operatorname{span}(B)$, or of size ν such that $H_{\mathcal{B} \cup\{B\}}$ has fewer components than $H_{\mathcal{B}}$. So replacing \mathcal{B} by $\{B\}$ if $|B|=\nu+1$, and by $\mathcal{B} \cup\{B\}$ if $|B|=\nu$, we can have at most $2|E|$ improvements.
I. We first show (where a component is called nontrivial if it has more than one element):
(43.44) We can improve \mathcal{B} if we have a union F of nontrivial components of $H_{\mathcal{B}}$, a matching $M \subseteq F$, and a $B \in \mathcal{B}$ such that $r(M \cup A)>$ $|B \cap F|+|M|$, where $A:=\operatorname{span}(B \cap F) \cap K_{\mathcal{B}}$.

Here and below, $r(X \cup Y):=r(\bigcup X \cup Y)$ for $X \subseteq E$ and $Y \subseteq S$.
To see (43.44), apply the first applicable case of the following five cases, and then iterate. If Case 1 applies, we improve \mathcal{B}. In any of the other cases,
we reset B or M or both, add the reset B to \mathcal{B}, and iterate with the reset B and M. The input condition given in (43.44) is maintained, as will be shown after describing the five cases.

Case 1: There is a $B^{\prime} \in \mathcal{B}$ and an $e \in E$ such that $B^{\prime}+e$ is a matching, or such that $C\left(B^{\prime}, e\right)$ intersects both F and $E \backslash F$, or such that $K_{\mathcal{B}} \nsubseteq \operatorname{span}\left(B^{\prime}-f+e\right)$ for some $f \in C\left(B^{\prime}, e\right)$. Output $B^{\prime}+e, B^{\prime}$, or $B^{\prime}-f+e($ thus we improve $\mathcal{B})$.

Note that if Case 1 does not apply, then

$$
\begin{equation*}
f \nsubseteq K_{\mathcal{B}} \text { for each } f \in F . \tag{43.45}
\end{equation*}
$$

Indeed, as f is in a nontrivial component of $H_{\mathcal{B}}, f$ is contained in some fundamental circuit $C\left(B^{\prime}, e\right)$ for some $B^{\prime} \in \mathcal{B}$. As Case 1 does not apply, we know $K_{\mathcal{B}} \subseteq \operatorname{span}\left(B^{\prime}-f+e\right)$. Hence, if $f \subseteq K_{\mathcal{B}}$, then $f \subseteq \operatorname{span}\left(B^{\prime}-f+e\right)$, hence $2 \nu+1=r\left(B^{\prime}+e\right)=r\left(B^{\prime}-f+e\right)=2 \nu$, a contradiction.

Case 2: There is an $e \in F$ such that $M+e$ is a matching and $r((\boldsymbol{M} \cup \boldsymbol{A})+e) \geq r(\boldsymbol{M} \cup \boldsymbol{A})+1$. Reset $M:=M+e$.

Case 3: $\operatorname{span}(\boldsymbol{M}) \nsubseteq \operatorname{span}(\boldsymbol{B})$. Choose $e \in M$ with $e \nsubseteq \operatorname{span}(B)$, choose $f \in C(B, e) \backslash M$, and reset $B:=B-f+e$.

Case 4: There is an $e \in F$ such that $e \nsubseteq \operatorname{span}(B)$ and $C(B, e) \neq$ $\boldsymbol{C}(\boldsymbol{M}, \boldsymbol{e})$. (Note: $e \nsubseteq \operatorname{span}(M)+A$, since $\operatorname{span}(M)+A \subseteq \operatorname{span}(B)$ (as Case 3 does not apply). So, as Case 2 does not apply, $M+e$ is not a matching. Hence $C(M, E)$ is defined.)

Choose $f \in C(B, e) \backslash(M+e)$ and $g \in C(M, e) \backslash(B+e)$, and reset $B:=B-f+e$ and $M:=M-g+e$.

Case 5. Choose $B^{\prime} \in \mathcal{B}$ with $\operatorname{span}(M \triangle(B \cap F)) \nsubseteq \operatorname{span}\left(B^{\prime}\right)$ and with $\left|B \cap B^{\prime}\right|$ maximal. (This is possible, since $M \neq B \cap F$, since $r((B \cap F) \cup A)=$ $r(B \cap F)=2|B \cap F|$ and $r(M \cup A)>|B \cap F|+|M|$ by assumption. As $M \triangle(B \cap F) \subseteq F$, such a B^{\prime} exists, by (43.45).)

Choose $e \in B^{\prime}$ with $e \nsubseteq \operatorname{span}(B)$. (This is possible since $\operatorname{span}(M \triangle(B \cap$ $F)) \subseteq \operatorname{span}(B)$, so $\operatorname{span}(B) \neq \operatorname{span}\left(B^{\prime}\right)$.)

Choose $f \in C(B, e) \backslash B^{\prime}$. If $e \notin F$, reset $B:=B-f+e$. If $e \in F$, reset $B:=B-f+e$ and $M:=M-f+e$. (Note that if $e \in F$, then $C(B, e)=C(M, e)$ as Case 4 does not apply.)

Running time. The number of iterations is polynomially bounded, since in each iteration (except the last, where Case 1 applies), the vector $(|M|, \mid M \cap$ $B\left|,\left|B \cap B^{\prime}\right|\right)$ increases lexicographically. Here it is important to note that Case 5 does not modify the set $M \triangle(B \cap F)$, and increases the intersection of this set with B^{\prime}.

We finally prove that the resettings in Cases 2-5 indeed maintain the condition given in (43.44). Let $\widetilde{B}, \widetilde{M}$, and \widetilde{A} denote B, M, and A after resetting (taking \widetilde{B} or \widetilde{M} equal to B or M if they are not reset). We must show

$$
\begin{equation*}
r(\widetilde{M} \cup \widetilde{A})>|\widetilde{B} \cap F|+|\widetilde{M}| . \tag{43.46}
\end{equation*}
$$

Note that, as Case 1 does not apply, $|\widetilde{B} \cap F|=|B \cap F|$.
We first show:

$$
\begin{equation*}
A \subseteq \widetilde{A} \tag{43.47}
\end{equation*}
$$

This is equivalent to (since $K_{\mathcal{B}}$ does not change, as Case 1 does not apply):

$$
\begin{equation*}
A \subseteq \operatorname{span}(\widetilde{B} \cap F) \tag{43.48}
\end{equation*}
$$

This is trivial if $\widetilde{B} \cap F=B \cap F$. So we can assume that $\widetilde{B} \cap F \neq B \cap F$. Hence $\widetilde{B}=B-f+e$ for some $e, f \in F$. Then (43.48) follows from

$$
\begin{align*}
& r((\widetilde{B} \cap F) \cup A) \leq r((\widetilde{B} \cap F) \cup A+f)-1=r((B \cap F) \cup A+e)-1 \tag{43.49}\\
& =r((B \cap F)+e)-1 \leq r(B \cap F)=2|B \cap F|=2|\widetilde{B} \cap F| \\
& =r(\widetilde{B} \cap F) .
\end{align*}
$$

Here the first inequality holds as $f \nsubseteq \operatorname{span}(\widetilde{B} \cap F)+A$, since $f \nsubseteq \operatorname{span}(\widetilde{B})$ and $\operatorname{span}(\widetilde{B} \cap F)+A \subseteq \operatorname{span}(\widetilde{B})$. (We use that $A \subseteq K_{\mathcal{B}} \subseteq \operatorname{span}(\widetilde{B})$, as Case 1 does not apply.) The last inequality holds as $(B \cap F)+e$ is not a matching, since it contains $C(B, e)$ (as Case 1 does not apply). This shows (43.48), and hence (43.47).

We finally show (43.46). In Case 2 , we have $\widetilde{B}=B, \widetilde{M}=M+e$, and $\widetilde{A}=A$, and hence

$$
\begin{align*}
& r(\widetilde{M} \cup \widetilde{A})=r((M \cup A)+e) \geq r(M \cup A)+1>|B \cap F|+|M|+1 \tag{43.50}\\
& =|\widetilde{B} \cap F|+|\widetilde{M}|,
\end{align*}
$$

as required.
In Case 3, (43.47) implies (as $\widetilde{M}=M)$ that $r(\widetilde{M} \cup \widetilde{A}) \geq r(M \cup A)>$ $|B \cap F|+|M|=|\widetilde{B} \cap F|+|M|$.

In Cases 4 and 5 we have $\widetilde{M}=M-g+e$ (possible $g=f)$. Then

$$
\begin{align*}
& r(\widetilde{M} \cup \widetilde{A}) \geq r(\widetilde{M} \cup A) \geq r((\widetilde{M} \cup A)+g)-1=r((M \cup A)+e)-1 \tag{43.51}\\
& \geq r(M \cup A)>|B \cap F|+|M|=|\widetilde{B} \cap F|+|\widetilde{M}| .
\end{align*}
$$

The first inequality follows from (43.47). Next, $e \nsubseteq \operatorname{span}(M \cup A$) (as $e \nsubseteq$ $\operatorname{span}(B)$ and as $A \subseteq \operatorname{span}(B)$ and $\operatorname{span}(M) \subseteq \operatorname{span}(B)$, since Case 3 does not apply). This gives the third inequality. To see the second inequality, suppose it does not hold. Then $\widetilde{M}+g$ is a matching, hence $M+e$ is a matching. Therefore, as Case 2 does not apply, $r(M \cup A+e)=r(M \cup A)$, contradicting the fact that $e \nsubseteq \operatorname{span}(M \cup A)$.
II. Secondly,
(43.52) we can improve \mathcal{B} if $K_{\mathcal{B}}=\{\mathbf{0}\}, H_{\mathcal{B}}$ is connected, and $\nu<$ $\left\lfloor\frac{1}{2} r(E)\right\rfloor$.
(In this case, \mathcal{B} can only be improved by finding a matching larger than B.)
The algorithm follows the framework of parts I and II in the proof of Theorem 43.1. Again, the algorithm iteratively applies the first applicable
case. Call two circuits C_{1}, C_{2} far if there exist $B \in \mathcal{B}$ and $e, g \in E$ with $r(B+e+g)=2 \nu+2$ and $C_{1}=C(B, e)$ and $C_{2}=C(B, g)$.

Case 1: There exists a $B \in \mathcal{B}$ and $e \in E$ such that $B+e$ is a matching of size $\nu+1$. Output $B+e$.

Case 2: There exist far circuits C_{1} and C_{2} with $C_{1} \cap C_{2} \neq \emptyset$. We will create a matching of size $\nu+1$.

Let $C_{1}=C(B, e)$ and $C_{2}=C(B, g)$ for some $B \in \mathcal{B}$ with $e, g \in E$ and $r(B+e+g)=2 \nu+2$. Define $D:=C_{1} \cup C_{2}$. As is shown in the proof of Corollary 43.2a, there is a $p \neq \mathbf{0}$ contained in $\operatorname{span}(C)$ for each circuit $C \subseteq D$. Since $K_{\mathcal{B}}=\{\mathbf{0}\}$, there is a $B^{\prime} \in \mathcal{B}$ with $p \notin \operatorname{span}\left(B^{\prime}\right)$. Now $r\left(B^{\prime}+p\right)=2 \nu+1<$ $r(B+e+g)$, and hence $f \nsubseteq \operatorname{span}\left(B^{\prime}+p\right)$ for some $f \in B+e+g$. Then (as $B^{\prime}+f$ is not a matching, since Case 1 does not apply) $p \notin \operatorname{span}\left(B^{\prime}+f\right)$, and therefore $p \notin \operatorname{span}\left(C\left(B^{\prime}, f\right)\right)$. So $C\left(B^{\prime}, f\right)$ is not contained in $B+e+g$. Choose $h \in C\left(B^{\prime}, f\right) \backslash(B+e+g)$. Hence, resetting B^{\prime} to $B^{\prime}-h+f$ increases $\left|B^{\prime} \cap(B+e+g)\right|$. So iterating this, we finally obtain a matching larger than ν.

Case 3. We show that we can create a matching of size $\nu+1$, or make that Case 1 or 2 applies.

Far circuits exist, since for any base B, there exist $e, g \in E$ with $r(B+e+$ $g)=2 \nu+2$, since $r(E) \geq r(B)+2$. Choose far circuits C, D that are closest ${ }^{34}$ together in the hypergraph $H_{\mathcal{B}}$. Assuming that Case 2 does not apply, we know $C \cap D=\emptyset$. Hence there is an intermediate set C^{\prime} on a shortest path from C to D. Let $C=C(B, e), D=C(B, g)$, and $C^{\prime}=C\left(B^{\prime}, f\right)$ for $B, B^{\prime} \in \mathcal{B}$ and $e, f, g \in E$ with $r(B+e+g)=2 \nu+2$. We choose B^{\prime} such that $\left|B^{\prime} \cap(B+e+g)\right|$ is maximal. Choose $h \in B+e+g$ with $h \nsubseteq \operatorname{span}\left(B^{\prime}+f\right)$.
$C\left(B^{\prime}, h\right)$ and $C\left(B^{\prime}, f\right)$ are disjoint, since otherwise we can apply Case 2. Moreover,

$$
\begin{equation*}
C\left(B^{\prime}, h\right) \nsubseteq B+e+g \tag{43.53}
\end{equation*}
$$

Otherwise, $C\left(B^{\prime}, h\right)=C(B, e)$ or $C\left(B^{\prime}, h\right)=C(B, g)$. Hence C^{\prime} and C or D are far, contradicting the minimality of the distance of C and D.

Hence we have (43.53). Choose $i \in C\left(B^{\prime}, h\right) \backslash(B+e+g)$ and add $B^{\prime \prime}:=$ $B^{\prime}-i+h$ to \mathcal{B}. Iterate Case 3 with B^{\prime} replaced by $B^{\prime \prime}$ (note that $C^{\prime}=$ $\left.C\left(B^{\prime \prime}, f\right)\right)$. As $\left|B^{\prime \prime} \cap B\right|>\left|B^{\prime} \cap B\right|$, the number of iterations of Case 3 is at most ν.
III. Combination of the previous two algorithms implies:

$$
\begin{equation*}
\text { we can improve } \mathcal{B} \text { if } K_{\mathcal{B}}=\{\mathbf{0}\} \text { and } \nu<\nu(E) \text {. } \tag{43.54}
\end{equation*}
$$

As $\nu<\nu(E)$, there is a component F of $H_{\mathcal{B}}$ with $|B \cap F|<\nu(F) \leq\left\lfloor\frac{1}{2} r(F)\right\rfloor$ for at least one $B \in \mathcal{B}$. If there exist $B, B^{\prime} \in \mathcal{B}$ with $|B \cap F|<\left|B^{\prime} \cap F\right|$, set

[^19]$M:=B^{\prime} \cap F$. Otherwise (that is, if $|B \cap F|=\left|B^{\prime} \cap F\right|$ for all $B^{\prime} \in \mathcal{B}$), apply (43.52) to $\mathcal{B}^{\prime}:=\{B \cap F \mid B \in \mathcal{B}\}$ and $B \cap F$ for any $B \in \mathcal{B}$, to obtain a matching $M \subseteq F$ with $|M|=|B \cap F|+1$.

Now applying (43.44) to \mathcal{B}, F, B, and M improves \mathcal{B}. (Since $A \subseteq K_{\mathcal{B}}$, we have $A=\{\mathbf{0}\}$, and hence $r(M \cup A)=r(M)=2|M|>|M|+|B \cap F|$.)
IV. Finally:
(43.55) We can improve \mathcal{B} if $\mathcal{B} \neq \emptyset$ and $\nu<\nu(E)$.

Define F to be the union of all fundamental circuits of the $B \in \mathcal{B}$. This implies

$$
\begin{equation*}
\operatorname{span}(E \backslash F) \subseteq K_{\mathcal{B}} \tag{43.56}
\end{equation*}
$$

If there exist $B, B^{\prime} \in \mathcal{B}$ with $|B \cap F|<\left|B^{\prime} \cap F\right|$, then applying (43.44) to B and $M:=B^{\prime} \cap F$ improves \mathcal{B}. So we can assume that $|B \cap F|=\beta$ for all $B \in \mathcal{B}$. Choose $B_{0} \in \mathcal{B}$ with $r\left(\operatorname{span}\left(B_{0} \cap F\right) \cap K_{\mathcal{B}}\right)$ maximal. Define

$$
\begin{equation*}
A:=\operatorname{span}\left(B_{0} \cap F\right) \cap K_{\mathcal{B}}, E^{\prime}:=F / A, \text { and } \nu^{\prime}:=\beta-r(A) \tag{43.57}
\end{equation*}
$$

For each $B \in \mathcal{B}$ there is a matching M_{B} in $(B \cap F) / A$ of size ν^{\prime}, since

$$
\begin{align*}
& \beta-r(\operatorname{span}(B \cap F) \cap A) \geq \beta-r\left(\operatorname{span}(B \cap F) \cap K_{\mathcal{B}}\right) \tag{43.58}\\
& \geq \beta-r\left(\operatorname{span}\left(B_{0} \cap F\right) \cap K_{\mathcal{B}}\right)=\beta-r(A)=\nu^{\prime} .
\end{align*}
$$

Let $\mathcal{B}^{\prime}:=\left\{M_{B} \mid B \in \mathcal{B}\right\}$. Then $K_{\mathcal{B}^{\prime}}=\{\mathbf{0}\}$, since

$$
\begin{align*}
& \bigcap_{B \in \mathcal{B}} \operatorname{span}(B \cap F) \subseteq \operatorname{span}\left(B_{0} \cap F\right) \cap \bigcap_{B \in \mathcal{B}} \operatorname{span}(B) \tag{43.59}\\
& =\operatorname{span}\left(B_{0} \cap F\right) \cap K_{\mathcal{B}}=A .
\end{align*}
$$

Since $\nu(E)>\nu$ we have $\nu\left(E^{\prime}\right)>\nu^{\prime}$. Indeed, let B^{\prime} be a matching in E of size $\nu+1$. Then B^{\prime} / A contains a matching of size $\left|B^{\prime} \cap F\right|-r\left(\operatorname{span}\left(B^{\prime} \cap F\right) \cap A\right)$. Hence

$$
\begin{align*}
& \nu\left(E^{\prime}\right) \geq\left|B^{\prime} \cap F\right|-r\left(\operatorname{span}\left(B^{\prime} \cap F\right) \cap A\right) \tag{43.60}\\
& =\left|B^{\prime}\right|-\left|B^{\prime} \backslash F\right|-r\left(\operatorname{span}\left(B^{\prime} \cap F\right) \cap A\right) \\
& =\left|B^{\prime}\right|-\frac{1}{2}\left(r\left(B^{\prime} \backslash F\right)+r\left(\operatorname{span}\left(B^{\prime} \cap F\right) \cap A\right)\right)-\frac{1}{2} r\left(\operatorname{span}\left(B^{\prime} \cap F\right) \cap A\right) \\
& \geq\left|B^{\prime}\right|-\frac{1}{2} r\left(K_{\mathcal{B}}\right)-\frac{1}{2} r(A)>\left|B_{0}\right|-\frac{1}{2} r\left(K_{\mathcal{B}}\right)-\frac{1}{2} r(A) \\
& \geq\left|B_{0}\right|-\frac{1}{2}\left(r\left(B_{0} \backslash F\right)+r(A)\right)-\frac{1}{2} r(A)=\left|B_{0} \cap F\right|-r(A)=\nu^{\prime} .
\end{align*}
$$

The second inequality holds as $\operatorname{span}\left(B^{\prime} \backslash F\right)$ and $\operatorname{span}\left(B^{\prime} \cap F\right) \cap A$ are subspaces of $K_{\mathcal{B}}$ having intersection $\{\mathbf{0}\}$ (since B is a matching and as (43.56) holds). The last inequality follows from

$$
\begin{align*}
& r\left(K_{\mathcal{B}}\right)=r\left(\operatorname{span}\left(B_{0}\right) \cap K_{\mathcal{B}}\right) \tag{43.61}\\
& =r\left(\left(\operatorname{span}\left(B_{0} \backslash F\right)+\operatorname{span}\left(B_{0} \cap F\right)\right) \cap K_{\mathcal{B}}\right) \\
& =r\left(\operatorname{span}\left(B_{0} \backslash F\right)+\left(\operatorname{span}\left(B_{0} \cap F\right) \cap K_{\mathcal{B}}\right)\right) \\
& =r\left(\operatorname{span}\left(B_{0} \backslash F\right)+r\left(\operatorname{span}\left(B_{0} \cap F\right) \cap K_{\mathcal{B}}\right)\right) .
\end{align*}
$$

Here we use that

$$
\begin{align*}
& \left(\operatorname{span}\left(B_{0} \backslash F\right)+\operatorname{span}\left(B_{0} \cap F\right)\right) \cap K_{\mathcal{B}} \tag{43.62}\\
& =\operatorname{span}\left(B_{0} \backslash F\right)+\left(\operatorname{span}\left(B_{0} \cap F\right) \cap K_{\mathcal{B}}\right),
\end{align*}
$$

which holds since if $x \in \operatorname{span}\left(B_{0} \backslash F\right)$ and $y \in \operatorname{span}\left(B_{0} \cap F\right)$ with $x+y \in K_{\mathcal{B}}$, then $y \in K_{\mathcal{B}}\left(\right.$ since $x \in \operatorname{span}\left(B_{0} \backslash F\right) \subseteq K_{\mathcal{B}}$ by (43.56)).

Now applying (43.54) repeatedly to \mathcal{B}^{\prime}, we finally find a matching M^{\prime} in E^{\prime} with $\left|M^{\prime}\right|=\nu^{\prime}+1$. It corresponds to a matching M in F with

$$
\begin{equation*}
r(M \cup A)=2|M|+r(A)=|M|+\nu^{\prime}+1+r(A)=\left|B_{0} \cap F\right|+|M|+1 . \tag{43.63}
\end{equation*}
$$

Then applying (43.44) improves \mathcal{B}.
The proof also yields an alternative proof of Theorem 43.2.
While most of the matroids we meet in daily life are linear, it might yet be interesting to extend the algorithm to the class of algebraic matroids. As Dress and Lovász [1987] remark, this requires the development of algorithmic techniques for algebraic matroids, for instance, for testing algebraic independence, and for finding a point p in the intersection of certain flats. If such techniques are available, pursuing the layout of the above algorithm for linear matroids might yield a polynomial-time algorithm for algebraic matroids.

An augmenting path algorithm for linear matroid matching, of complexity $O\left(n^{3} m\right.$) (where $n:=$ rank, $m:=|S|$) was given by Stallmann and Gabow [1984] and Gabow and Stallmann [1986] and an $O\left(n^{4} m\right)$-time algorithm (by solving a sequence of matroid intersection algorithms) by Orlin and Vande Vate [1990] (these bounds can be improved to $O\left(n^{2.376} m\right)$ and $O\left(n^{3.376} m\right)$, respectively, with fast matrix multiplication).

43.9. Matroid matching is not polynomial-time solvable in general

Theorem 43.2 characterizes the matroid matching problem for algebraic matroids, and one is challenged to extend this to general matroids. A main objection to do this in a direct way is that in Theorem 43.2 a line of E may intersect the flat F in a point not contained in the original matroid. So we need to extend the matroid in some way, which is quite natural for linear matroids, but, as Lovász remarks, 'in general, there seems to be no hope to extend the original matroid so as to achieve the validity of [Theorem 43.2]. The possibility of "simulating" the flat F inside the matroid seems to be a difficult, and probably not only technical, question.'

Jensen and Korte [1982] and Lovász [1981] showed that, for matroids in general, the matroid matching problem is not solvable in polynomial time, if the matroid is given by an independence testing oracle (an oracle telling if a given set is independent or not). The construction in both papers is as follows.

Let $\nu \in \mathbb{Z}$, let S be a set, and let E be a partition of S into pairs. Let M be the matroid on S of rank 2ν, where $T \subseteq S$ is independent if and only if $|T| \leq 2 \nu-1$, or $|T|=2 \nu$ and T is not the union of ν pairs in E.

For each subset F of E of size ν, let M_{F} be the matroid on S obtained from M by adding $\bigcup F$ as independent subset.

It is easy to check that M and each of the M_{F} are matroids, and that E has no matroid matching of size ν with respect to M, while F is the unique matroid matching of size ν in M_{F}.

Suppose now that we want to find the maximum size of a matroid matching in a matroid, and that we know that the matroid is equal to M or to M_{F} for some ν-element $F \subseteq E$. Then we must ask the oracle for the independence of $\bigcup F$ for each ν-element subset F of E, in order to know if there exists a matroid matching of size ν. This takes exponential time.

This example shows that the matroid matching problem even does not belong to (oracle) co-NP, since any certificate that the matching number is at most $\nu-1$, needs the oracle output that $\bigcup F$ is dependent, for all ν-element subsets F of E.

The example can be easily adapted to remove the oracle, and to obtain a proper problem in NP that is NP-complete. Let G be an undirected graph with vertex set V and let $\nu \in \mathbb{Z}_{+}$. For each vertex v of G, let p_{v} be a pair of elements, such that $p_{u} \cap p_{v}=\emptyset$ if $u \neq v$. Let $S:=\bigcup_{v \in V} p_{v}$ and $E:=\left\{p_{v} \mid v \in V\right\}$. So E is a partition of S into pairs. Define a matroid on S by extending the matroid M above by an independent set

$$
\begin{equation*}
I:=\bigcup_{v \in C} p_{v} \tag{43.64}
\end{equation*}
$$

for each clique C of G with $|C|=\nu$. Then E contains a matroid matching of size ν if and only if G has a clique of size ν. As the maximum-size clique problem is NP-complete, also the matroid matching problem for such matroids is NP-complete.

43.10. Further results and notes

43.10a. Optimal path-matching

Cunningham and Geelen [1996,1997] gave the following generalization of nonbipartite matching and matroid intersection.

Let $G=(V, E)$ be an undirected graph, let S_{1} and S_{2} be two disjoint stable subsets of V, and let $M_{1}=\left(S_{1}, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S_{2}, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2}, such that $r_{1}\left(S_{2}\right)=r_{2}\left(S_{2}\right)=: \rho$. Define $R:=V \backslash\left(S_{1} \cup S_{2}\right)$. A basic path-matching is a collection of ρ vertex-disjoint $B_{1}-B_{2}$ paths, each having all internal vertices in R, where B_{1} and B_{2} are bases of M_{1} and M_{2} respectively, together with a perfect matching on the vertices of R not covered by these paths.

If $R=V$, a basic path-matching is just a perfect matching. If $R=\emptyset$ and E consists of disjoint edges linking S_{1} and S_{2}, then a basic path-matching corresponds to a common base.

Geelen and Cunningham showed that a basic path-matching exists if and only if for each $U_{1} \subseteq S_{1} \cup R$ and $U_{2} \subseteq S_{2} \cup R$ such that there is no edge connecting two sets among $U_{1} \cap U_{2}, U_{1} \backslash U_{2}, U_{2} \backslash U_{1}$, one has

$$
\begin{equation*}
r_{1}\left(S_{1} \backslash U_{1}\right)+r_{2}\left(S_{2} \backslash U_{2}\right)+\left|R \backslash\left(U_{1} \cup U_{2}\right)\right| \geq \rho+o\left(G\left[U_{1} \cap U_{2}\right]\right) \tag{43.65}
\end{equation*}
$$

where $o(H)$ is the number of odd components of a graph H. Moreover, they gave a polynomial-time algorithm to decide whether there exists a basic path-matching.

More generally, they introduced the concept of an independent path-matching, which is a set F of edges such that each nonsingleton component of the graph (V, F) is an $S_{1} \cup R-S_{2} \cup R$ path all of whose internal vertices are in R, and such that the vertices in S_{i} covered by the paths is independent in $M_{i}(i=1,2)$. The corresponding independent path-matching vector is the vector $x \in \mathbb{Z}_{+}^{E}$ with $x(e)=0$ if $e \notin F, x(e)=2$ if $e \in F$ forms a component of (V, F) with both ends of e in R, and $x(e)=1$ otherwise.

Geelen and Cunningham showed that the convex hull of the independent pathmatching vectors is determined by:

$$
\begin{array}{ll}
x_{e} \geq 0 & \text { for } e \in E \tag{43.66}\\
x(\delta(v)) \leq 2 & \text { for } v \in R \\
x(E[U]) \leq|U \cap R| & \text { for } U \subseteq V \text { with } U \cap S_{1}=\emptyset \text { or } U \cap S_{2}=\emptyset \\
x(E[U]) \leq|U|-1 & \text { for } U \subseteq R \\
x(\delta(U)) \leq r_{i}(U) & \text { for } U \subseteq S_{i} \text { and } i=1,2
\end{array}
$$

and that this system is TDI. It implies that the maximum of $\mathbf{1}^{\top} x$ over independent path-matching vectors is equal to the minimum of

$$
\begin{equation*}
r_{1}\left(S_{1} \backslash U_{1}\right)+r_{2}\left(S_{2} \backslash U_{2}\right)+\left|R \backslash\left(U_{1} \cup U_{2}\right)\right|+|R|-o\left(G\left[U_{1} \cap U_{2}\right]\right) \tag{43.67}
\end{equation*}
$$

over all $U_{i} \subseteq S_{i} \cup R(i=1,2)$ such that there is no edge connecting two sets among $U_{1} \cap U_{2}, U_{1} \backslash U_{2}, U_{2} \backslash U_{1}$. (A simplified proof of this was given by Frank and Szegő [2002].)

Cunningham and Geelen argue that the set of inequalities (43.66) can be checked in polynomial time, implying (with the ellipsoid method) that, for any weight function w, an independent path-matching vector x maximizing $w^{\top} x$ can be found in strongly polynomial time. A combinatorial algorithm for the unweighted version was given by Spille and Weismantel [2002a,2002b].

For a survey, see Cunningham [2002].

43.10b. Further notes

Hochstättler and Kern [1989] showed that condition (43.13) is implied by the following:
for any three flats A, B, C with

$$
r(A \cup C)-r(A)=r(B \cup C)-r(B)=r(A \cup B \cup C)-r(A \cup B)
$$

one has

$$
r(\operatorname{span}(A \cup C) \cap \operatorname{span}(B \cup C))-r(A \cap B)=r(A \cup C)-r(A)
$$

Matroids with this property are called pseudomodular by Björner and Lovász [1987], who proved that full linear matroids (infinite matroids determined by linear independence of a linear space), full algebraic matroids (infinite matroids determined by algebraic independence of a field extension of a field), and full graphic matroids (cycle matroids of a complete graph) are pseudomodular. See also Lindström [1988], Dress, Hochstättler, and Kern [1994], and Tan [1997].

A randomized parallel algorithm for linear matroid matching was given by Na rayanan, Saran, and Vazirani [1992,1994]. Stallmann and Gabow [1984] gave an algorithm for graphic matroid matching with running time $O\left(n^{2} m\right)$, which was improved by Gabow and Stallmann [1985] to $O\left(n m \log ^{6} n\right)$. Tong, Lawler, and Vazirani [1984] found a polynomial-time algorithm for weighted matroid matching for gammoids (by reduction to weighted matching). Structural properties of matroid matching, including an Edmonds-Gallai type decomposition, were given by Vande Vate [1992], which paper also studied the matroid matching polytope and a fractional relaxation of it.

The matroid matching problem generalizes the matchoid problem of J. Edmonds (cf. Jenkyns [1974]): given a graph $G=(V, E)$ and a matroid $M_{v}=\left(\delta(v), \mathcal{I}_{v}\right)$ for each v in V, what is the maximum number of edges such that the restriction to $\delta(v)$ forms an independent set in M_{v}, for each v in V ?

Chapter 44

Submodular functions and polymatroids

Abstract

In this chapter we describe some of the basic properties of a second main object of the present part, the submodular function. Each submodular function gives a polymatroid, which is a generalization of the independent set polytope of a matroid. We prove as a main result the theorem of Edmonds [1970b] that the vertices of a polymatroid are integer if and only if the associated submodular function is integer.

44.1. Submodular functions and polymatroids

Let f be a set function on a set S, that is, a function defined on the collection $\mathcal{P}(S)$ of all subsets of S. The function f is called submodular if

$$
\begin{equation*}
f(T)+f(U) \geq f(T \cap U)+f(T \cup U) \tag{44.1}
\end{equation*}
$$

for all subsets T, U of S. Similarly, f is called supermodular if $-f$ is submodular, i.e., if f satisfies (44.1) with the opposite inequality sign. f is modular if f is both submodular and supermodular, i.e., if f satisfies (44.1) with equality.

A set function f on S is called nondecreasing if $f(T) \leq f(U)$ whenever $T \subseteq U \subseteq S$, and nonincreasing if $f(T) \geq f(U)$ whenever $T \subseteq U \subseteq S$.

As usual, denote for each function $w: S \rightarrow \mathbb{R}$ and for each subset U of S,

$$
\begin{equation*}
w(U):=\sum_{s \in U} w(s) \tag{44.2}
\end{equation*}
$$

So w may be considered also as a set function on S, and one easily sees that w is modular, and that each modular set function f on S with $f(\emptyset)=0$ may be obtained in this way. (More generally, each modular set function f on S satisfies $f(U)=w(U)+\gamma($ for $U \subseteq S$), for some unique function $w: S \rightarrow \mathbb{R}$ and some unique real number γ.)

In a sense, submodularity is the discrete analogue of convexity. If we define, for any $f: \mathcal{P}(S) \rightarrow \mathbb{R}$ and any $x \in S$, a function $\delta f_{x}: \mathcal{P}(S) \rightarrow \mathbb{R}$ by: $\delta f_{x}(T):=f(T \cup\{x\})-f(T)$, then f is submodular if and only if δf_{x} is nonincreasing for each $x \in S$.

In other words:

Theorem 44.1. A set function f on S is submodular if and only if

$$
\begin{equation*}
f(U \cup\{s\})+f(U \cup\{t\}) \geq f(U)+f(U \cup\{s, t\}) \tag{44.3}
\end{equation*}
$$

for each $U \subseteq S$ and distinct $s, t \in S \backslash U$.
Proof. Necessity being trivial, we show sufficiency. We prove (44.1) by induction on $|T \triangle U|$, the case $|T \triangle U| \leq 2$ being trivial (if $T \subseteq U$ or $U \subseteq T$) or being implied by (44.3). If $|T \triangle U| \geq 3$, we may assume by symmetry that $|T \backslash U| \geq 2$. Choose $t \in T \backslash U$. Then, by induction,

$$
\begin{equation*}
f(T \cup U)-f(T) \leq f((T \backslash\{t\}) \cup U)-f(T \backslash\{t\}) \leq f(U)-f(T \cap U) \tag{44.4}
\end{equation*}
$$

(as $|T \triangle((T \backslash\{t\}) \cup U)|<|T \triangle U|$ and $|(T \backslash\{t\}) \triangle U|<|T \triangle U|)$. This shows (44.1).

Define two polyhedra associated with a set function f on S :

$$
\begin{align*}
& P_{f}:=\left\{x \in \mathbb{R}^{S} \mid x \geq \mathbf{0}, x(U) \leq f(U) \text { for each } U \subseteq S\right\}, \tag{44.5}\\
& E P_{f}:=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U) \text { for each } U \subseteq S\right\}
\end{align*}
$$

Note that P_{f} is nonempty if and only if $f \geq \mathbf{0}$, and that $E P_{f}$ is nonempty if and only if $f(\emptyset) \geq 0$.

If f is a submodular function, then P_{f} is called the polymatroid associated with f, and $E P_{f}$ the extended polymatroid associated with f. A polyhedron is called an (extended) polymatroid if it is the (extended) polymatroid associated with some submodular function. A polymatroid is bounded (since $0 \leq x_{s} \leq f(\{s\})$ for each $\left.s \in S\right)$, and hence is a polytope.

The following observation presents a basic technique in proofs for submodular functions, which we often use without further reference:

Theorem 44.2. Let f be a submodular set function on S and let $x \in E P_{f}$. Then the collection of sets $U \subseteq S$ satisfying $x(U)=f(U)$ is closed under taking unions and intersections.

Proof. Suppose $x(T)=f(T)$ and $x(U)=f(U)$. Then

$$
\begin{align*}
& f(T)+f(U) \geq f(T \cap U)+f(T \cup U) \geq x(T \cap U)+x(T \cup U) \tag{44.6}\\
& =x(T)+x(U)=f(T)+f(U)
\end{align*}
$$

implying that equality holds throughout. So $x(T \cap U)=f(T \cap U)$ and $x(T \cup$ $U)=f(T \cup U)$.

A vector x in $E P_{f}$ (or in P_{f}) is called a base vector of $E P_{f}$ (or of P_{f}) if $x(S)=f(S)$. A base vector of f is a base vector of $E P_{f}$. The set of all base vectors of f is called the base polytope of $E P_{f}$ or of f. It is a face of $E P_{f}$, and denoted by B_{f}. So

$$
\begin{equation*}
B_{f}=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U) \text { for all } U \subseteq S, x(S)=f(S)\right\} \tag{44.7}
\end{equation*}
$$

(It is a polytope, since $x_{s}=x(S)-x(S \backslash\{s\}) \geq f(S)-f(S \backslash\{s\})$ for each $s \in S$.)

Let f be a submodular set function on S and let $a \in \mathbb{R}^{S}$. Define the set function $f \mid a$ on S by

$$
\begin{equation*}
(f \mid a)(U):=\min _{T \subseteq U}(f(T)+a(U \backslash T)) \tag{44.8}
\end{equation*}
$$

for $U \subseteq S$. It is easy to check that $f \mid a$ again is submodular and that

$$
\begin{equation*}
E P_{f \mid a}=\left\{x \in E P_{f} \mid x \leq a\right\} \text { and } P_{f \mid a}=\left\{x \in P_{f} \mid x \leq a\right\} \tag{44.9}
\end{equation*}
$$

It follows that if P is an (extended) polymatroid, then also the set $P \cap\{x \mid$ $x \leq a\}$ is an (extended) polymatroid, for any vector a. In fact, as Lovász [1983c] observed, if $f(\emptyset)=0$, then $f \mid a$ is the unique largest submodular function f^{\prime} satisfying $f^{\prime}(\emptyset)=0, f^{\prime} \leq f$, and $f^{\prime}(U) \leq a(U)$ for each $U \subseteq V$.

44.1a. Examples

Matroids. Let $M=(S, \mathcal{I})$ be a matroid. Then the rank function r of M is submodular and nondecreasing. In Theorem 39.8 we saw that a set function r on S is the rank function of a matroid if and only if r is nonnegative, integer, nondecreasing and submodular with $r(U) \leq|U|$ for all $U \subseteq S$. (This last condition may be replaced by: $r(\emptyset)=0$ and $r(\{s\}) \leq 1$ for each s in S.) Then the polymatroid P_{r} associated with r is equal to the independent set polytope of M (by Corollary 40.2b).

A generalization is obtained by partitioning S into sets S_{1}, \ldots, S_{k}, and defining

$$
\begin{equation*}
f(J):=r\left(\bigcup_{i \in J} S_{i}\right) \tag{44.10}
\end{equation*}
$$

for $J \subseteq\{1, \ldots, k\}$. It is not difficult to show that each integer nondecreasing submodular function f with $f(\emptyset)=0$ can be constructed in this way (see Section 44.6b).

As another generalization, if $w: S \rightarrow \mathbb{R}_{+}$, define $f(U)$ to be the maximum of $w(I)$ over $I \in \mathcal{I}$ with $I \subseteq U$. Then f is submodular. (To see this, write $w=$ $\lambda_{1} \chi^{T_{1}}+\cdots+\lambda_{n} \chi^{T_{n}}$, with $\emptyset \neq T_{1} \subset T_{2} \subset \cdots \subset T_{n} \subseteq S$. Then by (40.3), $f(U)=$ $\sum_{i=1}^{n} \lambda_{i} r\left(U \cap T_{i}\right)$, implying that f is submodular.)

For more on the relation between submodular functions and matroids, see Sections 44.6 a and 44.6b.

Matroid intersection. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2} respectively. Then the function f given by

$$
\begin{equation*}
f(U):=r_{1}(U)+r_{2}(S \backslash U) \tag{44.11}
\end{equation*}
$$

for $U \subseteq S$, is submodular. By the matroid intersection theorem (Theorem 41.1), the minimum value of f is equal to the maximum size of a common independent set.

Set unions. Let T_{1}, \ldots, T_{n} be subsets of a finite set T and let $S=\{1, \ldots, n\}$. Define

$$
\begin{equation*}
f(U):=\left|\bigcup_{i \in U} T_{i}\right| \tag{44.12}
\end{equation*}
$$

for $U \subseteq S$. Then f is nondecreasing and submodular. More generally, for $w: T \rightarrow$ \mathbb{R}_{+}, the function f defined by

$$
\begin{equation*}
f(U):=w\left(\bigcup_{i \in U} T_{i}\right) \tag{44.13}
\end{equation*}
$$

for $U \subseteq S$, is nondecreasing and submodular.
More generally, for any nondecreasing submodular set function g on T, the function f defined by

$$
\begin{equation*}
f(U):=g\left(\bigcup_{i \in U} T_{i}\right) \tag{44.14}
\end{equation*}
$$

for $U \subseteq S$, again is nondecreasing and submodular.
Let $G=(V, E)$ be the bipartite graph corresponding to T_{1}, \ldots, T_{n}. That is, G has colour classes S and T, and $s \in S$ and $t \in T$ are adjacent if and only if $t \in T_{s}$. Then we have: $x \in P_{f}$ if and only if there exist $z \in P_{g}$ and $y: E \rightarrow \mathbb{Z}_{+}$such that

$$
\begin{array}{ll}
y(\delta(v))=x(v) & \text { for all } v \in S \tag{44.15}\\
y(\delta(v))=z(v) & \text { for all } v \in T
\end{array}
$$

So y may be considered as an 'assignment' of a 'supply' z to a 'demand' x. If g and x are integer we can take also y and z integer.

Directed graph cut functions. Let $D=(V, A)$ be a directed graph and let $c: A \rightarrow \mathbb{R}_{+}$be a 'capacity' function on A. Define
(44.16) $\quad f(U):=c\left(\delta^{\text {out }}(U)\right)$
for $U \subseteq V$ (where $\delta^{\text {out }}(U)$ denotes the set of arcs leaving U). Then f is submodular (but in general not nondecreasing). A function f arising in this way is called a cut function.

Hypergraph cut functions. Let (V, \mathcal{E}) be a hypergraph. For $U \subseteq V$, let $f(U)$ be the number of edges $E \in \mathcal{E}$ split by U (that is, with both $E \cap U$ and $E \backslash U$ nonempty). Then f is submodular.

Directed hypergraph cut functions. Let V be a finite set and let $\left(E_{1}, F_{1}\right), \ldots$, $\left(E_{m}, F_{m}\right)$ be pairs of subsets of V. For $U \subseteq V$, let $f(U)$ be the number of indices i with $U \cap E_{i} \neq \emptyset$ and $F_{i} \nsubseteq U$. Then f is submodular. (In proving this, we can assume $m=1$, since any sum of submodular functions is submodular again.)

More generally, we can choose $c_{1}, \ldots, c_{m} \in \mathbb{R}_{+}$and define

$$
\begin{equation*}
f(U)=\sum\left(c_{i} \mid U \cap E_{i} \neq \emptyset, F_{i} \nsubseteq U\right) \tag{44.17}
\end{equation*}
$$

for $U \subseteq V$. Again, f is submodular. This generalizes the previous two examples (where $E_{i}=F_{i}$ for each i or $\left|E_{i}\right|=\left|F_{i}\right|=1$ for each i).

Maximal element. Let V be a finite set and let $h: V \rightarrow \mathbb{R}$. For nonempty $U \subseteq V$, define

$$
\begin{equation*}
f(U):=\max \{h(u) \mid u \in U\} \tag{44.18}
\end{equation*}
$$

and define $f(\emptyset)$ to be the minimum of $h(v)$ over $v \in V$. Then f is submodular.
Subtree diameter. Let $G=(V, E)$ be a forest (a graph without circuits), and for each $X \subseteq E$ define

$$
\begin{equation*}
f(X):=\sum_{K} \text { diameter }(K) \tag{44.19}
\end{equation*}
$$

where K ranges over the components of the graph (V, X). Here diameter (K) is the length of a longest path in K. Then f is submodular (Tamir [1993]); that is:

$$
\begin{equation*}
f(X)+f(Y) \geq f(X \cap Y)+f(X \cup Y) \tag{44.20}
\end{equation*}
$$

for $X, Y \subseteq E$.
To see this, denote, for any $X \subseteq E$, the set of vertices covered by X by $V X$. We first show (44.20) for $X, Y \subseteq E$ with $(V X, X)$ and $(V Y, Y)$ connected and $V X \cap V Y \neq \emptyset$. Note that in this case $X \cap Y$ and $X \cup Y$ give connected subgraphs again.

The proof of (44.20) is based on the fact that for all $s, t, u, v \in V$ one has:

$$
\begin{align*}
& \operatorname{dist}(s, u)+\operatorname{dist}(t, v) \geq \operatorname{dist}(s, t)+\operatorname{dist}(u, v) \tag{44.21}\\
& \text { or } \operatorname{dist}(t, u)+\operatorname{dist}(s, v) \geq \operatorname{dist}(s, t)+\operatorname{dist}(u, v)
\end{align*}
$$

where dist denotes the distance in G.
To prove (44.20), let P and Q be longest paths in $X \cap Y$ and $X \cup Y$ respectively. If $E Q$ is contained in X or in Y, then (44.20) follows, since P is contained in X and in Y. So we can assume that $E Q$ is contained neither in X nor in Y. Let Q have ends u, v, with $u \in V X$ and $v \in V Y$. Let P have ends s, t. So $s, t, u \in V X$ and $s, t, v \in V Y$. Hence (44.21) implies (44.20).

We now derive (44.20) for all $X, Y \subseteq E$. Let \mathcal{X} and \mathcal{Y} be the collections of edge sets of the components of (V, X) and of (V, Y) respectively. Let \mathcal{F} be the family made by the union of \mathcal{X} and \mathcal{Y}, taking the sets in $\mathcal{X} \cap \mathcal{Y}$ twice. Then

$$
\begin{equation*}
f(X)+f(Y) \geq \sum_{Z \in \mathcal{F}} f(Z) \tag{44.22}
\end{equation*}
$$

We now modify \mathcal{F} iteratively as follows. If $Z, Z^{\prime} \in \mathcal{F}, Z \nsubseteq Z^{\prime} \nsubseteq Z$, and $V Z \cap V Z^{\prime} \neq$ \emptyset, we replace Z, Z^{\prime} by $Z \cap Z^{\prime}$ and $Z \cup Z^{\prime}$. By (44.20), (44.22) is maintained. By Theorem 2.1, these iterations stop. We delete the empty sets in the final \mathcal{F}.

Then the inclusionwise maximal sets in \mathcal{F} have union equal to $X \cup Y$ and form the nonempty edge sets of the components of $(V, X \cup Y)$. Similarly, the inclusionwise minimal sets in \mathcal{F} form the nonempty edge sets of the components of $(V, X \cap Y)$. So

$$
\begin{equation*}
\sum_{Z \in \mathcal{F}} f(Z)=f(X \cap Y)+f(X \cup Y) \tag{44.23}
\end{equation*}
$$

and we have (44.20).
Further examples. Choquet [1951,1955] showed that the classical Newtonian capacity in \mathbb{R}^{3} is submodular. Examples of submodular functions based on probability are given by Fujishige [1978b] and Han [1979], and other examples by Lovász [1983c].

44.2. Optimization over polymatroids by the greedy method

Edmonds [1970b] showed that one can optimize a linear function $w^{\top} x$ over an (extended) polymatroid by an extension of the greedy algorithm. The submodular set function f on S is given by a value giving oracle, that is, by an oracle that returns $f(U)$ for any $U \subseteq S$.

Let f be a submodular set function on S, and suppose that we want to maximize $w^{\top} x$ over $E P_{f}$, for some $w: S \rightarrow \mathbb{R}$. We can assume that $E P_{f} \neq \emptyset$, that is $f(\emptyset) \geq 0$, and hence that $f(\emptyset)=0$ (since decreasing $f(\emptyset)$ maintains submodularity). We can also assume that $w \geq \mathbf{0}$, since if some component of w is negative, the maximum value is unbounded.

Now order the elements in S as s_{1}, \ldots, s_{n} such that $w\left(s_{1}\right) \geq \cdots \geq w\left(s_{n}\right)$. Define

$$
\begin{equation*}
U_{i}:=\left\{s_{1}, \ldots, s_{i}\right\} \text { for } i=0, \ldots, n, \tag{44.24}
\end{equation*}
$$

and define $x \in \mathbb{R}^{S}$ by

$$
\begin{equation*}
x\left(s_{i}\right):=f\left(U_{i}\right)-f\left(U_{i-1}\right) \text { for } i=1, \ldots, n . \tag{44.25}
\end{equation*}
$$

Then x maximizes $w^{\top} x$ over $E P_{f}$, as will be shown in the following theorem.
To prove it, consider the following linear programming duality equation:

$$
\begin{align*}
& \max \left\{w^{\top} x \mid x \in E P_{f}\right\} \tag{44.26}\\
& =\min \left\{\sum_{T \subseteq S} y(T) f(T) \mid y \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \sum_{T \in \mathcal{P}(S)} y(T) \chi^{T}=w\right\} .
\end{align*}
$$

Define:

$$
\begin{array}{ll}
y\left(U_{i}\right):=w\left(s_{i}\right)-w\left(s_{i+1}\right) & (i=1, \ldots, n-1), \tag{44.27}\\
y(S):=w\left(s_{n}\right), & \left(T \neq U_{i} \text { for each } i\right) . \\
y(T):=0 &
\end{array}
$$

Theorem 44.3. Let f be a submodular set function on S with $f(\emptyset)=0$ and let $w: S \rightarrow \mathbb{R}_{+}$. Then x and y given by (44.25) and (44.27) are optimum solutions of (44.26).

Proof. We first show that x belongs to $E P_{f}$; that is, $x(T) \leq f(T)$ for each $T \subseteq S$. This is shown by induction on $|T|$, the case $T=\emptyset$ being trivial. Let $T \neq \emptyset$ and let k be the largest index with $s_{k} \in T$. Then by induction,

$$
\begin{equation*}
x\left(T \backslash\left\{s_{k}\right\}\right) \leq f\left(T \backslash\left\{s_{k}\right\}\right) . \tag{44.28}
\end{equation*}
$$

Hence

$$
\begin{equation*}
x(T) \leq f\left(T \backslash\left\{s_{k}\right\}\right)+x\left(s_{k}\right)=f\left(T \backslash\left\{s_{k}\right\}\right)+f\left(U_{k}\right)-f\left(U_{k-1}\right) \leq f(T) \tag{44.29}
\end{equation*}
$$

(the last inequality follows from the submodularity of f). So $x \in E P_{f}$.
Also, y is feasible for (44.26). Trivially, $y \geq \mathbf{0}$. Moreover, for any i we have by (44.27):

$$
\begin{equation*}
\sum_{T \ni s_{i}} y(T)=\sum_{j \geq i} y\left(U_{j}\right)=w\left(s_{i}\right) \tag{44.30}
\end{equation*}
$$

So y is a feasible solution of (44.26).
Optimality of x and y follows from:

$$
\begin{align*}
& w^{\top} x=\sum_{s \in S} w(s) x_{s}=\sum_{i=1}^{n} w\left(s_{i}\right)\left(f\left(U_{i}\right)-f\left(U_{i-1}\right)\right) \tag{44.31}\\
& =\sum_{i=1}^{n-1} f\left(U_{i}\right)\left(w\left(s_{i}\right)-w\left(s_{i+1}\right)\right)+f(S) w\left(s_{n}\right)=\sum_{T \subseteq S} y(T) f(T) .
\end{align*}
$$

The third equality follows from a straightforward reordering of the terms, using that $f(\emptyset)=0$.

Note that if f is integer, then x is integer, and that if w is integer, then y is integer. Moreover, if f is nondecreasing, then x is nonnegative. Hence, in that case, x and y are optimum solutions of

$$
\begin{align*}
& \max \left\{w^{\top} x \mid x \in P_{f}\right\} \tag{44.32}\\
& =\min \left\{\sum_{T \subseteq S} y(T) f(T) \mid y \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \sum_{T \in \mathcal{P}(S)} y(T) \chi^{T} \geq w\right\} .
\end{align*}
$$

Therefore:
Corollary 44.3a. Let f be a nondecreasing submodular set function on S with $f(\emptyset)=0$ and let $w: S \rightarrow \mathbb{R}_{+}$. Then x and y given by (44.25) and (44.27) are optimum solutions for (44.32).

Proof. Directly from Theorem 44.3, using the fact that $x \geq \mathbf{0}$ if f is nondecreasing.

As for complexity we have:
Corollary 44.3b. Given a submodular set function f on a set S (by a value giving oracle) and a function $w \in \mathbb{Q}^{S}$, we can find an $x \in E P_{f}$ maximizing $w^{\top} x$ in strongly polynomial time. If f is moreover nondecreasing, then $x \in P_{f}$ (and hence x maximizes $w^{\top} x$ over P_{f}).

Proof. By the extension of the greedy method given above.
The greedy algorithm can be interpreted geometrically as follows. Let w be some linear objective function on S, with $w\left(s_{1}\right) \geq \ldots \geq w\left(s_{n}\right)$. Travel via the vertices of P_{f} along the edges of P_{f}, by starting at the origin, as follows: first go from the origin as far as possible (in P_{f}) in the positive s_{1}-direction, say to vertex x_{1}; next go from x_{1} as far as possible in the positive s_{2}-direction, say to x_{2}, and so on. After n steps one reaches a vertex x_{n} maximizing $w^{\top} x$
over P_{f}. In fact, the effectiveness of this algorithm characterizes polymatroids (Dunstan and Welsh [1973]).

44.3. Total dual integrality

Theorem 44.3 implies the box-total dual integrality of the following system:

$$
\begin{equation*}
x(U) \leq f(U) \text { for } U \subseteq S \tag{44.33}
\end{equation*}
$$

Corollary 44.3c. If f is submodular, then (44.33) is box-totally dual integral.

Proof. Consider the dual of maximizing $w^{\top} x$ over (44.33), for some $w \in \mathbb{Z}_{+}^{S}$. By Theorem 44.3, it has an optimum solution $y: \mathcal{P}(S) \rightarrow \mathbb{R}_{+}$with the sets $U \subseteq S$ having $y(U)>0$ forming a chain. So these constraints give a totally unimodular submatrix of the constraint matrix (by Theorem 41.11). Therefore, by Theorem 5.35, (44.33) is box-TDI.

This gives the integrality of polyhedra:
Corollary 44.3d. For any integer submodular set function f, the polymatroid P_{f} and the extended polymatroid $E P_{f}$ are integer.

Proof. Directly from Corollary 44.3c. (In fact, integer optimum solutions are explicitly given by Theorem 44.3 and Corollary 44.3a.)

44.4. f is determined by $E P_{f}$

Theorem 44.3 implies that for any extended polymatroid P there is a unique submodular function f satisfying $f(\emptyset)=0$ and $E P_{f}=P$, since:

Corollary 44.3e. Let f be a submodular set function on S with $f(\emptyset)=0$. Then
(44.34) $\quad f(U)=\max \left\{x(U) \mid x \in E P_{f}\right\}$
for each $U \subseteq S$.
Proof. Directly from Theorem 44.3 by taking $w:=\chi^{U}$.
So there is a one-to-one correspondence between nonempty extended polymatroids and submodular set functions f with $f(\emptyset)=0$. The correspondence relates integer extended polymatroids with integer submodular functions.

There is a similar correspondence between nonempty polymatroids and nondecreasing submodular set functions f with $f(\emptyset)=0$. For any (not necessarily nondecreasing) nonnegative submodular set function f, define \bar{f} by:

$$
\begin{align*}
& \bar{f}(\emptyset)=0 \tag{44.35}\\
& \bar{f}(U)=\min _{T \supseteq U} f(T) \quad \text { for nonempty } U \subseteq S
\end{align*}
$$

It is easy to see that \bar{f} is nondecreasing and submodular and that $P_{\bar{f}}=$ P_{f} (Dunstan [1973]). In fact, \bar{f} is the unique nondecreasing submodular set function associated with P_{f}, with $\bar{f}(\emptyset)=0$, as (Kelley [1959]):

Corollary 44.3f. If f is a nondecreasing submodular function with $f(\emptyset)=0$, then
(44.36) $\quad f(U)=\max \left\{x(U) \mid x \in P_{f}\right\}$
for each $U \subseteq S$.
Proof. This follows from Corollary 44.3a by taking $w:=\chi^{T}$.
This one-to-one correspondence between polymatroids and nondecreasing submodular set functions f with $f(\emptyset)=0$ relates integer polymatroids to integer such functions:

Corollary 44.3g. For each integer polymatroid P there exists a unique integer nondecreasing submodular function f with $f(\emptyset)=0$ and $P=P_{f}$.

Proof. By Corollary 44.3d and (44.36).
By (44.36) we have for any nonnegative submodular set function f that $\bar{f}(U)=\max \left\{x(U) \mid x \in P_{f}\right\}$. Since we can optimize over $E P_{f}$ in polynomial time (with the greedy algorithm described above), with the ellipsoid method we can optimize over $P_{f}=E P_{f} \cap \mathbb{R}_{+}^{S}$ in polynomial time. Hence we can calculate $\bar{f}(U)$ in polynomial time. Alternatively, calculating $\bar{f}(U)$ amounts to minimizing the submodular function $f^{\prime}(T):=f(T \cup U)$.

In fact \bar{f} is the largest among all nondecreasing submodular set functions g on S with $g(\emptyset)=0$ and $g \leq f$, as can be checked straightforwardly.

44.5. Supermodular functions and contrapolymatroids

Similar results hold for supermodular functions and the associated contrapolymatroids. Associate the following polyhedra with a set function g on S :

$$
\begin{align*}
& Q_{g}:=\left\{x \in \mathbb{R}^{S} \mid x \geq \mathbf{0}, x(U) \geq g(U) \text { for each } U \subseteq S\right\}, \tag{44.37}\\
& E Q_{g}:=\left\{x \in \mathbb{R}^{S} \mid x(U) \geq g(U) \text { for each } U \subseteq S\right\} .
\end{align*}
$$

If g is supermodular, then Q_{g} and $E Q_{g}$ are called the contrapolymatroid and the extended contrapolymatroid associated with g, respectively. A vector $x \in E Q_{g}$ (or Q_{g}) is called a base vector of $E Q_{g}$ (or Q_{g}) if $x(S)=g(S)$. A base vector of g is a base vector of $E Q_{g}$.

Since $E Q_{g}=-E P_{-g}$, we can reduce most problems on (extended) contrapolymatroids to (extended) polymatroids. Again we can minimize a linear function $w^{\top} x$ over $E Q_{g}$ with the greedy algorithm, as described in Section 44.2. (In fact, we can apply the same formulas (44.25) and (44.27) for g instead of f.) If g is nondecreasing, it yields a nonnegative optimum solution, and hence a vector x minimizing $w^{\top} x$ over Q_{g}.

Similarly, the system

$$
\begin{equation*}
x(U) \geq g(U) \text { for } U \subseteq S \tag{44.38}
\end{equation*}
$$

is box-TDI, as follows directly from the box-total dual integrality of

$$
\begin{equation*}
x(U) \leq-g(U) \text { for } U \subseteq S \tag{44.39}
\end{equation*}
$$

Let $E P_{f}$ be the extended polymatroid associated with the submodular function f with $f(\emptyset)=0$. Let B_{f} be the face of base vectors of $E P_{f}$, i.e.,

$$
\begin{equation*}
B_{f}=\left\{x \in E P_{f} \mid x(S)=f(S)\right\} \tag{44.40}
\end{equation*}
$$

A vector $y \in \mathbb{R}^{S}$ is called spanning if there exists an x in B_{f} with $x \leq y$. Let Q be the set of spanning vectors.

A vector y belongs to Q if and only if $(f \mid y)(S)=f(S)$, that is (by (44.8) and (44.9)) if and only if

$$
\begin{equation*}
y(U) \geq f(S)-f(S \backslash U) \tag{44.41}
\end{equation*}
$$

for each $U \subseteq S$. So Q is equal to the contrapolymatroid $E Q_{g}$ associated with the submodular function g defined by $g(U):=f(S)-f(S \backslash U)$ for $U \subseteq S$. Then B_{f} is equal to the face of minimal elements of $E Q_{g}$.

There is a one-to-one correspondence between submodular set functions f on S with $f(\emptyset)=0$ and supermodular set functions g on S with $g(\emptyset)=0$, given by the relations

$$
\begin{equation*}
g(U)=f(S)-f(S \backslash U) \text { and } f(U)=g(S)-g(S \backslash U) \tag{44.42}
\end{equation*}
$$

for $U \subseteq S$.
Then the pair $(-g,-Q)$ is related to the pair (f, P) by a relation similar to the duality relation of matroids (cf. Section 44.6f).

44.6. Further results and notes

44.6a. Submodular functions and matroids

Let P be the polymatroid associated with the nondecreasing integer submodular set function f on S, with $f(\emptyset)=0$. Then the collection

$$
\begin{equation*}
\mathcal{I}:=\left\{I \subseteq S \mid \chi^{I} \in P\right\} \tag{44.43}
\end{equation*}
$$

forms the collection of independent sets of a matroid $M=(S, \mathcal{I})$ (this result was announced by Edmonds and Rota [1966] and proved by Pym and Perfect [1970]). By Corollary 40.2b, the subpolymatroid (cf. Section 44.6c)

$$
\begin{equation*}
P \mid \mathbf{1}=\{x \in P \mid x \leq \mathbf{1}\} \tag{44.44}
\end{equation*}
$$

is the convex hull of the incidence vectors of the independent sets of M. By (44.8), the rank function r of M satisfies

$$
\begin{equation*}
r(U)=\min _{T \subseteq U}(|U \backslash T|+f(T)) \tag{44.45}
\end{equation*}
$$

for $U \subseteq S$.
As an example, if f is the submodular function given in the set union example in Section 44.1a, we obtain the transversal matroid on $\{1, \ldots, n\}$ with $I \subseteq\{1, \ldots, n\}$ independent if and only if the family $\left(T_{i} \mid i \in I\right)$ has a transversal (Edmonds [1970b]).

44.6b. Reducing integer polymatroids to matroids

In fact, each integer polymatroid can be derived from a matroid as follows (Helgason [1974]). Let f be a nondecreasing submodular set function on S with $f(\emptyset)=0$. Choose for each s in S, a set X_{s} of size $f(\{s\})$, such that the sets $X_{s}(s \in S)$ are disjoint. Let $X:=\bigcup_{s \in S} X_{s}$, and define a set function r on X by

$$
\begin{equation*}
r(U):=\min _{T \subseteq S}\left(\left|U \backslash \bigcup_{s \in T} X_{s}\right|+f(T)\right) \tag{44.46}
\end{equation*}
$$

for $U \subseteq X$. One easily checks that r is the rank function of a matroid M (by checking the axioms (39.38)), and that for each subset T of S

$$
\begin{equation*}
f(T)=r\left(\bigcup_{s \in T} X_{s}\right) \tag{44.47}
\end{equation*}
$$

Therefore, f arises from the rank function of M, as in the Matroids example in Section 44.1a. The polymatroid P_{f} associated with f is just the convex hull of all vectors x for which there exists an independent set I in M with $x_{s}=\left|I \cap X_{s}\right|$ for all s in S.

Given a nondecreasing submodular set function f on S with $f(\emptyset)=0$, Lovász [1980a] called a subset $U \subseteq S$ a matching if

$$
\begin{equation*}
f(U)=\sum_{s \in U} f(\{s\}) \tag{44.48}
\end{equation*}
$$

If $f(\{s\})=1$ for each s in S, f is the rank function of a matroid, and U is a matching if and only if U is independent in this matroid. If $f(\{s\})=2$ for each s in S, the elements of S correspond to certain flats of rank 2 in a matroid. Now determining the maximum size of a matching is just the matroid matching problem (cf. Chapter 43).

44.6c. The structure of polymatroids

Vertices of polymatroids (Edmonds [1970b], Shapley [1965,1971]). Let f be a submodular set function on a set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with $f(\emptyset)=0$. Let P_{f} be the polymatroid associated with f. It follows immediately from the greedy algorithm, as in the proof of Corollary 44.3a, that the vertices of P_{f} are given by (for $i=1, \ldots, n$):

$$
x\left(s_{\pi(i)}\right)= \begin{cases}f\left(\left\{s_{\pi(1)}, \ldots, s_{\pi(i)}\right\}\right)-f\left(\left\{s_{\pi(1)}, \ldots, s_{\pi(i-1)}\right\}\right) & \text { if } i \leq k \tag{44.49}\\ 0 & \text { if } i>k\end{cases}
$$

where π ranges over all permutations of $\{1, \ldots, n\}$ and where k ranges over $0, \ldots, n$.
Similarly, for any submodular set function f on S with $f(\emptyset)=0$, the vertices of the extended polymatroid $E P_{f}$ are given by

$$
\begin{equation*}
x\left(s_{\pi(i)}\right)=f\left(\left\{s_{\pi(1)}, \ldots, s_{\pi(i)}\right\}\right)-f\left(\left\{s_{\pi(1)}, \ldots, s_{\pi(i-1)}\right\}\right) \tag{44.50}
\end{equation*}
$$

for $i=1, \ldots, n$, where π ranges over all permutations of $\{1, \ldots, n\}$.
Topkis [1984] characterized adjacency of the vertices of a polymatroid, while Bixby, Cunningham, and Topkis [1985] and Topkis [1992] gave further results on vertices of and paths on a polymatroid and on related partial orders of S.

Facets of polymatroids. Let f be a nondecreasing submodular set function on S with $f(\emptyset)=0$. One easily checks that P_{f} is full-dimensional if and only if $f(\{s\})>0$ for all s in S. If P_{f} is full-dimensional there is a unique minimal collection of linear inequalities defining P_{f} (clearly, up to scalar multiplication). They correspond to the facets of P_{f}. Edmonds [1970b] found that this collection is given by the following theorem. A subset $U \subseteq S$ is called an f-flat if $f(U \cup\{s\})>f(U)$ for all $s \in S \backslash U$, and U is called f-inseparable if there is no partition of U into nonempty sets U_{1} and U_{2} with $f(U)=f\left(U_{1}\right)+f\left(U_{2}\right)$. Then:

Theorem 44.4. Let f be a nondecreasing submodular set function on S with $f(\emptyset)=$ 0 and $f(\{s\})>0$ for each $s \in S$. The following is a minimal system determining the polymatroid P_{f} :

$$
\begin{array}{ll}
x_{s} \geq 0 & (s \in S) \tag{44.51}\\
x(U) \leq f(U) & (U \text { is a nonempty } f \text {-inseparable } f \text {-flat })
\end{array}
$$

Proof. It is easy to see that (44.51) determines P_{f}, as any other inequality $x(U) \leq$ $f(U)$ follows from (44.51). The irredundancy of collection (44.51) can be seen as follows.

Clearly, each inequality $x_{s} \geq 0$ determines a facet. Next consider a nonempty f-inseparable f-flat U. Suppose that the face determined by U is not a facet. Then it is contained in another face, say determined by T. Let x be a vertex of P_{f} with $x(U \backslash T)=f(U \backslash T), x(U)=f(U)$, and $x(S \backslash U)=0$. Such a vertex exists by the greedy algorithm (cf. (44.49)).

Since x is on the face determined by U, it is also on the face determined by T. So $x(T)=f(T)$. Hence $f(T)=x(T)=x(T \cap U)=f(U)-f(U \backslash T)$. So we have equality throughout in:

$$
\begin{equation*}
f(U \backslash T)+f(T) \geq f(U \backslash T)+f(T \cap U) \geq f(U) \tag{44.52}
\end{equation*}
$$

This implies that $U \backslash T=\emptyset$ or $T \cap U=\emptyset$ (as U is f-inseparable), and that $f(T)=f(T \cap U)$. If $U \backslash T=\emptyset$, then $U \subset T$, and hence (as U is an f-flat) $f(T)>f(U) \geq f(T \cap U)$, a contradiction. If $T \cap U=\emptyset$, then $f(T)=f(T \cap U)=0$, implying that $T=\emptyset$, again a contradiction.

It follows that the face $\left\{x \in P_{f} \mid x(S)=f(S)\right\}$ of maximal vectors in P_{f} is a facet if and only if $f(U)+f(S \backslash U)>f(S)$ for each proper nonempty subset U of S. More generally, its codimension is equal to the number of inclusionwise minimal nonempty sets U with $f(U)+f(S \backslash U)=f(S)$ (cf. Fujishige [1984a]).

Faces of polymatroids (Giles [1975]). We now extend the characterizations of vertices and facets of polymatroids given above to arbitrary faces. Let P be the polymatroid associated with the nondecreasing submodular set function f on S with $f(\emptyset)=0$. Suppose that P is full-dimensional. If $\emptyset \neq S_{1} \subset \cdots \subset S_{k} \subseteq T \subseteq S$, then

$$
\begin{equation*}
F=\left\{x \in P \mid x\left(S_{1}\right)=f\left(S_{1}\right), \ldots, x\left(S_{k}\right)=f\left(S_{k}\right), x(S \backslash T)=0\right\} \tag{44.53}
\end{equation*}
$$

is a face of P of dimension at most $|T|-k$. (Indeed, F is nonempty by the characterization (44.49) of vertices, while $\operatorname{dim}(F) \leq|T|-k$, as the incidence vectors of S_{1}, \ldots, S_{k} are linearly independent.)

In fact, each face has a representation (44.53). Indeed, let F be a face of P. Define $T=\left\{s \in S \mid x_{s}>0\right.$ for some x in $\left.F\right\}$, and let $S_{1} \subset \cdots \subset S_{k}$ be any maximal chain of nonempty subsets of T with the property that

$$
\begin{equation*}
F \subseteq\left\{x \in P \mid x\left(S_{1}\right)=f\left(S_{1}\right), \ldots, x\left(S_{k}\right)=f\left(S_{k}\right), x(S \backslash T)=0\right\} \tag{44.54}
\end{equation*}
$$

Then we have equality in (44.54), and $\operatorname{dim}(F)=|T|-k$. (Here a maximal chain is a chain which is contained in no larger chain satisfying (44.54) - since the empty chain satisfies (44.54), there exist maximal chains.)

In order to prove this assertion, suppose that F has dimension d. As the righthand side of (44.54) is a face of P of dimension at most $|T|-k$, it suffices to show that $d=|T|-k$. Therefore, suppose $d<|T|-k$. Then there exists a subset U of S such that $x(U)=f(U)$ for all x in F, and such that the incidence vector of $U \cap T$ is linearly independent of the incidence vectors of S_{1}, \ldots, S_{k}. That is, $U \cap T$ is not the union of some of the sets $S_{i} \backslash S_{i-1}(i=1, \ldots, k)$. Since $x(U \cap T)=x(U)=$ $f(U) \geq f(U \cap T)$ for all x in F, we may assume that $U \subseteq T$. Since the collection of subsets U of S with $x(U)=f(U)$ is closed under taking unions and intersections, we may assume moreover that U is comparable with each of the sets in the chain $S_{1} \subset \cdots \subset S_{k}$. Hence U could be added to the chain to obtain a larger chain, contradicting our assumption. So $d=|T|-k$.

Note that a chain $S_{1} \subset \cdots \subset S_{k}$ of nonempty subsets of T is a maximal chain satisfying (44.54) if and only if there is equality in (44.54) and (setting $S_{0}:=\emptyset$):
$f\left(S_{k} \cup\{s\}\right)>f\left(S_{k}\right)$ for all s in $T \backslash S_{k}$, and each of the sets $S_{i} \backslash S_{i-1}$ is f_{i}-inseparable, where f_{i} is the submodular set function on $S_{i} \backslash S_{i-1}$ given by $f_{i}(U):=f\left(U \cup S_{i-1}\right)-f\left(S_{i-1}\right)$ for $U \subseteq S_{i} \backslash S_{i-1}$.
This may be derived straightforwardly from the existence, by (44.49), of appropriate vertices of F.

It is not difficult to show that if F has a representation (44.53), then F is the direct sum of F_{1}, \ldots, F_{k} and Q, where F_{i} is the face of maximal vectors in the polymatroid associated with $f_{i}(i=1, \ldots, k)$, and Q is the polymatroid associated with the submodular set function g on $T \backslash S_{k}$ given by $g(U):=f\left(U \cup S_{k}\right)-f\left(S_{k}\right)$ for $U \subseteq T \backslash S_{k}$. Since $\operatorname{dim}\left(F_{i}\right) \leq\left|S_{i} \backslash S_{i-1}\right|-1$ and $\operatorname{dim}(Q) \leq\left|T \backslash S_{k}\right|$, this yields that $\operatorname{dim}(F)=|T|-k$ if and only if $\operatorname{dim}\left(F_{i}\right)=\left|S_{i} \backslash S_{i-1}\right|-1(i=1, \ldots, k)$ and $\operatorname{dim}(Q)=\left|T \backslash S_{k}\right|$. From this, characterization (44.55) can be derived again. It also yields that if F, represented by (44.53), has dimension $|T|-k$, then the unordered partition $\left\{S_{1}, S_{2} \backslash S_{1}, \ldots, S_{k} \backslash S_{k-1}, T \backslash S_{k}\right\}$ is the same for all maximal chains $S_{1} \subset \cdots \subset S_{k}$.

For a characterization of the faces of a polymatroid, see Fujishige [1984a].

44.6 d . Characterization of polymatroids

Let P be the polymatroid associated with the nondecreasing submodular set function f on S with $f(\emptyset)=0$. The following three observations are easily derived from the representation (44.49) of vertices of P. (a) If x_{0} is a vertex of P, there exists a vertex x_{1} of P such that $x_{1} \geq x_{0}$ and x_{1} has the form (44.49) with $k=n$. (b) A vertex x_{1} of P can be represented as (44.49) with $k=n$ if and only if $x_{1}(S)=f(S)$. (c) The convex hull of the vertices x_{1} of P with $x_{1}(S)=f(S)$ is the face $\{x \in P \mid x(S)=f(S)\}$ of P. It follows directly from (a), (b) and (c) that $x \in P$ is a maximal element of P (with respect to \leq) if and only if $x(S)=f(S)$. So for each vector y in P there is a vector x in P with $y \leq x$ and $x(S)=f(S)$.

Applying this to the subpolymatroids $P \mid a=P \cap\{x \mid x \leq a\}$ (cf. Section 44.1), one finds the following property of polymatroids:
(44.56) for each $a \in \mathbb{R}_{+}^{S}$ there exists a number $r(a)$ such that each maximal vector x of $P \cap\{x \mid x \leq a\}$ satisfies $x(S)=r(a)$.
Here maximal is maximal in the partial order \leq on vectors. The number $r(a)$ is called the rank of a, and any x with the properties mentioned in (44.56) is called a base of a.

Edmonds [1970b] (cf. Dunstan [1973], Woodall [1974b]) noticed the following (we follow the proof of Welsh [1976]):

Theorem 44.5. Let $P \subseteq \mathbb{R}_{+}^{S}$. Then P is a polymatroid if and only if P is compact, and satisfies (44.56) and

$$
\begin{equation*}
\text { if } \mathbf{0} \leq y \leq x \in P, \text { then } y \in P \tag{44.57}
\end{equation*}
$$

Proof. Necessity was observed above. To see sufficiency, let f be the set function on S defined by

$$
\begin{equation*}
f(U):=\max \{x(U) \mid x \in P\} \tag{44.58}
\end{equation*}
$$

for $U \subseteq S$. Then f is nonnegative and nondecreasing. Moreover, f is submodular. To see this, consider $T, U \subseteq S$. Let x be a maximal vector in P satisfying $x_{s}=0$ if $s \notin T \cup U$, and let y be a maximal vector in P satisfying $y(s)=0$ if $s \notin T \cap U$ and $x \leq y$. Note that (44.56) and (44.58) imply that $x(T \cap U)=f(T \cap U)$ and $y(T \cup U)=f(T \cup U)$. Hence

$$
\begin{align*}
& f(T)+f(U) \geq y(T)+y(U)=y(T \cap U)+y(T \cup U) \geq x(T \cap U)+y(T \cup U) \tag{44.59}\\
& =f(T \cap U)+f(T \cup U)
\end{align*}
$$

that is, f is submodular.
We finally show that P is equal to the polymatroid P_{f} associated to f. Clearly, $P \subseteq P_{f}$, since if $x \in P$ then $x(U) \leq f(U)$ for each $U \subseteq S$, by definition (44.58) of f.

To see that $P_{f}=P$, suppose $v \in P_{f} \backslash P$. Let u be a base of v (that is, a maximal vector $u \in P$ satisfying $u \leq v$). Choose u such that the set

$$
\begin{equation*}
U:=\left\{s \in S \mid u_{s}<v_{s}\right\} \tag{44.60}
\end{equation*}
$$

is as large as possible. Since $v \notin P$, we have $u \neq v$, and hence $U \neq \emptyset$. As $v \in P_{f}$, we know

$$
u(U)<v(U) \leq f(U)
$$

Define
(44.62)

$$
w:=\frac{1}{2}(u+v)
$$

So $u \leq w \leq v$. Hence u is a base of w, and each base of w is a base of v.
For any $z \in \mathbb{R}^{S}$, define z^{\prime} as the projection of z on the subspace $L:=\left\{x \in \mathbb{R}^{S} \mid\right.$ $x_{s}=0$ if $\left.s \in S \backslash U\right\}$. That is:
(44.63) $\quad z^{\prime}(s):=z(s)$ if $s \in U$, and $z^{\prime}(s):=0$ if $s \in S \backslash U$.

By definition of f, there is an $x \in P$ with $x(U)=f(U)$. We may assume that $x \in L$. Choose $y \in L$ with $x \leq y$ and $u^{\prime} \leq y$. Then

$$
\begin{equation*}
x(S)=x(U)=f(U)>u(U)=u^{\prime}(U)=u^{\prime}(S) \tag{44.64}
\end{equation*}
$$

So $r(y)>u^{\prime}(S)$. Hence, by (44.56), there exists a base z of y with $u^{\prime} \leq z$ and $z(S)>u^{\prime}(S)$. So $u_{s}^{\prime}<z_{s}$ for at least one $s \in U$. This implies, since $u_{s}^{\prime}<w_{s}^{\prime}$ for each $s \in S$, that there is an $a \in P$ with $u^{\prime} \leq a \leq w^{\prime}$ and $a \neq u^{\prime}$, hence $a(U)>u^{\prime}(U)$.

Since $a \leq w^{\prime} \leq w$, there is a base b of w with $a \leq b$. Then $b(S)=u(S)$ (since also u is a base of w) and $b(U) \geq a(U)>u^{\prime}(U)=u(U)$. Hence $b_{s}<u_{s}=v_{s}$ for some $s \in S \backslash U$. Moreover, $b_{s} \leq w_{s}<v_{s}$ for each $s \in U$. So U is properly contained in $\left\{s \in S \mid b_{s}<v_{s}\right\}$, contradicting the maximality of U.
(For an alternative characterization, see Welsh [1976].)
By (44.8) and (44.9) the rank of a is given by

$$
\begin{equation*}
r(a)=\min _{U \subseteq S}(a(S \backslash U)+f(U)) \tag{44.65}
\end{equation*}
$$

(from this one may derive a 'submodular law' for $r: r(a \wedge b)+r(a \vee b) \leq r(a)+r(b)$, where \wedge and \vee are the meet and join in the lattice $\left(\mathbb{R}^{S}, \leq\right)$ (Edmonds [1970b])).

Since if P has integer vertices and a is integer, the intersection $P \mid a=\{x \in P \mid$ $x \leq a\}$ is integer again, we know that for integer polymatroids (44.56) also holds if we restrict a and x to integer vectors. So if a is integer, then there exists an integer vector $x \leq a$ in P with $x(S)=r(a)$.

Theorem 44.5 yields an analogous characterization of extended polymatroids. Let f be a submodular set function on S with $f(\emptyset)=0$. Choose $c \in \mathbb{R}_{+}^{S}$ such that

$$
\begin{equation*}
g(U):=f(U)+c(U) \tag{44.66}
\end{equation*}
$$

is nonnegative for all $U \subseteq S$. Clearly, g again is submodular, and $g(\emptyset)=0$. Then the extended polymatroid $\bar{E} P_{f}$ associated with f and the polymatroid P_{g} associated with g are related by:

$$
\begin{equation*}
P_{g}=\left\{x \mid x \geq \mathbf{0}, x-c \in E P_{f}\right\}=\left(c+E P_{f}\right) \cap \mathbb{R}_{+}^{S} \tag{44.67}
\end{equation*}
$$

Since P_{g} is a polymatroid, by (44.56) we know that $E P_{f}$ satisfies:
(44.68) for each a in \mathbb{R}^{S} there exists a number $r(a)$ such that each maximal vector x in $E P_{f} \cap\left\{x \in \mathbb{R}^{S} \mid x \leq a\right\}$ satisfies $x(S)=r(a)$.
One easily derives from Theorem 44.5 that (44.68) together with

$$
\begin{equation*}
\text { if } y \leq x \in E P_{f}, \text { then } y \in E P_{f} \tag{44.69}
\end{equation*}
$$

characterizes the class of all extended polymatroids among the closed subsets of \mathbb{R}^{S}.

44.6e. Operations on submodular functions and polymatroids

The class of submodular set functions on a given set is closed under certain operations. Obviously, the sum of two submodular functions is submodular again. In particular, adding a constant t to all values of a submodular function maintains submodularity. Also the multiplication of a submodular function by a nonnegative scalar maintains submodularity. Moreover, if f is a nondecreasing submodular set function on S, and q is a real number, then the function f^{\prime} given by $f^{\prime}(U):=\min \{q, f(U)\}$ for $U \subseteq S$, is submodular again. (Monotonicity cannot be deleted, as is shown by taking $S:=\{a, b\}, f(\emptyset)=f(S)=1, f(\{a\})=0, f(\{b\})=2$, and $q=1$.)

It follows that the class of all submodular set functions on S forms a convex cone C in $\mathbb{R}^{\mathcal{P}(S)}$. This cone is polyhedral as the constraints (44.1) form a finite set of linear inequalities defining C. Edmonds [1970b] raised the problem of determining the extreme rays of the cone of all nonnegative nondecreasing submodular set functions f on S with $f(\emptyset)=0$. It is not difficult to show that the rank function r of a matroid M determines an extreme ray of this cone if and only if r is not the sum of the rank functions of two other matroids, i.e., if and only if M is the sum of a connected matroid and a number of loops. But these do not represent all extreme rays: if $S=\{1, \ldots, 5\}$ and $w(1)=2, w(s)=1$ for $s \in S \backslash\{1\}$, let $f(U):=\min \{3, w(U)\}$ for $U \subseteq S$; then f is on an extreme ray, but cannot be decomposed as the sum of rank functions of matroids (L. Lovász's example; cf. also Murty and Simon [1978] and Nguyen [1978]).

Lovász [1983c] observed that if f_{1} and f_{2} are submodular and $f_{1}-f_{2}$ is nondecreasing, then $\min \left\{f_{1}, f_{2}\right\}$ is submodular.

Let f be a nonnegative submodular set function on S. Clearly, for any $\lambda \geq 0$ we have $P_{\lambda f}=\lambda P_{f}$ (where $\lambda P_{f}=\left\{\lambda x \mid x \in P_{f}\right\}$). If $q \geq 0$, and f^{\prime} is given by $f^{\prime}(U)=\min \{q, f(U)\}$ for $U \subseteq S$, then f^{\prime} is submodular and

$$
\begin{equation*}
P_{f^{\prime}}=\left\{x \in P_{f} \mid x(S) \leq q\right\} \tag{44.70}
\end{equation*}
$$

as can be checked easily. So the class of polymatroids is closed under intersections with affine halfspaces of the form $\left\{x \in \mathbb{R}^{S} \mid x(S) \leq q\right\}$, for $q \geq 0$.

Let f_{1} and f_{2} be nondecreasing submodular set functions on S, with $f_{1}(\emptyset)=$ $f_{2}(\emptyset)=0$, and associated polymatroids P_{1} and P_{2} respectively. Let P be the polymatroid associated with $f:=f_{1}+f_{2}$. Then (McDiarmid [1975c]):

Theorem 44.6. $P_{f_{1}+f_{2}}=P_{f_{1}}+P_{f_{2}}$.
Proof. It is easy to see that $P_{f_{1}+f_{2}} \supseteq P_{f_{1}}+P_{f_{2}}$. To prove the reverse inclusion, let x be a vertex of $P_{f_{1}+f_{2}}$. Then x has the form (44.49). Hence, by taking the same permutation π and the same $k, x=x_{1}+x_{2}$ for certain vertices x_{1} of $P_{f_{1}}$ and x_{2} of $P_{f_{2}}$. Since $P_{f_{1}}+P_{f_{2}}$ is convex it follows that $P_{f_{1}+f_{2}}=P_{f_{1}}+P_{f_{2}}$.

In fact, if f_{1} and f_{2} are integer, each integer vector in $P_{f_{1}}+P_{f_{2}}$ is the sum of integer vectors in $P_{f_{1}}$ and $P_{f_{2}}$ - see Corollary 46.2c. Similarly, if f_{1} and f_{2} are integer, each integer vector in $E P_{f_{1}}+E P_{f_{2}}$ is the sum of integer vectors in $E P_{f_{1}}$ and $E P_{f_{2}}$.

Faigle [1984a] derived from Theorem 44.6 that, for any submodular function f, if $x, y \in P_{f}$ and $x=x_{1}+x_{2}$ with $x_{1}, x_{2} \in P_{f}$, then there exist $y_{1}, y_{2} \in P_{f}$ with
$y=y_{1}+y_{2}$ and $x_{1}+y_{1}, x_{2}+y_{2} \in P_{f}$. (Proof: $y \in P_{f} \subseteq P_{2 f-x}=P_{f-x_{1}}+P_{f-x_{2}}$.) An integer version of this can be derived from Corollary 46.2c and generalizes (42.13).

If $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ are matroids, with rank functions r_{1} and r_{2} and corresponding independent set polytopes P_{1} and P_{2}, respectively, then by Section 44.6c above, $P_{1}+P_{2}$ is the convex hull of sums of incidence vectors of independent sets in M_{1} and M_{2}. Hence the 0,1 vectors in $P_{1}+P_{2}$ are just the incidence vectors of the sets $I_{1} \cup I_{2}$, for $I_{1} \in \mathcal{I}_{1}$ and $I_{2} \in \mathcal{I}_{2}$. Therefore, the polyhedron

$$
\begin{equation*}
\left(P_{1}+P_{2}\right) \mid \mathbf{1}=\left\{x \in P_{1}+P_{2} \mid x \leq \mathbf{1}\right\} \tag{44.71}
\end{equation*}
$$

is the convex hull of the independent sets of $M_{1} \vee M_{2}$. By Theorem 44.6 and (44.45), it follows that the rank function r of $M_{1} \vee M_{2}$ satisfies

$$
\begin{equation*}
r(U)=\min _{T \subseteq U}\left(|U \backslash T|+r_{1}(T)+r_{2}(T)\right) \tag{44.72}
\end{equation*}
$$

for $U \subseteq S$. Thus we have derived the matroid union theorem (Corollary 42.1a).

44.6f. Duals of polymatroids

McDiarmid [1975c] described the following duality of polymatroids. Let P be the polymatroid associated with the nondecreasing submodular set function f on S with $f(\emptyset)=0$ and let a be a vector in \mathbb{R}^{S} with $a \geq x$ for all x in P (i.e., $a(s) \geq f(\{s\})$ for all s in S). Define

$$
\begin{equation*}
f^{*}(U):=a(U)+f(S \backslash U)-f(S) \tag{44.73}
\end{equation*}
$$

for $U \subseteq S$. One easily checks that f^{*} again is nondecreasing and submodular, and that $f^{*}(\emptyset)=0$. We call f^{*} the dual of f (with respect to a). Then $f^{* *}=f$ taking the second dual with respect to the same a, as follows immediately from (44.73).

Let P^{*} be the polymatroid associated with f^{*}, and call P^{*} the dual polymatroid of P (with respect to a). Now the maximal vertices of P and P^{*} are given by (44.49) by choosing $k=n$. It follows that x is a maximal vertex of P if and only if $a-x$ is a maximal vertex of P^{*}. Since the maximal vectors of a polymatroid form just the convex hull of the maximal vertices, we may replace in the previous sentence the word 'vertex' by 'vector'. So the set of maximal vectors of P^{*} arises from the set of maximal vectors of P by reflection in the point $\frac{1}{2} a$.

Clearly, duals of matroids correspond in the obvious way to duals of the related polymatroids (with respect to the vector $\mathbf{1}$).

44.6g. Induction of polymatroids

Let $G=(V, E)$ be a bipartite graph, with colour classes S and T. Let f be a nondecreasing submodular set function on S with $f(\emptyset)=0$, and define
(44.74) $\quad g(U):=f(N(U))$
for $U \subseteq T$ (cf. Section 44.1a). (As usual, $N(U)$ denotes the set of vertices not in U adjacent to at least one vertex in U.)

The function g again is nondecreasing and submodular. Similarly to Rado's theorem (Corollary 41.1c), one may prove that a vector x belongs to P_{g} if and only if there exist $y \in \mathbb{R}_{+}^{E}$ and $z \in P_{f}$ such that

$$
\begin{array}{ll}
y(\delta(t))=x_{t} & (t \in T) \tag{44.75}\\
y(\delta(s))=z_{s} & (s \in S)
\end{array}
$$

Moreover, if f and g are integer, we can take y and z to be integer. This procedure gives an 'induction' of polymatroids through bipartite graphs, and yields 'Rado's theorem for polymatroids' (cf. McDiarmid [1975c]).

In case f is the rank function of a matroid on S, a 0,1 vector x belongs to P_{g} if and only if there exists a matching in G whose end vertices in S form an independent set of the matroid, and the end vertices in T have x as incidence vector. So these 0,1 vectors determine a matroid on T, with rank function r given by

$$
\begin{equation*}
r(U)=\min _{W \subseteq U}(|U \backslash W|+f(N(W))) \tag{44.76}
\end{equation*}
$$

for $U \subseteq T$ (cf. (44.45) and (44.74)).
Another extension is the following. Let $D=(V, A)$ be a directed graph and let V be partitioned into classes S and T. Let furthermore a 'capacity' function $c: A \rightarrow \mathbb{R}_{+}$be given. Define the set function g on T by

$$
\begin{equation*}
g(U):=c\left(\delta^{\mathrm{out}}(U)\right) \tag{44.77}
\end{equation*}
$$

for $U \subseteq T$, where $\delta^{\text {out }}(U)$ denotes the set of arcs leaving U. Then g is nonnegative and submodular, and it may be derived straightforwardly from the max-flow mincut theorem (Theorem 10.3) that a vector x in \mathbb{R}_{+}^{T} belongs to P_{g} if and only if there exist $T-S$ paths Q_{1}, \ldots, Q_{k} and nonnegative numbers $\lambda_{1}, \ldots, \lambda_{k}$ (for some k), such that

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} \chi^{A Q_{i}} \leq c \text { and } \sum_{i=1}^{k} \lambda_{i} \chi^{b\left(Q_{i}\right)}=x \tag{44.78}
\end{equation*}
$$

where $b\left(Q_{i}\right)$ is the beginning vertex of Q_{i}. If the c and x are integer, we can take also the λ_{i} integer.

Here the function g in general is not nondecreasing, but the value

$$
\begin{equation*}
\bar{g}(U)=\min \{g(W) \mid U \subseteq W \subseteq T\} \tag{44.79}
\end{equation*}
$$

of the associated nondecreasing submodular function (cf. (44.35)) is equal to the minimum capacity of a cut separating U and S, which is equal to the maximum amount of flow from U to S, subject to the capacity function c (by the max-flow min-cut theorem).

In an analogous way, one can construct polymatroids by taking vertex-capacities instead of arc-capacities. Moreover, the notion of induction of polymatroids through bipartite graphs can be extended in a natural way to the induction of polymatroids through directed graphs (cf. McDiarmid [1975c], Schrijver [1978]).

44.6h. Lovász's generalization of Kőnig's matching theorem

Lovász [1970a] gave the following generalization of Kőnig's matching theorem (Theorem 16.2).

For a graph $G=(V, E), U \subseteq V$, and $F \subseteq E$, let $N_{F}(U)$ denote the set of vertices not in U that are adjacent in (V, F) to at least one vertex in U. Kőnig's matching theorem follows by taking $g(X):=|X|$ in the following theorem.

Theorem 44.7. Let $G=(V, E)$ be a simple bipartite graph, with colour classes S and T. Let g be a supermodular set function on S, such that $g(\{v\}) \geq 0$ for each $v \in S$ and such that

$$
\begin{equation*}
g(U \cup\{v\}) \leq g(U)+g(\{v\}) \text { for nonempty } U \subseteq S \text { and } v \in S \backslash U \tag{44.80}
\end{equation*}
$$

Then E has a subset F with $\operatorname{deg}_{F}(v)=g(\{v\})$ for each $v \in V$ and $\left|N_{F}(U)\right| \geq g(U)$ for each nonempty $U \subseteq S$ if and only if $\left|N_{E}(U)\right| \geq g(U)$ for each nonempty $U \subseteq S$.

Proof. Necessity being trivial, we show sufficiency. Choose $F \subseteq E$ such that

$$
\begin{equation*}
\left|N_{F}(U)\right| \geq g(U) \tag{44.81}
\end{equation*}
$$

for each nonempty $U \subseteq S$, with $|F|$ as small as possible. We show that F is as required.

Suppose to the contrary that $\operatorname{deg}_{F}(v)>g(\{v\})$ for some $v \in S$. By the minimality of F, for each edge $e=v w \in F$, there is a subset U_{e} of S with $v \in U_{e}$, $\left|N_{F}\left(U_{e}\right)\right|=g\left(U_{e}\right)$, and $w \notin N_{F}\left(U_{e} \backslash\{v\}\right)$. Since the function $\left|N_{F}(U)\right|$ is submodular, the intersection U of the U_{e} over $e \in \delta(v)$ satisfies $\left|N_{F}(U)\right|=g(U)$ (using (44.81)). Then no neighbour w of v is adjacent to U. Hence $N_{F}(v)$ and $N_{F}(U \backslash\{v\})$ are disjoint. Moreover, $U \neq\{v\}$, since $N_{F}(U)=g(U)$ and $N_{F}(\{v\})>g(v)$. This gives the contradiction

$$
\begin{equation*}
g(U) \leq g(U \backslash\{v\})+g(\{v\})<\left|N_{F}(U \backslash\{v\})\right|+\left|N_{F}(v)\right|=\left|N_{F}(U)\right| \tag{44.82}
\end{equation*}
$$

For a derivation of this theorem with the Edmonds-Giles method, see Frank and Tardos [1989].

44.6i. Further notes

Edmonds [1970b] and D.A. Higgs (as mentioned in Edmonds [1970b]) observed that if f is a set function on a set S, we can define recursively a submodular function \bar{f} as follows:

$$
\begin{equation*}
\bar{f}(T):=\min \left\{f(T), \min \left(\bar{f}\left(S_{1}\right)+\bar{f}\left(S_{2}\right)-\bar{f}\left(S_{1} \cap S_{2}\right)\right)\right\} \tag{44.83}
\end{equation*}
$$

where the second minimum ranges over all pairs S_{1}, S_{2} of proper subsets of T with $S_{1} \cup S_{2}=T$.

Lovász [1983c] gave the following characterization of submodularity in terms of convexity. Let f be a set function on S and define for each $c \in \mathbb{R}_{+}^{S}$

$$
\begin{equation*}
\hat{f}(c):=\sum_{i=1}^{k} \lambda_{i} f\left(U_{i}\right) \tag{44.84}
\end{equation*}
$$

where $\emptyset \neq U_{1} \subset U_{2} \subset \cdots \subset U_{k} \subseteq S$ and $\lambda_{1}, \ldots, \lambda_{k}>0$ are such that $c=\sum_{i=1}^{k} \lambda_{i} \chi^{U_{i}}$. Then f is submodular if and only if \hat{f} is convex. Similarly, f is supermodular if and only if \hat{f} is concave. Related is the 'subdifferential' of a submodular function, investigated by Fujishige [1984d].

Korte and Lovász [1985c] and Nakamura [1988a] studied polyhedral structures where the greedy algorithm applies. Federgruen and Groenevelt [1986] extended the greedy method for polymatroids to 'weakly concave' objective functions (instead of linear functions). (Related work was reported by Bhattacharya, Georgiadis, and

Tsoucas [1992].) Nakamura [1993] extended polymatroids and submodular functions to Δ-polymatroids and Δ-submodular functions.

Gröflin and Liebling [1981] studied the following example of 'transversal polymatroids'. Let $G=(V, E)$ be an undirected graph, and define the submodular set function f on E by $f(F):=|\bigcup F|$ for $F \subseteq E$. Then the vertices of the associated polymatroid are all $\{0,1,2\}$ vectors x in \mathbb{R}^{E} with the property that the set $F:=\left\{e \in E \mid x_{e} \geq 1\right\}$ forms a forest each component of which contains at most one edge e with $x_{e}=2$. If x is a maximal vertex, then each component contains exactly one edge e with $x_{e}=2$.

Narayanan [1991] studied, for a given submodular function f on S, the lattice of all partitions \mathcal{P} of S into nonempty sets such that there exists a $\lambda \in \mathbb{R}$ for which \mathcal{P} attains min $\sum_{U \in \mathcal{P}}(f(U)-\lambda)$ (taken over all partitions \mathcal{P}). Fujishige [1980b] studied minimum values of submodular functions.

For results on the (NP-hard) problems of maximizing a submodular function and of submodular set cover, see Fisher, Nemhauser, and Wolsey [1978], Nemhauser and Wolsey [1978,1981], Nemhauser, Wolsey, and Fisher [1978], Wolsey [1982a,1982b], Conforti and Cornuéjols [1984], and Fujito [1999].

Cunningham [1983], Fujishige [1983], and Nakamura [1988c] presented decomposition theories for submodular functions. Benczúr and Frank [1999] considered covering symmetric supermodular functions by graphs.

For surveys and books on polymatroids and submodular functions, see McDiarmid [1975c], Welsh [1976], Lovász [1983c], Lawler [1985], Nemhauser and Wolsey [1988], Fujishige [1991], Narayanan [1997], and Murota [2002]. For a survey on applications of submodular functions, see Frank [1993a].

Historically, submodular functions arose in lattice theory (Bergmann [1929], Birkhoff [1933]), while submodularity of the rank function of a matroid was shown by Bergmann [1929] and Whitney [1935]. Choquet [1951,1955] and Kelley [1959] studied submodular functions in relation to the Newton capacity and to measures in Boolean algebras. The relevance of submodularity for optimization was revealed by Edmonds [1970b].

Several alternative names have been proposed for submodular functions, like sub-valuation (Choquet [1955]), β-function (Edmonds [1970b]), and ground set rank function (McDiarmid [1975c]). The set of integer vectors in an integer polymatroid was called a hypermatroid by Helgason [1974] and Lovász [1977c]. A generalization of polymatroids (called supermatroids) was studied by Dunstan, Ingleton, and Welsh [1972].

Chapter 45

Submodular function minimization

Abstract

This chapter describes a strongly polynomial-time algorithm to find the minimum value of a submodular function. It suffices that the submodular function is given by a value giving oracle. One application of submodular function minimization is optimizing over the intersection of two polymatroids. This will be discussed in Chapter 47.

45.1. Submodular function minimization

It was shown by Grötschel, Lovász, and Schrijver [1981] that the minimum value of a rational-valued submodular set function f on S can be found in polynomial time, if f is given by a value giving oracle and an upper bound B is given on the numerators and denominators of the values of f. The running time is bounded by a polynomial in $|S|$ and $\log B$. This algorithm is based on the ellipsoid method: we can assume that $f(\emptyset)=0$ (by resetting $f(U):=f(U)-f(\emptyset)$ for all $U \subseteq S)$; then with the greedy algorithm, we can optimize over $E P_{f}$ in polynomial time (Corollary 44.3b), hence the separation problem for $E P_{f}$ is solvable in polynomial time, hence also the separation problem for

$$
\begin{equation*}
P:=E P_{f} \cap\{x \mid x \leq \mathbf{0}\}, \tag{45.1}
\end{equation*}
$$

and therefore also the optimization problem for P. Now the maximum value of $x(S)$ over P is equal to the minimum value of f (by (44.8), (44.9), and (44.34)).

Having a polynomial-time method to find the minimum value of a submodular function, we can turn it into a polynomial-time method to find a subset T of S minimizing $f(T)$: For each $s \in S$, we can determine if the minimum value of f over all subsets of S is equal to the minimum value of f over subsets of $S \backslash\{s\}$. If so, we reset $S:=S \backslash\{s\}$. Doing this for all elements of S, we are left with a set T minimizing f over all subsets of (the original) S.

Grötschel, Lovász, and Schrijver [1988] showed that this algorithm can be turned into a strongly polynomial-time method. Cunningham [1985b] gave a
combinatorial, pseudo-polynomial-time algorithm for minimizing a submodular function f (polynomial in the size of the underlying set and the maximum absolute value of f (assuming f to be integer)). Inspired by Cunningham's method, combinatorial strongly polynomial-time algorithms were found by Iwata, Fleischer, and Fujishige [2000,2001] and Schrijver [2000a]. We will describe the latter algorithm.

45.2. Orders and base vectors

Let f be a submodular set function on a set S. In finding the minimum value of f, we can assume $f(\emptyset)=0$, as resetting $f(U):=f(U)-f(\emptyset)$ for all $U \subseteq S$ does not change the problem. So throughout we assume that $f(\emptyset)=0$.

Moreover, we assume that f is given by a value giving oracle, that is, an oracle that returns $f(U)$ for any given subset U of S. We also assume that the numbers returned by the oracle are rational (or belong to any ordered field in which we can perform the elementary arithmetic operations algorithmically).

Recall that the base polytope B_{f} of f is defined as the set of base vectors of f :

$$
\begin{equation*}
B_{f}:=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U) \text { for all } U \subseteq S, x(S)=f(S)\right\} \tag{45.2}
\end{equation*}
$$

Consider any total order \prec on $S .{ }^{35}$ For any $v \in S$, denote

$$
\begin{equation*}
v_{\prec}:=\{u \in S \mid u \prec v\} . \tag{45.3}
\end{equation*}
$$

Define a vector b^{\prec} in \mathbb{R}^{S} by:

$$
\begin{equation*}
b^{\prec}(v):=f\left(v_{\prec} \cup\{v\}\right)-f\left(v_{\prec}\right) \tag{45.4}
\end{equation*}
$$

for $v \in S$. Theorem 44.3 implies that b^{\prec} belongs to B_{f}.
Note that $b^{\prec}(U)=f(U)$ for each lower ideal U of \prec (where a lower ideal of \prec is a subset U of S such that if $v \in U$ and $u \prec v$, then $u \in U)$.

45.3. A subroutine

In this section we describe a subroutine that is important in the algorithm. It replaces a total order \prec by other total orders, thereby reducing some interval $(s, t]_{\prec}$, where
(45.5) $\quad(s, t]_{\prec}:=\{v \mid s \prec v \preceq t\}$
for $s, t \in S$.
Let \prec be a total order on S. For any $s, u \in S$ with $s \prec u$, let $\prec^{s, u}$ be the total order on S obtained from \prec by resetting $v \prec u$ to $u \prec v$ for each

[^20]v satisfying $s \preceq v \prec u$. Thus in the ordering, we move u to the position just before s. Hence $(s, t]_{\prec s, u}=(s, t]_{\prec} \backslash\{u\}$ if $u \in(s, t]_{\prec}$.

We show that there is a strongly polynomial-time subroutine that

$$
\begin{equation*}
\text { for any } s, t \in S \text { with } s \prec t \text {, finds a } \delta \geq 0 \text { and describes } b^{\prec}+ \tag{45.6}
\end{equation*}
$$

$$
\delta\left(\chi^{t}-\chi^{s}\right) \text { as a convex combination of the } b^{\prec, u} \text { for } u \in(s, t]_{\prec}
$$

To describe the subroutine, we can assume that $b^{\prec}=\mathbf{0}$, by replacing (temporarily) $f(U)$ by $f(U)-b^{\prec}(U)$ for each $U \subseteq S$.

We investigate the signs of the vector $b^{\prec^{s, \bar{u}}}$. We show that for each $v \in S$:

$$
\begin{align*}
& b^{\prec^{s, u}}(v) \leq 0 \text { if } s \preceq v \prec u, \tag{45.7}\\
& b^{s, u}(v) \geq 0 \text { if } v=u, \\
& b^{\prec, u}(v)=0 \text { otherwise. }
\end{align*}
$$

To prove this, observe that if $T \subseteq U \subseteq S$, then for any $v \in S \backslash U$ we have by the submodularity of f :

$$
\begin{equation*}
f(U \cup\{v\})-f(U) \leq f(T \cup\{v\})-f(T) \tag{45.8}
\end{equation*}
$$

To see (45.7), if $s \preceq v \prec u$, then by (45.8),

$$
\begin{align*}
& b^{\prec_{s, u}}(v)=f\left(v_{\prec s, u} \cup\{v\}\right)-f\left(v_{\prec s, u}\right) \leq f\left(v_{\prec} \cup\{v\}\right)-f\left(v_{\prec}\right) \tag{45.9}\\
& =b^{\prec}(v)=0,
\end{align*}
$$

since $v_{\prec, s}=v_{\prec} \cup\{u\} \supset v_{\prec}$.
Similarly,

$$
\begin{align*}
& b^{\prec^{s, u}}(u)=f\left(u_{\prec s, u} \cup\{u\}\right)-f\left(u_{\prec s, u}\right) \geq f\left(u_{\prec} \cup\{u\}\right)-f\left(u_{\prec}\right) \tag{45.10}\\
& =b^{\prec}(u)=0,
\end{align*}
$$

since $u_{\prec s, u}=s_{\prec} \subset u_{\prec}$.
Finally, if $v \prec s$ or $u \prec v$, then $v_{\prec s, u}=v_{\prec}$, and hence $b^{\prec^{s, u}}(v)=b^{\prec}(v)=$ 0 . This shows (45.7).

By (45.7), the matrix $M=\left(b^{\prec, u}(v)\right)_{u, v}$ with rows indexed by $u \in(s, t]_{\prec}$ and columns indexed by $v \in S$, in the order given by \prec, has the following, partially triangular, shape, where + means that the entry is ≥ 0, and - that the entry is ≤ 0 :

	s							t							
	0	\cdots	0	-	+	0	-	\cdots	\ldots	0	0	0	0	. \cdot	0
	\vdots		\vdots	-	-	+	\ddots			\vdots	\vdots		\vdots		!
	!		!	-	-	-	\ddots.	\ddots		!	\vdots		:		!
	;		\vdots	\vdots	\vdots	\vdots	\ddots.	\ddots	\cdot	\vdots	\vdots		:		!
	引		!	:	\vdots	\vdots		\ddots.		0	0		\vdots		!
	\vdots		\vdots	:	\vdots	\vdots			\because	$+$	0		!		:
t	0	\cdots	0	-	-	-	\cdots	\ldots	\cdots	-	+	0	0	\ldots	0

As each row of M represents a vector $b^{\swarrow^{s, u}}$, to obtain (45.6) we must describe $\delta\left(\chi^{t}-\chi^{s}\right)$ as a convex combination of the rows of M, for some $\delta \geq 0$.

We call the + entries in the matrix the 'diagonal' elements. Now for each row of M, the sum of its entries is 0 , as $b^{\prec, u}(S)=f(S)=b^{\prec}(S)=0$. Hence, if a 'diagonal' element $b^{\prec, u}(u)$ is equal to 0 for some $u \in(s, t]_{\prec}$, then the corresponding row of M is all-zero. So in this case we can take $\delta=0$ in (45.6).

If $b^{\prec^{s, u}}(u)>0$ for each $u \in(s, t]_{\prec}$ (that is, if each 'diagonal' element is strictly positive), then $\chi^{t}-\chi^{s}$ can be described as a nonnegative combination of the rows of M (by the sign pattern of M and since the entries in each row of M add up to 0$)$. Hence $\delta\left(\chi^{t}-\chi^{s}\right)$ is a convex combination of the rows of M for some $\delta>0$, yielding again (45.6).

45.4. Minimizing a submodular function

We now describe the algorithm to find the minimum value of a submodular set function f on S. We assume $f(\emptyset)=0$ and $S=\{1, \ldots, n\}$.

We iteratively update a vector $x \in B_{f}$, given as a convex combination

$$
\begin{equation*}
x=\lambda_{1} b^{\prec_{1}}+\cdots+\lambda_{k} b^{\prec_{k}} \tag{45.11}
\end{equation*}
$$

where the \prec_{i} are total orders of S, and where the λ_{i} are positive and sum to 1. Initially, we choose an arbitrary total order \prec and set $x:=b^{\prec}$ (so $k=1$ and $\prec_{1}=\prec$).

We describe the iteration. Consider the directed graph $D=(S, A)$, with

$$
\begin{equation*}
A:=\left\{(u, v) \mid \exists i=1, \ldots, k: u \prec_{i} v\right\} . \tag{45.12}
\end{equation*}
$$

Define

$$
\begin{equation*}
P:=\{v \in S \mid x(v)>0\} \text { and } N:=\{v \in S \mid x(v)<0\} . \tag{45.13}
\end{equation*}
$$

Case 1: \boldsymbol{D} has no path from \boldsymbol{P} to \boldsymbol{N}. Then let U be the set of vertices of D that can reach N by a directed path. So $N \subseteq U$ and $U \cap P=\emptyset$; that is, U contains all negative components of x and no positive components. Hence $x(W) \geq x(U)$ for each $W \subseteq S$. As no arcs of D enter U, U is a lower ideal of \prec_{i}, and hence $b^{\prec_{i}}(U)=f(U)$, for each $i=1, \ldots, k$. Therefore, for each $W \subseteq S$:

$$
\begin{equation*}
f(U)=\sum_{i=1}^{k} \lambda_{i} b^{\prec_{i}}(U)=x(U) \leq x(W) \leq f(W) \tag{45.14}
\end{equation*}
$$

So U minimizes f.
Case 2: \boldsymbol{D} has a path from \boldsymbol{P} to \boldsymbol{N}. Let $d(v)$ denote the distance in D from P to $v(=$ minimum number of arcs in a directed path from P to v). Set $d(v):=\infty$ if v is not reachable from P. Choose $s, t \in S$ as follows.

Let t be the element in N reachable from P with $d(t)$ maximum, such that t is largest. Let s be the element with $(s, t) \in A, d(s)=d(t)-1$, and s largest. Let α be the maximum of $\left|(s, t]_{\prec_{i}}\right|$ over $i=1, \ldots, k$. Reorder indices such that $\left|(s, t]_{\prec_{1}}\right|=\alpha$.

By (45.6), we can find $\delta \geq 0$ and describe

$$
\begin{equation*}
b^{\prec_{1}}+\delta\left(\chi^{t}-\chi^{s}\right) \tag{45.15}
\end{equation*}
$$

as a convex combination of the $b^{\prec_{1}^{s, u}}$ for $u \in(s, t]_{\prec_{1}}$. Then with (45.11) we obtain

$$
\begin{equation*}
y:=x+\lambda_{1} \delta\left(\chi^{t}-\chi^{s}\right) \tag{45.16}
\end{equation*}
$$

as a convex combination of $b^{\prec_{i}}(i=2, \ldots, k)$ and $b^{\prec_{1}^{s, u}}\left(u \in(s, t]_{\prec_{1}}\right)$.
Let x^{\prime} be the point on the line segment $\overline{x y}$ closest to y satisfying $x^{\prime}(t) \leq 0$. (So $x^{\prime}(t)=0$ or $x^{\prime}=y$.) We can describe x^{\prime} as a convex combination of $b^{\prec_{i}}$ $(i=1, \ldots, k)$ and $b^{\prec_{1}^{s, u}}\left(u \in(s, t]_{\prec_{1}}\right)$. Moreover, if $x^{\prime}(t)<0$, then we can do without $b^{\prec_{1}}$.

We reduce the number of terms in the convex decomposition of x^{\prime} to at most $|S|$ by linear algebra: any affine dependence of the vectors in the decomposition yields a reduction of the number of terms in the decomposition, as in the standard proof of Carathéodory's theorem (subtract an appropriate multiple of the linear expression giving the affine dependence, from the linear expression giving the convex combination, such that all coefficients remain nonnegative, and at least one becomes 0). As all b^{\prec} belong to a hyperplane, this reduces the number of terms to at most $|S|$.

Then reset $x:=x^{\prime}$ and iterate. This finishes the description of the algorithm.

45.5. Running time of the algorithm

We show that the number of iterations is at most $|S|^{6}$. Consider any iteration. Let

$$
\begin{equation*}
\beta:=\text { number of } i \in\{1, \ldots, k\} \text { with }\left|(s, t]_{\prec_{i}}\right|=\alpha . \tag{45.17}
\end{equation*}
$$

Let $x^{\prime}, d^{\prime}, A^{\prime}, P^{\prime}, N^{\prime}, t^{\prime}, s^{\prime}, \alpha^{\prime}, \beta^{\prime}$ be the objects $x, d, A, P, N, t, s, \alpha, \beta$ in the next iteration (if any). Then

$$
\begin{equation*}
\text { for all } v \in S, d^{\prime}(v) \geq d(v) \tag{45.18}
\end{equation*}
$$

and
(45.19) if $d^{\prime}(v)=d(v)$ for all $v \in S$, then $\left(d^{\prime}\left(t^{\prime}\right), t^{\prime}, s^{\prime}, \alpha^{\prime}, \beta^{\prime}\right)$ is lexicographically less than $(d(t), t, s, \alpha, \beta)$.
Since each of $d(t), t, s, \alpha, \beta$ is at most $|S|$, and since (if $d(v)$ is unchanged for all v) there are at most $|S|$ pairs $(d(t), t),(45.19)$ implies that in at most $|S|^{4}$
iterations $d(v)$ increases for at least one v. Any fixed v can have at most $|S|$ such increases, and hence the number of iterations is at most $|S|^{6}$.

In order to prove (45.18) and (45.19), notice that
(45.20) for each arc $(v, w) \in A^{\prime} \backslash A$ we have $s \preceq_{1} w \prec_{1} v \preceq_{1} t$.

Indeed, as $(v, w) \notin A$ we have $w \prec_{1} v$. As $(v, w) \in A^{\prime}$, we have $v \prec_{1}^{s, u} w$ for some $u \in(s, t]_{\prec_{1}}$. Hence the definition of $\prec_{1}^{s, u}$ gives $v=u$ and $s \preceq_{1} w \prec_{1} u$. This shows (45.20).

If (45.18) does not hold, then $A^{\prime} \backslash A$ contains an $\operatorname{arc}(v, w)$ with $d(w) \geq$ $d(v)+2$ (using that $P^{\prime} \subseteq P$). By (45.20), $s \preceq_{1} w \prec_{1} v \preceq_{1} t$, and so $d(w) \leq$ $d(s)+1=d(t) \leq d(v)+1$, a contradiction. This shows (45.18).

To prove (45.19), assume that $d^{\prime}(v)=d(v)$ for all $v \in S$. As $x^{\prime}\left(t^{\prime}\right)<0$, we have $x\left(t^{\prime}\right)<0$ or $t^{\prime}=s$. So by our criterion for choosing t (maximizing $(d(t), t)$ lexicographically), and since $d(s)<d(t)$, we know that $d\left(t^{\prime}\right) \leq d(t)$, and that if $d\left(t^{\prime}\right)=d(t)$, then $t^{\prime} \leq t$.

Next assume that moreover $d\left(t^{\prime}\right)=d(t)$ and $t^{\prime}=t$. As $\left(s^{\prime}, t\right) \in A^{\prime}$, and as (by (45.20)) $A^{\prime} \backslash A$ contains no arc entering t, we have $\left(s^{\prime}, t\right) \in A$, and so $s^{\prime} \leq s$, by the maximality of s.

Finally assume that moreover $s^{\prime}=s$. As $(s, t]_{\wp_{1}^{s, u}}$ is a proper subset of $(s, t]_{\prec_{1}}$ for each $u \in(s, t]_{\prec_{1}}$, we know that $\alpha^{\prime} \leq \alpha$. Moreover, if $\alpha^{\prime}=\alpha$, then $\beta^{\prime}<\beta$, since \prec_{1} does not occur anymore among the linear orders making the convex combination, as $x^{\prime}(t)<0$. This proves (45.19).

We therefore have proved:
Theorem 45.1. Given a submodular function f by a value giving oracle, a set U minimizing $f(U)$ can be found in strongly polynomial time.

Proof. See above.
This algorithm performs the elementary arithmetic operations on function values, including multiplication and division (in order to solve certain systems of linear equations). One would wish to have a 'fully combinatorial' algorithm, in which the function values are only compared, added, and subtracted. The existence of such an algorithm was shown by Iwata [2002a, 2002c], by extending the algorithm of Iwata, Fleischer, and Fujishige [2000, 2001].

Notes. In the algorithm, we have chosen t and s largest possible, in some fixed order of S. To obtain the above running time bound it only suffices to choose t and s in a consistent way. That is, if the set of choices for t is the same as in the previous iteration, then we should choose the same t - and similarly for s. This roots in the idea of 'consistent breadth-first search' of Schönsleben [1980].

The observation that the number of iterations in the algorithm of Section 45.4 is $O\left(|S|^{6}\right)$ instead of $O\left(|S|^{7}\right)$ is due to L.K. Fleischer. Vygen [2002] showed that the number of iterations can in fact be bounded by $O\left(|S|^{5}\right)$.

The algorithm described above has been speeded up by Fleischer and Iwata [2000,2002], by incorporating a push-relabel type of iteration based on approximate distances instead of precise distances (like Goldberg's method for maximum flow, given in Section 10.7). Iwata [2002b] combined the approaches of Iwata, Fleischer, and Fujishige [2000,2001] and Schrijver [2000a] to obtain a faster algorithm. A descent method for submodular function minimization based on an oracle for membership of the base polytope was given by Fujishige and Iwata [2002].

Surveys and background on submodular function minimization are given by Fleischer [2000b] and McCormick [2001].

45.6. Minimizing a symmetric submodular function

A set function f on S is called symmetric if $f(U)=f(S \backslash U)$ for each $U \subseteq S$. The minimum of a symmetric submodular function f is attained by \emptyset, since for each $U \subseteq S$ one has

$$
\begin{equation*}
2 f(U)=f(U)+f(S \backslash U) \geq f(\emptyset)+f(S)=2 f(\emptyset) \tag{45.21}
\end{equation*}
$$

By extending a method of Nagamochi and Ibaraki [1992b] for finding the minimum nonempty cut in an undirected graph, Queyranne [1995,1998] gave an easy combinatorial algorithm to find a nonempty proper subset U of S minimizing $f(U)$, where f is given by a value giving oracle. We may assume that $f(\emptyset)=f(S)=0$, by resetting $f(U):=f(U)-f(\emptyset)$ for all $U \subseteq S$.

Call an ordering s_{1}, \ldots, s_{n} of the elements of S a legal order of S for f, if, for each $i=1, \ldots, n$,

$$
\begin{equation*}
f\left(\left\{s_{1}, \ldots, s_{i-1}, x\right\}\right)-f(\{x\}) \tag{45.22}
\end{equation*}
$$

is minimized over $x \in S \backslash\left\{s_{1}, \ldots, s_{i-1}\right\}$ by $x=s_{i}$. One easily finds a legal order, by $O\left(|S|^{2}\right)$ oracle calls (for the value of f).

Now the algorithm is (where a set U splits a set X if both $X \cap U$ and $X \backslash U$ are nonempty):
(45.23) Find a legal order $\left(s_{1}, \ldots, s_{n}\right)$ of S for f.

Determine (recursively) a nonempty proper subset T of S not splitting $\left\{s_{n-1}, s_{n}\right\}$, minimizing $f(T)$. (This can be done by identifying s_{n-1} and s_{n}.)
Then the minimum value of $f(U)$ over nonempty proper subsets U of S is equal to $\min \left\{f(T), f\left(\left\{s_{n}\right\}\right)\right\}$.

The correctness of the algorithm follows from, for $n \geq 2$:

$$
\begin{equation*}
f(U) \geq f\left(\left\{s_{n}\right\}\right) \text { for each } U \subseteq S \text { splitting }\left\{s_{n-1}, s_{n}\right\} . \tag{45.24}
\end{equation*}
$$

This can be proved as follows. Define $t_{0}:=s_{1}$. For $i=1, \ldots, n-1$, define $t_{i}:=s_{j}$, where j is the smallest index such that $j>i$ and such that U splits $\left\{s_{i}, s_{j}\right\}$. For $i=0, \ldots, n$, let $U_{i}:=\left\{s_{1}, \ldots, s_{i}\right\}$. Note that for each $i=1, \ldots, n-1$ one has

$$
\begin{equation*}
f\left(U_{i-1} \cup\left\{t_{i}\right\}\right)-f\left(\left\{t_{i}\right\}\right) \geq f\left(U_{i-1} \cup\left\{t_{i-1}\right\}\right)-f\left(\left\{t_{i-1}\right\}\right) \tag{45.25}
\end{equation*}
$$

since if $t_{i-1}=t_{i}$ this is trivial, and if $t_{i-1} \neq t_{i}$, then $t_{i-1}=s_{i}$, in which case (45.25) follows from the legality of the order.

Moreover, for each $i=1, \ldots, n-1$ (setting $\bar{U}:=S \backslash U$):

$$
\begin{align*}
& f\left(U_{i} \cup U\right)-f\left(U_{i-1} \cup U\right)+f\left(U_{i} \cup \bar{U}\right)-f\left(U_{i-1} \cup \bar{U}\right) \tag{45.26}\\
& \leq f\left(U_{i} \cup\left\{t_{i}\right\}\right)-f\left(U_{i-1} \cup\left\{t_{i}\right\}\right)
\end{align*}
$$

In proving this, we may assume (by symmetry of U and \bar{U}) that $s_{i} \in \bar{U}$.
Then $U_{i} \cup \bar{U}=U_{i-1} \cup \bar{U}$ and $t_{i} \in U$. So $f\left(U_{i} \cup\left\{t_{i}\right\}\right)+f\left(U_{i-1} \cup U\right) \geq$ $f\left(U_{i-1} \cup\left\{t_{i}\right\}\right)+f\left(U_{i} \cup U\right)$, by submodularity. This gives (45.26).

Then we have:

$$
\begin{align*}
& f\left(s_{n}\right)-2 f(U) \tag{45.27}\\
& =f\left(U_{n-1} \cup U\right)+f\left(U_{n-1} \cup \bar{U}\right)-f\left(U_{0} \cup U\right)-f\left(U_{0} \cup \bar{U}\right) \\
& =\sum_{i=1}^{n-1}\left(f\left(U_{i} \cup U\right)-f\left(U_{i-1} \cup U\right)+f\left(U_{i} \cup \bar{U}\right)-f\left(U_{i-1} \cup \bar{U}\right)\right) \\
& \leq \sum_{i=1}^{n-1}\left(f\left(U_{i} \cup\left\{t_{i}\right\}\right)-f\left(U_{i-1} \cup\left\{t_{i}\right\}\right)\right) \\
& \leq \sum_{i=1}^{n-1}\left(f\left(U_{i} \cup\left\{t_{i}\right\}\right)-f\left(U_{i-1} \cup\left\{t_{i-1}\right\}\right)+f\left(\left\{t_{i-1}\right\}\right)-f\left(\left\{t_{i}\right\}\right)\right) \\
& =f\left(U_{n-1} \cup\left\{t_{n-1}\right\}\right)-f\left(\left\{t_{n-1}\right\}\right)-f\left(\left\{t_{0}\right\}\right)+f\left(\left\{t_{0}\right\}\right)=-f\left(s_{n}\right)
\end{align*}
$$

(where the first inequality follows from (45.26), and the second inequality from (45.25)). This shows (45.24).

Notes. Fujishige [1998] gave an alternative correctness proof. Nagamochi and Ibaraki [1998] extended the algorithm to minimizing submodular functions f satisfying
(45.28) $\quad f(T)+f(U) \geq f(T \backslash U)+f(U \backslash T)$
for all $T, U \subseteq S$. Rizzi [2000b] gave an extension.

45.7. Minimizing a submodular function over the odd sets

From the strong polynomial-time solvability of submodular function minimization, one can derive that also a set of odd cardinality minimizing f (over the odd sets) is solvable in strongly polynomial time (Grötschel, Lovász, and Schrijver [1981,1984a,1988] (the second paper corrects a wrong argument given in the first paper)).

Theorem 45.2. Given a submodular set function f on S (by a value giving oracle) and a nonempty subset T of S, one can find in strongly polynomial time a set $W \subseteq S$ minimizing $f(W)$ over W with $|W \cap T|$ odd.

Proof. The case T odd can be reduced to the case T even as follows. Find for each $t \in T$ a subset W_{t} of $S-t$ with $W_{t} \cap(T-t)$ odd, and minimizing $f\left(W_{t}\right)$. Moreover, find a subset U of S minimizing $f(U)$ over $U \supseteq T$. Then a set that attains the minimum among $f(U)$ and the $f\left(W_{t}\right)$, is an output as required.

So we can assume that T is even. We describe a recursive algorithm. Say that a set U splits T if both $T \cap U$ and $T \backslash U$ are nonempty. First find a set U minimizing $f(U)$ over all subsets U of S splitting T. This can be done by finding for all $s, t \in T$ a set $U_{s, t}$ minimizing $f\left(U_{s, t}\right)$ over all subsets of S containing s and not containing t (this amounts to submodular function minimization), and taking for U a set that minimizes $f\left(U_{s, t}\right)$ over all such s, t.

If $U \cap T$ is odd, we output $W:=U$. If $U \cap T$ is even, then recursively we find a set X minimizing $f(X)$ over all X with $X \cap(T \cap U)$ odd, and not splitting $T \backslash U$. This can be done by shrinking $T \backslash U$ to one element. Also, recursively we can find a set Y minimizing $f(Y)$ over all Y with $Y \cap(T \backslash U)$ odd, and not splitting $T \cap U$. Output an X or Y attaining the minimum of $f(X)$ and $f(Y)$.

This gives a strongly polynomial-time algorithm as the total number of recursive calls is at most $|T|-2$ (since $2+(|T \cap U|-2)+(|T \backslash U|-2)=|T|-2)$.

To see the correctness, let W minimize $f(W)$ over those W with $|W \cap T|$ odd. Suppose that $f(W)<f(X)$ and $f(W)<f(Y)$. As $f(W)<f(X), W$ splits $T \backslash U$, and hence $W \cup U$ splits T. Similarly, $f(W)<f(Y)$ implies that $W \cap U$ splits T.

Since $W \cap T$ is odd and $U \cap T$ is even, either $(W \cap U) \cap T$ or $(W \cup U) \cap T$ is odd.

If $(W \cap U) \cap T$ is odd, then $f(W \cap U) \geq f(W)$ (as W minimizes $f(W)$ over W with $W \cap T$ odd) and $f(W \cup U) \geq f(U)$ (as $W \cup U$ splits T and as U minimizes $f(U)$ over U splitting $T)$. Hence, by the submodularity of f, $f(W \cap U)=f(W)$. Since $(W \cap U) \cap(T \cap U)=(W \cap U) \cap T$ is odd and since $W \cap U$ does not split $T \backslash U$, we have $f(W)=f(W \cap U) \geq f(X)$, contradicting our assumption.

If $(W \cup U) \cap T$ is odd, a symmetric argument gives a contradiction.
This generalizes the strong polynomial-time solvability of finding a mini-mum-capacity odd cut in a graph, proved by Padberg and Rao [1982] (Corollary 25.6a). For a further generalization, see Section 49.11a.

Chapter 46

Polymatroid intersection

Abstract

The intersection of two polymatroids behaves as nice as the intersection of two matroids, as was shown by Edmonds again. We study in this chapter min-max relations, polyhedral characterizations, and total dual integrality results. In the next chapter we go over to the algorithmic questions.

46.1. Box-total dual integrality of polymatroid intersection

We saw in Section 44.2 that the greedy algorithm yields a proof that an integer-valued submodular function gives an integer polymatroid. The interest of polymatroids for combinatorial optimization is enlarged by the fundamental result of Edmonds [1970b] that also the intersection of two integer polymatroids is integer, thus generalizing the matroid intersection theorem. In order to obtain this result, we first show a more general theorem (also due to Edmonds [1970b]).

Consider, for submodular set functions f_{1}, f_{2} on S, the system:

$$
\begin{array}{ll}
x(U) \leq f_{1}(U) & \text { for } U \subseteq S, \tag{46.1}\\
x(U) \leq f_{2}(U) & \text { for } U \subseteq S
\end{array}
$$

Then:
Theorem 46.1. If f_{1} and f_{2} are submodular, then (46.1) is box-TDI.
Proof. Choose $w: S \rightarrow \mathbb{R}$. Let y_{1}, y_{2} attain

$$
\begin{align*}
\min & \left\{\sum_{U \subseteq S}\left(y_{1}(U) f_{1}(U)+y_{2}(U) f_{2}(U)\right)| |\right. \tag{46.2}\\
& \left.y_{1}, y_{2} \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \sum_{U \subseteq S}\left(y_{1}(U)+y_{2}(U)\right) \chi^{U}=w\right\} .
\end{align*}
$$

For $i=1,2$, define $w_{i}: S \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
w_{i}:=\sum_{U \subseteq S} y_{i}(U) \chi^{U} \tag{46.3}
\end{equation*}
$$

Then y_{i} attains

$$
\begin{equation*}
\min \left\{\sum_{U \subseteq S} y_{i}(U) f_{i}(U) \mid y_{i} \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \sum_{U \subseteq S} y_{i}(U) \chi^{U}=w_{i}\right\} \tag{46.4}
\end{equation*}
$$

So by Theorem 44.3, we can assume that the collections

$$
\begin{equation*}
\mathcal{F}_{i}:=\left\{U \subseteq S \mid y_{i}(U)>0\right\} \tag{46.5}
\end{equation*}
$$

are chains. Hence, by Theorem 41.11, (46.2) has an optimum solution such that the inequalities with positive coefficients have a totally unimodular constraint matrix. Therefore, by Theorem 5.35, (46.1) is box-TDI.
(This proof method is due to Edmonds [1970b].)

46.2. Consequences

Theorem 46.1 has the following consequences. First, the integrality of the intersection of two polymatroids:

Corollary 46.1a (polymatroid intersection theorem). The intersection of two integer (extended) polymatroids is box-integer.

Proof. If $P_{f_{1}}$ and $P_{f_{2}}$ are integer polymatroids, f_{1} and f_{2} can be taken to be integer-valued, by Corollary 44.3g. Hence (46.1) determines a box-integer polyhedron.

Next, a min-max relation:
Corollary 46.1b. Let f_{1} and f_{2} be submodular set functions on S with $f_{1}(\emptyset)=f_{2}(\emptyset)=0$. Then

$$
\begin{equation*}
\max \left\{x(U) \mid x \in E P_{f_{1}} \cap E P_{f_{2}}\right\}=\min _{T \subseteq U}\left(f_{1}(T)+f_{2}(U \backslash T)\right) \tag{46.6}
\end{equation*}
$$

for each $U \subseteq S$.
Proof. This follows by maximizing $w^{\top} x$ over (46.1) for $w:=\chi^{U}$, and applying Theorem 46.1.

Similarly, for (nonextended) polymatroids:
Corollary 46.1c. Let f_{1} and f_{2} be nondecreasing submodular set functions on S with $f_{1}(\emptyset)=f_{2}(\emptyset)=0$. Then

$$
\begin{equation*}
\max \left\{x(U) \mid x \in P_{f_{1}} \cap P_{f_{2}}\right\}=\min _{T \subseteq U}\left(f_{1}(T)+f_{2}(U \backslash T)\right) \tag{46.7}
\end{equation*}
$$

for each $U \subseteq S$.
Proof. As the previous corollary.

Let f_{1} and f_{2} be submodular set functions on S with $f_{1}(\emptyset)=f_{2}(\emptyset)=0$. Define

$$
\begin{equation*}
f(U):=\min _{T \subseteq U}\left(f_{1}(T)+f_{2}(U \backslash T)\right) \tag{46.8}
\end{equation*}
$$

for $U \subseteq S$. It is easy to see that a vector x belongs to $P_{f_{1}} \cap P_{f_{2}}$ if and only if

$$
\begin{array}{ll}
x_{s} \geq 0 & (s \in S) \tag{46.9}\\
x(U) \leq f(U) & (U \subseteq S)
\end{array}
$$

Moreover, system (46.9) is box-totally dual integral, since $f(U) \leq f_{i}(U)$ for each $U \subseteq S$ and $i=1,2$.

A consequence is that $P_{f_{1}} \cap P_{f_{2}}$ is integer if and only if f is integer. It may occur that $P_{f_{1}}$ and $P_{f_{2}}$ are not integer (i.e., f_{1} and f_{2} are not integer), while $P_{f_{1}} \cap P_{f_{2}}$ is integer (i.e., f is integer). For instance, take $P_{f_{1}}=\left\{\left(x_{1}, x_{2}\right) \mid\right.$ $\left.0 \leq x_{1} \leq 1,0 \leq x_{2} \leq \frac{3}{2}\right\}$ and $P_{f_{2}}=\left\{\left(x_{1}, x_{2}\right) \mid\left(x_{2}, x_{1}\right) \in P_{f_{1}}\right\}$.

Many other results on polymatroid intersection may be deduced from Theorem 46.1, by considering derived polymatroids (cf. McDiarmid [1978]). For instance, if $P_{f_{1}}$ and $P_{f_{2}}$ are integer polymatroids in \mathbb{R}^{S}, v and w are integer vectors, and k and ℓ are integers, then the polytope

$$
\begin{equation*}
\left\{x \in P_{f_{1}} \cap P_{f_{2}} \mid v \leq x \leq w, k \leq x(S) \leq \ell\right\} \tag{46.10}
\end{equation*}
$$

is integer again. To see this, it suffices to show that the polytope $P_{f_{1}} \cap P_{f_{2}} \cap\{x \mid$ $x(S)=k\}$ is integer for any integer k. We can reset $f_{1}(S):=\min \left\{f_{1}(S), k\right\}$. Then the polytope is a face of $P_{f_{1}} \cap P_{f_{2}}$, and hence is integer. In fact, the system determining (46.10) is box-TDI - see Corollary 49.12d.

The intersection of three integer polymatroids can have noninteger vertices, as the following example shows. Let $S=\{1,2,3,4\}$ and let P_{1}, P_{2} and P_{3} be the following polymatroids:

$$
\begin{align*}
& P_{1}:=\left\{x \in \mathbb{R}^{S} \mid x \geq \mathbf{0}, x(\{1,2\}) \leq 1, x(\{3,4\}) \leq 1\right\}, \tag{46.11}\\
& P_{2}:=\left\{x \in \mathbb{R}^{S} \mid x \geq \mathbf{0}, x(\{1,3\}) \leq 1, x(\{2,4\}) \leq 1\right\}, \\
& P_{3}:=\left\{x \in \mathbb{R}^{S} \mid x \geq \mathbf{0}, x(\{1,4\}) \leq 1, x(\{2,3\}) \leq 1\right\} .
\end{align*}
$$

(So each P_{i} is the independent set polytope of a partition matroid.) Now the vector $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ is in $P_{1} \cap P_{2} \cap P_{3}$, but the only integer vectors in $P_{1} \cap P_{2} \cap P_{3}$ are the 0,1 vectors with at most one 1 .

46.3. Contrapolymatroid intersection

Similar results as in the previous sections can be shown for the intersection of two contrapolymatroids. Such results can be proved similarly, or can be derived from the corresponding results for polymatroids.

Consider the system, for set functions g_{1}, g_{2} on S :

$$
\begin{array}{ll}
x(U) \geq g_{1}(U) & \text { for } U \subseteq S \tag{46.12}\\
x(U) \geq g_{2}(U) & \text { for } U \subseteq S
\end{array}
$$

Then Theorem 46.1 gives:
Corollary 46.1d. If g_{1} and g_{2} are supermodular, then (46.12) is box-TDI.
Proof. This follows from the box-total dual integrality of (46.1) taking $f_{i}:=$ $-g_{i}$ for $i=1,2$.

46.4. Intersecting a polymatroid and a contrapolymatroid

Let S be a finite set. For set functions f and g on S consider the system

$$
\begin{array}{ll}
x(U) \leq f(U) & \text { for } U \subseteq S \tag{46.13}\\
x(U) \geq g(U) & \text { for } U \subseteq S
\end{array}
$$

Theorem 46.2. If f is submodular and g is supermodular, then system (46.13) is box-TDI.

Proof. We can assume that $f(\emptyset) \geq 0$ and $g(\emptyset) \leq 0$. Choose $w \in \mathbb{R}^{S}$, and consider the dual problem of maximizing $w^{\top} x$ over (46.13):

$$
\begin{align*}
& \min \left\{\sum_{U \subseteq S} y(U) f(U)-\sum_{U \subseteq S} z(U) g(U) \mid\right. \tag{46.14}\\
& \\
& \left.y, z \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \sum_{U \subseteq S} y(U) \chi^{U}-\sum_{U \subseteq S} z(U) \chi^{U}=w\right\}
\end{align*}
$$

Let y, z attain this minimum. Define

$$
\begin{equation*}
u:=\sum_{U \subseteq S} y(U) \chi^{U} \text { and } v:=\sum_{U \subseteq S} z(U) \chi^{U} \tag{46.15}
\end{equation*}
$$

So y attains

$$
\begin{equation*}
\min \left\{\sum_{U \subseteq S} y(U) f(U) \mid y \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \sum_{U \subseteq S} y(U) \chi^{U}=u\right\} \tag{46.16}
\end{equation*}
$$

and z attains

$$
\begin{equation*}
\max \left\{\sum_{U \subseteq S} z(U) g(U) \mid z \in \mathbb{R}_{+}^{\mathcal{P}(S)}, \sum_{U \subseteq S} z(U) \chi^{U}=v\right\} \tag{46.17}
\end{equation*}
$$

By Theorem 44.3, (46.16) has an optimum solution y with $\mathcal{F}:=\{U \mid$ $y(U)>0\}$ is a chain. Similarly, (46.17) has an optimum solution z with $\mathcal{G}:=\{U \mid z(U)>0\}$ is a chain. Hence by Theorem 41.11, minimum (46.14) has an optimum solution such that the inequalities corresponding to positive coefficients have a totally unimodular constraint matrix. Hence by Theorem $5.35,(46.13)$ is box-TDI.

So for the intersection of a polymatroid and a contrapolymatroid one gets:

Corollary 46.2a. The intersection of an integer extended polymatroid and an integer extended contrapolymatroid is integer.

Proof. Directly from the fact that an integer extended polymatroid is the solution set of $x(U) \leq f(U)(U \subseteq S)$ for some integer submodular set function on S, and an integer extended contrapolymatroid is the solution set of $x(U) \geq$ $g(U)(U \subseteq S)$ for some integer submodular set function on S. Hence, by Theorem 46.2, the intersection is determined by a TDI system with integer right-hand sides. So the intersection is integer.

46.5. Frank's discrete sandwich theorem

Frank [1982b] showed the following 'discrete sandwich theorem' (analogous to the 'continuous sandwich theorem', stating the existence of a linear function between a convex and a concave function):

Corollary 46.2b (Frank's discrete sandwich theorem). Let f be a submodular and g a supermodular set function on S, with $g \leq f$. Then there exists a modular set function h on S with $g \leq h \leq f$. If f and g are integer, h can be taken integer.

Proof. We can assume that $g(\emptyset)=0=f(\emptyset)$, by resetting $f(U):=f(U)-f(\emptyset)$ and $g(U):=g(U)-f(\emptyset)$, for each $U \subseteq S$, and $g(\emptyset):=0$.

Define $f^{\prime}(U):=f(S)-g(S \backslash U)$ for each $U \subseteq S$. Then f^{\prime} is submodular. Now by Corollary 46.1b:

$$
\begin{align*}
& \max \left\{x(S) \mid x(U) \leq f(U), x(U) \leq f^{\prime}(U) \text { for each } U \subseteq S\right\} \tag{46.18}\\
& =\min \left\{f(T)+f^{\prime}(S \backslash T) \mid T \subseteq S\right\}
\end{align*}
$$

The minimum is at least $f(S)$, since $f(T)+f^{\prime}(S \backslash T)=f(T)+f(S)-g(T) \geq$ $f(S)$. Hence there exists an $x \in \mathbb{R}^{S}$ with $x(U) \leq f(U)$ and $x(U) \leq f^{\prime}(U)$ for each $U \subseteq S$ and with $x(S)=f(S)$. Defining $h(U):=x(U)$, gives the modular function as required, since for each $U \subseteq S$:

$$
\begin{equation*}
g(U)=f(S)-f^{\prime}(S \backslash U) \leq x(S)-x(S \backslash U)=x(U) \leq f(U) \tag{46.19}
\end{equation*}
$$

If f and g are integer, we can choose x integer, implying that h is integer.
As Lovász [1983c] observed, the first part of this result can be derived from the continuous sandwich theorem: define $\tilde{f}: \mathbb{R}_{+}^{S} \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
\tilde{f}(x):=\sum_{i=1}^{k} \lambda_{i} f\left(U_{i}\right) \tag{46.20}
\end{equation*}
$$

where $\emptyset \neq U_{1} \subset U_{2} \subset \cdots \subset U_{n} \subseteq S$ and $\lambda_{1}, \ldots, \lambda_{k}>0$ are such that $x=\sum_{i=1}^{k} \lambda_{i} \chi^{U_{i}}$. Define \tilde{g} similarly. Then \tilde{f} is convex and \tilde{g} is concave, and $\tilde{g} \leq \tilde{f}$. Hence there is a linear function \tilde{h} satisfying $\tilde{g} \leq \tilde{h} \leq \tilde{f}$. This gives the function h as required.

46.6. Integer decomposition

Integer polymatroids have the integer decomposition property. More generally:

Corollary 46.2c. Let P_{1}, \ldots, P_{k} be integer polymatroids. Then each integer vector in $P_{1}+\cdots+P_{k}$ is a sum $x_{1}+\cdots+x_{k}$ of integer vectors $x_{1} \in P_{1}, \ldots, x_{k} \in$ P_{k}.

Proof. It suffices to show this for $k=2$; the general case follows by induction (as the sum of integer polymatroids is again an integer polymatroid, by Theorem 44.6). Choose an integer vector $x \in P_{1}+P_{2}$. Let Q be the contrapolymatroid given by
(46.21) $\quad Q:=x-P_{2}$.

Then $P_{1} \cap Q \neq \emptyset$, since $x=x_{1}+x_{2}$ for some $x_{1} \in P_{1}$ and $x_{2} \in P_{2}$, implying $x_{1} \in P_{1} \cap Q$. Now Q is integer as x and P_{2} are integer. Hence by Corollary 46.2a, $P_{1} \cap Q$ contains an integer vector y. Then $x-y \in P_{2}$, and so x is the sum of $y \in P_{1}$ and $x-y \in P_{2}$.

This implies the integer decomposition property for integer polymatroids, proved by Giles [1975] (also by Baum and Trotter [1981]):

Corollary 46.2d. An integer polymatroid has the integer decomposition property.

Proof. Directly from Corollary 46.2c, by taking all P_{i} equal.
This gives the following integer rounding properties (Baum and Trotter [1981]). Let P_{f} be the integer polymatroid determined by some integer submodular set function f on S. Let \mathcal{B} be the collection of integer base vectors of P_{f}. Let B be the $\mathcal{B} \times S$ incidence matrix. Then for each $c \in \mathbb{Z}_{+}^{S}$, one has

$$
\begin{align*}
& \min \left\{y^{\top} \mathbf{1} \mid y \in \mathbb{Z}_{+}^{\mathcal{B}}, y^{\top} B \geq c^{\top}\right\} \tag{46.22}\\
& =\left\lceil\min \left\{y^{\top} \mathbf{1} \mid y \in \mathbb{R}_{+}^{\mathcal{B}}, y^{\top} B \geq c^{\top}\right\}\right\rceil
\end{align*}
$$

Indeed, \geq is trivial. To see equality, let k be equal to the right-hand side. Then $c \in k \cdot P_{f}$, and hence, by Corollary $46.2 \mathrm{~d}, c \leq b_{1}+\cdots+b_{k}$ for rows b_{1}, \ldots, b_{k} of B. This shows equality.

Note that the right-hand side in (46.22) is equal to $\left\lceil\max \left\{c^{\top} x \mid x \in\right.\right.$ $\left.\left.A\left(P_{f}\right)\right\}\right\rceil$, where $A\left(P_{f}\right)$ is the antiblocking polyhedron of P_{f}.

Similarly, one has:

$$
\begin{align*}
& \max \left\{y^{\top} \mathbf{1} \mid y \in \mathbb{Z}_{+}^{\mathcal{B}}, y^{\top} B \leq c^{\top}\right\} \tag{46.23}\\
& =\left\lfloor\max \left\{y^{\top} \mathbf{1} \mid y \in \mathbb{R}_{+}^{\mathcal{B}}, y^{\top} B \leq c^{\top}\right\}\right\rfloor .
\end{align*}
$$

Now the right-hand side is equal to $\left\lfloor\min \left\{c^{\top} x \mid x \in B(Q)\right\}\right\rfloor$, where $B(Q)$ is the blocking polyhedron of $Q:=\left\{x \in \mathbb{R}^{S} \mid x(U) \geq f(S)-f(S \backslash U)\right.$ for $U \subseteq S\}$.

If f is the rank function of a matroid, then (46.22) describes the minimum number of bases covering S, while (46.23) describes the maximum number of disjoint bases.

46.7. Further results and notes

46.7a. Up and down hull of the common base vectors

Let f_{1} and f_{2} be nondecreasing submodular set functions on S, with $f_{1}(\emptyset)=f_{2}(\emptyset)=$ 0 and $f_{1}(S)=f_{2}(S)$, and let P_{1} and P_{2} be the associated polymatroids. Let F_{1} and F_{2} be the faces of base vectors of P_{1} and of P_{2}, respectively. Suppose that $F_{1} \cap F_{2} \neq \emptyset$, equivalently that

$$
\begin{equation*}
f_{1}(S)=f_{2}(S)=\max \left\{x(S) \mid x \in P_{1} \cap P_{2}\right\}=\min _{U \subseteq S} f_{1}(U)+f_{2}(S \backslash U) . \tag{46.24}
\end{equation*}
$$

Consider the polyhedra P and Q defined by

$$
\begin{align*}
& P:=\left\{x \in \mathbb{R}_{+}^{S} \mid x \leq y \text { for some } y \text { in } F_{1} \cap F_{2}\right\}, \tag{46.25}\\
& Q:=\left\{x \in \mathbb{R}_{+}^{S} \mid x \geq y \text { for some } y \text { in } F_{1} \cap F_{2}\right\} .
\end{align*}
$$

So if f_{1} and f_{2} are the rank functions of matroids on S, then P is just the convex hull of incidence vectors of subsets of S which are contained in a common base.

Note that F_{1} and F_{2} are the faces of minimal vectors in the contrapolymatroids Q_{1} and Q_{2} associated with the supermodular set functions g_{1} and g_{2} on S given by

$$
\begin{equation*}
g_{i}(U):=f_{i}(S)-f_{i}(S \backslash U) \tag{46.26}
\end{equation*}
$$

for $U \subseteq S$ and $i=1,2$ (cf. Section 44.5). So $P \subseteq P_{1} \cap P_{2}$ and $Q \subseteq Q_{1} \cap Q_{2}$.
Let the set functions f and g on S be defined by

$$
\begin{align*}
f(U) & :=\max \left\{x(U) \mid x \in P_{1} \cap P_{2}\right\}=\min _{T \subseteq U}\left(f_{1}(T)+f_{2}(U \backslash T)\right), \tag{46.27}\\
g(U) & :=\min \left\{x(U) \mid x \in Q_{1} \cap Q_{2}\right\}=\max _{T \subseteq U}\left(g_{1}(T)+g_{2}(U \backslash T)\right),
\end{align*}
$$

for $U \subseteq S$ (cf. Corollary 46.1c). Then $f(S)=g(S)=f_{1}(S)=f_{2}(S)=g_{1}(S)=$ $g_{2}(S)$.

It is easy to see that if x belongs to Q, then

$$
\begin{equation*}
x(U) \geq f(S)-f(S \backslash U) \text { for each } U \subseteq S \tag{46.28}
\end{equation*}
$$

(note that $x \geq \mathbf{0}$ follows from (46.28) by taking $U=\{s\}$). Indeed, if $x \geq z$ with $z \in F_{1} \cap F_{2}$, then $x(U) \geq z(U)=f(S)-z(S \backslash U) \geq f(S)-f(S \backslash U)$, as $z \in P_{1} \cap P_{2}$.

Similarly, if x belongs to P, then

$$
\begin{array}{ll}
x_{s} \geq 0 & (s \in S) \tag{46.29}\\
x(U) \leq g(S)-g(S \backslash U) & (U \subseteq S)
\end{array}
$$

In fact, the systems (46.28) and (46.29) determine Q and P respectively. This was shown by Cunningham [1977] and McDiarmid [1978], thus proving a conjecture of Fulkerson [1971a] (cf. Weinberger [1976]).

Theorem 46.3. Polyhedron Q is determined by (46.28). Polyhedron P is determined by (46.29).

Proof. Consider $x \in \mathbb{R}_{+}^{S}$ and let P_{i}^{\prime} be the polymatroid $P_{i}^{\prime}:=\left\{y \in P_{i} \mid y \leq x\right\}$ for $i=1,2$ (cf. Section 44.1). By (44.8), the submodular function f_{i}^{\prime} associated with P_{i}^{\prime} is given by

$$
\begin{equation*}
f_{i}^{\prime}(U)=\min _{T \subseteq U}\left(f_{i}(T)+x(U \backslash T)\right) \tag{46.30}
\end{equation*}
$$

for $U \subseteq S$ and $i=1,2$. Now x is in Q if and only if there is a vector z in $P_{1} \cap P_{2}$ with $z \leq x$ and $z(S)=f(S)$, i.e., if and only if there is a vector z in $P_{1}^{\prime} \cap P_{2}^{\prime}$ with $z(S)=f(S)$. By (46.7) such a vector exists if and only if

$$
\begin{equation*}
\min _{U \subseteq S}\left(f_{1}^{\prime}(U)+f_{2}^{\prime}(S \backslash U)\right) \geq f(S) \tag{46.31}
\end{equation*}
$$

Substituting (46.30) one finds that (46.31) is equivalent to (46.28).
The second statement of Theorem 46.3 is proved similarly.
This theorem has a self-refining character. If k is a rational number with $k \leq$ $f(S)$ and if $w \in Q$, then

$$
\begin{align*}
& \left\{x \in \mathbb{R}_{+}^{S} \mid x \geq z \text { for some } z \text { in } P_{1} \cap P_{2} \text { with } z(S)=k\right\} \tag{46.32}\\
& =\left\{x \in \mathbb{R}_{+}^{S} \mid x(U) \geq k-f(S \backslash U) \text { for all } U \subseteq S\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \left\{x \in \mathbb{R}_{+}^{S} \mid x \geq z \text { for some } z \text { in } F_{1} \cap F_{2} \text { with } z \leq w\right\} \tag{46.33}\\
& =\left\{x \in \mathbb{R}_{+}^{S} \mid x(S \backslash(T \cup U)) \geq f(S)-w(U)-f(T)\right. \text { for disjoint } \\
& \quad T, U \subseteq S\}
\end{align*}
$$

as can be seen by taking appropriate subpolymatroids of P_{1} and P_{2} (cf. also McDiarmid [1976,1978]).

This has the following applications. Let $G=(V, E)$ be a bipartite graph, let $x \in \mathbb{R}_{+}^{E}$, and let k be a natural number. Then there exists a vector $z \leq x$ such that z is a convex combination of incidence vectors of matchings in G of size k if and only if

$$
\begin{equation*}
x(E[U]) \geq k-|V|+|U| \tag{46.34}
\end{equation*}
$$

for all $U \subseteq V$ (where $E[U]$ denotes the set of edges spanned by U). This can be derived as follows. Let V_{1} and V_{2} be the colour classes of G. For $F \subseteq E$, let $f_{i}(F)$ be the number of vertices in V_{i} covered by F (for $i=1,2$). Then $f(F)$ equals the maximum size of a matching in F, which is equal to the minimum number of vertices covering F. Hence the inequalities $x(F) \geq k-f(E \backslash F)$ (for $F \subseteq E$) follow from $x(E[U]) \geq k-|V \backslash U|($ for $U \subseteq V)$.

Another application is Corollary 52.3a on the up hull of the r-arborescence polytope (cf. Section 52.1a).

Gröflin and Hoffman [1981] gave a method to show the following:

Theorem 46.4. (46.28) and (46.29) are box-TDI.
Proof. We prove that (46.28) is box-TDI. The box-total dual integrality of (46.29) is proved similarly.

Let \mathcal{R} be the collection of all pairs (T, U) of subsets of S with $T \cap U=\emptyset$. Then the system

$$
\begin{equation*}
x(S \backslash(T \cup U)) \geq f(S)-f_{1}(T)-f_{2}(U) \quad((T, U) \in \mathcal{R}) \tag{46.35}
\end{equation*}
$$

is equivalent to (46.28), in the following sense: by (46.27), (46.35) determines Q, and (46.35) contains all inequalities occurring in (46.28); moreover, all inequalities in (46.35) satisfied with equality by some $x \in Q$, also occur in (46.28). Hence, if (46.35) is box-totally dual integral, also (46.28) is box-totally dual integral. So it suffices to show the box-total dual integrality of (46.35). To this end, let $w \in \mathbb{Z}_{+}^{S}$, and consider the dual of minimizing $w^{\top} x$ over (46.35):

$$
\begin{align*}
\max \{ & \sum_{(T, U) \in \mathcal{R}} y(T, U)\left(f(S)-f_{1}(T)-f_{2}(U)\right) \tag{46.36}\\
& \left.y \in \mathbb{R}_{+}^{\mathcal{R}}, \sum_{(T, U) \in \mathcal{R}} y(T, U) \chi^{S \backslash(T \cup U)}=w\right\} .
\end{align*}
$$

We show that it is attained by an integer vector y if w is integer.
To this end, let y attain the maximum (46.36) such that

$$
\begin{equation*}
\sum_{(T, U) \in \mathcal{R}} y(T, U)(|T|+|S \backslash U|)(|U|+|S \backslash T|) \tag{46.37}
\end{equation*}
$$

is as small as possible. Then:

$$
\begin{equation*}
\text { if } y(A, B)>0 \text { and } y(C, D)>0 \text {, then either } A \subseteq C \text { and } B \supseteq D \text {, or } \tag{46.38}
\end{equation*}
$$ $A \supseteq C$ and $B \subseteq D$.

Suppose not. Define $\alpha:=\min \{y(A, B), y(C, D)\}$. Define $y^{\prime}: \mathcal{R} \rightarrow \mathbb{R}_{+}$by

$$
\begin{align*}
& y^{\prime}(A, B):=y(A, B)-\alpha \tag{46.39}\\
& y^{\prime}(C, D):=y(C, D)-\alpha \\
& y^{\prime}(A \cap C, B \cup D):=y(A \cap C, B \cup D)+\alpha \\
& y^{\prime}(A \cup C, B \cap D):=y(A \cup C, B \cap D)+\alpha
\end{align*}
$$

and let y^{\prime} coincide with y in the other components. One easily checks that

$$
\begin{align*}
& \sum_{(T, U) \in \mathcal{R}} y^{\prime}(T, U) \chi^{S \backslash(T \cup U)}=\sum_{(T, U) \in \mathcal{R}} y(T, U) \chi^{S \backslash(T \cup U)} \text { and } \tag{46.40}\\
& \sum_{(T, U) \in \mathcal{R}} y^{\prime}(T, U)\left(f(S)-f_{1}(T)-f_{2}(U)\right) \\
& \geq \sum_{(T, U) \in \mathcal{R}} y(T, U)\left(f(S)-f_{1}(T)-f_{2}(U)\right)
\end{align*}
$$

by the submodularity of f_{1} and f_{2}. So y^{\prime} also attains the maximum (46.36). Moreover, one straightforwardly checks that replacing y by y^{\prime} decreases (46.37). ${ }^{36}$ This contradicts our assumption, and therefore proves (46.38).

[^21]Let $\mathcal{R}_{0}:=\{(T, U) \in \mathcal{R} \mid y(T, U)>0\}=\left\{\left(T_{1}, U_{1}\right), \ldots,\left(T_{n}, U_{n}\right)\right\}$ with $T_{1} \subseteq$ $\cdots \subseteq T_{n}$ and $U_{n} \subseteq \cdots \subseteq U_{1}$ (this is possible by (46.38)). Let M be the $\{0,1\}$ matrix with rows indexed by \mathcal{R}_{0} and columns indexed by S, such that $M_{(T, U), s}=1$ if and only if $s \notin T \cup U$. Then for each s in S, the indices i for which $M_{\left(T_{i}, U_{i}\right), s}=1$ form a contiguous interval of $\{1, \ldots, n\}$. Hence M is totally unimodular (as it is a network matrix with directed tree being a directed path). So we have the box-total dual integrality of (46.35) by Theorem 5.35.

Frank and Tardos [1984a] indicated a direct derivation of this theorem from the total dual integrality of (46.1).

There are a number of straightforward corollaries. As for the integrality of polyhedra:

Corollary 46.4a. If f (or, equivalently, g) is integer, then the polyhedra P, Q, and $F_{1} \cap F_{2}$ are integer.

Proof. This follows directly from Theorem 46.4. Note that $F_{1} \cap F_{2}$ is integer if and only if P is integer.

Also a min-max relation follows:
Corollary 46.4b. Let $M_{1}=\left(S, \mathcal{I}_{1}\right)$ and $M_{2}=\left(S, \mathcal{I}_{2}\right)$ be matroids, with rank functions r_{1} and r_{2} and let k be the maximum size of a common independent set. Then for any subset U of S,

$$
\begin{equation*}
\min _{I}|U \cap I|=\max _{S_{1}, \ldots, S_{t}} \sum_{i=1}^{t}\left(k-r\left(S \backslash S_{i}\right)\right), \tag{46.41}
\end{equation*}
$$

where the minimum ranges over all common independent sets I with $|I|=k$, and where the maximum ranges over all partitions of U into sets $S_{1}, \ldots, S_{t}(t \geq 0)$, and where $r(T)$ denotes the maximum size of a common independent set contained in T.

Proof. Apply Theorem 46.4, taking $c:=\chi^{U}, f_{i}:=r_{i}$, and $f:=r$.
It is not necessarily true that if $F_{1} \cap F_{2}$ is integer, then also $P_{1} \cap P_{2}$ (or $Q_{1} \cap Q_{2}$) is integer - i.e., that the converse implication of Corollary 46.4a holds. For instance, if

$$
\begin{align*}
& P_{1}:=\left\{(x, y, z)^{\top} \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq \frac{3}{2}, x+z \leq 2\right\}, \tag{46.42}\\
& P_{2}:=\left\{(x, y, z)^{\top} \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq \frac{3}{2}, y+z \leq 2\right\},
\end{align*}
$$

then $F_{1} \cap F_{2}=\left\{(1,1,1)^{\top}\right\}$, but $\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right)^{\top}$ is a vertex of $P_{1} \cap P_{2}$.
Related results on integer decomposition of integer polymatroids in McDiarmid [1983].

46.7b. Further notes

Giles [1975] characterized the facets of the intersection of two polymatroids. Ageev [1988] studied the problem of maximizing a concave function over the intersection of polymatroids.

Chapter 47

Polymatroid intersection algorithmically

In this chapter we consider the problem of finding a vector of maximum weight in the intersection of two (extended) polymatroids algorithmically. We describe a strongly polynomial-time algorithm for this problem in four stages (where f_{1} and f_{2} are submodular set functions on S):

- a strongly polynomial-time algorithm finding a maximum-size vector in $E P_{f_{1}} \cap E P_{f_{2}}$ (Section 47.1),
- a strongly polynomial-time algorithm finding a common base vector of f_{1} and f_{2} maximizing $x(s)$ for some prescribed $s \in S$ (Section 47.2),
- a polynomial-time algorithm finding a maximum-weight common base vector of f_{1} and f_{2} (Section 47.3),
- a strongly polynomial-time algorithm finding a maximum-weight common base vector of f_{1} and f_{2} (Section 47.4).
At the base of the algorithms is submodular function minimization, which leads back to the 'consistent breadth-first search' technique proposed in a pioneering paper of Schönsleben [1980] on polymatroid intersection.

47.1. A maximum-size common vector in two polymatroids

We first consider the problem:
(47.1) given: submodular set functions f_{1} and f_{2} on a set S (by value giving oracles),
find: an $x \in E P_{f_{1}} \cap E P_{f_{2}}$ maximizing $x(S)$, and a $T \subseteq S$ with $x(S)=f_{1}(T)+f_{2}(S \backslash T)$.
So T certifies that x indeed maximizes $x(S)$ over $E P_{f_{1}} \cap E P_{f_{2}}$, since for any $x^{\prime} \in E P_{f_{1}} \cap E P_{f_{2}}$ we have:

$$
\begin{equation*}
x^{\prime}(S)=x^{\prime}(T)+x^{\prime}(S \backslash T) \leq f_{1}(T)+f_{2}(S \backslash T)=x(S) \tag{47.2}
\end{equation*}
$$

On the other hand, x certifies that T minimizes $f_{1}(T)+f_{2}(S \backslash T)$.
Then (Lawler and Martel [1982a], extending a weakly polynomial bound of Schönsleben [1980]):

Theorem 47.1. Problem (47.1) is solvable in strongly polynomial-time.
Proof. We can assume that $f_{1}(\emptyset)=0$ and $f_{2}(\emptyset)=0$. Define the submodular set function f on S by

$$
\begin{equation*}
f(U):=f_{1}(U)+f_{2}(S \backslash U)-f_{2}(S) \tag{47.3}
\end{equation*}
$$

for $U \subseteq S$. With the submodular function minimization algorithm described in Section 45.4 we find a subset T of S minimizing f. So, by Corollary 46.1b, $f(T)+f_{2}(S)$ is equal to the maximum of $x(S)$ over $E P_{f_{1}} \cap E P_{f_{2}}$.

The submodular function minimization algorithm of Section 45.4 also gives vertices b_{1}, \ldots, b_{k} of $E P_{f}$ and $\lambda_{1}, \ldots, \lambda_{k} \geq 0$ with $\lambda_{1}+\cdots+\lambda_{k}=1$ such that for

$$
\begin{equation*}
y:=\lambda_{1} b_{1}+\cdots+\lambda_{k} b_{k} \tag{47.4}
\end{equation*}
$$

we have $y(T)=f(T), \operatorname{supp}^{-}(y) \subseteq T$, and $\operatorname{supp}^{+}(y) \subseteq S \backslash T$. (Here, as usual, $\operatorname{supp}^{+}(x):=\{s \in S \mid x(s)>0\}$ and $\operatorname{supp}^{-}(x):=\{s \in S \mid x(s)<0\}$.)

Now for each $i=1, \ldots, k$, we can find $b_{i}^{\prime} \in E P_{f_{1}}$ and $b_{i}^{\prime \prime} \in E P_{f_{2}}$ with $b_{i}=b_{i}^{\prime}-b_{i}^{\prime \prime}$. Indeed, let u_{1}, \ldots, u_{n} be a total order of S generating b_{i}. (That is, $b_{i}\left(u_{j}\right)=f\left(\left\{u_{1}, \ldots, u_{j}\right\}\right)-f\left(\left\{u_{1}, \ldots, u_{j-1}\right\}\right)$ for $j=1, \ldots, n$. These orderings are also implied by the submodular function minimization algorithm.) Let b_{i}^{\prime} be the vertex of $E P_{f_{1}}$ generated by the order u_{1}, \ldots, u_{n} (that is, $b_{i}^{\prime}\left(u_{j}\right)=f_{1}\left(\left\{u_{1}, \ldots, u_{j}\right\}\right)-f_{1}\left(\left\{u_{1}, \ldots, u_{j-1}\right\}\right)$ for $\left.j=1, \ldots, n\right)$. Let $b_{i}^{\prime \prime}$ be the vertex of $E P_{f_{2}}$ generated by the order $u_{n}, u_{n-1}, \ldots, u_{1}$ (that is, $b_{i}^{\prime \prime}\left(u_{j}\right)=f_{2}\left(\left\{u_{j}, \ldots, u_{n}\right\}\right)-f_{2}\left(\left\{u_{j+1}, \ldots, u_{n}\right\}\right)$ for $\left.j=1, \ldots, n\right)$. Then by definition of f we have $b_{i}=b_{i}^{\prime}-b_{i}^{\prime \prime}$, since for each j :

$$
\begin{align*}
& b_{i}\left(u_{j}\right)=f\left(\left\{u_{1}, \ldots, u_{j}\right\}\right)-f\left(\left\{u_{1}, \ldots, u_{j-1}\right\}\right) \tag{47.5}\\
& =f_{1}\left(\left\{u_{1}, \ldots, u_{j}\right\}\right)+f_{2}\left(\left\{u_{j+1}, \ldots, u_{n}\right\}\right)-f_{1}\left(\left\{u_{1}, \ldots, u_{j-1}\right\}\right) \\
& -f_{2}\left(\left\{u_{j}, \ldots, u_{n}\right\}\right)=b_{i}^{\prime}\left(u_{j}\right)-b_{i}^{\prime \prime}\left(u_{j}\right)
\end{align*}
$$

Define

$$
\begin{equation*}
x^{\prime}:=\sum_{i=1}^{k} \lambda_{i} b_{i}^{\prime}, x^{\prime \prime}:=\sum_{i=1}^{k} \lambda_{i} b_{i}^{\prime \prime}, \text { and } x:=x^{\prime} \wedge x^{\prime \prime} \tag{47.6}
\end{equation*}
$$

where \wedge stands for taking coordinatewise minimum. As $x^{\prime} \in E P_{f_{1}}$ and $x^{\prime \prime} \in$ $E P_{f_{2}}$, we know $x \in E P_{f_{1}} \cap E P_{f_{2}}$. Also, as $y=x^{\prime}-x^{\prime \prime}$, we know that if $u \in T$, then $y(u) \leq 0$, hence $x^{\prime \prime}(u) \geq x^{\prime}(u)$, and therefore $x(u)=x^{\prime}(u)$. Similarly, if $u \in S \backslash T$, then $x(u)=x^{\prime \prime}(u)$. Hence

$$
\begin{align*}
& x(S)=x(T)+x(S \backslash T)=x^{\prime}(T)+x^{\prime \prime}(S \backslash T)=\left(x^{\prime}-x^{\prime \prime}\right)(T)+x^{\prime \prime}(S) \tag{47.7}\\
& =y(T)+x^{\prime \prime}(S)=f(T)+f_{2}(S)=f_{1}(T)+f_{2}(S \backslash T),
\end{align*}
$$

as required.

47.2. Maximizing a coordinate of a common base vector

Theorem 47.1 implies the strong polynomial-time solvability of:
given: submodular set functions f_{1} and f_{2} on a set S (by value giving oracles) and an element $s \in S$,
find: a common base vector x of f_{1} and f_{2} maximizing $x(s)$, and subsets S_{1} and S_{2} of S with $S_{1} \cap S_{2}=\{s\}, S_{1} \cup S_{2}=S$, and $x\left(S_{i}\right)=f_{i}\left(S_{i}\right)$ for $i=1,2$.

This is a result of Frank [1984a]:
Theorem 47.2. Problem (47.8) is solvable in strongly polynomial time.
Proof. We can assume that $f_{1}(S)=f_{2}(S)$ and that f_{1} and f_{2} have a common base vector (this can be checked by Theorem 47.1). Hence

$$
\begin{equation*}
f_{1}(S) \leq f_{1}(U)+f_{2}(S \backslash U) \tag{47.9}
\end{equation*}
$$

for each $U \subseteq S$. Define $S^{\prime}:=S \backslash\{s\}$.
First determine S_{1}, S_{2} with $S_{1} \cap S_{2}=\{s\}$ and $S_{1} \cup S_{2}=S$ and minimizing $f_{1}\left(S_{1}\right)+f_{2}\left(S_{2}\right)$. This can be done by minimizing the submodular function $f_{1}(U+s)+f_{2}(S \backslash U)$ over $U \subseteq S^{\prime}$.

Define

$$
\begin{equation*}
\alpha:=f_{1}\left(S_{1}\right)+f_{2}\left(S_{2}\right)-f_{1}(S) \tag{47.10}
\end{equation*}
$$

For $i=1,2$ and $U \subseteq S^{\prime}$, define

$$
\begin{equation*}
g_{i}(U):=\min \left\{f_{i}(U), f_{i}(U+s)-\alpha\right\} . \tag{47.11}
\end{equation*}
$$

Then g_{1} and g_{2} are submodular set functions on S^{\prime}, as is easy to check. Moreover,

$$
\begin{equation*}
g_{i}\left(S^{\prime}\right)=f_{i}(S)-\alpha \tag{47.12}
\end{equation*}
$$

To show this, we may assume that $i=1$. Then we must show:

$$
\begin{equation*}
f_{1}\left(S^{\prime}\right) \geq f_{1}(S)-\alpha=2 f_{1}(S)-f_{1}\left(S_{1}\right)-f_{2}\left(S_{2}\right) \tag{47.13}
\end{equation*}
$$

Now $f_{1}\left(S_{1} \backslash\{s\}\right)+f_{2}\left(S_{2}\right) \geq f_{1}(S)$ (since f_{1} and f_{2} have a common base vector) and $f_{1}\left(S_{1}\right)-f_{1}\left(S_{1} \backslash\{s\}\right) \geq f_{1}(S)-f_{1}\left(S^{\prime}\right)$ (by the submodularity of $\left.f_{1}\right)$. These two inequalities imply (47.13).

Then
(47.14) $\quad g_{1}$ and g_{2} have a common base vector.

Otherwise, S^{\prime} can be partitioned into sets R_{1} and R_{2} with

$$
\begin{equation*}
g_{1}\left(R_{1}\right)+g_{2}\left(R_{2}\right)<g_{1}\left(S^{\prime}\right) \tag{47.15}
\end{equation*}
$$

If $g_{1}\left(R_{1}\right)=f_{1}\left(R_{1}\right)$ and $g_{2}\left(R_{2}\right)=f_{2}\left(R_{2}\right)$, then (47.15) implies

$$
\begin{align*}
& 2 f_{1}(S)>f_{1}\left(S_{1}\right)+f_{2}\left(S_{2}\right)+f_{1}\left(R_{1}\right)+f_{2}\left(R_{2}\right) \tag{47.16}\\
& \geq f_{1}\left(S_{1} \cap R_{1}\right)+f_{1}\left(S_{1} \cup R_{1}\right)+f_{2}\left(S_{2} \cap R_{2}\right)+f_{2}\left(S_{2} \cup R_{2}\right) .
\end{align*}
$$

By symmetry, we can assume that $f_{1}(S)>f_{1}\left(S_{1} \cap R_{1}\right)+f_{2}\left(S_{2} \cup R_{2}\right)$. However, $S_{1} \cap R_{1}$ and $S_{2} \cup R_{2}$ partition S, contradicting (47.9).

If $g_{1}\left(R_{1}\right)=f_{1}\left(R_{1}\right)$ and $g_{2}\left(R_{2}\right)=f_{2}\left(R_{2}+s\right)-\alpha$, then (47.15) implies

$$
\begin{equation*}
f_{1}(S)-\alpha>f_{1}\left(R_{1}\right)+f_{2}\left(R_{2}+s\right)-\alpha \tag{47.17}
\end{equation*}
$$

and hence $f_{1}(S)>f_{1}\left(R_{1}\right)+f_{2}\left(R_{2}+s\right)$, contradicting (47.9).
If $g_{1}\left(R_{1}\right)=f_{1}\left(R_{1}+s\right)-\alpha$ and $g_{2}\left(R_{2}\right)=f_{2}\left(R_{2}+s\right)-\alpha$, then (47.15) implies
(47.18) $\quad f_{1}(S)-\alpha>f_{1}\left(R_{1}+s\right)+f_{2}\left(R_{2}+s\right)-2 \alpha$,
implying $f_{1}\left(S_{1}\right)+f_{2}\left(S_{2}\right)>f_{1}\left(R_{1}+s\right)+f_{2}\left(R_{2}+s\right)$, contradicting the minimality of $f_{1}\left(S_{1}\right)+f_{2}\left(S_{2}\right)$. This proves (47.14).

By Theorem 47.1, we can find in strongly polynomial time a common base vector x of g_{1} and g_{2}. So $x\left(S^{\prime}\right)=g_{1}\left(S^{\prime}\right)$. Extend x to S by defining $x(s):=\alpha$. Then
(47.19) $\quad x$ is a common base vector of f_{1} and f_{2}.

By symmetry, it suffices to show that x is a base vector of f_{1}. First, x belongs to $E P_{f_{1}}$, since for each $U \subseteq S^{\prime}$ we have

$$
\begin{align*}
& x(U) \leq g_{1}(U) \leq f_{1}(U) \text { and } \tag{47.20}\\
& x(U+s)=x(U)+\alpha \leq g_{1}(U)+\alpha \leq f_{1}(U+s)
\end{align*}
$$

Next, x is a base vector of f_{1}, since

$$
\begin{equation*}
x(S)=x\left(S^{\prime}\right)+\alpha=g_{1}\left(S^{\prime}\right)+\alpha=f_{1}(S) \tag{47.21}
\end{equation*}
$$

by (47.12). This proves (47.19).
Moreover,

$$
\begin{equation*}
x\left(S_{i}\right)=f_{i}\left(S_{i}\right) \tag{47.22}
\end{equation*}
$$

for $i=1,2$. Indeed (for $i=1$),

$$
\begin{align*}
& x\left(S_{1}\right)=x(S)-x\left(S_{2} \backslash\{s\}\right) \geq f_{1}(S)-g_{2}\left(S_{2} \backslash\{s\}\right) \tag{47.23}\\
& \geq f_{1}(S)-f_{2}\left(S_{2}\right)+\alpha=f_{1}\left(S_{1}\right)
\end{align*}
$$

This proves (47.22), which implies that x is a common base vector of f_{1} and f_{2} maximizing $x(s)$, as for any common base vector z of f_{1} and f_{2} we have

$$
\begin{align*}
& z(s)=z\left(S_{1}\right)+z\left(S_{2}\right)-z(S) \leq f_{1}\left(S_{1}\right)+f_{2}\left(S_{2}\right)-f_{1}(S) \tag{47.24}\\
& =x\left(S_{1}\right)+x\left(S_{2}\right)-x(S)=x(s)
\end{align*}
$$

So x, S_{1}, and S_{2} have the required properties.

47.3. Weighted polymatroid intersection in polynomial time

It may be shown with the ellipsoid method that the following problem is solvable in polynomial time:
(47.25) given: submodular functions f_{1}, f_{2} on a set S (by value giving oracles) and a function $w: S \rightarrow \mathbb{Z}$,
find: a common base vector x of f_{1} and f_{2} maximizing $w^{\top} x$, and $w_{1}, w_{2}: S \rightarrow \mathbb{Z}$ with $w=w_{1}+w_{2}$ such that, for each $i=1,2$, x maximizes $w_{i}^{\top} x$ over all base vectors of f_{i}.

Cunningham and Frank [1985] gave, with the help of Theorem 47.2, a combinatorial polynomial-time algorithm (using submodular function minimization).

In order to describe this, we first give an auxiliary result concerning polymatroids. Let f be a submodular set function on S and let F be a face of $E P_{f}$. Define
(47.26) $\quad F^{\downarrow}:=F-\mathbb{R}_{+}^{S}$.

Then F^{\downarrow} is an extended polymatroid again. Moreover, algorithmic properties for F^{\downarrow} can be deduced from those for $E P_{f}$:

Lemma 47.3 α. Let f be a submodular set function on S, let $w: S \rightarrow \mathbb{Z}_{+}$, and let F be the set of vectors x in $E P_{f}$ maximizing $w^{\top} x$. Then there is a submodular set function f^{\prime} on S with $F^{\downarrow}=E P_{f^{\prime}}$. Moreover, if f is given by a value giving oracle, $f^{\prime}(U)$ can be computed in strongly polynomial time, for any $U \subseteq S$.

Proof. We can assume that $f(\emptyset)=0$. Let $\emptyset \neq T_{1} \subset T_{2} \subset \cdots \subset T_{k-1} \subset T_{k}=$ S be the (unique) sets satisfying

$$
\begin{equation*}
w=\lambda_{1} \chi^{T_{1}}+\cdots+\lambda_{k} \chi^{T_{k}} \tag{47.27}
\end{equation*}
$$

for some $\lambda_{1}, \ldots, \lambda_{k-1}>0$ and $\lambda_{k} \geq 0$. Set $T_{0}:=\emptyset$, and define f^{\prime} by:

$$
\begin{equation*}
f^{\prime}(U):=\sum_{i=1}^{k}\left(f\left(\left(U \cap T_{i}\right) \cup T_{i-1}\right)-f\left(T_{i-1}\right)\right), \tag{47.28}
\end{equation*}
$$

for $U \subseteq S$. Then f^{\prime} is submodular, as it is the sum of k submodular functions. Also,

$$
\begin{equation*}
f^{\prime} \leq f \tag{47.29}
\end{equation*}
$$

since for each U we have, by the submodularity of f :

$$
\begin{align*}
& f^{\prime}(U)=\sum_{i=1}^{k}\left(f\left(\left(U \cap T_{i}\right) \cup T_{i-1}\right)-f\left(T_{i-1}\right)\right) \tag{47.30}\\
& \leq \sum_{i=1}^{k}\left(f\left(U \cap T_{i}\right)-f\left(U \cap T_{i-1}\right)\right)=f(U) .
\end{align*}
$$

We show:

$$
\begin{equation*}
F^{\downarrow}=E P_{f^{\prime}} . \tag{47.31}
\end{equation*}
$$

To see \subseteq, it suffices to show that $F \subseteq E P_{f^{\prime}}$. Let $x \in F$. So $x\left(T_{i}\right)=f\left(T_{i}\right)$ for $i=0, \ldots, k-1$. Hence

$$
\begin{align*}
& x(U)=\sum_{i=1}^{k} x\left(U \cap\left(T_{i} \backslash T_{i-1}\right)\right)=\sum_{i=1}^{k}\left(x\left(\left(U \cap T_{i}\right) \cup T_{i-1}\right)-x\left(T_{i-1}\right)\right) \tag{47.32}\\
& \leq \sum_{i=1}^{k}\left(f\left(\left(U \cap T_{i}\right) \cup T_{i-1}\right)-f\left(T_{i-1}\right)\right)=f^{\prime}(U)
\end{align*}
$$

for each $U \subseteq S$. This proves that $x \in E P_{f^{\prime}}$.
To see \supseteq in (47.31), it suffices to show that any $x \in E P_{f^{\prime}}$ with $x(S)=$ $f^{\prime}(S)$ belongs to F. As $f^{\prime} \leq f$ we know that $x \in E P_{f}$. So it suffices to show that $x\left(T_{j}\right)=f\left(T_{j}\right)$ for $j=1, \ldots, k$ (as this implies that x maximizes $w^{\top} x$ over $E P_{f}$, by the greedy algorithm). Now, as $f^{\prime}(S)=f(S)$:

$$
\begin{align*}
& x\left(T_{j}\right)=x(S)-x\left(S \backslash T_{j}\right) \geq f^{\prime}(S)-f^{\prime}\left(S \backslash T_{j}\right) \tag{47.33}\\
& =f(S)-\sum_{i=1}^{k}\left(f\left(\left(T_{i} \backslash T_{j}\right) \cup T_{i-1}\right)-f\left(T_{i-1}\right)\right) \\
& =f(S)-\sum_{i=j+1}^{k}\left(f\left(T_{i}\right)-f\left(T_{i-1}\right)\right)=f\left(T_{j}\right) .
\end{align*}
$$

This proves (47.31).
We also will use the following lemma:
Lemma 47.3 β. Let f be a submodular set function on S, let $w: S \rightarrow \mathbb{Z}$, and let F be the set of base vectors x of f maximizing $w^{\top} x$. Let $U \subseteq S$ and let x maximize $x(U)$ over F. Then x maximizes $\left(w+\chi^{U}\right)^{\top} x$ over all base vectors of f.
Proof. Let $w^{\prime}:=w+\chi^{U}$. As x maximizes $x(U)$ over F, we know that x maximizes $w^{\prime \top} x$ over F. Also, some $z \in F$ maximizes $w^{\prime \top} z$ over $E P_{f}$, by the greedy method, as there is an ordering of S in which both w and w^{\prime} are monotonically nondecreasing, and so $E P_{f}$ has a vertex z maximizing both $w^{\top} z$ and $w^{\prime \top} z$.

As $w^{\top \top} x \geq w^{\top} z, x$ maximizes $w^{\top} x$ over $E P_{f}$.
Now we can derive:
Theorem 47.3. Problem (47.25) is solvable in polynomial time.
Proof. We give a polynomial-time algorithm to transform a solution of (47.25) for some w to a solution of (47.25) for $w:=w+\chi^{s}$, for any $s \in S$. This
implies a polynomial-time algorithm for (47.25), since we can assume that $w \geq \mathbf{0}$, and since any $w \geq \mathbf{0}$ can be obtained from $w=\mathbf{0}$ by a polynomially bounded number of resettings $w:=2 w$ and $w:=w+\chi^{s}$ for $s \in S$. Note that for $w=\mathbf{0},(47.25)$ is trivial, and that a solution x, w_{1}, w_{2} for w yields a solution $x, 2 w_{1}, 2 w_{2}$ for $2 w$.

Let $s \in S$. Let x, w_{1}, w_{2} be a solution of (47.25) for some w. For $i=1,2$, let F_{i} be the set of all vectors $x \in E P_{f_{i}}$ maximizing $w_{i}^{\top} x$ and let f_{i}^{\prime} be a submodular function satisfying $F_{i}^{\downarrow}=E P_{f_{i}^{\prime}}$ (Lemma 47.3) . Applying Theorem 47.2 to f_{1}^{\prime}, f_{2}^{\prime}, we find a common base vector x^{\prime} of f_{1}^{\prime} and f_{2}^{\prime} maximizing $x^{\prime}(s)$, and subsets S_{1}, S_{2} of S with $S_{1} \cap S_{2}=\{s\}, S_{1} \cup S_{2}=S$, and $x^{\prime}\left(S_{1}\right)=f_{1}^{\prime}\left(S_{1}\right), x^{\prime}\left(S_{2}\right)=f_{2}^{\prime}\left(S_{2}\right)$. Then x^{\prime} maximizes $x^{\prime}\left(S_{1}\right)$ over $E P_{f_{1}^{\prime}}$, and x^{\prime} maximizes $x^{\prime}\left(S_{2}\right)$ over $E P_{f_{2}^{\prime}}$. Hence, by Lemma $47.3 \beta, x^{\prime}$ is a base vector of f_{1}^{\prime} maximizing $\left(w_{1}+\chi^{S_{1}}\right)^{\top} x^{\prime}$, and also, x^{\prime} is a base vector of f_{2}^{\prime} maximizing $\left(w_{2}+\chi^{S_{2}}\right)^{\top} x^{\prime}$. So

$$
\begin{equation*}
x^{\prime}, w_{1}^{\prime}:=w_{1}+\chi^{S_{1}}-\chi^{S}, w_{2}^{\prime}:=w_{2}+\chi^{S_{2}} \tag{47.34}
\end{equation*}
$$

gives a solution of (47.25) for $w+\chi^{s}$.

47.4. Weighted polymatroid intersection in strongly polynomial time

A general simultaneous diophantine approximation method of Frank and Tardos $[1985,1987]$ implies that (47.25) is strongly polynomial-time solvable. Fujishige, Röck, and Zimmermann [1989] showed that from Theorem 47.3 a combinatorial strongly polynomial-time algorithm can be derived, by extending the method of Tardos [1985a] for the minimum-cost circulation problem.

To prove this, we first show a sensitivity result. Let f_{1}, f_{2} be submodular set functions on S. Call a pair $w_{1}, w_{2}: S \rightarrow \mathbb{R}$ good if there exists an x that maximizes $w_{i}^{\top} x$ over $E P_{f_{i}}$, for both $i=1$ and $i=2$.

Lemma 47.4 α. Let $w: S \rightarrow \mathbb{Q}$ and let w_{1}, w_{2} be a good pair with $w=$ $w_{1}+w_{2}$. Then for any $\tilde{w}: S \rightarrow \mathbb{Q}$ with $\tilde{w} \geq w$ there exists a good pair $\tilde{w}_{1}, \tilde{w}_{2}$ with $\tilde{w}=\tilde{w}_{1}+\tilde{w}_{2}$ and $\left\|\tilde{w}_{i}-w_{i}\right\|_{\infty} \leq\|\tilde{w}-w\|_{1}$ for $i=1,2$.

Proof. We can assume that w and \tilde{w} are integer, and that $\|\tilde{w}-w\|_{1}=1$ (as the general case then follows inductively).

Let F_{i} be the set of all x maximizing $w_{i}^{\top} x$ over $E P_{f_{i}}$. Let f_{i}^{\prime} be a submodular function satisfying $F_{i}^{\downarrow}=E P_{f_{i}^{\prime}}$. Let s be such that $\tilde{w}(s)=w(s)+1$. By the solvability of problem (47.8), there is a common base vector x of f_{1}^{\prime} and f_{2}^{\prime} maximizing x_{s}, and there exist S_{1}, S_{2} with $S_{1} \cap S_{2}=\{s\}$ and $S_{1} \cup S_{2}=S$ such that $x\left(S_{1}\right)=f_{1}^{\prime}\left(S_{1}\right)$ and $x\left(S_{2}\right)=f_{2}^{\prime}\left(S_{2}\right)$. Define

$$
\begin{equation*}
\tilde{w}_{1}:=w_{1}+\chi^{S_{1}}-\chi^{S}, \tilde{w}_{2}:=w_{2}+\chi^{S_{2}} . \tag{47.35}
\end{equation*}
$$

So $\tilde{w}=\tilde{w}_{1}+\tilde{w}_{2}$. By Lemma $47.3 \beta, x$ maximizes $\tilde{w}_{i}^{\top} x$ over $E P_{f_{i}}$ for $i=1,2$. Therefore, the pair $\tilde{w}_{1}, \tilde{w}_{2}$ is good. As $\left\|\tilde{w}_{i}-w_{i}\right\|_{\infty} \leq 1$ for $i=1,2$, this proves the lemma.

Theorem 47.4. Given submodular functions f_{1}, f_{2} on a set S and $w \in \mathbb{Q}^{S}$, one can find a common base vector x of f_{1} and f_{2} maximizing $w^{\top} x$, in strongly polynomial time.

Proof. Let be given submodular functions f_{1}, f_{2} on a set S and a function $w: S \rightarrow \mathbb{Q}$. We may assume that f_{1} and f_{2} have a common base vector. (This can be checked by Theorem 47.1.)

We keep chains $\mathcal{C}_{1}, \mathcal{C}_{2}$ of subsets of S such that for $i=1,2$ and each $U \in \mathcal{C}_{i}:$

$$
\begin{align*}
& x(U)=f_{i}(U) \text { for each common base vector } x \text { of } f_{1} \text { and } f_{2} \text { maxi- } \tag{47.36}\\
& \text { mizing } w^{\top} x,
\end{align*}
$$

and such that $S \in \mathcal{C}_{1}$ and $S \in \mathcal{C}_{2}$. Initially we set $\mathcal{C}_{i}:=\{S\}$ for $i=1,2$. We describe an iteration that either extends \mathcal{C}_{1} or \mathcal{C}_{2}, or gives a solution x.

We can assume that, for $i=1,2$,
(47.37) each base vector x of f_{i} satisfies $x(U)=f_{i}(U)$ for each $U \in \mathcal{C}_{i}$.

Indeed, let F_{i} be the set of vectors x in $E P_{f_{i}}$ with $x(U)=f_{i}(U)$ for each $U \in \mathcal{C}_{i}$. So F_{i} is equal to the set of $x \in E P_{f_{i}}$ maximizing $c_{i}^{\top} x$, where $c_{i}:=$ $\sum_{U \in \mathcal{C}_{i}} \chi^{U}$. By Lemma 47.3α, we can find f_{i}^{\prime} with $F_{i}^{\downarrow}=E P_{f_{i}^{\prime}}$. By (47.36), replacing the f_{i} by f_{i}^{\prime} does not change the set of optimum solutions x of our problem.

Let

$$
\begin{equation*}
L:=\text { linear hull of }\left\{\chi^{U} \mid U \in \mathcal{C}_{1} \cup \mathcal{C}_{2}\right\} \tag{47.38}
\end{equation*}
$$

Determine $y \in L$ minimizing

$$
\begin{equation*}
\|w-y\|_{\infty} \tag{47.39}
\end{equation*}
$$

This can be done in strongly polynomial time as follows. For $i=1,2$, let \mathcal{P}_{i} be the partition of S into nonempty classes such that u and v belong to the same class if and only if there is no set in \mathcal{C}_{i} containing exactly one of u, v. Let D be the directed graph with vertex set $\mathcal{P}_{1} \cup \mathcal{P}_{2}$ such that for each $v \in S$ there is an arc of length $w(v)$ from $U \in \mathcal{P}_{1}$ to $W \in \mathcal{P}_{2}$ with $v \in U \cap W$, and an arc of length $-w(v)$ in the reverse direction. Determine the minimum mean-length α of a directed circuit in D (cf. Section 8.5). It is the minimum α for which there exist $p_{i}: \mathcal{P}_{i} \rightarrow \mathbb{Q}$ such that

$$
\begin{equation*}
-\alpha \leq w(v)+p_{1}(U)-p_{2}(W) \leq \alpha \tag{47.40}
\end{equation*}
$$

for each arc as described. Then

$$
\begin{equation*}
y:=-\sum_{U \in \mathcal{P}_{1}} p_{1}(U) \chi^{U}+\sum_{W \in \mathcal{P}_{2}} p_{2}(W) \chi^{W} \tag{47.41}
\end{equation*}
$$

minimizes (47.39).
Let α be the value of (47.39). If $\alpha=0$, then $w \in L$, and so

$$
\begin{equation*}
w=\sum_{i=1}^{2} \sum_{U \in \mathcal{C}_{i}} \lambda_{i}(U) \chi^{U} \tag{47.42}
\end{equation*}
$$

for functions $\lambda_{i}: \mathcal{C}_{i} \rightarrow \mathbb{Q}$. Then for any common base vector x of f_{1} and f_{2} we have

$$
\begin{equation*}
w^{\boldsymbol{\top}} x=\sum_{i=1}^{2} \sum_{U \in \mathcal{C}_{i}} \lambda_{i}(U) x(U)=\sum_{i=1}^{2} \sum_{U \in \mathcal{C}_{i}} \lambda_{i}(U) f_{i}(U) . \tag{47.43}
\end{equation*}
$$

So each common base vector is optimum. As we can find any common base vector in strongly polynomial time (by Theorem 47.1), we have solved the problem.

So we can assume that $\alpha>0$. Define $w^{\prime}: S \rightarrow \mathbb{Z}$ by

$$
\begin{equation*}
w^{\prime}:=\left\lfloor\frac{5 n^{2}}{\alpha}(w-y)\right\rfloor \tag{47.44}
\end{equation*}
$$

where $n:=|S|$. By definition of $\alpha,\left\|w^{\prime}\right\|_{\infty}=5 n^{2}$. Hence by Theorem 47.3, we can find in strongly polynomial time a common base vector x^{\prime} of f_{1} and f_{2} and $w_{1}^{\prime}, w_{2}^{\prime}: S \rightarrow \mathbb{Z}$ with $w^{\prime}=w_{1}^{\prime}+w_{2}^{\prime}$ such that x^{\prime} is a base vector of f_{i} maximizing ${w^{\prime}}_{i}^{\mathrm{T}} x^{\prime}$, for $i=1,2$.

For $i=1,2$, we can determine a chain \mathcal{D}_{i} of subsets of S (with $S \in \mathcal{D}_{i}$) and a function $\lambda_{i}: \mathcal{D}_{i} \rightarrow \mathbb{Z}$ such that

$$
\begin{equation*}
w_{i}^{\prime}=\sum_{W \in \mathcal{D}_{i}} \lambda_{i}(W) \chi^{W} \tag{47.45}
\end{equation*}
$$

and such that $\lambda_{i}(W)>0$ if $W \neq S$. We show that
(47.46) there exist $i \in\{1,2\}$ and $W \in \mathcal{D}_{i}$ with $\lambda_{i}(W)>2 n$ and $\chi^{W} \notin L$.

Suppose not. Let $\mathcal{D}_{i}^{\prime}:=\left\{W \in \mathcal{D}_{i} \mid \chi^{W} \notin L\right\}$, and $\mathcal{D}_{i}^{\prime \prime}:=\mathcal{D}_{i} \backslash \mathcal{D}_{i}^{\prime}$, for $i=1,2$. So if $W \in \mathcal{D}_{i}^{\prime}$, then $\lambda_{i}(W) \leq 2 n$. This gives the contradiction:

$$
\begin{align*}
& 4 n^{2} \geq\left\|\sum_{i=1}^{2} \sum_{W \in \mathcal{D}_{i}^{\prime}} \lambda_{i}(W) \chi^{W}\right\|_{\infty}=\left\|w^{\prime}-\sum_{i=1}^{2} \sum_{W \in \mathcal{D}_{i}^{\prime \prime}} \lambda_{i}(W) \chi^{W}\right\|_{\infty} \tag{47.47}\\
& >\left\|\frac{5 n^{2}}{\alpha}(w-y)-\sum_{i=1}^{2} \sum_{W \in \mathcal{D}_{i}^{\prime \prime}} \lambda_{i}(W) \chi^{W}\right\|_{\infty}-1 \geq 5 n^{2}-1
\end{align*}
$$

The last inequality holds as y minimizes $\|w-y\|_{\infty}$ over $y \in L$.
This shows (47.46). We can assume that $W \in \mathcal{D}_{1}^{\prime}$ is such that $\lambda_{1}(W)>2 n$. Then:
each optimum common base vector x of f_{1} and f_{2} satisfies $x(W)=f_{1}(W)$.

To see this, let

$$
\begin{equation*}
\tilde{w}:=\frac{5 n^{2}}{\alpha}(w-y) \tag{47.49}
\end{equation*}
$$

Replacing w by \tilde{w} does not change the set of optimum common base vectors, since y belongs to L (implying (by our assumption (47.37)) that $y^{\top} x$ is the same for all common base vectors x of f_{1} and f_{2}).

By Lemma 47.4α, there exists a good pair $\tilde{w}_{1}, \tilde{w}_{2}$ with $\tilde{w}=\tilde{w}_{1}+\tilde{w}_{2}$ and

$$
\begin{equation*}
\left\|\tilde{w}_{i}-w_{i}^{\prime}\right\|_{\infty} \leq\left\|\tilde{w}-w^{\prime}\right\|_{1}<n \tag{47.50}
\end{equation*}
$$

for $i=1,2$. Now for any $v \in W$ and $u \in S \backslash W$ we have $w_{1}^{\prime}(v)>w_{1}^{\prime}(u)+2 n$, as $\lambda_{1}(W)>2 n$, and as $\lambda_{1}\left(W^{\prime}\right) \geq 0$ for each $W^{\prime} \in \mathcal{D}_{1} \backslash\{S\}$. Hence, by (47.50), $\tilde{w}_{1}(v)>\tilde{w}_{1}(u)$. So (by the greedy method) any base vector x of f_{1} maximizing $\tilde{w}_{1}^{\top} x$ satisfies $x(W)=f_{1}(W)$. This shows (47.48).

Let $\mathcal{C}_{1}=\left\{U_{1} \subset U_{2} \subset \cdots \subset U_{t}=S\right\}$. For $j=1, \ldots, t$, let $W_{j}:=$ $\left(W \cap U_{j}\right) \cup U_{j-1}$, where $U_{0}:=\emptyset$. Then $x\left(W_{j}\right)=f\left(W_{j}\right)$ for each optimum common base vector x (since W_{j} arises by taking unions and intersections from W, U_{j}, and $\left.U_{j-1}\right)$.

Moreover, $W_{j} \notin \mathcal{C}_{1}$ for at least one $j=1, \ldots, t$, since

$$
\begin{equation*}
\chi^{W}=\sum_{j=1}^{t}\left(\chi^{W_{j}}-\chi^{U_{j-1}}\right) \tag{47.51}
\end{equation*}
$$

while χ^{W} does not belong to L, implying that not all $\chi^{W_{j}}$ belong to L, and so some W_{j} does not belong to \mathcal{C}_{1}. So W_{j} can be added to \mathcal{C}_{1}, and we can iterate.

From an optimum common base vector x, an optimum 'dual solution' w_{1}, w_{2} can be derived, with a method of Cunningham and Frank [1985]. This gives:

Corollary 47.4a. Problem (47.25) is solvable in strongly polynomial time.
Proof. By Theorem 47.4, we can find a common base vector x of f_{1} and f_{2} maximizing $w^{\top} x$, in strongly polynomial time. Define a directed graph $D=(S, A)$ as follows.

For $i=1,2$, let A_{i} consist of all pairs (u, v) with $u, v \in S$ such that for each $U \subseteq V$:

$$
\begin{equation*}
\text { if } x(U)=f_{i}(U) \text { and } u \in U \text { then } v \in U \text {. } \tag{47.52}
\end{equation*}
$$

We can find A_{i} in strongly polynomial time, by finding the minimum of $f_{i}(U)-x(U)$ over subsets U of S with $u \in U$ and $v \notin U$ (with any strongly polynomial-time submodular function minimization algorithm).

Let D have arc set $A:=A_{1} \cup A_{2}^{-1}$ (taking two parallel arcs from u to v in case $(u, v) \in A_{1}$ and $\left.(v, u) \in A_{2}\right)$. Define a length function l on A by, for $(u, v) \in A$:

$$
l(u, v):=\left\{\begin{array}{cl}
w(v)-w(u) & \text { for }(u, v) \in A_{1} \tag{47.53}\\
0 & \text { for }(v, u) \in A_{2}
\end{array}\right.
$$

We claim:
(47.54) D has no negative-length directed circuits.

For suppose that C is a negative-length directed circuit. We take such a C with $|A C|$ smallest. Then two consecutive arcs in C neither both belong to A_{1} nor both belong to A_{2}^{-1}. For suppose that $a=(t, u)$ and $a^{\prime}=(u, v)$ are in C and that they both belong to A_{1}. Then $(t, v) \in A_{1}$ and $l(a)+l\left(a^{\prime}\right)=l(t, v)$, contradicting the minimality of $|A C|$. This similarly gives a contradiction if $a, a^{\prime} \in A_{2}^{-1}$.

So we can assume that C traverses the vertices $u_{0}, u_{1}, \ldots, u_{k}$ in this order, with $u_{0}=u_{k}$, such that $\left(u_{i-1}, u_{i}\right)$ belongs to A_{1} if i is odd, and to A_{2}^{-1} if i is even. Let $X:=\left\{u_{1}, u_{3}, \ldots, u_{k-1}\right\}$ and $Y:=\left\{u_{2}, u_{4}, \ldots, u_{k}\right\}$. As C has negative length, we know $l(A C)<0$, and hence $w(X)<w(Y)$.

By (47.52), for each $i=1,2$ and for each $U \subseteq V$ with $x(U)=f_{i}(U)$ we have $|U \cap Y| \geq|U \cap X|$. Hence there exists an $\varepsilon>0$ such that the vector
(47.55) $\quad x^{\prime}:=x+\varepsilon\left(\chi^{X}-\chi^{Y}\right)$
belongs to $E P_{f_{1}}$ and to $E P_{f_{2}}$. So, since $x^{\prime}(S)=x(S), x^{\prime}$ is again a common base vector of f_{1} and f_{2}. However, $w^{\top} x^{\prime}=w^{\top} x+w(X)-w(Y)>w^{\top} x$, contradicting the fact that x maximizes $w^{\top} x$. This proves (47.54).

By Theorem 8.7, we can find a potential $p: S \rightarrow \mathbb{Z}$ for D with respect to l, in strongly polynomial time. Then p satisfies

$$
\begin{array}{ll}
p(v)-p(u) \leq w(v)-w(u) & \text { for each }(u, v) \in A_{1} \tag{47.56}\\
p(v)-p(u) \geq 0 & \text { for each }(u, v) \in A_{2}
\end{array}
$$

Define $w_{1}:=w-p$ and $w_{2}:=p$. We show that w_{1} and w_{2} are as required in (47.25).
(47.56) implies that, for each $i=1,2$,

$$
\begin{equation*}
\text { if }(u, v) \in A_{i} \text { then } w_{i}(v) \geq w_{i}(u) . \tag{47.57}
\end{equation*}
$$

We show that (47.57) implies that, for each $i=1,2, x$ is a base vector of f_{i} maximizing $w_{i}^{\top} x$, as required. We may assume $i=1$.

Let μ and ν be the minimum and maximum value (respectively) of the entries in w_{1}. For $j \in \mathbb{Z}$, let $U_{j}:=\left\{v \in S \mid w_{1}(v) \geq \mu+j\right\}$. Then, taking $k:=\nu-\mu$,

$$
\begin{equation*}
w_{1}=\mu \cdot \chi^{S}+\sum_{j=1}^{k} \chi^{U_{j}} \tag{47.58}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
x\left(U_{j}\right)=f_{1}\left(U_{j}\right) \text { for each } j=1, \ldots, k \tag{47.59}
\end{equation*}
$$

Indeed, for all $s \in U_{j}$ and $t \in S \backslash U_{j}$ we have $(s, t) \notin A_{1}$ (by (47.57), since $\left.w_{1}(t)<\mu+j \leq w_{1}(s)\right)$. Hence, by definition of A_{1}, there is a set $T_{s, t}$ with $s \in T_{s, t}, t \notin T_{s, t}$, and $x\left(T_{s, t}\right)=f_{1}\left(T_{s, t}\right)$. As the collection of sets U with $x(U)=f_{1}(U)$ is closed under taking unions and intersections, (47.59) follows.

Then for any base vector x^{\prime} of f_{1} we have

$$
\begin{equation*}
w_{1}^{\top} x^{\prime}=\mu x^{\prime}(S)+\sum_{j=1}^{k} x^{\prime}\left(U_{j}\right) \leq \mu f_{1}(S)+\sum_{j=1}^{k} f_{1}\left(U_{j}\right) \tag{47.60}
\end{equation*}
$$

By (47.59), we here have equality throughout for $x^{\prime}:=x$, which proves that x maximizes $w_{1}^{\top} x$ over all base vectors of f_{1}.

Theorem 47.4 implies for (nonextended) polymatroids (extending a result of Schönsleben [1980] for integer f_{1} and f_{2} for which there is a fixed K with $\left.P_{f_{1}} \cap P_{f_{2}} \subseteq[0, K]^{S}\right):$

Corollary 47.4b. Given submodular set functions f_{1}, f_{2} on S (by value giving oracles) and a weight function $w \in \mathbb{Q}^{S}$, we can find a maximum-weight vector $x \in P_{f_{1}} \cap P_{f_{2}}$ in strongly polynomial time.

Proof. We can assume that $f_{1}(\emptyset)=f_{2}(\emptyset)=0$ and that f_{1} and f_{2} are nondecreasing (as we can replace $f_{i}(U)$ by $\min _{T \supseteq U} f_{i}(T)$). Extend S with a new element t to a set $S^{\prime}:=S+t$. Define set functions f_{1}^{\prime} and f_{2}^{\prime} on S^{\prime} by:

$$
\begin{equation*}
f_{i}^{\prime}(U):=f_{i}(U) \text { and } f_{i}^{\prime}(U+t):=0 \tag{47.61}
\end{equation*}
$$

for $U \subseteq S$ and $i=1,2$. Then f_{1}^{\prime} and f_{2}^{\prime} are submodular (using the nondecreasingness of f_{1} and f_{2}). Moreover, consider any $x^{\prime} \in \mathbb{R}^{S^{\prime}}$ with $x^{\prime}\left(S^{\prime}\right)=0$. Let x be the restriction of x^{\prime} to S. Then:

$$
\begin{equation*}
x^{\prime} \in E P_{f_{i}^{\prime}} \text { if and only if } x \in P_{f_{i}} . \tag{47.62}
\end{equation*}
$$

Indeed, if $x^{\prime} \in E P_{f_{i}^{\prime}}$, then $x^{\prime}(s) \geq 0$ for each $s \in S$, since $x^{\prime}\left(S^{\prime}-s\right) \leq$ $f^{\prime}\left(S^{\prime}-s\right)=0$ and $x^{\prime}\left(S^{\prime}\right)=0$, implying that $x(s)=x^{\prime}(s) \geq 0$. Moreover, for each $U \subseteq S$ one has $x(U)=x^{\prime}(U) \leq f_{i}^{\prime}(U)=f_{i}(U)$. So $x \in P_{f_{i}}$.

Conversely, if $x \in P_{f}$, then for each $U \subseteq S$ one has $x^{\prime}(U)=x(U) \leq$ $f_{i}(U)=f_{i}^{\prime}(U)$ and $x^{\prime}(U+t)=x(U)-x(S)=-x(S \backslash U) \leq 0=f_{i}^{\prime}(U+t)$. So $x^{\prime} \in E P_{f_{i}^{\prime}}$. This proves (47.62).

Define $w^{\prime} \in \mathbb{Q}^{S^{\prime}}$ by $w^{\prime}(v):=w(v)$ if $v \in S$, and $w^{\prime}(t):=0$. By Theorem 47.4, we can find a common base vector x^{\prime} of f_{1}^{\prime} and f_{2}^{\prime} maximizing $w^{\prime \top} x^{\prime}$ in strongly polynomial time. Let x be the restriction of x^{\prime} to S. By (47.62), x maximizes $w^{\top} x$ over $P_{f_{1}} \cap P_{f_{2}}$.

Similarly for maximum-weight common base vectors in (nonextended) polymatroids:

Corollary 47.4c. Given submodular set functions f_{1}, f_{2} on S (by value giving oracles) and a weight function $w \in \mathbb{Q}^{S}$, we can find a maximum-weight common base vector x of $P_{f_{1}}$ and $P_{f_{2}}$ in strongly polynomial time.

Proof. Again, we can assume that $f_{1}(\emptyset)=f_{2}(\emptyset)=0$ and that f_{1} and f_{2} are nondecreasing. Then the present corollary follows directly from Theorem 47.4, since

$$
\begin{equation*}
P_{f_{1}} \cap P_{f_{2}} \cap\left\{x \mid x(S)=f_{1}(S)\right\}=E P_{f_{1}} \cap E P_{f_{2}} \cap\left\{x \mid x(S)=f_{1}(S)\right\} \tag{47.63}
\end{equation*}
$$

Indeed, if $x \in E P_{f_{i}}$ and $x(S)=f_{i}(S)$, then $x \geq \mathbf{0}$, since for any $s \in S$ one has $x_{s}=x(S)-x(S-s) \geq f_{i}(S)-f_{i}(S-s) \geq 0$.

Back to extended polymatroids, Corollary 47.4b yields that we can optimize over the intersection of two extended polymatroids in strongly polynomial time:

Corollary 47.4d. Given submodular set functions f_{1}, f_{2} on S (by value giving oracles) and a weight function $w \in \mathbb{Q}_{+}^{S}$, we can find a maximum-weight vector $x \in E P_{f_{1}} \cap E P_{f_{2}}$ in strongly polynomial time.

Proof. We may assume that $f_{1}(\emptyset)=f_{2}(\emptyset)=0$. Let

$$
\begin{equation*}
L:=\max _{i=1,2}\left(\left|f_{i}(S)\right|+\sum_{s \in S}\left|f_{i}(\{s\})\right|\right) . \tag{47.64}
\end{equation*}
$$

Then $\left|f_{i}(U)\right| \leq L$ for each $i=1,2$ and $U \subseteq S$, since

$$
\begin{equation*}
f_{i}(U) \leq \sum_{s \in U} f_{i}(\{s\}) \leq L \tag{47.65}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(U) \geq f_{i}(S)-f_{i}(S \backslash U) \geq f_{i}(S)-\sum_{s \in S \backslash U} f_{i}(\{s\}) \geq-L . \tag{47.66}
\end{equation*}
$$

Let $K:=|S| \cdot L+1$. Then for any vertex x of $E P_{f_{1}} \cap E P_{f_{2}}$ and any $s \in S$:

$$
\begin{equation*}
x(s)>-K, \tag{47.67}
\end{equation*}
$$

since $x=A^{-1} b$ for some totally unimodular matrix A and some vector b whose entries are values of f_{1} and f_{2} (as in the proof of Theorem 46.1; observe that the entries of A^{-1} belong to $\left.\{0, \pm 1\}\right)$.

Define $f_{i}^{\prime}(U):=f_{i}(U)+K \cdot|U|$. Then

$$
\begin{equation*}
E P_{f_{i}^{\prime}}=K \cdot \mathbf{1}+E P_{f_{i}} \tag{47.68}
\end{equation*}
$$

for $i=1,2$. Hence, by (47.67), all vertices of $E P_{f_{1}^{\prime}} \cap E P_{f_{2}^{\prime}}$ are nonnegative. So any vector x maximizing $w^{\top} x$ over $P_{f_{1}^{\prime}} \cap P_{f_{2}^{\prime}}$ also maximizes $w^{\top} x$ over $E P_{f_{1}^{\prime}} \cap E P_{f_{2}^{\prime}}$. By Corollary 47.4b, x can be found in strongly polynomial time.

47.5. Contrapolymatroids

Similar results hold for intersections of contrapolymatroids, by reduction to polymatroids. Given supermodular set functions g_{1} and g_{2} on S (by value giving oracles) and a weight function $w \in \mathbb{Q}^{S}$, we can find in strongly polynomial time:
(47.69) (i) a minimum-weight vector in $E Q_{g_{1}} \cap E Q_{g_{2}}$,
(ii) a minimum-weight common base vector of $E Q_{g_{1}}$ and $E Q_{g_{2}}$,
(iii) a minimum-weight vector in $Q_{g_{1}} \cap Q_{g_{2}}$, and
(iv) a minimum-weight common base vector of $Q_{g_{1}}$ and $Q_{g_{2}}$.

Here (i) and (ii) follow from Corollary 47.4d and Theorem 47.4 applied to the submodular functions $-g_{1}$ and $-g_{2}$. Moreover, (iii) and (iv) follow by application of (i) and (ii) to the supermodular functions \bar{g}_{i} given by $\bar{g}_{i}(U)=$ $\max _{T \subseteq U} g_{i}(T)$ for $U \subseteq S$ and $i=1,2$ (assuming without loss of generality $\left.g_{1}(\emptyset)=g_{2}(\emptyset)=0\right)$.

47.6. Intersecting a polymatroid and a contrapolymatroid

Let f be a submodular, and g a supermodular, set function on S. The results on polymatroid intersection also imply that a maximum-weight vector in the intersection of the extended polymatroid $E P_{f}$ and the extended contrapolymatroid $E Q_{g}$ can be found in strongly polynomial time,
assuming that we have value giving oracles for f and g.
To see this, we can assume that $f(\emptyset)=g(\emptyset)=0$ and $g(S) \leq f(S)$. Let t be a new element. Define submodular set functions f_{1} and f_{2} on $S+t$ by:

$$
\begin{align*}
& f_{1}(U):=f(U), f_{1}(U+t):=f(U)-g(S), f_{2}(U):=f(S)-g(S \backslash U), \tag{47.71}\\
& f_{2}(U+t):=-g(S \backslash U),
\end{align*}
$$

for $U \subseteq S$. Reset $f_{1}(S+t):=0$. Then for each $x \in \mathbb{R}^{S}$ and $\lambda \in \mathbb{R}$:
(47.72) $\quad(x, \lambda)$ is a common base vector of $E P_{f_{1}}$ and $E P_{f_{2}}$ $\Longleftrightarrow \lambda=-x(S)$ and $x \in E P_{f} \cap E Q_{g}$.

To see necessity, let (x, λ) be a common base vector of $E P_{f_{1}}$ and $E P_{f_{2}}$. As $f_{1}(S+t)=0$, we have $\lambda=-x(S)$. Moreover, for any $U \subseteq S$, we have

$$
\begin{align*}
& x(U) \leq f_{1}(U)=f(U) \text { and } \tag{47.73}\\
& x(U)=x(S)-x(S \backslash U)=-\lambda-x(S \backslash U) \geq-f_{2}((S \backslash U)+t)=g(U) .
\end{align*}
$$

So $x \in E P_{f} \cap E Q_{g}$.
To see sufficiency, assume $\lambda=-x(S)$ and $x \in E P_{f} \cap E Q_{g}$. Then for each $U \subseteq S$ we have:

$$
\begin{align*}
& x(U) \leq f(U)=f_{1}(U) \tag{47.74}\\
& x(U+t)=x(U)+\lambda=x(U)-x(S) \leq f(U)-g(S)=f_{1}(U+t), \\
& x(U)=x(S)-x(S \backslash U) \leq f(S)-g(S \backslash U)=f_{2}(U), \\
& x(U+t)=x(U)+\lambda=x(U)-x(S)=-x(S \backslash U) \leq-g(S \backslash U) \\
& =f_{2}(U+t)
\end{align*}
$$

So (x, λ) is a common base vector of $E P_{f_{1}}$ and $E P_{f_{2}}$.
This shows (47.72), which implies that finding a minimum-weight vector in $E P_{f} \cap E Q_{g}$ amounts to finding a minimum-weight common base vector of $E P_{f_{1}}$ and $E P_{f_{2}}$.

Similarly, we can find a modular function h satisfying $g \leq h \leq f$ in strongly polynomial time, if $g \leq f$ (Frank's discrete sandwich theorem (Corollary 46.2 b$)$). To see this, let f_{1} and f_{2} be as above, and find an (x, λ) in $E P_{f_{1}} \cap E P_{f_{2}}$ maximizing $x(S)+\lambda$. If $x(S)+\lambda \geq 0$, then $x \in E P_{f} \cap E Q_{g}$, that is x gives a modular function h with $g \leq h \leq f$.

47.6a. Further notes

Polymatroid intersection is a special case of submodular flow, as discussed in Chapter 60. We therefore refer for further algorithmic work to the notes in Section 60.3e.

A preflow-push algorithm for finding a maximum common vector in the intersection of two polymatroids was presented by Fujishige and Zhang [1992].

Tardos, Tovey, and Trick [1986] gave an improved version of Cunningham and Frank's polynomial-time algorithm for weighted polymatroid intersection. Fujishige [1978a] gave a (non-polynomial-time) algorithm for weighted polymatroid intersection. Optimizing over the intersection of a base polytope and an affine space was considered by Hartvigsen [1996,1998a,2001a].

Frank [1984c] and Fujishige and Iwata [2000] gave surveys.

Chapter 48

Dilworth truncation

Abstract

If a submodular function f has $f(\emptyset)<0$, the associated extended polymatroid is empty, as the conditions $x(U) \leq f(U)$ for all U include $x(\emptyset)<f(\emptyset)$. However, by ignoring the condition for $U=\emptyset$, the obtained polyhedron is yet an extended polymatroid, for a different submodular function, denoted by \hat{f}. This function \hat{f} is called the Dilworth truncation of f.

48.1. If $f(\emptyset)<0$

Let f be a submodular set function on S. If $f(\emptyset)<0$, the associated extended polymatroid $E P_{f}$ is empty. However, by ignoring the empty set, we yet obtain an extended polymatroid. (The interest in this goes back to Dilworth [1944].)

Consider the system

$$
\begin{equation*}
x(U) \leq f(U) \text { for } U \in \mathcal{P}(S) \backslash\{\emptyset\} \tag{48.1}
\end{equation*}
$$

and the problem dual to maximizing $w^{\top} x$ over (48.1), for $w \in \mathbb{R}_{+}^{S}$:

$$
\begin{align*}
& \min \left\{\sum_{\substack{U \in \mathcal{P}(S) \backslash\left\{\{\emptyset\} \\
y \in \mathbb{R}_{+}^{P(S) \backslash\{\emptyset\}}\right.}} y(U) f(U) \mid\right. \tag{48.2}\\
& \left.\sum_{U \in \mathcal{P}(S) \backslash\{\emptyset\}} y(U) \chi^{U}=w\right\} .
\end{align*}
$$

Recall that a collection \mathcal{F} of sets is called laminar if

$$
\begin{equation*}
T \cap U=\emptyset \text { or } T \subseteq U \text { or } U \subseteq T \text { for all } T, U \in \mathcal{F} \tag{48.3}
\end{equation*}
$$

Then a basic result of Edmonds [1970b] is:
Theorem 48.1. If f is a submodular set function on S, then (48.2) has an optimum solution y with $\mathcal{F}:=\{U \in \mathcal{P}(S) \backslash\{\emptyset\} \mid y(U)>0\}$ laminar.

Proof. Let $y: \mathcal{P}(S) \backslash\{\emptyset\} \rightarrow \mathbb{R}_{+}$achieve this minimum, with

$$
\begin{equation*}
\sum_{U \in \mathcal{P}(S) \backslash\{\emptyset\}} y(U)|U||S \backslash U| \tag{48.4}
\end{equation*}
$$

as small as possible. Assume that \mathcal{F} is not laminar, and choose $T, U \in \mathcal{F}$ violating (48.3). Let $\alpha:=\min \{y(T), y(U)\}$. Decrease $y(T)$ and $y(U)$ by α, and increase $y(T \cap U)$ and $y(T \cup U)$ by α. Since

$$
\begin{equation*}
\chi^{T \cap U}+\chi^{T \cup U}=\chi^{T}+\chi^{U} \tag{48.5}
\end{equation*}
$$

y remains a feasible solution of (48.2). As moreover

$$
\begin{equation*}
f(T \cap U)+f(T \cup U) \leq f(T)+f(U) \tag{48.6}
\end{equation*}
$$

f remains optimum. However, by Theorem 2.1, sum (48.4) decreases, contradicting our assumption.

This implies that system (48.1) is TDI. More generally, it implies the box-total dual integrality of (48.1):

Corollary 48.1a. For any submodular set function f on S, system (48.1) is box-totally dual integral.

Proof. Consider some $w: S \rightarrow \mathbb{Z}_{+}$, and problem (48.2) dual to maximizing $w^{\top} x$ over (48.1). By Theorem 48.1, this minimum is attained by a y with $\mathcal{F}:=$ $\{U \in \mathcal{P}(S) \backslash\{\emptyset\} \mid y(U)>0\}$ laminar. Hence the constraints corresponding to positive entries in y form a totally unimodular matrix (by Theorem 41.11). Therefore, by Theorem 5.35, (48.1) is box-TDI.

Let $E P_{f}^{\prime}$ denote the solution set of (48.1). So $E P_{f}^{\prime}$ is nonempty for each submodular function f. As for integrality we have:

Corollary 48.1b. If f is submodular and integer, then $E P_{f}^{\prime}$ is integer.
Proof. Directly from Corollary 48.1a.
In fact, as we shall see in Section $48.2, E P_{f}^{\prime}$ is again an extended polymatroid.

48.2. Dilworth truncation

For each submodular function f, there exists a unique largest submodular function \hat{f} with the property that $\hat{f}(U) \leq f(U)$ for each nonempty $U \subseteq S$, and $\hat{f}(\emptyset)=0$. This follows from a method of Dilworth [1944].

Let f be a submodular set function on S. The Dilworth truncation \hat{f} : $\mathcal{P}(S) \rightarrow \mathbb{R}$ of f is given by:
(48.7) $\quad \hat{f}(U):=\min \left\{\sum_{P \in \mathcal{P}} f(P) \mid \mathcal{P}\right.$ is a partition of U into nonempty sets $\}$
for $U \subseteq S$. So $\hat{f}(\emptyset)=0$ (as for $U=\emptyset$, only $\mathcal{P}=\emptyset$ qualifies in (48.7)). Dunstan [1976] showed:

Theorem 48.2. \hat{f} is submodular.
Proof. Choose $T, U \subseteq S$, and let \mathcal{P} and \mathcal{Q} be partitions of T and U (respectively) into nonempty sets with

$$
\begin{equation*}
\hat{f}(T)=\sum_{P \in \mathcal{P}} f(P) \text { and } \hat{f}(U)=\sum_{Q \in \mathcal{Q}} f(Q) . \tag{48.8}
\end{equation*}
$$

Consider the family \mathcal{F} made by \mathcal{P} and \mathcal{Q} (taking a set twice if it occurs in both partitions). We can transform \mathcal{F} iteratively into a laminar family, by replacing any $X, Y \in \mathcal{F}$ with $X \cap Y \neq \emptyset$ and $X \nsubseteq Y \nsubseteq X$ by $X \cap Y, X \cup Y$. In each iteration, the sum

$$
\begin{equation*}
\sum_{Z \in \mathcal{F}} f(Z) \tag{48.9}
\end{equation*}
$$

does not increase (as f is submodular). As at each iteration the sum

$$
\begin{equation*}
\sum_{Z \in \mathcal{F}}|Z||S \backslash Z| \tag{48.10}
\end{equation*}
$$

decreases (by Theorem 2.1), this process terminates. We end up with a laminar family \mathcal{F}.

The inclusionwise maximal sets in \mathcal{F} form a partition \mathcal{R} of $T \cup U$, and the remaining sets form a partition \mathcal{S} of $T \cap U$. Therefore,

$$
\begin{align*}
& \hat{f}(T \cup U)+\hat{f}(T \cap U) \leq \sum_{X \in \mathcal{R}} f(X)+\sum_{Y \in \mathcal{S}} f(Y) \tag{48.11}\\
& \leq \sum_{P \in \mathcal{P}} f(P)+\sum_{Q \in \mathcal{Q}} f(Q)=\hat{f}(T)+\hat{f}(U)
\end{align*}
$$

showing that \hat{f} is submodular.
Lovász [1983c] observed that \hat{f} is the unique largest among all submodular set functions g on S with $g(\emptyset)=0$ and $g(U) \leq f(U)$ for $U \neq \emptyset$. Indeed, each subset U of S can be partitioned into nonempty sets U_{1}, \ldots, U_{t} such that

$$
\begin{equation*}
g(U) \leq \sum_{i=1}^{t} g\left(U_{i}\right) \leq \sum_{i=1}^{t} f\left(U_{i}\right)=\hat{f}(U) \tag{48.12}
\end{equation*}
$$

(the first inequality follows from the submodularity of g, as $g(\emptyset)=0$).
Trivially, $E P_{\hat{f}}=E P_{f}^{\prime}$. In particular, $E P_{f}^{\prime}$ is an extended polymatroid.
Moreover, by (44.34),

Theorem 48.3.

$$
\begin{equation*}
\hat{f}(U)=\max \left\{x(U) \mid x \in E P_{f}^{\prime}\right\} \tag{48.13}
\end{equation*}
$$

Proof. By (44.34), since $E P_{f}^{\prime}=E P_{\hat{f}}$.
$\hat{f}(U)$ can be computed in strongly polynomial time:
Theorem 48.4. If a submodular set function f on S is given by a value giving oracle, then for each given $U \subseteq S, \hat{f}(U)$ can be computed in strongly polynomial time.

Proof. We can assume that $U=S$. Order $S=\left\{s_{1}, \ldots, s_{n}\right\}$ arbitrarily. For $i=1, \ldots, n$, define $U_{i}:=\left\{s_{1}, \ldots, s_{i}\right\}$. Set $x:=\mathbf{0}$. Iteratively, for $i=1, \ldots, n$, determine

$$
\begin{equation*}
\mu:=\min \left\{f(T)-x(T) \mid s_{i} \in T \subseteq U_{i}\right\} \tag{48.14}
\end{equation*}
$$

(with a submodular function minimization algorithm), and reset $x\left(s_{i}\right):=$ $x\left(s_{i}\right)+\mu$.

We end up with $x \in E P_{f}^{\prime}$ and for each $u \in S$ a subset T_{u} of S with $u \in T_{u}$ and $x\left(T_{u}\right)=f\left(T_{u}\right)$. As the collection of subsets T of S with $x(T)=f(T)$ is closed under unions and intersections of intersecting sets (cf. Theorem 44.2), we can modify the T_{u} in such a way that they form a partition U_{1}, \ldots, U_{k} of S. Then $\hat{f}(S)=f\left(U_{1}\right)+\cdots+f\left(U_{k}\right)$, as x attains the maximum in (48.13).

As a consequence, given a submodular set function f on S (by a value giving oracle), we can optimize over $E P_{f}^{\prime}$ in strongly polynomial time (by Corollary 44.3b, as $E P_{f}^{\prime}=E P_{\hat{f}}$ and as we can compute \hat{f}).

48.2a. Applications and interpretations

Graphic matroids (Dilworth [1944], also Edmonds [1970b], Dunstan [1976]). Let $G=(V, E)$ be an undirected graph and let for each $F \subseteq E, f(F)$ be given by
(48.15) $\quad f(F):=|\bigcup F|-1$.

It is easily checked that the function f is submodular, and that the function \hat{f} as given by (48.7) satisfies
(48.16) $\quad \hat{f}(F)=|V|$ minus the number of components of the graph (V, F), i.e., \hat{f} is the rank function of the cycle matroid of G.

Geometric interpretation. The operation of making \hat{f} from f can be interpreted geometrically as follows (Lovász [1977c], Mason [1977,1981]).

Let \mathcal{F} be a collection of flats (subspaces) in a projective space, and define for each subset \mathcal{F}^{\prime} of \mathcal{F}, the $\operatorname{rank} r\left(\mathcal{F}^{\prime}\right)$ by
(48.17) $\quad r\left(\mathcal{F}^{\prime}\right):=$ the (projective) dimension of $\bigcup \mathcal{F}^{\prime}$.

One easily checks that r is nondecreasing and submodular and that $r(\emptyset)=0$. Now let

$$
\begin{equation*}
f\left(\mathcal{F}^{\prime}\right):=r\left(\mathcal{F}^{\prime}\right)-1 \tag{48.18}
\end{equation*}
$$

for $\mathcal{F}^{\prime} \subseteq \mathcal{F}$, and consider the function \hat{f}. Then \hat{f} can be interpreted geometrically as follows. Let H be some hyperplane 'in general position' in the projective space. Then $\hat{f}\left(\mathcal{F}^{\prime}\right)$ is equal to the projective dimension of $H \cap \bigcup \mathcal{F}^{\prime}$, i.e., \hat{f} is as given by (48.17) if we replace \mathcal{F} by $\{F \cap H \mid F \in \mathcal{F}\}$ (see Lovász [1977c] and Mason [1977, 1981]).

Rigidity. Let $M=(S, \mathcal{I})$ be a loopless matroid, with rank function r. Let d be a natural number. Define the set function f on S by

$$
\begin{equation*}
f(U):=d \cdot r(U)-d+1 \tag{48.19}
\end{equation*}
$$

for $U \subseteq S$. Again, f is submodular and nondecreasing. Moreover, the function \hat{f} is the rank function of a loopless matroid, as $\hat{f}(\{s\})=f(\{s\})=1$ for all s in S.

Let $M_{d}=\left(S, \mathcal{I}_{d}\right)$ be this matroid. Since $E P_{f}^{\prime}=E P_{\hat{f}}$, a subset I of S is independent in M_{d} if and only if

$$
\begin{equation*}
|U| \leq d \cdot r(U)-d+1 \tag{48.20}
\end{equation*}
$$

for all $U \subseteq I$.
In case M is the cycle matroid of a connected graph $G=(V, E)$, this relates to the following (cf. Crapo [1979] and Crapo and Whiteley [1978]). Let the vertices of G be placed 'in general position' in the d-dimensional Euclidean space. Make the edges 'rigid bars'. Suppose now that the whole graph G is rigid (which only depends on G and not on the embedding, since the vertices are 'in general position'). Then G is called rigid (in d dimensions). It is not difficult to see that the minimal sets F of edges of G for which the subgraph (V, F) is rigid, form the bases of a matroid. For $d=1$ this matroid is just the cycle matroid of G, as can be checked easily. Laman [1970] (cf. Asimow and Roth [1978,1979]) showed that for $d=2$, a graph $G=(V, E)$ is a base (i.e., a minimal rigid graph), if and only if
(48.21) \quad (i) $|E|=2|V|-3$,
(ii) $|E[U]| \leq 2|U|-3$, for each $U \subseteq V$.

Now if M is the cycle matroid of a rigid graph G, with rank function r, then (48.21) (ii) is equivalent to

$$
\begin{equation*}
|F| \leq 2 r(F)-1, \text { for each subset } F \text { of } E \tag{48.22}
\end{equation*}
$$

that is, by (48.20), to: E is independent in the matroid M_{2}, as given above. Condition (48.21)(i) implies that M_{2} has rank $2 r(E)-1$. Hence, if G is rigid in 2 dimensions, then the bases of M_{2} are the minimally rigid subgraphs of G in 2 dimensions.

In general, the matroid of rigid subgraphs of a graph $G=(V, E)$ (in d dimensions) has rank $d|V|-\binom{d+1}{2}$. However, it is not necessarily true that G is minimally rigid in d dimensions if and only if G has $d|V|-\binom{d+1}{2}$ edges and each subgraph (U, F) of G has at most $d|U|-\binom{d+1}{2}$ edges. For instance, if G arises from glueing two copies of the complete graph K_{5} together in two vertices, and deleting the edge connecting these two vertices, then G is not rigid in 3 dimensions, but it satisfies the conditions given above for $d=3$. (These conditions are easily seen to be necessary.)

More on the relation between rigidity and matroid union can be found in Whiteley [1988].

48.3. Intersection

Corollaries 48.1a and 48.1b on submodular functions f not necessarily satisfying $f(\emptyset) \geq 0$, can be extended to pairs of functions. Let f_{1} and f_{2} be submodular set functions on S, and consider the system
(48.23) $\quad x(U) \leq f_{i}(U)$ for $U \in \mathcal{P}(S) \backslash\{\emptyset\}$ and $i=1,2$.

Then:

Theorem 48.5. System (48.23) is box-totally dual integral.
Proof. Choose $w \in \mathbb{Z}^{S}$, and consider the problem dual to maximizing $w^{\top} x$ over (48.23):
(48.24) $\quad \min \left\{\sum_{U \in \mathcal{P}(S) \backslash\{\emptyset\}}\left(y_{1}(U) f_{1}(U)+y_{2}(U) f_{2}(U)\right) \mid\right.$

$$
\left.y_{1}, y_{2} \in \mathbb{R}_{+}^{\mathcal{P}(S) \backslash\{\emptyset\}}, \sum_{U \in \mathcal{P}(S) \backslash\{\emptyset\}}\left(y_{1}(U)+y_{2}(U)\right) \chi^{U}=w\right\} .
$$

Let y_{1}, y_{2} attain the minimum.
For $i \in\{1,2\}$, define
(48.25) $\quad w_{i}:=\sum_{U \in \mathcal{P}(S) \backslash\{\phi\}} y_{i}(U) \chi^{U}$.

By Theorem 48.1, for each $i=1,2$,

$$
\begin{align*}
& \min \left\{\sum_{\substack{U \in \mathcal{P}(S) \backslash\{\emptyset\} \\
y_{i} \in \mathbb{R}_{+}^{\mathcal{P}(S) \backslash\{\emptyset\}}}} y_{i}(U) f_{i}(U) \mid\right. \tag{48.26}\\
& \left.\sum_{U \in \mathcal{P}(S) \backslash\{\emptyset\}} y_{i}(U) \chi^{U}=w_{i}\right\}
\end{align*}
$$

has an optimum solution y_{i} with $\mathcal{F}_{i}:=\left\{U \mid y_{i}(U)>0\right\}$ laminar.
These (modified) y_{1}, y_{2} again are optimum in (48.24). As the constraints corresponding to positive components of y_{1}, y_{2} give a totally unimodular matrix (by Theorem 41.11), Theorem 5.35 implies that system (48.23) is boxTDI.

Theorem 48.5 implies primal integrality:
Corollary 48.5a. If f_{1} and f_{2} are submodular and integer, then $E P_{f_{1}}^{\prime} \cap E P_{f_{2}}^{\prime}$ is box-integer.

Proof. Directly from Theorem 48.5.
Given submodular functions f_{1} and f_{2} (by value giving oracles), we can optimize over $E P_{f_{1}}^{\prime} \cap E P_{f_{2}}^{\prime}$ in strongly polynomial time (by Corollary 47.4d, as $E P_{f_{1}}^{\prime}=E P_{\hat{f}_{1}}$ and $E P_{f_{2}}^{\prime}=E P_{\hat{f}_{2}}$.

Chapter 49

Submodularity more generally

Abstract

We now discuss a number of generalizations of submodular functions, namely those defined on a subcollection \mathcal{C} of the collection of all subsets of a set S. The results are similar to those for submodular functions defined on all subsets on S. Often, the corresponding polyhedra form a polymatroid for some derived submodular function defined on all subsets of S. We consider three kinds of collections, in order of increasing generality: lattice families, intersecting families, and crossing families.

49.1. Submodular functions on a lattice family

We first consider the generalization of submodular functions to those defined on a 'lattice family'.

Let S be a finite set. A family \mathcal{C} of sets is called a lattice family if

$$
\begin{equation*}
T \cap U, T \cup U \in \mathcal{C} \text { for all } T, U \in \mathcal{C} \tag{49.1}
\end{equation*}
$$

For a lattice family \mathcal{C}, a function $f: \mathcal{C} \rightarrow \mathbb{R}$ is called submodular if

$$
\begin{equation*}
f(T \cap U)+f(T \cup U) \leq f(T)+f(U) \tag{49.2}
\end{equation*}
$$

for all $T, U \in \mathcal{C}$. Consider the system

$$
\begin{equation*}
x(U) \leq f(U) \text { for } U \in \mathcal{C} \tag{49.3}
\end{equation*}
$$

and the problem dual to maximizing $w^{\top} x$ over (49.3), for $w \in \mathbb{R}^{S}$:

$$
\begin{equation*}
\min \left\{\sum_{U \in \mathcal{C}} y(U) f(U) \mid y \in \mathbb{R}_{+}^{\mathcal{C}}, \sum_{U \in \mathcal{C}} y(U) \chi^{U}=w\right\} \tag{49.4}
\end{equation*}
$$

Theorem 49.1. Let \mathcal{C} be a lattice family, $f: \mathcal{C} \rightarrow \mathbb{R}$ a submodular function, and $w \in \mathbb{R}^{S}$. Then (49.4) has an optimum solution y with $\mathcal{F}:=\{U \in \mathcal{C} \mid$ $y(U)>0\}$ a chain.

Proof. Let $y: \mathcal{C} \rightarrow \mathbb{R}_{+}$achieve this minimum, with

$$
\begin{equation*}
\sum_{U \in \mathcal{C}} y(U)|U||S \backslash U| \tag{49.5}
\end{equation*}
$$

as small as possible. Assume that \mathcal{F} is not a chain, and choose $T, U \in \mathcal{F}$ with $T \nsubseteq U$ and $U \nsubseteq T$. Let $\alpha:=\min \{y(T), y(U)\}$. Decrease $y(T)$ and $y(U)$ by α, and increase $y(T \cap U)$ and $y(T \cup U)$ by α. Since

$$
\begin{equation*}
\chi^{T \cap U}+\chi^{T \cup U}=\chi^{T}+\chi^{U} \tag{49.6}
\end{equation*}
$$

y remains a feasible solution of (49.4). As moreover

$$
\begin{equation*}
f(T \cap U)+f(T \cup U) \leq f(T)+f(U) \tag{49.7}
\end{equation*}
$$

f remains optimum. However, by Theorem 2.1, sum (49.5) decreases, contradicting our assumption.

This implies the box-total dual integrality of (49.3):
Corollary 49.1a. If \mathcal{C} is a lattice family and $f: \mathcal{C} \rightarrow \mathbb{R}$ is submodular, then system (49.3) is box-TDI.

Proof. Consider some $w: \mathcal{C} \rightarrow \mathbb{Z}$, and problem (49.4) dual to maximizing $w^{\top} x$ over (49.3). By Theorem 49.1, this minimum is attained by a y with $\mathcal{F}:=\{U \in \mathcal{C} \mid y(U)>0\}$ a chain. So the constraints corresponding to positive components of y form a totally unimodular matrix (by Theorem 41.11). Hence by Theorem 5.35 , (49.3) is box-TDI.

For any $\mathcal{C} \subseteq \mathcal{P}(S)$ and $f: \mathcal{C} \rightarrow \mathbb{R}$, define:

$$
\begin{align*}
& P_{f}:=\left\{x \in \mathbb{R}^{S} \mid x \geq \mathbf{0}, x(U) \leq f(U) \text { for each } U \in \mathcal{C}\right\}, \tag{49.8}\\
& E P_{f}:=\left\{x \in \mathbb{R}^{S} \mid x(U) \leq f(U) \text { for each } U \in \mathcal{C}\right\}
\end{align*}
$$

Then Corollary 49.1a implies:
Corollary 49.1b. If \mathcal{C} is a lattice family and $f: \mathcal{C} \rightarrow \mathbb{R}$ is submodular and integer, then $E P_{f}$ is box-integer.

Proof. Directly from Corollary 49.1a.
Another consequence of Theorem 49.1 is that a submodular function f on a lattice family is uniquely determined by $E P_{f}$ (given the lattice family):

Corollary 49.1c. If \mathcal{C} is a lattice family and $f: \mathcal{C} \rightarrow \mathbb{R}$ is submodular, then

$$
\begin{equation*}
f(U)=\max \left\{x(U) \mid x \in E P_{f}\right\} \tag{49.9}
\end{equation*}
$$

for each $U \in \mathcal{C}$.
Proof. Let $w:=\chi^{U}$ and let y attain minimum (49.4), with $\mathcal{F}:=\{T \in \mathcal{C} \mid$ $y(T)>0\}$ a chain. Since

$$
\begin{equation*}
\chi^{U}=w=\sum_{T \in \mathcal{F}} y(T) \chi^{T}, \tag{49.10}
\end{equation*}
$$

we know that $\mathcal{F}=\{U\}$ and $y(U)=1$. So the maximum in (49.9) is equal to $\sum_{T \in \mathcal{C}} y(T) f(T)=y(U) f(U)=f(U)$.

We note that for any lattice family $\mathcal{C} \subseteq \mathcal{P}(S)$ with $\cup \mathcal{C}=S$, and any submodular function $f: \mathcal{C} \rightarrow \mathbb{R}$, the polytope P_{f} is a polymatroid. Indeed, define

$$
\begin{equation*}
f^{\prime}(U):=\min \{f(T) \mid T \in \mathcal{C}, T \supseteq U\} \tag{49.11}
\end{equation*}
$$

for $U \subseteq S$. Then f^{\prime} is submodular, and $P_{f^{\prime}}=P_{f}$.

49.2. Intersection

Also the intersection of two of the polyhedra $E P_{f}$ is tractable. Let S be a finite set. For $i=1,2$, let \mathcal{C}_{i} be a lattice family on S and let $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{R}$ be submodular. Consider the system

$$
\begin{align*}
& x(U) \leq f_{1}(U) \text { for } U \in \mathcal{C}_{1} \tag{49.12}\\
& x(U) \leq f_{2}(U) \text { for } U \in \mathcal{C}_{2} .
\end{align*}
$$

Then:
Corollary 49.1d. System (49.12) is box-TDI.
Proof. Choose $w \in \mathbb{R}^{S}$, and consider the problem dual to maximizing $w^{\top} x$ over (49.12):

$$
\begin{align*}
\min \{ & \sum_{U \in \mathcal{C}_{1}} y_{1}(U) f_{1}(U)+\sum_{U \in \mathcal{C}_{2}} y_{2}(U) f_{2}(U) \mid \tag{49.13}\\
& \left.y_{1} \in \mathbb{R}_{+}^{\mathcal{C}_{1}}, y_{2} \in \mathbb{R}_{+}^{\mathcal{C}_{2}}, \sum_{U \in \mathcal{C}_{1}} y_{1}(U) \chi^{U}+\sum_{U \in \mathcal{C}_{2}} y_{2}(U) \chi^{U}=w\right\}
\end{align*}
$$

Let y_{1}, y_{2} attain the minimum.
For $i \in\{1,2\}$, define

$$
\begin{equation*}
w_{i}:=\sum_{U \in \mathcal{C}_{i}} y_{i}(U) \chi^{U} \tag{49.14}
\end{equation*}
$$

By Theorem 49.1, for each $i=1,2$,

$$
\begin{equation*}
\min \left\{\sum_{U \in \mathcal{C}_{i}} y_{i}(U) f_{i}(U) \mid y_{i} \in \mathbb{R}_{+}^{\mathcal{C}_{i}}, \sum_{U \in \mathcal{C}_{i}} y_{i}(U) \chi^{U}=w_{i}\right\} \tag{49.15}
\end{equation*}
$$

has an optimum solution y_{i} with $\mathcal{F}_{i}:=\left\{U \in \mathcal{C}_{i} \mid y_{i}(U)>0\right\}$ a chain.
These y_{1}, y_{2} again are optimum in (49.13). So, by Theorem 41.11, the constraints corresponding to positive components of y form a totally unimodular matrix. Hence by Theorem 5.35, (49.12) is box-TDI.

This implies primal integrality:

Corollary 49.1e. If f_{1} and f_{2} are submodular and integer, then $E P_{f_{1}} \cap E P_{f_{2}}$ is box-integer.

Proof. Directly from Corollary 49.1d.

49.3. Complexity

To find the minimum of a submodular function f defined on a lattice family \mathcal{C} in polynomial time, just an oracle telling if a set U belongs to \mathcal{C}, and if so, giving $f(U)$, is not sufficient: if $\mathcal{C}=\{\emptyset, T, S\}$ for some $T \subseteq S$, with $f(\emptyset)=f(S)=0$ and $f(T)=-1$, we cannot find T by a polynomially bounded number of oracle calls. So we need to have more information on \mathcal{C}.

A lattice family \mathcal{C} is fully characterized by the smallest set M and the largest set L in \mathcal{C}, together with the pre-order \preceq on S defined by:

$$
\begin{equation*}
u \preceq v \Longleftrightarrow \text { each } U \in \mathcal{C} \text { containing } v \text { also contains } u \tag{49.16}
\end{equation*}
$$

Then \preceq is a pre-order (that is, it is reflexive and transitive). A subset U of S belongs to \mathcal{C} if and only if $M \subseteq U \subseteq L$ and U is a lower ideal in \preceq (that is, if $v \in U$ and $u \preceq v$, then $u \in U)$.

Hence \mathcal{C} has a description of size $O\left(|S|^{2}\right)$, such that for given $U \subseteq S$ one can test in polynomial time if U belongs to \mathcal{C}.

For $U \subseteq S$, define

$$
\begin{align*}
& U^{\downarrow}:=\{s \in S \mid \exists t \in U: s \preceq t\} \text { and } \tag{49.17}\\
& U^{\uparrow}:=\{s \in S \mid \exists t \in U: t \preceq s\} .
\end{align*}
$$

Set

$$
\begin{equation*}
v^{\uparrow}:=\{v\}^{\uparrow}, v^{\downarrow}:=\{v\}^{\downarrow}, \tilde{v}:=v^{\uparrow} \cap v^{\downarrow} . \tag{49.18}
\end{equation*}
$$

For any $U \subseteq S$, let \bar{U} be the (unique) smallest set in \mathcal{C} containing $U \cap L$; that is,

$$
\begin{equation*}
\bar{U}=(U \cap L)^{\downarrow} \cup M \tag{49.19}
\end{equation*}
$$

So having L, M, and \preceq, the set \bar{U} can be determined in polynomial time.
Determine a number $\alpha>0$ such that

$$
\begin{equation*}
\alpha \geq f\left(S \backslash v^{\uparrow}\right)-f\left(\left(S \backslash v^{\uparrow}\right) \cup \tilde{v}\right) \text { and } \alpha \geq f\left(v^{\downarrow}\right)-f\left(v^{\downarrow} \backslash \tilde{v}\right) \tag{49.20}
\end{equation*}
$$

for all $v \in L \backslash M$. Such an α can be found by at most $4|S|$ oracle calls.
Then α satisfies, for any $X, Y \in \mathcal{C}$ with $X \subseteq Y$:

$$
\begin{equation*}
|f(Y)-f(X)| \leq \alpha|Y \backslash X| \tag{49.21}
\end{equation*}
$$

To show this, we can assume that $Y \backslash X=\tilde{v}$ for some $v \in L \backslash M$. Then $f(Y)-f(X) \leq f\left(v^{\downarrow}\right)-f\left(v^{\downarrow} \backslash \tilde{v}\right) \leq \alpha$ and $f(Y)-f(X) \geq f\left(\left(S \backslash v^{\uparrow}\right) \cup \tilde{v}\right)-$ $f\left(S \backslash v^{\uparrow}\right) \geq-\alpha$, implying (49.21).

Now define a function $\bar{f}: \mathcal{P}(S) \rightarrow \mathbb{R}$ by:

$$
\begin{equation*}
\bar{f}(U):=f(\bar{U})+\alpha|\bar{U} \Delta U| \tag{49.22}
\end{equation*}
$$

for $U \subseteq S$.
Then:
Theorem 49.2. For any $\alpha>0$ satisfying (49.20) for all $v \in L \backslash M$, the function \bar{f} is submodular.
Proof. First consider $T, U \subseteq L$. Then $T \subseteq \bar{T}$ and $U \subseteq \bar{U}$, and hence:

$$
\begin{align*}
& \bar{f}(T)+\bar{f}(U)=f(\bar{T})+\alpha|\bar{T} \backslash T|+f(\bar{U})+\alpha|\bar{U} \backslash U| \tag{49.23}\\
& \geq f(\overline{T \cap \bar{U})+\alpha \mid(\overline{T \cap}) \backslash \bar{U}) \backslash(T \cap U)|+f(\bar{T} \cup \bar{U})+\alpha|(\bar{T} \cup \bar{U}) \backslash(T \cup U) \mid} \\
& \geq f(\overline{T \cap U})+\alpha|\bar{T} \cap U \backslash(T \cap U)|+f(\overline{T \cup U})+\alpha|\overline{T \cup U} \backslash(T \cup U)| \\
& =\bar{f}(T \cap U)+\bar{f}(T \cup U) .
\end{align*}
$$

(The last inequality uses (49.21), since $\bar{T} \cap \bar{U} \supseteq \overline{T \cap U}$ (while $\bar{T} \cup \bar{U}=\overline{T \cup U}$).) Hence, for $T, U \subseteq S$ one has:

$$
\begin{align*}
& \bar{f}(T)+\bar{f}(U)=\bar{f}(T \cap L)+\alpha|T \backslash L|+\bar{f}(U \cap L)+\alpha|U \backslash L| \tag{49.24}\\
& \geq \bar{f}((T \cap L) \cap(U \cap L))+\bar{f}((T \cap L) \cup(U \cap L))+\alpha|T \backslash L|+\alpha|U \backslash L| \\
& =\bar{f}((T \cap U) \cap L)+\bar{f}((T \cup U) \cap L)+\alpha|(T \cap U) \backslash L|+\alpha|(T \cup U) \backslash L| \\
& =\bar{f}(T \cap U)+\bar{f}(T \cup U) .
\end{align*}
$$

So \bar{f} is submodular.
The function \bar{f} enables us to reduce optimization problems on submodular functions defined on a lattice family, to those defined on all subsets.

Minimization. By Theorem 45.1, the minimum of \bar{f} can be found in strongly polynomial time. Hence
if \mathcal{C} is given by L, M, and \preceq, and a submodular function f : $\mathcal{C} \rightarrow \mathbb{R}$ is given by a value giving oracle, we can find a $U \in \mathcal{C}$ minimizing $f(U)$ in strongly polynomial time.
Indeed, if \bar{f} attains its minimum at U, then $U \in \mathcal{C}$, since otherwise $\bar{U} \neq U$ and hence $\bar{f}(U)>\bar{f}(\bar{U})($ as $\alpha>0)$, contradicting the fact that \bar{f} attains its minimum at U. This shows (49.25).

Maximization over $E P_{f}$. Given a lattice family \mathcal{C} of subsets of a set S, a submodular function $f: \mathcal{C} \rightarrow \mathbb{R}$, and a weight function $w \in \mathbb{Q}^{S}$, we can maximize $w^{\top} x$ over $E P_{f}$, by adapting the greedy algorithm as follows.

Note that $\max \left\{w^{\top} x \mid x \in E P_{f}\right\}$ is finite if and only if $w \geq \mathbf{0}, w(s)=0$ for each $s \in S \backslash L$, and
(49.26) $\quad u \preceq v$ implies $w(u) \geq w(v)$
for all $u, v \in S$. If (49.26) is not the case, the maximum value is infinite, since if $u \preceq v$, then for any $x \in E P_{f}$, the vector $x+\lambda\left(\chi^{v}-\chi^{u}\right)$ belongs to $E P_{f}$ for all $\lambda \geq 0$. Now, if $w(v)>w(u)$, the weight increases to infinity along this line, and therefore the maximum value is ∞.

So we can check in strongly polynomial time if $\max \left\{w^{\top} x \mid x \in E P_{f}\right\}$ is finite, and therefore we can assume that it is finite. Moreover, we can assume that $L=S$, since $w(s)=0$ for each $s \in S \backslash L$, and hence we can delete $S \backslash L$. Similarly, we can assume that $\emptyset \in \mathcal{C}$ and $f(\emptyset)=0$. For if $\emptyset \in \mathcal{C}$ and $f(\emptyset)<0$, then $E P_{f}=\emptyset$, and if $f(\emptyset)>0$, we can reset $f(\emptyset):=0$, without violating the submodularity and without modifying $E P_{f}$. If $\emptyset \notin \mathcal{C}$, then we can add \emptyset to \mathcal{C} and set $f(\emptyset):=0$, again maintaining submodularity and $E P_{f}$. Finally, we can assume that \preceq is a partial order, since if $u \preceq v \preceq u$, then by (49.26), $w(u)=w(v)$, and each set in \mathcal{C} either contains both u and v, or neither of them. So we can merge u and v; and in fact we can merge any set \tilde{v} to one element.

Now let \leq be a linear order such that for any u, v, if $u \preceq v$ or $w(u)>w(v)$, then $u \leq v$. By (49.26), the latter defines a partial order. So \leq is a linear extension of it, and hence can be found in strongly polynomial time.

Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with $s_{1}<s_{2}<\cdots<s_{n}$. For $i=0, \ldots, n$, define $U_{i}:=\left\{s_{1}, \ldots, s_{i}\right\}$. As \leq is a linear extension of \preceq, each U_{i} is a lower ideal of \preceq, and hence each U_{i} belongs to \mathcal{C}. Define $x\left(s_{i}\right):=f\left(U_{i}\right)-f\left(U_{i-1}\right)$ for $i=1, \ldots, n$. Then x maximizes $w^{\top} x$ over $E P_{f}$.

To see this, let \bar{f} be defined as above. Then by Theorem 44.3, x belongs to $E P_{\bar{f}}$ (as f and \bar{f} coincide on each U_{i}), and hence x belongs to $E P_{f}$. To see that x is optimum, we have for any $z \in E P_{f}$:

$$
\begin{align*}
& w^{\top} z=\sum_{i=1}^{n-1} z\left(U_{i}\right)\left(w\left(s_{i}\right)-w\left(s_{i+1}\right)\right)+z(S) w\left(s_{n}\right) \tag{49.27}\\
& \leq \sum_{i=1}^{n-1} f\left(U_{i}\right)\left(w\left(s_{i}\right)-w\left(s_{i+1}\right)\right)+f(S) w\left(s_{n}\right) \\
& =\sum_{i=1}^{n} w\left(s_{i}\right)\left(f\left(U_{i}\right)-f\left(U_{i-1}\right)\right)=\sum_{i=1}^{n} w\left(s_{i}\right) x\left(s_{i}\right)=w^{\top} x .
\end{align*}
$$

This also gives a dual solution to the corresponding LP-formulation of the problem.

Maximization over intersections. Let \mathcal{C}_{1} and \mathcal{C}_{2} be lattice families of subsets of S and let f_{1} and f_{2} be submodular functions on \mathcal{C}_{1} and \mathcal{C}_{2} respectively. Let \mathcal{C}_{i} be specified by L_{i}, M_{i}, and \preceq_{i}.

Find a number $\alpha>0$ satisfying (49.20) for both $f=f_{1}$ and $f=f_{2}$. So by (49.21), $\alpha|S|+\max _{i=1,2}\left|f_{i}\left(L_{i}\right)\right|$ is an upper bound on $\left|f_{i}(U)\right|$ for each $i \in\{1,2\}$ and each $U \in \mathcal{C}_{i}$. Define

$$
\begin{equation*}
K:=|S|\left(\alpha|S|+\max _{i=1,2}\left|f_{i}\left(L_{i}\right)\right|\right) \tag{49.28}
\end{equation*}
$$

Now for $i=1,2$ and $U \subseteq S$, let $\bar{f}_{i}(U):=f_{i}(\bar{U})+K|\bar{U} \triangle U|$ (where \bar{U} is taken with respect to \mathcal{C}_{i}). So \bar{f}_{1} and \bar{f}_{2} are submodular (by Theorem 49.2). Then:

$$
\begin{equation*}
\max \left\{w^{\top} x \mid x \in E P_{f_{1}} \cap E P_{f_{2}}\right\}=\max \left\{w^{\top} x \mid x \in E P_{\bar{f}_{1}} \cap E P_{\bar{f}_{2}}\right\} \tag{49.29}
\end{equation*}
$$

if the first maximum is finite. Clearly \geq holds in (49.29), since $E P_{\bar{f}_{i}} \subseteq E P_{f_{i}}$ for $i=1,2$. To see equality, each face of $E P_{f_{1}} \cap E P_{f_{2}}$ is determined by equations $x(U)=f_{i}(U)$ for $i=1,2$ and $U \in \mathcal{D}_{i}$, where \mathcal{D}_{i} is a chain of sets in \mathcal{C}_{i}. So it is determined by a system of linear equations with totally unimodular constraint set and right-hand sides determined by function values of f_{1} and f_{2}. So each face contains a vector x with $\left|x_{s}\right| \leq K$ for all $s \in S$ (by (49.28), since the inverse of a nonsingular totally unimodular matrix has all its entries in $\{0, \pm 1\})$. But any such x belongs to $E P_{\bar{f}_{1}} \cap E P_{\bar{f}_{2}}$, since for $i=1,2$ and $U \subseteq S$, we have:

$$
\begin{equation*}
x(U) \leq x(\bar{U})+K|\bar{U} \triangle U| \leq f_{i}(\bar{U})+K|\bar{U} \triangle U|=\bar{f}_{i}(U) \tag{49.30}
\end{equation*}
$$

(where \bar{U} is taken with respect to \mathcal{C}_{i}). So we have (49.29).
Therefore, by Corollary 47.4 d , we can maximize $w^{\top} x$ over $E P_{f_{1}} \cap E P_{f_{2}}$ in strongly polynomial time. Note that for any $w \in \mathbb{Q}^{S}$, we can decide in strongly polynomial time if the first maximum in (49.29) is finite. For this, we should decide if there exist $w_{1}, w_{2} \in \mathbb{Q}_{+}^{S}$ such that $w=w_{1}+w_{2}$ and such that for $i=1,2: w_{i}(s)=0$ for $s \in S \backslash L_{i}$ and $u \preceq_{i} v$ implies $w_{i}(u) \geq w_{i}(v)$ for all u, v. This can be reduced to checking if a certain digraph with lengths has no negative-length directed circuit.

49.4. Submodular functions on an intersecting family

We next consider functions defined on a broader class of collections, the intersecting families, where the function satisfies a restricted form of submodularity. It yields an extension of the Dilworth truncation studied in Chapter 48.

A family \mathcal{C} of sets is called an intersecting family if for all $T, U \in \mathcal{C}$ one has:
(49.31) if $T \cap U \neq \emptyset$, then $T \cap U, T \cup U \in \mathcal{C}$.

Let \mathcal{C} be an intersecting family. A function $f: \mathcal{C} \rightarrow \mathbb{R}$ is called submodular on intersecting pairs, or intersecting submodular, if

$$
\begin{equation*}
f(T)+f(U) \geq f(T \cap U)+f(T \cup U) \tag{49.32}
\end{equation*}
$$

for all $T, U \in \mathcal{C}$ with $T \cap U \neq \emptyset$.
Consider the system

$$
\begin{equation*}
x(U) \leq f(U) \text { for } U \in \mathcal{C} \tag{49.33}
\end{equation*}
$$

and the problem dual to maximizing $w^{\top} x$ over (49.33), for $w \in \mathbb{R}^{S}$:

$$
\begin{equation*}
\min \left\{\sum_{U \in \mathcal{C}} y(U) f(U) \mid y \in \mathbb{R}_{+}^{\mathcal{C}}, \sum_{U \in \mathcal{C}} y(U) \chi^{U}=w\right\} \tag{49.34}
\end{equation*}
$$

Recall that a collection \mathcal{F} of sets is called laminar if
(49.35) $\quad T \cap U=\emptyset$ or $T \subseteq U$ or $U \subseteq T$, for all $T, U \in \mathcal{F}$.

A basic result (proved with a method due to Edmonds [1970b]) is:
Theorem 49.3. Let \mathcal{C} be an intersecting family of subsets of a set S, let $f: \mathcal{C} \rightarrow \mathbb{R}$ be intersecting submodular and let $w \in \mathbb{R}^{S}$. Then (49.34) has an optimum solution y with $\mathcal{F}:=\{U \in \mathcal{C} \mid y(U)>0\}$ laminar.

Proof. Let $y: \mathcal{C} \rightarrow \mathbb{R}_{+}$achieve this minimum, with

$$
\begin{equation*}
\sum_{U \in \mathcal{C}} y(U)|U||S \backslash U| \tag{49.36}
\end{equation*}
$$

as small as possible. Assume that \mathcal{F} is not laminar, and choose $T, U \in \mathcal{F}$ violating (49.35). Let $\alpha:=\min \{y(T), y(U)\}$. Decrease $y(T)$ and $y(U)$ by α, and increase $y(T \cap U)$ and $y(T \cup U)$ by α. Since

$$
\begin{equation*}
\chi^{T \cap U}+\chi^{T \cup U}=\chi^{T}+\chi^{U} \tag{49.37}
\end{equation*}
$$

y remains a feasible solution of (49.34). As moreover

$$
\begin{equation*}
f(T \cap U)+f(T \cup U) \leq f(T)+f(U) \tag{49.38}
\end{equation*}
$$

f remains optimum. However, by Theorem 2.1, sum (49.36) decreases, contradicting our assumption.

It gives the box-total dual integrality of (49.33):
Corollary 49.3a. Let \mathcal{C} be an intersecting family of subsets of a set S and let $f: \mathcal{C} \rightarrow \mathbb{R}$ be intersecting submodular. Then system (49.33) is box-TDI.

Proof. Consider problem (49.34) dual to maximizing $w^{\top} x$ over (49.33). By Theorem 49.3, this minimum is attained by a y with $\mathcal{F}:=\{U \in \mathcal{C} \mid y(U)>0\}$ laminar. As the matrix of constraints corresponding to \mathcal{F} is totally unimodular (Theorem 41.11), Theorem 5.35 gives the corollary.

49.5. Intersection

Again, these results can be extended in a natural way to pairs of functions, by derivation from Theorem 49.3.

Corollary 49.3b. For $i=1,2$, let \mathcal{C}_{i} be an intersecting family of subsets of a set S and let $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{R}$ be intersecting submodular. Then the system

$$
\begin{align*}
& x(U) \leq f_{1}(U) \text { for } U \in \mathcal{C}_{1}, \tag{49.39}\\
& x(U) \leq f_{2}(U) \text { for } U \in \mathcal{C}_{2},
\end{align*}
$$

is box-TDI.
Proof. Choose $w \in \mathbb{R}^{S}$, and consider the problem dual to maximizing $w^{\top} x$ over (49.39):

$$
\begin{align*}
\min \{ & \sum_{U \in \mathcal{C}_{1}} y_{1}(U) f_{1}(U)+\sum_{U \in \mathcal{C}_{2}} y_{2}(U) f_{2}(U) \mid \tag{49.40}\\
& \left.y_{1} \in \mathbb{R}_{+}^{\mathcal{C}_{1}}, y_{2} \in \mathbb{R}_{+}^{\mathcal{C}_{2}}, \sum_{U \in \mathcal{C}_{1}} y_{1}(U) \chi^{U}+\sum_{U \in \mathcal{C}_{2}} y_{2}(U) \chi^{U}=w\right\} .
\end{align*}
$$

Let y_{1}, y_{2} attain the minimum. For $i \in\{1,2\}$, define

$$
\begin{equation*}
w_{i}:=\sum_{U \in \mathcal{C}_{i}} y_{i}(U) \chi^{U} \tag{49.41}
\end{equation*}
$$

By Theorem 49.3,

$$
\begin{equation*}
\min \left\{\sum_{U \in \mathcal{C}_{i}} y_{i}(U) f_{i}(U) \mid y_{i} \in \mathbb{R}_{+}^{\mathcal{C}_{i}}, \sum_{U \in \mathcal{C}_{i}} y_{i}(U) \chi^{U}=w_{i}\right\} \tag{49.42}
\end{equation*}
$$

has an optimum solution y_{i} with $\mathcal{F}_{i}:=\left\{U \in \mathcal{C}_{i} \mid y_{i}(U)>0\right\}$ laminar.
As $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ determine a totally unimodular matrix (by Theorem 41.11), Theorem 5.35 implies that system (49.39) is box-TDI.

This implies the integrality of polyhedra:
Corollary 49.3c. If f_{1} and f_{2} are integer, then $E P_{f_{1}} \cap E P_{f_{2}}$ is box-integer.
Proof. Directly from Corollary 49.3b.

49.6. From an intersecting family to a lattice family

Let \mathcal{C} be an intersecting family of subsets of a set S and let $f: \mathcal{C} \rightarrow \mathbb{R}$ be submodular on intersecting pairs. Let $\check{\mathcal{C}}$ be the collection of all unions of sets in \mathcal{C}. Since \mathcal{C} is closed under unions of intersecting sets, $\check{\mathcal{C}}$ is equal to the collection of disjoint unions of nonempty sets in \mathcal{C}. It is not difficult to show that $\check{\mathcal{C}}$ is a lattice family and that $\emptyset \in \check{\mathcal{C}}$.

Call a partition proper if its classes are nonempty. Define $\check{f}: \check{\mathcal{C}} \rightarrow \mathbb{R}$ by:

$$
\begin{equation*}
\check{f}(U):=\min \left\{\sum_{P \in \mathcal{P}} f(P) \mid \mathcal{P} \subseteq \mathcal{C} \text { is a proper partition of } U\right\} \tag{49.43}
\end{equation*}
$$

for $U \in \check{\mathcal{C}}$. So $\check{f}(\emptyset)=0$. Then (Dunstan [1976]):
Theorem 49.4. \check{f} is submodular.
Proof. Choose $T, U \in \check{\mathcal{C}}$, and let \mathcal{P} and \mathcal{Q} be partitions of T and U (respectively) into nonempty sets in \mathcal{C} with

$$
\begin{equation*}
\check{f}(T)=\sum_{P \in \mathcal{P}} f(P) \text { and } \check{f}(U)=\sum_{Q \in \mathcal{Q}} f(Q) . \tag{49.44}
\end{equation*}
$$

Consider the family \mathcal{F} made by the union of \mathcal{P} and \mathcal{Q} (taking a set twice if it occurs in both partitions). We can transform \mathcal{F} iteratively into a laminar family, by replacing any $X, Y \in \mathcal{F}$ with $X \cap Y \neq \emptyset$ and $X \nsubseteq Y \nsubseteq X$ by $X \cap Y, X \cup Y$. In each iteration, the sum

$$
\begin{equation*}
\sum_{Z \in \mathcal{F}} f(Z) \tag{49.45}
\end{equation*}
$$

does not increase (as f is submodular on intersecting pairs). As at each iteration the sum

$$
\begin{equation*}
\sum_{Z \in \mathcal{F}}|Z||S \backslash Z| \tag{49.46}
\end{equation*}
$$

decreases (by Theorem 2.1), this process terminates. We end up with a laminar family \mathcal{F}.

The inclusionwise maximal sets in \mathcal{F} form a partition \mathcal{R} of $T \cup U$, and the remaining sets form a partition \mathcal{S} of $T \cap U$. Therefore,

$$
\begin{align*}
& \check{f}(T \cup U)+\check{f}(T \cap U) \leq \sum_{X \in \mathcal{R}} f(X)+\sum_{Y \in \mathcal{S}} f(Y) \tag{49.47}\\
& \leq \sum_{P \in \mathcal{P}} f(P)+\sum_{Q \in \mathcal{Q}} f(Q)=\check{f}(T)+\check{f}(U)
\end{align*}
$$

showing that \check{f} is submodular.
Trivially, if $\emptyset \notin \mathcal{C}$ or if $f(\emptyset) \geq 0$, then $E P_{\check{f}}=E P_{f}$. Hence, by (49.9),

$$
\begin{equation*}
\check{f}(U)=\max \left\{x(U) \mid U \in E P_{f}\right\} . \tag{49.48}
\end{equation*}
$$

As we shall see in Section 49.7, this enables us to calculate \check{f} from a value giving oracle, using the greedy algorithm.

49.7. Complexity

The results of the previous section enable us to reduce algorithmic problems on intersecting submodular functions, to those on submodular functions on lattice families.

If \mathcal{C} is an intersecting family on S, then for each $s \in S$, the collection $\mathcal{C}_{s}:=\{U \in \mathcal{C} \mid s \in U\}$ is a lattice family. So (like in Section 49.3) we can assume that \mathcal{C} is given by a representation of \mathcal{C}_{s} for each $s \in S$, in terms of the pre-order \preceq_{s} given by: $u \preceq_{s} v$ if and only if each set in \mathcal{C} containing s and v also contains u, and by $M_{s}:=\bigcap \mathcal{C}_{s}$ and $L_{s}:=\bigcup \mathcal{C}_{s}$; next to that we should know if \emptyset belongs to \mathcal{C}.

We can derive the information on $\check{\mathcal{C}}$ as follows:

$$
\begin{equation*}
\bigcap \check{\mathcal{C}}=\emptyset, \bigcup \check{\mathcal{C}}=\bigcup_{s \in S} L_{s} ; u \preceq v \text { if and only if } u \in M_{v} . \tag{49.49}
\end{equation*}
$$

So we can decide in polynomial time if a set U belongs to $\check{\mathcal{C}}$.
For any intersecting submodular function f on \mathcal{C}, the restriction f_{s} of f to \mathcal{C}_{s} is submodular. So by the results of Section 49.3, we can find a set minimizing f in strongly polynomial time.

For any $U \in \check{\mathcal{C}}$, we can calculate $\check{f}(U)$, as defined in (49.43), in strongly polynomial time, having a value giving oracle for f. To see this, we use (49.48). We can assume that $\emptyset \notin \mathcal{C}$.

Order the elements of U as t_{1}, \ldots, t_{k} such that if $L_{t_{j}} \subset L_{t_{i}}$, then $j<i$. For $i=0, \ldots, k$, let $U_{i}:=L_{t_{1}} \cup \cdots \cup L_{t_{i}}$. So $U_{k}=U$.

Initially, set $x(t):=0$ for each $t \in U$. Next, for $i=1, \ldots, k$, calculate

$$
\begin{equation*}
\mu:=\min \left\{f(T)-x(T) \mid T \in \mathcal{C}, t_{i} \in T \subseteq U_{i}\right\} \tag{49.50}
\end{equation*}
$$

and reset $x\left(t_{i}\right):=x\left(t_{i}\right)+\mu$. We prove, by induction on i, that for $i=0,1, \ldots, k$ we have, after processing t_{1}, \ldots, t_{i} :
(i) $x(T) \leq f(T)$ for each $T \in \mathcal{C}$ with $T \subseteq U_{i}$,
(ii) for each $j=1, \ldots, i$ there exists a $T \in \mathcal{C}$ with $t_{j} \in T \subseteq U_{i}$ and $x(T)=f(T)$.
For $i=0$ this is trivial. Let $i \geq 1$. Consider any $T \in \mathcal{C}$ with $T \subseteq U_{i}$. If $t_{i} \in T$, then $x(T) \leq f(T)$, as at processing t_{i} we have added μ to $x\left(t_{i}\right)$. If $t_{i} \notin T$, then $T \subseteq U_{i-1}$. For suppose that there exists a $t_{j} \in T$ with $t_{j} \notin U_{i-1}$. So $j>i$ and $t_{j} \in L_{t_{i}}$, and therefore $L_{t_{j}} \subseteq L_{t_{i}}$, implying $L_{t_{j}}=L_{t_{i}}$ (since if $L_{t_{j}} \subset L_{t_{i}}$, then $\left.j<i\right)$. But then $t_{i} \in L_{t_{j}} \subseteq T$, contradicting the fact that $t_{i} \notin T$. So $T \subseteq U_{i-1}$. As $t_{i} \notin T, x(T)$ did not change at processing t_{i}, and hence we know $x(T) \leq f(T)$ by induction. This proves (49.51)(i).

To see (49.51)(ii), choose $j \leq i$. If $j=i$, there exists after processing t_{i} a T as required, as we have added μ to $x\left(t_{i}\right)$. If $j<i$, by induction there exists a $T \in \mathcal{C}$ with $t_{j} \in T \subseteq U_{i-1}$ and $x(T)=f(T)$ before processing t_{i}. If $t_{i} \notin T$, $x(T)=f(T)$ is maintained at processing t_{i}. If $t_{i} \in T$, then $t_{i} \in U_{i-1}$, and so $t_{i} \in L_{t_{j}}$ for some $j<i$. Hence $L_{t_{i}} \subseteq L_{t_{j}}$. So, by the choice of the order of $U, L_{t_{i}}=L_{t_{j}}$. Hence before processing t_{i} we have $x\left(T^{\prime}\right) \leq f\left(T^{\prime}\right)$ for each $T^{\prime} \subseteq U_{i}$. So, as $x(T)=f(T)$ and $t_{i} \in T, x\left(t_{i}\right)$ is not modified at processing t_{i}. Therefore, $x(T)=f(T)$ holds also after processing t_{i}. This proves (49.51)(ii).

This shows (49.51), which gives, taking $i=k$, that $x(T) \leq f(T)$ for each $T \in \mathcal{C}$ with $T \subseteq U$, and that for each $t \in U$, we have a T containing t with $x(T)=f(T)$. We can replace any two T and T^{\prime} with $T \cap T^{\prime} \neq \emptyset$ by $T \cup T^{\prime}$. We end up with a partition \mathcal{T} of U with $x(U)=\sum_{T \in \mathcal{T}} f(T)$. Hence we know

$$
\begin{equation*}
\check{f}(U) \geq x(U)=\sum_{T \in \mathcal{T}} x(T)=\sum_{T \in \mathcal{T}} f(T) \geq \check{f}(U) \tag{49.52}
\end{equation*}
$$

and therefore we have equality throughout.
Having this, we can reduce the problem of maximizing $w^{\top} x$ over $E P_{f}$, where f is intersecting submodular, to that of maximizing $w^{\top} x$ over $E P_{\tilde{f}}$,
which can be done in strongly polynomial time by the results of Section 49.3. Similarly for intersections of two such polyhedra $E P_{f_{1}}$ and $E P_{f_{2}}$.

49.8. Intersecting a polymatroid and a contrapolymatroid

For an intersecting family \mathcal{C}, a function $g: \mathcal{C} \rightarrow \mathbb{R}$ is called supermodular on intersecting pairs, or intersecting supermodular, if $-g$ is intersecting submodular.

Let S be a finite set. Let \mathcal{C} and \mathcal{D} be collections of subsets of S and let $f: \mathcal{C} \rightarrow \mathbb{R}$ and $g: \mathcal{D} \rightarrow \mathbb{R}$. Consider the system

$$
\begin{array}{ll}
x(U) \leq f(U) & \text { for } U \in \mathcal{C} \tag{49.53}\\
x(U) \geq g(U) & \text { for } U \in \mathcal{D} .
\end{array}
$$

Theorem 49.5. If \mathcal{C} and \mathcal{D} are intersecting families, $f: \mathcal{C} \rightarrow \mathbb{R}$ is intersecting submodular, and $g: \mathcal{D} \rightarrow \mathbb{R}$ is intersecting supermodular, then system (49.53) is box-TDI.

Proof. Choose $w \in \mathbb{Z}^{S}$, and consider the dual problem of maximizing $w^{\top} x$ over (49.53):

$$
\begin{align*}
\min & \left\{\sum_{U \in \mathcal{C}} y(U) f(U)-\sum_{U \in \mathcal{D}} z(U) g(U) \mid\right. \tag{49.54}\\
& \left.y \in \mathbb{R}_{+}^{\mathcal{C}}, z \in \mathbb{R}_{+}^{\mathcal{D}}, \sum_{U \in \mathcal{C}} y(U) \chi^{U}-\sum_{U \in \mathcal{D}} z(U) \chi^{U}=w\right\}
\end{align*}
$$

Let y, z attain this minimum. Define

$$
\begin{equation*}
u:=\sum_{U \in \mathcal{C}} y(U) \chi^{U} \text { and } v:=\sum_{U \in \mathcal{D}} z(U) \chi^{U} \tag{49.55}
\end{equation*}
$$

So y attains

$$
\begin{equation*}
\min \left\{\sum_{U \in \mathcal{C}} y(U) f(U) \mid y \in \mathbb{R}_{+}^{\mathcal{C}}, \sum_{U \in \mathcal{C}} y(U) \chi^{U}=u\right\} \tag{49.56}
\end{equation*}
$$

and z attains

$$
\begin{equation*}
\max \left\{\sum_{U \in \mathcal{D}} z(U) g(U) \mid z \in \mathbb{R}_{+}^{\mathcal{D}}, \sum_{U \in \mathcal{D}} z(U) \chi^{U}=v\right\} . \tag{49.57}
\end{equation*}
$$

By Theorem 49.3, (49.56) has an optimum solution y with $\mathcal{F}:=\{U \in \mathcal{C} \mid$ $y(U)>0\}$ laminar. Similarly, (49.57) has an optimum solution z with $\mathcal{G}:=$ $\{U \in \mathcal{D} \mid z(U)>0\}$ laminar. Now \mathcal{F} and \mathcal{G} determine a totally unimodular submatrix (by Theorem 41.11), and hence by Theorem 5.35, (49.53) is boxTDI.

49.9. Submodular functions on a crossing family

Finally, we consider submodular functions defined on a crossing family. The results discussed above for submodular functions on intersecting families do not all transfer to crossing families. But certain restricted versions still hold.

A family \mathcal{C} of subsets of a set S is called a crossing family if for all $T, U \in \mathcal{C}$ one has:
(49.58) if $T \cap U \neq \emptyset$ and $T \cup U \neq S$, then $T \cap U, T \cup U \in \mathcal{C}$.

A function $f: \mathcal{C} \rightarrow \mathbb{R}$, defined on a crossing family \mathcal{C}, is called submodular on crossing pairs, or crossing submodular, if for all $T, U \in \mathcal{C}$ with $T \cap U \neq \emptyset$ and $T \cup U \neq S$:

$$
\begin{equation*}
f(T)+f(U) \geq f(T \cap U)+f(T \cup U) \tag{49.59}
\end{equation*}
$$

In general, the system

$$
\begin{equation*}
x(U) \leq f(U) \text { for } U \in \mathcal{C} \tag{49.60}
\end{equation*}
$$

is not TDI. For instance, if $S=\{1,2,3\}, \mathcal{C}=\{\{1,2\},\{1,3\},\{2,3\}\}$, from S, and $f(U):=1$ for each $U \in \mathcal{C}$, then (49.60) not even determines an integer polyhedron (as $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)^{\top}$ is a vertex of it).

However, for any $k \in \mathbb{R}$, the system

$$
\begin{align*}
& x(U) \leq f(U) \text { for } U \in \mathcal{C}, \tag{49.61}\\
& x(S)=k
\end{align*}
$$

is box-TDI. This can be done by reduction to Corollary 49.3a. Similarly for pairs of such functions. This was shown by Frank [1982b,1984a] and Fujishige [1984e].

Let \mathcal{C} be a crossing family of subsets of a set S. Let $\hat{\mathcal{C}}$ be the collection of all nonempty intersections of sets in \mathcal{C} (we allow the intersection of 0 sets, so $S \in \hat{\mathcal{C}}$. Since \mathcal{C} is a crossing family, we know

$$
\begin{equation*}
\hat{\mathcal{C}}=\{U \mid U \neq \emptyset ; \exists \mathcal{P} \subseteq \mathcal{C}: \mathcal{P} \text { is a copartition of } S \backslash U\} \tag{49.62}
\end{equation*}
$$

where a copartition of U is a collection \mathcal{P} of subsets of S such that the collection $\{S \backslash T \mid T \in \mathcal{P}\}$ is a partition of U. We call the copartition proper if $T \neq S$ for each $T \in \mathcal{P}$.

Note that, in (49.62), restricting \mathcal{P} to proper copartitions of $S \backslash U$, does not modify $\hat{\mathcal{C}}$. We allow $\mathcal{P}=\emptyset$, so $S \in \hat{\mathcal{C}}$.

Define $\hat{f}: \hat{\mathcal{C}} \rightarrow \mathbb{R}$ by:

$$
\begin{equation*}
\hat{f}(U):=\min \left\{\sum_{P \in \mathcal{P}} f(P) \mid \mathcal{P} \subseteq \mathcal{C} \text { is a proper copartition of } S \backslash U\right\} \tag{49.63}
\end{equation*}
$$

for $U \in \hat{\mathcal{C}}$. So $\hat{f}(S)=0$. Then:
Theorem 49.6. $\hat{\mathcal{C}}$ is an intersecting family and \hat{f} is submodular on intersecting pairs.

Proof. Define, for $s \in S$,

$$
\begin{equation*}
\hat{\mathcal{C}}_{s}:=\{U \in \hat{\mathcal{C}} \mid s \in U\} \text { and } \mathcal{D}:=\{S \backslash U \mid s \in U \in \mathcal{C}\} . \tag{49.64}
\end{equation*}
$$

As \mathcal{C} is crossing, \mathcal{D} is intersecting. Hence $\check{\mathcal{D}}$ is a lattice family. As $\hat{\mathcal{C}}_{s}=$ $\{S \backslash U \mid U \in \check{\mathcal{D}}\}$, also $\hat{\mathcal{C}_{s}}$ is a lattice family. As this is true for each $s \in S, \hat{\mathcal{C}}$ is intersecting.

To prove that \hat{f} is intersecting submodular, it suffices to show that for each $s \in S$, the restriction \hat{f}_{s} of \hat{f} to $\hat{\mathcal{C}}_{s}$ is submodular. Define $g: \mathcal{D} \rightarrow \mathbb{R}$ by $g(U):=f(S \backslash U)$ for $U \in \mathcal{D}$. Then g is intersecting submodular (as f is crossing submodular). Hence, by Theorem 49.4, \check{g} is submodular on \mathcal{D}. As $\hat{f}_{s}(U)=\check{g}(S \backslash U)$ for $U \in \hat{\mathcal{C}}_{s}, \hat{f}_{s}$ is submodular.

Fujishige [1984e] showed that the following box-TDI result can be derived from Corollary 49.3a:

Theorem 49.7. Let \mathcal{C} be a crossing family of subsets of S, let $f: \mathcal{C} \rightarrow \mathbb{R}$ be crossing submodular, and let $k \in \mathbb{R}$. Then system (49.61) is box-TDI and determines the polyhedron of maximal vectors of $E P_{f^{\prime}}$ for some submodular function f^{\prime} defined on a lattice family.

Proof. We can assume that $k=0$, since, choosing any $t \in S$ and resetting $f(U):=f(U)-k$ for all $U \in \mathcal{C}$ with $t \in U$, does not change the box-total dual integrality of (49.61). We can also assume that $\emptyset \notin \mathcal{C}$.

The box-total dual integrality of (49.61) follows from that of

$$
\begin{align*}
& x(U) \leq \hat{f}(U) \quad \text { for } U \in \hat{\mathcal{C}} \tag{49.65}\\
& x(S)=0
\end{align*}
$$

as (49.65) and (49.61) have the same solution set, and as each constraint in (49.65) is a nonnegative integer combination of constraints in (49.61). The box-total dual integrality of (49.65) follows from Corollary 49.3a (using Theorem 5.25). It also shows that the solution set of (49.61) is the set of maximal vectors of $E P_{f^{\prime}}$ for some submodular function f^{\prime} defined on a lattice family.

Frank and Tardos [1984b] observed that this implies a relation with matroids:

Corollary 49.7a. If \mathcal{C} is a crossing family of subsets of a set $S, f: \mathcal{C} \rightarrow \mathbb{Z}$ is crossing submodular, and $k \in \mathbb{Z}$, then the collection

$$
\begin{equation*}
\{B \subseteq S||B|=k,|B \cap U| \leq f(U) \text { for each } U \in \mathcal{C}\} \tag{49.66}
\end{equation*}
$$

forms the collection of bases of a matroid (if nonempty).
Proof. Directly from Theorem 49.7, using the observations on (44.43) and (49.11).

Similarly, the box-total dual integrality of pairs of such systems follows:
Theorem 49.8. For $i=1,2$, let \mathcal{C}_{i} be a crossing family of subsets of a set S, let $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{R}$ be crossing submodular, and let $k \in \mathbb{R}$. Then the system

$$
\begin{align*}
& x(U) \leq f_{1}(U) \text { for } U \in \mathcal{C}_{1} \tag{49.67}\\
& x(U) \leq f_{2}(U) \text { for } U \in \mathcal{C}_{2} \\
& x(S)=k
\end{align*}
$$

is box-TDI.
Proof. Similar to the proof of the previous theorem, by reduction to Corollary 49.3b.

This implies the integrality of polyhedra:
Corollary 49.8a. For $i=1,2$, let \mathcal{C}_{i} be a crossing family of subsets of a set S, let $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{R}$ be crossing submodular, and let $k \in \mathbb{R}$. If f_{1}, f_{2}, and k are integer, system (49.67) determines a box-integer polyhedron.

Proof. Directly from Theorem 49.8 .

49.10. Complexity

The reduction given in the proof of Theorem 49.6 also enables us to calculate $\hat{f}(U)$ from a value giving oracle for f, similar to the proof in Section 49.7. We assume that \mathcal{C} is given by descriptions of the lattice families $\mathcal{C}_{s, t}:=\{U \in$ $\mathcal{C} \mid s \in U, t \notin U\}$ as in Section 49.3.

Note that

$$
\begin{equation*}
E P_{\hat{f}} \cap\{x \mid x(S)=0\}=E P_{f} \cap\{x \mid x(S)=0\} \tag{49.68}
\end{equation*}
$$

This follows from the fact that if $x \in E P_{f}$ and $x(S)=0$, then for any $U \in \hat{\mathcal{C}}$ and any proper copartition $\mathcal{P}=\left\{U_{1}, \ldots, U_{p}\right\}$ of $S \backslash U$ with $f(U)=$ $\sum_{P \in \mathcal{P}} f(P)$, one has:

$$
\begin{align*}
& x(U)=-x(S \backslash U)=-\sum_{P \in \mathcal{P}} x(S \backslash P)=\sum_{P \in \mathcal{P}} x(P) \leq \sum_{P \in \mathcal{P}} f(P) \tag{49.69}\\
& =f(U)
\end{align*}
$$

Having this, the problem of maximizing $w^{\top} x$ over $E P_{f} \cap\{x \mid x(S)=0\}$, where f is crossing submodular, is reduced to the problem of maximizing $w^{\top} x$ over $E P_{\hat{f}} \cap\{x \mid x(S)=0\}$. The latter problem can be solved in strongly polynomial time by the results of Section 49.7. Similar results hold for intersections of two such polyhedra:

Theorem 49.9. For crossing families $\mathcal{C}_{1}, \mathcal{C}_{2}$ of subsets of a set S, crossing submodular functions $f_{1}: \mathcal{C}_{1} \rightarrow \mathbb{Q}$ and $f_{2}: \mathcal{C}_{2} \rightarrow \mathbb{Q}, k \in \mathbb{Q}$, and $w \in \mathbb{Q}^{S}$, one
can find an $x \in E P_{f_{1}} \cap E P_{f_{2}}$ with $x(S)=k$ and maximizing $w^{\top} x$ in strongly polynomial time.

Proof. From the above.
If \mathcal{C} is a crossing family and $f: \mathcal{C} \rightarrow \mathbb{Q}$ is crossing submodular, then we can find its minimum value in polynomial time, as, for each $s, t \in S$, we can minimize f over the lattice family $\{U \in \mathcal{C} \mid s \in U, t \notin U\}$, and take the minimum of all these minima, and of the values in \emptyset and S (if in \mathcal{C}).

Hence we can decide in polynomial time if a given vector $x \in \mathbb{Q}^{S}$ belongs to $E P_{f}$, by testing if the minimum value of the crossing submodular function $g: \mathcal{C} \rightarrow \mathbb{Q}$ defined by
(49.70) $\quad g(U):=f(U)-x(U)$
for $U \in \mathcal{C}$, is nonnegative.

49.10a. Nonemptiness of the base polyhedron

Let \mathcal{C} be a crossing family of subsets of a set S and let $f: \mathcal{C} \rightarrow \mathbb{R}$ be crossing submodular. We give a theorem of Fujishige [1984e] characterizing when $E P_{f}$ contains a vector x with $x(S)=0$. If $S \in \mathcal{C}$ and $f(S)=0$, then the set $E P_{f} \cap\{x \mid x(S)=0\}$ is called the base polyhedron of f.

To give the characterization, again call a collection $\mathcal{P} \subseteq \mathcal{C}$ a copartition of S if the collection $\{S \backslash U \mid U \in \mathcal{P}\}$ is a partition of S.

Theorem 49.10. $E P_{f}$ contains a vector x satisfying $x(S)=0$ if and only if
(49.71) $\quad \sum_{U \in \mathcal{P}} f(U) \geq 0$
for each partition or copartition $\mathcal{P} \subseteq \mathcal{C}$ of S. If moreover f is integer, there exists an integer such vector x.

Proof. The condition is necessary, since if $x \in E P_{f}$ satisfies $x(S)=0$ and $\mathcal{P} \subseteq \mathcal{C}$ is a partition of S, then

$$
\begin{equation*}
\sum_{U \in \mathcal{P}} f(U) \geq \sum_{U \in \mathcal{P}} x(U)=x(S)=0 . \tag{49.72}
\end{equation*}
$$

Similarly, if $\mathcal{P} \subseteq \mathcal{C}$ is a copartition of S, then

$$
\begin{equation*}
\sum_{U \in \mathcal{P}} f(U) \geq \sum_{U \in \mathcal{P}} x(U)=\sum_{U \in \mathcal{P}}(x(S)-x(S \backslash U))=|\mathcal{P}| x(S)-x(S)=0 . \tag{49.73}
\end{equation*}
$$

To see sufficiency, let $\mathcal{D}:=\hat{\mathcal{C}}$ and $g:=\hat{f}$ (cf. (49.62)). By Theorem 49.6, \mathcal{D} is an intersecting family and g is intersecting submodular. Moreover, $S \in \mathcal{D}$. Let $\mathcal{E}:=\overline{\mathcal{D}}$ and $h:=\check{g}$. By Theorem 49.4, \mathcal{E} is a lattice family and h is submodular.

Now if $E P_{h}$ contains a vector x with $x(S)=0$, then $x \in E P_{g}$, and hence $x \in E P_{f}$ (using $x(S)=0$). So it suffices to show that $E P_{h}$ contains a vector x with $x(S)=0$.

By Corollary 49.1c, in order to show this, it suffices to show that $h(S) \geq 0$. The solution can be taken integer if f (hence h) is integer.

Suppose $h(S)<0$. Since $h=\check{g}, \mathcal{D}$ contains a proper partition \mathcal{P} of S with

$$
\begin{equation*}
h(S)=\sum_{U \in \mathcal{P}} g(U) \tag{49.74}
\end{equation*}
$$

Since $g=\hat{f}$, for each $U \in \mathcal{P}, \mathcal{C}$ contains a proper copartition \mathcal{Q}_{U} of $S \backslash U$ such that

$$
\begin{equation*}
g(U)=\sum_{T \in \mathcal{Q}_{U}} f(T) \tag{49.75}
\end{equation*}
$$

Let \mathcal{F} be the family consisting of the union of the \mathcal{Q}_{U} over $U \in \mathcal{P}$, taking multiplicities into account. Then
(49.76) (i) all elements of S are contained in the same number of sets in \mathcal{F};
(ii) $\sum_{T \in \mathcal{F}} f(T)<0$.

Now apply the following operation as often as possible to \mathcal{F} : if $T, W \in \mathcal{F}$ with $T \cap W \neq \emptyset, T \cup W \neq S$, and $T \nsubseteq W \nsubseteq T$, replace T and W by $T \cap W$ and $T \cup W$. This maintains (49.76) and decreases $\sum_{T \in \mathcal{F}}|T||S \backslash T|$ (by Theorem 2.1). So the process terminates, and we end up with a cross-free family: for all $T, W \in \mathcal{F}$ we have $T \subseteq W$ or $W \subseteq T$ or $T \cap W=\emptyset$ or $T \cup W=S$.

We show that \mathcal{F} contains a partition or copartition \mathcal{P} of S. By (49.71), $\mathcal{F} \backslash$ \mathcal{P} again satisfies (49.76), and hence we can repeat. We end up with \mathcal{F} empty, a contradiction.

To show that \mathcal{F} contains a partition or copartition of S, choose $U \in \mathcal{F}$. If $U=\emptyset$ or $U=S$ we are done (taking $\mathcal{P}:=\{U\}$). So we can assume that $\emptyset \neq U \neq S$. Let \mathcal{X} be the collection of inclusionwise maximal subsets of $S \backslash U$ that belong to \mathcal{F}. Let \mathcal{Y} be the collection of inclusionwise minimal supersets of $S \backslash U$ that belong to \mathcal{F}. Since \mathcal{F} is cross-free and $U \neq \emptyset$, the sets in \mathcal{X} are pairwise disjoint. Similarly, the complements of the sets in \mathcal{Y} are pairwise disjoint.

If $\bigcup \mathcal{X}=S \backslash U$, then $\mathcal{X} \cup\{U\}$ is a partition of S as required. If $\bigcap \mathcal{Y}=S \backslash U$, then $\mathcal{Y} \cup\{U\}$ is a copartition of S as required. So we can assume that there exist $s \in(S \backslash U) \backslash \bigcup \mathcal{X}$ and $t \in U \cap \bigcap \mathcal{Y}$. Since each element of S is contained in the same number of sets in \mathcal{F}, and since $s \notin U$, and $t \in U$, there exists a $T \in \mathcal{F}$ with $s \in T$ and $t \notin T$. So $T \nsubseteq U \nsubseteq T$.

Hence $T \cap U=\emptyset$ or $T \cup U=S$. However, if $T \cap U=\emptyset$, then T is contained in some set in \mathcal{X}, and hence $s \in T \subseteq \bigcup \mathcal{X}$, a contradiction. If $T \cup U=S$, then T contains some set in \mathcal{Y}, and hence $t \notin T \supseteq \bigcap \mathcal{Y}$, again a contradiction.

This theorem will be used in proving Theorem 61.8.
Fujishige and Tomizawa [1983] characterized the vertices of the base polyhedron of a submodular function defined on a lattice family.

49.11. Further results and notes

49.11a. Minimizing a submodular function over a subcollection of a lattice family

In Section 45.7 we saw that the minimum of a submodular function over the odd subsets can be found in strongly polynomial time. A generalization of minimizing a submodular function over the odd subsets (cf. Section 45.7), was given by Grötschel,

Lovász, and Schrijver [1981,1984a] (the latter paper corrects a serious flaw in the first paper found by A. Frank). This was extended by Goemans and Ramakrishnan [1995] to the following.

Let \mathcal{C} be a lattice family and let \mathcal{D} be a subcollection of \mathcal{C} with the following property:
(49.77) for all $X, Y \in \mathcal{C} \backslash \mathcal{D}: X \cap Y \in \mathcal{D} \Longleftrightarrow X \cup Y \in \mathcal{D}$

Examples are: $\mathcal{D}:=\{X \in \mathcal{C}| | X \mid \not \equiv q(\bmod p)\}$ for some natural numbers p, q, and $\mathcal{D}:=\mathcal{C} \backslash \mathcal{A}$ for some antichain or some sublattice $\mathcal{A} \subseteq \mathcal{C}$.

To prove that for a submodular function on \mathcal{C}, the minimum over \mathcal{D} can be found in strongly polynomial time, Goemans and Ramakrishnan gave the following interesting lemma:

Lemma 49.11 α. Let \mathcal{C} be a lattice family, let f be a submodular function on \mathcal{C}, let $\mathcal{D} \subseteq \mathcal{C}$ satisfy (49.77), and let U minimize $f(U)$ over $U \in \mathcal{D}$. If $U \neq \emptyset$, then there exists a $u \in U$ such that $f(W) \geq f(U)$ for each subset W of U with $W \in \mathcal{C}$ and $u \in W$.

Proof. Suppose not. Then for each $u \in U$ there exists a $W_{u} \in \mathcal{C}$ satisfying $u \in$ $W_{u} \subseteq U$ and $f\left(W_{u}\right)<f(U)$. Choose each W_{u} inclusionwise maximal with this property. Then

$$
\begin{equation*}
f\left(\bigcap_{u \in T} W_{u}\right)<f(U) \tag{49.78}
\end{equation*}
$$

for each nonempty $T \subseteq U$. To prove this, choose a counterexample T with $|T|$ minimal. Then $|T|>1$, since $f\left(W_{u}\right)<f(U)$ for each $u \in U$. Choose $t \in T$. Since $\bigcap_{u \in T} W_{u} \neq \bigcap_{u \in T-t} W_{u}$ by the minimality of T, we know that $\bigcap_{u \in T-t} W_{u} \nsubseteq W_{t}$, and hence W_{t} is a proper subset of $\left(\bigcap_{u \in T-t} W_{u}\right) \cup W_{t}$. So by the maximality of $W_{t}, f\left(\left(\bigcap_{u \in T-t} W_{u}\right) \cup W_{t}\right) \geq f(U)$. Hence

$$
\begin{align*}
& f(U) \leq f\left(\bigcap_{u \in T} W_{u}\right)=f\left(\left(\bigcap_{u \in T-t} W_{u}\right) \cap W_{t}\right) \tag{49.79}\\
& \leq f\left(\bigcap_{u \in T-t} W_{u}\right)+f\left(W_{t}\right)-f\left(\left(\bigcap_{u \in T-t} W_{u}\right) \cup W_{t}\right) \\
& <f(U)+f(U)-f(U)=f(U)
\end{align*}
$$

a contradiction.
This shows (49.78), which implies

$$
\begin{equation*}
\bigcap_{u \in T} W_{u} \notin \mathcal{D} \tag{49.80}
\end{equation*}
$$

for each nonempty $T \subseteq U$.
This can be extended to:

$$
\begin{equation*}
X:=\left(\bigcap_{u \in T} W_{u}\right) \cap\left(\bigcup_{u \in V} W_{u}\right) \notin \mathcal{D} \tag{49.81}
\end{equation*}
$$

for all disjoint $T, V \subseteq U$ with V nonempty. Suppose to the contrary that $X \in$ \mathcal{D}. Choose such X with $|V|$ minimal. By (49.80), $|V| \geq 2$. Choose $v \in V$. The minimality of V gives

$$
\begin{equation*}
\left(\bigcap_{u \in T} W_{u}\right) \cap W_{v} \notin \mathcal{D} \text { and }\left(\bigcap_{u \in T} W_{u}\right) \cap\left(\bigcup_{u \in V \backslash\{v\}} W_{u}\right) \notin \mathcal{D} . \tag{49.82}
\end{equation*}
$$

By assumption, the union of these sets belongs to \mathcal{D}. Hence, by (49.77), also their intersection belongs to \mathcal{D}; that is

$$
\begin{equation*}
\left(\bigcap_{u \in T \cup\{v\}} W_{u}\right) \cap\left(\bigcup_{u \in V \backslash\{v\}} W_{u}\right) \in \mathcal{D} \tag{49.83}
\end{equation*}
$$

This contradicts the minimality of $|V|$.
This proves (49.81), which gives for $T:=\emptyset$ and $V:=U$ a contradiction, since then $X=U \in \mathcal{D}$.

This lemma is used in proving the following theorem, where we assume that \mathcal{C} is given as in Section 49.3, f is given by a value giving oracle, and \mathcal{D} is given by an oracle telling if any given set in \mathcal{C} belongs to \mathcal{D} :

Theorem 49.11. Given a submodular function f on a lattice family \mathcal{C}, and a subcollection \mathcal{D} of \mathcal{C} satisfying (49.77), a set U minimizing $f(U)$ over $U \in \mathcal{D}$ can be found in strongly polynomial time.

Proof. We describe the algorithm. For all distinct $s, t \in S$ define

$$
\begin{equation*}
\mathcal{C}_{s, t}:=\{U \in \mathcal{C} \mid s \in U, t \notin U\} . \tag{49.84}
\end{equation*}
$$

Let $U_{s, t}$ be the inclusionwise minimal set minimizing f over $\mathcal{C}_{s, t}$. ($U_{s, t}$ can be found by minimizing a slight perturbation of f.) Choose in

$$
\begin{equation*}
\{\emptyset, S\} \cup\left\{U_{s, t} \mid s, t \in S\right\} \tag{49.85}
\end{equation*}
$$

a $U \in \mathcal{D}$ minimizing f. Then U minimizes f over \mathcal{D}.
To see this, we must show that set (49.85) contains a set minimizing f over \mathcal{D}. Let W be a set minimizing f over \mathcal{D}, with $|W|$ minimal. If $W \in\{\emptyset, S\}$ we are done. So we can assume that $W \notin\{\emptyset, S\}$. By Lemma 49.11α (applied to the function $\tilde{f}(X):=f(S \backslash X)$ for $X \subseteq S)$, there exists an element $t \in S \backslash W$ such that each $T \supseteq W$ with $t \notin T$ satisfies $f(T) \geq f(W)$.

The lemma also gives the existence of an $s \in W$ such that each $T \subset W$ with $s \in$ T satisfies $f(T)>f(W)$. Indeed, for small enough $\varepsilon>0, W$ minimizes $f(X)+\varepsilon|X|$ over $X \in \mathcal{D}$. Hence, by Lemma 49.11α, there exists an $s \in W$ such that each $T \subseteq W$ with $s \in T$ satisfies $f(T)+\varepsilon|T| \geq f(W)+\varepsilon|W|$. This implies $f(T)>f(W)$ if $T \neq W$.

We show that $W=U_{s, t}$. Indeed, W minimizes f over $\mathcal{C}_{s, t}$, since

$$
\begin{align*}
& f\left(U_{s, t}\right) \geq f\left(W \cap U_{s, t}\right)+f\left(W \cup U_{s, t}\right)-f(W) \geq f(W)+f(W)-f(W) \tag{49.86}\\
& =f(W) .
\end{align*}
$$

Moreover, $W \subseteq U_{s, t}$, as otherwise $W \cap U_{s, t} \subset W$, implying that the second inequality in (49.86) would be strict.

So $f(W)=f\left(U_{s, t}\right)$, and hence, by the minimality of $U_{s, t}$, we have $W=U_{s, t}$.
It is interesting to note that this algorithm implies that the set $\{\emptyset, S\} \cup\left\{U_{s, t} \mid\right.$ $s, t \in S\}$ contains a set minimizing f over \mathcal{D}, for any nonempty subcollection \mathcal{D} of \mathcal{C} satisfying (49.77).

Goemans and Ramakrishnan showed that if \mathcal{C} and \mathcal{D} are symmetric (that is, $U \in \mathcal{C} \Longleftrightarrow S \backslash U \in \mathcal{C}$, and similarly for $\mathcal{D})$ and $\emptyset \notin \mathcal{D}$, then (49.77) is equivalent to: if $X, Y \in \mathcal{C} \backslash \mathcal{D}$ are disjoint, then $X \cup Y \in \mathcal{C} \backslash \mathcal{D}$.

Related work was reported by Benczúr and Fülöp [2000].

49.11b. Generalized polymatroids

We now describe a generalization, given by Frank [1984b], that comprises suband supermodular functions, and (extended) polymatroids and contrapolymatroids. (Hassin [1978,1982] described the case $\mathcal{C}=\mathcal{D}=\mathcal{P}(S)$.)

Let \mathcal{C} and \mathcal{D} be intersecting families of subsets of a finite set S and let $f: \mathcal{C} \rightarrow \mathbb{R}$ and $g: \mathcal{D} \rightarrow \mathbb{R}$. We say that the pair (f, g) is paramodular if
(49.87) (i) f is submodular on intersecting pairs,
(ii) g is supermodular on intersecting pairs,
(iii) if $T \in \mathcal{C}$ and $U \in \mathcal{D}$ with $T \backslash U \neq \emptyset$ and $U \backslash T \neq \emptyset$, then $T \backslash U \in \mathcal{C}$ and $U \backslash T \in \mathcal{D}$, and

$$
f(T \backslash U)-g(U \backslash T) \leq f(T)-g(U)
$$

If (f, g) is paramodular, the solution set P of the system (for $x \in \mathbb{R}^{S}$):

$$
\begin{align*}
& x(U) \leq f(U) \quad \text { for } U \in \mathcal{C} \tag{49.88}\\
& x(U) \geq g(U) \quad \text { for } U \in \mathcal{D}
\end{align*}
$$

is called a generalized polymatroid (determined by (f, g)).
Generalized polymatroids generalize polymatroids (where $g(U)=0$ for each $U \subseteq S$), extended polymatroids (where $\mathcal{D}=\emptyset$), contrapolymatroids (where $\mathcal{C}=\emptyset$ and $g(\{s\}) \geq 0$ for each $s \in S$), and extended contrapolymatroids (where $\mathcal{C}=\emptyset$).

The intersection of a generalized polymatroid with a 'box' $\{x \mid d \leq x \leq c\}$ (for $d, c \in \mathbb{R}^{S}$) is again a generalized polymatroid: we can add $\{s\}$ to \mathcal{C} and to \mathcal{D} if necessary, and (re)define $f(\{s\}):=w(s)$ and $g(\{s\}):=d(s)$, if necessary. This transformation does not violate the paramodularity of (f, g).

Another transformation is as follows. Let $P \subseteq \mathbb{R}^{S}$ be a generalized polymatroid and let $\kappa, \lambda \in \mathbb{R}$. Let t be a new element and let $S^{\prime}:=S \cup\{t\}$. Let P^{\prime} be the polyhedron in $\mathbb{R}^{S^{\prime}}$ given by

$$
\begin{equation*}
P^{\prime}:=\{(x, \eta) \mid x \in P, \lambda \leq x(S)+\eta \leq \kappa\} . \tag{49.89}
\end{equation*}
$$

Then P^{\prime} again is a generalized polymatroid, determined by the functions obtained by extending \mathcal{C} and \mathcal{D} with S^{\prime} and extending f, g with the values $f\left(S^{\prime}\right):=\kappa$ and $g\left(S^{\prime}\right):=\lambda$.

The class of generalized polymatroids is closed under projections. That is, for any generalized polymatroid $P \subseteq \mathbb{R}^{S}$ and any $t \in S$, the set

$$
\begin{equation*}
P^{\prime}:=\left\{x \in \mathbb{R}^{S-t} \mid \exists \eta:(x, \eta) \in P\right\} \tag{49.90}
\end{equation*}
$$

is again a generalized polymatroid. This will be shown as Corollary 49.13c.
The following theorem will imply that system (49.88) is TDI. Hence, if f and g are integer, then P is integer.

Theorem 49.12. System (49.88) is box-TDI.
Proof. Let t be a new element. Define

$$
\begin{equation*}
\mathcal{B}:=\mathcal{C} \cup\{(S \backslash D) \cup\{t\} \mid D \in \mathcal{D}\} . \tag{49.91}
\end{equation*}
$$

Then \mathcal{B} is a crossing family of subsets of $S \cup\{t\}$. Define $e: \mathcal{B} \rightarrow \mathbb{R}$ by: $e(C):=f(C)$ for $C \in \mathcal{C}$ and $e((S \backslash D) \cup\{t\}):=-g(D)$ for $D \in \mathcal{D}$. Then e is crossing submodular. Hence, by Theorem 49.7, system

$$
\begin{align*}
& x(U) \leq e(U) \quad \text { for } U \in \mathcal{B} \tag{49.92}\\
& x(S \cup\{t\})=0,
\end{align*}
$$

is box-TDI. Therefore, by Theorem 5.27, system (49.88) is box-TDI.

This gives for the integrality of generalized polymatroids:
Corollary 49.12a. If (f, g) is paramodular and f and g are integer, the generalized polymatroid is box-integer.

Proof. Directly from Theorem 49.12.
More generally one has the box-total dual integrality of the system

$$
\begin{array}{ll}
x(U) \leq f_{1}(U) & \text { for } U \in \mathcal{C}_{1} \tag{49.93}\\
x(U) \geq g_{1}(U) & \text { for } U \in \mathcal{D}_{1} \\
x(U) \leq f_{2}(U) & \text { for } U \in \mathcal{C}_{2} \\
x(U) \geq g_{2}(U) & \text { for } U \in \mathcal{D}_{2}
\end{array}
$$

for pairs of paramodular pairs $\left(f_{i}, g_{i}\right)$:

Corollary 49.12b. For $i=1,2$, let \mathcal{C}_{i} and \mathcal{D}_{i} be intersecting families and let $f_{i}: \mathcal{C}_{i} \rightarrow \mathbb{R}, g_{i}: \mathcal{D}_{i} \rightarrow \mathbb{R}$ form a paramodular pair. Then system (49.93) is boxTDI.

Proof. Similar to the proof of Theorem 49.12, by reduction to Theorem 49.8.
This gives for primal integrality:

Corollary 49.12c. If f_{1}, g_{1}, f_{2} and g_{2} are integer, the intersection of the associated generalized polymatroids is box-integer.

Proof. Directly from Corollary 49.12b.

Another consequence is the following box-TDI result of McDiarmid [1978]:
Corollary 49.12d. Let f_{1} and f_{2} be submodular set functions on a set S and let $\lambda, \kappa \in \mathbb{R}$. Then the system
(49.94)

$$
\begin{array}{ll}
x(U) \leq f_{1}(U) & \text { for } U \subseteq S \\
x(U) \leq f_{2}(U) & \text { for } U \subseteq S \\
\lambda \leq x(S) \leq \kappa &
\end{array}
$$

is box-TDI.
Proof. Redefine $f_{1}(S):=\min \left\{f_{1}(S), \kappa\right\}$, and define $g_{1}:\{S\} \rightarrow \mathbb{R}$ by $g_{1}(S):=\lambda$, and $g_{2}: \emptyset \rightarrow \mathbb{R}$. Then $\left(f_{1}, g_{1}\right)$ and $\left(f_{2}, g_{2}\right)$ are paramodular pairs, and the box-total
dual integrality of (49.94) is equivalent to the box-total dual integrality of (49.93).

From Corollary 49.12c one can derive that the intersection of two integer generalized polymatroids is integer again. To prove this, we show that for any integer generalized polymatroid P there exists a paramodular pair (f, g) determining P, with f and g integer.

Let P be a generalized polymatroid, determined by the paramodular pair (f, g) of functions $f: \mathcal{C} \rightarrow \mathbb{R}$ and $g: \mathcal{D} \rightarrow \mathbb{R}$, where \mathcal{C} and \mathcal{D} are intersecting families. For any $U \subseteq S$, define

$$
\begin{equation*}
\tilde{f}(U):=\max \{x(U) \mid x \in P\} \text { and } \tilde{g}(U):=\min \{x(U) \mid x \in P\} . \tag{49.95}
\end{equation*}
$$

So \tilde{f} and \tilde{g} are integer if P is integer.
Let

$$
\begin{equation*}
\widetilde{\mathcal{C}}:=\{U \in \mathcal{C} \mid \tilde{f}(U)<\infty\} \text { and } \widetilde{\mathcal{D}}:=\{U \in \mathcal{D} \mid \tilde{g}(U)>-\infty\} . \tag{49.96}
\end{equation*}
$$

We restrict \tilde{f} and \tilde{g} to $\widetilde{\mathcal{C}}$ and $\widetilde{\mathcal{D}}$ respectively. We show that (\tilde{f}, \tilde{g}) is a paramodular pair determining P.

It is convenient to note that if $w \in \mathbb{R}^{S}$ with $w=w_{1}+w_{2}$, then

$$
\begin{equation*}
\max \left\{w^{\top} x \mid x \in P\right\} \leq \max \left\{w_{1}^{\top} x \mid x \in P\right\}+\max \left\{w_{2}^{\top} x \mid x \in P\right\} . \tag{49.97}
\end{equation*}
$$

Theorem 49.13. For any generalized polymatroid $P, \tilde{\mathcal{C}}$ and $\tilde{\mathcal{D}}$ are intersecting families, and the pair (\tilde{f}, \tilde{g}) is paramodular and determines P.

Proof. We first show the following. Let $w \in \mathbb{Z}^{S}$ and let $\lambda>0$ be such that $w_{s} \leq \lambda$ for each $s \in S$. Let $U:=\{s \in S \mid w(s)=\lambda\}$ and $w^{\prime}:=w-\chi^{U}$. Then

$$
\begin{equation*}
\max \left\{w^{\top} x \mid x \in P\right\}=\max \left\{w^{\prime \top} x \mid x \in P\right\}+\tilde{f}(U) \tag{49.98}
\end{equation*}
$$

Here \leq follows from (49.97), by definition of \tilde{f}. Equality is proved by induction on $|U|$, the case $U=\emptyset$ being trivial; so let $U \neq \emptyset$.

Let y, z be an optimum solution to the dual of $\max \left\{w^{\top} x \mid x \in P\right\}$:

$$
\begin{align*}
\min \{ & \sum_{T \in \mathcal{C}} y_{T} f(T)-\sum_{T \in \mathcal{D}} z_{T} g(T) \mid \tag{49.99}\\
& \left.y \in \mathbb{R}_{+}^{\mathcal{C}}, z \in \mathbb{R}_{+}^{\mathcal{D}}, \sum_{T \in \mathcal{C}} y_{T} \chi^{T}-\sum_{T \in \mathcal{D}} z_{T} \chi^{T}=w\right\} .
\end{align*}
$$

Define $\mathcal{F}:=\left\{T \in \mathcal{C} \mid y_{T}>0\right\}$ and $\mathcal{G}:=\left\{T \in \mathcal{D} \mid z_{T}>0\right\}$. Similarly to Theorem 49.3, we can assume that $\mathcal{F} \cup \mathcal{G}$ is laminar.

Choose $u \in U$, and let W be an inclusionwise minimal set in \mathcal{F} containing u. (Such a set exists, as $w(s)=\lambda>0$.) Let \mathcal{H} be the collection of inclusionwise maximal sets in \mathcal{G} contained in $W-u$. As \mathcal{G} is laminar, the sets in \mathcal{H} are disjoint. Moreover, each $t \in W \backslash U$ is contained in some set in \mathcal{H} : since $w(t)<w(u)$ and since every set in \mathcal{F} containing u also contains t (as $t \in W$), there exists an $X \in \mathcal{G}$ with $t \in X$ and $u \notin X$; as $\mathcal{F} \cup \mathcal{G}$ is laminar, we know that $X \subseteq W-u$.

Now let $Y:=W \backslash \bigcup \mathcal{H}$. So Y is a nonempty subset of U. Define $w^{\prime \prime}:=w-\chi^{Y}$, let y^{\prime} be obtained from y by decreasing $y(W)$ by 1 , and let z^{\prime} be obtained from z by decreasing $y(H)$ by 1 for each $H \in \mathcal{H}$. So (since $\chi^{Y}=\chi^{W}-\sum_{H \in \mathcal{H}} \chi^{H}$)

$$
\begin{equation*}
\sum_{T \in \mathcal{C}} y^{\prime}(T) \chi^{T}-\sum_{T \in \mathcal{D}} z^{\prime}(T) \chi^{T}=w^{\prime \prime} \tag{49.100}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{f}(Y) \leq f(W)-\sum_{H \in \mathcal{H}} g(H) . \tag{49.101}
\end{equation*}
$$

Moreover, setting $U^{\prime}:=U \backslash Y$, we have (by (49.97))

$$
\begin{equation*}
\tilde{f}(U) \leq \tilde{f}(Y)+\tilde{f}\left(U^{\prime}\right) \tag{49.102}
\end{equation*}
$$

and by our induction hypothesis, as $\left|U^{\prime}\right|<|U|$,

$$
\begin{equation*}
\max \left\{w^{\prime \prime \top} x \mid x \in P\right\}=\max \left\{w^{\prime \top} x \mid x \in P\right\}+\tilde{f}\left(U^{\prime}\right) . \tag{49.103}
\end{equation*}
$$

Hence

$$
\begin{align*}
& \max \left\{w^{\top} x \mid x \in P\right\}=\sum_{T \in \mathcal{C}} y(T) f(T)-\sum_{T \in \mathcal{D}} z(T) g(T) \tag{49.104}\\
& =\sum_{T \in \mathcal{C}} y^{\prime}(T) f(T)-\sum_{T \in \mathcal{D}} z^{\prime}(T) g(T)+f(W)-\sum_{H \in \mathcal{H}} g(H) \\
& \geq \max \left\{w^{\prime \prime \top} x \mid x \in P\right\}+\tilde{f}(Y)=\max \left\{w^{\prime \top} x \mid x \in P\right\}+\tilde{f}\left(U^{\prime}\right)+\tilde{f}(Y) \\
& \geq \max \left\{w^{\prime \top} x \mid x \in P\right\}+\tilde{f}(U),
\end{align*}
$$

thus proving (49.98).
We next derive that \tilde{f} is submodular on intersecting pairs. Choose $X, Y \in \widetilde{\mathcal{C}}$ with $X \cap Y \neq \emptyset$. Define $w:=\chi^{X}+\chi^{Y}$. Then by (49.98) and (49.97),
(49.105) $\quad \tilde{f}(X \cap Y)+\tilde{f}(X \cup Y)=\max \left\{w^{\top} x \mid x \in P\right\} \leq \tilde{f}(X)+\tilde{f}(Y)$.

So $\tilde{\mathcal{C}}$ is an intersecting family and \tilde{f} is submodular on intersecting pairs. By symmetry, it follows that $\tilde{\mathcal{D}}$ is an intersecting family and \tilde{g} is supermodular on intersecting pairs.

Finally, to see that (f, g) is paramodular, let $X \in \mathcal{C}$ and $Y \in \mathcal{D}$. Define $w:=$ $\chi^{X}-\chi^{Y}$. Again, by (49.98) and (49.97),
(49.106)

$$
\tilde{f}(X \backslash Y)-\tilde{g}(Y \backslash X)=\max \left\{w^{\top} x \mid x \in P\right\} \leq \tilde{f}(X)-\tilde{g}(Y)
$$

So $\tilde{\mathcal{C}}$ and $\tilde{\mathcal{D}}$ are intersecting families, and the pair (\tilde{f}, \tilde{g}) is paramodular. It determines P, since P is determined by upper and lower bounds on $x(U)$ for subsets U of S.

Corollary 49.12a implies:
Corollary 49.13a. A generalized polymatroid P is integer if and only if there is a paramodular pair (f, g) defining P with f and g integer.

Proof. Sufficiency follows from Corollary 49.12a. Necessity follows from Theorem 49.13, as P is determined by (\tilde{f}, \tilde{g}), where \tilde{f} and \tilde{g} are integer if P is integer.

A second consequence is:
Corollary 49.13b. The intersection of two integer generalized polymatroids is integer.

Proof. Directly by combining Corollaries 49.12c and 49.13a.
We should note that the collections $\tilde{\mathcal{C}}$ and $\tilde{\mathcal{D}}$ found in the proof of Theorem 49.13 are lattice families and that $\underset{\sim}{\tilde{f}}$ and \tilde{g} are sub- and supermodular respectively. Moreover, $\tilde{f}(T \backslash U)-\tilde{g}(U \backslash T) \leq \tilde{f}(T)-\tilde{g}(U)$ for each pair $T \in \tilde{\mathcal{C}}, U \in \tilde{\mathcal{D}}$.

This implies that projections of generalized polymatroids are again generalized polymatroids (Frank [1984b]):

Corollary 49.13c. Let $P \subseteq \mathbb{R}^{S}$ be a generalized polymatroid and let $t \in S$. Define $S^{\prime}:=S-t$. Then the projection

$$
\begin{equation*}
P^{\prime}:=\left\{x \in \mathbb{R}^{S^{\prime}} \mid \exists \eta:(x, \eta) \in P\right\} \tag{49.107}
\end{equation*}
$$

is again a generalized polymatroid.
Proof. We can assume that P is nonempty, that \mathcal{C} and \mathcal{D} are lattice families, and that P is determined by a paramodular pair $(f, g)=(\tilde{f}, \tilde{g})$ as above. Let \mathcal{C}^{\prime} and \mathcal{D}^{\prime} be the collections of sets in \mathcal{C} and \mathcal{D} respectively not containing t. Let $f^{\prime}:=f \mid \mathcal{C}^{\prime}$ and $g^{\prime}:=g \mid \mathcal{D}^{\prime}$.

Trivially, $\left(f^{\prime}, g^{\prime}\right)$ is a paramodular pair. We claim that P^{\prime} is equal to the generalized polymatroid Q determined by $\left(f^{\prime}, g^{\prime}\right)$. Trivially, $P^{\prime} \subseteq Q$. To see the reverse inclusion, let $x \in Q$. Let η^{\prime} be the largest real such that $x(T-t)+\eta^{\prime} \leq f(T)$ for each $T \in \mathcal{C} \backslash \mathcal{C}^{\prime}$. Let $\eta^{\prime \prime}$ be the smallest real such that $x(U-t)+\eta^{\prime \prime} \geq g(U)$ for each $U \in \mathcal{D} \backslash \mathcal{D}^{\prime}$.

If $x \notin P^{\prime}$, then $\eta^{\prime}<\eta^{\prime \prime}$, and hence there exist $T \in \mathcal{C}$ and $U \in \mathcal{D}$ with $t \in T \cap U$ and $f(T)-x(T-t)<g(U)-x(U-t)$. Hence

$$
\begin{align*}
& x(T \backslash U)-x(U \backslash T)=x(T-t)-x(U-t)>f(T)-g(U) \tag{49.108}\\
& \geq f(T \backslash U)-g(U \backslash T)
\end{align*}
$$

This contradicts the fact that $x(T \backslash U) \leq f(T \backslash U)$ and $x(U \backslash T) \geq g(U \backslash T)$, as $x \in Q$.

For results on the dimension of generalized polymatroids, see Frank and Tardos [1988], which paper surveys generalized polymatroids and submodular flows. More results on generalized polymatroids are reported by Fujishige [1984b], Nakamura [1988b], Naitoh and Fujishige [1992], and Tamir [1995].

49.11c. Supermodular colourings

A colouring-type of result on supermodular functions was shown by Schrijver [1985]. We give the proof based on generalized polymatroids found by Tardos [1985b].

Theorem 49.14. Let \mathcal{C}_{1} and \mathcal{C}_{2} be intersecting families of subsets of a set S, let $g_{1}: \mathcal{C}_{1} \rightarrow \mathbb{Z}$ and $g_{2}: \mathcal{C}_{2} \rightarrow \mathbb{Z}$ be intersecting supermodular, and let $k \in \mathbb{Z}_{+}$with $k \geq 1$. Then S can be partitioned into classes L_{1}, \ldots, L_{k} such that
(49.109) $\quad g_{i}(U) \leq\left|\left\{j \in\{1, \ldots, k\} \mid L_{j} \cap U \neq \emptyset\right\}\right|$
for each $i=1,2$ and each $U \in \mathcal{C}_{i}$ if and only if

$$
\begin{equation*}
g_{i}(U) \leq \min \{k,|U|\} \tag{49.110}
\end{equation*}
$$

for each $i=1,2$ and each $U \in \mathcal{C}_{i}$.
Proof. Necessity is easy. Sufficiency is shown by induction on k, the case $k=0$ being trivial. By induction, it suffices to find a subset L of S such that

$$
\begin{equation*}
|U \backslash L| \geq g_{i}(U)-1 \text { and, if } g_{i}(U)=k, \text { then } U \cap L \neq \emptyset \tag{49.111}
\end{equation*}
$$

Indeed, in that case we can apply induction to the functions $g_{i}^{\prime}: \mathcal{C}_{i}^{\prime} \rightarrow \mathbb{Z}$ on $\mathcal{C}_{i}^{\prime}:=$ $\{U \backslash L \mid U \in \mathcal{C}\}$, defined by

$$
g_{i}^{\prime}(U \backslash L):= \begin{cases}g_{i}(U)-1 & \text { if } U \cap L \neq \emptyset \tag{49.112}\\ g_{i}(U) & \text { if } U \cap L=\emptyset\end{cases}
$$

for $U \in \mathcal{C}_{i}$.
For $i=1,2$, consider the system:
(i) $0 \leq x_{s} \leq 1$ for $s \in S$,
(ii) $\quad x(U) \leq|U|-g_{i}(U)+1 \quad$ for $U \in \mathcal{C}_{i}$,
(iii) $\quad x(U) \geq 1$
for $U \in \mathcal{C}_{i}$ with $g_{i}(U)=k$.

This system determines an integer generalized polymatroid. This can be seen as follows. Let \mathcal{D}_{i} be the collection of inclusionwise minimal sets in $\left\{U \in \mathcal{C}_{i} \mid g_{i}(U)=\right.$ $k\}$. So \mathcal{D}_{i} consists of disjoint sets (as \mathcal{C}_{i} is intersecting and as $g_{i}(U) \leq k$ for each $\left.U \in \mathcal{C}_{i}\right)$. Let
(49.114) $\quad \mathcal{C}_{i}^{\prime}:=\left\{U \in \mathcal{C}_{i} \mid \forall T \in \mathcal{D}_{i}: U \subseteq T\right.$ or $\left.T \cap U=\emptyset\right\}$.

Then (49.113) has the same solution set as:

$$
\begin{array}{lll}
\text { (i) } & 0 \leq x_{s} \leq 1 & \text { for } s \in S \tag{49.115}\\
\text { (ii) } & x(U) \leq|U|-g_{i}(U)+1 & \text { for } U \in \mathcal{C}_{i}^{\prime} \\
\text { (iii) } & x(U) \geq 1 & \text { for } U \in \mathcal{D}_{i}
\end{array}
$$

Indeed, (49.115)(iii) implies (49.113)(iii) (as $x \geq \mathbf{0}$). Moreover, for any $U \in \mathcal{C}_{i}$ with $T \cap U \neq \emptyset$ for some $T \in \mathcal{D}_{i}$, one has
(49.116) $\quad g_{i}(T \cap U) \geq g_{i}(T)+g_{i}(U)-g_{i}(T \cup U) \geq g_{i}(U)$
(as $\left.g_{i}(T \cup U) \leq k=g_{i}(T)\right)$. So with (49.115)(iii) we have:
(49.117)

$$
\begin{aligned}
& x(U) \leq x(T \cap U)+|U \backslash T| \leq|T \cap U|-g_{i}(T \cap U)+1+|U \backslash T| \\
& \leq|U|-g_{i}(U)+1
\end{aligned}
$$

(as $x_{s} \leq 1$ for all $x \in U \backslash T$). Hence (49.113) and (49.115) have the same solution set.

Now (49.115) is a system defining a generalized polymatroid, as one easily checks (condition (49.87)(iii) follows, since if $T \in \mathcal{C}_{i}^{\prime}$ and $U \in \mathcal{D}_{i}$ with $T \backslash U \neq \emptyset$ and $U \backslash T \neq \emptyset$, then, by definition of $\mathcal{C}_{i}^{\prime}, T$ and U are disjoint, and then the inequality in (49.87)(iii) is trivial). It is integer, as the right-hand sides in (49.115) are integer.

Also, the intersection of these generalized polymatroids for $i=1$ and $i=2$ is nonempty, since the vector $x:=k^{-1} \cdot \mathbf{1}$ belongs to it. (49.115)(i) and (iii) hold trivially. To see (ii), we have
(49.118)

$$
\begin{aligned}
& x(U)=\frac{1}{k}|U|=|U|-\frac{k-1}{k}|U| \leq|U|-\frac{k-1}{k} g_{i}(U)=|U|-g_{i}(U)+\frac{1}{k} g_{i}(U) \\
& \leq|U|-g_{i}(U)+1
\end{aligned}
$$

Therefore, the intersection contains an integer vector x, which is, by (49.115)(i), the incidence vector of some subset L of S satisfying (49.111), as required.

This theorem generalizes edge-colouring theorems for bipartite graphs $G=$ (V, E). Let V_{1} and V_{2} be the colour classes of G. Let $\mathcal{C}_{i}:=\left\{\delta(v) \mid v \in V_{i}\right\}$ for $i=1,2$. If we define $g_{i}(\delta(v)):=|\delta(v)|$ for $v \in V_{i}(i=1,2)$, Theorem 49.14 reduces to Kőnig's edge-colouring theorem (Theorem 20.1). If $g_{i}(\delta(v))$ is set to the minimum degree of G, we obtain Theorem 20.5, and if it is set to the minimum of k and $|\delta(v)|$, we obtain Theorem 20.6.

Theorem 49.14 can also be used in proving the 'disjoint bibranchings theorem' (Theorem 54.11 - see Section 54.7a). Szigeti [1999] gave a generalization of Theorem 49.14.

49.11d. Further notes

Let S and T be disjoint sets. A function $f: \mathcal{P}(S) \times \mathcal{P}(T) \rightarrow \mathbb{R}$ is called bisubmodular if
(49.119) $\quad f\left(X_{1} \cap X_{2}, Y_{1} \cup Y_{2}\right)+f\left(X_{1} \cup X_{2}, Y_{1} \cap Y_{2}\right) \leq f\left(X_{1}, Y_{1}\right)+f\left(X_{2}, Y_{2}\right)$
for all $X_{1}, X_{2} \subseteq S$ and $Y_{1}, Y_{2} \subseteq T$.
Bisubmodular functions were studied by Kung [1978b] and Schrijver [1978, 1979c]. Most of the results can be obtained from those for submodular functions, by considering the submodular set function f^{\prime} on $S \cup T$ defined by $f^{\prime}(X \cup Y):=$ $f((S \backslash X) \cup Y)$ for $X \subseteq S$ and $Y \subseteq T$. Similarly for bisupermodular functions, where the inequality sign in (49.119) is reversed.

For an interesting related result of Frank and Jordán [1995b] yielding Győri's theorem, see Section 60.3d.

Fujishige [1984c] gave a framework that includes Theorem 46.2 on the total dual integrality of the intersection of a polymatroid and a contrapolymatroid system, Corollary 46.2 b on the existence of a modular function between a sub- and a supermodular function, and Theorem 49.13 on the total dual integrality of the generalized polymatroid constraints (but not the total dual integrality of the intersection of two polymatroids). Fujishige [1984b] described generalized polymatroids as projections of base polyhedra of submodular functions.

Chandrasekaran and Kabadi [1988] introduced the concept of a generalized submodular function as a function $f: \mathcal{R} \rightarrow \mathbb{R}$, where $\mathcal{R}:=\{(T, U) \mid T, U \subseteq S, T \cap U=$ $\emptyset\}$ for some set S, satisfying

$$
\begin{align*}
& f(A, B)+f(C, D) \tag{49.120}\\
& \geq f(A \cap C, B \cap D)+f((A \backslash D) \cup(C \backslash B),(B \backslash C) \cup(D \backslash A))
\end{align*}
$$

for all $(A, B),(C, D) \in \mathcal{R}$. They showed that the system

$$
\begin{equation*}
x(T)-x(U) \leq f(T, U) \text { for }(T, U) \in \mathcal{R} \tag{49.121}
\end{equation*}
$$

is box-TDI, and that for any $w \in \mathbb{R}^{S}$, an x maximizing $w^{\top} x$ over (49.121) can be found by a variant of the greedy method. Unions of two such systems need not define an integer polyhedron if the functions are integer, as is shown by an example with $|S|=2$. A similar framework was considered by Nakamura [1990]. More results can be found in Dress and Havel [1986], Bouchet [1987a,1995], Bouchet, Dress, and

Havel [1992], Ando and Fujishige [1996], Fujishige [1997], and Fujishige and Iwata [2001].

It is direct to represent a lattice family on a set S of size n in $O\left(n^{2}\right)$ space (just by giving all pairs (u, v) for which each set in the family containing u also contains $v)$. Gabow [1993b, 1995c] gave an $O\left(n^{2}\right)$ representation for intersecting and crossing families. Related results were found by Fleiner and Jordán [1999].

Tardos [1985b] also studied generalized matroids, which form the special case of generalized polymatroids with 0,1 vertices. An instance of it we saw in the proof of Theorem 49.14.

More results on submodularity are given by Fujishige [1980b,1984f,1984g,1988], Nakamura [1988b,1988c,1993], Kabadi and Chandrasekaran [1990], Iwata [1995], Iwata, Murota, and Shigeno [1997], and Murota [1998]. Generalizations were studied by Qi [1988b] and Kashiwabara, Nakamura, and Takabatake [1999].

[^0]: 1 A perfect matching on a vertex set U in a digraph is a set of vertex-disjoint arcs such that U is the set of tails and heads of these arcs.

[^1]: ${ }^{2} \bigcup F$ denotes the union of the edges (as sets) in F.

[^2]: ${ }^{4}$ I will therefore call it the module law, and every dual group in which it holds, may be called a dual group of module type.

[^3]: ${ }^{5}$ 20. If m quantities $a_{1}, \ldots a_{m}$, that stand in no number relation to each other, are numerically derivable from n quantities $b_{1}, \ldots b_{n}$, then one can always add to the m quantities $a_{1}, \ldots a_{m}$ another $(n-m)$ quantities $a_{m+1}, \ldots a_{n}$ such that the quantities $b_{1}, \ldots b_{n}$ can also be derived numerically from $a_{1}, \ldots a_{n}$, and that hence the domain of the quantities $a_{1}, \ldots a_{n}$ is identical to the domain of the quantities $b_{1}, \ldots b_{n}$; one also can take those $(n-m)$ quantities from the quantities $b_{1}, \ldots b_{n}$ themselves.
 ${ }^{6}$ 1. If element a depends algebraically on the system S, then there is a finite subsystem S^{\prime} of S on which a depends algebraically.
 7 2. If S_{3} depends algebraically on S_{2}, and S_{2} on S_{1}, then S_{3} is algebraically dependent on S_{1}.

[^4]: 8 3. Every subsystem of an irreducible system is irreducible.
 4. Every reducible system contains a finite reducible subsystem.
 ${ }^{9}$ 6. If an irreducible system S becomes reducible by adding an element a, then a is algebraically dependent on S.
 107 . If S is an irreducible system (with respect to K), [and] the element a transcendent with respect to K, but algebraically dependent on S, then S contains a certain finite subsystem T with the following quality: a is algebraically dependent on T; every subsystem of S on which a depends algebraically, contains the system T; if any element from T is replaced by a, then S passes into an equivalent irreducible system; this property belongs to none of the other elements of S.
 11 8. Let U and B be finite irreducible systems of m and n elements respectively; let $n \leq m$ and let B be algebraically dependent on U. Then, in case $m=n$, the systems U and B are equivalent, but in case $n<m, U$ is equivalent to an irreducible system which consists of B and $m-n$ elements from U.
 12 If a module M possesses a base of p numbers, and it contains r linearly independent numbers $\beta_{1}, \ldots, \beta_{r}$, then it possesses also a base of p numbers, among which the numbers $\beta_{1}, \ldots, \beta_{r}$ all occur.

[^5]: 13 Theorem: All chains of an element A have the same number of members.

[^6]: ${ }^{14}$ Accordingly, the present book is invariably influenced by the pioneering 'Algebraic Theory of Fields' by Mr E. Steinitz, which be emphasized here once and for all. Further, following a suggestion by Miss E. Noether, the treatment of linear equations (cf. 9,1 to 9,4) leans on the presentation by Mr E. Steinitz (cf. the quotation in 9,0).
 15 The treatment of linear equations is (as far as it goes) made such that a part of the theorems obtained therewith transfers to systems of algebraically dependent elements, which will be discussed later (23,6).
 ${ }^{16}$ The relation of algebraic dependence has therefore the following properties:

 1. a is dependent on itself, that is, on the set $\{a\}$.
 2. If a is dependent on M, then it also depends on every superset of M.
 3. If a is dependent on M, then a is dependent already on a finite subset $\left\{m_{1}, \ldots, m_{n}\right\}$ of M (that can also be empty).
 4. If one chooses this subset minimal, then every m_{i} is dependent on a and the remaining m_{j}.

 Further it holds:
 5. If a is dependent on M and every element of M is dependent on N, then a is dependent on N.

[^7]: 17 In fact, the same rules 1 to 5 , that were formulated for algebraic dependence in $\S 61$, hold for the linear dependence considered there; one can transfer therefore all proofs word for word.
 18 Three principles suffice. The first one is fully self-evident.
 Principle 1. Every $u_{i}(i=1, \ldots, n)$ is linearly dependent on u_{1}, \ldots, u_{n}.
 Principle 2. If v is linearly dependent on u_{1}, \ldots, u_{n}, but not on u_{1}, \ldots, u_{n-1}, then u_{n} is linearly dependent on $u_{1}, \ldots, u_{n-1}, v$.
 [\cdots]
 Principle 3. If w is linearly dependent on v_{1}, \ldots, v_{s} and every $v_{j}(j=1, \ldots, s)$ is linearly dependent on u_{1}, \ldots, u_{n}, then w is linearly dependent on u_{1}, \ldots, u_{n}.

[^8]: ${ }^{21}$ In fact, Birkhoff [1935c] claimed the modular equality for the rank function of a partition lattice (page 448), but this must be a typo, witness the formulation of, and the reference in, the first footnote on that page.

[^9]: ${ }^{22}$ Indeed, also the existence statements seem to us a relatively inessential side issue of elementary geometry. Undoubtedly, we find as the really most substantial and most important special statements of elementary geometry those of the following pure form: 'If a sequence of geometric creations, that is, a number of points, lines etc., are given to us, and that in such a way, that those and those geometric position relations exist between the given points, lines etc. (coincidence, orthogonality, parallelism, "being a centre", and other), then a necessary consequence of this assumption is that also this certain further geometric position relation exists at the same time.' In theorems of this form, no existence statements occur. What is most important: not in the consequences. But then neither in the assumptions. We assume: If those and those things are given

[^10]: ${ }^{25}$ Basic assumption: We imagine ourselves a certain set of elements; $\mathcal{B}_{1} \ni$ $a_{1}, a_{2}, \cdots, a_{s}, \cdots$. For certain sequences of the elements, which we want to call cycles, we think the relations on them 'to hold' or 'to be valid', in notation $a_{1} \cdots a_{s}=0$, and 'not to hold' or 'not to be valid', in notation $a_{1} \cdots a_{s} \neq 0$, respectively. These relations now should satisfy the following axioms;

 $$
 \begin{array}{ll}
 \text { Axiom 1. (reflexivity) } & : \\
 \text { Axiom 2. (deduction) } & a a_{1} \\
 \text { Axiom 3. (exchange) } & : \\
 & a_{1} \cdots a_{s} \rightarrow a_{1} \cdots a_{s} x,(s=1,2, \cdots) . \\
 & a_{1} \cdots a_{i} \cdots a_{s} \rightarrow a_{i} \cdots a_{1} \cdots a_{s}, \\
 \text { Axiom 4. (transitivity) } & : \quad(s=2,3, \cdots ; i=2, \cdots, s) \\
 & \begin{array}{l}
 a_{1} \cdots a_{s} \neq 0, x a_{1} \cdots a_{s}, a_{1} \cdots a_{s} y \\
 \\
 \end{array} \quad \rightarrow x a_{1} \cdots a_{s-1} y,(s=1,2, \cdots) .
 \end{array}
 $$

 Definition I. Such a set \mathcal{B}_{1} is called the first connection space, in short, \mathcal{B}_{1}-space.
 26 Axiomatic introduction of a notion of dependence on a limit class. - Let D be a predicate relative to the finite unordered systems of points from a limit class \mathcal{L}, subject to the axioms (notation of Hilbert-Bernays)

[^11]: ${ }^{27}$ Lawler [1976b] wrote that this result was announced by Edmonds 'at least as long ago as 1964'.

[^12]: 28 as mentioned in the footnote on page 20 of Pym and Perfect [1970] (quoted in Section 42.6 f below).

[^13]: 29 This result was also given, without proof, by Rado [1966], saying that the argument of Horn [1955] for linear matroids can be extended to arbitrary matroids. The result con-

[^14]: firms a question of Rado [1962a,1962b] (in fact, the result also follows by an elementary construction from Rado's theorem (Corollary 41.1c) given in Rado [1942]).

[^15]: ${ }^{30}$ Horn [1955] thanked Rado 'for improvements in the setting out of the argument'. The result was also published, in the same journal, by Rado [1962a]. This paper does not mention Horn's paper. The proof by Rado [1962a] is the same as that of Horn [1955] and uses the same notation. But Rado [1966] said that the theorem was first proved by Horn [1955].

[^16]: ${ }^{31}$ For any strongly polynomial-time algorithm with one integer k as input, there is a number L and a rational function $q: \mathbb{Z} \rightarrow \mathbb{Q}$ such that if $k>L$, then the output equals $q(k)$. (This can be proved by induction on the number of steps of the algorithm, which is a fixed number as the input consists of only one number.) However, there do not exist a rational function q and number L such that for $k>L, q(k)=0$ if k is even, and $q(k)=1$ if k is odd.

[^17]: ${ }^{32}$ As we denote a matching by M, we denote a matroid, for the time being, just by (S, \mathcal{I}).

[^18]: ${ }^{33}$ This can be seen as follows. Let L be a field extension of field K, such that K is algebraically closed in L. Then if p is an irreducible polynomial in $K\left[x_{1}, \ldots, x_{n}\right]$, then p is irreducible also in $L\left[x_{1}, \ldots, x_{n}\right]$. For suppose to the contrary that $p=p_{1} p_{2}$ for nonconstant polynomials p_{1}, p_{2} in $L\left[x_{1}, \ldots, x_{n}\right]$. We can assume that p_{1} has at least one coefficient in K. Hence, as p is irreducible in $K\left[x_{1}, \ldots, x_{n}\right], p_{1}$ has at least one coefficient not in K. Choose a large enough natural number k such that substituting x_{i} by $x^{k^{i}}$ for $i=1, \ldots, n$, transforms p_{1} to a polynomial \tilde{p}_{1} in $L[x] \backslash K[x]$. Let $\tilde{p} \in K[x]$ be obtained similarly from p. Now the algebraic closure of K contains all roots of \tilde{p}, hence all roots of \tilde{p}_{1}, and hence all coefficients of \tilde{p}_{1}. As each element in $L \backslash K$ is transcendental over K, we have a contradiction.

[^19]: ${ }^{34}$ Here the distance of fundamental circuits C, D is the minimum length of a path connecting C and D. A path connecting C and D is a sequence $C=C_{0}, \ldots, C_{k}=D$ of fundamental circuits such that $C_{i-1} \cap C_{i} \neq \emptyset$ for $i=1, \ldots, k$. Its length is k.

[^20]: ${ }^{35}$ As usual, we use \prec for strict inequality and \preceq for nonstrict inequality. We refer to the order by the strict inequality sign \prec.

[^21]: ${ }^{36}$ This can be seen with Theorem 2.1: Make a copy \widetilde{S} of S, and, for any $U \subseteq S$, let \widetilde{U} be the set of copies of elements of U. Define $X_{T, U}:=T \cup(\widetilde{S} \backslash \widetilde{U})$. Then $|T|+|S \backslash U|=\left|X_{T, U}\right|$ and $|U|+|S \backslash T|=\left|(S \cup \widetilde{S}) \backslash X_{T, U}\right|$. Moreover, for (A, B) and (C, D) in \mathcal{R} we have $X_{A \cap C, B \cup D}=X_{A, B} \cap X_{C, D}$ and $X_{A \cup C, B \cap D}=X_{A, B} \cup X_{C, D}$. So the replacements decrease (46.37) by Theorem 2.1, since $X_{A, B} \nsubseteq X_{C, D} \nsubseteq X_{A, B}$.

