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Part III: Nonbipartite Matching and Covering

Nonbipartite matching is a highlight of combinatorial optimization, thanks to pio-
neering work of Tutte and Edmonds. In particular the 1965 papers of Edmonds on
nonbipartite matching opened up areas that were not accessible with the ‘classi-
cal’ methods based on flows, linear programming, and total unimodularity found in
the 1950s. The papers are pioneering in polyhedral combinatorics, giving the first
nontrivial characterizations of combinatorially defined polytopes.
The techniques are highly self-refining, and extend to b-matchings, b-factors, T -
joins, shortest paths in undirected graphs, and the Chinese postman problem. Non-
bipartite matching also applies to practical problems where an optimal pairing has
to be found, like in seat or room assignment, crew planning, and two-processor
scheduling.
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Chapter 24

Cardinality nonbipartite
matching

In this chapter we consider maximum-cardinality matching, with as key
results Tutte’s characterization of the existence of a perfect matching (im-
plying the Tutte-Berge formula for the maximum-size of a matching) and
Edmonds’ polynomial-time algorithm to find a maximum-size matching.
As in Section 16.1, we call a path P an M-augmenting path if P has odd
length and connects two vertices not covered by M , and its edges are alter-
natingly out of and in M . By Theorem 16.1, a matching M has maximum
size if and only if there is no M -augmenting path.
We say that a matching M covers a vertex v if v is incident with an edge
in M . If M does not cover v, we say that M misses v.
In this chapter, graphs can be assumed to be simple.

24.1. Tutte’s 1-factor theorem and the Tutte-Berge
formula

A basic result of Tutte [1947b] characterizes graphs that have a perfect match-
ing. Berge [1958a] observed that it implies a min-max formula for the maxi-
mum size of a matching in a graph, the Tutte-Berge formula.

Call a component of a graph odd if it has an odd number of vertices. For
any graph G, let

(24.1) o(G) := number of odd components of G.

Let ν(G) denotes the maximum size of a matching. Then:

Theorem 24.1 (Tutte-Berge formula). For each graph G = (V, E),

(24.2) ν(G) = min
U⊆V

1
2 (|V | + |U | − o(G − U)).

Proof. To see ≤, we have for each U ⊆ V :

(24.3) ν(G) ≤ |U | + ν(G − U) ≤ |U | + 1
2 (|V \ U | − o(G − U))

= 1
2 (|V | + |U | − o(G − U)).
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We prove the reverse inequality by induction on |V |, the case V = ∅
being trivial. We can assume that G is connected, since otherwise we can
apply induction to the components of G.

First assume that there exists a vertex v covered by all maximum-size
matchings. Then ν(G−v) = ν(G)−1, and by induction there exists a subset
U ′ of V \ {v} with

(24.4) ν(G − v) = 1
2 (|V \ {v}| + |U ′| − o(G − v − U ′)).

Then U := U ′ ∪ {v} gives equality in (24.2), since

(24.5) ν(G) = ν(G − v) + 1 = 1
2 (|V \ {v}| + |U ′| − o(G − v − U ′)) + 1

= 1
2 (|V | + |U | − o(G − U)).

So we can assume that there is no such v. In particular, ν(G) < 1
2 |V |.

We show that there exists a matching of size 1
2 (|V | − 1), which implies the

theorem (taking U := ∅).
Indeed, suppose to the contrary that each maximum-size matching M

misses at least two distinct vertices u and v. Among all such M, u, v, choose
them such that the distance dist(u, v) of u and v in G is as small as possible.

If dist(u, v) = 1, then u and v are adjacent, and hence we can augment
M by the edge uv, contradicting the maximality of |M |. So dist(u, v) ≥ 2,
and hence we can choose an intermediate vertex t on a shortest u − v path.
By assumption, there exists a maximum-size matching N missing t. Choose
such an N with |M ∩ N | maximal.

By the minimality of dist(u, v), N covers both u and v. Hence, as M and
N cover the same number of vertices, there exists a vertex x �= t covered
by M but not by N . Let x ∈ e = xy ∈ M . Then y is covered by some edge
f ∈ N , since otherwise N ∪{e} would be a matching larger than N . Replacing
N by (N \ {f}) ∪ {e} would increase its intersection with M , contradicting
the choice of N .

(This proof is based on the proof of Lovász [1979b] of Edmonds’ matching
polytope theorem.)

The Tutte-Berge formula immediately implies Tutte’s 1-factor theorem.
A perfect matching (or 1-factor) is a matching covering all vertices of the
graph.

Corollary 24.1a (Tutte’s 1-factor theorem). A graph G = (V, E) has a
perfect matching if and only if G − U has at most |U | odd components, for
each U ⊆ V .

Proof. Directly from the Tutte-Berge formula (Theorem 24.1), since G has
a perfect matching if and only if ν(G) ≥ 1

2 |V |.
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24.1a. Tutte’s proof of his 1-factor theorem

The original proof of Tutte [1947b] of his 1-factor theorem (Corollary 24.1a), with
a simplification of Maunsell [1952], and smoothed by Halton [1966] and Lovász
[1975d], is as follows.

Suppose that there exist graphs G = (V, E) satisfying the condition, but not
having a perfect matching. Fixing V , take such a graph G with G simple and |E|
as large as possible. Let U := {v ∈ V | v is adjacent to every other vertex of G}.
We show that each component of G − U is a complete graph.

Suppose to the contrary that there are distinct a, b, c �∈ U with ab, bc ∈ E and
ac �∈ E. By the maximality of |E|, adding ac to E makes that G has a perfect match-
ing (since the condition is maintained under adding edges). So G has a matching
M missing precisely a and c. As b �∈ U , there exists a vertex d with bd �∈ E. Again
by the maximality of |E|, G has a matching N missing precisely b and d. Now each
component of M�N contains the same number of edges in M as in N — otherwise
there would exist an M - or N -augmenting path, and hence a perfect matching in
G, a contradiction. So the component P of M�N containing d is a path starting at
d, with first edge in M and last edge in N , and hence ending at a or c; by symmetry
we may assume that it ends at a. Moreover, P does not traverse b. Then extending
P by the edge ab gives an N -augmenting path, and hence a perfect matching in G
— a contradiction.

So each component of G − U is a complete graph. Moreover, by the condition,
G−U has at most |U | odd components. This implies that G has a perfect matching,
contradicting our assumption.

More proofs were given by Gallai [1950,1963b], Edmonds [1965d], Balinski
[1970], Anderson [1971], Brualdi [1971d], Hetyei [1972,1999], Mader [1973], and
Lovász [1975a,1979b].

24.1b. Petersen’s theorem

The following theorem of Petersen [1891] is a consequence of Tutte’s 1-factor theo-
rem (a graph is cubic if it is 3-regular):

Corollary 24.1b (Petersen’s theorem). A bridgeless cubic graph has a perfect
matching.

Proof. Let G = (V, E) be a bridgeless cubic graph. By Tutte’s 1-factor theorem,
we should show that G − U has at most |U | odd components, for each U ⊆ V .

Each odd component of G−U is left by an odd number of edges (as G is cubic),
and hence by at least three edges (as G is bridgeless). On the other hand, U is
left by at most 3|U | edges, since G is cubic. Hence G − U has at most |U | odd
components.

24.2. Cardinality matching algorithm

The idea of finding an M -augmenting path to increase a matching M is
fundamental in finding a maximum-size matching. However, the simple trick
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for bipartite graphs, of orienting the edges based on the colour classes of the
graph, does not extend to the nonbipartite case. Yet one could try to find
an M -augmenting path by finding an ‘M -alternating walk’, but such a walk
can run into a loop that cannot simply be deleted. It was Edmonds [1965d]
who found the trick to resolve this problem, namely by ‘shrinking’ the loop
(for which he introduced the term ‘blossom’). Then applying recursion to a
smaller graph solves the problem1.

Let G = (V, E) be a graph, let M be a matching in G, and let X be the set
of vertices missed by M . A walk P = (v0, v1, . . . , vt) is called M -alternating if
for each i = 1, . . . , t− 1 exactly one of the edges vi−1vi and vivi+1 belongs to
M . Note that one can find a shortest M -alternating X − X walk of positive
length, by considering the auxiliary directed graph D = (V, A) with

(24.6) A := {(u, v) | ∃x ∈ V : ux ∈ E, xv ∈ M}.

Then each M -alternating X −X walk of positive length yields a directed X −
N(X) path in D, and vice versa (where N(X) denotes the set of neighbours
of X).

An M -alternating walk P = (v0, v1, . . . , vt) is called an M -flower if t is
odd, v0, . . . , vt−1 are distinct, v0 ∈ X, and vt = vi for some even i < t.
Then the circuit (vi, vi+1, . . . , vt) is called an M -blossom (associated with
the M -flower).

v0 v1 v2 v3

v5 v6

vt−2vt−1

v4 = vt

edge in M

edge not in M

vertex covered by M

vertex not covered by M

Figure 24.1
An M -flower

The core of the algorithm is the following observation. Let G = (V, E) be
a graph and let B be a subset of V . Denote by G/B the graph obtained by
contracting (or shrinking) B to one new vertex, called B. That is, G/B has
vertex set (V \ B) ∪ {B}, and for each edge e of G an edge obtained from e
by replacing any end vertex in B by the new vertex B. (We ignore loops that
may arise.) We denote the new edge again by e. (So its ends are modified,
1 The idea of applying shrinking recursively to matching problems was introduced by

Petersen [1891], and was applied in an algorithmic way by Brahana [1917].
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but not its name.) We say that the new edge is the image (or projection) of
the original edge.

For any matching M , let M/B denote the set of edges in G/B that are
images of edges in M not spanned by B. Obviously, if M intersects δ(B) in at
most one edge, then M/B is a matching in G/B. In the following, we identify
a blossom with its set of vertices.

Theorem 24.2. Let B be an M -blossom in G. Then M is a maximum-size
matching in G if and only if M/B is a maximum-size matching in G/B.

Proof. Let B = (vi, vi+1, . . . , vt).
First assume that M/B is not a maximum-size matching in G/B. Let P

be an M/B-augmenting path in G/B. If P does not traverse vertex B of
G/B, then P is also an M -augmenting path in G. If P traverses vertex B, we
may assume that it enters B with some edge uB that is not in M/B. Then
uvj ∈ E for some j ∈ {i, i + 1, . . . , t}.

(24.7) If j is odd, replace vertex B in P by vj , vj+1, . . . , vt.
If j is even, replace vertex B in P by vj , vj−1, . . . , vi.

In both cases we obtain an M -augmenting path in G. So M is not maximum-
size.

Conversely, assume that M is not maximum-size. We may assume that
i = 0, that is, vi ∈ X, since replacing M by M
EQ, where Q is the path
(v0, v1, . . . , vi), does not modify the theorem. Let P = (u0, u1, . . . , us) be an
M -augmenting path in G. If P does not intersect B, then P is also an M/B-
augmenting path in G/B. If P intersects B, we may assume that u0 �∈ B.
(Otherwise replace P by its reverse.) Let uj be the first vertex of P in B.
Then (u0, u1, . . . , uj−1, B) is an M/B-augmenting path in G/B. So M/B is
not maximum-size.

Another useful observation is:

Theorem 24.3. Let P = (v0, v1, . . . , vt) be a shortest M -alternating X − X
walk. Then either P is an M -augmenting path or (v0, v1, . . . , vj) is an M -
flower for some j ≤ t.

Proof. Assume that P is not a path. Choose i < j with vj = vi and with j
as small as possible. So v0, . . . , vj−1 are all distinct.

If j − i would be even, we can delete vi+1, . . . , vj from P so as to obtain a
shorter M -alternating X − X walk. So j − i is odd. If j is even and i is odd,
then vi+1 = vj−1 (as it is the vertex matched to vi = vj), contradicting the
minimality of j.

Hence j is odd and i is even, and therefore (v0, v1, . . . , vj) is an M -flower.
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We now describe an algorithm (the matching-augmenting algorithm) for
the following problem:

(24.8) given: a matching M ;
find: an M -augmenting path, if any.

Denote the set of vertices missed by M by X.

(24.9) If there is no M -alternating X −X walk of positive length, there
is no M -augmenting path.
If there exists an M -alternating X − X walk of positive length,
choose a shortest one, P = (v0, v1, . . . , vt) say.
Case 1: P is a path. Then output P .
Case 2: P is not a path. Choose j such that (v0, . . . , vj) is an
M -flower, with M -blossom B. Apply the algorithm (recursively)
to G/B and M/B, giving an M/B-augmenting path P in G/B.
Expand P to an M -augmenting path in G (cf. (24.7)).

The correctness of this algorithm follows from Theorems 24.2 and 24.3. It
gives a polynomial-time algorithm to find a maximum-size matching, which
is a basic result of Edmonds [1965d].

Theorem 24.4. Given a graph, a maximum-size matching can be found in
time O(n2m).

Proof. The algorithm directly follows from algorithm (24.9), since, starting
with M = ∅, one can iteratively apply it to find an M -augmenting path P
and replace M by M
EP . It terminates if there is no M -augmenting path,
whence M is a maximum-size matching.

By using (24.6), path P in (24.9) can be found in time O(m). Moreover,
the graph G/B can be constructed in time O(m). Since the recursion has
depth at most n, an M -augmenting path can be found in time O(nm). Since
the number of augmentations is at most 1

2n, the time bound follows.

This implies for perfect matchings:

Corollary 24.4a. A perfect matching in a graph (if any) can be found in
time O(n2m).

Proof. Directly from Theorem 24.4, as a perfect matching is a maximum-size
matching.

24.2a. An O(n3) algorithm

The matching algorithm described above consists of a series of matching augmenta-
tions. Each matching augmentation itself consists of a series of two steps performed
alternatingly:
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(24.10) finding an M -alternating walk, and
shrinking an M -blossom,

until the M -alternating walk is simple, that is, is an M -augmenting path.
Each of these two steps can be done in time O(m). Since there are at most

n shrinkings and at most n matching augmentations, we obtain the O(n2m) time
bound.

If we want to save time we must consider speeding up both the walk-finding
step and the shrinking step. In a sense, our description above gives a brute-force
polynomial-time method. The O(m) time bound for shrinking gives us time to
construct the shrunk graph completely, by copying all vertices that are not in the
blossom, by introducing a new vertex for the shrunk blossom, and by introducing
for each original edge its ‘image’ in the shrunk graph. The O(m) time bound for
finding an M -alternating walk gives us time to find, after any shrinking, a walk
starting just from scratch.

In fact, we cannot do much better if we explicitly construct the shrunk graph.
But if we modify the graph only locally, by shrinking the M -blossom B and remov-
ing loops and parallel edges, this can be done in time O(|B|n). Since the sum of |B|
over all M -blossoms B is O(n), this yields a time bound of O(n2) for shrinking.

To reduce the O(m) time for walk-finding, we keep data from the previous walk-
search for the next walk-search, with the help of an M -alternating forest, defined
as follows.

edge in M

edge not in M

vertex covered by M

vertex not covered by M

X

Figure 24.2
An M -alternating forest
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Let G = (V, E) be a simple graph and let M be a matching in G. Define X
to be the set of vertices missed by M . An M-alternating forest is a subset F of E
satisfying:

(24.11) F is a forest with M ⊆ F , each component of (V, F ) contains either
exactly one vertex in X or consists of one edge in M , and each path
in F starting in X is M -alternating

(cf. Figure 24.2). For any M -alternating forest F , define

(24.12) even(F ) := {v ∈ V | F contains an even-length X − v path},
odd(F ) := {v ∈ V | F contains an odd-length X − v path},
free(F ) := {v ∈ V | F contains no X − v path}.

Then each u ∈ odd(F ) is incident with a unique edge in F \ M and a unique edge
in M . Moreover:

(24.13) if there is no edge connecting even(F ) and even(F ) ∪ free(F ), then M
is a maximum-size matching.

Indeed, if there is no such edge, even(F ) is a stable set in G − odd(F ). Hence,
setting U := odd(F ):

(24.14) o(G − U) ≥ |even(F )| = |X| + |odd(F )| = (|V | − 2|M |) + |U |,

and hence M has maximum size by (24.2).
Now algorithmically, we keep, next to E and M , an M -alternating forest F . We

keep the set of vertices by a doubly linked list. We keep for each vertex v, the edges
in E, M , and F , incident with v as doubly linked lists. We also keep the incidence
functions χeven(F ) and χodd(F ). Moreover, we keep for each vertex v of G one edge
ev = vu with u ∈ even(F ), if such an edge exists.

Initially, F := M and for each v ∈ V we select an edge ev = vu with u ∈ X (if
any). The iteration is:

(24.15) Find a vertex v ∈ even(F ) ∪ free(F ) for which ev = vu exists.
Case 1: v ∈ free(F ). Add uv to F . Let vw be the edge in M incident
with v. For each edge wx incident with w, set ex := wx.
Case 2: v ∈ even(F ). Find the X − u and X − v paths P and Q in
F .
Case 2a: P and Q are disjoint. Then P and Q form with uv an
M -augmenting path.
Case 2b: P and Q are not disjoint. Then P and Q contain an
M -blossom B. For each edge bx with b ∈ B and x �∈ B, set ex := Bx.
Replace G by G/B and remove all loops and parallel edges from E,
M , and F .

The number of iterations is at most |V |, since, in each iteration, |V | + |free(F )|
decreases by at least 2 (one of these terms decreases by at least 2 and the other
does not change). We end up either with a matching augmentation or with the
situation that there is no edge connecting even(F ) and even(F ) ∪ free(F ), in which
case M has maximum size by (24.13).

It is easy to update the data structure in Case 1 in time O(n). In Case 2, the
paths P and Q can be found in time O(n), and hence in Case 2a, the M -augmenting
path is found in time O(n).
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Finally, the data structure in Case 2b can be updated in O(|B|n) time2. Also
a matching augmentation in G/B can be transformed to a matching augmentation
in G in time O(|B|n). Since |B| is bounded by twice the decrease in the number of
vertices of the graph, this takes time O(n2) overall.

Hence a matching augmentation can be found in time O(n2), and therefore:

Theorem 24.5. A maximum-size matching can be found in time O(n3).

Proof. From the above.

The first O(n3)-time cardinality matching algorithm was published by Balin-
ski [1969], and consists of a depth-first strategy to find an M -alternating forest,
replacing shrinking by a clever labeling technique.

Bottleneck in a further speedup is storing the shrinking. With the disjoint set
union data structure of Tarjan [1975] one can obtain an O(nmα(m, n))-time algo-
rithm (Gabow [1976a]). A special set union data structure of Gabow and Tarjan
[1983,1985] gives an O(nm)-time algorithm. An O(

√
n m)-time algorithm was an-

nounced (with partial proof) by Micali and Vazirani [1980]. A proof was given by
Blum [1990], Vazirani [1990,1994], and Gabow and Tarjan [1991] (cf. Peterson and
Loui [1988]).

24.3. Matchings covering given vertices

Brualdi [1971d] derived from Tutte’s 1-factor theorem the following extension
of the Tutte-Berge formula:

Theorem 24.6. Let G = (V, E) be a graph and let T ⊆ V . Then the maxi-
mum size of a subset S of T for which there is a matching covering S is equal
to the minimum value of

(24.16) |T | + |U | − oT (G − U)

over U ⊆ V . Here oT (G−U) denotes the number of odd components of G−U
contained in T .

Proof. For any matching M in G and any U ⊆ V , at most |U | odd com-
ponents of G − U can be covered completely by M . So M misses at least
oT (G−U)− |U | vertices in T . This shows that the minimum is not less than
the maximum.

To see equality, let µ be equal to the minimum. Let C be a set disjoint
from V with |C| = |V | and let C ′ ⊆ C with |C ′| = |T |−µ. Make a new graph
H by extending G by C, in such a way that C is a clique, each vertex in C ′

2 For each Z ∈ {E, M, F}, we scan the vertices b in B, and for b ∈ B we scan the Z-
neighbours w of b. If w does not belong to B and was not met as a Z-neighbour of an
earlier scanned vertex in B, we replace bw by Bw in Z. Otherwise, we delete bw from
Z.
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is adjacent to each vertex in V , and each vertex in C \ C ′ is adjacent to each
vertex in V \ T .

If H has a perfect matching M , then M contains at most |C ′| = |T | − µ
edges connecting T and C (since T is not connected to C \C ′). Hence at least
µ vertices in T are covered by edges in M spanned by V , as required.

So we may assume that H has no perfect matching. Then by Tutte’s 1-
factor theorem, there is a set W of vertices of H such that H − W has at
least |W | + 2 odd components (since |V | + |C| is even).

If C ′ �⊆ W , then H − W has only one component (since each vertex in C ′

is adjacent to every other vertex), a contradiction. If C ⊆ W , then H−W has
at most |V | components, while |W | + 2 ≥ |C| + 2 = |V | + 2, a contradiction.

So C ′ ⊆ W and C \ C ′ �⊆ W . Then at most one component of H − W
is not contained in T (since C \ C ′ is a clique and each vertex in C \ C ′ is
adjacent to each vertex in V \ T ). Let U := W ∩ V . Then

(24.17) oT (G − U) = oT (H − W ) ≥ o(H − W ) − 1 > |W | ≥ |C ′| + |U |
= |T | − µ + |U |,

contradicting the definition of µ.

(This theorem was also given by Las Vergnas [1975b].)
A consequence is a result of Lovász [1970c] on sets of vertices covered by

matchings:

Corollary 24.6a. Let G = (V, E) be a graph and let T be a subset of V .
Then G has a matching covering T if and only if T contains at most |U | odd
components of G − U , for each U ⊆ V .

Proof. Directly from Theorem 24.6.

(This theorem was also given by McCarthy [1975].)

24.4. Further results and notes

24.4a. Complexity survey for cardinality nonbipartite matching

O(n2m) Edmonds [1965d] (cf. Witzgall and Zahn [1965])

O(n3) Balinski [1969] (also Gabow [1973,1976a],
Karzanov [1976], Lawler [1976b])

O(nmα(m, n)) Gabow [1976a]

O(n5/2) Even and Kariv [1975], Kariv [1976] (also Bartnik
[1978])

O(
√

n m log n) Even and Kariv [1975], Kariv [1976]
�
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continued
O(

√
n m log log n) Kariv [1976]

O(
√

n m + n1.5+ε) Kariv [1976] for each ε > 0

O(
√

n m)

announced by Micali and Vazirani [1980], full
proof in Blum [1990], Vazirani [1990,1994], and
Gabow and Tarjan [1991](cf. Gabow and Tarjan
[1983,1985])

∗ O(
√

n m logn
n2

m
) Goldberg and Karzanov [1995]

Here ∗ indicates an asymptotically best bound in the table. (Kameda and Munro
[1974] claim to give an O(nm)-time cardinality matching algorithm, but the proof
contains some errors which I could not resolve.)

Gabow and Tarjan [1988a] observed that the method of Micali and Vazirani
[1980] also implies that one can find, for given k, a matching of size at least
ν(G)− n

k
in time O(km). They derived that a maximum-size matching M minimiz-

ing maxe∈M w(e) can be found in time O(
√

n log n m). (the ‘bottleneck matching
problem’).

Mulmuley, Vazirani, and Vazirani [1987a,1987b] showed that ‘matching is as
easy as matrix inversion’, which is especially of interest for the parallel complexity.

24.4b. The Edmonds-Gallai decomposition of a graph

There is a canonical set U that attains the minimum in (24.2). It has the property
that the odd components of G−U cover an inclusionwise minimal set of vertices, and
is given by the Edmonds-Gallai decomposition, independently found by Edmonds
[1965d] and Gallai [1963a,1964].

Let G = (V, E) be a graph. The Edmonds-Gallai decomposition of G is the
partition of V into D(G), A(G), and C(G) defined as follows (recall that N(U) :=
{v ∈ V \ U | ∃u ∈ U : uv ∈ E}):

(24.18) D(G) := {v ∈ V | there exists a maximum-size matching missing v},
A(G) := N(D(G)),
C(G) := V \ (D(G) ∪ A(G)).

It yields a ‘canonical’ certificate of maximality of a matching:

Theorem 24.7. U := A(G) attains the minimum in (24.2), D(G) is the union of
the odd components of G−U , and (hence) C(G) is the union of the even components
of G − U .

Proof. Case 1: D(G) is a stable set. Let M be a maximum-size matching and let
X be the set of vertices missed by M . Then each vertex v in A(G) is contained in
an edge uv ∈ M (as v �∈ D(G)). We show that u ∈ D(G). Assume that u �∈ D(G).

Since v ∈ A(G) = N(D(G)), there is an edge vw with w ∈ D(G). Let N be a
matching missing w. Then M�N contains a path component starting at a vertex in
X and ending at w. Let (v0, v1, . . . , vt) be this path, with v0 ∈ X and vt = w. Then
t is even and vi ∈ D(G) for each even i (because M�{v0v1, v2v3, . . . , vi−1vi} is a
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maximum-size matching missing vi). Hence, assuming u �∈ D(G), the edge vu is not
on P . So extending P by wv and vu gives a path Q. Then M�Q is a maximum-size
matching missing u. So u ∈ D(G).

As this is true for any v ∈ A(G), we see that part of M matches A(G) and
D(G) \ X. Hence

(24.19) o(G − U) ≥ |D(G)| = |X| + |A(G)| = |V | − 2|M | + |U |.

So U attains the minimum in (24.2), and moreover o(G − U) = |D(G)|, that is,
D(G) is the union of the odd components of G − U .

Case 2: D(G) spans some edge e = uv. Let M and N be maximum-size match-
ings missing u and v, respectively. Then M ∪ N contains a path component P
starting at u. If it does not end at v, then P ∪ {e} forms an N -augmenting path,
contradicting the maximality of N . So P ends at v, and hence P ∪ {e} gives an
M -blossom B.

Let G′ := G/B and M ′ := M/B and let X ′ be the set of vertices of G′ missed
by M ′. By Theorem 24.2, |M ′| = ν(G′). Then

(24.20) D(G′) = (D(G) \ B) ∪ {B},

since B ∈ D(G′) and since for each v ∈ V \ B:

(24.21) v ∈ D(G′) ⇐⇒ G′ has an even-length M ′-alternating X ′ − v path
⇐⇒ G has an even-length M -alternating X −v path ⇐⇒ v ∈ D(G).

This proves (24.20), which implies that A(G′) = A(G) and C(G′) = C(G). By
induction, D(G′) is the union of the odd components of G′ − U . Hence D(G) is
the union of the odd components of G − U (since B ⊆ D(G) by (24.20)). Also by
induction, |M ′| = 1

2 (|V ′| + |U | − o(G′ − U)). Hence |M | = 1
2 (|V | + |U | − o(G − U)),

since |V | − 2|M | = |V ′| − 2|M ′|.

So U = A(G) is the unique set attaining the minimum in (24.2) for which the
union of the odd components of G − U is inclusionwise minimal.

Note that:

(24.22) for any U attaining the minimum in (24.2), each maximum-size match-
ing M has exactly  1

2 |K|� edges contained in any component K of
G − U , and each edge of M intersecting U also intersects some odd
component of G − U .

This implies the following. Call a graph G = (V, E) factor-critical if G − v has a
perfect matching for each vertex v.

Corollary 24.7a. Let G = (V, E) be a graph. Then each component K of G[D(G)]
is factor-critical.

Proof. Directly from Theorem 24.7 and (24.22): if v ∈ K, then v ∈ D(G), and
hence G−v has a maximum-size matching M missing v. By (24.22), M has  1

2 |K|�
edges contained in K. So K − v has a perfect matching.

The Edmonds-Gallai decomposition can be found in polynomial time, since
the set D(G) of vertices missed by at least one maximum-size matching can be
determined in polynomial time (with the cardinality matching algorithm). In fact,



Section 24.4d. Ear-decomposition of factor-critical graphs 425

with the alternating forest approach of Section 24.2a one can find the Edmonds-
Gallai decomposition in time O(n3). If we have a maximum-size matching, it takes
O(n2) time.

24.4c. Strengthening of Tutte’s 1-factor theorem

Tutte’s 1-factor theorem can be (self-)refined as follows (this theorem also can be
derived from Theorem 24.7 and Corollary 24.7a; we give a direct derivation from
Tutte’s 1-factor theorem):

Theorem 24.8. A graph G = (V, E) has a perfect matching if and only if for each
U ⊆ V , the graph G − U has at most |U | factor-critical components.

Proof. Necessity is easy, since each factor-critical component is odd. To see suffi-
ciency, let the condition be satisfied, and suppose that G has no perfect matching.
By Tutte’s 1-factor theorem, there is a subset U of V such that G − U has more
than |U | odd components. Choose an inclusionwise maximal such set U .

By the condition, at least one component K of G−U is not factor-critical. That
is, K contains a vertex v such that K −v has no perfect matching. Then by Tutte’s
1-factor theorem, there exists a subset U ′ of K − v such that K − v − U ′ has more
than |U ′| odd components, and hence at least |U ′|+2 odd components (since K −v
has an even number of vertices). Now define U ′′ := U ∪ U ′ ∪ {v}. Then G − U ′′ has
more than |U ′′| odd components. As U ′′ ⊃ U , this contradicts the maximality of
U .

24.4d. Ear-decomposition of factor-critical graphs

As mentioned, a graph G = (V, E) is factor-critical if, for each v ∈ V , the graph
G − v has a perfect matching. Lovász [1972b] showed that all factor-critical graphs
can be constructed by ‘odd ear-decompositions’ in the following sense. We say that
graph H arises by adding an odd ear from G, if H arises from G by adding an
odd-length path at two (not necessarily distinct) vertices of G. That is, if there is
a path or circuit (v0, v1, . . . , vt) in H with t odd, v1, . . . , vt−1 each having degree 2,
and G = H − {v1, . . . , vt−1}.

It is easy to see that if H arises by adding an odd ear to a factor-critical graph
G, then H is again factor-critical. Now each factor-critical graph arises in this way
from the one-vertex graph:

Theorem 24.9. A graph G is factor-critical if and only if there exists a series of
graphs G0, . . . , Gk with G0 being a one-vertex graph, Gk = G, and Gi arising by
adding an odd ear to Gi−1 (i = 1, . . . , k).

Proof. For sufficiency, see above. To see necessity, fix, for each vertex v of G, a
perfect matching Mv of G−v. Choose a vertex u of G. Let H be a maximal subgraph
of G such that

(24.23) (i) H arises by a series of odd ear addings from the one-vertex graph
on u;

(ii) for each edge e ∈ Mu, if e intersects V H, then e ∈ EH.
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Such a graph trivially exists, as the one-vertex graph on u satisfies (24.23).
If EH = EG we are done, so assume EH �= EG. As G is factor-critical, G is

connected, and hence there is an edge e = vw ∈ EG \ EH with v ∈ V H. Consider
Mw ∪Mu. One of its components is an even-length w−u path P = (v1, . . . , vt) with
v1 = w and vt = u. So vt ∈ V H. Let j be the smallest index with vj ∈ V H. Then j
is odd, since otherwise vj−1vj ∈ Mu with vj−1 �∈ V H and vj ∈ V H, contradicting
(24.23)(ii).

Let Q be the path (v, v1, . . . , vj). Then H ∪ Q arises by adding an odd ear to
H, and moreover, it satisfies (24.23)(ii) again, contradicting the maximality of H.

(This is the original proof of Lovász [1972b].)
As a consequence we have a recursive characterization of factor-critical graphs:

Corollary 24.9a. Let G = (V, E) be a graph with |V | ≥ 2. Then G is factor-critical
if and only if G has an odd circuit C with G/C factor-critical.

Proof. To see sufficiency, let C be an odd circuit with G/C factor-critical. We show
that G is factor-critical. Choose v ∈ V . If v ∈ C, let M ′ be a perfect matching of
G[C \ {v}]. Since G/C is factor-critical, G − C has a perfect matching M ′′. Then
M ∪ M ′′ is a perfect matching of G − v.

If v �∈ C, let M ′′ be a perfect matching of (G/C)−v. In G this gives a matching
covering all vertices in V \ (C ∪{v}) and exactly one vertex, u say, in C. Let M ′ be
a perfect matching in G[C \ {u}]. Then M ′ ∪ M ′′ is a perfect matching of G − v.
This shows sufficiency.

Necessity is shown with Theorem 24.9. Let G be factor-critical. Consider an
odd ear-decomposition of G, and let C be the first odd ear. Then the remaining
ears form an odd ear-decomposition of G/C, and hence G/C is factor-critical.

(Related results were given by Cornuéjols and Pulleyblank [1983].)

24.4e. Ear-decomposition of matching-covered graphs

A graph G = (V, E) is called matching-covered if each edge of G belongs to a
perfect matching of G. Matching-covered graphs can be constructed similarly to
factor-critical graphs, but now starting from an even circuit (however, the decompo-
sition does not characterize matching-covered graphs). This will be used in proving
Theorem 29.11 on the maximum size of a join.

Theorem 24.10. For each connected matching-covered graph G with at least four
vertices there exists a series of graphs G0, . . . , Gk with G0 being an even circuit,
Gk = G, and Gi arising by adding an odd ear to Gi−1 (i = 1, . . . , k).

Proof. For each edge e of G, fix a perfect matching Me of G containing e. Fix a
perfect matching M of G. One easily checks that G contains an M -alternating even
circuit C. Let H be a maximal subgraph of G such that

(24.24) (i) H arises by a series of odd ear addings from C;
(ii) for each edge e ∈ M , if e intersects V H, then e ∈ EH.
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Such a graph trivially exists, as C satisfies (24.24).
If EH = EG we are done, so assume EH �= EG. As G is connected, there is

an edge e ∈ EG \ EH intersecting V H. Consider Me ∪ M . Then the component of
Me ∪ M containing e gives an odd ear that can be added to H, contradicting the
maximality of H.

A direct algorithmic proof was given by Little and Rendl [1989]. Little [1974]
showed that in a matching-covered graph, any two edges belong to a circuit that
is in the symmetric difference of two perfect matchings. Carvalho, Lucchesi, and
Murty [1999] gave more results on ear-decompositions of matching-covered graphs.

24.4f. Barriers in matching-covered graphs

A barrier in a graph G = (V, E) is a subset B of V such that G − B has |B| odd
components. Note that if B is a barrier in a connected matching-covered graph G,
then B is a stable set and each component of G − B is odd.

Lovász and Plummer [1975,1986] showed:

Theorem 24.11. Let B and C be barriers in a connected matching-covered graph
G = (V, E) with B ∩ C �= ∅. Then B ∩ C and B ∪ C are barriers again.

Proof. We first show:

(24.25) if B and C are distinct barriers with B ∩ C �= ∅, then there exists a
nonempty set D with D ⊆ B \ C or D ⊆ C \ B such that B�D and
C�D are barriers again.

As B and C are stable sets, there is a path from B∩C to B�C. Consider a shortest
such path, say it runs from B ∩ C to C \ B. It implies that G − B has a component
K with a neighbour in B ∩ C and intersecting C \ B. Define D := K ∩ C. We show
that B ∪ D and C \ D are barriers again.

Fix an edge e connecting B ∩ C and K. Let L be the component of G − C
incident with e. Let M be a perfect matching containing e. As e connects K ∩ L
and B ∩ C, all other edges in M incident with K are contained in K. So if some
edge f ∈ M leaves K ∩L′ for some component L′ of G−C, and f �= e, then f does
not leave K. Hence f leaves L′, implying L′ �= L (otherwise, L is left by two edges
in M). It also implies that f connects K ∩ L′ and K ∩ C and that f is the only
edge in M leaving K ∩ L′. Moreover, each vertex in D is covered by an edge in M ,
and hence it is such an edge f . Hence the number of components L′ of G − C with
K ∩ L′ odd is equal to |D| + 1.

Now B∪D is a barrier, since G[K\D] has |D|+1 odd components. So G−(B∪D)
has at least |B| + |D| odd components, and hence B ∪ D is a barrier.

Hence, as G is matching-covered, each component of G − B − D is odd. So
each component of G[K \ D] is odd, and therefore G[K \ D] has exactly |D| + 1
components. So all but at most |D| + 1 components of G − C are also components
of G − (C \ D). Hence the number of odd components of G − (C \ D) is at least
|C| − |D| − 1, and hence, by parity, at least |C \ D|. So C \ D is a barrier. This
proves (24.25).
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Now to prove that B ∪ C is a barrier, we can assume that we have chosen B
and C inclusionwise maximal barriers contained in B ∪ C. Then B = C by (24.25).

Similarly, to prove that B ∩ C is a barrier, we can assume that we have chosen
B and C inclusionwise minimal barriers containing B ∩ C. Again we have B = C
by (24.25).

This has the following consequence due to Lovász [1972e] (cf. Kotzig [1960]
(Theorem 31)):

Corollary 24.11a. Any two distinct maximal barriers in a connected matching-
covered graph are disjoint.

Proof. Directly from Theorem 24.11.

Since each singleton is a barrier, Corollary 24.11a implies that the maximal
barriers in a connected matching-covered graph partition the vertex set of G. This
gives the result of Kotzig [1959b] (Theorem 11):

Corollary 24.11b. Let G = (V, E) be a connected matching-covered graph. For
u, v ∈ V define u ∼ v by:

(24.26) u ∼ v if and only if G − u − v has no perfect matching.

Then ∼ is an equivalence relation.

Proof. Note that u ∼ v if and only if {u, v} is contained in some barrier. So the
corollary follows directly from Corollary 24.11a.

For much more on barriers in matching-covered graphs, see Lovász and Plummer
[1986].

24.4g. Two-processor scheduling

The following problem was considered by Fujii, Kasami, and Ninomiya [1969]. Sup-
pose that we have to carry out certain jobs, where some of the jobs have to be done
before other. We can represent this by a partially ordered set (V, ≤) where V is the
set of jobs and x < y indicates that job x has to be done before job y. Each job
takes one time-unit, say one hour.

Suppose now that there are two workers, each of which can do one job at a time.
Alternatively, suppose that you have one machine, that can do at each moment two
jobs simultaneously (a two-processor).

We wish to do all jobs within a minimum total time span. This problem can
be solved with the matching algorithm as follows. Make a graph G = (V, E), with
vertex set V (the set of jobs) and with edge set

(24.27) E := {{u, v} | u �≤ v and v �≤ u}.

(So (V, E) is the complementary graph of the ‘comparability graph’ associated with
(V, ≤).)
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Consider now a possible schedule of the jobs. That is, we have a sequence
p1, . . . , pt, where each pi is either a singleton vertex or an edge of G such that
p1, . . . , pt partition V and such that if u < v and u ∈ pi and v ∈ pj , then i < j.

Now the pairs in this list should form a matching M in G. Hence t = |V |− |M |.
In particular, t cannot be smaller than |V | − ν(G), where ν(G) is the matching
number of G.

Fujii, Kasami, and Ninomiya [1969] showed that in fact one can always make a
schedule with t = |V | − ν(G). For that it is sufficient to show:

Theorem 24.12. G contains a maximum-size matching M = {e1, . . . , et} such
that if u ∈ ei and v ∈ ej with u < v, then i < j.

Proof. The proof is by induction on |V |. Let M be a maximum-size matching in
G. We may assume that M is a perfect matching, since otherwise we can delete all
vertices missed by M , and apply induction.

Let V min be the set of minimal elements of (V ≤). If V min contains an edge
uv ∈ M as a subset, we can delete u and v from V , and apply induction. So we
may assume that each s ∈ V min is contained in an edge st ∈ M with t �∈ V min.
Choose an edge st ∈ M with s ∈ V min and with the height of t as small as possible.
(The height of an element t is the maximum size of a chain in (V, ≤) with maximum
element t.) As t �∈ V min there exists an s′t′ ∈ M with s′ ∈ V min and s′ < t.

Now clearly ss′ is an edge of G, as s and s′ are minimal elements. Moreover, tt′

is an edge of G. For if t < t′, then s′ < t < t′, contradicting the fact that s′t′ ∈ E;
and if t′ < t, then t′ would have smaller height than t.

So replacing st and s′t′ in M by ss′ and tt′, we have ss′ ⊆ V min, and so by
deleting s and s′ from V we can apply induction as before.

The theorem implies that there is a linear extension � of ≤ and a maximum-size
matching M in G such that if uv ∈ M , then u and v are neighbouring in �.

Coffman and Graham [1972] gave a direct, O(n2)-time algorithm. (Muntz and
Coffman [1969] gave an algorithm for the two-processor scheduling problem if jobs
may be interrupted and continued later.) This was improved to O(m + nα(m, n))
by Gabow [1982] and to O(m + n) by Gabow and Tarjan [1983,1985].

24.4h. The Tutte matrix and an algebraic matching algorithm

Tutte [1947b] observed the following. Let G = (V, E) be a graph. Choose for each
edge e an indeterminate xe. Let M be a skew-symmetric3 V × V matrix with
Mu,v = ±xe if e = {u, v} ∈ E, and Mu,v = 0 otherwise (including u = v) (the
Tutte matrix). Then the rank of M is equal to twice the matching number of G.

Lovász [1979c] showed that substituting random integers for the xe, gives an
efficient randomized algorithm for finding the matching number of G. This idea was
extended by Geelen [2000], who proved the following:

(24.28) Let M ′ arise from M by substituting the xe by integers from {1, . . . , n},
where n := |V |. If rank(M ′) < rank(M), then there is an edge e of G
and a number b ∈ {1, . . . , n} such that for the matrix M ′′ arising from

3 A matrix M is skew-symmetric if MT = −M .



430 Chapter 24. Cardinality nonbipartite matching

M ′ by resetting the ±xe entries to ±b, we have rank(M ′′) > rank(M ′),
or rank(M ′′) = rank(M ′) and D(M ′′) ⊃ D(M ′).

Here D(A) denotes the set of v ∈ V such that the V \ {v} × V \ {v} submatrix of
A has the same rank as A.

(24.28) implies a polynomial-time algorithm to compute the matching number
of G (and hence to find a maximum-size matching in G): start with an arbitrary
matrix M ′ obtained by substituting the xe by numbers in {1, . . . , n}, and iteratively
try to reset an entry to another number from {1, . . . , n}, as long as it either increases
the rank of M ′, or maintains the rank and increases D(M ′). The final matrix has
rank equal to the matching number of G.

L. Lovász (cf. Geelen [1995]) extended Tutte’s result to the rank of any (not
necessarily principal) submatrix of M . Geelen [1995] described the corresponding
system of linear inequalities and proved its total dual integrality, generalizing Ed-
monds’ matching polytope theorem.

24.4i. Further notes

Biedl, Bose, Demaine, and Lubiw [1999,2001] gave an O(n log4 n) time algorithm
to find a perfect matching in cubic bridgeless graphs (linear-time if the graph is
moreover planar). Biedl [2001] gave a linear-time reduction of the general matching
problem to the matching problem for cubic graphs.

Lower bounds on the maximum size of a matching were given by Nishizeki and
Baybars [1979] for planar graphs and by Biedl, Demaine, Duncan, Fleischer, and
Kobourov [2001] for several other classes of graphs.

Fulkerson, Hoffman, and McAndrew [1965] showed that any regular graph with
an even number of vertices and with the property that each two vertex-disjoint odd
circuits are connected by an edge, has a perfect matching (cf. Mahmoodian [1977],
Berge [1978b,1981]). Other sufficient conditions were given by Anderson [1972],
Sumner [1974a], Las Vergnas [1975a], and Chartrand, Goldsmith, and Schuster
[1979].

Plesńık [1972] showed that in a k-regular (k − 1)-edge-connected graph with
an even number of vertices, there is a perfect matching not containing k − 1 pre-
scribed edges (cf. Chartrand and Nebeský [1979]). For k = 3 this was proved by
Schönberger [1934]. For general k, it can also be derived from Edmonds’ perfect
matching polytope theorem (Theorem 25.1 below). See also Plesńık [1979].

Further studies on the structure of matching-covered graphs (graphs in which
each edge belongs to a perfect matching) were made by Kotzig [1959a,1959b,1960],
Hetyei [1964], Lovász [1970d,1972f,1972d,1972e,1983a], Little, Grant, and Holton
[1975], Lovász and Plummer [1975], Gabow [1979], Edmonds, Lovász, and Pulley-
blank [1982], Naddef [1982], and Szigeti [1998b].

Gabow, Kaplan, and Tarjan [1999,2001] gave fast algorithms to test if a given
perfect matching is unique, to find it, and if it not unique to find another perfect
matching.

Sumner [1974b,1976] studied sets U with o(G−U) > |U |. Weinstein [1963,1974]
and Bollobás and Eldridge [1976] related the matching number to the minimum and
maximum degree and the connectivity. Chvátal and Hanson [1976] evaluated the
maximum number f(n, b, d) of edges of a graph with n vertices having no vertex of
degree > d and no matching of size > b.
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Implementing cardinality matching algorithms were studied by Burkard and
Derigs [1980], Crocker [1993], and Mattingly and Ritchey [1993]. A simulated an-
nealing approach was described by Sasaki and Hajek [1988].

Books covering nonbipartite matching algorithms include Christofides [1975],
Lawler [1976b], Minieka [1978], Papadimitriou and Steiglitz [1982], Sys�lo, Deo, and
Kowalik [1983], Tarjan [1983], Gondran and Minoux [1984], Derigs [1988a], Nem-
hauser and Wolsey [1988], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000]. Surveys
on matching algorithms were given by Galil [1983,1986a,1986b].

Motwani [1989,1994] investigated the expected running time of matching algo-
rithms.

Gallai [1950], Tutte [1950], Kaluza [1953], Steffens [1977], and Aharoni [1984a,
1984c,1984d,1988] gave extensions to infinite graphs. The Edmonds-Gallai decom-
position was extended to locally finite graphs by Bry and Las Vergnas [1982] (cf.
Steffens [1985]).

The behaviour of a greedy heuristic for finding a large matching was investigated
by Dyer and Frieze [1991], Dyer, Frieze, and Pittel [1993], and Aronson, Dyer, Frieze,
and Suen [1994].

The standard work on matching theory is Lovász and Plummer [1986]. Other
books discussing nonbipartite matching include Berge [1973b], Bondy and Murty
[1976], Bollobás [1978,1979], Tutte [1984], and Diestel [1997]. Survey articles on
matchings were given by Akiyama and Kano [1985b] and Lovász and Plummer
[1986], Gerards [1995a], Pulleyblank [1995], and Cunningham [2002].

24.4j. Historical notes on nonbipartite matching

Petersen and Sylvester

Petersen [1891] was among the first to study perfect matchings (1-factors) in graphs,
introducing several basic concepts and methods, like factors and alternating paths.
He was motivated by finite basis theorems in invariant theory, especially by the ques-
tion which polynomials form a finite basis. Petersen cooperated with J.J. Sylvester,
who did similar studies, leading to an intensive correspondence on the topic in the
years 1889-1890 — see Sabidussi [1992] (unfortunately, the letters of Petersen to
Sylvester were not found).

In particular, they considered homogeneous polynomials of the form

(24.29)
∏

i<j

(xi − xj)ri,j ,

and were interested in conditions under which such a polynomial can be factorized
into other homogeneous polynomials of the same form. This is equivalent to char-
acterizing the existence of k-factors in regular graphs. (Graph terms like ‘factor’
and ‘degree’ introduced by Petersen are motivated by this interpretation.)

In a letter of 18 October 1889, Sylvester expressed to Petersen the conjecture
that each graph of minimum degree at least two has a 2-factor. He had checked it
for graphs with up to 7 vertices, and said that he had ‘not much doubt of being
able to establish the proof for all values of n by the same process which has been
successful for the earlier numbers’. Sylvester considered this as the most important



432 Chapter 24. Cardinality nonbipartite matching

theorem discovered hitherto in the science of chemical graphology, a field initiated
by Sylvester [1878].

Two days later, Sylvester wrote a letter in which he restricted his conjecture to
the case of regular graphs, and he was more doubtful on whether it is true. After
a reply of Petersen, Sylvester gave in a letter of 27 October 1889 an example of a
graph with 7 vertices, with degrees 2 and 3, not having a 2-factor. In this letter,
Sylvester also remarked that as a consequence of his conjecture, each regular graph
of odd order has a 2-factorization.

Then, in a letter of 8 November 1889, Sylvester observed that there is a cubic
graph on 10 vertices that has no factorization (Figure 24.3). (A graph is cubic if it

Figure 24.3
Sylvester’s graph

is 3-regular.)
Subsequently, on 16 November 1889, Sylvester wrote to Petersen:

Thanks for your interesting note—I also have a proof of the ‘theorem of Ablation’
for even equifrequencies.

Apparently, Petersen had written about his theorem that each regular graph of
even degree has a 2-factorization, for which Sylvester also said to have a proof.

Next follows correspondence on the proofs the two have, with a lot of mutual
misunderstanding. However, after hearing Petersen’s proof at a visit of Petersen to
Sylvester, at the end of December 1889, Sylvester became convinced of the correct-
ness of Petersen’s proof, and found it ‘a very beautiful method’. On the other hand,
Petersen remained very sceptical about Sylvester’s proof, which Sylvester said was
by induction on the number of vertices. They decided to publish their proofs sepa-
rately. However, Sylvester did not publish on the topic; Petersen’s proof appeared
in the paper Petersen [1891].

Petersen’s 1891 paper

In this paper, Petersen first observed that Gordan’s finite basis theorem implies
that for each n there exists a finite set G of regular graphs on n vertices (of nonzero
degree) with the property that each regular graph on n vertices contains at least
one graph in G as spanning subgraph (factor). (This result can also be proved
by elementary means.) Petersen next puts as his goal to characterize all primitive
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graphs, that is, all regular graphs that have no other factors than itself and the
0-regular subgraph.

First, Petersen observed that a 2-regular graph is primitive if and only if at
least one of its components is odd. Next, he showed that each 4-regular graph has
a 2-factor. To this end, he made an Eulerian tour along all edges, colouring them
alternatingly blue and red. The blue edges then form a 2-factor. He observed that
similarly one can show more generally that each 2k-regular graph with an even
number of edges has a k-factor.

Next, Petersen showed that each 2k-regular graph has a 2-factorization. His
proof is by observing that the existence of a 2-factorization is invariant under re-
placing any two disjoint edges ab and cd by ac and bd (by using the result that each
4-regular graph has a 2-factorization).

This solves the factorization problem for k-regular graphs with k even. Petersen
next considered the case of odd k. He gave an example of primitive k-regular graphs
for arbitrary odd k. He showed that each k-regular graph on n vertices with k >
1
2n + 1 has a perfect matching. To this end, he considered a matching M and
observed that

(24.30) M has maximum size if and only if there is no M -augmenting path.

To formulate this, Petersen coloured the edges in M red, and all other edges blue.
A Wechselweg (alternating path) is a path coloured alternatingly red and blue. Let
2n be the number of vertices of the graph and let α be the size of the matching
(thus it misses 2n − 2α vertices). Then:

Wir sahen oben, dass α grösser gemacht werden konnte, wenn wir zwischen zwei
von den 2n − 2α Punkten einen Wechselweg cabd finden konnten; dasselbe gilt
wenn wir zwischen zwei von den 2n − 2α Punkten überhaupt einen Wechselweg
finden können, denn verändert man die Farben der Seiten eines solches Weges, so
wird die Anzahl der rothen Linien um eins vergrössert. Man beweist leicht, dass
diese Bedingung auch notwendig is.4

This brought Petersen to propose an algorithm to find a 1-factor:

Indem wir die α Linien aufs Geradewohl ausnehmen und dann mittelst Wechsel-
wege α zu vergrössern suchen, können wir untersuchen, ob ein gegebener graph
primitiv ist oder nicht;5

Petersen however preferred a direct characterization:

es entsteht aber die Frage, ob die primitiven graphs sich nicht durch einfache
Kennzeichen von den zerlegbaren scheiden.6

He conjectured:

4 We saw above that α can be increased, if we could find an alternating path cabd between
two of the 2n−2α points; the same holds if we can find an alternating path at all between
two of the 2n−2α points, because if one changes the colours of the edges in such a path,
then the number of red edges increases by one. One easily proves that this condition is
also necessary.

5 While we select the α edges arbitrarily and then try to increase α by alternating paths,
we can investigate if a given graph is primitive or not;

6 the question however arises if the primitive graphs are not distinguished from the fac-
torizable by simple characteristics.
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Es spricht etwas dafür, dass ein primitiver graph Blätter haben muss, indem ein
Blatt ein solcher Theil des graphs ist, der nur durch eine einzelne Linie mit dem
übrigen Theil in Verbindung steht. Ich habe daher versucht dieses zu beweisen,
habe aber die Schwierigkeiten so gross gefunden, dass ich die Untersuchung auf
den graph dritten Grades beschränkt habe.7

Petersen [1891] described the cubic graph on 10 vertices found by Sylvester that
has no 1-factor (Figure 24.3), which he called Sylvester’s graph.

Petersen showed that each primitive cubic graph has at least three leaves. As
mentioned, a leaf is a subset U of the vertices with |δ(U)| = 1. (A graph is cubic if
it is 3-regular.)

Again, Petersen showed his theorem with the help of studying alternating paths.
Those edges that can be traversed in both directions by alternating paths starting
at a ‘free’ vertex are called ‘zweipfeilig’ (two-arrow as adjective). He then reduced
the problem by shrinking and stated:

Wir ziehen jetzt jedes zweipfeiliges System in einen Punkt zusammen;8

Proofs and extensions of Petersen’s theorem

Brahana [1917] gave a shorter proof of Petersen’s theorem. He restricted the concept
of leaf to a minimal set of vertices connected by only one edge to the remainder of
the graph. (In fact, also Petersen’s proof is valid for this restricted interpretation
of leaf.)

Brahana’s method is again based on augmenting paths and shrinking. Moreover,
he used a reduction to smaller graphs by deleting two adjacent vertices u and v and
connecting the two further vertices adjacent to u and v by new edges. This can be
done in such a way that the number of leaves remains at most 2.

In fact, part of Brahana’s method is algorithmic, and can be considered as a
specialization of Edmonds’ cardinality matching algorithm. Brahana needs to find
a 1-factor, given a matching M of size 1

2n − 1 (where n is the number of vertices).
He described a depth-first method to find an M -augmenting path starting from a
vertex missed by M . If it runs into a loop (a ‘bicursal circuit’), it can be removed
by shrinking:

We continue this shrinking process as long as there are such bicursal circuits.

Also Errera [1921,1922], Frink [1925], Schönberger [1934], Kőnig [1936], and
Baebler [1954] gave alternative proofs of Petersen’s theorem (see also Sainte-Laguë
[1926b]). The proof of Frink is ‘by induction, no shrinking or counting processes
being used.’ He overlooked however some complications (in relation to the con-
struction of a new 2-connected graph in the proof of his ‘Theorem II’) — they were
resolved by Kőnig [1936]. The proof yields a polynomial-time algorithm to find a
perfect matching in a 2-connected cubic graph.

Schönberger [1934] showed that in any 2-connected cubic graph each edge is in
a perfect matching, and (more generally) for any two prescribed edges there is a
perfect matching not containing these edges.
7 Something speaks for it that a primitive graph must have leaves, while a leaf is such a

part of the graph that is in connection with the remaining part only by one single edge.
I therefore have tried to prove this, but have found the difficulties that big, that I have
restricted the investigation to the graph of third degree.

8 We now contract each two-arrow system to one point;
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Baebler [1937] showed that each k-regular l-edge-connected graph, with k odd
and l even, has an l-factor. His proof is based on shrinking.

Tutte

Tutte [1947b] characterized the graphs that have a perfect matching. His proof is
essentially that given in Section 24.1a, defining a graph to be ‘hyperprime’ if it
has no perfect matching, but adding any edge creates a perfect matching. He used
‘pfaffians’ in order to show that, in a hyperprime graph, each component of the
subgraph induced by the set of vertices that are not adjacent to all other vertices,
is complete. A combinatorial proof of this fact was given by Maunsell [1952].

Tutte’s theorem was extended to arbitrary l-factors (l ∈ Z+) by Belck [1950]
(see Chapter 33); the proof is by extension of Tutte’s method. This in turn was
generalized by Tutte [1952] to b-factors where b ∈ Z

V
+ . As an ‘allied problem’, Tutte

[1952] considered perfect b-matchings, that is, functions f ∈ Z
E
+ with f(δ(v)) = b(v)

for each vertex v. The proof is by reduction to the b-factor case, by replacing each
edge by several parallel edges.

Then in Tutte [1954b] it is realized that the b-factor and b-matching theorems
can be reduced to the case b = 1 by splitting vertices and by the construction given
in the proof of Theorem 32.1.

Gallai [1950] gave a short proof of Tutte’s 1-factor theorem. He showed the
following. Let G be a graph without a perfect matching, let M be a maximum-size
matching in G, and let v be a vertex missed by M . Let U be the set of vertices u
for which there is an M -alternating v −u path of odd length. Then G−U has more
than |U | odd components. Gallai [1950] also gave several characterizations for the
existence of l-factors in regular graphs, and he considered the infinite case.

Also Tutte [1950] and Kaluza [1953] gave extensions to the infinite case. The
main theorem of Ore [1957] is an alternative characterization of the existence of a
b-factor. Berge [1958a] extended Tutte’s 1-factor theorem to a min-max relation for
the maximum size of a matching, the Tutte-Berge formula.

Kotzig [1959a,1959b,1960] studied the structure of matching-covered graphs,
leading to a decomposition of any graph (cf. Ore [1959]).

Augmenting paths

Like Petersen, Berge [1957] observed that a matching M is maximum if and only
if there is no M -augmenting path, and he suggested the following procedure for
solving the cardinality matching problem:

Construct a maximal matching V , and determine whether there exists an al-
ternating chain W connecting two neutral points. (The procedure is known.) If
such a chain exists, change V into (V \ W ) ∪ (W \ V ), and look again for a new
alternating chain; if such a chain does not exist, V is maximum.

In Berge [1958b], a depth-first search approach to finding an augmenting path is
sketched, however without shrinking, and not leading to a polynomial-time algo-
rithm.

Also Norman and Rabin [1958,1959] found the augmenting path criterion for
maximality of a matching (and similarly, for minimality of an edge cover):
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These results immediately lead to algorithms for a minimum cover and a maxi-
mum matching respectively.

Edmonds [1962] and Ray-Chaudhuri [1963] extended the augmenting path cri-
terion to arbitrary hypergraphs.

Edmonds

Edmonds observed that Berge’s proposal for finding an augmenting path (quoted
above) does not lead to a polynomial-time algorithm. In his personal recollections,
Edmonds [1991] stated:

It is really hard for anyone to see that it isn’t easy that when you’ve got a matching
in a graph and you are starting at a deficient node, that you cannot just grow a
tree looking for a Berge augmenting path.

Edmonds [1965d] argued:
Berge proposed searching for augmenting paths as an algorithm for maximum
matching. In fact, he proposed to trace out an alternating path from an exposed
vertex until it must stop and, then, if it is not augmenting, to back up a little
and try again, thereby exhausting possibilities.
His idea is an important improvement over the completely naive algorithm. How-
ever, depending on what further directions are given, the task can still be one of
exponential order, requiring an equally large memory to know when it is done.

In the summer of 1963, at a Workshop at the RAND Corporation, Edmonds
discovered that shrinking leads to a polynomial-time algorithm to find a maximum-
size matching in any graph. The result was described in the paper Edmonds [1965d]
(received 22 November 1963), in which paper he also described his views on algo-
rithms and complexity:

For practical purposes computational details are vital. However, my purpose is
only to show as attractively as I can that there is an efficient algorithm. According
to the dictionary, “efficient” means “adequate in operation or performance”. This
is roughly the meaning I want — in the sense that it is conceivable for maximum
matching to have no efficient algorithm. Perhaps a better word is “good”.
I am claiming, as a mathematical result, the existence of a good algorithm for
finding a maximum cardinality matching in a graph.
There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether or
not there exists an algorithm whose difficulty increases only algebraically with
the size of the graph.

Moreover:
For practical purposes the difference between algebraic and exponential order is
often more crucial than the difference between finite and non-finite.

Edmonds described his algorithm, in terms of paths, trees, flowers, and blossoms,
and concluded that the ‘order of difficulty’ is n4 (more precisely, it is O(n2m)).

In this paper, Edmonds also introduced the decomposition of any graph which
is now called the Edmonds-Gallai decomposition. Also in 1963, Gallai submitted a
paper (Gallai [1963a]), in which this decomposition is described implicitly, which
was made more explicit in Gallai [1964].

In the Proceedings of the IBM Scientific Computing Symposium on Combinato-
rial Problems in March 1964 in Yorktown Heights, New York, at the end of Gomory
[1966], the following discussion is reported:
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J. Edmonds: I have a comment on the polyhedral approach to complete analysis,
supplementing Professor Kuhn’s remarks. I do not believe there is any reason
for taking as a measure of the algorithmic difficulty of a class of combinatorial
extremum problems the number of faces in the associated polyhedra. For example,
consider the generalization of the assignment problem from bipartite graphs to
arbitrary graphs. Unlike the case of bipartite graphs, the number of faces in the
associated polyhedron increases exponentially with the size of the graph. On the
other hand, there is an algorithm for this generalized assignment problem which
has an upper bound on the work involved just as good as the upper bound for
the bipartite assignment problem.
H.W. Kuhn: I could not agree with you more. That is shown by the unreasonable
effectiveness of the Norman-Rabin scheme for solving this problem. Their result is
unreasonable only in the sense that the number of faces of the polyhedron suggests
that it ought to be a harder problem than it actually turned out to be. It is not
impossible that some day we will have a practical combinatorial algorithm for
this problem.
J. Edmonds: Actually, the amount of work in carrying out the Norman-Rabin
scheme generally increases exponentially with the size of the graph.
The algorithm I had in mind is one I introduced in a paper submitted to the
Canadian Journal of Mathematics (see Edmonds, 1965). This algorithm depends
crucially on what amounts to knowing all the bounding inequalities of the as-
sociated convex polyhedron—and, as I said, there are many of them. The point
is that the inequalities are known by an easily verifiable characterization rather
than by exhaustive listing—so their number is not important.



Chapter 25

The matching polytope

As a by-product of his weighted matching algorithm (to be discussed in
Chapter 26), Edmonds obtained a characterization of the matching poly-
tope in terms of defining inequalities. It forms the first class of polytopes
whose characterization does not simply follow just from total unimodular-
ity, and its description was a breakthrough in polyhedral combinatorics.

25.1. The perfect matching polytope

The perfect matching polytope of a graph G = (V, E) is the convex hull
of the incidence vectors of the perfect matchings in G. It is denoted by
Pperfect matching(G):

(25.1) Pperfect matching(G) =conv.hull{χM | M perfect matching in G}.

So Pperfect matching(G) is a polytope in R
E .

Consider the following set of linear inequalities for x ∈ R
E :

(25.2) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) = 1 for each v ∈ V ,
(iii) x(δ(U)) ≥ 1 for each U ⊆ V with |U | odd.

In Section 18.1 we saw that if G is bipartite, the perfect matching polytope
is fully determined by the inequalities (25.2)(i) and (ii). These inequalities
are not enough for, say, K3: taking xe := 1

2 for each edge e of K3 gives a
vector x satisfying (25.2)(i) and (ii) but not belonging to the perfect matching
polytope of K3 (as it is empty).

Edmonds [1965b] showed that for general graphs, adding (25.2)(iii) is
enough. It is clear that for any perfect matching M in G, the incidence
vector χM satisfies (25.2). So Pperfect matching(G) is contained in the polytope
determined by (25.2). The essence of Edmonds’ theorem is that one needs no
more inequalities.

Theorem 25.1 (Edmonds’ perfect matching polytope theorem). The perfect
matching polytope of any graph G = (V, E) is determined by (25.2).
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Proof. Clearly, the perfect matching polytope is contained in the polytope Q
determined by (25.2). Suppose that the converse inclusion does not hold. So
we can choose a vertex x of Q that is not in the perfect matching polytope.

We may assume that we have chosen this counterexample such that |V |+
|E| is as small as possible. Hence 0 < xe < 1 for all e ∈ E (otherwise, if
xe = 0, we can delete e, and if xe = 1, we can delete e and its ends). So each
degree of G is at least 2, and hence |E| ≥ |V |. If |E| = |V |, each degree is 2,
in which case the theorem is trivially true. So |E| > |V |. Note also that |V |
is even, since otherwise Q = ∅ (consider U := V in (25.2)(iii)).

As x is a vertex, there are |E| linearly independent constraints among
(25.2) satisfied with equality. Since |E| > |V |, there is an odd subset U of V
with 3 ≤ |U | ≤ |V | − 3 and x(δ(U)) = 1.

Consider the projections x′ and x′′ of x to the edge sets of the graphs
G/U and G/U , respectively (where U := V \U). Here we keep parallel edges.

Then x′ and x′′ satisfy (25.2) for G/U and G/U , respectively, and hence
belong to the perfect matching polytopes of G/U and G/U , by the minimality
of |V | + |E|.

So G/U has perfect matchings M ′
1, . . . , M

′
k and G/U has perfect match-

ings M ′′
1 , . . . , M ′′

k with

(25.3) x′ =
1
k

k∑

i=1

χM ′
i and x′′ =

1
k

k∑

i=1

χM ′′
i .

(Note that x is rational as it is a vertex of Q.)
Now for each e ∈ δ(U), the number of i with e ∈ M ′

i is equal to kx′(e) =
kx(e) = kx′′(e), which is equal to the number of i with e ∈ M ′′

i . Hence we
can assume that, for each i = 1, . . . , k, M ′

i and M ′′
i have an edge in δ(U) in

common. So Mi := M ′
i ∪ M ′′

i is a perfect matching of G. Then

(25.4) x =
1
k

k∑

i=1

χMi .

Hence x belongs to the perfect matching polytope of G.

Notes. This proof was given by Aráoz, Cunningham, Edmonds, and Green-Krótki
[1983] and Schrijver [1983c], with ideas of Seymour [1979a]. For other proofs, see
Balinski [1972], Hoffman and Oppenheim [1978], and Lovász [1979b]. A proof can
also be derived from Edmonds’ weighted matching algorithm (Chapter 26).

25.2. The matching polytope

The characterization of the perfect matching polytope implies Edmonds’
matching polytope theorem. It characterizes the matching polytope of a graph
G = (V, E), denoted by Pmatching(G), which is the convex hull of the incidence
vectors of the matchings in G:
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(25.5) Pmatching(G) =conv.hull{χM | M matching in G}.

Again, Pmatching(G) is a polytope in R
E .

Corollary 25.1a (Edmonds’ matching polytope theorem). For any graph
G = (V, E), the matching polytope is determined by:

(25.6) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 1 for each v ∈ V ,
(iii) x(E[U ]) ≤ � 1

2 |U |� for each U ⊆ V with |U | odd.

Proof. Clearly, each vector x in the matching polytope satisfies (25.6). To
see that the inequalities (25.6) are enough, let x satisfy (25.6). Make a copy
G′ = (V ′, E′) of G, and add edges vv′ for each vertex v ∈ V , where v′ is the
copy of v in V ′. This makes the graph G̃ = (Ṽ , Ẽ).

Define x̃e := x̃e′ := xe for each e ∈ E, where e′ is the copy of e in E′, and
x̃(vv′) := 1 − x(δ(v)) for each v ∈ V . Then by Theorem 25.1, x̃ belongs to
the perfect matching polytope of G̃, since x̃ satisfies (25.2) with respect to
G̃.

Indeed, for each v ∈ V one has x̃(δ̃(v)) = x̃(δ̃(v′)) = 1 (where δ̃ := δG̃).
Moreover, consider any odd subset U of Ṽ = V ∪ V ′, say U = W ∪ X ′ with
W, X ⊆ V . Then x̃(δ̃(U)) ≥ x̃(δ̃(W \X))+ x̃(δ̃(X ′ \W ′)). So we may assume
that W ∩ X = ∅, and by symmetry we may assume that W is odd, and
hence that X = ∅. So it suffices to show that for any odd U ⊆ V one has
x̃(δ̃(U)) ≥ 1. Now

(25.7) x̃(δ̃(U)) + 2x̃(Ẽ[U ]) =
∑

v∈U

x̃(δ̃(v)) = |U |,

and hence

(25.8) x̃(δ̃(U)) = |U | − 2x̃(Ẽ[U ]) ≥ |U | − 2� 1
2 |U |� = 1.

So by Theorem 25.1, x̃ belongs to the perfect matching polytope of G̃, and
hence x belongs to the matching polytope of G.

25.3. Total dual integrality: the Cunningham-Marsh
formula

With linear programming duality one can derive from Corollary 25.1a a min-
max relation for the maximum weight of a matching:

Corollary 25.1b. Let G = (V, E) be a graph and let w ∈ R
E
+ be a weight

function. Then the maximum weight of a matching is equal to the minimum
value of
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(25.9)
∑

v∈V

yv +
∑

U∈Podd(V )

zU� 1
2 |U |�,

where y ∈ R
V
+ and z ∈ R

Podd(V )
+ satisfy

(25.10)
∑

v∈V

yvχδ(v) +
∑

U∈Podd(V )

zUχE[U ] ≥ w.

Proof. Directly with LP-duality from Corollary 25.1a.

The constraints (25.6) determining the matching polytope in fact are to-
tally dual integral, as was shown by Cunningham and Marsh [1978]. This
implies that a stronger min-max relation holds than obtained by linear pro-
gramming duality from the matching polytope inequalities: if w is integer-
valued, then in Corollary 25.1b we can restrict y and z to integer vectors:

Theorem 25.2 (Cunningham-Marsh formula). In Corollary 25.1b, if w is
integer, we can take y and z integer. We can take z moreover such that the
collection {U ∈ Podd(V ) | zU > 0} is laminar.9

Proof. We prove the theorem by induction on |E| + w(E). If w(e) = 0 for
some e ∈ E, we can delete e and apply induction. So we may assume that
w(e) ≥ 1 for each e ∈ E.

First assume that there exists a vertex u of G covered by every maximum-
weight matching. Let w′ := w−χδ(u). By induction, there exist integer y′

v, z′
U

that are optimum with respect to w′. Now increasing y′
u by 1, gives yv, zU as

required for w, since the maximum of w′(M) over all matchings M is strictly
less than the maximum of w(M) over all matchings M , as each maximum-
weight matching M contains an edge e incident with u.

So we may assume that for each vertex v there exists a maximum-weight
matching missing v. Hence if y ∈ R

V
+ and z ∈ R

Podd(V )
+ satisfying (25.10)

attain the minimum of (25.9), then y = 0. (If yu > 0, then each maximum-
weight matching covers u, by complementary slackness.)

Now choose z attaining the minimum (with y = 0) such that

(25.11)
∑

U∈Podd(V )

zU� 1
2 |U |�2

is as large as possible. Let F := {U ∈ Podd(V ) | zU > 0}. Then F is laminar.
For suppose not. Let U, W ∈ F with U ∩ W �= ∅ and U �⊆ W �⊆ U . Then
|U ∩ W | is odd. To see this, choose v ∈ U ∩ W . Then there is a maximum-
weight matching M missing v. Since zU > 0, E[U ] contains � 1

2 |U |� edges in
M , and hence each vertex in U \{v} is covered by an edge in M contained in
U . Similarly, each vertex in W \ {v} is covered by an edge in M contained in
9 A collection F of sets is called laminar if U ∩ W = ∅ or U ⊆ W or W ⊆ U for all

U, W ∈ F .
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W . Hence each vertex in (U ∩W )\{v} is covered by an edge in M contained
in U ∩ W . So |(U ∩ W ) \ {v}| is even, and hence |U ∩ W | is odd.

Now let α := min{zU , zW }, and decrease zU and zW by α and increase
zU∩W and zU∪W by α. This resetting maintains (25.10), does not change
(25.9), but increases (25.11), contradicting our assumption.

This shows that F is laminar. Now suppose that z is not integer-valued,
and let U be an inclusionwise maximal set in F with zU �∈ Z. Let U1, . . . , Uk be
the inclusionwise maximal sets in F properly contained in U (possibly k = 0).
As F is laminar, the Ui are disjoint. Let α := zU −�zU�. Then decreasing zU

by α and increasing each zUi
by α would maintain (25.10) (by the integrality

of w), but would strictly decrease (25.9) (since
∑k

i=1� 1
2 |Ui|� < � 1

2 |U |�). This
contradicts the minimality of (25.9).

(This proof follows the method given by Schrijver and Seymour [1977]. Other
proofs were given by Hoffman and Oppenheim [1978], Schrijver [1983a,1983c],
and Cook [1985].)

Note that the Cunningham-Marsh formula has the Tutte-Berge formula
(Corollary 24.1) as special case. The previous theorem is equivalent to:

Corollary 25.2a. System (25.6) is totally dual integral.

Proof. This follows from Theorem 25.2.

25.3a. Direct proof of the Cunningham-Marsh formula

We give a direct proof of the Cunningham-Marsh formula, as given in Schrijver
[1983a] (generalizing the proof of Lovász [1979b] of Edmonds’ matching polytope
theorem). It does not use Edmonds’ matching polytope theorem, which rather fol-
lows as a consequence.

Let G = (V, E) be a graph. For each weight function w ∈ Z
E
+, let νw denote the

maximum weight of a matching. We must show that for each w ∈ Z
E
+ there exist

y ∈ Z
V
+ and z ∈ Z

Podd(V )
+ such that

(25.12)
∑

v∈V

yv +
∑

U∈Podd(V )

zU 1
2 |U |� ≤ νw

and

(25.13)
∑

v∈V

yvχδ(v) +
∑

U∈Podd(V )

zUχE[U ] ≥ w.

Suppose that G and w contradict this, with |V |+|E|+w(E) as small as possible.
Then G is connected (otherwise one of the components of G will form a smaller
counterexample) and w(e) ≥ 1 for each edge e (otherwise we can delete e). Now
there are two cases.

Case 1: There is a vertex u covered by every maximum-weight matching. In this
case, let w′ := w −χδ(u). Then νw′ = νw − 1. Since w′(E) < w(E), there are y′ and
z′ satisfying (25.12) and (25.13) with respect to w′. Increasing y′

u by 1 gives y and
z satisfying (25.12) and (25.13) with respect to w.
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Case 2: No vertex is covered by every maximum-weight matching. Now let w′

arise from w by decreasing all weights by 1. Let M be a matching with w′(M) = νw′

and with |M | as large as possible.
Then M does not cover all vertices, as, otherwise, for any matching N of max-

imum w-weight not covering all vertices:

(25.14) w′(N) = w(N) − |N | > w(N) − |M | ≥ w(M) − |M | = w′(M) = νw′ ,

contradicting the definition of νw′ .
Suppose that M covers all but one vertex (in particular, |V | is odd). Then

(25.15) νw ≥ w(M) = w′(M) + |M | = νw′ +  1
2 |V |�.

Since w′(E) < w(E), there are y′ and z′ satisfying (25.12) and (25.13) with respect
to w′. Increasing z′

V by 1 gives y and z satisfying (25.12) and (25.13) with respect
to w (by (25.15)), a contradiction.

So we know that M leaves at least two vertices in V uncovered. Let u and v be
not covered by M . We can assume that we have chosen M, u, v under the additional
condition that the distance d(u, v) of u and v in G is as small as possible. Then
d(u, v) > 1, since otherwise we could augment M by edge {u, v}, thereby increasing
|M | while not decreasing w′(M). Let t be an internal vertex of a shortest u − v
path. Let N be a matching not covering t, with w(N) = νw.

Let P be the component of M ∪ N containing t. Then P forms a path starting
at t and not covering both u and v (as t is not covered by N and u and v are
not covered by M). We can assume that P does not cover u. Now the symmetric
differences M ′ := M�P and N ′ := N�P are matchings again, and |M ′| ≤ |M | (as
M covers t), implying

(25.16) w′(M ′) − w′(M) = w(M ′) − |M ′| − w(M) + |M | ≥ w(M ′) − w(M)
= w(N) − w(N ′) = νw − w(N ′) ≥ 0.

So w′(M ′) ≥ w′(M) = νw′ and hence we have equality throughout. So w(M ′) =
w(M), w′(M ′) = w′(M), and |M ′| = |M |. However, M ′ does not cover t and u
while d(u, t) < d(u, v), contradicting our choice of M, u, v.

25.4. On the total dual integrality of the perfect
matching constraints

System (25.2) determining the perfect matching polytope is generally not
totally dual integral. Indeed, consider the complete graph G = K4 on four
vertices, with w(e) := 1 for each edge e; then the maximum weight of a
perfect matching is 2, while the dual of optimizing wTx subject to (25.2) is
attained only by taking y({v}) = 1

2 for each vertex v.
However, consider the following system, again determining the perfect

matching polytope (by Corollary 25.1a):

(25.17) (i) xe ≥ 0 for each e ∈ E;
(ii) x(δ(v)) = 1 for each v ∈ V ;
(iii) x(E[U ]) ≤ � 1

2 |U |� for each U ⊆ V with |U | odd.
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Corollary 25.2b. System (25.17) is totally dual integral.

Proof. Directly from Corollary 25.2a, with Theorem 5.25.

This implies a result stated by Edmonds and Johnson [1970]:

Corollary 25.2c. The perfect matching inequalities (25.2) form a totally
dual half-integral system.

Proof. Let w ∈ Z
E , and minimize wTx subject to (25.2). As it is the same as

minimizing wTx subject to (25.17), by Corollary 25.2b there is an optimum
dual solution y ∈ Z

V , z ∈ Z
Podd(V )
+ . Since x(E[U ]) ≤ � 1

2 |U |� is half of the
sum of the inequalities x(δ(v)) = 1 (v ∈ U) and −x(δ(U)) ≤ −1, we obtain
the total dual half-integrality of (25.2).

This can be strengthened to (Barahona and Cunningham [1989]):

Corollary 25.2d. If w ∈ Z
E and w(C) is even for each circuit C, then the

problem of minimizing wTx subject to (25.2) has an integer optimum dual
solution.

Proof. If w(C) is even for each circuit, there is a subset T of V with {e ∈
E | w(e) is odd} = δ(T ). Now replace w by w̃ := w +

∑
v∈T χδ(v). Then

w̃(e) is an even integer for each edge e. Hence by Corollary 25.2c there is an
optimum dual solution ỹ ∈ Z

V , z ∈ Z
Podd(V )
+ for the problem of minimizing

w̃Tx subject to (25.2). Now setting yv := ỹv −1 if v ∈ T and yv := ỹv if v �∈ T
gives an integer optimum dual solution for w.

25.5. Further results and notes

25.5a. Adjacency and diameter of the matching polytope

Balinski and Russakoff [1974] and Chvátal [1975a] characterized adjacency on the
matching polytope:

Theorem 25.3. Let M and N be distinct matchings in a graph G = (V, E). Then
χM and χN are adjacent vertices of the matching polytope if and only if M�N is
a path or circuit.

Proof. To see necessity, let χM and χN be adjacent. Let P be any nontrivial
component of M�N and let M ′ := M�P and N ′ := N�P . So M ′ and N ′ are
matchings again. Then

(25.18) 1
2 (χM + χN ) = 1

2 (χM′
+ χN′

).

As χM and χN are adjacent, it follows that {M ′, N ′} = {M, N}. So M ′ = N and
N ′ = M , and therefore M�N = P .
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To see sufficiency, let P := M�N be a path or circuit. Suppose that χM and
χN are not adjacent. Then there exists a matching L �= M, N that belongs to the
smallest face of the matching polytope containing x := 1

2 (χM + χN ). As xe = 0
for each edge e �∈ M ∪ N and xe = 1 for each edge e ∈ M ∩ N , we know that
M ∩ N ⊆ L ⊆ M ∪ N . Moreover, x(δ(v)) = 1 for each vertex v covered both by M
and by N . Hence each vertex v covered both by M and by N is covered by L. As
P is a path or a circuit, it follows that L = M or L = N , a contradiction.

This has as consequence for the diameter:

Corollary 25.3a. The diameter of the matching polytope of any graph G = (V, E)
is equal to the maximum size ν(G) of the matchings.

Proof. First, by Theorem 25.3, for any two matchings M and N , the distance
of χM and χN is at most the number of nontrivial components of M�N . Since
each such component contains at least one edge and since these edges are pairwise
disjoint, this number is at most ν(G). So the diameter is at most ν(G).

Equality follows from the fact that ∅ and any matching M have distance |M |.
This follows from the fact that if M and N are adjacent, then

∣∣|M | − |N |
∣∣ ≤ 1 by

Theorem 25.3.

Another direct consequence concerns adjacency on the perfect matching poly-
tope:

Corollary 25.3b. Let M and N be perfect matchings in a graph G = (V, E). Then
χM and χN are adjacent vertices of the perfect matching polytope if and only if
M�N is a circuit.

Proof. Directly from Theorem 25.3.

This in turn implies for the diameter of the perfect matching polytope:

Corollary 25.3c. The perfect matching polytope of a graph G = (V, E) has diam-
eter at most 1

2 |V | ( 1
4 |V | if G is simple).

Proof. For any two perfect matching M, N , the symmetric difference has at most
1
2 |V | components (each being a circuit). Hence Corollary 25.3b implies that χM

and χN have distance at most 1
2 |V |.

If G is simple the bounds can be sharpened to 1
4 |V |, as each even circuit has at

least four vertices.

Padberg and Rao [1974] showed that if G is a complete graph with an even
number 2n of vertices, then Pperfect matching(G) has diameter at most 2. (This can
be derived from Theorem 18.5, since any two perfect matchings belong to some
Kn,n-subgraph of G, which subgraph gives a face of Pperfect matching(G).)
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25.5b. Facets of the matching polytope

Pulleyblank and Edmonds [1974] (cf. Pulleyblank [1973]) characterized which of
the inequalities (25.6) give a facet of the matching polytope:

Let G = (V, E) be a graph. Define

(25.19) I := {v ∈ V | degG(v) ≥ 3, or degG(v) = 2 and v is contained in no
triangle, or degG(v) = 1 and the neighbour of v also has degree 1},
T := {U ⊆ V

∣∣ |U | ≥ 3, G[U ] is factor-critical and 2-vertex-
connected}.

(Recall that graph G is factor-critical if, for each vertex v of G, G− v has a perfect
matching.)

Consider the system

(25.20) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 1 for v ∈ I,

(iii) x(E[U ]) ≤  1
2 |U |� for U ∈ T .

We first show:

Theorem 25.4. Each inequality in (25.6) is a nonnegative integer combination of
inequalities (25.20).

Proof. First consider a vertex v �∈ I. If degG(v) = 1, let u be the neighbour of v.
Then u ∈ I and

(25.21) x(δ(v)) = x(δ(u)) −
∑

e∈δ(u)−δ(v)

xe.

If degG(v) = 2 and v is contained in a triangle G[U ], then x(δ(v)) = x(E[U ]) − xe,
where e is the edge in E[U ] not incident with v.

Next consider a subset U of V with |U | odd and |U | ≥ 3. We show that
x(E[U ]) ≤  1

2 |U |� is a sum of constraints (25.20), by induction on |U |. If U ∈ T
we are done. So assume that U �∈ T . Let H := G[U ]. If H is not factor-critical,
there is a vertex v such that H − v has no perfect matching. Let U ′ = U \ {v}.
Then x(E[U ′]) ≤  1

2 |U |� − 1 for the incidence vector x of any matching, and hence
also for each vector x in the matching polytope. By the total dual integrality of
the matching constraints (Corollary 25.2a), this constraint is a sum of constraints
(25.6), and hence, by induction, of constraints (25.20). So x(E[U ]) ≤  1

2 |U |� is a
sum of constraints (25.20), as E[U ] ⊆ E[U ′] ∪ δ(v).

If H is factor-critical, it has a cut vertex v. Let K1, . . . , Kt be the components
of H − v and let Ui := Ki ∪ {v} for each i. As H is factor-critical, each |Ui| is odd.
Hence x(E[U ]) ≤  1

2 |U |� is a sum of the constraints x(E[Ui]) ≤  1
2 |Ui|�.

This implies that (25.20) is sufficient:

Corollary 25.4a. (25.20) determines the matching polytope.

Proof. Directly from Corollary 25.1a and Theorem 25.4.

Another consequence is the result of Cunningham and Marsh [1978] that the
irredundant system still is totally dual integral:
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Corollary 25.4b. (25.20) is TDI.

Proof. Directly from Theorem 25.4, using the total dual integrality of system
(25.6).

(For a short proof of this result, see Cook [1985].)
Next we show that each inequality in (25.20) determines a facet. To this end,

we first show:

Lemma 25.5α. Let G = (V, E) be a 2-vertex-connected factor-critical graph and
let W be a proper subset of V with |W | odd and ≥ 3. Then G has a matching of
size  1

2 |V |� containing less than  1
2 |W |� edges in E[W ].

Proof. Choose a vertex v ∈ W that is adjacent to at least one vertex in V \ W . If
v has no neighbour in W , choose u ∈ W \ {v} and let M be a perfect matching in
G − u. This matching has the required properties.

So we may assume that v has a neighbour in W . Make from G a graph G′, by
splitting v into two vertices v′ and v′′, where v′ is adjacent to all vertices in W
adjacent to v and where v′′ is adjacent to all vertices in V \ W adjacent to v.

If G′ has a perfect matching M ′, then deleting the edge in M ′ covering v′,
and identifying v′ and v′′, gives a matching M in G with |M | =  1

2 |V |�, but with
|M ∩ E[W ]| <  1

2 |W |�.
So we can assume that G′ has no perfect matching. Then by Tutte’s 1-factor

theorem, there is a subset U of V G′ such that G′ − U has more than |U | odd
components. Since the graph G′ ∪ {v′v′′} has a perfect matching10 (as G is factor-
critical), we know that v′, v′′ �∈ U .

If U = ∅, G′ has an odd component, contradicting the fact that G′ is connected
(since G is 2-vertex-connected) and has an even number of vertices. So U �= ∅.
Choose u ∈ U , and let M be a perfect matching in G − u. Then M yields a
matching M ′ in G′ missing u and exactly one of v′, v′′. So G′ ∪{uv′} or G′ ∪{uv′′}
has a perfect matching, contradicting the fact that u ∈ U and G′ − U has more
than |U | odd components.

This lemma is used in proving:

Theorem 25.5. Each inequality in (25.20) determines a facet.

Proof. We clearly cannot delete any inequality xe ≥ 0, since otherwise the vector
x defined by xe := −1 and xe′ := 0 for each e′ �= e would be a solution. So it
determines a facet.

Consider next an inequality

(25.22) x(δ(v)) ≤ 1

for some v ∈ I. Let F be the set of vectors x in the matching polytope satisfying
x(δ(v)) = 1. Suppose that F is not a facet. Then there is a facet F ′ with F ′ ⊃ F .
So F ′ is determined by one of the inequalities (25.20).

10 By G′ ∪ {uv} we denote the graph obtained from G′ by adding edge uv.
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If F ′ is determined by xe = 0 for some e ∈ E, choose a matching M with e ∈ M
and covering v (the existence of such a matching follows from the definition of I).
Then χM ∈ F \ F ′, a contradiction.

If F ′ is determined by x(δ(u)) = 1 for some u ∈ I, then u �= v (since F ′ �= F )
and there is an edge e incident with u but not with v (since u, v ∈ I). Hence for
matching M := {e} we have χM ∈ F \ F ′, a contradiction.

If F ′ is determined by x(E[U ]) =  1
2 |U |� for some U ∈ T , then δ(u) ⊆ E[U ]

and  1
2 |U |� = 1 (since χM ∈ F ⊆ F ′ for M = {e}, for each e ∈ δ(v)). So |U | = 3.

Since F ′ �= F , U determines a triangle, contradicting the fact that v ∈ I.
Finally consider an inequality

(25.23) x(E[U ]) ≤  1
2 |U |�

for some U ∈ T . Let F be the set of vectors x in the matching polytope satisfying
x(E[U ]) =  1

2 |U |�.
Suppose that F is not a facet, and let F ′ be a facet with F ′ ⊃ F .
First assume that F ′ is determined by xe = 0 for some e ∈ E. If e is not spanned

by U , there is a v ∈ U such that U \ {v} is not intersected by e. Let M be a perfect
matching of G[U ] − v. Then χM∪{e} ∈ F \ F ′, a contradiction. If e is spanned by
U , choose v ∈ e and let M be a perfect matching of G[U ] − v. Let f ∈ M intersect
e, and define M ′ := (M \ {f}) ∪ {e}. Then χM′ ∈ F \ F ′, a contradiction.

Next assume that F ′ is determined by x(δ(v)) = 1 for some v ∈ I. Then, as G[U ]
is factor-critical, there is a matching M with |M ∩E[U ]| =  1

2 |U |� and M ∩δ(v) = ∅.
So χM ∈ F \ F ′, a contradiction.

Finally assume that F ′ is determined by x(E[U ′]) =  1
2 |U ′|� for some U ′ ∈ T .

If U ′ �⊆ U , there is a matching M with |M ∩ E[U ]| =  1
2 |U |� missing at least two

vertices in U ′ and hence |M ∩E[U ′]| <  1
2 |U ′|�. Then χM ∈ F \F ′, a contradiction.

So U ′ ⊂ U . By Lemma 25.5α, G[U ] has a matching M of size  1
2 |U |� such that

less than  1
2 |U ′|� edges in M are spanned by U ′. Then χM ∈ F \F ′, a contradiction.

(This proof is due to L. Lovász (cf. Cornuéjols and Pulleyblank [1982]). For another
proof, see Cook [1985]. See also Giles [1978b].)

Edmonds, Lovász, and Pulleyblank [1982] gave an irredundant system of linear
inequalities describing the perfect matching polytope. More on the combinatorial
structure of the (perfect) matching polytope is given by Naddef and Pulleyblank
[1981a].

25.5c. Polynomial-time solvability with the ellipsoid method

In Chapter 26 we shall describe Edmonds’ strongly polynomial-time algorithm for
the weighted matching problem. This algorithm gives as a by-product the inequal-
ities describing the perfect matching polytope, as we shall see in Section 26.3b.

It turns out that conversely one can derive the strong polynomial-time solvabil-
ity of the weighted matching problem from the description of the perfect matching
polytope (albeit that the method is impractical).

Indeed, the weighted perfect matching problem is equivalent to the optimization
problem over the perfect matching polytope. So, by the ellipsoid method, there
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exists a polynomial-time weighted perfect matching algorithm if and only if there
exists a polynomial-time separation algorithm for the perfect matching polytope.

Such a polynomial-time algorithm indeed exists (and would follow conversely
also with the ellipsoid method from the polynomial-time solvability of the weighted
matching problem). A direct proof was given by Padberg and Rao [1982], and is as
follows.

The separation problem for the perfect matching polytope is: given a graph
G = (V, E) and a vector x ∈ R

E
+, decide if x belongs to the perfect matching

polytope, and if not, find a separating hyperplane. To answer this question we
can first check the constraints (25.2)(i)(ii) in polynomial time. If one of them is
violated, it gives a separating hyperplane. If each of them is satisfied, we should
check if x(δ(U)) < 1 for some odd subset U of V . Considering x as a capacity
function, we should find an odd cut of capacity less than 1. Here an odd cut is a
cut δ(U) with |U | odd.

Such a cut can be found in strongly polynomial time. For a graph G = (V, E)
and a tree T = (V, F ), a fundamental cut determined by T is a cut δE(Wf ), where
f ∈ F and Wf is one of the components of T − f . Then:

Theorem 25.6. Let G = (V, E) be a graph with |V | even, let c ∈ R
E
+ be a capacity

function, and let T = (V, F ) be a Gomory-Hu tree for G and c. Then one of the
fundamental cuts determined by T is a minimum-capacity odd cut in G.

Proof. For each f ∈ F , choose Wf as one of the two components of T −f . Let δG(U)
be a minimum-capacity odd cut of G. Then U or V \ U is equal to the symmetric
difference of the Wf over f ∈ δF (U). Hence |Wf | is odd for at least one f ∈ δF (U).
So δG(Wf ) is an odd cut. Let f = uv. As δG(Wf ) is a minimum-capacity u − v
cut and as δG(U) is a u − v cut, we have c(δG(Wf )) ≤ c(δG(U)). So δG(Wf ) is a
minimum-capacity odd cut.

This gives algorithmically:

Corollary 25.6a. A minimum-capacity odd cut can be found in strongly polynomial
time.

Proof. This follows from Theorem 25.6, since a Gomory-Hu tree can be found in
strongly polynomial time, by Corollary 15.15a.

As the separation problem for the perfect matching polytope can be reduced to
finding a minimum-capacity odd cut, this implies:

Corollary 25.6b. The separation problem for the perfect matching polytope can be
solved in strongly polynomial time.

Proof. See above.

Corollary 25.6c. A minimum-weight perfect matching can be found in strongly
polynomial time.

Proof. This follows from Corollary 25.6b, with Theorem 5.11.
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25.5d. The matchable set polytope

Let G = (V, E) be a graph. A subset U of V is called matchable if the graph G[U ]
has a perfect matching. The matchable set polytope of G is the convex hull (in R

V )
of the incidence vectors of matchable sets.

Balas and Pulleyblank [1989] characterized the matchable set polytope as fol-
lows (where N(U) is the set of neighbours of U and o(G[U ]) is the number of odd
components of G[U ]):

Theorem 25.7. The matchable set polytope of a graph G = (V, E) is determined
by:

(25.24) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) x(U) − x(N(U)) ≤ |U | − o(G[U ]) for U ⊆ V .

Proof. Each vector in the matchable set polytope of G satisfies (25.24), since the
incidence vector of any matchable set satisfies (25.24), since if any odd component
K of G[U ] is covered by a matching M , then M has an edge connecting K and
N(U).

To see the reverse, choose a counterexample with |V | + |E| minimal, and let x
be a vertex of the polytope determined by (25.24) that is not in the matchable set
polytope.

Then xv > 0 for each vertex v, since otherwise we can obtain a smaller coun-
terexample by deleting v. Moreover, there exists at least one vertex v with xv < 1,
since otherwise x = χV , while V is matchable (as follows from Tutte’s theorem,
using (25.24)(ii)).

Hence, since x is a vertex of the polytope determined by (25.24), at least one
constraint in (25.24)(ii) is attained with equality for some U with o(G[U ]) ≥ 1 (for
any other U , (ii) follows from (i)).

Choose such a U with U inclusionwise minimal. Let K be the collection of
components of G[U ]. Then

(25.25) G[K] is factor-critical for each K ∈ K.

Otherwise, if K is even, then

(25.26) x(U \ K) − x(N(U \ K)) ≥ x(U) − x(K) − x(N(U))
≥ x(U) − |K| − x(N(U)) = |U | − o(G[U ]) − |K|
= |U \ K| − o(G[U \ K]),

contradicting the minimality of U .
So K is odd. If G[K] is not factor-critical, then by Tutte’s 1-factor theorem, K

has a nonempty subset C with o(G[K] − C) ≥ |C| + 1. Then

(25.27) x(U \ C) − x(N(U \ C)) ≥ x(U) − 2x(C) − x(N(U))
= |U | − o(G[U ]) − 2x(C) ≥ |U | − o(G[U ]) − 2|C|
= |U \ C| − o(G[U ]) − |C| ≥ |U \ C| − o(G[U ]) − o(G[K \ C]) + 1
= |U \ C| − o(G[U \ C]).

So we have equality by (25.24)(ii), contradicting the minimality of U . This shows
(25.25).

Let S := U ∪ N(U). Let G′ := G − S and let x′ be the restriction of x to V \ S.
Then x′ satisfies (25.24) with respect to G′. Indeed, (i) is trivial. To see (ii), choose
a subset U ′ ⊆ V \ S. Then (since no edge connects U and U ′):
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(25.28) x′(U ′) − x′(NG′(U ′)) = x(U ′) − x(N(U ′) \ S)
= x(U ∪ U ′) − x(N(U ∪ U ′)) − (x(U) − x(N(U)))
≤ |U | + |U ′| − o(G[U ∪ U ′]) − (|U | − o(G[U ])) = |U ′| − o(G′[U ′]),

as required.
Hence, by the minimality of G, x′ belongs to the matchable set polytope of G′.

Hence we are done if we have shown that the restriction of x to G[S] belongs to
the matchable set polytope of G.

Let H be the bipartite graph obtained from G[S] by deleting all edges spanned
by N(U) and by contracting each K ∈ K to one vertex, uK say. Define y on the
vertices of H by: y(v) := x(v) if v ∈ N(U) and y(uK) := x(K)−|K|+ 1 for K ∈ K.

Then y belongs to the matchable set polytope of H. To see this, we apply
Theorem 21.30. Trivially 0 ≤ y(v) ≤ 1 for each v ∈ N(U). Moreover, y(uK) ≥ 0 for
each K ∈ K, since otherwise x(K) < |K| − 1 implying

(25.29) x(U \ K) − x(N(U \ K)) ≥ x(U) − x(K) − x(N(U))
= |U | − o(G[U ]) − x(K) > |U | − o(G[U ]) − |K| + 1
= |U \ K| − o(G[U \ K]),

contradicting (25.24)(ii). The inequality y(uK) ≤ 1 follows from the fact that
x(K) ≤ |K|.

Now

(25.30)
∑

K∈K
y(uK) = x(U) − |U | + |K| = x(N(U)) =

∑

v∈N(U)

y(v).

This implies, by Theorem 21.30, that if y is not in the matchable set polytope of
H, then there exists a subcollection L of K with

(25.31) y(N(U ′)) <
∑

K∈L
y(uK),

where U ′ :=
⋃

L. However, by (25.24) we have

(25.32)
∑

K∈L
y(uK) =

∑

K∈L
(x(K) − |K| + 1) = x(U ′) − |U ′| + |L|

= x(U ′) − |U ′| + o(G[U ′]) ≤ x(N(U ′)) = y(N(U ′)).

So y belongs to the matchable set polytope of H. Assuming that the restriction
of x to S does not belong to the matchable set polytope of G[S], there exists a
vector w ∈ R

V with wTx > w(Y ) for each matchable set Y of G[S] and with
w(v) = 0 if v �∈ S. For each K ∈ K, let vK ∈ K minimize w(v) over K. Define
w′ on the vertices of H by: w′(v) := w(v) for v ∈ N(U) and w′(uK) := w(vK) for
K ∈ K. Since y belongs to the matchable set polytope of H, H has a matchable
set Y ′ satisfying w′(Y ′) ≥ w′Ty. Let Y be the union of Y ′, of all K with uK ∈ Y ′,
and of all K \ {vK}. Since each G[K] is factor-critical, Y is matchable. Moreover,

(25.33) w(Y ) = w′(Y ′) +
∑

K∈K
w(K \ {vK}) ≥ w′Ty +

∑

K∈K
w(K \ {vK})

=
∑

v∈N(U)

w(v)x(v) +
∑

K∈K
w(vK)(x(K) − |K| + 1) +

∑

K∈K
w(K \ {vK})

≥
∑

v∈N(U)

w(v)x(v) +
∑

K∈K

∑

v∈K

(w(v) − w(vK) + w(vK)x(v))

≥
∑

v∈N(U)

w(v)x(v) +
∑

K∈K

∑

v∈K

w(v)x(v) = wTx
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(the last inequality follows from (w(v) − w(vK))(1 − x(v)) ≥ 0), contradicting our
assumption.

Cunningham and Green-Krótki [1994] gave a combinatorial, polynomial-time
separation algorithm for the matchable set polytope that implies a proof of Theo-
rem 25.7. A combinatorial, strongly polynomial-time algorithm was given by Cun-
ningham and Geelen [1996,1997]. Qi [1987] characterized adjacency of vertices on
the matchable set polytope. Related work can be found in Barahona and Mahjoub
[1994a].

25.5e. Further notes

We postpone a discussion of the dimension of the perfect matching polytope to
Chapter 37.

Note that Edmonds’ matching polytope theorem gives the linear inequalities
determining the convex hull of all symmetric permutation matrices.

Hoffman and Oppenheim [1978] showed that for each graph G = (V, E) and for
each vertex x of the matching polytope of G, there exist |E| linearly independent
constraints among (25.6) satisfied by x with equality and yielding a matrix of
determinant ±1. This also implies the total dual integrality of the constraints (25.6).

Unlike in the bipartite case, the convex hull of incidence vectors of edge sets
containing a perfect matching is not determined by linear inequalities with 0, 1
coefficients (in the left-hand side), as was shown by Cunningham and Green-Krótki
[1986]. They showed that for each integer n > 0 there exists a graph G = (V, E) with
|V | = 2n+4 such that the convex hull of the incidence vectors of supersets of perfect
matchings has facet-inducing inequalities with coefficient set {0, 1, . . . , n}. They also
showed that for odd n a similar result holds for subsets of perfect matchings. So
the polyhedra P ↑

perfect matching(G) and P ↓
perfect matching(G) are not determined by

0, 1 inequalities.
Naddef and Pulleyblank [1981b] observed that Edmonds’ perfect matching poly-

tope theorem implies that any (k − 1)-edge connected k-regular graph G = (V, E)
with an even number of vertices, is matching-covered. (This can be seen by showing
that the all- 1

k
vector in R

E belongs to the perfect matching polytope.)
Rispoli [1992] noticed that the ‘monotonic diameter’ of the perfect matching

polytope of Kn is equal to n
4 �. So for any weight function w there is a polytopal

path with monotonically increasing wTx and leading from any vertex to a vertex
maximizing wTx, of length at most n

4 �.



Chapter 26

Weighted nonbipartite matching
algorithmically

In the previous chapter we gave good characterizations for the maximum-
weight matching problem. In the present chapter we go over to the algo-
rithmic side, and describe Edmonds’ strongly polynomial-time algorithm
for finding a minimum-weight perfect matching in any graph. It implies a
strongly polynomial-time algorithm for finding a maximum-weight match-
ing.
In this chapter, graphs can be assumed to be simple.

26.1. Introduction and preliminaries

As an extension of the cardinality matching algorithm, Edmonds [1965b]
proved that also a maximum-weight matching can be found in strongly poly-
nomial time. Equivalently, a minimum-weight perfect matching can be found
in strongly polynomial time.

Like the cardinality matching algorithm, the weighted matching algorithm
is based on shrinking sets of vertices. Unlike the cardinality matching algo-
rithm however, for weighted matchings one has, at times, to ‘deshrink’ sets
of vertices (the reverse operation of shrinking). For this purpose we have to
keep track of the shrinking history throughout the iterations.

Let G = (V, E) be a graph and let w ∈ Q
E be a weight function. We de-

scribe a strongly polynomial-time algorithm to find a minimum-weight perfect
matching in G. We can assume that G has at least one perfect matching and
that w ≥ 0.

The algorithm is ‘primal-dual’. The ‘vehicle’ carrying us to a minimum-
weight perfect matching is a pair of a laminar11 collection Ω of odd-size
subsets of V and a function π : Ω → Q satisfying:

(26.1) (i) π(U) ≥ 0 if U ∈ Ω and |U | ≥ 3,
(ii)

∑

U ∈ Ω
e ∈ δ(U)

π(U) ≤ w(e) for each e ∈ E.

11 A collection Ω of sets is called laminar if U ∩ W = ∅ or U ⊆ W or W ⊆ U for any
U, W ∈ Ω.
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Condition (26.1) implies

(26.2) w(M) ≥
∑

U∈Ω

π(U)

for each perfect matching M in G, since

(26.3) w(M) =
∑

e∈M

w(e) ≥
∑

e∈M

∑

U ∈ Ω
e ∈ δ(U)

π(U) =
∑

U∈Ω

π(U)|M ∩ δ(U)|

≥
∑

U∈Ω

π(U).

Hence M is a minimum-weight perfect matching if equality holds throughout
in (26.3).

Notation. Let be given Ω and π : Ω → Q. Define for any edge e:

(26.4) wπ(e) := w(e) −
∑

U ∈ Ω
e ∈ δ(U)

π(U).

So (26.1)(ii) says that wπ(e) ≥ 0 for each e ∈ E. Let Eπ denote the set of
edges e with wπ(e) = 0, and let Gπ = (V, Eπ).

Throughout the algorithm we will have that {v} ∈ Ω for each v ∈ V .
Hence, as Ω is laminar, the collection Ωmax of inclusionwise maximal sets in
Ω is a partition of V .

By G′ we denote the graph obtained from Gπ by shrinking all sets in
Ωmax:

(26.5) G′ := Gπ/Ωmax.

(So G′ depends on Ω and π.) The vertex set of G′ is Ωmax, with two distinct
elements U, U ′ ∈ Ωmax adjacent if and only if Gπ has an edge connecting U
and U ′. We denote any edge of G′ by the original edge in G.

Finally, for U ∈ Ω with |U | ≥ 3, we denote by HU the graph obtained
from Gπ[U ] by contracting each inclusionwise maximal proper subset of U
that belongs to Ω.

26.2. Weighted matching algorithm

We keep a laminar collection Ω of odd-size subsets of V , a function π : Ω → Q

satisfying (26.1), a matching M in G′, and for each U ∈ Ω with |U | ≥ 3, a
Hamiltonian circuit CU in HU . We assume that G is simple and has at least
one perfect matching.

Initially, we set Ω := {{v} | v ∈ V }, π({v}) := 0 for each v ∈ V , and
M := ∅. The iteration is as follows. Let X be the set of vertices of G′ missed
by M . (In the algorithm, ‘positive length’ means: having at least one edge.)
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(26.6) Case 1: G′ has an M-alternating X − X walk of positive
length. Choose a shortest such walk P . If P is a path, it is
an M -augmenting path in G′. Reset M := M
EP (matching
augmentation) and iterate.
If P is not a path, it contains an M -flower (Theorem 24.3). Let
C be the circuit in it. Add U :=

⋃
V C to Ω (shrinking), set

π(U) := 0, M := M \ EC, and CU := C, and iterate.
Case 2: G′ has no M-alternating X − X walk of positive
length. Let S be the set of vertices U of G′ for which G′ has
an odd-length M -alternating X − U walk and let T be the set of
vertices U of G′ for which G′ has an even-length M -alternating
X − U walk. Reset π(U) := π(U) + α if U ∈ T and π(U) :=
π(U) − α if U ∈ S, where α is the largest value maintaining
(26.1). If after this resetting π(U) = 0 for some U ∈ S with
|U | ≥ 3, delete U from Ω (deshrinking), extend M by the perfect
matching of CU − v, where v is the vertex of CU covered by M ,
and iterate.

In Case 2, α is bounded, since |T | > |S| if M is not perfect and since by
(26.3),

∑
U∈Ω π(U) is bounded (as there exists at least one perfect matching

by assumption).
The iterations stop if M is a perfect matching in G′, and then we are

done: using the CU we can expand M to a perfect matching N in G with
wπ(N) = 0 and |N ∩ δ(U)| = 1 for each U ∈ Ω. Then N has equality
throughout in (26.3), and hence it is a minimum-weight perfect matching.

As for estimating the number of iterations, it is good to observe that the
laminarity of Ω implies (cf. Theorem 3.5)

(26.7) |Ω| ≤ 2|V |,
assuming V �= ∅.

Theorem 26.1. There are at most 2|V |2 iterations.

Proof. There are at most 1
2 |V | matching augmentations, since at each match-

ing augmentation the size of X decreases by 2, and remains unchanged in
any other iteration.

The further proof is based on the following observation:

(26.8) Any set U added to Ω (‘shrinking’) will not be removed from Ω
(‘deshrinking’) before the next matching augmentation.

Indeed, after shrinking U , there exists an even-length M -alternating X − U
path. Until the next matching augmentation, this remains the case, or U is
swallowed by a larger set that is shrunk. So U is not in S before the next
matching augmentation, proving (26.8).

Consider any sequence of iterations between two consecutive matching
augmentations. By (26.8), the number of deshrinkings is not more than the
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size of Ω at the start of the sequence. Similarly by (26.8), the number of
shrinkings is not more than the size of Ω at the end of the sequence. So, by
(26.7), both the number of shrinkings and the number of deshrinkings are at
most 2|V |.

If in Case 2 we do not deshrink, then there is an edge e connecting a
vertex U ∈ T with a vertex W �∈ S of G′ for which wπ(e) has decreased to 0.
If W �∈ T , then after resetting π, W ∈ S, and hence the number of vertices
of G′ not in S ∪ T decreases. If W ∈ T , then, in the next iteration, Case 1
applies. So the number of Case 2 iterations in which we do not deshrink is at
most |V |. This proves the theorem.

This gives the theorem of Edmonds [1965b]:

Corollary 26.1a. A minimum-weight perfect matching can be found in time
O(n2m).

Proof. By Theorem 26.1, since each iteration can be performed in time O(m).

This implies that also a maximum-weight matching can be found in time
O(n2m):

Corollary 26.1b. A maximum-weight matching can be found in time O(n2m).

Proof. Let G = (V, E) be a graph with weight function w ∈ Q
E . Extend

G as follows. Make copies G′ and w′ of G and w. Connect each v ∈ V to
its copy in V ′, by an edge of weight 0. Let M be a maximum-weight perfect
matching in the extended graph. The restriction of M to the original edges
is a maximum-weight matching in G.

Notes. In fact, a bound of 3
2 |V | can be shown in (26.7) (as the size of any set in

Ω is odd), implying a bound of |V |2 on the number of iterations in Theorem 26.1.

26.2a. An O(n3) algorithm

In the above description, we estimated the time required for any iteration by O(m).
This leaves time to find the walk in each iteration just from scratch, and to construct
the graph G′ = Gπ/Ω from scratch, after any shrinking or deshrinking step.

Like in the cardinality case, we can speed this up (i) by using the result of the
previous walk-search in the next walk-search, and (ii) by constructing the graph
G′ only in an implicit way. In this way we can reduce the time per iteration from
O(m) to O(n) on average, leading to an overall time bound of O(n3).

Again we use M -alternating forests to reach this goal. Thus, next to Ω, π, M ,
and the CU , we keep an M -alternating forest F in G′ := Gπ/Ωmax.
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We do not keep the graph G′. Instead, we keep for each pair Y, Z of disjoint
sets in Ω an edge eY Z of G connecting Y and Z and minimizing wπ(eY Z). We take
eY Z void if no such edge exists. We keep the eY Z as lists: for each Y ∈ Ω we have
a list containing the eY Z .

Moreover, for each Y ∈ Ω we keep an edge eY with eY = eY Z for some Z ∈
even(F ) and with wπ(eY Z) minimal. Again, if no such eY Z exists, eY is void.

Finally, for each v ∈ V we keep

(26.9) p(v) :=
∑

U ∈ Ω
v ∈ U

π(U).

Initially, we set Ω := {{v} | v ∈ V }, π({v}) := 0 and p(v) := 0 for each v ∈ V ,
and M := ∅, F := ∅. The eY Z and eY are easily set.

Next we apply the following iteratively:

(26.10) Reset π(U) := π(U) − α for U ∈ odd(F ) and π(U) := π(U) + α for
U ∈ even(F ), where α is the largest value maintaining (26.1). Update p
accordingly. After that, at least one of the following three cases applies.
Case 1: wπ(eU) = 0 for some U ∈ free(F ). Extend F by eU and
update the eY (forest augmentation).
Case 2: wπ(eU) = 0 for some U ∈ even(F ). Let eU connect
vertices U and W in even(F ). Let P and Q be the X − U and the
X − W path in (Ωmax, F ), respectively.
Case 2a: Paths P and Q are disjoint. Then P and Q form with
eU an M -augmenting path, yielding a matching M ′ in G′ with |M ′| =
|M | + 1. Reset M := M ′, F := M ′, and update the eY (matching
augmentation).
Case 2b: Paths P and Q intersect. Then they contain (with eU )
an M -blossom B. Let T be the union of the sets (in Ωmax) forming
the vertices of B. Add T to Ω, setting CT := B and π(T ) := 0. Reset
F := F \ EB and M \ EB, and update the eY Z and eY (shrinking).
Case 3: π(U) = 0 for some U ∈ odd(F ) with |U | ≥ 3. Let v
be the vertex in CU covered by an edge in M and let u be the vertex
in CU covered by an edge in F \ M . Let P be the even-length u − v
path in CU and let N be the matching in CU − v. Delete U from Ω,
reset F := F ∪EP ∪N and M := M ∪N , and update the eY Z and eY

(deshrinking).

(In updating F and M , we update them as graphs on Ωmax.)
The number of iterations between any two matching augmentations is at most

|V |, as may be proved similarly to the proof of Theorem 26.1 (replacing S by odd(F )
and T by even(F )).

In the iteration (26.10), we can find the value α in O(n) time, as it is the
minimum of wπ(eU ) over U ∈ free(F ), of 1

2wπ(eU ) over U ∈ even(F ), and of π(U)
over U ∈ odd(F ) with |U | ≥ 3. So we can update π and p in O(n) time. Also F
and M can be updated in O(n) time (as they have O(n) edges).

Note that each time we need the value of wπ(e) for some edge e (when deter-
mining α or the eY Z and eY ), then e connects two disjoint sets in Ωmax, and hence
wπ(e) = w(e) − p(u) − p(v). Note also that the resetting of π on Ωmax changes no
eY Z and eY .
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In Case 1, Ω, π, p, and the eY Z are unchanged. The set U ∈ Ωmax is moved
from free(F ) to odd(F ), and a set W ∈ Ωmax (the mate of U in M) is moved from
free(F ) to even(F ). To update the eY , it suffices to scan the list of the eWZ . This
can be done in O(n) time.

In Case 2a, Ω, π, p, and the eY Z are unchanged. Since (in the new situation)
F = M , we delete from even(F ) and odd(F ) all sets in Ωmax covered by M . We
can find the eY by scanning all eY Z . We have O(n2) time for this, since there are
only 1

2 |V | matching augmentations.
In Case 2b, set T is inserted into Ωmax and into even(F ), and the sets in V B

are removed from even(F ) and odd(F ). We need to find the eTZ , which can be done
by scanning the eY Z for each Y ∈ V B. At the same time, the eZ can be updated.
This can be done in O(|V B|n) time.

In Case 3, set U is removed from Ωmax and from odd(F ), and the sets in V CU

become members of Ωmax and are inserted into even(F ) or odd(F ). This modifies
no eY Z (except that all eUZ disappear). By scanning the eY Z for each Y ∈ V CU ,
we can update the eZ . This can be done in O(|V CU |n) time.

Now, between any two matching augmentations, the sum of the |V CU | over the
U added or removed is O(n), since any set added will not be removed before the next
matching augmentation (cf. (26.8)). So between any two matching augmentations,
the iterations can be done in O(n2) time.

This gives the result of Gabow [1973] and Lawler [1976b]:

Theorem 26.2. A minimum-weight perfect matching can be found in O(n3) time.

Proof. See above.

Several ingredients in this method can be implemented so as to require only
O(m) time between any two matching augmentations. However, reducing the time
needed to administer Ω requires additional data structure — see the references in
Section 26.3a.

26.3. Further results and notes

26.3a. Complexity survey for weighted nonbipartite matching

Complexity survey for weighted nonbipartite matching (∗ indicates an asymptoti-
cally best bound in the table):

O(n4) Edmonds [1965b]

O(n3) Gabow [1973], Lawler [1976b]

O(nm log n) Galil, Micali, and Gabow [1982,
1986] (cf. Ball and Derigs [1983])

O(n(m log log logm/n n + n log n)) Gabow, Galil, and Spencer [1984,
1989]

O(n3/4m log W ) Gabow [1985a,1985b]
�
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continued
∗ O(n(m + n log n)) Gabow [1990]

∗ O(m log(nW )
√

nα(m, n) log n) Gabow and Tarjan [1991]

Here W is the maximum absolute value of the weights, assuming they are integer.
Cunningham and Marsh [1978] gave a primal algorithm for weighted nonbipar-

tite matching that takes O(n2m) time (where, throughout the algorithm, there is a
perfect matching at hand, the weight of which is improved iteratively). They state
that it can be improved to O(n3). Derigs [1981] gave a shortest augmenting path
method of running time O(n3). In Derigs [1988b] an O(min{n3, nm log n}) algo-
rithm is given based on successive improvement of a perfect matching by choosing
an improving alternating circuit.

26.3b. Derivation of the matching polytope characterization from
the algorithm

Edmonds’ weighted matching algorithm directly yields the description of the perfect
matching polytope. Indeed, one can derive from Edmonds’ algorithm the following.
Let G = (V, E) be a graph and let w ∈ Q

E be a weight function. Then:

(26.11) the minimum weight of a perfect matching is equal to the maxi-
mum value of

∑
U∈Podd(V ) π(U) where π ranges over all functions

π : Podd(V ) → Q satisfying (26.1),

where Podd(V ) denotes the collection of odd-size subsets of V .
To see this, we may assume that w is nonnegative: if µ is the minimum value of

w(e) over all edges e, decreasing each w(e) by µ decreases both the maximum and
the minimum by 1

2 |V |µ.
That the minimum is not smaller than the maximum follows from (26.3). Equal-

ity follows from the fact that in the algorithm the final perfect matching and the
final function π have equality throughout in (26.1). This shows (26.11).

It implies Edmonds’ perfect matching polytope theorem: the perfect matching
polytope of any graph G = (V, E) is determined by (25.2). Indeed, by (weak)
LP-duality, for any weight function w ∈ Q

E , the minimum weight of a perfect
matching is equal to the minimum of wTx taken over the polytope determined by
(25.2). Hence the two polytopes coincide.

26.3c. Further notes

Weber [1981] and Derigs [1985a] analyzed the sensitivity of minimum-weight perfect
matchings to changing edge weights. White [1974] studied the maximum weight of
a matching of size k, as a function of k.

An outstanding open problem is to formulate the weighted matching problem
as a linear programming problem of size polynomial in the size of the graph, by
extending the set of variables. That is, is the matching polytope of a graph G =
(V, E) equal to the projection of some polytope {x | Ax ≤ b} with A and b having
size polynomial in |V | + |E|?
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Yannakakis [1988,1991] showed that this is not possible in a symmetric fashion.
(That is, for G = Kn there is not a system Ax ≤ b which is invariant under each
permutation of the vertex set.) For further partial results, see Yannakakis [1988,
1991], Gerards [1991], and Barahona [1993a,1993b].

Gabow, Kaplan, and Tarjan [1999,2001] gave fast algorithms to test uniqueness
of a minimum-weight perfect matching.

For heuristics and fast approximation methods for the weighted matching prob-
lem if the weight function satisfies the triangle inequality (including matching points
in Euclidean space), see Papadimitriou [1977b], Avis [1978,1981,1983], Supowit,
Plaisted, and Reingold [1980], Iri, Murota, and Matsui [1981,1983], Reingold
and Tarjan [1981], Bartholdi and Platzman [1983], Reingold and Supowit [1983],
Supowit and Reingold [1983], Supowit, Reingold, and Plaisted [1983], Plaisted
[1984], Grigoriadis and Kalantari [1986,1988], Grigoriadis, Kalantari, and Lai [1986],
Imai [1986], Weber and Liebling [1986], Avis, Davis, and Steele [1988], Vaidya [1988,
1989a,1989b], Kalyanasundaram and Pruhs [1991,1993], Marcotte and Suri [1991],
Goemans and Williamson [1992,1995a], Osiakwan and Akl [1994], Williamson and
Goemans [1994], Jünger and Pulleyblank [1995], Arora [1997,1998], Varadarajan
[1998], and Varadarajan and Agarwal [1999].

For studies of implementing weighted matching algorithms, see Cunningham
and Marsh [1978], Burkard and Derigs [1980], Derigs [1981,1986a,1986b,1988b],
Lessard, Rousseau, and Minoux [1989], Derigs and Metz [1991], Applegate and
Cook [1993], and Cook and Rohe [1999].

Grötschel and Holland [1985] report on implementing a cutting plane algo-
rithm for the weighted matching problem based on the simplex method (cf. Derigs
and Metz [1991]). For an alternative approach, see Lessard, Rousseau, and Mi-
noux [1989]. Derigs and Metz [1986b] showed how solving the matching problem
fractionally can help in finding a shortest augmenting path.

Megiddo and Tamir [1978] gave an O(n log n) algorithm to find a maximum-
weight matching in a graph G = (V, E), if each weight w(uv) is equal to a(u)+ b(v)
for u < v, where the vertices are ordered by < and where a, b : V → Q.

For weighted matching problems with side constraints, see Ball, Derigs, Hil-
brand, and Metz [1990].

For a survey on weighted matching algorithms, see Galil [1983,1986a,1986b].
Books covering weighted nonbipartite matching algorithms include Christofides
[1975], Lawler [1976b], Minieka [1978], Papadimitriou and Steiglitz [1982], Gondran
and Minoux [1984], Derigs [1988a], Nemhauser and Wolsey [1988], Cook, Cunning-
ham, Pulleyblank, and Schrijver [1998], Jungnickel [1999], and Korte and Vygen
[2000].
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Nonbipartite edge cover

Edge cover is closely related to matching, through a construction described
by Gallai. In this chapter we derive basic results on edge covers (min-max
relation, polyhedral characterization, strongly polynomial-time algorithm)
from the results on matchings given in the previous chapters.
In this chapter, graphs can be assumed to be loopless.

27.1. Minimum-size edge cover

With Gallai’s theorem, the Tutte-Berge formula implies a formula for the edge
cover number ρ(G) (where o(G[U ]) denotes the number of odd components
of G[U ]):

Theorem 27.1. Let G = (V, E) be a graph without isolated vertices. Then

(27.1) ρ(G) = max
U⊆V

|U | + o(G[U ])
2

.

Proof. By Gallai’s theorem (Theorem 19.1) and the Tutte-Berge formula
(Theorem 24.1),

(27.2) ρ(G) = |V | − ν(G) = |V | − min
U⊆V

|V | + |U | − o(G − U)
2

= max
U⊆V

|U | + o(G[U ])
2

.

This min-max relation is equivalent to: ρ(G) is equal to the maximum
value of

(27.3)
∑

U∈U
� 1

2 |U |�,

where U is a collection of disjoint odd subsets of V such that no edge of G
connects two distinct sets in U .

By the method of Gallai’s theorem, one can derive a minimum-size edge
cover from a maximum-size matching M , just by adding for each vertex v
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missed by M , an arbitrary edge incident with v. Hence a minimum-size edge
cover can be found in polynomial time.

One can reduce the problem of finding a minimum-weight edge cover to
that of finding a minimum-weight perfect matching, as described in Section
19.3. It gives the following result of Edmonds and Johnson [1970]:

Theorem 27.2. A minimum-weight edge cover can be found in O(n3) time.

Proof. From Corollary 26.1b, with the method of Section 19.3.

27.2. The edge cover polytope and total dual integrality

The edge cover polytope of a graph G = (V, E) is the convex hull of the
incidence vectors of edge covers. We will show that the edge cover polytope
is determined by

(27.4) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(E[U ] ∪ δ(U)) ≥ � 1

2 |U |� for each U ⊆ V with |U | odd,

and moreover, that this system is totally dual integral. The latter statement
will be derived from the Cunningham-Marsh formula (Theorem 25.2), and is
equivalent to:

Theorem 27.3. Let G = (V, E) be a graph without isolated vertices and let
w ∈ Z

E
+ be a weight function. Then the minimum weight of an edge cover is

equal to the maximum value of

(27.5)
∑

U∈Podd(V )

zU� 1
2 |U |�,

where zU ∈ Z+ for each U ∈ Podd(V ) such that

(27.6)
∑

U∈Podd(V )

zUχE[U ]∪δ(U) ≤ w.

Proof. We first show:

(27.7) in the Cunningham-Marsh formula one can assume that for each
v ∈ V there is an edge e ∈ δ(v) with yv +

∑

U�v

zU ≤ w(e).

Indeed, by Theorem 25.2 we can take y, z such that F := {U | zU > 0} is
laminar. Now choose v ∈ V . Suppose that yv +

∑
U�v zU > w(e) for each

edge e ∈ δ(v). If no set in F covers v, then reducing yv by 1 would maintain
the conditions, contradicting the fact that y, z attain the minimum in the
Cunningham-Marsh formula.

So some T ∈ F covers v. Choose an inclusionwise minimal set T ∈ F
covering v. As F is laminar, U ⊇ T for each U ∈ F containing v. Then for
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each edge e = uv with v ∈ e ⊆ T one has for each U ∈ F : if v ∈ U , then
e ⊆ U . So for each such edge e = uv,

(27.8) yu + yv +
∑

U⊇e

zU ≥ yv +
∑

U�v

zU > w(e).

Hence, if we choose s ∈ T \ {v}, then decreasing zT by 1 and increasing ys

and zT\{v,s} by 1, gives again an optimum solution. Iterating this for all v,
gives a solution as in (27.7).

We next show the theorem. For each vertex v, let ev be an edge incident
with v of minimum weight and let µ(v) := w(ev). For each edge e = uv,
define w′(e) := µ(u) + µ(v) − w(e).

By the Cunningham-Marsh formula, there exists a matching M and yv ∈
Z+ (v ∈ V ) and z′

U ∈ Z+ (U ∈ Podd(V )) such that

(27.9) (i) yu + yv +
∑

U⊇e

z′
U ≥ w′(e) for each edge e = uv;

(ii) w′(M) =
∑

v∈V

yv +
∑

U∈Podd(V )

z′
U� 1

2 |U |�.

We may assume that z′
U = 0 if |U | = 1. By (27.7) we may assume that for

each v ∈ V :

(27.10) yv +
∑

T�v

z′
T ≤ w′(e)

for some edge e incident with v.
Let F be the edge cover obtained from M by adding the edge ev for each

vertex v missed by M . For each U ∈ Podd(V ), define:

(27.11) zU :=
{

µ(v) − yv −
∑

T�v z′
T if U = {v},

z′
U if |U | ≥ 3.

Clearly zU ≥ 0 if |U | ≥ 3. If U = {v}, then let e = uv ∈ δ(v) satisfy satisfying
(27.10). Hence

(27.12) z{v} = µ(v) − yv −
∑

T�v

z′
T ≥ µ(v) − w′(e) = w(e) − µ(u) ≥ 0.

So z is nonnegative.
Now for each edge e = uv one has:

(27.13)
∑

U∩e�=∅
zU = z{u} + z{v} +

∑

U∩e�=∅
z′
U

= µ(u) − yu −
∑

U�u

z′
U + µ(v) − yv −

∑

U�v

z′
U +

∑

U∩e�=∅
z′
U

= µ(u) + µ(v) − yu − yv −
∑

U⊇e

z′
U ≤ µ(u) + µ(v) − w′(e)

= w(e).

Moreover,
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(27.14)
∑

U

zU� 1
2 |U |� =

∑

v∈V

(µ(v) − yv −
∑

U�v

z′
U ) +

∑

U

z′
U� 1

2 |U |�

=
∑

v∈V

µ(v)−
∑

v∈V

yv −
∑

U

z′
U� 1

2 |U |� =
∑

v∈V

µ(v)−w′(M) = w(F ).

(The idea of using w′ was given by J.F. Geelen.)
Equivalently, we can state:

Corollary 27.3a. System (27.4) determines the edge cover polytope and is
TDI.

Proof. This is equivalent to Theorem 27.3.

27.3. Further notes on edge covers

27.3a. Further notes

Inspired by Edmonds’ algorithm for maximum-weight matching, White [1967] and
Murty and Perin [1982] described minimum-weight edge cover algorithms based on
blossoms.

White and Gillenson [1975] and Murty and Perin [1982] described a blossom-
type algorithm to find a minimum-weight edge cover of given size k. Also White
[1971] considered the problem of finding a minimum-weight edge cover of a given
size, by parametrizing the weight function.

In fact, the convex hull of incidence vectors of edge covers F with k ≤ |F | ≤ l
is equal to the edge cover polytope intersected with {x ∈ R

E | k ≤ x(E) ≤ l}. This
can be proved similarly to the proof of Corollary 18.10a.

Hurkens [1991] characterized adjacency on the edge cover polytope and derived
that its diameter is equal to |E|− ρ(G). (This turns out to be harder to prove than
the corresponding results for the matching polytope given in Section 25.5a.)

27.3b. Historical notes on edge covers

The nonbipartite edge cover problem was considered by Gallai [1959a] and Norman
and Rabin [1959]. The latter were motivated by a problem of Roth [1958] related to
minimizing the number of switches in a switching systems, for which they considered
the problem of finding a minimum cover for a cubical complex.

Norman and Rabin [1959] showed that an edge cover F in a graph has minimum
size if and only if there is no path P such that the end vertices of P are covered
more than once by F , while all intermediate vertices are covered exactly once by
F , and such that the edges of P are alternatingly in and out F , with the first and
last edge in F . (Thus F�P is an edge cover of smaller size than F .)
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Edge-colouring

Edge-colouring means covering the edge set by matchings. The problem
goes back to Tait [1878b], who showed that the four-colour conjecture is
equivalent to the 3-edge-colourability of any bridgeless cubic planar graph.
Nonbipartite edge-colouring is less tractable than in the special case of bi-
partite graphs. No tight min-max relation is known and finding a minimum
edge-colouring is NP-complete. In this chapter we prove Vizing’s theorem,
which gives an almost tight min-max relation. Moreover, we consider the
‘fractional’ edge-colouring number, which approximates the edge-colouring
number. It can be characterized and computed with the help of matching
results. We also consider the related problem of packing edge covers.

28.1. Vizing’s theorem for simple graphs

We recall some definitions and notation. Let G = (V, E) be a graph. An
edge-colouring is a partition of E into matchings. Each matching in an edge-
colouring is called a colour or an edge-colour. A k-edge-colouring is an edge-
colouring with k colours. G is k-edge-colourable if a k-edge-colouring exists.
The smallest k for which G is k-edge-colourable is called the edge-colouring
number of G, denoted by χ′(G). Since an edge-colouring of G is a vertex-
colouring of the line-graph L(G) of G, we have that χ′(G) = χ(L(G)).

Clearly χ′(G) ≥ ∆(G), where ∆(G) denotes the maximum degree of G.
We saw that χ′(G) = ∆(G) if G is bipartite (Kőnig’s edge-colouring theorem
(Theorem 20.1)). On the other hand, χ′(G) > ∆(G) if G = K3. It was proved
by Holyer [1981] that deciding if χ(G) ≤ 3 is NP-complete.

Nevertheless, ∆(G) is a good estimate of the edge-colouring number as
Vizing [1964,1965a] showed the following (our proof roots in Ehrenfeucht,
Faber, and Kierstead [1984]):

Theorem 28.1 (Vizing’s theorem for simple graphs). ∆(G) ≤ χ′(G) ≤
∆(G) + 1 for any simple graph G.

Proof. The inequality ∆(G) ≤ χ′(G) being trivial, we show χ′(G) ≤ ∆(G)+
1. To prove this inductively, it suffices to show for any simple graph G:
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(28.1) Let v be a vertex such that v and all its neighbours have degree
at most k, while at most one neighbour has degree precisely k.
Then if G − v is k-edge-colourable, also G is k-edge-colourable.

We prove (28.1) by induction on k, the case k = 0 being trivial. We can
assume that each neighbour u of v has degree k−1, except for one neighbour
having degree exactly k, since otherwise we can add a new vertex w and an
edge uw without violating the condition in (28.1).

Consider any k-edge-colouring of G − v. For i = 1, . . . , k, let Xi be the
set of neighbours of v that are missed by colour i. Choose the colouring such
that

∑k
i=1 |Xi|2 is minimized.

First assume that |Xi| �= 1 for all i. Since all but one neighbour of v is in
precisely two of the Xi, and one neighbour is in precisely one Xi, we have

(28.2)
k∑

i=1

|Xi| = 2 deg(v) − 1 < 2k.

Hence there exist i, j with |Xi| < 2 and |Xj | odd. So |Xi| = 0 and |Xj | ≥ 3.
Consider the subgraph H made by all edges of colours i and j, and consider
a component of H containing a vertex in Xj . This component is a path
P starting in Xj . Exchanging colours i and j on P reduces |Xi|2 + |Xj |2,
contradicting our minimality assumption.

So we can assume that |Xk| = 1, say Xk = {u}. Let G′ be the graph
obtained from G by deleting edge vu and deleting all edges of colour k. So
G′−v is (k−1)-edge-coloured. Moreover, in G′, vertex v and all its neighbours
have degree at most k − 1, and at most one neighbour has degree k − 1. So
by the induction hypothesis, G′ is (k − 1)-edge-colourable. Restoring colour
k, and giving edge vu colour k, gives a k-edge-colouring of G.

Notes. This theorem was also announced in an abstract of Gupta [1966].
The above proof implies the stronger result of Fournier [1973] that a simple

graph G is ∆(G)-edge-colourable if the maximum-degree vertices span no circuit
(since this last condition implies that the maximum-degree vertices induce a forest
as subgraph, and hence there exists a maximum-degree vertex v with at most one
neighbour that has maximum degree).

Petersen [1898] gave the example of the (now-called) Petersen graph (Figure
28.1) which is 2-connected and cubic but not 3-edge-colourable. It was conjectured
by Tutte [1966] that each 2-connected cubic graph without Petersen graph minor, is
3-edge-colourable. This conjecture was proved (using the 4-colour theorem) by the
combined efforts of Robertson, Seymour, and Thomas [1997], Sanders, Seymour,
and Thomas [2000], and Sanders and Thomas [2000].

Complexity. The proof gives a polynomial-time algorithm to find a (∆ + 1)-edge-
colouring of a simple graph, in fact, O(∆n2)-time. As we can assume that ∆n =
O(m) (since we can merge vertices of degree at most 1

2∆), this implies an O(nm)-
time algorithm.

Gabow, Nishizeki, Kariv, Leven, and Terada [1985] gave algorithms finding a
(∆ + 1)-edge-colouring of a simple graph G of maximum degree ∆, with running
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Figure 28.1
The Petersen graph

times O(m∆ log n) and O(m
√

n log n) (improving O(nm) of Terada and Nishizeki
[1982]).

28.2. Vizing’s theorem for general graphs

In Theorem 28.1 we cannot delete the condition that G be simple: the graph G
obtained from K3 by replacing each edge by two parallel edges, has χ′(G) = 6
and ∆(G) = 4. However, Vizing’s theorem can be extended so as to take also
the nonsimple case into account. For any graph G = (V, E) and u, v ∈ V , let
µ(u, v) denote the number of edges connecting u and v, called the multiplicity
of {u, v}. Let µ(G) denote the maximum of µ(u, v) over all distinct u, v ∈ V .
Then Vizing [1964,1965a] showed (again, our proof roots in Ehrenfeucht,
Faber, and Kierstead [1984]):

Theorem 28.2 (Vizing’s theorem). ∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G) for any
graph G.

Proof. The inequality ∆(G) ≤ χ′(G) being trivial, we show χ′(G) ≤ ∆(G)+
µ(G). To prove this inductively, it suffices to show for any graph G:

(28.3) Let v be a vertex of degree at most k such that each neighbour
u of v satisfies deg(u) + µ(u, v) ≤ k + 1, with equality for at
most one neighbour. Then if G− v is k-edge-colourable, also G is
k-edge-colourable.

We prove (28.3) by induction on k, the case k = 0 being trivial. We can
assume that for each vertex u in N(v) (the set of neighbours of v) we have
deg(u)+µ(u, v) = k, except for one satisfying deg(u)+µ(u, v) = k +1, since
otherwise we can add a new vertex w and an edge uw without violating the
condition in (28.3).
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Consider any k-edge-colouring of G − v. For i = 1, . . . , k, let Xi be the
set of neighbours of v that are missed by colour i. Choose the colouring such
that

∑k
i=1 |Xi|2 is minimized.

First assume that |Xi| �= 1 for all i. As each u ∈ N(v) is in precisely
2µ(u, v) of the Xi, except for one u ∈ N(v) being in 2µ(u, v) − 1 of the Xi,
we know

(28.4)
k∑

i=1

|Xi| = −1 + 2
∑

u∈N(v)

µ(u, v) = 2 deg(v) − 1 < 2k.

Hence there exist i, j with |Xi| < 2 and |Xj | odd. So |Xi| = 0 and |Xj | ≥ 3.
Consider the subgraph H made by all edges of colours i and j, and consider
a component of H containing a vertex in Xj . This component is a path
P starting in Xj . Exchanging colours i and j on P reduces |Xi|2 + |Xj |2,
contradicting our minimality assumption.

So we can assume that |Xk| = 1, say Xk := {u}. Let G′ be the graph
obtained from G by deleting one of the edges vu and deleting all edges of
colour k. So G′ − v is (k − 1)-edge-coloured. Moreover, in G′, vertex v has
degree at most k−1 and each neighbour w of v satisfies degG′(w)+µG′(w, v) ≤
k, with equality for at most one neighbour. So by the induction hypothesis,
G′ is (k −1)-edge-colourable. Restoring colour k, and giving the deleted edge
vu colour k, gives a k-edge-colouring of G.

Notes. The proof of Theorem 28.2 in fact implies that the edge-colouring number
of a graph G is at most

(28.5) max
u∈V

(deg(u) + max{1, max
v ∈ V

deg(v) ≥ deg(u)

µ(u, v)}),

where µ(u, v) is the number of edges connecting u and v (cf. Ore [1967]).
Other proofs of Vizing’s theorem were given by Ore [1967], Fournier [1973],

Berge and Fournier [1991], Misra and Gries [1992], Rao and Dijkstra [1992], and
Chew [1997b].

28.3. NP-completeness of edge-colouring

Vizing’s theorem gives us a close approximation to the edge-colouring number
of a simple graph. The error is at most 1. However, it turns out to be NP-
complete to determine the edge-colouring number precisely, even for cubic
graphs, which was shown by Holyer [1981]:

Theorem 28.3. It is NP-complete to decide if a given cubic graph is 3-edge-
colourable.

Proof. We show that the 3-satisfiability problem (3-SAT) can be reduced
to the edge-colouring problem of graphs of maximum degree 3. One easily
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reduces this last problem to the edge-colouring problem for cubic graphs (by
deleting iteratively all vertices of degree ≤ 1, next making a copy of the graph
left, and adding an edge between each degree-2 vertex and its copy).

Consider the graph fragment, called the inverting component, given by
the left-hand picture of Figure 28.2, where the right-hand picture gives its
symbolic representation if we take it as part of larger graphs. The pairs a, b
and c, d are called the output pairs.

a

b

c

d

e

Figure 28.2
The inverting component and its symbolic representation.

This graph fragment has the property that a 3-colouring of the edges
a, b, c, d, and e is extendible to a 3-edge-colouring of the fragment if
and only if either a and b have the same colour while c, d, and e have
three distinct colours, or c and d have the same colour while a, b, and
e have three distinct colours.

Consider now an instance of the 3-satisfiability problem. From the in-
verting component we build larger graph fragments. A splitting component is
given in Figure 28.3(a). For each variable u, occurring k times, as u or ¬u,
we introduce a fragment Γu by concatenating k − 2 splitting components. So
Γu has k output pairs, and it has the property that in any colouring either
all output pairs are monochromatic, or they all are nonmonochromatic.

For each clause C we introduce a component ∆C given by Figure 28.3(b).
If a variable u occurs in a clause C as u, we connect one of the output pairs
of Γu with one of the output pairs of ∆C . If a variable u occurs in a clause C
as ¬u, we connect one of the output pairs of Γu with one side of an inverting
component, and connect the other side of this inverting component with one
of the output pairs of ∆C .

In this way we can match up all output pairs of the Γu and those of the
∆C . Deleting all loose ends, we obtain a graph G of maximum degree 3. Now,
given the properties of the fragments, one easily checks that the input of the
3-satisfiability problem is satisfiable if and only if G is 3-edge-colourable.
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(a) (b)

Figure 28.3
Fragment (a) (the splitting component) has the property that for any
3-edge-colouring either all three output pairs are monochromatic or all
are nonmonochromatic.
Fragment (b) has the property that a colouring of the output edges is
extendible to a 3-edge-colouring of the fragment if and only if at least
one of the output pairs is monochromatic.

Leven and Galil [1983] showed more generally that for each k, finding the
edge-colouring number of a k-regular graph is NP-complete. (This does not
seem to follow from the case k = 3.)

28.4. Nowhere-zero flows and edge-colouring

Let D = (V, A) be a directed graph and let Γ be an additive abelian group.
A flow over Γ is a function f : A → Γ such that for each v ∈ V :

(28.6) f(δin(v)) = f(δout(v)).

The flow is called nowhere-zero if all values of f are nonzero.
If G is an undirected graph, then a flow over Γ is a flow over Γ in some

orientation of G. We say that an undirected graph G has a nowhere-zero flow
over Γ if G has an orientation having a nowhere-zero flow over Γ .

Colouring the edges of an undirected graph is related to the problem of
finding a nowhere-zero flow over a finite abelian group in the graph. This
might be illustrated best by the following easy fact:

(28.7) a cubic graph G is 3-edge-colourable ⇐⇒ G has a nowhere-zero
flow over GF(4).

Since −x = x for each x ∈ GF(4), the orientation is irrelevant in this case.
Statement (28.7) implies that the four-colour theorem is equivalent to:
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(28.8) each bridgeless cubic planar graph has a nowhere-zero flow over
GF(4)

(since the four-colour theorem is equivalent to each bridgeless cubic planar
graph being 3-edge-colourable (Tait [1878b])).

In studying nowhere-zero flows, the following theorem shows that for the
existence of a nowhere-zero flow, only the size of the group is relevant (the
equivalence (i)⇔(ii) was shown by Tutte [1947a], the equivalence (i)⇔(iii) by
Tutte [1949], and the equivalence (iii)⇔(iv) by Minty [1967]):

Theorem 28.4. Let G = (V, E) be a graph and let k ∈ Z with k ≥ 1. Then
the following are equivalent:

(28.9) (i) G has a nowhere-zero flow over some abelian group with pre-
cisely k elements;

(ii) G has a nowhere-zero flow over each abelian group with at least
k elements;

(iii) G has a flow over Z taking values in the interval [1, k−1] only;
(iv) G has an orientation D = (V, A) with din

A (U) ≥ 1
kdE(U) for

each U ⊆ V .

Proof. The implication (ii)⇒(i) is trivial, while the implication (iii)⇒(i) is
easy, by considering the integer values of (iii) as values in the group of integers
mod k.

For any graph G = (V, E) and any finite abelian group Γ , let φΓ (G)
denote the number of nowhere-zero flows over Γ in G. Then for any nonloop
edge e of G one has (where G/e is the graph obtained from G by contracting
e):

(28.10) φΓ (G) = φΓ (G/e) − φΓ (G − e).

Moreover, if each edge of G is a loop, then:

(28.11) φΓ (G) = (|Γ | − 1)|E|.

This proves that if Γ and Γ ′ are finite abelian groups with |Γ | = |Γ ′|, then
φΓ (G) = φΓ ′(G). Hence G has a nowhere-zero flow over Γ if and only if G
has a nowhere-zero flow over Γ ′. Therefore:

(28.12) if G has a nowhere-zero flow over some abelian group of size k,
then it has one over each abelian group of size k.

We now consider (i)⇒(iii). By (28.12), (i) implies that G has a nowhere-
zero flow over the group of integers mod k. This implies that there is an
orientation D = (V, A) of G and a function f : A → {1, . . . , k − 1} such that
for each v ∈ V :

(28.13) f(δin(v)) ≡ f(δout(v)) (mod k).

We choose the orientation D and the function f such that the sum
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(28.14)
∑

v∈V

|f(δin(v)) − f(δout(v))|

is minimized. If the sum is 0, we are done. So assume that the sum is nonzero.
Define

(28.15) U+ := {v ∈ V | f(δin(v)) > f(δout(v))} and
U− := {v ∈ V | f(δin(v)) < f(δout(v))}.

Necessarily, there is a directed path P in D from U− to U+ (Theorem 11.1).
Now reverse the orientation of each arc a on P to its reverse a−1, and define
f(a−1) := k − f(a). This maintains (28.13) but reduces the sum (28.14), a
contradiction.

This proves (i)⇒(iii), and hence (i)⇔(iii). Since (iii) is maintained if we
increase k, also (i) is maintained if we increase k. So with (28.12), (i) implies
(ii) if (ii) is restricted to finite groups. Since each infinite abelian group has
Z as subgroup or has arbitrarily large finite subgroups, (iii)⇒(ii) also follows
for infinite groups.

The equivalence of (iii) and (iv) follows directly from Hoffman’s circula-
tion theorem (Theorem 11.2).

This theorem implies that in studying the existence of nowhere-zero flows,
we can restrict ourselves to the group Zk with elements 0, . . . , k − 1 and
addition mod k. A nowhere-zero k-flow is a nowhere-zero flow over Zk.

It is easy to characterize the graphs having a nowhere-zero 2-flow: they are
precisely the Eulerian graphs. As to larger values of k there are the following
three famous conjectures of Tutte. The 5-flow conjecture (Tutte [1954a]):

(28.16) (?) each bridgeless graph has a nowhere-zero 5-flow, (?)

the 4-flow conjecture (Tutte [1966]):

(28.17) (?) each bridgeless graph without Petersen graph minor has a
nowhere-zero 4-flow, (?)

and the 3-flow conjecture (W.T. Tutte, 1972 (cf. Bondy and Murty [1976],
Unsolved problem 48)):

(28.18) (?) each 4-edge-connected graph has a nowhere-zero 3-flow. (?)

For planar graphs this is equivalent to the theorem of Grötzsch [1958] that
each loopless triangle-free planar graph is 3-vertex-colourable.

It may be seen that a cubic graph G has a nowhere-zero 3-flow if and
only if G is bipartite. This follows from the fact that the existence of such a
flow implies that G has an orientation such that in each vertex the indegree
and outdegree differ by a multiple of 3. Hence, one of them is 3, the other
0. Hence each arc is oriented from a source to a sink, and so G is bipartite.
The reverse implication is easy, by orienting each edge from one colour class
to the other.
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Jaeger [1979] showed that each 4-edge-connected graph has a nowhere-
zero 4-flow: a 4-edge-connected graph G = (V, E) has two edge-disjoint span-
ning trees T1 and T2 (by Corollary 51.1a). For i = 1, 2, let Ci be the sym-
metric difference of all fundamental circuits of Ti. Then C1 and C2 are cycles
covering E. This gives a nowhere-zero 4-flow.

Jaeger [1988] proposed a weakened version of the 3-flow conjecture, the
weak 3-flow conjecture:

(28.19) (?) there exists a number k such that each k-edge-connected graph
has a nowhere-zero 3-flow. (?)

By (28.8), the 4-flow conjecture implies the four-colour theorem. For cu-
bic graphs, (28.17) was proved by Robertson, Seymour, and Thomas [1997],
Sanders, Seymour, and Thomas [2000], and Sanders and Thomas [2000].

One should note that having a nowhere-zero 4-flow is equivalent to the
existence of two cycles covering the edge set. In other words, there exist two
disjoint T -joins, where T is the set of odd-degree vertices (see Chapter 29).

It was proved by Seymour [1981b] that each bridgeless graph has a
nowhere-zero 6-flow. (Inspired by Seymour’s method, Younger [1983] gave
a polynomial-time algorithmic proof.)

Seymour’s theorem improves an earlier result of Jaeger [1976,1979] that
each bridgeless graph has a nowhere-zero 8-flow. This is equivalent to: each
bridgeless graph contains three cycles covering all edges.

Jaeger [1984] offered a conjecture, the circular flow conjecture, that im-
plies both the 3-flow and the 5-flow conjecture:

(28.20) (?) for each k ≥ 1, each 4k-connected graph has an orientation
such that in each vertex, the indegree and the outdegree differ by
an integer multiple of 2k + 1. (?)

For k = 1, this is equivalent to the 3-flow conjecture. For k = 2, it implies the
5-flow conjecture: Let G = (V, E) be a 3-edge-connected graph, and replace
each edge by 3 parallel edges. The new graph, H say, is 9-edge-connected.
If (28.20) is true for k = 2, H has an orientation such that in each vertex,
the indegree and the outdegree differ by a multiple of 5. This can easily be
transformed to a nowhere-zero 5-flow in G.12

More on the 3-flow conjecture can be found in Fan [1993] and Kochol
[2001]. Jaeger [1979,1988] and Seymour [1995a] gave surveys on nowhere-zero
flows, and a book on this topic was written by Zhang [1997b]. We continue
discussing nowhere-zero flows in Section 38.8.
12 Orient any edge e of G in the direction of the majority of the direction of the three

parallel edges in H made from e, with flow equal to 3 if all three edges have the same
orientation, and 1 otherwise.
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28.5. Fractional edge-colouring

Determining the edge-colouring number of a graph is NP-complete, but with
matching techniques one can determine a fractional version of it in polynomial
time.

Let G = (V, E) be a graph. The fractional edge-colouring number χ′∗(G)
of G is defined as

(28.21) χ′∗(G) := min{
∑

M∈M
λM | λ ∈ R

M
+ ,

∑

M∈M
λMχM = 1},

where M denotes the collection of all matchings in G.
So if we require the λM to be integer, this would define the edge-colouring

number of G. Therefore, we have

(28.22) χ′∗(G) ≤ χ′(G).

The Petersen graph is an example of a graph G with χ′∗(G) = 3 and χ′(G) =
4. In Section 28.7 we shall see that χ′∗(G) can be computed in polynomial
time.

χ′∗(G) can be characterized as follows. For any natural number k ≥ 1, let
Gk be the graph obtained from G by replacing each edge by k parallel edges.
Then

(28.23) χ′∗(G) = min
k≥1

χ′(Gk)
k

.

This follows from the fact that the minimum in (28.21) is attained by rational
λM . Then the minimum in (28.23) is attained by k := the l.c.m. of the
denominators of the λM .

From Edmonds’ matching polytope theorem (Corollary 25.1a), a charac-
terization of the fractional edge-colouring number follows:

Theorem 28.5. The fractional edge-colouring number χ′∗(G) satisfies:

(28.24) χ′∗(G) = max{∆(G), max
U⊆V,|U |≥3

|E[U ]|
� 1

2 |U |�
}.

Proof. Let µ be equal to the maximum in (28.24). Then χ′∗(G) ≥ µ, since
if λM attains minimum (28.21) and if vertex v has maximum degree, then

(28.25) χ′∗(G) =
∑

M

λM ≥
∑

M

λM |M ∩ δ(v)| =
∑

e∈δ(v)

∑

M�e

λM

=
∑

e∈δ(v)

1 = ∆(G).

Moreover, for each U ⊆ V with |U | ≥ 3,
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(28.26) χ′∗(G) =
∑

M

λM ≥
∑

M

λM
|M ∩ E[U ]|

� 1
2 |U |�

=
1

� 1
2 |U |�

∑

e∈E[U ]

∑

M�e

λM

=
|E[U ]|
� 1

2 |U |�
.

To see that χ′∗(G) = µ, let x be the all- 1
µ vector in R

E . Then x(δ(v)) ≤ 1
for each v ∈ V and x(E[U ]) ≤ � 1

2 |U |� for each U ⊆ V with |U | ≥ 3. Hence
x belongs to the matching polytope of G. So x is a convex combination of
incidence vectors of matchings. Therefore 1 = µ · x =

∑
M λMχM for some

λM ≥ 0 with
∑

M λM = µ, showing that χ′∗(G) ≤ µ.

This implies for regular graphs:

Corollary 28.5a. Let G = (V, E) be a k-regular graph. Then χ′∗(G) = k if
and only if |δ(U)| ≥ k for each odd subset U of V .

Proof. By Theorem 28.5, χ′∗(G) = k if and only if |E[U ]| ≤ k� 1
2 |U |� for

each subset U of V . This last is equivalent to |δ(U)| ≥ k for each odd subset
U of V .

Call a graph G = (V, E) a k-graph if G is regular of degree k and if
|δ(U)| ≥ k for each odd subset U of V . So by Corollary 28.5a, a k-regular
graph G is a k-graph if and only if χ′∗(G) = k.

28.6. Conjectures

Seymour [1979a] conjectures that

(28.27) (?) �χ′∗(G)� = � 1
2χ′(G2)� (?)

for each graph G, where G2 arises from G by replacing each edge by two
parallel edges. Conjecture (28.27) is equivalent to the conjecture that, for
each k,

(28.28) (?) for each k-graph G one has χ′(G2) = 2k (?);

equivalently, for each k-graph G, the minimum (28.21) for χ′∗(G) is attained
by half-integer λM . In other words, it is conjectured that any k-graph has
2k perfect matchings covering each edge exactly twice. (The equivalence of
(28.27) and (28.28) can be seen as follows. The implication (28.27)⇒(28.28)
is easy. To see the reverse implication, let G be any graph and define k :=
�χ′∗(G)�. Make a disjoint copy G′ of G, and connect each vertex v of G by
k − degG(v) parallel edges to its copy v′ in G′. This makes a k-regular graph
H with χ′∗(H) = k. So H is a k-graph, and hence by (28.28), χ′(H2) = 2k.
Hence χ′(G2) ≤ 2k, implying (28.27).)
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Seymour called (28.28) the generalized Fulkerson conjecture, as it general-
izes the special case k = 3 asked (but not conjectured) by Fulkerson [1971a].
This special case is called the ‘Fulkerson conjecture’13. (By Corollary 28.5a,
a cubic graph G has χ′∗(G) = 3 if and only if G is bridgeless.) For a partial
result, see Corollary 38.11e.

Berge [1979a] conjectured that the edges of any bridgeless cubic graph
can be covered by 5 perfect matchings. This would follow from the Fulkerson
conjecture.

A conjecture of Gol’dberg [1973] (and also of Seymour [1979a]) is that for
each (possibly nonsimple) graph G one has

(28.29) (?) χ′(G) ≤ max{∆(G) + 1, �χ′∗(G)�}. (?)

(An equivalent conjecture was stated by Andersen [1977].)
As χ′(G) ≥ max{∆(G), �χ′∗(G)�}, validity of (28.29) would yield a tight

(gap 1) bound for χ′(G) also for nonsimple graphs. In particular, if ∆(G) <
χ′∗(G), we would have equality in (28.29). Seymour [1979a] mentioned that
he has shown that χ′(G) ≤ �χ′∗(G)� + 1 for graphs G with χ′∗(G) ≤ 6.

Conjecture (28.29) would generalize Theorem 28.2 due to Vizing. For let
µ(G) again denote the maximum multiplicity of any edge of G = (V, E).
Then for any subset U of V ,

(28.30) |E[U ]| ≤ 1
2∆(G[U ])|U | ≤ (∆(G[U ]) + µ(G)) 1

2 (|U | − 1)
≤ (∆(G) + µ(G))� 1

2 |U |�

(The second inequality follows from ∆(G[U ]) ≤ µ(G)(|U | − 1).) So with
Theorem 28.5 we know that χ′∗(G) ≤ ∆(G) + µ(G).

A well-known equivalent form of the four-colour theorem is that each
bridgeless cubic planar graph is 3-edge-colourable. This equivalence was dis-
covered by Tait [1878b]. Seymour [1981c] conjectures the following general-
ization:

(28.31) (?) each planar k-graph is k-edge-colourable. (?)

This was proved for k = 4 and k = 5 by Guenin [2002b].
A consequence of the 4-flow conjecture of Tutte [1966] is:

(28.32) each bridgeless cubic graph without Petersen graph minor is 3-
edge-colourable.

This was proved jointly by Robertson, Seymour, and Thomas [1997], Sanders,
Seymour, and Thomas [2000], and Sanders and Thomas [2000].

(28.31) and (28.32) made Lovász [1987] conjecture:

(28.33) (?) each k-graph without Petersen graph minor is k-edge-colour-
able. (?)

13 Seymour [1979a] says that it was first conjectured by C. Berge, but that it is usually
called Fulkerson’s conjecture because the latter put it into print.
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(An equivalent conjecture was given by Rizzi [1997,1999].) This is equivalent
to stating that the incidence vectors of perfect matchings in a graph without
Petersen graph minor, form a Hilbert base (cf. Section 5.18). It relates to
Lovász’s work on the perfect matching lattice — see Chapter 38.

Goddyn [1993] noted that (28.33) would not yield a full characterization,
since also the perfect matchings of the Petersen graph form a Hilbert base.
(This is due to the fact that the all-one vector does not belong to the perfect
matching lattice of the Petersen graph.)

Notes. Seymour [1979a] conjectured that if k ≥ 4, any k-graph G = (V, E) has a
perfect matching M such that G−M is a (k−1)-graph. However, this was disproved
by Rizzi [1997,1999], who showed that for any k ≥ 3, there exists a k-graph in which
any two perfect matchings intersect. Hence, for any k ≥ 3 there exists a k-graph
that cannot be decomposed into a k1- and a k2-graph for any k1, k2 ≥ 1 with
k1 + k2 = k.

Nishizeki and Kashiwagi [1990] showed that

(28.34) χ′(G) ≤ max{ 11
10∆(G) + 4

5 , �χ′∗(G)�},

and they gave a polynomial-time algorithm finding an edge-colouring fulfilling this
bound. (This improves earlier results of Andersen [1977], Goldberg [1984], and
Hochbaum, Nishizeki, and Shmoys [1986].)

Marcotte [1986,1990a,1990b,2001], Seymour [1990a], Lee and Leung [1993], and
Caprara and Rizzi [1998] gave other partial results on conjecture (28.29).

28.7. Edge-colouring polyhedrally

Let G = (V, E) be a graph and let Q be the polytope determined by

(28.35) xe ≥ 0 (e ∈ E),
x(M) ≤ 1 (M matching).

So Q is the antiblocking polyhedron of the matching polytope. By the descrip-
tion of the matching polytope and by the theory of antiblocking polyhedra,
Q is equal to the convex hull of the following set of vectors:

(28.36) χS S substar,
1

� 1
2 |

⋃
F |

χF for nonempty F ⊆ E.

Here a substar is any set S of edges with S ⊆ δ(v) for some v ∈ V . By
⋃

F
we denote the set of vertices covered by F .

Now the fractional edge-colouring number χ′∗(G) is equal to the maxi-
mum value of 1Tx over Q (by LP-duality). The ellipsoid method then gives:

Theorem 28.6. The fractional edge-colouring number of a graph can be de-
termined in polynomial time.



478 Chapter 28. Edge-colouring

Proof. The separation problem over Q is equivalent to the weighted matching
problem, and hence is solvable in polynomial time. Therefore, with the ellip-
soid method, also the optimization problem over Q is solvable in polynomial
time. This gives the fractional edge-colouring number.

For any weight function w ∈ R
E
+, the maximum of wTx where x ranges

over the vectors (28.36), is equal to the minimum value of
∑

M λM where
λM ≥ 0 for M ∈ M such that

∑
M λMχM = w. Thus we have a min-max

relation for the ‘weighted fractional edge-colouring number’.
We should note that (generally) the matching polytope does not have the

integer decomposition property, and (equivalently) that system (28.35) does
not have the integer rounding property. Indeed, for the Petersen graph, the
maximum of 1Tx over (28.35) is equal to 3. So it has a fractional optimum
dual solution of value 3. However, there is no integer optimum dual solu-
tion, since the edges of the Petersen graph cannot be decomposed into three
matchings.

28.8. Packing edge covers

The results on edge-colouring (which is essentially covering by matchings),
can be dualized to packing edge covers, as observed by Gupta [1974] (where
δ(G) denotes the minimum degree of G):

Theorem 28.7. A simple graph G = (V, E) has δ(G)−1 disjoint edge covers.

Proof. Make an auxiliary graph H as follows. For each v ∈ V , do the follow-
ing. Make degG(v) − δ(G) new vertices, and reconnect degG(v) − δ(G) of the
edges incident with v with the new vertices, in such a way that v has degree
δ(G), while each new vertex has degree 1.

Then H has maximum degree δ(G) and there is a one-to-one mapping
between the edges of G and those of H. By Vizing’s theorem for simple
graphs (Theorem 28.1), H has matchings M1, . . . , Mδ(G)+1 partitioning E.
We denote the corresponding edge sets in G also by Mi.

Then each vertex v of G is covered by all but at most one of the match-
ings M1, . . . , Mδ(G)+1. Let U be the set of vertices of G missed by one of
M1, . . . , Mδ(G)−1. Then each vertex in U is covered by both Mδ(G) and
Mδ(G)+1. So Mδ(G) ∪ Mδ(G)+1 forms a graph on V where each vertex in
U has degree at least 2. Hence we can orient the edges in Mδ(G) ∪ Mδ(G)+1
such that each vertex in U is head of at least one of the oriented edges.

Now for each i = 1, . . . , δ(G)− 1, add to Mi all edges in Mδ(G) ∪Mδ(G)+1
that are oriented towards a vertex missed by Mi. This gives δ(G)−1 disjoint
edge covers.
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This can be formulated in terms of the edge cover packing number ξ(G)
of G, which is the maximum number of disjoint edge covers in G. Then, if G
is simple,

(28.37) ξ(G) ≥ δ(G) − 1.

Gupta [1974] showed more generally for not necessarily simple graphs
(where µ(G) denotes the maximum multiplicity of the edges of G):

Theorem 28.8. Any graph G has δ(G) − µ(G) disjoint edge covers.

Proof. Let δ := δ(G) and µ := µ(G). Make an auxiliary graph H as follows.
For each v ∈ V , do the following. Make degG(v) − δ new vertices, and recon-
nect degG(v) − δ of the edges incident with v with the new vertices, in such
a way that v has degree δ, while each new vertex has degree 1.

Then H has maximum degree δ(G), and there is a one-to-one mapping
between the edges of G and those of H. By Vizing’s theorem (Theorem 28.2),
H has matchings M1, . . . , Mδ+µ partitioning E. We denote the corresponding
edge sets in G also by Mi. Let

(28.38) F := Mδ−µ+1 ∪ · · · ∪ Mδ+µ.

Orient the edges in F such that each vertex v is entered by at least
� 1

2 degF (v)� of the edges incident with v.
Consider any vertex v, and let v be missed by α of the M1, . . . , Mδ−µ.

Let k be the number of Mδ−µ+1, . . . , Mδ+µ covering v. As v is covered by at
least δ of the M1, . . . , Mδ+µ, we know k +(δ −µ−α) ≥ δ, that is, k ≥ µ+α.
Since k ≤ 2µ, it follows that degF (v) ≥ k = 2k − k ≥ 2(µ + α) − 2µ = 2α.
Hence v is entered by at least α edges.

So for each i = 1, . . . , δ − µ, if v is missed by Mi, then we can extend Mi

by an edge in F oriented towards v. Doing this for each vertex v, we obtain
δ − µ disjoint edge covers.

Equivalently, for any graph,

(28.39) ξ(G) ≥ δ(G) − µ(G).

Gupta [1974] announced (without proof) and Fournier [1977] showed that
for any graph G = (V, E) and any k ∈ Z+, E can be partitioned into classes
E1, . . . , Ek such that each vertex v is covered by at least

(28.40) min{k,deg(v), max{k,deg(v)} − µ(v)}

of the Ei, where µ(v) denotes the maximum multiplicity of the edges incident
with v.
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28.9. Further results and notes

28.9a. Shannon’s theorem

Shannon [1949] gave the following upper bound on the edge-colouring number that
can be better than Vizing’s bound if G is not simple. As Vizing [1965a] observed,
the bound can be derived from Vizing’s theorem, as below.

Theorem 28.9. The edge-colouring number χ′(G) of a graph G = (V, E) is at most
 3

2∆(G)�.

Proof. Let G be a counterexample with a minimum number of edges. Define k :=
 3

2∆(G)�. So χ′(G) > k and by Vizing’s theorem (Theorem 28.2), χ′(G) ≤ ∆(G) +
µ(G), where µ(G) is the maximum edge-multiplicity of G. Hence µ(G) > 1

2∆(G).
Let u and v be vertices connected by µ(G) parallel edges. Choose one such

edge, e say. By the minimality of G, χ′(G − e) ≤ k. Consider a k-edge-colouring
of G − e. Let Iu and Iv be the sets of colours covering u and v respectively. Then
|Iu ∩ Iv| ≥ µ(G) − 1, since µ(G) − 1 edges of G − e connect u and v. Moreover,
|Iu| ≤ ∆(G)−1, since u has degree less than ∆(G) in G−e; similarly, |Iv| ≤ ∆(G)−1.
So

(28.41) |Iu ∪ Iv| = |Iu| + |Iv| − |Iu ∩ Iv| ≤ 2(∆(G) − 1) − (µ(G) − 1)
= 2∆(G) − µ(G) − 1 < 3

2∆(G) − 1 < k

(since µ(G) > 1
2∆(G)), and hence at least one colour does not occur in Iu ∪ Iv.

This colour can be given to edge e to obtain a k-edge-colouring of G.

The bound in this theorem is sharp, as is shown by a graph H on three ver-
tices u, v, and w, with � 1

2∆� parallel arcs connecting u and v,  1
2∆� parallel arcs

connecting u and w, and  1
2∆� parallel arcs connecting v and w. Then ∆(H) = ∆

and χ′(H) =  3
2∆�.

Vizing [1965a] showed that any graph G with ∆(G) ≥ 4 and χ′(G) =  3
2∆(G)�

contains this graph H as a subgraph.
The case ∆(G) even in Theorem 28.9 can be proved simpler as follows. We may

assume that each degree of G is even (we can pair up the odd-degree vertices by
new edges). Let k := 1

2∆(G). Make an Eulerian orientation of G. Split each vertex
v into two vertices v′ and v′′, and replace any edge oriented from u to v, by an
edge connecting u′ and v′′. In this way we obtain a bipartite graph H, of maximum
degree k. Hence, by Kőnig’s edge-colouring theorem, H has a k-edge-colouring. This
yields a decomposition of the edges of G into classes E1, . . . , Ek such that each
graph Gi = (V, Ei) has maximum degree 2. Hence each Gi is 3-edge-colourable,
and therefore G is 3k-colourable.

28.9b. Further notes

For simple planar graphs, if ∆(G) ≥ 7, then χ′(G) = ∆(G) (for ∆ ≥ 8, this was
proved by Vizing [1965b], and for ∆ = 7 by Sanders and Zhao [2001] and Zhang
[2000]). For 2 ≤ ∆ ≤ 5 there exist simple planar graphs of maximum degree ∆ with
χ′(G) = ∆ + 1. This is unknown for ∆ = 6 (and constitutes a question of Vizing
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[1968]). For ∆ ≥ 8, polynomial-time algorithms finding a ∆-edge-colouring of a
simple planar graph were given by Terada and Nishizeki [1982] (O(n2)), Chrobak
and Yung [1989] (O(n) if ∆ ≥ 19), and Chrobak and Nishizeki [1990] (O(n log n) if
∆ ≥ 9).

Kotzig [1957] showed the following theorem:

Theorem 28.10. Let G = (V, E) be a connected cubic graph with an even number
of edges. Then G is 3-edge-colourable if and only if the line graph L(G) of G is
4-edge-colourable.

Proof. I. First assume that L(G) is 4-edge-colourable, say with colours 0, 1, 2,
and 3. We colour the edges of G with colours labeled by the three partitions of
{0, 1, 2, 3} into pairs. Consider an edge e = uv of G. Let f1 and f2 be the two other
edges incident with u and let g1 and g2 be the two other edges incident with v. Let
i1 and i2 be the colours of the edges ef1 and ef2 of L(G) and let j1 and j2 be the
colours of the edges eg1 and eg2 of L(G). Give e the colour labeled by the partition
of {0, 1, 2, 3} into the pairs {i1, i2} and {j1, j2}. This gives a 3-edge-colouring of G.

II. Conversely, assume that G is 3-edge-colourable. We first show that L(G)
has a perfect matching. Indeed, there is a subset M of the edge set of L(G) such
that each vertex of L(G) is covered an odd number of times. To see this, choose an
arbitrary partition Π of the vertices of L(G) into pairs, and for each pair {e, f} ∈ Π,
we choose an e − f path Pe,f in L(G). Then the symmetric difference of all these
paths is a subset M as required.

Now choose such an M with |M | as small as possible. We claim that each vertex
of L(G) is covered exactly once by M ; that is, M is a perfect matching in L(G).
Suppose that vertex e of L(G) is covered by three edges in M , say ee1, ee2, and ee3.
We can assume that e, e1 and e2 are pairwise adjacent in L(G). Hence, replacing
M by M�{ee1, ee2, e1e2}, gives a subset M ′ covering each vertex an odd number
of times, however with |M ′| < |M |. This contradicts our assumption.

So M is a perfect matching in L(G), forming our first colour 0. Let G be edge-
coloured with colours 1, 2, and 3. Consider an edge e1e2 of L(G) not having colour
0. Let e0 be the third edge of G incident with the common vertex of e1 and e2. If
e0e1 has colour 0, give e1e2 the colour of edge e1. If e0e2 has colour 0, give e1e2 the
colour of edge e2. If neither e0e1 nor e0e2 has colour 0, give e1e2 the colour of edge
e0. It is straightforward to check that this gives a 4-edge-colouring of L(G).

For more on edge-colouring cubic graphs, see Kotzig [1975,1977].
McDiarmid [1972] observed that in any graph G = (V, E), if p ≥ χ′(G), then

there is a p-edge-colouring with |E|/p� ≤ |M | ≤ �|E|/p� for each colour M . This
can be proved in the same way as Theorem 20.8.

Meredith [1973] gave k-regular non-Hamiltonian non-k-edge colourable graphs
with an even number of vertices, for each k ≥ 3 (cf. Isaacs [1975]). Johnson [1966a]
gave a short proof that any cubic graph is 4-edge-colourable.

Vizing [1965a] asked if the minimum number of colours of the edges of a graph
can be obtained from any edge-colouring by iteratively swapping colours on a colour-
alternating path or circuit and deleting empty colours.

Marcotte and Seymour [1990] observed that the following is a necessary con-
dition for extending a partial k-edge colouring a graph G = (V, E) to a complete
k-edge colouring:
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(28.42) |F | ≤
k∑

i=1

µi(F ) for each F ⊆ E,

where µi(F ) is the maximum size of a matching M ⊆ F not covering any vertex
covered by the ith colour. They studied graphs where this condition is sufficient as
well.

Vizing [1965a] showed that if G is nonsimple and ∆(G) = 2µ(G) + 1, then
χ′(G) ≤ 3µ(G) (where µ(G) is the maximum edge-multiplicity of G).

The list-edge-colouring number χl(G) of a graph G = (V, E) is the minimum
number k such that for each choice of sets Le for e ∈ E with |Le| = k, one can
select le ∈ Le for e ∈ E such that for any two incident edges e, f one has le �= lf .
Vizing [1976] conjectures that χl(G) is equal to the edge-colouring number of G,
for each graph G (see Häggkvist and Chetwynd [1992]).

The total colouring number of a graph G = (V, E) is a colouring of V ∪ E such
that each colour consists of a stable set and a matching, vertex-disjoint. Behzad
[1965] and Vizing [1968] conjecture that the total colouring number of a simple
graph G is at most ∆(G) + 2. Molloy and Reed [1998] showed that there ex-
ists a constant C such that the total colouring number of any simple graph is
at most ∆(G) + C. A polynomial-time algorithm finding a total colouring with
∆(G)+poly(log ∆) colours is given by Hind, Molloy, and Reed [1999].

More generally, Vizing [1968] conjectures that the total colouring number of a
graph G is at most ∆(G) + µ(G) + 1, where µ(G) is the maximum size of a parallel
class of edges. Partial results have been found by Kostochka [1977], Hind [1990,
1994], Kilakos and Reed [1992], and McDiarmid and Reed [1993].

For extensions of Vizing’s theorem, see Vizing [1965b], Fournier [1973], Jakob-
sen [1973], Gol’dberg [1974], Fiorini [1975], Hilton [1975], Jakobsen [1975], Ander-
sen [1977], Kierstead and Schmerl [1983], Kostochka [1983], Ehrenfeucht, Faber,
and Kierstead [1984], Goldberg [1984], Hilton and Jackson [1987], Berge [1990],
and Chew [1997a]. The fractional edge-colouring number χ′∗(G) was studied by
Hilton [1975] and Stahl [1979]. A computational study based on fractional edge-
colouring was made by Nemhauser and Park [1991]. Equitable edge-colourings were
investigated by de Werra [1981].

Generalizations of edge-colouring were studied by Hakimi and Kariv [1986] and
Nakano, Nishizeki, and Saito [1988,1990]. Fiorini and Wilson [1977,1978], Fiorini
[1978], Jensen and Toft [1995], Nakano, Zhou, and Nishizeki [1995], and Zhou and
Nishizeki [2000] gave surveys on edge-colouring and extensions.

28.9c. Historical notes on edge-colouring

Historically, studying edge-colouring was motivated by the equivalence of the four-
colour conjecture with the 3-edge-colourability of planar bridgeless cubic graphs.
The four-colour conjecture was raised in 1852 by F. Guthrie. An early attempt
to prove the conjecture by Kempe [1879,1880] was shown by Heawood in 1890 to
contain an error — see below.

Also Tait [1878a] studied the four-colour problem. He claimed without proof
that each triangulated planar graph has two disjoint sets of edges such that each
triangular face is incident with exactly one edge in each of these sets. From this he
derived (correctly) that each loopless planar graph is 4-vertex-colourable. He also
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observed that his claim implies that each planar bridgeless cubic graph is 3-edge-
colourable.

In a note following a note of Guthrie [1878] (describing the very early history
of the four-colour problem, which note itself was a reaction to the article of Tait
[1878a]), Tait [1878b] remarked that in his earlier paper

I gave a series of proofs of the theorem that four colours suffice for a map. All of
these were long, and I felt that, while more than sufficient to prove the truth of
the theorem, they gave little insight into its real nature and bearings. A somewhat
similar remark may, I think, be made about Mr Kempe’s proof.

He therefore withdrew the former paper, and replaced it by the present note, in
which, without proof, the following ‘elementary theorem’ is formulated:

if an even number of points be joined, so that three (and only three) lines meet
in each, these lines may be coloured with three colours only, so that no two
conterminous lines shall have the same colour. (When an odd number of the
points forms a group, connected by one line only with the rest, the theorem is
not true.)

Tait next gave the now well-known construction of deriving 3-edge-colourability
of bridgeless planar cubic graphs from the 4-vertex-colourability of planar loopless
graphs. At that time, the error in Kempe’s proof of the four-colour conjecture was
not yet detected.

But Tait also said:

The proof of the elementary theorem is given easily by induction; and then the
proof that four colours suffice for a map follows almost immediately from the
theorem, by an inversion of the demonstration just given.

Tait [1880] claimed that in Tait [1878b] the 3-edge-colourability of bridgeless
planar cubic graphs had been shown:

If 2n points be joined by 3n lines, so that three lines, and three only, meet at
each point, these lines can be divided (usually in many different ways) into three
groups of n each, such that one of each group ends at each of the points.

While Tait did not mention it explicitly, he restricted himself to planar cubic graphs,
since he considered them equivalently as the skeletons of polytopes14. Also the
figures given in Tait [1880] are planar (and also those in Tait [1884], where similar
claims are made).

The validity of Kempe’s proof of the four-colour conjecture was accepted until
Heawood [1890] discovered a fatal error in Kempe’s proof, and showed that it in
fact gives a five-colour theorem for planar graphs. The error in his proof was ac-
knowledged by Kempe [1889]. (For an account of the early history of the four-colour
problem, see Biggs, Lloyd, and Wilson [1976].)

After that, the problem of the 3-edge-colourability of bridgeless planar cubic
graphs was open again. At several occasions, this problem was advanced (cf. Goursat
[1894]). It was only resolved in 1977 when Appel and Haken proved the four-colour
theorem.

Petersen [1898] asserted that Tait had claimed to have proved the 3-edge-
colourability of any (also nonplanar) bridgeless cubic graph. It motivated him to
present, as a counterexample, the now-called Petersen graph, which is a bridgeless
cubic graph that is not 3-edge-colourable:
14 Tait’s polytopes are 3-dimensional, since each vertex has degree 3.



484 Chapter 28. Edge-colouring

j’ai réussi à construire un graphe où le théorème de Tait ne s’applique pas.15

Petersen [1898] drew the Petersen graph as follows:

Figure 28.4

For another purpose, the Petersen graph was given earlier by Kempe [1886], who
represented it as follows:

Figure 28.5

Sainte-Laguë [1926a] introduced the term class for the edge-colouring number
of a graph. He noted (without exact argumentation) that Petersen’s theorem on
the existence of a perfect matching in a bridgeless cubic graph implies that each
cubic graph has edge-colouring number 3 or 4.

15 I have succeeded in constructing a graph where the theorem of Tait does not apply.



Chapter 29

T -joins, undirected shortest
paths, and the Chinese postman

The methods for weighted matching also apply to shortest paths in undi-
rected graphs (provided that each circuit has nonnegative length) and to
the Chinese postman problem — more generally, to T -joins.

29.1. T -joins

Let G = (V, E) be a graph and let T ⊆ V . A subset J of E is called a T -join
if T is equal to the set of vertices of odd degree in the graph (V, J). So if a
T -join exists, then |T | is even. More precisely,

(29.1) G has a T -join if and only if |K ∩ T | is even for each component
K of G.

T -joins are close to matchings. In fact, from Corollary 26.1a it can be
derived that a shortest T -join can be found in strongly polynomial time. To
see this, one should observe the following elementary graph-theoretical fact
representing T -joins as sets of paths:

(29.2) each T -join is the edge-disjoint union of circuits and 1
2 |T | paths

connecting disjoint pairs of vertices in T ;
the symmetric difference of a set of circuits and 1

2 |T | paths con-
necting disjoint pairs of vertices in T is a T -join.

This is used in showing that a shortest T -join can be found in strongly pol-
ynomial time:

Theorem 29.1. Given a graph G = (V, E), a length function l ∈ Q
E, and a

subset T of V , a shortest T -join can be found in strongly polynomial time.

Proof. First we dispose of negative lengths. Let N be the set of edges e with
l(e) < 0, let U be the set of vertices v with degN (v) odd, let T ′ := T
U ,
and let l′ ∈ Q

E
+ be defined by l′(e) := |l(e)| for e ∈ E.

Then, if J ′ is a T ′-join minimizing l′(J ′), the set J := J ′
N is a T -join
minimizing l(J). To see this, let J̃ be any T -join. Then J̃
N is a T ′-join,
and hence l′(J ′) ≤ l′(J̃
N). Therefore,
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(29.3) l(J) = l′(J ′) + l(N) ≤ l′(J̃
N) + l(N) = l(J̃).

So we can assume l ≥ 0. Now consider the complete graph KT with vertex
set T . For each edge st of KT , determine a path Pst in G of minimum length,
say, w(st). Find a perfect matching M in KT minimizing w(M). Then the
symmetric difference of the paths Pst for st ∈ M is a shortest T -join in G.
This follows directly from (29.2).

(This method is due to Edmonds [1965e].)
Note that a T -join J has minimum length if and only if l(C ∩ J) ≤ 1

2 l(C)
for each circuit C. (This was observed essentially by Guan [1960].)

Theorem 29.1 implies that also a longest T -join can be found in strongly
polynomial time:

Corollary 29.1a. Given a graph G = (V, E), a length function l ∈ Q
E, and

a subset T of V , a longest T -join can be found in strongly polynomial time.

Proof. Apply Theorem 29.1 to −l.

An application is finding a maximum-capacity cut in a planar graph G =
(V, E) (Orlova and Dorfman [1972]16, Hadlock [1975]): it amounts to finding
a maximum-capacity ∅-join in the planar dual graph. (Barahona [1990] gave
an O(n3/2 log n) time bound.)

Another consequence is:

Corollary 29.1b. Given a graph G = (V, E) and a length function l : E →
Q, one can check if there is a negative-length circuit in strongly polynomial
time.

Proof. There is a negative-length circuit if and only if there exists an ∅-join
J with l(J) < 0. So Theorem 29.1 gives the corollary.

Complexity. With Dijkstra’s shortest path method (Theorem 7.3) one derives from
Theorem 26.2 that a shortest T -join can be found in O(n3) time. Generally, one has
an O(APSP+(n, m, L) + WM(n, n2, nL))-time algorithm, where L is the maximum
absolute value of the lengths of the edges in G (assuming they are integer), where
APSP+(n, m, L) is the time in which the all-pairs shortest paths problem can be
solved, in an undirected graph, with n vertices and m edges and with nonnegative
integer lengths at most L, and where WM(n, m, W ) is the time in which a minimum-
weight perfect matching can be found, in a graph with n vertices and m edges and
with integer weights at most W in absolute value.

16 Orlova and Dorfman observed that finding a maximum-size cut in a planar graph
amounts to finding shortest paths connecting the odd-degree vertices in the dual graph,
but described a branch-and-bound method for it, and did not state that it can be solved
in polynomial time by matching techniques.
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29.2. The shortest path problem for undirected graphs

In Chapter 8 we saw that a shortest path in a directed graph without negative-
length directed circuits, can be found in strongly polynomial time. It implies a
strongly polynomial-time shortest path algorithm for undirected graphs, pro-
vided that all lengths are nonnegative. This, because the reduction replaces
each undirected edge uv by two directed edges (u, v) and (v, u) — which
would create a negative-length directed circuit if uv has negative length.

However, Theorem 29.1 implies that one can find (in strongly polynomial-
time) a shortest path in undirected graphs even if there are negative-length
edges, provided that all circuits have nonnegative length:

Corollary 29.1c. Given a graph G = (V, E), s, t ∈ V , and a length function
l ∈ Q

E such that each circuit has nonnegative length, a shortest s − t path
can be found in strongly polynomial time.

Proof. Define T := {s, t} and apply Theorem 29.1. By observation (29.2),
a shortest T -join J can be partitioned into an s − t path and a number
of circuits. Since by assumption any circuit has nonnegative length, we can
delete the circuits from J .

Complexity. Since by Gabow [1990] the weighted matching problem is solvable in
O(n(m + n log n)) time, a shortest path in an undirected graph, without negative-
length circuits, can be found in O(n(m + n log n)) time. This can be derived as
follows: If we want to find a shortest s− t path, add to each vertex v a ‘copy’ v′, for
each edge uv add edges uv′, u′v, and u′v′ (each with the same length as uv), and
for each vertex v add an edge vv′, of length 0. Let G′ be the graph obtained. Then
a minimum-weight perfect matching in G′ − s′ − t′ gives a shortest s − t path in G.

Gabow [1983a] gave an O(n min{m log n, n2})-time algorithm for the all-pairs
shortest paths problem in undirected graphs.

29.3. The Chinese postman problem

Call a walk C = (v0, e1, v1, . . . , et, vt) in a graph G a Chinese postman tour if
vt = v0 and each edge of G occurs at least once in C. The Chinese postman
problem, first studied by Guan [1960] (and named by Edmonds [1965e]), is:

(29.4) given: a connected graph G = (V, E) and a length function l ∈
Q

E
+,

find: a shortest Chinese postman tour C.

By Euler’s theorem, if each vertex has even degree, there is an Eulerian tour,
that is, a walk traversing each edge exactly once. So in that case, any Eulerian
tour is a shortest Chinese postman tour.
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But if not all degrees are even, certain edges have to be traversed more
than once. These edges form in fact a shortest T -join for T := {v | degG(v)
odd}. This is the base of the following consequence of Theorem 29.1:

Corollary 29.1d. The Chinese postman problem can be solved in strongly
polynomial time.

Proof. Let T := {v | degG(v) odd}. Find a shortest T -join J . Add to each
edge e in J an edge e′ parallel to e. This gives the Eulerian graph G′. Then
any Eulerian tour in G′ gives a shortest Chinese postman tour (by identifying
any new edge e′ with its parallel e).

To see this, note that obviously the Eulerian tour gives a Chinese postman
tour C of length l(E) + l(J). Suppose that there is a shorter tour C ′. Let J ′

be the set of edges traversed an even number of times by C ′. Then J ′ is a
T -join, and so l(J ′) ≥ l(J). Hence l(C ′) ≥ l(E) + l(J ′) ≥ l(E) + l(J) = l(C).

Observe that a postman never has to traverse any street more than twice.

Complexity. The above gives an O(n3)-time algorithm for the Chinese postman
problem (more precisely, O(k(m + n log n) + k3 + m), where k is the number of
vertices of odd degree).

29.4. T -joins and T -cuts

There is an interesting min-max relation for the minimum size of T -joins. To
this end, call, for any graph G = (V, E) and any T ⊆ V , a subset C of E a
T -cut if C = δ(U) for some U ⊆ V with |U ∩ T | odd.

Trivially, each T -cut intersects each T -join. Moreover, each edge set C
intersecting each T -join contains a T -cut (since otherwise each component of
(V, E \ C) has an even number of vertices in T , and hence there is a T -join
disjoint from C). So the inclusionwise minimal T -cuts are exactly the inclu-
sionwise minimal edge sets intersecting all T -joins. Hence the inclusionwise
minimal T -joins are exactly the inclusionwise minimal edge sets intersecting
all T -cuts.

Call a family F of cuts in G = (V, E) cross-free if F = {δ(U) | U ∈ C} for
some cross-free collection C of subsets of V ; that is, a collection C with

(29.5) U ⊆ W or W ⊆ U or U ∩ W = ∅ or U ∪ W = V

for all U, W ∈ C.
The following min-max relation for minimum-size T -joins in bipartite

graphs was proved by Seymour [1981d] — we give the simple proof due to
Sebő [1987]:
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Theorem 29.2. Let G = (V, E) be a bipartite graph and let T ⊆ V . Then
the minimum size of a T -join is equal to the maximum number of disjoint
T -cuts. The maximum is attained by a cross-free family of cuts.

Proof. We may assume T �= ∅. Let J be a minimum-size T -join in G. Define
a length function l : E → {+1,−1} by: l(e) := −1 if e ∈ J and l(e) := +1
if e �∈ J . Then every circuit C has nonnegative length, since J
C is again a
T -join, and hence |J
C| ≥ |J |, implying l(C) = |C \ J | − |C ∩ J | ≥ 0.

Let P be a minimum-length walk in G traversing no edge more than once.
Choose P such that it traverses a minimum number of edges. So P is a path
(as we can delete any circuit occurring in P ). Let t be an end vertex of P
and let f be the last edge of P .

Then f ∈ J , since otherwise we could make the walk shorter by deleting
f from P . Moreover, degJ(t) = 1, as if J has another edge, e say, incident
with t, then extending P by e would make the walk shorter.

We next show:

(29.6) Each circuit C traversing t and not traversing f has positive
length.

If C has only vertex t in common with P , let e be the first edge of C. So
l(e) = 1. Consider the walk P ′ := P ∪ (C − e). Then l(P ′) ≥ l(P ) and hence
l(C − e) ≥ 0. So l(C) > 0.

If C has another vertex in common with P , let u be the last vertex on
P with u �= t and traversed by C. Let P ′ be the u − t part of P . Split C
into two u − t paths C ′ and C ′′. By the minimality of |P |, l(P ′) < 0. Hence,
as C ′ ∪ P ′ and C ′′ ∪ P ′ are circuits, l(C ′) > 0 and l(C ′′) > 0. This implies
l(C) > 0.

Now shrink {t} ∪ N(t) to one new vertex v0, giving the graph G′. If
|T ∩ ({t} ∪ N(t))| is odd, let T ′ := (T \ ({t} ∪ N(t))) ∪ {v0}, and otherwise
let T ′ := T \ ({t} ∪ N(t)). Let J ′ := J \ {f}.

Then J ′ is a minimum-size T ′-join in G′. For suppose to the contrary that
G′ contains a circuit C ′ with |C ′ \ J ′| < |C ′ ∩ J ′|. If C ′ comes from a circuit
C in G not traversing t, we would have |C \ J | < |C ∩ J |, a contradiction. So
C ′ comes from a circuit C in G traversing t.

If C traverses f , then |C ′ \ J ′| − |C ′ ∩ J ′| = |C \ J | − |C ∩ J | ≥ 0, a
contradiction. If C does not traverse f , then, by (29.6), l(C) > 0, and hence
l(C) ≥ 2. So |C ′ \J ′| = |C \J |−2 ≥ |C ∩J | = |C ′ ∩J ′|, again a contradiction.

Now by induction (on |V | + |T |), G′ has disjoint cross-free T ′-cuts
D1, . . . , D|J′|. With the T -cut δ(t) this gives |J | disjoint cross-free T -cuts
in G.

(For another, algorithmic proof, see Barahona [1990].)
This implies for not necessarily bipartite graphs (Lovász [1975a]):
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Corollary 29.2a. Let G = (V, E) and let T ⊆ V with |T | even. Then the
minimum size of a T -join is equal to half of the maximum number of T -cuts
covering each edge at most twice. The maximum is attained by a cross-free
family of cuts.

Proof. Replace each edge of G by a path of length two, thus obtaining the
bipartite graph G′. Applying Theorem 29.2 to G′ gives the corollary.

In general it is not true that the minimum size of a T -cut is equal to the
maximum number of disjoint T -joins — see Section 29.11c.

Notes. Frank, Tardos, and Sebő [1984] sharpened Theorem 29.2 to the following.
Let G = (V, E) be a bipartite graph, with colour classes U and W , and let T ⊆ V .
Then the minimum size of a T -join is equal to the maximum of

(29.7)
∑

S∈Π

qT (S),

where Π ranges over all partitions of U . Here qT (S) denotes the number of com-
ponents K of G − S with |K ∩ T | odd. If G is arbitrary one takes the maximum of
1
2

∑
S∈Π qT (S) over all partitions Π of V . (For extensions, see Kostochka [1994].)

29.5. The up hull of the T -join polytope

The last corollary implies a polyhedral result due to Edmonds and Johnson
[1973] (also stated by Seymour [1979b]). Let G = (V, E) be a graph and let
T ⊆ V . The T -join polytope, denoted by PT -join(G), is the convex hull of the
incidence vectors of T -joins. So it is a polytope in R

E .
We first consider the ‘up hull’ of PT -join(G), that is,

(29.8) P ↑
T -join(G) := PT -join(G) + R

E
+,

which turns out to be determined by the system:

(29.9) (i) xe ≥ 0 for each e ∈ E,
(ii) x(C) ≥ 1 for each T -cut C.

Corollary 29.2b. The polyhedron P ↑
T -join(G) is determined by (29.9).

Proof. It is easy to see that P ↑
T -join(G) is contained in the polyhedron de-

termined by (29.9). If the converse inclusion does not hold, there is a weight
function w ∈ Q

E with w > 0 such that the minimum value of wTx subject
to (29.9) is less than the minimum weight α of any T -join. We may assume
that each w(e) is an even integer.

We make a new graph G′ = (V ′, E′) as follows. Replace each edge e = uv
of G by a path from u to v of length w(e). Then α is equal to the minimum
size of a T -join in G′. Hence by Theorem 29.2, G′ has α disjoint T -cuts. This
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gives a family of α T -cuts in G such that each edge e of G is in at most w(e)
of these T -cuts. Let yC be the number of times that T -cut C occurs in this
list. Then the yC give a feasible dual solution to the problem of minimizing
wTx over (29.9), with value

∑
C yC = α. This contradicts our assumption

that the minimum value of wTx subject to (29.9) is less than α.

(Gastou and Johnson [1986] gave a proof based on binary groups.)
By adding xe ≤ 1 for each e ∈ E we obtain from (29.9) the system

(29.10) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(C) ≥ 1 for each T -cut C.

Corollary 29.2c. The convex hull of the incidence vectors of edge sets con-
taining a T -join as a subset is determined by (29.10).

Proof. Directly from Corollary 29.2b, with Theorem 5.19.

These systems are totally dual half-integral:

Corollary 29.2d. Systems (29.9) and (29.10) are totally dual half-integral.

Proof. This follows from the proof of Corollary 29.2b, observing that the yC

are integer if each we is an even integer.

Generally these systems are not TDI, as is shown by taking G = K4 and
T = V — see Section 29.11b.

Barahona [2002] gave an O(n6)-time algorithm to decompose a vector
in the up hull of the T -join polytope as a convex combination of incidence
vectors of T -joins, added with a nonnegative vector.

29.6. The T -join polytope

In the previous section we considered the up hull of the T -join polytope.
We can derive from it an inequality system determining the T -join polytope
itself. Consider the following system of linear inequalities for x ∈ R

E :

(29.11) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V, F ⊆ δ(U),

|U ∩ T | + |F | odd).

Corollary 29.2e. The T -join polytope is determined by (29.11).

Proof. First, the incidence vector x of any T -join J satisfies (29.11). Indeed,
if U ⊆ V , then |δ(U) ∩ J | ≡ |U ∩ T | (mod 2). Hence if F ⊆ δ(U) with
|U ∩ T | + |F | odd, then |δ(U) ∩ J | + |F | is odd, and hence if x(F ) = |F | one
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has x(δ(U) \ F ) ≥ 1. This shows (29.11). So the T -join polytope is contained
in the polytope determined by (29.11).

To see the reverse inclusion, choose a weight function w ∈ Q
E . We show

that the minimum value of wTx subject to (29.11) is equal to w(J) for some
T -join J .

Define

(29.12) N := {e | w(e) < 0} and T ′ := T
{v | degN (v) odd}.

Let w′(e) := |w(e)| for each e ∈ E. Let J ′ be a T ′-join minimizing w′(J ′). By
Corollary 29.2c, there exist λU for U ⊆ V with |U ∩ T ′| odd, such that

(29.13) (i) λU ≥ 0 for each U with |U ∩ T ′| odd,
with equality if |J ′ ∩ δ(U)| > 1,

(ii)
∑

U
e ∈ δ(U)

λU ≤ w′(e) for each e ∈ E, with equality if e ∈ J ′.

Define µ, ν : E → R+ by the conditions that µ(e)ν(e) = 0 for each e ∈ E and
that

(29.14) ν − µ +
∑

U

λU (χδ(U)\N − χδ(U)∩N ) = w.

So the ν(e), µ(e), and λU give a feasible dual solution to the problem of
minimizing wTx subject to (29.11) (taking F := δ(U) ∩ N).

Let J := J ′
N . So J is a T -join. We show that J , µ(e), ν(e), λU satisfy
the complementary slackness conditions, thus finishing our proof.

First we show that if e ∈ J , then ν(e) = 0. Indeed, if e ∈ J \ N , then
e ∈ J ′, and hence

(29.15)
∑

U,e∈δ(U)\N

λU −
∑

U,e∈δ(U)∩N

λU

is equal to w′(e) = w(e) by (29.13)(ii), and hence ν(e) = 0. If e ∈ J ∩ N ,
then (29.15) is at least −w′(e) = w(e) by (29.13)(ii), and hence ν(e) = 0.

Second we show that if e �∈ J , then µ(e) = 0. If e �∈ J ∪ N , then (29.15)
is at most w′(e) = w(e) by (29.13)(ii), implying µ(e) = 0. If e ∈ N \ J , then
e ∈ J ′, and hence (29.15) is equal to −w′(e) = w(e) by (29.13)(ii), implying
µ(e) = 0.

Finally if λU > 0, then (as J = J ′
N and |J ′ ∩ δ(U)| = 1 by (29.13)(i))

(29.16) |J ∩ (δ(U) \ N)| − |J ∩ (δ(U) ∩ N)|
= |(J ′ \ N) ∩ δ(U)| − |(N \ J ′) ∩ δ(U)|
= |J ′ ∩ δ(U)| − |N ∩ δ(U)| = 1 − |δ(U) ∩ N |.

In Section 29.11b we show that (29.11) is TDI if and only if G is series-
parallel.
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29.7. Sums of circuits

Given a graph G = (V, E), the circuit cone is the cone in R
E generated by

the incidence vectors of circuits. Seymour [1979b] showed that this cone is
determined by:

(29.17) (i) xe ≥ 0 for each e ∈ E,
(ii) x(D) ≥ 2xe for each cut D and e ∈ D.

As J. Edmonds (cf. Seymour [1979b]) pointed out, this can be derived from
(essentially) matching theory:

Corollary 29.2f. The circuit cone is determined by (29.17).

Proof. Since the incidence vector x of any circuit satisfies (29.17), the circuit
cone is contained in the cone determined by (29.17).

To see the converse inclusion, let x satisfy (29.17). To show that x belongs
to the circuit cone, we may assume (by scaling) that x(E) ≤ 1. It suffices to
show that x belongs to the ∅-join polytope of G. Hence, by Corollary 29.2e,
it suffices to show that x(δ(U)) − 2x(F ) ≥ 1 − |F | for each U ⊆ V and
F ⊆ δ(U) with |F | odd. If |F | = 1, this follows from (29.17)(ii). If |F | ≥ 3,
then x(δ(U)) − 2x(F ) ≥ −x(E) ≥ −1 ≥ 1 − |F |.

(This proof is due to Aráoz, Cunningham, Edmonds, and Green-Krótki
[1983]. Hoffman and Lee [1986] gave a ‘different (but not shorter) proof’.
Coullard and Pulleyblank [1989] gave a short elementary proof, together with
decomposition results.)

Seymour [1979b] in fact characterized when a box has a nonempty inter-
section with the circuit cone:

Corollary 29.2g. Let G = (V, E) be a graph and let l, u ∈ R
E
+ satisfying

l ≤ u. Then there exists an x in the circuit cone of G with l ≤ x ≤ u if and
only if

(29.18) u(D \ {e}) ≥ l(e) for each cut D and each e ∈ D.

Proof. Necessity being trivial, we show sufficiency. Choose a counterexample
with

∑
e∈E(ue − le) minimum. Suppose that ue > le for some edge e. Then

there exist a cut D and e ∈ D with u(D \ {e}) = l(e) and there exist a cut
D′ containing e, and f ∈ D′ \{e} with u(D′ \{f}) = l(f). Then f �∈ D, since
otherwise e, f ∈ D ∩ D′, implying

(29.19) u(D
D′) ≤ u(D \ {e, f}) + u(D′ \ {e, f})
= l(e) − u(f) + l(f) − u(e) < 0.

Hence the cut D
D′ satisfies

(29.20) u(D
D′ \ {f}) ≤ u(D \ {e}) + u(D′ \ {e, f}) = l(e) − u(e) + l(f)
< l(f),
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contradicting (29.18).
So ue = le for each edge e, and hence the corollary follows from Corollary

29.2f.

Let G = (V, E) be a graph. A function l : E → R is called conservative
if l(C) ≥ 0 for each circuit C. The conservative functions form a polyhedral
convex cone, and Corollary 29.2f gives functions that generate this cone:

Corollary 29.2h. The cone of conservative functions is generated by the
nonnegative functions and by the functions l for which there is a subset U of
V and an edge e ∈ δ(U) such that

(29.21) l = χδ(U)\{e} − χe.

Proof. Directly by polarity (cf. Section 5.7) from Corollary 29.2f.

In Section 29.11b we show that system (29.17) is TDI if and only if G is
series-parallel.

29.8. Integer sums of circuits

Seymour [1979b] gave the following characterization of integer sums of circuits
in planar graphs. It is equivalent to saying that the incidence vectors of
circuits in a planar graph form a Hilbert base. (We follow a proof suggested
by A.V. Karzanov, which starts like Seymour’s proof but does not use the
four-colour theorem.)

Theorem 29.3. Let G = (V, E) be a planar graph and let x ∈ R
E. Then x

is a nonnegative integer combination of incidence vectors of circuits if and
only if x is an integer vector in the circuit cone with x(δ(v)) even for each
vertex v.

Proof. Necessity being easy, we show sufficiency. Consider a counterexample
with

(29.22) |V | +
∑

e∈E

(x(e) + 1)2

minimal. Then G is connected (otherwise one of the components forms a
counterexample with (29.22) smaller), x(e) ≥ 1 for each e ∈ E (otherwise we
can delete e), and each vertex v has degree at least 3 (the degree is at least 2
by (29.17)(ii); if it is precisely 2, then x has the same value on the two edges
incident with v (by (29.17)(ii)), and hence we can replace them by one edge).

Consider any edge e0 with x(e0) ≥ 2 and x(e0) minimal. Let e0 connect
vertices p and q say. Let G′ be the graph obtained from G by adding a new
(parallel) edge f between p and q. Define x′(e0) := x(e0)− 1, x′(f) := 1, and
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x′(e) := x(e) for all other edges e of G′. Then condition (29.17) is maintained,
but sum (29.22) decreases. So x′ is a sum of circuits17 in G′. If none of these
circuits consist of e0 and f , then x is a sum of circuits in G, a contradiction.
So {e0, f} is one of the circuits. Therefore, in G, the vector

(29.23) y := x − 2χe0

is a sum of circuits, say

(29.24) y =
∑

C∈C
λCχEC ,

where C is a collection of circuits and where the λC are positive integers. Let
C0 be the collection of circuits in C traversing e0, and let C1 := C \ C0.

We construct a directed graph D = (V, A). We say that a circuit C gen-
erates a pair (u, v) of distinct vertices if C traverses both u and v, in such a
way that if C traverses e0, then C traverses p, q, u, v cyclically in this order
(possibly u = q or v = p). The arc set A of D consists of all pairs (u, v)
generated by at least one C ∈ C. Then:

(29.25) D contains a directed path from p to q.

For suppose not. Let U be the set of vertices reachable in D from p. So q �∈ U ,
and no arc of D leaves U . Hence no C ∈ C1 intersects δE(U), and each C ∈ C0
intersects δE(U) precisely twice: once in e0 and once elsewhere. So

(29.26) x(δE(U) \ {e0}) = y(δE(U) \ {e0}) = y(e0) < x(e0),

contradicting (29.17). This shows (29.25).
Now choose a shortest directed p−q path P in D, say P = (v0, v1, . . . , vk),

with v0 = p and vk = q. Let C′ be an inclusionwise minimal subcollection of
C with the property that each arc of P is generated by some C in C′. Define
C′
0 := C′ ∩ C0, and

(29.27) z := 2χe0 +
∑

C∈C′
χEC .

We show:

(29.28) z = x, C′ = C, and λC = 1 for each C ∈ C.

It suffices to show that z = x. Suppose z �= x. Then, since z ≤ x, by the
minimality of (29.22), z is a sum of circuits. To see this, it suffices to show
that (29.17) is satisfied by z. To this end, let U ⊆ V and e ∈ δ(U). If e �= e0,
then (29.17)(ii) follows since z − 2χe0 is a sum of circuits. If e = e0, then
we can assume that p ∈ U , q �∈ U . Hence some arc (vi−1, vi) leaves U . Let
C ′ ∈ C′ generate (vi−1, vi). Then C ′ has at least two edges in δ(U), and at
least four if C ′ ∈ C′

0. Moreover, any C ∈ C′
0 has at least two edges in δ(U).

Hence
17 By a ‘sum of circuits’ we mean a sum of incidence vectors of circuits.
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(29.29) z(δ(U) \ {e0}) =
∑

C∈C′
|EC ∩ δ(U) \ {e0}| ≥ |C′

0| + 2 = z(e0).

So (29.17) is satisfied by z. Hence z is a sum of circuits. But then also x is a
sum of circuits, since

(29.30) x − z = y −
∑

C∈C′
χEC =

∑

C∈C
λCχEC −

∑

C∈C′
χEC

=
∑

C∈C\C′
λCχEC +

∑

C∈C′
(λC − 1)χEC .

This contradicts our assumption, proving (29.28).
Then:

(29.31) each vertex v is traversed by at most two circuits in C1.

Otherwise, there exist three arcs on P generated by circuits in C1 traversing
v. Hence there exist arcs (vi−1, vi) and (vj−1, vj) on P generated by circuits
C and C ′ in C1 traversing v, with i < j − 1. This implies that we can make
P shorter (by replacing vi, vi+1, . . . , vj−1 by v), a contradiction. This shows
(29.31).

Consider now any vertex v �= p, q and any f ∈ δ(v) with x(f) ≥ 2. By the
choice of e0 we know x(f) ≥ x(e0). Hence, using (29.31),

(29.32) 2x(f) ≤ x(δ(v)) ≤ 2|C0| + 4 = 2(y(e0) + 2) = 2x(e0) ≤ 2x(f).

So we have equality throughout. In particular, v is traversed by precisely two
circuits in C1, and x(f) = x(e0).

It follows that, for any i = 1, . . . , k − 1, the arcs (vi−1, vi) and (vi, vi+1)
are generated by circuits in C1 (by taking v = vi). Trivially, if k = 1, the arc
(v0, v1) is not generated by any circuit in C0, and hence by some circuit in
C1. Therefore, by the minimality of C, C0 = ∅ and C1 = C. Hence y(e0) = 0,
and so x(e0) = 2. Therefore, x(e) ∈ {1, 2} for each edge e.

Since each vertex v �= p, q is traversed by precisely two circuits in C, we
know that v is incident with at most one edge e with x(e) = 2. Since any e
with x(e) = 2 can play the role of e0, this also holds for v ∈ {p, q}. So

(29.33) the edges e with x(e) = 2 form a matching M in G.

Consider the path P above. Let arc (vi−1, vi) be generated by circuit
Ci ∈ C, for i = 1, . . . , k. By the minimality of k, Ci and Cj are vertex-disjoint
if j > i + 1. Let D1 be the union of the ECi for odd i, and let D2 be the
union of the ECi for even i. So (for each i = 1, 2) Di consists of vertex-disjoint
circuits, and D1 ∩ D2 = M \ {e0}.

This is used in proving:

(29.34) each nonempty cut D contained in M is odd.

Indeed, by symmetry we may assume that e0 ∈ D. Then D \ {e0} = D ∩ D1
(since D \ {e0} ⊆ M \ {e0} ⊆ D1 and since e0 �∈ D1). Moreover, |D ∩ D1| is
even, since D1 is a disjoint union of circuits.
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This proves (29.34), which implies that

(29.35) G − M has at most two components,

since if K and L are components with K ∪L �= V , then at least one of δE(K),
δE(L), and δE(K ∪ L) is nonempty and even, contradicting (29.34).

Moreover:

(29.36) M forms a cut in G.

Otherwise, M has an edge spanned by a component of G−M . Hence G has a
circuit C with |C ∩M | = 1 By symmetry, we may assume that C ∩M = {e0}.
Then C
D1 and C
D2 form cycles whose incidence vectors add up to x.
Hence x is a sum of circuits, a contradiction. So we have (29.36).

Now let K1 and K2 be the components of G − M . They are connected
Eulerian graphs. Since M forms a cut, we can assume that the attachments
of M at K1 and at K2 are at the outer boundaries B1 of K1 and B2 of K2.
By the planarity of G, the attachments of M occur in the same order on B1
as on B2. So χEB1 + χEB2 + 2χM is a sum of circuits. Since EK1 \ EB1 and
EK2 \ EB2 are cycles, this gives x as a sum of circuits.

(The proof of Seymour [1979b] of Theorem 29.3 uses the four-colour theorem.
Fleischner and Frank [1990] showed that a method of Fleischner [1980] gives
a proof not using the four-colour theorem. Also Alspach and Zhang [1993]
gave a proof not using the four-colour theorem.)

In Theorem 29.3 we cannot delete the planarity condition, as is shown by
the Petersen graph: fix a perfect matching M , and set xe := 2 if e ∈ M and
xe := 1 if e �∈ M . Alspach, Goddyn, and Zhang [1994] (extending Alspach
and Zhang [1993]) proved that the Petersen graph is the critical example:

Theorem 29.4. For any graph G = (V, E), the following are equivalent:

(29.37) (i) each integer vector x in the circuit cone with x(δ(v)) even for
each vertex v is a nonnegative integer combination of incidence
vectors of circuits;

(ii) G has no Petersen graph minor.

(This was generalized to binary matroids by Fu and Goddyn [1999] — see
Section 81.9.)

Seymour [1979b] conjectures that each even integer vector x in the circuit
cone is a nonnegative integer combination of incidence vectors of circuits.
A special case of this is the circuit double cover conjecture (it was asked by
Szekeres [1973] and conjectured by Seymour [1979b]): each bridgeless graph
has circuits such that each edge is covered by precisely two of them. Thus
Theorem 29.4 implies that the circuit double cover conjecture is true for
graphs without Petersen graph minor.
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It has been proved that for any even integer k ≥ 4, each bridgeless graph
has circuits such that each edge is covered by precisely k of them. (For k = 6
by Jaeger [1979] and for k = 4 by Fan [1992] — hence any even k ≥ 4 follows.)

This relates to the 4-flow conjecture of Tutte [1966], which generalizes the
four-colour theorem:

(29.38) (?) The edges of any bridgeless graph without Petersen graph
minor can be covered by two Eulerian subgraphs. (?)

(It is called the 4-flow conjecture, since it is equivalent to saying that for
each bridgeless graph G = (V, E) without Petersen graph minor, there is an
orientation D = (V, A) of G and a function f : A → {1, 2, 3} with f(δin(v)) =
f(δout(v)) for each v ∈ V — see Section 28.4.)

Conjecture (29.38) was proved for 4-edge-connected graphs by Jaeger
[1979], and for cubic graphs jointly by Robertson, Seymour, and Thomas
[1997], Sanders, Seymour, and Thomas [2000], and Sanders and Thomas
[2000].

(29.38) is equivalent to:

(29.39) (?) Any bridgeless graph without Petersen graph minor has two
disjoint T -joins, where T is the set of vertices of odd degree (?)

(since J is a T -join if and only if E \ T yields an Eulerian graph).
It is NP-complete to decide if a graph has two disjoint T -joins, since for

cubic graphs it is equivalent to 3-edge-colourability (cf. Theorem 28.3).
Related work can be found in Zhang [1993c]. Surveys on the circuit dou-

ble cover conjecture were given by Jaeger [1985], Jackson [1993], and Zhang
[1993a,1993b,1997b], and on integer decomposition of the circuit cone (and
more general decompositions) by Goddyn [1993].

29.9. The T -cut polytope

The T -cut polytope PT -cut(G) — the convex hull of the incidence vectors of
T -cuts — is a ‘hard’ polytope, even if |T | = 2, since finding a maximum cut
separating two given vertices in a graph is NP-complete. However, the up
hull of the T -cut polytope:

(29.40) P ↑
T -cut(G) := PT -cut(G) + R

E
+

is tractable, as follows directly with the theory of blocking polyhedra from
the results above on the up hull of the T -join polytope, and is determined
by:

(29.41) (i) xe ≥ 0 for each e ∈ E,
(ii) x(J) ≥ 1 for each T -join J .
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Theorem 29.5. The up hull P ↑
T -cut(G) of the T -cut polytope of G is deter-

mined by (29.41).

Proof. Directly with the theory of blocking polyhedra from Corollary 29.2b.

This implies that the following system:

(29.42) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(J) ≥ 1 for each T -join J ,

describes a convex hull as follows.

Corollary 29.5a. The convex hull of the incidence vectors of edge sets con-
taining a T -cut is determined by (29.42).

Proof. Directly from Theorem 29.5 with Theorem 5.19.

(For a direct derivation from Edmonds’ perfect matching polytope theorem,
see Seymour [1979a].)

In general, (29.41) is not TDI, not even totally dual half-integral (Seymour
[1979a]). Seymour [1977b] characterized pairs of G, T for which (29.41) is TDI
— see Section 29.11c.

Rizzi [1997] showed that the minimal TDI-system for the up hull of the
T -cut polytope can have arbitrarily large coefficients and right-hand sides.

29.10. Finding a minimum-capacity T -cut

Like in Section 25.5c we can find a minimum-capacity T -cut by construct-
ing a Gomory-Hu tree (for a graph G = (V, E) and a tree H = (V, F ), a
fundamental cut is a cut δE(Wf ), where f ∈ F and Wf is a component of
H − f):

Theorem 29.6. Let G = (V, E) be a graph and let T ⊆ V with |T | even.
Let c ∈ R

E
+ be a capacity function and let H = (V, F ) be a Gomory-Hu tree.

Then one of the fundamental cuts of H is a minimum-capacity T -cut in G.

Proof. For each f ∈ F , choose Wf to be one of the two components of H −f .
Let δG(U) be a minimum-capacity T -cut of G. So |U ∩ T | is odd.

Then U or V \ U is equal to the symmetric difference of the Wf over
f ∈ δF (U). Hence |Wf ∩ T | is odd for at least one f ∈ δF (U). So δG(Wf ) is
a T -cut.

Let f = uv. As δG(Wf ) is a minimum-capacity u−v cut and as δG(U) is a
u−v cut, we have c(δG(Wf )) ≤ c(δG(U)). So δG(Wf ) is a minimum-capacity
T -cut.
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This gives algorithmically (Padberg and Rao [1982]):

Corollary 29.6a. A minimum-capacity T -cut can be found in strongly pol-
ynomial time.

Proof. This follows from Theorem 29.6, since a Gomory-Hu tree can be found
in strongly polynomial time, by Corollary 15.15a.

Barahona and Conforti [1987] showed that a cut δ(U) with T ∩ U and
T \U even and nonempty, and of minimum capacity, can be found in strongly
polynomial time.

Barahona [2002] gave a combinatorial strongly polynomial-time algorithm
to solve the dual of maximizing cTx over (29.41) (yielding a fractional packing
of T -joins).

29.11. Further results and notes

29.11a. Minimum-mean length circuit

Let G = (V, E) be an undirected graph and let l ∈ Q
E be a length function. The

mean length of a circuit C is equal to l(C)/|C|. Barahona [1993b] showed (using
an argument of Cunningham [1985c]) that a minimum-mean length circuit in an
undirected graph can be found in strongly polynomial time, by solving at most m
Chinese postman problems.

Theorem 29.7. A minimum-mean length circuit in an undirected graph can be
found in strongly polynomial time.

Proof. Let G = (V, E) be an undirected graph and let l ∈ Q
E be a length function.

Note that by adding a constant γ to all edge-lengths, the collection of minimum-
mean length circuits does not change (as the mean length of any circuit increases
by exactly γ). So we can assume that there exists a circuit C with l(C) < 0.

The algorithm is as follows:

(29.43) Find a minimum-length ∅-join J .
If l(J) = 0, output a circuit of length 0, and stop.
If l(J) < 0, add γ := −l(J)/|J | to all edge-lengths, and iterate.

We first show that the algorithm stops; in fact, in at most |E| + 1 iterations. To
this end, consider two subsequent iterations. Let l and l′ be two subsequent length
functions and let J and J ′ be the shortest ∅-joins found. So l′(e) = l(e) − l(J)/|J |
for all e ∈ E. If l′(J ′) < 0, then |J ′| < |J |, since

(29.44) 0 > l′(J ′) = l(J ′) − l(J)
|J | |J ′| ≥ l(J) − l(J)

|J | |J ′| = l(J)(1 − |J ′|
|J | )

(note that l(J) < 0 and l(J ′) ≥ l(J)). This shows that the algorithm stops after at
most |E| + 1 iterations.
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As throughout the iterations, the collection of minimum-mean length circuits
is invariant, a minimum-mean length circuit for the final length function, is also a
minimum-mean length circuit for the initial length function. Hence the output is
correct.

Finally, for the 0-length circuit C in the final iteration we can take any circuit
contained in the ∅-join J found in the one but last iteration (as J has length 0 in
the last iteration).

Barahona [1993b] also showed that, conversely, the minimum-length T -join
problem can be solved by solving O(m2 log n) minimum-mean length circuit prob-
lems, as follows. Let l ∈ Q

E be a length function. Start with any T -join J . Find a
minimum-mean length circuit C for the length function l′ given by: l′(e) := −l(e)
if e ∈ T and l′(e) := l(e) otherwise. If l′(C) ≥ 0, then J is a T -join minimizing l(J).
Otherwise, reset T := T�C, and iterate.

(We note here that Guan [1960] proposed to find a circuit C minimizing l′(C)
and iteratively reset T as above, until l′(C) ≥ 0. It is however NP-complete to
find such a circuit, and moreover, no polynomial upper bound on the number of
iterations is known.)

Barahona [1993b] also observed that the minimum-mean length circuit problem
can be solved by solving a ‘compact’ linear programming problem (that is, one in
which the number of variables and constraints is bounded by a polynomial in the
size of the graph).

This follows from the fact that, for any graph G = (V, E), the convex hull of

(29.45) { 1
|C|χ

C | C circuit}

(where χC is the incidence vector of C in R
E) consists of all vectors x in the circuit

cone of G satisfying 1Tx = 1; moreover, by Corollary 29.2f, x belongs to the circuit
cone of G if and only if for each edge e = st there exists an s− t flow y ≤ x in G−e
of value xe. Here the flow is described on the directed graph obtained from G − e
by replacing each edge uv by two arcs (u, v) and (v, u). As the flows are determined
by flow conservation constraints (next to the negativity and capacity constraints),
this yields a compact linear program.

A minimum mean-weight circuit therefore can be found in polynomial time with
any polynomial-time LP-algorithm.

29.11b. Packing T -cuts

System (29.9) generally is not TDI, as is shown by taking G = K4 and T = V K4.
This example is the critical example, since Seymour [1977b] showed that if system
(29.9) is not TDI, then G, T contains K4, V K4 as a ‘minor’ — see Corollary 29.9b
below. To prove this, we follow the approach of Frank and Szigeti [1994] using the
results of Sebő [1988b].

Each polyhedron is determined by a TDI-system, albeit not necessarily the
minimal system defining the polyhedron. Sebő [1988b] showed that system (29.9)
can be extended as follows to a TDI-system defining the up hull of the T -join
polytope.

Let G = (V, E) be a graph and let T be an even-size subset of V . Call a set
B of edges a T -border if there exists a partition P = (U1, . . . , Uk) of V such that
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|Ui ∩ T | is odd for each i and such that B is equal to the set of edges connecting
distinct classes of P. The value val(B) of the T -border B is, by definition, half of
the number of components K of G − B with |K ∩ T | odd. (This is at least 1

2k.) So
a T -border is a T -cut if and only if val(B) = 1. Moreover, each T -join intersects
any T -border B in at least val(B) edges. Hence the minimum size of any T -join is
at least the maximum total value of any packing of T -borders. (The total value of a
collection of T -borders is the sum of the values of the T -borders in the collection.)
Sebő [1988b] showed that the minimum and maximum are equal:

Theorem 29.8. Let G = (V, E) be a graph and let T ⊆ V . Then the minimum size
of a T -join is equal to the maximum total value of a packing of T -borders.

Proof. Choose a counterexample with |V | as small as possible. Then G is connected.
By Corollary 29.2a, it suffices to show that the maximum total value of a packing

of T -borders is at least half of the maximum size of a 2-packing of T -cuts18 Choose
a maximum-size 2-packing of T -cuts δ(U1), . . . , δ(Uk), which by Corollary 29.2a we
may assume to be cross-free. We must find a packing of T -borders of total value
1
2k.

We choose the Ui such that

(29.46)
k∑

i=1

|Ui|

is as small as possible. In particular, |Ui| ≤ |V \ Ui| for each i.
For each such 2-packing we have

(29.47) δ(Ui) �= δ(Uj) if i �= j,

since otherwise we can contract the edges in δ(Ui) to obtain G′, T ′ and apply
induction. We obtain a packing of T ′-borders in G′, of total value 1

2 (k−2). Together
with the T -border B := δ(Ui) this gives a packing of T -borders in G of total value
1
2k. This shows (29.47).

We next show

(29.48) |Ui| = 1 for each i.

Suppose not. Choose an inclusionwise minimal set Ui with |Ui| > 1. So for any j,
if Uj ⊂ Ui, then Uj = {t} for some t ∈ T ∩ Ui. Moreover, for each t ∈ T ∩ Ui, there
is a j with Uj = {t}, since otherwise we could reset Ui := {t}, contradicting the
minimality of the sum (29.46). Then Ui ⊆ T , since otherwise we can replace Ui by
T ∩ Ui, again contradicting the minimality of the sum (29.46). It follows that the
union of the δ(t) for t ∈ Ui forms a T -border B of value 1

2 (|Ui| + 1). Contracting
the edges in B gives G′, T ′ say. Applying induction to G′, T ′ (in which there exists
a 2-packing of T ′-cuts of size k − (|Ui| + 1)), gives a packing of T ′-borders in G′ of
total value 1

2 (k − |Ui| − 1). Adding B, gives a packing of T -borders in G of total
value 1

2k.
So we can assume that |Ui| = 1 for each i. Then the union of the δ(Ui) for

i = 2, . . . , k forms a T -border of value 1
2k.

This theorem bears upon the system

18 A 2-packing is a family of sets such that no element is in more than two of them.
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(29.49) (i) xe ≥ 0 for each e ∈ E,
(ii) x(B) ≥ val(B) for each T -border B.

Since each inequality (29.9)(ii) occurs among (29.49), and since, conversely, each
inequality (29.49)(ii) is a half-integer sum of inequalities (29.9)(ii), the two systems
(29.9) and (29.49) define the same polyhedron — namely P ↑

T -join(G). In fact:

Corollary 29.8a. System (29.49) is TDI.

Proof. For any weight function w ∈ Z
E
+ we can replace any edge e = uv by a u − v

path of length w(e), contracting e if w(e) = 0. Applying Theorem 29.8 to the new
graph gives an integer optimum dual solution to the problem of minimizing wTx
subject to (29.49).

We next use Theorem 29.8 to show that system (29.9) is TDI if G, T contains
no K4, V K4 as a ‘minor’. We follow the line of proof given by Frank and Szigeti
[1994]. We first prove the following.

Call a graph G = (V, E) bicritical if G − u − v has a perfect matching for each
pair of distinct vertices u and v. Call a graph G = (V, E) oddly contractible to K4

if V can be partitioned into four odd sets V1, V2, V3, V4 such that G[Vi ∪ Vj ] is
connected for all i, j (also if i = j). The following result is due to A. Sebő (cf. Frank
and Szigeti [1994]):

Theorem 29.9. A bicritical graph with at least four vertices is oddly contractible
to K4.

Proof. Let G = (V, E) be a bicritical graph with |V | ≥ 4. This immediately implies
that G is connected and has a perfect matching M . Moreover,

(29.50) for all u, v ∈ V with u �= v there is an odd-length M -alternating u − v
path Pu,v with first and last edge not in M .

To see this, first assume that uv ∈ M . Then there is a perfect matching N not
containing uv (since there exists an edge uw with w �= v (by the connectedness of
G), and hence the perfect matching of G = {u, w} together with uw forms a perfect
matching). Let C be the circuit in M ∪ N containing uv. Then C − uv is a path as
required in (29.50).

If uv �∈ M , let u′ and v′ be such that uu′ ∈ M and vv′ ∈ M . Let N be a perfect
matching in G−u′ −v′. Then (M ∪N)\{uu′, vv′} contains a u−v path as required.
This shows (29.50).

Now (29.50) implies:

(29.51) there exists an odd-length M -alternating circuit C = (v0, v1, . . . , vt).

(So t is odd, and vivi+1 ∈ M if and only if i is odd.) To see (29.51), choose edges
uv ∈ M and vw �∈ M . Then Pu,w does not traverse v (otherwise uv is on Pu,w). So
C := EPu,w ∪ {uv, vw} is a circuit as required in (29.51).

Let w be such that wv0 ∈ M . Let K be the component of G−V C containing w.
So N(K) ⊆ V C. We first show that |N(K)| ≥ 3. Indeed, first we have v0 ∈ N(K).
Let s be the first vertex in Pw,v1 contained in V C. Then s �= v0, since otherwise
v0w ∈ EPw,v1 . Let s′ be such that ss′ ∈ M . So s′ �= v0. Let r be the first vertex in
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Pw,s′ contained in V C. Again r �= v0. Moreover, r �= s, since otherwise ss′ ∈ EPw,s′

(implying that the last edge of Pw,s′ is in M , a contradiction). As v0, s, r ∈ N(K),
we have |N(K)| ≥ 3.

As K is the union of w with a number of edges in M , |K| is odd. Similarly, any
other component of G−V C is even. As C is an odd circuit, V C can be partitioned
into three paths with an odd number of vertices, each containing a neighbour of K.
Hence G is oddly contractible to K4.

We define deletion, contraction, and minor for pairs G, T . Let G = (V, E) be a
graph, T ⊆ V , and e = uv ∈ E. We say that G − e, T arises from G, T by deleting
e. Let G/e be the graph obtained from G by contracting e. Denote the new vertex
to which e is contracted by ve. Define T ′ := T \ {u, v} if |T ∩ {u, v}| is even, and
T ′ := (T \ {u, v}) ∪{ve} if |T ∩{u, v}| is odd. Then we say that G/e, T ′ arises from
G, T by contracting e.

We say that the pair G′, T ′ is a minor of the pair G, T if G′, T ′ arises from G, T
by a series of deletions and contractions of edges, and of deletions of vertices not
in T . Then the following is a special case of a more general hypergraph theorem of
Seymour [1977b] (Theorem 80.1):

Corollary 29.9a. Let G = (V, E) be a graph and let T ⊆ V with |T | even, such
that K4, V K4 is not a minor of G, T . Then the minimum size of a T -join is equal
to the maximum number of disjoint T -cuts.

Proof. By Theorem 29.8, the minimum size of a T -join is equal to the maximum
total value of a packing of T -borders. Consider such an optimum packing, with the
number of T -borders as large as possible. If each T -border is a T -cut, we are done. So
assume that one of the T -borders, B say, has value at least 2. Let P = (U1, . . . , Uk)
be a partition of V with |Ui ∩ T | odd for each i and such that B is the union of the
δ(Ui).

Let G′ = (V ′, E′), T ′ be obtained from G, T by contracting each Ui to one
vertex. So T ′ = V ′. As G′, T ′ contains no K4, V K4 as a minor, G is not bicritical,
by Theorem 29.9. Hence there are distinct u, v ∈ V ′ such that G′ − u − v has no
perfect matching. By Tutte’s 1-factor theorem this implies that there is a subset U
of V ′ with u, v ∈ U and with o(G′ − U) ≥ |U |. Take such a U with |U | maximal.
Then each component of G′ −U is odd. (Otherwise, we can add an element of some
even component to U , contradicting the maximality of |U |.)

For each component K of G′ −U , the set of edges of G′ incident with K form a
V ′-border in G′ of value 1

2 (|K|+1). So G′ has a packing of V ′-borders of total value
|V ′ \U |+o(G′ −U) ≥ |V ′| = k. Since |U | ≥ 2 (as u, v ∈ U), we have o(G′ −U) ≥ 2,
so there are at least two such components. Hence the packing contains at least two
V ′-borders. Decontracting the Ui gives a decomposition of B into a packing of at
least two T -borders, of total value k. This contradicts the maximality of the number
of T -borders in the original packing.

This can be formulated equivalently in terms of total dual integrality. Note that
total dual integrality of system (29.9) is closed under taking minors: deletion of an
edge e corresponds to intersection with the hyperplane H := {x | xe = 0}, while
contracting e corresponds to projecting on H. Hence total dual integrality of (29.9)
can be characterized by forbidden minors; in fact, there is only one forbidden minor:
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Corollary 29.9b. System (29.9) is totally dual integral if and only if G, T has no
minor K4, V K4.

Proof. To see necessity, it suffices to show that if G = K4 and T = V K4, then
(29.9) is not TDI. Taking we := 1 for each e ∈ EG, the minimum weight of a T -join
equals 2, while each two T -cuts intersect, implying that there is no integer optimum
dual solution.

To see sufficiency, let K4, V K4 not be a minor of G = (V, E), T . Let w ∈ Z
E
+. Let

G′, T ′ arise from G, T by replacing each edge e by a path of length we, contracting e
if we = 0. Then also G′, T ′ has no minor K4, V K4. Moreover, the minimum weight
k of a T -join in G is equal to the minimum size of a T ′-join in G′. By Corollary
29.9a, G′ contains a T ′-cut packing of size k. So G contains k T -cuts such that each
edge e of G is in at most w(e) of them. This gives an integer optimum dual solution
to the problem of minimizing wTx subject to (29.9).

This implies a characterization of series-parallel graphs:

Corollary 29.9c. The following are equivalent for any graph G = (V, E):

(29.52) (i) G is series-parallel;
(ii) (29.9) is TDI for each choice of T ;

(iii) (29.11) is TDI for each choice of T ;
(iv) (29.11) is TDI for some choice of T ;
(v) (29.17) is TDI.

Proof. The equivalence of (i) and (ii) follows from Corollary 29.9b, since a graph
G is series-parallel if and only if G has no K4 minor. The implication (iii)⇒(iv) is
direct.

We next show (v)⇒(ii). Let (29.17) be TDI. Choose T ⊆ V and w ∈ Z
E
+. Let J

be a T -join minimizing w(J). Define w̃(e) := w(e) if e ∈ E \ J and w̃(e) := −w(e)
if e ∈ J . Then ∅ is a w̃-minimal ∅-join. Since (29.17) is TDI, there exist λU,e ∈ Z+

for U ⊆ V and e ∈ δ(U) with

(29.53) w̃ ≥
∑

U,e

λU,e(χδ(U)\{e} − χe).

Choose the λU,e such that
∑

U,e λU,e is minimized. Then

(29.54) if λU,e ≥ 1 and λU′,e′ ≥ 1, then e′ �∈ δ(U) \ {e}.

Otherwise, if e ∈ δ(U ′), then

(29.55) (χδ(U)\{e} − χe) + (χδ(U′)\{e′} − χe′
)

is nonnegative, and hence we can decrease λU,e and λU′,e′ by 1, without violating
(29.53), contradicting our minimality assumption.

If e �∈ δ(U ′), then e ∈ δ(U�U ′). Also, (29.55) is at least

(29.56) χδ(U�U′)\{e} − χe,

and hence we can decrease λU,e and λU′,e′ by 1, and increase λU�U′,e by 1, without
violating (29.53), again contradicting our minimality assumption.
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This shows (29.54). So there are no two λU,e ≥ 1 and λU′,e′ ≥ 1 such that the
vectors χδ(U)\{e} − χe and χδ(U′)\{e′} − χe′

have opposite signs in some position.
The minimality of

∑
λU,e then implies that

∑
λU,e = −w̃(J) = w(J) and that

J ∩ δ(U) = {e} for each U, e with λU,e ≥ 1. So each such δ(U) is a T -cut. Moreover,

(29.57) w ≥
∑

U,e

λU,eχ
δ(U).

So we have an integral dual solution for the problem of minimizing wTx over (29.9).
This proves (v)⇒(ii).

We next show the reverse implication (ii)⇒(v). Let (29.9) be TDI for each choice
of T . To prove that (29.17) is TDI, choose w ∈ Z

E , such that minimizing wTx over
(29.17) is finite — that is (as (29.17) determines the circuit cone) w(C) ≥ 0 for
each circuit C.

Define J := {e ∈ E | w(e) < 0} and T := {v ∈ V | degJ(v) is odd}. Moreover,
w̃(e) := |w(e)| for e ∈ E. Then J is a T -join minimizing w̃(J) (as w(C) ≥ 0 for
each circuit C). Hence, as (29.9) is TDI, there exist λU ∈ Z+ for U with T ∩U odd,
such that

(29.58)
∑

U

λUχδ(U) ≤ w̃ and
∑

U

λU = w̃(J).

For each U with λU ≥ 1 one has |J ∩ δ(U)| = 1; let eU be the edge in J ∩ δ(U).
Then

(29.59) w ≥
∑

U

λU (χδ(U)\eU − χeU ),

proving total dual integrality of (29.17).

Finally we show (v)⇔(iii)⇔(iv). Consider any T ⊆ V and any vertex χJ of the
T -join polytope, determined by T -join J . Total dual integrality of (29.11) in χJ

means that the following system is TDI:

(29.60) xe ≥ 0 for each e ∈ E \ J ,
xe ≤ 1 for each e ∈ J ,
x(H) − x(F ) ≥ 1 − |F |, for each U ⊆ V and partition F, H of

δ(U) with |U ∩ T | + |F | odd and
|H ∩ J | + |F \ J | = 1.

The condition |H ∩ J | + |F \ J | = 1 implies that there exists an edge e ∈ δ(U) with
F = (δ(U) ∩ J)�{e} and H = (δ(U) \ J)�{e}.

Setting x̃e := 1 − xe if e ∈ J and x̃e := xe if e ∈ E \ J , (29.60) is equivalent to:

(29.61) x̃e ≥ 0 for e ∈ E,
x̃(H \J) + |H ∩J |− x̃(H ∩J)− x̃(F \J)−|F ∩J |+ x̃(F ∩J) ≥ 1−|F |

for each U, F, H as described in (29.60). The second line in (29.61) is equivalent to:

(29.62) x̃(H�(J ∩ δ(U))) − x̃(F�(J ∩ δ(U))) ≥ 1 − |F�(J ∩ δ(U))|.

and hence to

(29.63) x̃(δ(U) \ {e}) − x̃e ≥ 0,
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where {e} := F�(J ∩ δ(U)). As this equivalence holds for any fixed T , this proves
both (iv)⇒(v) and (v)⇒(iii).

(Korach [1982] gave an algorithmic proof of this corollary.)
Sebő [1988b] also characterized the minimal TDI-system for the polyhedron

P ↑
T -join(G). Call a T -border B reduced if B = δ(U1) ∪ · · · ∪ δ(Uk) for some partition

P = (U1, . . . , Uk) of V such that |Ui ∩ T | is odd and G[Ui] is connected for each i
and such that the graph obtained by contracting each Ui to one vertex is bicritical.
Then the following is a minimal TDI-system for connected graphs:

(29.64) (i) xe ≥ 0 for each edge e for which {e} is not a T -cut,
(ii) x(B) ≥ val(B) for each reduced T -border B.

Sebő [1993c] showed that for each fixed k, the problem of finding a maximum in-
teger packing of T -cuts subject to a capacity constraint is polynomial-time solvable
if |T | = k. The method uses that integer linear programming is polynomial-time
solvable in fixed dimension (Lenstra [1983]).

29.11c. Packing T -joins

In the previous section we considered packing T -cuts, which relates to the total
dual integrality of system (29.9). We now consider packing T -joins, which relates
to the total dual integrality of system (29.41).

System (29.41) generally is not TDI. Indeed, let G be the graph K2,3 and let
T0 := V K2,3 \ {v0}, where v0 is one of the two vertices of degree 3 in K2,3. Then
the minimum size of a T0-cut in K2,3 is equal to 2, while there are no two disjoint
T0-joins. This again is the critical example, as follows again from a more general
hypergraph theorem of Seymour [1977b] (Theorem 80.1). For this special case, we
follow the line of proof given by Codato, Conforti, and Serafini [1996].

Theorem 29.10. Let G = (V, E) be a graph and let T ⊆ V , such that K2,3, T0 is
not a minor of G, T . Then the minimum size of a T -cut is equal to the maximum
number of disjoint T -joins.

Proof. Let G, T form a counterexample, with |V | + |E| as small as possible. Let k
be the minimum size of a T -cut. Then trivially G is connected. Moreover:

(29.65) any T -cut C of size k satisfies C = δ(t) for some t ∈ T .

Indeed, let C = δ(U) for U ⊆ V with |U ∩ T | odd and |C| = k. Assume that
1 < |U | < |V | − 1. Then G[U ] is connected, since otherwise there would exist a
T -cut smaller than k. Similarly, G − U is connected.

Now contract U to one vertex v′, yielding minor G′, T ′ of G, T . The minimum
size of a T ′-cut in G′ equals k. As |V G′| < |V G|, we know that G′ has k disjoint
T ′-joins. Each of them intersects δG′(v′) in exactly one edge (as it is a T ′-cut of
size k).

We can contract V \ U to one vertex v′′, yielding minor G′′, T ′′ of G, T . Again,
G′′ has k disjoint T ′′-joins, each intersecting δG′′(v′′) in exactly one edge.

Using the one-to-one correspondence between δG′(v′) and δG′′(v′′), we can glue
the two collections of joins together, to obtain k disjoint T -joins in G, contradicting
our assumption. This gives (29.65).

Let T ′ := {t ∈ T | deg(t) = k}. Then (29.65) implies that
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(29.66) each edge of G intersects T ′.

Otherwise we could delete the edge without decreasing the minimum size of a
T -cut, by (29.65). This would give a smaller counterexample, contradicting our
assumption.

We next have:

(29.67) |V \ T ′| ≥ 2.

For suppose |V \ T ′| ≤ 1. We know that G has k − 1 disjoint T -joins (by the
minimality of |V | + |E| — otherwise deleting any edge would give a smaller coun-
terexample). Let F be the union of these T -joins. Then degF (v) is even if v �∈ T
while degF (v) ≡ k − 1 (mod 2) if v ∈ T . Hence degE\F (v) is odd for each v ∈ T ′.
As |V \ T ′| ≤ 1 it follows that E \ F is a T -join, and hence G would have k disjoint
T -joins. This contradicts our assumption, and proves (29.67).

Then

(29.68) there is no subset U of T ′ with |U | ≤ 2 and G − U disconnected.

Suppose not. If |U | = 1, let U = {t} for t ∈ T ′. Then |K ∩ T | is odd for some
component K of G− t. As G− t is disconnected, |δ(K)| < deg(t) = k, contradicting
the fact that δ(K) is a T -cut.

If |U | = 2, let U = {t, t′} for t, t′ ∈ T ′. Choose a component K of G − U not
contained in T ′. Let l (l′, respectively) be the number of edges connecting K and
t (K and t′, respectively). If |K ∩ T | is odd, then l + l′ = |δ(K)| > k and hence
|δ(K ∪ {t, t′})| ≤ (k − l) + (k − l′) < k, a contradiction. If |K ∩ T | is even, then
l′ + (k − l) = |δ(K ∪ {t})| > k, and similarly l + (k − l′) > k, a contradiction. This
proves (29.68).

Now choose u ∈ V \ T ′. As N(u) ⊆ T ′ (by (29.66)), by (29.68) we know
|N(u)| ≥ 3. Choose a component K of G′ := G − ({u} ∪ N(u)), with |N(K)| as
small as possible. (K exists by (29.67).) If possible, we take K such that moreover
|K ∩ T | is odd.

Again by (29.68), |N(K)| ≥ 3. Choose t1, t2, t3 ∈ N(K). Then

(29.69) for any component L �= K of G′ with N(L) = {t1, t2, t3} one has |L∩T |
even.

For suppose that |L ∩ T | is odd. By the minimality of |N(K)|, we know N(K) =
{t1, t2, t3}. Moreover, |K ∩ T | is odd. Let ki be the number of edges connecting K
and ti and let li be the number of edges connecting L and ti, for i = 1, 2, 3. Then
k1 +k2 +k3 = |δ(K)| ≥ k, and similarly l1 + l2 + l3 ≥ k. This gives the contradiction

(29.70) k < |δ(K∪L∪{t1, t2, t3})| ≤ (k−k1−l1)+(k−k2−l2)+(k−k3−l3) ≤ k

(the first inequality follows from (29.65)). This shows (29.69).
Now contract the union of {u}∪ (N(u) \ {t1, t2, t3}) and all components L �= K

of G′ with N(L) �= {t1, t2, t3} to one vertex u′. Moreover, contract the union of {t1}
and all components L �= K of G′ with N(L) = {t1, t2, t3} to one vertex t′

1. Finally
contract K to one vertex u′′. This gives minor G′′, T ′′ of G, T .

So G′′ has vertices u′, u′′, t′
1, t2, t3, with each of u′, u′′ adjacent to each of t′

1, t2, t3
(possibly there are more adjacencies). Each of t′

1, t2, t3 belongs to T ′′. As |T ′′|
is even, exactly one of u′, u′′ belongs to T ′′. Hence G, T has minor K2,3, T0, a
contradiction.
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This implies the characterization:

Corollary 29.10a. System (29.41) is TDI if and only if K2,3, T0 is not a minor of
G, T .

Proof. Necessity follows from the fact that total dual integrality of (29.41) is main-
tained under taking minors (contraction of an edge e corresponds to intersecting the
polytope with the hyperplane xe = 0, and deletion of e corresponds to projecting
on it), while the minimum size of a T0-cut in K2,3 is 2, and K2,3 has no two disjoint
T0-joins.

To see sufficiency, let w ∈ Z
E
+. Replace any edge e = uv of G by w(e) parallel

edges connecting u and v, yielding the graph G′. Then the minimum weight of a
T -cut in G is equal to the minimum size of a T -cut in G′. By Theorem 29.10, this
minimum size is equal to the maximum number of disjoint T -joins in G′. These
T -joins give an integer optimum dual solution to the problem of minimizing wTx
subject to (29.41).

Generally, system (29.41) is not totally dual half-integral, as is shown by the
following example of Seymour [1979a]. Let G′ = (V ′, E′) be a connected bridgeless
cubic graph with χ′(G) = 4 and with an even number of edges. (For instance, G′ is
the Petersen graph with one vertex replaced by a triangle (in such a way that the
three vertices adjacent to it in the Petersen graph, now each are adjacent to one of
the vertices in the triangle).)

Let G = (V, E) be obtained from G′ by replacing each edge by a path of length
2. So |V | is even.

Then trivially the minimum size of a V -cut is equal to 2. However, the maximum
number of V -joins covering each edge at most twice is equal to 3. For suppose that
there exist four V -joins J1, . . . , J4 covering each edge at most twice. Since each edge
of G is incident with a vertex of degree two, each edge of G is covered exactly twice
by the Ji. For i = 1, 2, 3, let Ci := Ji�J4. Then each Ci is a vertex-disjoint union
of circuits, and each edge of G is in exactly two of the Ci. Then the complements
of the Ci form edge-disjoint V ′-joins in G. This would yield a 3-edge-colouring of
G′ — a contradiction.

If we replace each edge of G by two parallel edges, thus obtaining an Eulerian
graph, the minimum size of a V -cut equals 4, whereas the maximum number of
disjoint V -joins is 3.

If Seymour’s ‘generalized Fulkerson conjecture’ (see Section 28.5) is true, there
exists a 1

4 -integer packing (that is, the minimum size of a T -cut is equal to one
quarter of the maximum size of a 4-packing of T -joins); in other words, the total
dual quarter-integrality of the T -join constraints (29.41) follows — we give the proof
of Seymour [1979a] of this derivation.

Proof that the generalized Fulkerson conjecture implies the total dual
quarter-integrality of the T -join constraints. Let G = (V, E) be a graph and
let T ⊆ V . Let k be the minimum size of a T -cut. We must show that the generalized
Fulkerson conjecture implies:

(29.71) there exist T -joins J1, . . . , J4k covering each edge of G at most four
times.

First assume that T = V . We show:
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(29.72) if each vertex of G has even degree, then there exist V -joins J1, . . . , J2k

covering each edge of G at most twice.

To see this, assume that each vertex of G has even degree. So k is even. If k ≤ 2,
(29.72) is trivial. (If k = 2 there exists a V -join J ; then the complement E \ J is a
V -join again.) So we can assume that k ≥ 4.

For each v ∈ V , let Gv be a (k − 1)-edge-connected graph with degG(v) + 1
vertices, one of degree k and all other vertices of degree k − 1. (Such graphs Gv

exist: If k = 4, take any cubic 3-edge-connected graph on degG(v) + 2 vertices (for
instance, by taking a circuit on degG(v) + 2 vertices, and making opposite vertices
adjacent), and contract an arbitrary edge of it. If k ≥ 6, add a Hamiltonian circuit
to the graph for the case k − 2.)

We take the Gv vertex-disjoint. Now transform G to a graph H, by replacing
each vertex v by Gv, and making each edge of G which was incident with v, incident
instead with one of the degG(v) vertices of Gv of degree k − 1, in such a way that
the resulting graph H is k-regular.

We show that H is a k-graph, by showing

(29.73) |δH(U)| ≥ k for each U ⊆ V H with |U | odd.

To see this, assume |δH(U)| < k. Observe that |δH(U)| is even, as k is even and H
is k-regular. Hence |δH(U)| ≤ k − 2. Since each Gv is (k − 1)-edge-connected, for
each v ∈ V we know that either V Gv ⊆ U or V Gv ∩ U = ∅. Define

(29.74) X := {v ∈ V | V Gv ⊆ U}.

Then |δH(U)| = |δG(X)|. Moreover, |X| is odd as |V Gv| is odd for each v ∈ V .
Therefore |δG(X)| ≥ k and hence |δH(U)| ≥ k. This shows (29.73).

Then by the generalized Fulkerson conjecture, there exist perfect matchings
M1, . . . , M2k in H covering each edge of H exactly twice. Projecting these matchings
to the original edges of G, gives V -joins as required in (29.72).

Now, for T = V , (29.71) follows from (29.72) by replacing each edge of G by two
parallel edges. The case of general T can be reduced to the case T = V as follows.
Let T be arbitrary. For each vertex v ∈ V \ T , make a new vertex v′, connected by
k parallel edges with v. This gives the graph G′ = (V ′, E′). Then the minimum size
of a V ′-cut in G′ is equal to k. Hence by (29.71) there exist V ′-joins J ′

1, . . . , J
′
4k in

G′ covering each edge of G′ at most four times. Restricting the J ′
i to the edges of

G, gives V -joins in G as required.
Cohen and Lucchesi [1997] showed that conjecture (29.72) is equivalent to: if

all T -cuts have the same parity, then the maximum size of a 2-packing of T -joins
is equal to twice the minimum size of a T -cut. They also showed that this is true
if |T | ≤ 8; more strongly, that if |T | ≤ 8 and all T -cuts have the same parity, then
the maximum number of disjoint T -joins is equal to the minimum size of a T -cut.

29.11d. Maximum joins

Let G = (V, E) be a graph. Call a subset J of E a join if |J ∩ C| ≤ 1
2 |C| for each

circuit C; that is, |J�C| ≥ |C| for each circuit C. This can be expressed in terms
of the length function lJ : E → {−1, +1}, defined by

(29.75) lJ(e) :=
{

−1 if e ∈ J ,
+1 if e �∈ J .
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So

(29.76) lJ(F ) = |F�J | − |J |

for each F ⊆ E. Then a set J is a join if and only if lJ(C) ≥ 0 for each circuit C.
Note also that

(29.77) a set J is a join if and only if it is a minimum-size T -join for T := {v ∈
V | degJ(v) odd}.

Frank [1990b,1993b] gave a min-max relation for the maximum size of a join. By
Corollary 29.2a and (29.77), the maximum size of a join is equal to the maximum
size of a fractional packing of T -cuts, taken over T ⊆ V with |T ∩ K| even for each
component K of G. This, however, is not a min-max relation.

A min-max relation can be described in terms of ear-decomposition. Let G =
(V, E) be an undirected graph. An ear of G is a path or circuit P in G, of length
≥ 1, such that all internal vertices of P have degree 2 in G. The path may consist
of a single edge — so any edge of G is an ear.

If I is the set of internal vertices of an ear P , we say that G arises from G−I by
adding ear. An ear-decomposition of G is a series of graphs G0, G1, . . . , Gk, where
G0 = K1, Gk = G, and Gi arises from Gi−1 by adding an ear (i = 1, . . . , k).

A graph G = (V, E) has an ear-decomposition if and only if G is 2-edge-
connected (see Theorem 15.17). Moreover, the number of ears in any ear-decompo-
sition is equal to |E| − |V | + 1. Then the min-max relation for maximum-size join
in 2-connected graphs is formulated as:

Theorem 29.11. Let G = (V, E) be a 2-edge-connected graph. Then the maximum
size of a join is equal to the minimum value of

(29.78)
k∑

i=1

 1
2 |EPi|�

taken over all ear-decompositions (P1, . . . , Pk) of G.

Proof. We first show that the maximum is not more than the minimum. Let J be a
join in G and let Π = (P1, . . . , Pk) be an ear-decomposition of G. Let G′ = (V ′, E′)
be the graph made by P1, . . . , Pk−1 and let J ′ := J ∩ E′. By induction we know

(29.79) |J ′| ≤
k−1∑

i=1

 1
2 |EPi|�.

If |J ∩ EPk| ≤  1
2 |EPk|� we are done. So assume that |J ∩ EPk| >  1

2 |EPk|�; that
is, lJ(Pk) < 0. Let u and v be the end vertices of Pk. Let Q be a u − v path in G′

minimizing lJ′(Q). So lJ(Pk) + lJ(Q) ≥ 0 (since J is a maximum-size join). Since
lJ′(Q) = |J ′�EQ| − |J ′|, Q minimizes |J ′�EQ|.

Then J ′′ := J ′�EQ is again a join in G′, since for any circuit C in G′:

(29.80) |J ′′�C| = |J ′�(EQ�C)| ≥ |J ′�EQ| = |J ′′|

(since Q minimizes |J ′�EQ|). Moreover,

(29.81) |J ′′| − |J ′| = |J ′�EQ| − |J ′| = lJ(Q) ≥ −lJ(Pk)
= |J ∩ EPk| − |EPk \ J | ≥ |J ∩ EPk| −  1

2 |EPk|�.
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Hence, by induction applied to J ′′,

(29.82) |J | = |J ′| + |J ∩ EPk| ≤ |J ′′| +  1
2 |EPk|� ≤

k∑

i=1

 1
2 |EPi|�.

This shows that the maximum is not more than the minimum. To see equal-
ity, for any graph G let β(G) be the maximum size of a join in G. For any ear-
decomposition Π = (P1, . . . , Pk), let σ(Π) :=

∑k
i=1 1

2 |EPi|�. Let π(G) be the min-
imum of σ(Π) over all ear-decompositions Π of G. So we must prove β(G) = π(G).
Call an ear-decomposition Π optimum if it minimizes σ(Π).

We first show:

(29.83) Let U ⊆ V with G[U ] 2-edge-connected. Then π(G) ≤ π(G[U ]) +
π(G/U).

To see this, first observe that if G[U ] has a Hamiltonian circuit C, then an optimum
ear-decomposition Π ′ of G[U ] is obtained by first taking C, and next adding the
remaining edges as ears. Now in any optimum ear-decomposition Π ′′ of G/U , we
can insert Π ′ at the first ear of Π ′′ containing the vertex into which U is contracted
(by splitting C appropriately). In this way we obtain an ear-decomposition Π of G
with σ(Π) ≤ σ(Π ′) + σ(Π ′′).

If G[U ] has no Hamiltonian circuit, let Π ′ be an optimum ear-decomposition
of G[U ]. Let C be its first ear. By the above, π(G) ≤ π(G[V C]) + π(G/V C).
Also, by induction, π(G/V C) ≤ π((G[U ])/V C) + π(G/U). As C is the first ear of
Π ′, we have π(G[V C]) + π((G[U ])/V C) = π(G[U ]). Combining, we get π(G) ≤
π(G[U ]) + π(G/U), showing (29.83).

Next we state:

(29.84) if G is factor-critical, then π(G) ≤  1
2 |V G|�.

This follows directly from Theorem 24.9, since  1
2 |EPi|� is at most 1

2 the number
of internal vertices of Pi.

In particular, it follows that if G is factor-critical, then β(G) = π(G), as G
has a join of size  1

2 |V G|�, namely a matching. So we can assume that G is not
factor-critical.

A graph G is called matching-covered if each edge of G is contained in a perfect
matching. By Theorem 24.10,

(29.85) if G is matching-covered and 2-edge-connected, then π(G) ≤ 1
2 |V G|.

For any subset W of V let HW be the graph obtained from G[W ∪ N(W )] by
deleting all edges in N(W ) and contracting all edges in W . (HW may have parallel
edges.) So HW is a bipartite graph with colour classes N(W ) and κ(W ) := the set
of components of G[W ].

(29.86) There is a nonempty subset W of V such that each component of G[W ]
is factor-critical and such that HW is 2-edge-connected and matching-
covered.

To see this, we first observe that there is a nonempty subset X of V such that each
component of G[X] is factor-critical and such that HX has a matching M covering
N(X). Indeed, if G has no perfect matching, then we can take X := D(G) (= the
set of vertices v for which G has a maximum-size matching missing v). By Corollary
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24.7a, X has the required properties. If G has a perfect matching, call it M . Choose
u ∈ V , and let X := D(G − u). Then X has the required properties (note that the
vertex matched in M to u belongs to D(G − u)).

Having X and M , orient the edges in M in the direction from κ(X) to N(X),
and all other edges of HX in the direction from N(X) to κ(X). This gives a directed
graph, that has (like any directed graph) a strong component L such that no arc
enters L. Let W be the union of those components of G[X] whose contraction
belong to L. Since no arc leaves L, for any edge e = uv ∈ M , if u ∈ N(X) and
u ∈ L, then v ∈ W . Conversely, if v ∈ W , then u ∈ L. For let v ∈ K ∈ L. As G
is 2-edge-connected, there exists an edge f �= e leaving K. As K ∈ L and no arc
enters L, both ends of f belong to L. As L is strongly connected, f belongs to a
directed circuit. Necessarily, e is in this directed circuit. So both ends of e are in L.

Hence the edges of M intersecting W , form a perfect matching M ′ in HW , and
so |N(W )| = |κ(W )|. Moreover, consider any edge e of HW not in M . In HX , e is
oriented from N(W ) to κ(W ), and hence, as L is a strong component, it is contained
in a directed circuit. This directed circuit forms an M ′-alternating circuit in HW ,
implying that e belongs to a perfect matching in HW . So HW is matching-covered.
Finally HW is 2-edge-connected, as it has a strongly connected orientation, since L
is a strong component. This shows (29.86).

Define U := W ∪ N(W ). Then (29.83), (29.84), (29.85), and (29.86) imply

(29.87) π(G) ≤ π(G/U) + π(G[U ]) ≤ π(G/U) + π(HW ) +
∑

K∈κ(W )

π(G[K])

≤ π(G/U) + 1
2 |V HW | +

∑

K∈κ(W )

 1
2 |K|� ≤ π(G/U) + 1

2 |U |.

On the other hand, we have

(29.88) β(G) ≥ β(G/U) + 1
2 |U |.

Indeed, let G′ := G/N(W ). Then trivially, β(G) ≥ β(G′). The contracted N(W )
forms a cut vertex v0 in G′, and so β(G′) is equal to the sum of the β(G′[K ∪{v0}])
over all components K of G − v0. Now for each component K of G[W ] we have
β(G′[K ∪ {v0}]) ≥ 1

2 (|K| + 1), since G′[K ∪ {v0}] has a perfect matching (as K
is factor-critical), which is a join. Since G[W ] has |N(W )| components, this proves
(29.88).

Hence the theorem follows by induction.

The proof gives a polynomial-time algorithm to find a maximum-size join and
an ear-decomposition minimizing (29.78).

In Section 24.4d we saw that a graph is factor-critical if and only if it has an
ear-decomposition with odd ears only. This can be generalized to (where G/F arises
from G by contracting all edges in F ):

Theorem 29.12. Let G = (V, E) be a 2-edge-connected graph. Then the minimum
number of even ears in an ear-decomposition of G is equal to the minimum size of
a subset F of E with G/F factor-critical.

Proof. First let P1, . . . , Pk be an ear-decomposition of G. Choose one edge from
each even ear. This gives a set F with G/F factor-critical, by Theorem 24.9.
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Conversely, let F ⊆ E with G/F factor-critical and |F | minimum. By Theorem
24.9, G/F has an ear-decomposition (P1, . . . , Pk) with odd ears only. Then we can
partition F into F1, . . . , Fk such that P1 ∪ F1, . . . , Pk ∪ Fk is an ear-decomposition
of G. This ear-decomposition has at most |F | even ears.

We can derive from this a characterization of the maximum size of a join in any
graph:

Corollary 29.12a. Let G = (V, E) be a connected graph. Then the maximum size
β(G) of a join is equal to

(29.89) 1
2 (φ(G) + |V | − 1).

where φ(G) is the minimum size of a subset F of E with G/F factor-critical.

Proof. If G has a cut edge e, the corollary follows by applying induction to G/e,
since β(G) = β(G/e) + 1 and φ(G) = φ(G/e) + 1.

So we can assume that G is 2-edge-connected, and then the corollary follows
from Theorem 29.11, with Theorem 29.12. Note that

(29.90)
k∑

i=1

 1
2 |EPi|� = 1

2 (number of even ears +
k∑

i=1

(|EPi| − 1))

= 1
2 (number of even ears +|V | − 1).

For 2-edge-connected bipartite graphs we have:

Corollary 29.12b. Let G = (V, E) be a 2-edge-connected bipartite graph, with
colour classes U and W . Then the maximum size of a join is equal to the minimum
number of edges oriented towards U in any strongly connected orientation of G.

Proof. To see that the maximum is not more than the minimum, consider any
strongly connected orientation of G, yielding the directed graph D. By Theorem
6.9, D has an ear-decomposition (P1, . . . , Pk). Any ear Pi contains at least  1

2 |EPi|�
edges oriented towards U . So the sum (29.78) is at most the total number of edges
oriented towards U . Hence by Theorem 29.11, the maximum is not more than the
minimum.

To see equality, consider an ear-decomposition P1, . . . , Pk of G minimizing
(29.78). In any ear Pi, we can orient the edges so as to obtain a directed path,
with exactly  1

2 |EPi|� edges oriented towards U . This gives a strongly connected
orientation with

∑
i 1

2 |EPi|� edges oriented towards U . So Theorem 29.11 gives
equality.

We can derive some more min-max relations for bipartite graphs. Seymour
[1981d] observed that Theorem 29.2 is equivalent to:

Theorem 29.13. Let G = (V, E) be bipartite and let J ⊆ E. Then J is a join if
and only if there exist |J | disjoint cuts each intersecting J in exactly one edge.

Proof. By Theorem 29.2, using (29.77).
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This implies a max-max relation for the maximum size of a join in bipartite
graphs:

Corollary 29.13a. Let G be bipartite. Then the maximum size of a join is equal
to the maximum number of disjoint nonempty cuts.

Proof. Directly from Theorem 29.13.

Hence, with Corollary 29.12b, a result of D.H. Younger follows (cf. Frank
[1993b]):

Corollary 29.13b. Let G be a 2-edge-connected bipartite graph, with colour classes
U and W . Then the minimum number of edges oriented towards U in any strongly
connected orientation of G is equal to the maximum number of disjoint nonempty
cuts in G.

Proof. From Corollaries 29.13a and 29.12b.

Frank, Tardos, and Sebő [1984] showed the following. Let G be a 2-edge-
connected bipartite graph, with colour classes U and W . Then the minimum number
of edges oriented towards U in any strongly connected orientation of G is equal to
the maximum value of

(29.91)
∑

S∈Π

κ(G − S),

ranging over all partitions Π of U , where κ(H) denotes the number of components
of H.

For an extension, see Kostochka [1994]. Szigeti [1996] gave a weighted version,
based on matroids. Fraenkel and Loebl [1995] showed that it is NP-complete to
find the maximum size of a subset J of the edge set E of a graph G with lJ(C) <
1
2 |EC| for each circuit C (even if G is planar and bipartite). Connected joins were
investigated by Sebő and Tannier [2001].

29.11e. Odd paths

We saw in Section 29.2 that the problem of finding a shortest s − t path in an
undirected graph G = (V, E), with length function l : E → Q can be solved in
polynomial time, if each circuit has nonnegative length. This is by reduction to the
weighted matching problem.

As J. Edmonds (cf. Grötschel and Pulleyblank [1981]) observed, another prob-
lem reducible to the weighted matching problem is: given a graph G = (V, E) and
a length function l : E → Q+, find a shortest odd s − t path. Here a path is odd if
it has an odd number of edges.

This reduction is as follows: make a copy G′ = (V ′, E′) of G, and a copy
l′ : E′ → Q+ of l, add edges vv′ for each v ∈ V (where v′ is the copy of v), each
of length 0. Call the extended graph H. Then a minimum-length odd s − t path in
G can be found by finding a minimum-length perfect matching M in H − s′ − t′:
let N be the perfect matching {vv′ | v ∈ V } in H; then the component of M ∪ N
containing s and t gives a shortest odd s − t path in G.

Next consider the following polyhedron Q in R
E :
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(29.92) Q := conv.hull{χP | P odd s − t path} + R
E
+

and its blocking polyhedron

(29.93) B(Q) = {x ∈ R
E
+ | x(P ) ≥ 1 for each odd s − t path P}.

By the above method, one can optimize over Q in polynomial time. Hence, with
the ellipsoid method, one can decide if a given x ∈ Q

E belongs to Q or not, and
if not, find a separating facet. This also implies that for given capacity function
c : E → Q+, one can find in polynomial time a fractional packing of odd s− t paths
subject to c, of maximum value (by minimizing cTx over B(Q)).

Schrijver and Seymour [1994] considered the problem (raised by Grötschel
[1984]) of finding an explicit system of inequalities describing Q; equivalently, of
describing the vertices of B(Q).

Call a subset F of E odd-blocking if each odd s − t path contains an edge in
F . For each F ⊆ E, define hF ∈ Z

E
+ as follows, where e = uv ∈ E and WF :=

{s, t} ∪ {v ∈ V | v is incident with at least one edge in E \ F}:

(29.94) hF (e) :=






2 if u, v ∈ WF and e ∈ F ,
1 if exactly one of u, v belongs to WF ,
0 otherwise.

In other words,

(29.95) hF =
∑

v∈WF

χδ(v)∩F .

In particular, hF (e) = 0 if e �∈ F .
Note that for each x ∈ Z

E
+ one has:

(29.96) hT
F x ≥ 1 for each odd-blocking F ⇐⇒ there exists an odd s − t path

P with χP ≤ x ⇐⇒ hT
F x ≥ 2 for each odd-blocking F .

Then Schrijver and Seymour [1994] proved:

(29.97) Let l : E → Z+ be a length function such that each circuit and each
s − t path has even length. Then the minimum length of an odd s − t
path is equal to the maximum value of 2k for which there exist odd-
blocking sets F1, . . . , Fk with hF1 + · · · + hFk ≤ l.

This implies:

(29.98) Let l : E → Z+ be a length function. Then the minimum length of
an odd s − t path is equal to the maximum value of k for which there
exist odd-blocking F1, . . . , Fk with 1

2hF1 + · · · + 1
2hFk ≤ l.

This can be formulated in terms of LP-duality. Let F be the collection of odd-
blocking sets and let H be the F ×E matrix whose F th row equals hF (for F ∈ F).
Then (29.98) states that for l : E → Z+:

(29.99) min{lTx | x ∈ Z
E
+, ( 1

2H)x ≥ 1} = max{yT1 | y ∈ Z
F
+ , yT( 1

2H) ≤ lT}.

Equivalently, the system

(29.100) xe ≥ 0 e ∈ E,
1
2hT

F x ≥ 1 F odd-blocking,
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determines Q and is TDI. Hence:

(29.101) each vertex of B(Q) is equal to 1
2hF for some odd-blocking F ⊆ E

(this implies the conjecture of W.J. Cook and A. Sebő that the vertices of B(Q)
are half-integer).

Minimizing cTx over B(Q) then gives the following. Let G = (V, E) be an
undirected graph, let s, t ∈ V , and let c : E → R+. Then the maximum value of a
fractional packing of odd s − t paths subject to c is equal to the minimum value of

(29.102) 1
2

∑

v∈WF

c(δ(v) ∩ F ),

taken over odd-blocking F ⊆ E.
L. Lovász asked for the complexity of the following combination of two of the

problems above: given a graph G = (V, E), vertices s, t ∈ V , and a length function
l : E → Q, such that each circuit has nonnegative length, find a shortest odd s − t
path.

29.11f. Further notes

Complexity survey for all-pairs shortest paths in undirected graphs without nega-
tive-length circuits (∗ indicates an asymptotically best bound in the table):

∗ O(nm log n) Gabow [1983a]

∗ O(n3) Gabow [1983a]

(The algorithm proposed by Bernstein [1984] fails (for instance, for a graph with
four vertices).)

Karzanov [1986] gave an O(|T |m log n +|T |3 log |T |)-time algorithm to find a
shortest T -join and a maximum fractional packing of T -cuts.

It is easy to see that the vertices of P ↑
T -join(G) are the incidence vectors of

the inclusionwise minimal T -joins (that is, those T -joins that are a forest). Indeed,
consider a T -join J . If J contains another T -join J ′ as subset, then χJ′ ≤ χJ , and
hence χJ is not a vertex of P ↑

T -join(G). Conversely, if χJ is not a vertex, then χJ ≥ x
for some convex combination x of incidence vectors T -joins. Each of these T -joins
J ′ satisfies χJ′ ≤ χJ , and hence J ′ ⊆ J .

Similarly, an inequality x(C) ≥ 1 for a T -cut C determines a facet if and only
if C is an inclusionwise minimal T -cut.

Giles [1981] showed that two inclusionwise minimal T -joins J and J ′ give adja-
cent vertices of the polyhedron P ↑

T -join(G) if and only if J ∪J ′ contains exactly one

circuit. It implies that the distance of J and J ′ in P ↑
T -join(G) is at most |J \ J ′| —

this implies the Hirsch conjecture for P ↑
T -join(G).

Gerards [1992b] showed the following. For any graph H, an odd-H is a subdivi-
sion of H such that each odd circuit of H becomes an odd circuit in the subdivision.
In other words, the edges of H that become an even-length path form a cut in H.
The prism is the complement of the 6-circuit C6. Let G = (V, E) be a graph not
containing an odd-K4 or an odd-prism as subgraph. Then for each T ⊆ V , the
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minimum size of a T -join is equal to the maximum number of disjoint T -cuts. This
generalizes Corollary 29.9c and Theorem 29.2.

Call a graph G = (V, E) a Seymour graph if for each subset T of V for which
there exists a T -join, the minimum-size of a T -join is equal to the maximum number
of disjoint T -cuts. Ageev, Kostochka, and Szigeti [1995,1997] showed that G is a
Seymour graph if and only if for each length function l ∈ Z

E with l(C) ≥ 0 for each
circuit C, and for each pair of circuits C1 and C2 with l(C1) = 0 and l(C2) = 0, the
graph formed by C1 ∪ C2 is neither an odd-K4 nor an odd-prism. (Here sufficiency
was proved by A. Sebő.)

Seymour [1981d] characterized for which pairs G, T with |T | = 4, the minimum
size of a T -join is equal to the maximum number of disjoint T -cuts. In fact, let
T = {t1, t2, t3, t4} and let k ∈ Z+. Then there is a packing of T -cuts of size k if and
only if

(29.103) dist(t1, t2) + dist(t3, t4) ≥ k,
dist(t1, t3) + dist(t2, t4) ≥ k,
dist(t1, t4) + dist(t2, t3) ≥ k,

such that if equality holds in each of these inequalities, then dist(t1, t2)+dist(t1, t3)+
dist(t2, t3) is even.

Korach [1982] characterized such pairs for |T | = 6, and gave a polynomial-time
algorithm recognizing them.

The existence of T -joins satisfying given upper bounds on the degrees can be
characterized by reduction to Tutte’s 1-factor theorem (cf. Ning [1987]).

Middendorf and Pfeiffer [1990b,1993] showed that it is NP-complete to decide,
for given planar graph G = (V, E) and T ⊆ V , if the minimum size of a T -join
is equal to the maximum number of disjoint T -cuts. As a minimum-size T -join
can be found in polynomial time, it follows that it is NP-complete to determine a
maximum packing of T -cuts. (Related results are given by Korach and Penn [1992],
Korach [1994], and Granot and Penn [1995].)

The directed Chinese postman problem can be solved as a minimum-cost cir-
culation problem (see Section 12.5b). The mixed Chinese postman problem (with
directed and undirected edges) however is NP-complete (Papadimitriou [1976]).
Guan [1984] derived from this that the windy (or asymmetric) postman problem
(where the length of an edge may depend on the direction in which it is traversed)
is NP-complete.

Edmonds and Johnson [1973] showed that the mixed Chinese postman problem
in which each vertex has even total degree is polynomial-time solvable. (The total
degree of a vertex v is the total number of edges (directed and undirected) incident
with v.) Similarly, Guan and Pulleyblank [1985] and Win [1989] showed that the
windy postman problem is solvable in polynomial time if the graph is Eulerian (by
reduction to a minimum-cost circulation problem). More on the windy postman
can be found in Grötschel and Win [1992], Pearn and Li [1994], and Raghavachari
and Veerasamy [1999b].

For approximation algorithms for the mixed postman problem, see Frederick-
son [1979] and Raghavachari and Veerasamy [1998,1999a]. Further work on the
mixed postman problem is reported in Kappauf and Koehler [1979], Minieka [1979],
Brucker [1981], Christofides, Benavent, Campos, Corberán, and Mota [1984], Ralphs
[1993], and Nobert and Picard [1996].
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An extension of the Edmonds-Gallai decomposition to T -joins was given by
Sebő [1990b] (cf. Sebő [1986,1997]). Goemans and Williamson [1992,1995a] gave a
fast 2-approximative algorithm for finding a shortest T -join.

Benczúr and Fülöp [2000] give fast algorithms for finding minimum-size T -cut,
with generalization to directed graphs.

Tobin [1975] studied finding a negative-length circuit with Edmonds’ algorithm.
For more on packing T -joins, see Rizzi [1997]. For surveys on T -joins and T -cuts,
see Sebő [1988a] and Frank [1996a].

29.11g. On the history of the Chinese postman problem

In a paper in Chinese in Acta Mathematica Sinica, entitled (in translation) ‘Graphic
programming using odd or even points’, Guan [1960] introduced the problem of
finding a shortest postman route:

When the author was plotting a diagram for a mailman’s route, he discovered the
following problem: “A mailman has to cover his assigned segment before returning
to the post office. The problem is to find the shortest walking distance for the
mailman.”

(In a footnote it is mentioned that ‘In postal service, a mailman’s route is called a
segment’.) Next:

This problem can be reduced to the following: “Given a connected graph in the
plane, we are to draw a continuous graph (repetition permitted) from a given
point and back minimizing the number of repeated arcs.”

So Guan restricted himself to planar graphs. He observed that a postman never
has to traverse any edge more than twice. Hence the problem amounts to finding
a minimum-length set J of edges such that adding a parallel edge to each of them,
gives an Eulerian graph. He next gave an algorithm, which consist of starting with
any such set J , and next iteratively improving it by finding a circuit C such that
the length of J ∩ C is larger than half of the length of C, and replacing J by J�C.
As in each iteration the length of J decreases, the method finds a shortest route
after a finite number of steps.

In a review in Mathematical Reviews of the article of Guan [1960], Fulkerson
[1964a] observed:

Unfortunately, the construction involves examining all simple cycles to see whether
the minimality test is met or not, and this is easier said than done.

Therefore, Edmonds [1965e] announced a better method in an abstract for the
27th National Meeting of the Operations Research Society of America (May 1965
in Boston):

We present an algorithm which does not involve examining simple cycles. It is
“good” in the sense that the amount of work in applying it is at worst moderately
algebraic, relative to the size of the graph, rather than exponential. It combines
two earlier known algorithms: (1) the well-known “shortest path” algorithm, (2)
a recent algorithm for “maximum matching”.

The name of the problem seems to occur first in the title of this abstract: ‘The
Chinese Postman’s Problem’ (where ‘The Chinese’s Postman Problem’ would be
more appropriate).



Chapter 30

2-matchings, 2-covers, and
2-factors

The results on matchings are strongly self-refining, as was pointed out by
Tutte [1952,1954b] and Edmonds and Johnson [1970,1973]. In this chapter
we see a first instance of this phenomenon. By splitting vertices, results on
2-matchings can be derived from those on ordinary matchings. 2-matchings
are of interest for the traveling salesman problem.

30.1. 2-matchings and 2-vertex covers

Let G = (V, E) be an undirected graph. A 2-matching is a vector x ∈ Z
E
+

satisfying x(δ(v)) ≤ 2 for each vertex v. A 2-vertex cover is a vector y ∈ Z
V
+

such that yu + yv ≥ 2 for each edge uv of G. Defining the size of a vector as
the sum of its entries, we denote:

(30.1) ν2(G) := the maximum size of a 2-matching in G,
τ2(G) := the minimum size of a 2-vertex cover in G.

Note that

(30.2) τ2(G) = min{|V \ S| + |N(S)|
∣∣ S ⊆ V, S stable set},

since for a minimum-size 2-vertex cover y, the set S := {v ∈ V | yv = 0} is
a stable set, while N(S) = {v ∈ V | yv = 2}, and since χV \S + χN(S) is a
2-vertex cover for each stable set S.

Note also that

(30.3) ν(G) ≤ 1
2ν2(G) ≤ 1

2τ2(G) ≤ τ(G).

The following is a special case of a theorem of Gallai [1957,1958a,1958b] (cf.
Theorem 31.7), and can be derived from Kőnig’s matching theorem.

Theorem 30.1. ν2(G) = τ2(G) for any graph G. That is, the maximum size
of a 2-matching is equal to the minimum size of a 2-vertex cover.

Proof. Make for each vertex v of G a new vertex v′, and replace each edge uv
of G by two edges u′v and uv′. This makes the bipartite graph H. By Kőnig’s
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matching theorem (Theorem 16.2), H has a vertex cover C and a matching
M with |C| = |M |. For any edge e = uv of G let xe := |{u′v, uv′} ∩ M | and
for any vertex v of G let yv := |{v, v′} ∩ C|. Then x is a 2-matching and y is
a 2-vertex cover with x(E) = |M | = |C| = y(V ).

This construction was given by Nemhauser and Trotter [1975]. It also yields
a polynomial-time reduction of the problems of finding a maximum-size 2-
matching and a minimum-size 2-vertex cover to the problems of finding a
minimum-size matching and a maximum-size vertex cover in a bipartite graph
— hence these problems are polynomial-time solvable.

Call a 2-matching x perfect if x(δ(v)) = 2 for each vertex v. So a 2-
matching x is perfect if and only if x(E) = |V |. Theorem 30.1 implies a
characterization of the existence of a perfect 2-matching (Tutte [1952]):

Corollary 30.1a. Let G = (V, E) be a graph. Then G has a perfect 2-
matching if and only if |N(S)| ≥ |S| for each stable set S.

Proof. Directly from Theorem 30.1, since G has a perfect 2-matching ⇐⇒
ν2(G) ≥ |V | ⇐⇒ τ2(G) ≥ |V |. With (30.2), this last is equivalent to the
condition of the present corollary.

As finding a perfect 2-matching can be reduced to finding a maximum-size
2-matching, it is polynomial-time solvable.

30.2. Fractional matchings and vertex covers

Any vector x ∈ R
E satisfying

(30.4) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 1 for v ∈ V ,

is called a fractional matching. The maximum size x(E) of a fractional match-
ing is called the fractional matching number, denoted by ν∗(G). By linear
programming duality, ν∗(G) is equal to the fractional vertex cover number
τ∗(G) — the minimum size of a fractional vertex cover, which is any solution
y ∈ R

V of

(30.5) (i) 0 ≤ yv ≤ 1 for v ∈ V ,
(ii) yu + yv ≥ 1 for uv ∈ E.

The equality ν∗(G) = τ∗(G) also follows from Theorem 30.1, since trivially

(30.6) 1
2ν2(G) ≤ ν∗(G) ≤ τ∗(G) ≤ 1

2τ2(G).

(An extension to infinite graphs was given by Aharoni and Ziv [1990].)
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30.3. The fractional matching polytope

Let G = (V, E) be a graph. The fractional matching polytope of G is the
polytope determined by (30.4). Balinski [1965] showed:

Theorem 30.2. Each vertex of the fractional matching polytope of G is half-
integer.

Proof. Let x be a vertex of the fractional matching polytope. We can assume
that xe > 0 for each edge e, since if xe = 0 we can apply induction to G − e.
Hence we can assume also that xe < 1 for each edge e; equivalently, that each
vertex of G has degree at least two.

As x is a vertex, there are |E| constraints among (30.4)(ii) satisfied with
equality. So |E| ≤ |V |, implying that G is 2-regular. Then xe = 1

2 for each
e ∈ E, as it is a solution to setting (30.4)(ii) to equality, and as the solution
must be unique (as x is a vertex).

Balinski [1965] also observed that the support of any vertex x of the
fractional matching polytope can be partitioned into a matching M , with
xe = 1 for e ∈ M , and a set of odd circuits, vertex-disjoint and disjoint from
M , with xe = 1

2 for each edge e in any of the odd circuits.

30.4. The 2-matching polytope

The 2-matching polytope of G is the convex hull of the 2-matchings in G. The-
orem 30.2 implies a characterization of the 2-matching polytope (Edmonds
[1965b]):

Corollary 30.2a. The 2-matching polytope is determined by:

(30.7) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 2 for v ∈ V .

Proof. Directly from Theorem 30.2, since it implies that the vertices of the
polytope determined by (30.7) are integer, and hence are 2-matchings.

Given a graph G = (V, E), the perfect 2-matching polytope of G is the con-
vex hull of the perfect 2-matchings in G. As the perfect 2-matching polytope
is a face of the 2-matching polytope (if nonempty), Corollary 30.2a implies
(Edmonds [1965b]):

Corollary 30.2b. The perfect 2-matching polytope is determined by

(30.8) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) = 2 for v ∈ V .
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Proof. Directly from Corollary 30.2a.

Pulleyblank [1987] related the vertices of the 2-matching polytope with
the Edmonds-Gallai decomposition of the graph.

Similar results as for fractional matchings and 2-matchings hold for frac-
tional vertex covers and 2-vertex covers. We discuss them in Section 64.6.

30.5. The weighted 2-matching problem

Given a graph G = (V, E) and a weight function w ∈ Q
E , the weight of a 2-

matching x is wTx. The weighted 2-matching problem is strongly polynomial-
time solvable:

Theorem 30.3. A maximum-weight 2-matching can be found in time O(n3).

Proof. Make the bipartite graph H as in the proof of Theorem 30.1, with
weight function w′(u′v) := w′(uv′) := w(uv) for each edge uv of G. Then
a maximum-weight matching in the new graph gives a maximum-weight 2-
matching in the original graph. So Theorem 17.4 gives the present theorem.

One can derive similarly from Egerváry’s theorem a characterization of the
maximum weight of a 2-matching, given by Gallai [1957,1958a,1958b]. Given
w : E → Z+, call a vector y : V → Z+ a w-vertex cover if yu + yv ≥ w(e) for
each edge e = uv.

Theorem 30.4. Let G = (V, E) be a graph and let w ∈ Z
E
+. Then the

maximum weight wTx of a 2-matching x is equal to the minimum size of a
2w-vertex cover.

Proof. It is easy to see that the maximum cannot be larger than the mini-
mum. To see equality, make the bipartite graph H as in the proof of Theorem
30.1, with weight w′(u′v) := w′(uv′) := w(uv) for each edge uv of G. Then the
maximum w-weight of a 2-matching in G is equal to the maximum w′-weight
of a matching in H. By Theorem 17.1, the latter is equal to the minimum
of y′(V ∪ V ′) where y′ : V ∪ V ′ → Z+ with y′(u) + y′(v′) ≥ w(uv) and
y′(u′)+ y′(v) ≥ w(uv) for each edge uv of G. Defining yv := y′

v + y′
v′ for each

v ∈ V , we obtain y as required.

System (30.7) is generally not totally dual integral: if G = (V, E) is the
complete graph K3 on three vertices, and w(e) := 1 for each e ∈ E, then the
maximum weight of a 2-matching is equal to 3, while there is no integer dual
solution of odd value (when considering the dual of maximizing wTx subject
to (30.7)).
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However, half-integrality holds:

Corollary 30.4a. System (30.7) is totally dual half-integral.

Proof. This is equivalent to Theorem 30.4.

Pulleyblank [1973,1980] showed that (30.7) can be extended to a TDI
system as follows:

Corollary 30.4b. The following system is totally dual integral:

(30.9) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 2 for v ∈ V ,
(iii) x(E[U ]) ≤ |U | for U ⊆ V .

Proof. Choose w ∈ Z
E
+. By Corollary 30.4a, the problem of maximizing wTx

over (30.7) has an optimum dual solution y ∈ 1
2Z

V
+. Let y′

v := �yv� and
T := {v ∈ V | yv �∈ Z}. Let zT := 1 and zU := 0 for each U ⊆ V with U �= T .
Then y′, z is an integer optimum dual solution of the problem of maximizing
wTx over (30.9).

Corollary 30.4a gives the total dual half-integrality of the perfect 2-
matching constraints (30.8):

Corollary 30.4c. System (30.8) is totally dual half-integral.

Proof. Directly from Corollary 30.4a.

More strongly, one has:

Corollary 30.4d. Let w ∈ Z
E with w(C) even for each circuit C. Then the

problem of minimizing wTx subject to (30.8) has an integer optimum dual
solution.

Proof. As w(C) is even for each circuit, there is a subset U of V with
{e ∈ E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v). Then

w′(e) is an even integer for each edge e. Hence by Corollary 30.4c there is
an integer optimum dual solution y′

v (v ∈ V ) for the problem of minimizing
w′Tx subject to (30.8). Now setting yv := y′

v − 1 if v ∈ U and yv := y′
v if

v �∈ U gives an integer optimum dual solution y for w.

30.5a. Maximum-size 2-matchings and maximum-size matchings

Uhry [1975] gave the following relation between maximum-size 2-matchings and
maximum-size matchings:
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Theorem 30.5. For each maximum-size 2-matching x in a graph G, there exists a
maximum-size matching M missing each vertex v with x(δ(v)) = 0.

Proof. Let x be a maximum-size 2-matching in G and let M be a maximum-size
matching covering a minimum number of vertices v with x(δ(v)) = 0. Suppose that
M covers a vertex u with x(δ(u)) = 0. To prove the theorem, we can assume that x
has inclusionwise minimal support. This implies that the edges e with xe = 1 form
a collection of vertex-disjoint odd circuits.

Let N be the matching consisting of those edges e with xe = 2. Let P be the
component of M ∪ N containing u. Then P is a path starting at u, and ending
at, say, w. If P has even length, then M�P is a maximum-size matching covering
fewer vertices v with x(δ(v)) = 0 than M does — a contradiction. So P has odd
length, and hence, since x is a maximum-size 2-matching, w belongs to the vertex
set of some odd circuit C consisting of edges e with xe = 1. However, in that case
we can augment x, by redefining xe := 0 if e ∈ P ∩ N , xe := 2 if e ∈ P ∩ M , and
xe := 0 or 2 alternatingly on the edges of C.

Uhry [1975] (cf. Pulleyblank [1987]) related maximum-size 2-matchings and
maximum-size matchings further by:

Theorem 30.6. Let x be a maximum-size 2-matching with the set {e | xe = 1}
inclusionwise minimal. Then the support of x contains a maximum-size matching
M of G.

Proof. As the set F := {e | xe = 1} is inclusionwise minimal, it forms a collection
C of vertex-disjoint odd circuits. So x(δ(v)) = 0 or 2 for each vertex v. By Theorem
30.5, we can assume that x(δ(v)) = 2 for each v ∈ V , since deleting all vertices v
with x(δ(v)) = 0 does not decrease the maximum size of a matching.

Let M be a maximum-size matching containing a minimum number of edges
e with xe = 0. Let N be the matching consisting of those edges e with xe = 2.
Consider any component P of M ∪ N . Then P is not a circuit or an even path of
positive length, since otherwise M�P is a maximum-size matching having fewer
edges e with xe = 0 than M has — a contradiction. So if P is not a singleton, it is
a path of odd length; let it connect vertices u and w. Since P is not M -augmenting,
both u and w are vertices on odd circuits in C, say on Cu and Cw respectively. If
Cu �= Cw, we can modify x so as to decrease the set of edges e with xe = 1. So
Cu = Cw.

It follows that each C ∈ C contains an even number of vertices covered by M ,
and hence an odd number of vertices missed by M . Hence

(30.10) 2|M | ≤ |V | − |C| = 2|N | +
∑

C∈C
(|C| − 1).

Therefore, by augmenting N with a matching of size 1
2 (|C| − 1) contained in C,

for each circuit C ∈ C, we obtain a matching M ′ with |M ′| ≥ |M | contained in the
support of x.

(Theorem 30.6 was generalized in (30.88).) Related results were obtained by Balas
[1981].
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Mühlbacher, Steinparz, and Tinhofer [1984] showed that if x is a vertex of the 2-
matching polytope maximizing |{e ∈ E | xe = 2}|, then the vector (i3(x), i5(x), . . .)
is lexicographically maximal, where ik(x) is the number of circuits in the support
of x of size k. For related work, see Mühlbacher [1979] and Hell and Kirkpatrick
[1981].

30.6. Simple 2-matchings and 2-factors

Call a 2-matching x simple if x is a 0,1 vector. So we can identify simple
2-matchings with subsets F of E satisfying degF (v) ≤ 2 for each v ∈ V .

A construction of Tutte [1954b] gives the following characterization of
the maximum size of a simple 2-matching, with the help of the Tutte-Berge
formula (E[K, S] denotes the set of edges connecting K and S):

Theorem 30.7. Let G = (V, E) be a graph. The maximum size of a simple
2-matching is equal to the minimum value of

(30.11) |V | + |U | − |S| +
∑

K

� 1
2 |E[K, S]|�,

where U and S are disjoint subsets of V , with S a stable set, and where K
ranges over the components of G − U − S.

Proof. To see that the maximum is not more than the minimum, let F be
a simple 2-matching and let U and S be disjoint subsets of V , with S a
stable set. Then F has at most 2|U | edges incident with U . Moreover, for
each component K of G−U −S, the number of edges in F spanned by K ∪S
is at most |K| + � 1

2 |E[K, S]|�, since

(30.12) 2|F ∩ E[K ∪ S]| = 2|F ∩ E[K]| + 2|F ∩ E[K, S]|
≤ 2|F ∩ E[K]| + |F ∩ E[K, S]| + |E[K, S]| ≤ 2|K| + |E[K, S]|.

Hence

(30.13) |F | ≤ 2|U | +
∑

K

(|K| + � 1
2 |E[K, S]|�)

(where K ranges over the components of G−U −S), giving that F is at most
(30.11).

To see the reverse inequality, make a graph G′ = (V ′, E′) as follows. For
each vertex v of G, introduce vertices v′ and v′′ of G′. For each edge e = uv
of G, introduce vertices pe,u and pe,v and edges

(30.14) u′pe,u, u′pe,u, pe,upe,v, v′pe,v, v′′pe,v.

This defines all vertices and edges of G′.
Now:

(30.15) νs
2(G) = ν(G′) − |E|,
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where ν(G′) denotes the maximum size of a matching in G′ and νs
2(G) denotes

the maximum size of a simple 2-matching in G. In this proof we only need ≥
in (30.15). This inequality holds as there is a maximum-size matching M in
G′ with the property that for each edge e = uv of G, both vertices pe,u and
pe,v of G′ are covered by M . Then the edges e of G for which edge pe,upe,v

does not belong to M , form a simple 2-matching N in G with |N | = |M |−|E|.
So we have ≥ in (30.15).

By the Tutte-Berge formula (Theorem 24.1), there is a subset X of V ′

such that the number o(G′ − X) of odd components of G′ − X is at least
|V ′| − 2ν(G′) + |X|. We take X inclusionwise minimal with this property.

Then for each v ∈ V , if one of v′, v′′ does not belong to X, then both
do not belong to X. For suppose v′ ∈ X and v′′ �∈ X. As v′ and v′′ have
the same set of neighbours in G′, removing v′ from X, decreases X by 1 and
decreases the number of odd components of o(G′ − X) by at most one. So
we would obtain a smaller set X as required, contradicting the minimality
assumption.

Consider any vertex v of G and any edge e = uv of G with pe,v ∈ X.
Then the three neighbours of pe,v in G′ belong to three different odd com-
ponents of G′ − X. (Otherwise, removing pe,v from X decreases X by 1, and
decreases o(G′ −X) be at most 1, contradicting the minimality of X.) Hence
pe,u, v′, v′′ �∈ X, and moreover pf,v ∈ X for each edge f of G incident with v.

Let U be the set of v ∈ V for which v′, v′′ ∈ X and let S be the set of
v ∈ V for which pe,v ∈ X for each edge e of G incident with v. So U and S
are disjoint, and S is a stable set.

Then |X| = 2|U | + |δ(S)|. Let κ denote the number of components K of
G − U − S with |E[K, S]| odd. Then

(30.16) o(G′ − X) = 2|S| + |E[U, S]| + κ.

Hence we have

(30.17) νs
2(G) ≥ ν(G′) − |E| ≥ 1

2 (|V ′| + |X| − o(G′ − X)) − |E|
= |V | + |U | + 1

2 |δ(S)| − |S| − 1
2 |E[U, S]| − 1

2κ

= |V | + |U | − |S| +
∑

K

� 1
2 |E[K, S]|�

(where K ranges over the components of G − U − S), as required.

A 2-factor is a simple perfect 2-matching. Equivalently, it is a subset F
of E with degF (v) = 2 for each v ∈ V .

Theorem 30.7 implies the following result of Belck [1950] (also Gallai
[1950] announced a characterization of the existence of a 2-factor):

Corollary 30.7a. A graph G = (V, E) has a 2-factor if and only if

(30.18) |S| ≤ |U | +
∑

K

� 1
2 |E[K, S]|�
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for each pair of disjoint subsets U, S of V , with S a stable set, where K ranges
over the components of G − U − S.

Proof. Directly from Theorem 30.7.

This implies a classical result of Petersen [1891]:

Corollary 30.7b. Each 2k-regular graph has a 2-factor.

Proof. Let G = (V, E) be 2k-regular. We check (30.18). Let U and S be
disjoint subsets of V , with S a stable set. Let l be the number of components
K of G−U −S with |E[K, S]| odd. Then for each such component K we have
|E[K, U ]| ≥ 1 (since G is Eulerian). Hence |E[U, S]| ≤ 2k|U | − l. Therefore,

(30.19) 2k|S| = |δ(S)| = |E[U, S]| +
∑

K

|E[K, S]|

≤ 2k|U | − l +
∑

K

|E[K, S]| = 2k|U | +
∑

K

2� 1
2 |E[K, S]|�

≤ 2k(|U | +
∑

K

� 1
2 |E[K, S]|�)

(where K ranges over the components of G−U −S), and (30.18) follows.

The construction above gives also a reduction of finding a maximum-
weight simple 2-matching to finding a maximum-weight matching — hence it
can be done in strongly polynomial time. This implies that also a minimum-
weight 2-factor can be found in strongly polynomial time.

(Grötschel and Holland [1987] gave computational results on a cutting
plane method to find a minimum-weight 2-factor.)

30.7. The simple 2-matching polytope and the 2-factor
polytope

Given a graph G = (V, E), the simple 2-matching polytope is the convex hull
of the simple 2-matchings in G. It can be characterized as follows (Edmonds
[1965b]):

Theorem 30.8. The simple 2-matching polytope is determined by

(30.20) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ |U | + � 1

2 |F |� (U ⊆ V, F ⊆ δ(U),
F matching, |F | odd).

Proof. It is easy to show that each simple 2-matching x satisfies (30.20).
Condition (iii) follows from
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(30.21) x(E[U ]) + x(F ) ≤ x(E[U ]) + 1
2x(δ(U)) + 1

2x(F ) ≤ |U | + 1
2 |F |

if x is a simple 2-matching.
To show that (30.20) is enough to determine the simple 2-matching poly-

tope, we first show that (30.20) implies an extended version of (30.20)(iii),
where we delete the condition that F be a matching. This can be seen by
induction on |F |. Indeed, suppose that F contains edges f1, f2 incident with
a vertex v. Let F ′ := F \ {f1, f2}. Then, if v ∈ U , setting U ′ := U \ {v}:

(30.22) x(E[U ]) + x(F ) ≤ x(E[U ′]) + x(F ′) + x(δ(v)) ≤ |U ′| + 1
2 |F ′| + 2

= |U | + 1
2 |F |.

If v �∈ U , setting U ′ := U ∪ {v}:

(30.23) x(E[U ]) + x(F ) ≤ x(E[U ′]) + x(F ′) ≤ |U ′| + 1
2 |F ′| = |U | + 1

2 |F |.
So we can delete in (iii) the requirement that F be a matching.

We now prove that the conditions determine the simple 2-matching poly-
tope. Let G′ = (V ′, E′) be as in the proof of Theorem 30.7. Let x satisfy
(30.20). Define x′ ∈ R

E′
by

(30.24) x′(u′pe,u) := x′(u′′pe,u) := x′(v′pe,v) := x′(v′′pe,v) := 1
2xe and

x′(pe,upe,v) := 1 − xe,

for any edge e = uv of G. We show that x′ belongs to the matching polytope
of G′.

That is, by Edmonds’ matching polytope theorem (Corollary 25.1a), we
should check

(30.25) (i) x′(e′) ≥ 0 for e′ ∈ E′,
(ii) x′(δ′(v′)) ≤ 1 for v′ ∈ V ′,
(iii) x′(E′[Y ]) ≤ � 1

2 |Y |� for Y ⊆ V ′ with |Y | odd,

where δ′ := δG′ and where E′[Y ] is the set of edges in E′ spanned by Y .
Trivially we have (30.25)(i) and (ii) by (30.20)(i) and (ii). To prove

(30.25)(iii), let Y violate (30.25)(iii). We first show that if one of v′, v′′ be-
longs to Y , then both belong to Y . For suppose that v′ ∈ Y and v′′ �∈ Y . Let
Y1 := Y \ {v′} and Y2 := Y ∪ {v′′}. Then

(30.26) x′(E′[Y ]) = 1
2 (x′(E′[Y1]) + x′(E′[Y2])) ≤ x′(E′[Y1]) + 1

2x′(δ′(Y1))
= 1

2

∑

u∈Y1

x′(δ′(u)) ≤ 1
2 |Y1| = � 1

2 |Y |�,

a contradiction.
We choose Y with |Y | + |δ′(Y )| minimal. Then:

(30.27) (i) if u′, v′ ∈ Y , then pe,u ∈ Y and pe,v ∈ Y ,
(ii) if pe,u ∈ Y , then u′ ∈ Y .

To see (30.27)(i), first suppose that u′, v′ ∈ Y and pe,u �∈ Y . Define Y ′ :=
Y ∪ {pe,u, pe,v}. Then |Y ′| + |δ′(Y ′)| < |Y | + |δ′(Y )|, and hence Y ′ satisfies
inequality (30.25)(iii). Therefore,
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(30.28) x′(E′[Y ]) ≤ x′(E′[Y ′]) − x′(δ′(pe,u)) ≤ � 1
2 |Y ′|� − 1 ≤ � 1

2 |Y |�.

This contradicts our assumption that Y violates (30.25)(iii).
To see (30.27)(ii), let pe,u ∈ Y and u′ �∈ Y . Define Y ′ := Y \ {pe,u, pe,v}.

Again |Y ′| + |δ′(Y ′)| < |Y | + |δ′(Y )|, and hence Y ′ satisfies inequality
(30.25)(iii). If pe,v �∈ Y , then

(30.29) x′(E′[Y ]) = x′(E′[Y ′]) ≤ � 1
2 |Y ′|� ≤ � 1

2 |Y |�.

If pe,v ∈ Y , then

(30.30) x′(E′[Y ]) ≤ x′(E′[Y ′]) + x′(δ′(pe,v)) ≤ � 1
2 |Y ′|� + 1 = � 1

2 |Y |�.

Both (30.29) and (30.30) contradict our assumption that Y does not satisfy
(30.25)(iii). This proves (30.27).

Let U := {v ∈ V | v′, v′′ ∈ Y } and let F be the set of those edges
e = uv in δ(U) with u ∈ U , v �∈ U , and pe,u ∈ Y . Then x′(E′[Y ]) =
x(E[U ]) + |E[U ]| + x(F ) and |Y | = 2|U | + 2|E[U ]| + |F |. Hence (30.20)(iii)
implies (30.25)(iii).

So x′ is a convex combination of incidence vectors of matchings in G′.
Each such vector y satisfies y(δ′(v′)) = 1 for each vertex v′ = pe,u (as x′

satisfies this equality). Hence each such matching corresponds to a simple 2-
matching in G, and we obtain x as convex combination of simple 2-matchings
in G.

Given a graph G = (V, E), the 2-factor polytope is the convex hull of (the
incidence vectors of) 2-factors in G. Then:

Corollary 30.8a. The 2-factor polytope is determined by

(30.31) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) = 2 (v ∈ V ),
(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V , F ⊆ δ(U),

F matching, |F | odd).

Proof. Directly from Theorem 30.8, since (30.31)(ii) implies x(E[U ]) = |U |−
1
2x(δ(U)).

Notes. Grötschel [1977a] characterized the facets of the simple 2-matching polytope
and of the 2-factor polytope of the complete graph Kn. Rispoli and Cosares [1998]
showed that the diameter of the 2-factor polytope of a complete graph is at most
6. Rispoli [1994] showed that the ‘monotonic diameter’ of the 2-factor polytope is
equal to  1

2n� if n ≥ 5 and n �= 8, 9, and to  1
2n� − 1 if n = 3, 4, 8, 9.

Boyd and Carr [1999] showed that if G = (V, E) is a complete graph and
l : E → R+ satisfies the triangle inequality, then the minimum value of lTx over
(30.31) is at most 4

3 times the minimum value of lTx over (30.31)(i)(ii). They also
show that the factor 4

3 is best possible.
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30.8. Total dual integrality

Consider the system

(30.32) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ |U | + � 1

2 |F |� (U ⊆ V, F ⊆ δ(U),
F matching).

(So |F | is not required to be odd.)
It is a special case of Theorem 32.3 (cf. Cook [1983b]) that system (30.32)

is TDI (the restriction in (30.32) that F is a matching follows from (30.22)
and (30.23)). This implies that (30.31) is totally dual half-integral. This also
gives:

(30.33) Let w ∈ Z
E with w(C) even for each circuit C. Then the problem

of minimizing wTx subject to (30.31) has an integer optimum dual
solution.

To see this, notice that if w(C) is even for each circuit, there is a subset U of
V with {e ∈ E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v).

Then w′(e) is an even integer for each edge e. Hence there is an integer
optimum dual solution y′

v (v ∈ V ), for the problem of minimizing w′Tx
subject to (30.31). Now setting yv := y′

v − 1 if v ∈ U and yv := y′
v if v �∈ U

gives an integer optimum dual solution for w.

30.9. 2-edge covers and 2-stable sets

Let G = (V, E) be an undirected graph. A 2-edge cover is a vector x ∈ Z
E
+

satisfying x(δ(v)) ≥ 2 for each vertex v. A 2-stable set is a vector y ∈ Z
V
+

such that yu + yv ≤ 2 for each edge uv of G. Defining the size of a vector as
the sum of its entries, we denote:

(30.34) ρ2(G) := the minimum size of a 2-edge cover in G,
α2(G) := the maximum size of a 2-stable set in G.

Note that if G has no isolated vertices, then:

(30.35) α2(G) = max{|V | + |U | − |N(U)|
∣∣ U ⊆ V, U stable set}

and that

(30.36) α(G) ≤ 1
2α2(G) ≤ 1

2ρ2(G) ≤ ρ(G).

Gallai’s theorem (Theorem 19.1) can be extended to 2-matchings and
2-stable sets, which was published also in Gallai [1959a]:

Theorem 30.9. For any graph G = (V, E) without isolated vertices:
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(30.37) α2(G) + τ2(G) = ν2(G) + ρ2(G) = 2|V |.

Proof. Let x be a minimum-size 2-vertex cover. Then xv ≤ 2 for each vertex
v. Define yv := 2 − xv for each vertex v. Then y is a 2-stable set, and hence
α2(G) ≥ y(V ) = 2|V | − x(V ) = 2|V | − τ2(G).

Conversely, let y be a maximum-size 2-stable set. Then yv ≤ 2 for each
vertex v. Define xv := 2 − yv for each vertex v. Then x is a 2-vertex cover,
and hence τ2(G) ≤ x(V ) = 2|V | − y(V ) = 2|V | − α2(G). This shows that
α2(G) + τ2(G) = 2|V |.

To see that ν2(G) + ρ2(G) = 2|V |, let x be a minimum-size 2-edge cover.
For each v ∈ V , reduce x(δ(v)) by x(δ(v)) − 2, by reducing xe on edges
e ∈ δ(v). We obtain a 2-matching y of size

(30.38) y(E) ≥ x(E) −
∑

v∈V

(x(δ(v)) − 2) = 2|V | − x(E) = 2|V | − ρ2(G).

Hence ν2(G) ≥ 2|V | − ρ2(G).
Conversely, let y be a maximum-size 2-matching. For each v ∈ V , increase

y(δ(v)) by 2−y(δ(v)), by increasing ye on edges e ∈ δ(v). We obtain a 2-edge
cover x of size

(30.39) x(E) ≤ y(E) +
∑

v∈V

(2 − y(δ(v))) = 2|V | − y(E) = 2|V | − ν2(G).

Hence ρ2(G) ≤ 2|V | − ν2(G).

This implies the following, which is a special case of a theorem of Gallai
[1957,1958a,1958b] (cf. Theorem 30.11) (and can be derived alternatively
from the Kőnig-Rado edge cover theorem):

Corollary 30.9a. α2(G) = ρ2(G) for any graph G without isolated vertices.
That is, the maximum size of a 2-stable set is equal to the minimum size of
a 2-edge cover.

Proof. Directly from Theorems 30.1 and 30.9.

These reductions also imply the polynomial-time solvability of the prob-
lems of finding a minimum-size 2-edge cover and a maximum-size 2-stable
set.

30.10. Fractional edge covers and stable sets

Any vector x ∈ R
E satisfying

(30.40) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≥ 1 for v ∈ V ,
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is called a fractional edge cover. The minimum size x(E) of a fractional edge
cover is called the fractional edge cover number and is denoted by ρ∗(G). By
linear programming duality, ρ∗(G) is equal to the fractional stable set number
α∗(G) — the maximum size of a fractional stable set, which is any solution
y ∈ R

V of

(30.41) (i) 0 ≤ yv ≤ 1 for v ∈ V ,
(ii) yu + yv ≤ 1 for uv ∈ E.

The equality ρ∗(G) = α∗(G) also follows from Corollary 30.9a, since trivially

(30.42) 1
2ρ2(G) ≥ ρ∗(G) ≥ α∗(G) ≥ 1

2α2(G).

30.11. The fractional edge cover polyhedron

Let G = (V, E) be a graph. The fractional edge cover polyhedron of G is the
polyhedron determined by (30.40). Balinski [1965] showed:

Theorem 30.10. Each vertex of the fractional edge cover polyhedron of G
is half-integer.

Proof. Let x be a vertex of the fractional edge cover polyhedron. We can
assume that xe > 0 for each edge e, since if xe = 0 we can apply induction to
G − e. Moreover, we can assume that G is connected and has at least three
vertices.

As x is a vertex, there are |E| constraints among (30.40)(ii) satisfied with
equality. Define U := {v | x(δ(v)) = 1}. So |E| ≤ |V |. If there exists an end
vertex v in U , with neighbour u say, then u ∈ U and there is no other edge
incident with u (otherwise it would have xe = 0), implying the theorem. So
no such end vertex exists.

If G is a tree, then there is at most one vertex w with x(δ(w)) �= 1,
implying the existence of an end vertex v and a neighbour u of v with u, v ∈ U .

So G is not a tree, and hence |E| = |V | and U = V . Since G has no end
vertex, G is a circuit. Then 1

2 · 1 satisfies all constraints that x satisfies. So
x = 1

2 · 1, as x is a vertex.

30.12. The 2-edge cover polyhedron

Theorem 30.10 implies a characterization of the 2-edge cover polyhedron of
G, which is, by definition, the convex hull of the 2-edge covers in G:

Corollary 30.10a. The 2-edge cover polyhedron is determined by
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(30.43) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≥ 2 for v ∈ V .

Proof. Directly from Theorem 30.10, since it implies that the vertices of the
polyhedron determined by (30.43) are integer, and hence 2-edge covers.

Similar results as for fractional edge covers and 2-edge covers hold for
fractional stable sets and 2-stable sets. We discuss them in Section 64.5.

30.13. Total dual integrality of the 2-edge cover
constraints

Finding a minimum-weight 2-edge cover is easily reduced to the minimum-
weight edge cover problem, by splitting vertices. Gallai [1957,1958a,1958b]
characterized the minimum weight as follows. Given w : E → Z+, a w-stable
set is a function y : V → Z+ with yu + yv ≤ w(e) for each edge e = uv.

Theorem 30.11. Let G = (V, E) be a graph without isolated vertices and let
w ∈ Z

E
+. Then the minimum weight wTx of a 2-edge cover x is equal to the

maximum size of a 2w-stable set.

Proof. From Egerváry’s theorem (Theorem 17.1).

This is equivalent to the following result:

Corollary 30.11a. System (30.43) is totally dual half-integral.

Proof. Choose w ∈ Z
E
+. Then the minimum weight wTx of a 2-edge cover is

equal to

(30.44) max{2y(V ) | y ∈ 1
2Z

V
+, yu + yv ≤ w(e) for each e = uv ∈ E},

by Theorem 30.11.

System (30.43) can be extended to a TDI system as follows:

Corollary 30.11b. The following system is totally dual integral:

(30.45) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≥ 2 for v ∈ V ,
(ii) x(E[U ] ∪ δ(U)) ≥ |U | for U ⊆ V .

Proof. Choose w ∈ Z
E
+. By Corollary 30.11a, the problem of minimizing wTx

over (30.43) has an optimum dual solution y ∈ 1
2Z

V
+. Define y′

v := �yv� for
v ∈ V , and T := {v ∈ V | yv �∈ Z}. Define zT := 1 and zU := 0 for each
U ⊆ V with U �= T . Then y′, z is an integer optimum dual solution for the
problem of minimizing wTx over (30.45).
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30.14. Simple 2-edge covers

Call a 2-edge cover x simple if x is a 0,1 vector. Thus we can identify simple
2-edge covers with subsets F of E satisfying degF (v) ≥ 2 for each v ∈ V . A
2-edge cover exists if and only if all degrees are at least 2. Define

(30.46) νs
2(G) := the maximum size of a simple 2-matching,

ρs
2(G) := the minimum size of a simple 2-edge cover.

Again there is a relation between νs
2(G) and ρs

2(G) similar to Gallai’s theorem
(Theorem 19.1):

Theorem 30.12. For any graph G = (V, E) of minimum degree at least 2
one has:

(30.47) νs
2(G) + ρs

2(G) = 2|V |.

Proof. Let M be a maximum-size simple 2-matching. For each v ∈ V , add
to M 2 − degM (v) edges incident with v. We can do this in such a way that
we obtain a simple 2-edge cover F with

(30.48) |F | ≤ |M | +
∑

v∈V

(2 − degM (v)) = 2|V | − |M |.

So ρs
2(G) ≤ 2|V | − |M | = 2|V | − νs

2(G).
To see the reverse inequality, let F be a minimum-size simple 2-edge cover.

For each v ∈ V , delete from F degF (v) − 2 edges incident with v. We obtain
a simple 2-matching M with

(30.49) |M | ≥ |F | −
∑

v∈V

(degF (v) − 2) = 2|V | − |F |.

So νs
2(G) ≥ 2|V | − |F | = 2|V | − ρs

2(G), which shows (30.47).

This implies a min-max relation for minimum-size simple 2-edge cover:

Corollary 30.12a. Let G = (V, E) be a graph of minimum degree at least
2. Then the minimum size of a simple 2-edge cover is equal to the maximum
value of

(30.50) |V | − |U | + |S| −
∑

K

� 1
2 |E[K, S]|�,

where U and S are disjoint subsets of V , with S a stable set, and where K
ranges over the components of G − U − S.

Proof. Directly from Theorems 30.7 and 30.12.

These reductions also imply the polynomial-time solvability of the prob-
lem of finding a minimum-size simple 2-edge cover.
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Given a graph G = (V, E), the simple 2-edge cover polytope is the convex
hull of the simple 2-edge covers in G. A special case of Theorem 34.9 below
is that the simple 2-edge cover polytope is determined by

(30.51) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≥ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≥ |U | + � 1

2 |F |� (U ⊆ V, F ⊆ δ(U),
|F | odd).

We refer to Theorem 34.10 for the total dual integrality of the following
system (Cook [1983b]):

(30.52) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≥ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≥ |U | + � 1

2 |F |� (U ⊆ V, F ⊆ δ(U)).

Theorem 34.11 implies that a minimum-weight simple 2-edge-cover can
be found in strongly polynomial time.

30.15. Graphs with ν(G) = τ (G) and α(G) = ρ(G)

Kőnig’s matching theorem states that the matching number ν(G) is equal
to the vertex cover number τ(G) for each bipartite graph G. A graph G
therefore is said to have the Kőnig property if ν(G) = τ(G). Deming [1979b]
and Sterboul [1979] characterized the class of graphs with the Kőnig property.

Note that by Gallai’s theorem (Theorem 19.1), for any graph G without
isolated vertices:

(30.53) ν(G) = τ(G) ⇐⇒ α(G) = ρ(G)

(where α(G) and ρ(G) denote the stable set and edge cover number of G,
respectively).

edge in M

edge not in M

v1v2

vi vi+1 vj

vj+1

vt+i−jv0
= vt

Figure 30.1
An M -posy

The two circuits may intersect.



Section 30.15. Graphs with ν(G) = τ(G) and α(G) = ρ(G) 537

To characterize graphs G with ν(G) = τ(G), Sterboul defined, for any
graph G = (V, E) and any matching M in G, an M -posy to be an even-
length M -alternating closed walk (v0, v1, . . . , vt), with vi−1vi ∈ M if i is
even, such that there exist i < j with i odd and j even, v1, . . . , vj all distinct,
vj+1, . . . , vt all distinct, and

(30.54) vi = vt, vi+1 = vt−1, . . . , vj = vt+i−j .

Lemma 30.13α. If there exists an even-length M -alternating closed walk
C = (v0, v1, . . . , vt) with vi = vj for i, j of different parity, then there exists
an M -posy.

Proof. Let C be a shortest such closed walk, covering a minimum number
of edges (in this order of priority). Then

(30.55) there exist no three distinct h, i, k ≥ 1 with vh = vi = vk,

since otherwise we may assume that h and i have the same parity. Leaving
out one of the vh − vi parts of C gives a shorter such closed walk.

Choose h, i of different parity with vh = vi and with |h − i| minimal. We
may assume that h = 0 and that v0v1 �∈ M . Choose j, k ≥ i of different parity
with vj = vk and j < k, and with k − j minimal. (Such j, k exist, as vi = vt.)
Then j is even and k is odd, since otherwise vj+1 = vk−1 (as it is the vertex
matched to vj = vk). Moreover, j − i = t − k and

(30.56) vi = vt, vi+1 = vt−1, . . . , vj = vk.

Otherwise, resetting the vk − vt part of C to the vj − vi part of C−1 or
conversely, we obtain again a shortest such closed walk, however covering a
fewer number of edges, a contradiction.

Then C is an M -posy, since v1, . . . , vj are all distinct and vj+1, . . . , vt are
all distinct. If say va = vb with 1 ≤ a < b ≤ j, then b ≤ i (since otherwise
va = vb = vl for some l > b, contradicting (30.55)). So by the minimality
of |h − i|, a ≡ b (mod 2). Hence, deleting the va − vb part from C gives a
shortest such walk, a contradiction.

This is used in proving:

Theorem 30.13. Let G = (V, E) be a graph. Then the following are equiva-
lent:

(30.57) (i) G has the Kőnig property, that is ν(G) = τ(G);
(ii) for some maximum-size matching M there is no M -flower and

no M -posy;
(iii) for each maximum-size matching M there is no M -flower and

no M -posy.

Proof. The implication (iii)⇒(ii) is trivial, and the implication (i)⇒(iii) is
easy: suppose ν(G) = τ(G), let M be a maximum-size matching and let U
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be a minimum-size vertex cover. Then each edge in M has exactly one vertex
in U . Suppose that P = (v0, . . . , vt) is an M -flower or an M -posy. Then for
each odd k, exactly one of vk and vk+1 belongs to U , while for each even k
at least one of vk and vk+1 belongs to U . If vt �∈ U , then vk ∈ U for each
even k. Since vt = vj for some even j, it follows that vt ∈ U . If v0 �∈ U , then
vk ∈ U for each odd k. Since vj ∈ U and j is even, we have v0 ∈ U . So v0
is covered by M , and hence P is an M -posy. So v0 = vi for some odd i. So
vi ∈ U for some odd i, a contradiction.

It remains to prove (ii)⇒(i). Let M be a maximum-size matching in G
and let X be the set of vertices missed by M . Then there is no M -alternating
X − X walk (since M has maximum size and since there is no M -flower
(cf. Theorem 24.3)). Let U be the set of vertices v for which there is an
M -alternating X − v walk and let Z be the set of vertices v for which there
exists an odd-length M -alternating X − v walk. Then Z intersects each edge
intersecting U , while |Z| is equal to the number of edges in M contained in
U .

So we can apply induction to G − U if U �= ∅. Hence we may assume
that U = ∅. Equivalently, X = ∅, that is, M is a perfect matching. Choose
e = uv ∈ M . By Lemma 30.13α, G − u has no M \ {e}-flower or G − v
has no M \ {e}-flower. By symmetry, we may assume that G − v has no
M \ {e}-flower. Since G has no M -posy, G − v has no M \ {e}-posy. Hence,
by induction:

(30.58) ν(G) = ν(G − v) + 1 = τ(G − v) + 1 ≥ τ(G).

Hence ν(G) = τ(G).

This implies a characterization due to Lovász [1974] ((i)⇔(ii) below) and
Lovász and Plummer [1986] ((i)⇔(iii) below), based on the minimum size
τ2(G) of a 2-vertex cover studied in Section 30.1:

Corollary 30.13a. For any graph G, the following are equivalent:

(30.59) (i) ν(G) = τ(G),
(ii) τ2(G) = 2τ(G),
(iii) the edges e for which there exists a maximum-size 2-matching

x with xe ≥ 1, form a bipartite graph.

Proof. The implication (i)⇒(ii) follows from (30.3). To see (ii)⇒(iii), let U
be a minimum-size vertex cover and let x be a maximum-size 2-matching.
Then, using Theorem 30.1,

(30.60) τ2(G) = ν2(G) =
∑

e∈E

xe ≤
∑

e∈E

xe|e ∩ U | =
∑

v∈U

x(δ(v)) ≤ 2|U |

= 2τ(G),

and hence we have equality throughout. So e ∈ δ(U) if xe ≥ 1. As this is true
for each maximum-size 2-matching x, we have (iii).



Section 30.16. Excluding triangles 539

We finally show (iii)⇒(i), which we derive from Theorem 30.13. Suppose
that (iii) holds, and let M be a maximum-size matching. If there would exist
any M -flower or M -posy, then we can find a 2-matching of size at least 2|M |
such that M and the support of the 2-matching contains an odd circuit. For
an M -flower this is trivial. For an M -posy (v0, . . . , vt), let

(30.61) x := 2χM −
t∑

h=1

(−1)hχvh−1vh .

Then x is a 2-matching of size 2|M |. However, the support of x together with
M contains an odd circuit. This contradicts (iii).

Note that characterization (iii) can be checked in polynomial time. By
Theorem 30.9 and its proof method, we know that (i), (ii), and (iii) are also
equivalent to each of:

(30.62) (iv) α(G) = ρ(G),
(v) α2(G) = 2α(G),
(vi) the edges e for which there exists a minimum-size 2-edge cover

x with xe ≥ 1, form a bipartite graph.

More on the Kőnig property can be found in Korach [1982], Bourjolly,
Hammer, and Simeone [1984], and Bourjolly and Pulleyblank [1989], and
related results in Tipnis and Trotter [1989].

30.16. Excluding triangles

Let G = (V, E) be a graph. Call a 2-matching x triangle-free if x(ET ) ≤ 2
for each triangle T in G. (A triangle is a subgraph isomorphic to K3.) The
triangle-free 2-matching polytope is the convex hull of the triangle-free 2-
matchings.

In order to characterize the triangle-free 2-matching polytope, Cornuéjols
and Pulleyblank [1980a] (cf. Cook [1983b], Cook and Pulleyblank [1987])
showed the following:

Theorem 30.14. Let G = (V, E) be a simple graph and let T be a collection
of triangles in G. Then the following system is totally dual integral:

(30.63) (i) xe ≥ 0 for each e ∈ E,
(ii) 1

2x(δ(v)) ≤ 1 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each T ∈ T .

Proof. Let w ∈ Z
E
+ and consider the problem dual to maximizing wTx over

(30.63):
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(30.64) minimize
∑

v∈V

yv + 2
∑

T∈T
zT

subject to 1
2

∑

v∈V

yvχδ(v) +
∑

T∈T
zT χET ≥ w,

with y ∈ R
V
+ and z ∈ R

T
+. We must show that there exists an integer optimum

solution y, z. We take a counterexample with |E|+w(E) minimal. This implies
that G is connected. Moreover, w(e) ≥ 1 for each edge e, since otherwise we
could delete e.

On the other hand, w(e) ≤ 2 for each edge e. To see this, let y, z be any
optimum solution. If yu ≥ 2 for some vertex u, we can reset w(e) := w(e)− 1
for each e ∈ δ(u). By resetting, the optimum value decreases by at least 2
(since resetting yu := yu − 2 gives a feasible solution for the new w, with
objective value 1 less than the original objective value). By the minimality
of G, w, for the new w there is an integer optimum solution y, z. Resetting
yu := yu + 2 then gives an integer optimum solution for the original w.

So we can assume that yv < 2 for each vertex v, and similarly, that zT < 1
for each T ∈ T .

Choose an optimum solution y, z with
∑

T∈T zT minimal. Let T+ := {T ∈
T | zT > 0}. Then:

(30.65) no two triangles in T+ have an edge in common.

For suppose that T1, T2 ∈ T+ have ET1 ∩ ET2 = {e}, say e = v1v2. Resetting
zTi

:= zTi
− ε and yvi

:= yvi
+ 2ε for i = 1, 2, for ε > 0 small enough, gives

again an optimum solution. However,
∑

T∈T zT decreases, contradicting our
assumption. This proves (30.65).

This implies that w(e) ≤ 2 for each edge e, since yv < 2 and zT < 1.
Next:

(30.66) for any T ∈ T+ and any v ∈ V T one has either 0 < yv < 1 for
each v ∈ V T and w(e) = 1 for each e ∈ ET , or 1 < yv < 2 for
each v ∈ V T and w(e) = 2 for each e ∈ ET .

Let V T = {v1, v2, v3}. First assume that 1
2yv1 + 1

2yv2 + zT > w(v1v2). Then
after resetting yv3 := yv3 + 2ε and zT := zT − ε we obtain again an optimum
solution, for ε > 0 small enough. However,

∑
T∈T zT decreases, contradicting

our assumption. So 1
2yv1 + 1

2yv2 + zT = w(v1v2), and similarly for any other
pair from v1, v2, v3. This implies

(30.67) yv1 = w(v1v2) + w(v1v3) − w(v2v3) − zT ,

and similarly for v2 and v3. So if w(e) = 1 for each e ∈ ET , then 0 < yv < 1
for each v ∈ V T . Similarly, if w(e) = 2 for each e ∈ ET , then 1 < yv < 2
for each v ∈ V T . If not all three edges of T have the same weight, (30.67)
implies that there is a vertex v in T with yv > 2 or yv < 0, a contradiction.
This proves (30.66).

Now consider resetting
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(30.68) yv := yv − ε if 0 < yv < 1,
yv := yv + ε if 1 < yv < 2,
zT := zT + ε if T ∈ T+ and w(e) = 1 for each edge e in T ,
zT := zT − ε if T ∈ T+ and w(e) = 2 for each edge e in T .

If we choose ε close enough to 0 (positive or negative), we obtain again a
feasible solution of (30.64), by (30.65) and (30.66), using the integrality of
w. Moreover, the objective value changes linearly in ε. However, as y, z is
an optimum solution, the objective value cannot decrease. Hence there is no
change in the objective value at all. That is, for any ε close enough to 0, we
obtain again an optimum solution. Therefore, by choosing ε appropriately,
we can decrease the number of noninteger values of yv, zT .

This theorem implies (in fact, is equivalent to) the following TDI result:

Corollary 30.14a. Let G = (V, E) be a simple graph and let T be a collection
of triangles in G. Then the following system is totally dual integral:

(30.69) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each T ∈ T ,
(iv) x(E[U ]) ≤ |U | for each U ⊆ V .

Proof. Let w ∈ Z
E
+. Let µ be the maximum value of wTx over (30.69), This

is equal to the maximum value of wTx over (30.63) (since (30.69)(iv) follows
from (i) and (ii)).

Consider an integer optimum solution yv (v ∈ V ), zT (T ∈ T ) of the
problem dual to maximizing wTx over (30.63). Define y′

v := � 1
2yv� for v ∈ V

and T := {v ∈ V | 1
2yv �∈ Z}. Define aU := 1 if U = T and aU := 0 for any

other subset U of V .
Then y′, a, z is an integer feasible solution of the problem dual to maxi-

mizing wTx over (30.69), as w is integer. Moreover, it is optimum, since

(30.70)
∑

v∈V

2y′
v +

∑

U⊆V

aU |U | +
∑

T∈T
2zT =

∑

v∈V

yv +
∑

T∈T
2zT = µ.

The theorem implies the following characterization of the triangle-free
2-matching polytope, given by Cornuéjols and Pulleyblank [1980a] and J.F.
Maurras (cf. Cornuéjols and Pulleyblank [1980b]):

Corollary 30.14b. Let G = (V, E) be a graph. The triangle-free 2-matching
polytope is determined by:

(30.71) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each triangle T in G.
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Proof. Theorem 30.14 implies that the polytope determined by (30.63) is
integer (as the right-hand sides are integer). Since (30.71) determines the
same polytope, the corollary follows.

In fact, there is a sharper consequence, where we just consider an arbitrary
subcollection T of the triangles:

Corollary 30.14c. Let G = (V, E) be a graph and let T be a collection of
triangles in G. Then the following inequalities determine an integer polytope:

(30.72) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each triangle T ∈ T .

Proof. Similar to the proof of the previous corollary.

Cornuéjols and Pulleyblank [1980a] also showed that the inequalities
(30.72)(i) and (iii) are all necessary, while (ii) is necessary unless degG(v) = 2
and v is in a triangle in T (assuming that G is connected and has at least three
vertices). They also gave a polynomial-time algorithm to find a maximum-
weight triangle-free 2-matching.

Moreover, they showed the following. A triangle cluster is a graph defined
recursively as follows: any one-vertex graph is a triangle cluster; if G is a
triangle cluster and v is a vertex of G, then by introducing two new vertices
u, u′ and adding edges vu, vu′ and uu′, we obtain again a triangle cluster.

For any graph G, let β(G) denote the number of components of G that are
triangle clusters. This is used in the following min-max relation for maximum-
size triangle-free 2-matching (Cornuéjols and Pulleyblank [1980a]):

Theorem 30.15. The maximum size of a triangle-free 2-matching in a graph
G = (V, E) is equal to the minimum value of |V |+ |U |−β(G−U) taken over
U ⊆ V .

Proof. To see that the maximum is not more than the minimum, let x be a
maximum-size triangle-free 2-matching in G. Let U ⊆ V and let W be the
set of vertices of G−U that are in triangle cluster components. Consider any
component K of G−U that is a triangle cluster. Then the edges of K can be
partitioned into 1

2 (|K|−1) triangles. Hence x(E[K]) ≤ |K|−1, and therefore

(30.73)
∑

v∈K

x(δ(v)) = 2x(E[K]) + x(δ(K)) ≤ 2(|K| − 1) + x(δ(K)).

Summing over all components K that are triangle cluster, we see that

(30.74)
∑

v∈W

x(δ(v)) ≤ 2|W | − 2β(G − U) + x(δ(W )).

Moreover,
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(30.75) x(δ(W )) ≤ x(δ(U)) ≤
∑

v∈U

x(δ(v)) ≤ 2|U |.

This implies

(30.76) 2x(E) =
∑

v∈W

x(δ(v)) +
∑

v∈V \W

x(δ(v))

≤ 2|W | − 2β(G − U) + 2|U | + 2|V \ W |
= 2(|V | + |U | − β(G − U)).

This shows that the maximum is not more than the minimum.
To see the reverse inequality, let T denote the set of triangles in G. By

Theorem 30.14, the maximum size of a triangle-free 2-matching is equal to
the minimum value of

(30.77)
∑

v∈V

yv + 2
∑

T∈T
zT

where yv ∈ Z+ (for v ∈ V ) and zT ∈ Z+ (for T ∈ T ) such that

(30.78) 1
2

∑

v∈V

yvχδ(v) +
∑

T∈T
zT χET ≥ 1.

Choose y, z attaining this minimum, with

(30.79)
∑

T∈T
zT as small as possible.

Clearly, yv ≤ 2 for each v ∈ V and zT ≤ 1 for each T ∈ T . Let T+ := {T∈
T | zT = 1}.

Then we have:

(30.80) if T ∈ T+ and v ∈ T , then yv = 0.

Indeed, suppose yv ≥ 1, and let u and u′ be the two other vertices in T .
Then resetting zT := 0, yu := yu + 1, and yu′ := yu′ + 1, we obtain y, z
again attaining the minimum value (30.77), contradicting our minimality
assumption (30.79). This shows (30.80).

Let F be the set of edges contained in some T ∈ T+. Then

(30.81) each component of the graph (V, F ) is a triangle cluster.

If not, there exist distinct T1, . . . , Tk ∈ T+ and distinct v1, . . . , vk ∈ V , such
that, taking v0 := vk,

(30.82) vi−1vi ∈ Ti

for i = 1, . . . , k, and such that k > 1. Then resetting zTi := 0 and yvi := 2
for i = 1, . . . , k, we obtain y, z again attaining the minimum value (30.77),
contradicting our minimality assumption (30.79). This shows (30.81).

Now let W := {v ∈ V | yv = 0}. Then each edge contained in W is
contained in some T ∈ T+, and hence, by (30.81), each component of G[W ]
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is a triangle cluster. Let k be the number of components of G[W ]. Then∑
T∈T zT = 1

2 (|W | − k).
Define U := N(W ). Then yv = 2 for each v ∈ U , since each edge e

connecting W and U should satisfy (30.78). Therefore, (30.77) is at least

(30.83) |V |−|W |+|U |+2· 1
2 (|W |−k) = |V |+|U |−k ≥ |V |+|U |−β(G−U),

proving the theorem.

This characterizes the existence of a triangle-free perfect 2-matching:

Corollary 30.15a. A graph G = (V, E) has a triangle-free perfect 2-matching
if and only if G − U has at most |U | components that are triangle clusters,
for each U ⊆ V .

Proof. Directly from Theorem 30.15.

Cornuéjols and Pulleyblank [1980b] gave a polynomial-time algorithm to
find a triangle-free perfect b-matching. Cook [1983b] and Cook and Pulley-
blank [1987] characterized the facets and the minimal TDI-system for the
triangle-free 2-matching polytope.

30.16a. Excluding higher polygons

Cornuéjols and Pulleyblank [1983] considered excluding higher polygons. For any
collection P of graphs, call a graph G P -critical if G �∈ P while G − v ∈ P for each
vertex v of G. Let Pk be the collection of graphs that have a perfect 2-matching
in which each circuit has length larger than k. Then for each k and each graph
G = (V, E):

(30.84) If G is Pk-critical, then G is factor-critical,

and

(30.85) V can be partitioned into edges and subsets U with G[U ] Pk-critical if
and only if for each S ⊆ V , the graph G−S has at most |S| Pk-critical
components.

This generalizes Theorem 24.8 and (30.86) below.
Corollary 30.14b does not extend to 2-matchings excluding triangles and pen-

tagons, as is shown by the example given in Figure 30.2. (The sum of the values
is at most 4 on each pentagon, but it does not belong to the convex hull of the
2-matchings without pentagons, since the sum of the values is equal to 20

3 , but
there is no pentagon-free 2-matching of size ≥ 7.)

30.16b. Packing edges and factor-critical subgraphs

Cornuéjols, Hartvigsen, and Pulleyblank [1982] and Cornuéjols and Hartvigsen
[1986] discovered an interesting direction of extensions of the results on match-
ings. Let G = (V, E) be a graph. Call a subset U of V factor-critical if G[U ] is
factor-critical; that is, if for each v ∈ U , the set U \ {v} is matchable.
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Let F be a collection of factor-critical subsets of V . An F-matching is a col-
lection of disjoint subsets from E ∪ F . It is perfect if it covers V . Call a subset U
of V F-critical if G[U ] has no perfect F-matching but for each v ∈ U , the graph
G[U ] − v has one. Cornuéjols, Hartvigsen, and Pulleyblank [1982] showed that

(30.86) if U is F-critical, then U is factor-critical.

Then Cornuéjols and Hartvigsen [1986] proved the following extension of Tutte’s
1-factor theorem (Theorem 24.1a):

(30.87) G has a perfect F-matching if and only if for each U ⊆ V , the graph
G − U has at most |U | F-critical components.

Call an F-matching M maximum if it maximizes
∑

U∈M |U |. Cornuéjols and
Hartvigsen [1986] also showed:

(30.88) Let M be a maximum F-matching containing a minimum number of
sets in F . Let M be a matching containing M ∩ E and having  1

2 |U |�
edges in any U ∈ M ∩ F . Then M is a maximum-size matching in G.

They also described an extension of the Edmonds-Gallai decomposition theo-
rem. Cornuéjols, Hartvigsen, and Pulleyblank [1982] gave a polynomial-time algo-
rithm to find a maximum F-matching. Related results were obtained by Kirkpatrick
and Hell [1978,1983] and Hell and Kirkpatrick [1984,1986].

30.16c. 2-factors without short circuits

Hartvigsen [1984] showed that a maximum size simple 2-matching without trian-
gles can be found in polynomial time. He also gave good characterization for the
existence of a 2-factor without triangles.

On the other hand, Cornuéjols and Pulleyblank [1980a] showed with a method
of C.H. Papadimitriou that the problem of finding a 2-factor without circuits of
length at most 5, is NP-complete. The complexity of deciding if a 2-factor exists
without circuits of length at most 4 is not known.

Vornberger [1980] showed the NP-completeness of finding a maximum-weight
2-factor without circuits of length at most 4. The complexity status of finding a
maximum-weight 2-factor without circuits of length at most 3 is unknown. Hell,
Kirkpatrick, Kratochv́ıl, and Kř́ıž [1988] and Cunningham and Wang [2000] give
related results.
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b-matchings

b-matchings form an extension of 2-matchings and can be handled again
by applying splitting techniques to ordinary matchings.

31.1. b-matchings

Let G = (V, E) be a graph and let b ∈ Z
V
+. A b-matching is a function x ∈ Z

E
+

satisfying

(31.1) x(δ(v)) ≤ b(v)

for each v ∈ V . This is equivalent to: Mx ≤ b, where M is the V ×E incidence
matrix of G.

In (31.1), we count multiplicities: if e is a loop at v, then xe is added twice
at v. (This is consistent with our definition of δ(v) as a family of edges, in
which each loop at v occurs twice.)

It is convenient to consider the graph Gb arising from G by splitting each
vertex v into b(v) copies, and by replacing any edge uv by b(u)b(v) edges
connecting the b(u) copies of u with the b(v) copies of v. More formally,
Gb = (Vb, Eb), where

(31.2) Vb := {qv,i | v ∈ V, 1 ≤ i ≤ b(v)},
Eb := {qu,jqv,i | uv ∈ E, 1 ≤ j ≤ b(u), 1 ≤ i ≤ b(v), qu,j �= qv,i}.

The condition qu,j �= qv,i is relevant only if u = v, that is, if there is a loop
at u.

This construction was given by Tutte [1954b], and yields a min-max re-
lation for maximum-size b-matching (where again the size of a vector is the
sum of its components):

Theorem 31.1. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the maxi-

mum size of a b-matching is equal to the minimum value of

(31.3) b(U) +
∑

K

� 1
2b(K)�
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taken over U ⊆ V , where K ranges over the components of G − U spanning
at least one edge19.

Proof. To see that the maximum is not more than the minimum, consider
a b-matching x and a subset U of V . Then the sum of xe over the edges e
intersecting U is at most b(U). The sum of xe over the edges e contained in
some component K of G − U is at most � 1

2b(K)�.
Equality is derived from the Tutte-Berge formula (Theorem 24.1). Let Gb

be the graph described in (31.2). Then the maximum size of a b-matching
in G is equal to the maximum size of a matching in Gb. By the Tutte-Berge
formula, this is equal to the minimum value of

(31.4) 1
2 (|Vb| + |U ′| − o(Gb − U ′))

over U ′ ⊆ Vb (where o(H) denotes the number of odd components of a graph
H).

Let U ′ attain this minimum. We may assume that if U ′ misses at least
one copy of some vertex v of G, it misses all copies of v (since deleting all
copies does not increase (31.4)). Hence there is a subset U of V such that U ′

is equal to the set of copies of vertices in U . We take v ∈ U if b(v) = 0.
Let IU be the set of isolated (hence loopless) vertices of G − U . Then

o(Gb −U ′) is equal to b(IU ) plus the number of components K of G−U that
span at least one edge and have b(K) odd. Setting k to the number of such
components, (31.4) is equal to

(31.5) 1
2 (b(V ) + b(U) − o(Gb − U ′)) = b(U) + 1

2 (b(V \ U) − o(Gb − U ′))
= b(U) + 1

2 (b(V \ U) − b(IU ) − k),

which is equal to (31.3).

This theorem directly gives a characterization of the existence of a perfect
b-matching, that is a b-matching having equality in (31.1) for each v ∈ V .
This characterization is due to Tutte [1952]. By IU we denote the set of
isolated, loopless vertices of G − U .

Corollary 31.1a. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then there

exists a perfect b-matching if and only if for each U ⊆ V , G − U − IU has at
most b(U) − b(IU ) components K with b(K) odd.

Proof. Directly from Theorem 31.1, by observing that a perfect b-matching
exists if and only if the minimum value of (31.3) is at least 1

2b(V ).

31.2. The b-matching polytope

By a similar construction we can derive a characterization of the b-matching
polytope. Given a graph G = (V, E) and b ∈ Z

V
+, the b-matching polytope is

19 So K may consist of one vertex with a loop attached.
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the convex hull of the b-matchings. The inequalities describing the b-matching
polytope were announced by Edmonds [1965b] (cf. Pulleyblank [1973], Ed-
monds [1975]):

Theorem 31.2. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the b-

matching polytope is determined by the inequalities

(31.6) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ b(v) for v ∈ V ,
(iii) x(E[U ]) ≤ � 1

2b(U)� for U ⊆ V with b(U) odd.

Proof. The inequalities (31.6) are trivially valid for the vectors in the b-
matching polytope. To see that they determine the b-matching polytope, let
x satisfy (31.6). We may assume that b ≥ 1.

Again consider the graph Gb = (Vb, Eb) obtained by splitting each vertex
v into b(v) copies (cf. (31.2)). For any edge e′ = u′v′ of Gb, with u′ and v′

copies of u and v in G, define x′(e′) := xe/b(u)b(v), where e := uv. We show
that x′ belongs to the matching polytope of Gb, which implies the theorem.

By Edmonds’ matching polytope theorem, it suffices to show that x′ sat-
isfies:

(31.7) (i) x′(e′) ≥ 0 for each edge e′ ∈ Eb,
(ii) x′(δ′(u′)) ≤ 1 for each vertex u′ ∈ Vb,
(iii) x′(E′[U ′]) ≤ � 1

2 |U ′|� for each U ′ ⊆ Vb with |U ′| odd.

Clearly (i) holds. To see (31.7)(ii), let u′ be a vertex of Gb, being a copy of
vertex u of G. Then

(31.8) x′(δ′(u′)) = x(δ(u))/b(u) ≤ 1,

since for any edge e = uv of G one has that

(31.9)
∑

v′
x′(u′v′) =

∑

v′
x(uv)/b(u)b(v) = x(uv)/b(u),

where v′ ranges over the copies of v in Gb. So summing over all neighbours
v′ of u′ gives x(δ(u))/b(u).

To see (31.7)(iii), choose U ′ ⊆ Vb with |U ′| odd. Note that x satisfies
(31.6)(iii) for all subsets U of V , since if b(U) is even, then x(E[U ]) ≤
1
2

∑
v∈U x(δ(v)) ≤ 1

2b(U) by (31.6)(ii).
For any vertex v of G let Bv denote the set of copies of v in Gb. We show

(31.7)(iii) by induction on the number of v ∈ V for which U ′ ‘splits’ Bv, that
is, for which

(31.10) Bv ∩ U ′ �= ∅ and Bv �⊆ U ′.

If this number is 0, (31.7)(iii) follows from (31.6)(iii). If this number is
nonzero, choose a vertex v satisfying (31.10). Let U1 := U ′ \ Bv and
U2 := U ′ ∪ Bv. So by induction we know
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(31.11) x′(E′[U1]) ≤ 1
2 |U1| and x′(E′[U2]) ≤ 1

2 |U2|.

Moreover, (31.8) implies:

(31.12) x′(E′[U1]) + x′(E′[U2]) ≤
∑

u′∈U1

x′(δ′(u′)) ≤ |U1|.

(This uses the fact that Bv = U2 \ U1 is a stable set in Gb.) Now define
λ := |Bv ∩ U ′|/b(v) and µ := |Bv \ U ′|/b(v). So λ + µ = 1 and

(31.13) x′(E′[U ′]) = λx′(E′[U2]) + µx′(E′[U1]).

If λ ≤ 1
2 , then, by (31.11) and (31.12):

(31.14) x′(E′[U ′]) = (µ − λ)x′(E′[U1]) + λ(x′(E′[U1]) + x′(E′[U2]))
≤ 1

2 (µ − λ)|U1| + λ|U1| = 1
2 |U1| ≤ � 1

2 |U ′|�.

(The last inequality holds as U1 ⊂ U ′.)
If λ > 1

2 , then, by (31.11) and (31.12):

(31.15) x′(E′[U ′]) = (λ − µ)x′(E′[U2]) + µ(x′(E′[U1]) + x′(E′[U2]))
≤ (λ − µ) 1

2 |U2| + µ|U1| = 1
2 |U1| + 1

2 (λ − µ)|U2 \ U1|
= 1

2 |U1| + 1
2 (λ − µ)bv = 1

2 |U1| + 1
2 (|Bv ∩ U ′| − |Bv \ U ′|)

≤ 1
2 |U1| + 1

2 (|Bv ∩ U ′| − 1) ≤ � 1
2 |U ′|�.

(The last inequality holds as U ′ = U1 ∪ (Bv ∩ U ′).)
Thus we have (31.7)(iii).

(This theorem follows also from the proof of the total dual integrality of the
constraints (31.17) in Theorem 31.3 below.)

Given a graph G = (V, E) and b ∈ Z
V
+, the perfect b-matching polytope

is the convex hull of the perfect b-matchings in G. As it is a face of the
b-matching polytope (if nonempty), the previous theorem implies:

Corollary 31.2a. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the perfect

b-matching polytope is determined by the inequalities

(31.16) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) = b(v) for v ∈ V ,
(iii) x(δ(U)) ≥ 1 for U ⊆ V with b(U) odd.

Proof. Directly from Theorem 31.2.

(For a direct proof of this Corollary also based on considering the graph
Gb obtained from G by splitting each vertex v into b(v) copies, see Aráoz,
Cunningham, Edmonds, and Green-Krótki [1983].)

Hurkens [1988] characterized adjacency on the b-matching polytope and
showed that the diameter of the b-matching polytope is equal to the maximum
size of a b-matching.
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31.3. Total dual integrality

System (31.6) generally is not totally dual integral: if G = (V, E) is the
complete graph K3 on three vertices, and b(v) := 2 for each v ∈ V and
w(e) := 1 for each e ∈ E, then the maximum weight of a b-matching is equal
to 3, while there is no integer dual solution of odd value (when considering
the dual of optimizing wTx subject to (31.6)).

However, if we extend (31.6)(iii) to all subsets U of V , the system is totally
dual integral, as was shown by Pulleyblank [1980]. So the system becomes:

(31.17) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ b(v) for v ∈ V ,
(iii) x(E[U ]) ≤ � 1

2b(U)� for U ⊆ V .

It is equivalent to the following result:

Theorem 31.3. Let G = (V, E) be a graph, let b ∈ Z
V
+ and let w ∈ Z

E
+. Then

the maximum weight wTx of a b-matching x is equal to the minimum value
of

(31.18)
∑

v∈V

yvb(v) +
∑

U⊆V

z(U)� 1
2b(U)�,

where y ∈ Z
V
+ and z ∈ Z

P(V )
+ satisfy

(31.19)
∑

v∈V

yvχδ(v) +
∑

U⊆V

χE[U ] ≥ w.

Proof. By Theorem 31.2 and LP-duality, the maximum weight of a b-
matching is equal to the minimum of (31.18) over y ∈ R

V
+ and z ∈ R

P(V )
+

satisfying (31.19). Suppose that this minimum is strictly smaller than if we
restrict y and z to integer-valued functions. Then there exists a t ∈ Z+ such
that the minimum with y and z restricted to values in 2−t

Z+ is strictly smaller
than when restricting y and z to values in Z+, because we can slightly increase
any value of yv and z(U) to a dyadic vector. Choose t with this property as
small as possible. By replacing w by 2t−1w, we may assume that t = 1.

It therefore is enough to show that for each y ∈ 1
2Z

V
+ and z ∈ 1

2Z
P(V )
+

satisfying (31.19), there exist y′ ∈ Z
V
+ and z′ ∈ Z

P(V )
+ satisfying (31.19) such

that

(31.20)
∑

v∈V

y′
v(v) +

∑

U⊆V

z′(U)� 1
2b(U)� ≤

∑

v∈V

yvb(v) +
∑

U⊆V

z(U)� 1
2b(U)�.

We show this by induction on w(E). More precisely, we consider a counterex-
ample y ∈ 1

2Z
V
+ and z ∈ 1

2Z
P(V )
+ with smallest w(E). Then necessarily

(31.21) y ∈ {0, 1
2}V and z ∈ {0, 1

2}P(V ),
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since if yv ≥ 1 for some vertex v we can reduce w(e) by 1 for each e ∈ δ(v)
and reduce yv by 1, to obtain a counterexample with smaller w(E). Similarly,
if z(U) ≥ 1 for some U ⊆ V we can reduce w(e) by 1 for each e ∈ E[U ] and
reduce z(U) by 1, to obtain a counterexample with smaller w(E).

Put on y ∈ {0, 1
2}V and z ∈ {0, 1

2}P(V ) the additional requirements that,
first, y(V ) is as large as possible, and, second, that

(31.22)
∑

U⊆V

z(U)|U ||V \ U |

is as small as possible.
Let S := {v ∈ V | yv = 1

2} and F := {U ⊆ V | z(U) = 1
2}. We first show

that F is laminar; that is,

(31.23) if U, W ∈ F , then U ∩ W = ∅ or U ⊆ W or W ⊆ U .

Indeed, suppose that U ∩ W �= ∅, U �⊆ W , and W �⊆ U for some U, W ∈ F .
If b(U ∩ W ) is odd, then decreasing z(U) and z(W ) by 1

2 , and in-
creasing z(U ∩ W ) and z(U ∪ W ) by 1

2 , would not increase (31.18) (since
� 1

2b(U ∩ W )�+ � 1
2b(U ∪ W )� ≤ � 1

2b(U)�+ � 1
2b(W )�), would maintain (31.19)

(since χE[U∩W ] + χE[U∪W ] ≥ χE[U ] + χE[W ]), would leave y(V ) unchanged,
but would decrease (31.22), contradicting the minimality of (31.22).

If b(U ∩ W ) is even, then resetting

(31.24) z(U) := z(U)− 1
2 , z(W ) := z(W )− 1

2 , z(U \W ) := z(U \W )+ 1
2 ,

z(W \ U) := z(W \ U) + 1
2 , and yv := yv + 1

2 for each v ∈ U ∩ W ,

would not increase (31.18) (since � 1
2b(U \ W )� + � 1

2b(W \ U)� + b(U ∩ W ) ≤
� 1

2b(U)� + � 1
2b(W )�), would maintain (31.19) (since χE[U\W ] + χE[W\U ] +∑

v∈U∩W χδ(v) ≥ χE[U ] +χE[W ]), but would increase y(V ), contradicting the
maximality of y(V ).

This shows (31.23). Suppose F �= ∅. Then choose an inclusionwise minimal
set U ∈ F with the property that there exist an even number of sets W ∈ F
with W ⊃ U . Let U1, . . . , Uk be the inclusionwise maximal proper subsets of
U with Ui ∈ F (possibly k = 0). By the choice of U , none of the Ui contain
properly a set in F . Then

(31.25) � 1
2b(U)� +

k∑

i=1

� 1
2b(Ui)� ≥ b(U ∩ S) +

k∑

i=1

2� 1
2b(Ui \ S)�

or

(31.26) � 1
2b(U)� +

k∑

i=1

� 1
2b(Ui)� ≥ b(U \ S) +

k∑

i=1

2� 1
2b(Ui ∩ S)�,

as
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(31.27) b(U) + 2
k∑

i=1

� 1
2b(Ui)�

≥ b(U ∩ S) + b(U \ S) + 2
k∑

i=1

� 1
2b(Ui \ S)� + 2

k∑

i=1

� 1
2b(Ui ∩ S)�.

If (31.25) holds, then resetting yv := yv + 1
2 for each v ∈ U ∩ S, z(U) :=

z(U)− 1
2 , and z(Ui) := z(Ui)− 1

2 , z(Ui\S) := z(Ui\S)+1 for each i = 1, . . . , k
would not increase (31.18) (by (31.25)) and would maintain (31.19): on edges
not spanned by U , the left-hand side of (31.19) does not decrease; on edges
spanned by U the contribution of the nonmodified variables is integer, and

(31.28)
⌊ 1

2

( ∑

v∈U∩S

χδ(v)+χE[U ]+
k∑

i=1

χE[Ui]
)⌋

≤
∑

v∈U∩S

χδ(v)+
k∑

i=1

χE[Ui\S].

By the maximality of y(V ) it follows that U ∩ S = ∅. Hence, after resetting
we have z(Ui) = 1 for each i = 1, . . . , k. If k > 0 we contradict (31.21). So
k = 0, and therefore (as z(U) decreases) (31.18) decreases, contradicting the
minimality of (31.18).

If (31.26) holds, then resetting yv := yv + 1
2 for each v ∈ U \ S, z(U) :=

z(U)− 1
2 , and z(Ui) := z(Ui)− 1

2 , z(Ui∩S) := z(Ui∩S)+1 for each i = 1, . . . , k
would not increase (31.18) (by (31.26)) and would maintain (31.19), since now

(31.29)
⌊ 1

2

( ∑

v∈U∩S

χδ(v)+χE[U ]+
k∑

i=1

χE[Ui]
)⌋

≤ 1
2

∑

v∈U

χδ(v)+
k∑

i=1

χE[Ui∩S].

By the maximality of y(V ) it follows that U \ S = ∅, that is, U ⊆ S. Hence,
after resetting we have z(Ui) = 1 for each i = 1, . . . , k. If k > 0 we again con-
tradict (31.21). So k = 0, and therefore (as z(U) decreases) (31.18) decreases,
again contradicting the minimality of (31.18).
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So F = ∅. Now setting z′
S := 1 and y′ := 0 gives (31.20).

(This is the proof method followed by Schrijver and Seymour [1977]. For a
related proof, see Hoffman and Oppenheim [1978]. See also Cook [1983b].)

This theorem can be formulated equivalently in terms of total dual inte-
grality:

Corollary 31.3a. System (31.17) is TDI.

Proof. Directly from Theorem 31.3.

If we restrict the subsets U to odd-size subsets, the system is totally dual
half-integral — a result stated by Pulleyblank [1973] and Edmonds [1975]:

Corollary 31.3b. System (31.6) is totally dual half-integral.

Proof. This follows from Corollary 31.3a, by using the fact that inequality
(31.17)(iii) for |U | even, is a half-integer sum of inequalities (31.6)(i) and (ii).

Next considering the perfect b-matching polytope, generally (31.16) is not
TDI. However:

Corollary 31.3c. System (31.16) with (31.16)(iii) replaced by (31.17)(iii) is
TDI.

Proof. Directly from Corollary 31.3a with Theorem 5.25.

This implies for the original system (Edmonds and Johnson [1970]):

Corollary 31.3d. System (31.16) is totally dual half-integral.

Proof. Consider an inequality x(E[U ]) ≤ � 1
2b(U)� in (31.17). If b(U) is odd,

this inequality is half of the sum of the inequalities x(δ(v)) ≤ b(v) for v ∈ U
and of −x(δ(U)) ≤ −1. If b(U) is even, this inequality is half of the sum of
the inequalities x(δ(v)) ≤ b(v) for v ∈ U and of −xe ≤ 0 for e ∈ δ(U).

In fact (Barahona and Cunningham [1989]):

Corollary 31.3e. Let w ∈ Z
E with w(C) even for each circuit C. Then the

problem of minimizing wTx subject to (31.16) has an integer optimum dual
solution.

Proof. As w(C) is even for each circuit, there is a subset U of V with
{e ∈ E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v). Then

w′(e) is an even integer for each edge e. Hence by Corollary 31.3d there is
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an integer optimum dual solution y′
v (v ∈ V ), zU (U ⊆ V , b(U) odd) for the

problem of minimizing w′Tx subject to (31.16). Now setting yv := y′
v − 1 if

v ∈ U and yv := y′
v if v �∈ U gives an integer optimum dual solution for w.

31.4. The weighted b-matching problem

We now consider the problem of finding a maximum-weight b-matching. Here,
for a graph G = (V, E), b ∈ Z

V
+, and a weight function w ∈ Q

E , the weight
of a b-matching x is wTx.

It should be noted that the method of reducing a b-matching problem to
a matching problem by replacing each vertex v by b(v) copies, does not yield
a polynomial-time algorithm for the weighted b-matching problem. W.H.
Cunningham and A.B. Marsh, III (with suggestions of W.R. Pulleyblank,
K. Truemper, and M.R. Rao — cf. Marsh [1979]) and Gabow [1983a] gave
polynomial-time algorithms for the weighted b-matching problem. Padberg
and Rao [1982] showed, with a method similar to that described in Section
25.5c, that one can test the constraints (31.16) in polynomial time, thus
yielding the polynomial-time solvability of the maximum-weight b-matching
problem (with the ellipsoid method).

Gerards [1995a] attributed the following method, leading to a strongly
polynomial-time algorithm, to J. Edmonds. It extends a similar approach of
Anstee [1987], and amounts to reducing the b-matching problem to a bipartite
b-matching problem and a nonbipartite 1-matching problem.

First there is the following observation.

Lemma 31.4α. Let G = (V, E) be a graph and let b, b′ ∈ Z
V
+ with ‖b−b′‖1 =

1. Let x be a b-matching and let x′ be a b′-matching. Then there exists a
y ∈ Z

E such that ‖y‖∞ ≤ 2 and such that x + y is a b′-matching and x′ − y
is a b-matching.

Proof. By symmetry we may assume that there exists a u ∈ V such that
b′(u) = b(u) + 1 and b′(v) = b(v) if v �= u. Hence x is a b′-matching. If
x′ is a b′-matching, we are done (taking y = 0). So we may assume that
x′ is not a b-matching, that is, x′

u = b′(u). Then there exists a walk P =
(v0, e1, v1, . . . , et, vt) in G such that

(31.30) (i) v0 = u, x′
ei

> xei if i is odd, x′
ei

< xei if i is even, and each
edge e is traversed at most |x′

e − xe| times,
(ii) x′(δ(vt)) < x(δ(vt)) if t is even, and x′(δ(vt)) > x(δ(vt)) if t is

odd (if vt = v0 and t is odd, then x′(δ(vt)) ≥ x(δ(vt)) + 2).

The existence of such a path follows by taking a longest path satisfying
(31.30)(i).

We now assume that P is a shortest path satisfying (31.30). Then no
vertex is traversed more than twice (otherwise we can shortcut P ), hence no
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edge is traversed more than twice. Let ye be the number of times P traverses
e, if x′

e ≥ xe, and let ye be minus the number of times P traverses e, if
x′

e < xe. Then x + y is a b′-matching, x′ − y is a b-matching, and ‖y‖∞ ≤ 2.

This implies a sensitivity result for maximum-weight b-matchings if we
vary b:

Lemma 31.4β. Let G = (V, E), let b, b′ ∈ Z
V
+ and let a weight function

w ∈ R
E be given. Then for any maximum-weight b-matching x there exists a

maximum-weight b′-matching x′ satisfying

(31.31) ‖x − x′‖∞ ≤ 2‖b − b′‖1.

Proof. We may assume that ‖b − b′‖1 = 1. Let x be a maximum-weight
b-matching and let x′ be a maximum-weight b′-matching. By Lemma 31.4α,
we know that there exists an integer vector y with x + y a b′-matching,
x′ − y a b-matching, and ‖y‖∞ ≤ 2. Since x′ − y is a b-matching and since
x is a maximum-weight b-matching, we have wTx ≥ wT(x′ − y), and hence
wT(x+ y) ≥ wTx′. Since x′ is a maximum-weight b′-matching, it follows that
x′′ := x + y is a maximum-weight b′-matching with ‖x′′ − x‖∞ = ‖y‖∞ ≤ 2.

This is used in showing the strong polynomial-time solvability of the
weighted b-matching problem:

Theorem 31.4. Given a graph G = (V, E), b ∈ Z
V
+, and a weight function

w ∈ Q
E, a maximum-weight b-matching can be found in strongly polynomial

time.

Proof. I. First consider the case that b is even. Make a bipartite graph H as
follows. Make a new vertex v′ for each v ∈ V . Let H have edges u′v and uv′

for each edge uv of G. Define b̃(v) := b̃(v′) := 1
2b(v) for each v ∈ V . Define a

weight w̃(u′v) := w̃(uv′) := w(uv) for each edge uv of G.
Find a maximum-weight b̃-matching x̃ in H. This can be done in strongly

polynomial time by Theorem 21.9. Defining x(uv) := x̃(u′v)+ x̃(uv′) for each
edge uv of G, gives a maximum-weight b-matching x in G. Indeed, if there
would be a b-matching in G of larger weight than that of x, then there is a
half-integer b̃-matching in H of larger weight than that of x̃. This contradicts
the fact that in a bipartite graph a maximum-weight b-matching is also a
maximum-weight fractional b-matching (by Theorem 21.1).

II. Next consider the case of arbitrary b. Define b′ := 2� 1
2b�. Since b′ is

even, by part I of this proof we can find a maximum-weight b′-matching x′ in
G in strongly polynomial time. Now b arises from b′ by at most |V | resettings
of b′ to b′+χu for some u ∈ V . So it suffices to give a strongly polynomial-time
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method to obtain a maximum-weight b′-matching from a maximum-weight
b-matching x, where b′ = b + χu for some u ∈ U .

To this end, define

(31.32) z := max{0, x − 2} and b′′ := min{b′ − Mz, M4}

(taking the maximum componentwise), where M is the V × E incidence
matrix of G. (0, 2, and 4 denote the all-0, all-2, and all-4 vector.)

Now we can find a maximum-weight b′′-matching x′′ in strongly polyno-
mial time. This follows from the fact that b′′(v) ≤ 4 deg(v) for each vertex
v. So we can consider the graph Gb′′ obtained by splitting each vertex v of
G into b′′(v) copies, and replacing any edge uv by b′′(u)b′′(v) edges connect-
ing the b′′(u) copies of u by the b′′(v) copies of v. Then a maximum-weight
matching in Gb′′ gives a maximum-weight b′′-matching x′′ in G′′.

Then x′′+z is a b′-matching, since x′′+z ≥ 0 and M(x′′+z) ≤ b′′+Mz ≤
b′. Moreover, x′′+z is a maximum-weight b′-matching, since by Lemma 31.4β,
there exists a maximum-weight b′-matching x′ satisfying x − 2 ≤ x′ ≤ x + 2.
Then x′−z is a b′′-matching (since x′−z ≤ 4), and hence wTx′′ ≥ wT(x′−z).
Therefore wT(x′′ + z) ≥ wTx′.

Elaboration of this method gives an O(n2m(n2+m log n))-time algorithm.
A similar approach of Anstee [1987] gives O((m+n log n)n log ‖b‖∞ +n2m)-
and O(n2 log n(m + n log n))-time algorithms.

For weighted perfect b-matching, a similar result follows:

Corollary 31.4a. Given a graph G = (V, E), b ∈ Z
V
+, and a weight func-

tion w ∈ Q
E, a minimum-weight perfect b-matching can be found in strongly

polynomial time.

Proof. By flipping signs, it suffices to describe a method finding a maximum-
weight perfect b-matching in strongly polynomial time.

We can increase each weight by a constant C := BW + W , where W :=
‖w‖∞ + 1 and B := ‖b‖1. So each weight becomes ≥ C − W and ≤ C + W .
Then each perfect b-matching has weight at least 1

2B(C−W ) = 1
2B2W , while

each nonperfect b-matching has weight at most

(31.33) (1
2B − 1)(C + W ) = 1

2BC + 1
2BW − C − W

= 1
2B2W + 1

2BW + 1
2BW − BW − W − W < 1

2B2W .

So each maximum-weight b-matching is perfect. Therefore, Theorem 31.4
applies. (Alternatively, we could repeat the above reduction process.)

31.5. If b is even

The results on b-matchings can be simplified if b is even. In that case, the
proofs can be reduced to the bipartite case. The maximum size of a 2b-
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matching is equal to the minimum weight of a 2-vertex cover, taking b as
weight:

Theorem 31.5. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the maxi-

mum size of a 2b-matching is equal to the minimum value of yTb taken over
2-vertex covers y; equivalently, the minimum value of

(31.34) b(V ) + b(N(S)) − b(S),

taken over stable sets S.

Proof. Make a bipartite graph H as follows. Make a new vertex v′ for each
v ∈ V , and let V ′ := {v′ | v ∈ V }. H has vertex set V ∪ V ′ and edges all u′v
and uv′ for uv ∈ E.

Define b′ : V ∪ V ′ → Z+ by b′(v) := b′(v′) := b(v) for all v ∈ V . Then
the maximum size of a 2b-matching in G is equal to the maximum size of a
b′-matching in H. By Corollary 21.1a, this is equal to the minimum b′-weight
of a vertex cover in H, which is equal to the minimum of yTb over 2-vertex
covers y.

It implies the following characterization of the existence of perfect b-
matchings for even b:

Corollary 31.5a. Let G = (V, E) be a graph and let b ∈ Z
V
+ with b even.

Then there exists a perfect b-matching if and only if b(N(S)) ≥ b(S) for each
stable set S of G.

Proof. Directly from Theorem 31.5.

This can also be derived directly from Corollary 31.1a. The following two
theorems can be derived from the bipartite case in a way similar to the proof
of Theorem 31.5, but they also are special cases of results in this chapter.

First we have a characterization of the 2b-matching polytope:

Theorem 31.6. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the 2b-

matching polytope is determined by

(31.35) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2b(v) for each v ∈ V .

Proof. This is a special case of Theorem 31.2.

Second, we mention a result of Gallai [1957,1958a,1958b]. For a graph
G = (V, E) and w : E → Z+, a w-vertex cover is a function y : V → Z+
satisfying yu + yv ≥ w(uv) for each edge uv.



558 Chapter 31. b-matchings

Theorem 31.7. Let G = (V, E) be a graph and let w ∈ Z
E
+ and b ∈ Z

V
+.

Then the maximum weight wTx of a 2b-matching x is equal to the minimum
value of yTb taken over 2w-vertex covers y.

Proof. This follows from Theorem 31.3.

31.6. If b is constant

The results on b-matchings can be specialized to ‘k-matchings’. Let G =
(V, E) be a graph and let k ∈ Z+. A k-matching is a function x ∈ Z

E
+ with

x(δ(v)) ≤ k for each vertex v. Thus if we identify k with the all-k vector
in Z

V
+, we have a k-matching as before. Therefore, Theorem 31.1 gives a

min-max relation for maximum-size k-matching:

Theorem 31.8. Let G = (V, E) be a graph and let k ∈ Z+. Then the maxi-
mum size of a k-matching is equal to the minimum value of

(31.36) k|U | +
∑

K

� 1
2k|K|�,

taken over U ⊆ V , where K ranges over the components of G − U spanning
at least one edge.

Proof. Directly from Theorem 31.1.

Note that it follows that if k is even, we need not round, and hence the
maximum size of a k-matching is equal to 1

2k times the maximum-size of a
2-matching. This maximum size is described in Theorem 30.1.

Again, a k-matching x is perfect if xv = k for each vertex v. In charac-
terizing the existence, it is convenient to distinguish between the cases of k
odd and k even. Let IU denote the set of isolated (hence loopless) vertices of
G − U .

Corollary 31.8a. Let G = (V, E) be a graph and let k ∈ Z+ be odd. Then G
has a perfect k-matching if and only if for each U ⊆ V , G − U − IU has at
most k(|U | − |IU |) odd components K.

Proof. Directly from Corollary 31.1a.

For even k, there is the following result due to Tutte [1952]:

Corollary 31.8b. Let G = (V, E) be a graph and let k ∈ Z+ be even. Then
G has a perfect k-matching if and only if |N(S)| ≥ |S| for each stable set S.

Proof. Directly from Corollary 31.5a.
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So if k is even, there exists a perfect k-matching if and only if there exists
a perfect 2-matching.

We also give the characterization of the k-matching polytope (the convex
hull of k-matchings):

Theorem 31.9. Let G = (V, E) be a graph and let k ∈ Z+. Then the k-
matching polytope is determined by

(31.37) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ k for each v ∈ V ,
(iii) x(E[U ]) ≤ � 1

2k|U |� for each U ⊆ V with k|U | odd.

Proof. This is a special case of Theorem 31.2.

31.7. Further results and notes

31.7a. Complexity survey for the b-matching problem

Complexity survey for the maximum-weight b-matching problem:

∗ O(n2B) Pulleyblank [1973]

O(n2m log B) W.H. Cunningham and A.B. Marsh,
III (cf. Marsh [1979])

∗ O(m2 log n log B) Gabow [1983a]

∗ O(n2m + n log B(m + n log n)) Anstee [1987]

∗ O(n2 log n(m + n log n)) Anstee [1987]

Here B := ‖b‖∞, and ∗ indicates an asymptotically best bound in the table.
Johnson [1965] extended Edmonds’ matching algorithm to an algorithm (not

based on splitting vertices) finding a maximum-size b-matching, with running time
polynomially bounded in n, m, and B. Gabow [1983a] gave an O(nm log n)-time
algorithm to find a maximum-size b-matching.

31.7b. Facets and minimal systems for the b-matching polytope

Edmonds and Pulleyblank (see Pulleyblank [1973]) described the facets of the b-
matching polytope. Let G = (V, E) be a graph and let b ∈ Z

V
+ . Call G b-critical

if for each u ∈ V there exists a b-matching x such that x(δ(u)) = b(u) − 1 and
x(δ(v)) = b(v) for each v �= u.

Let G be simple and connected with at least three vertices and let b > 0. Then
an inequality x(δ(v)) ≤ b(v) determines a facet of the b-matching polytope if and
only if b(N(v)) > b(v), and if b(N(v)) = b(v) + 1, then E[N(v)] �= ∅.

Moreover, an inequality x(E[U ]) ≤  1
2 b(U)� determines a facet if and only if

G[U ] is b-critical and has no cut vertex v with b(v) = 1.
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Unlike in the matching case, the facet-inducing inequalities do not form a totally
dual integral system. The minimal TDI-system for the b-matching polytope was
characterized by Cook [1983a] and Pulleyblank [1981]. To describe this, call a graph
G = (V, E) b-bicritical if G is connected and for each u ∈ V there is a b-matching
x with x(δ(u)) = b(u) − 2 and x(δ(v)) = b(v) for each v �= u. Then a minimal TDI-
system for the b-matching polytope (if G is simple and connected and has at least
three vertices and if b > 0) is obtained by adding the following to the facet-inducing
inequalities:

(31.38) x(E[U ]) ≤ 1
2 b(U) for each U ⊆ V with |U | ≥ 3, G[U ] b-bicritical and

b(v) ≥ 2 for each v ∈ N(U).

(The facets of the 2-matching polytope of a complete graph were also given by
Grötschel [1977b].)

The vertices of the 2-matching polytope are characterized by:

Theorem 31.10. Let G = (V, E) be a graph. Then a 2-matching x is a vertex of
the 2-matching polytope P if and only if the edges e with xe = 1 form vertex-disjoint
odd circuits.

Proof. Let x be a 2-matching. Define F := {e ∈ E | xe = 1}. Clearly, degF (v) ≤ 2
for each v ∈ V . So F forms a vertex-disjoint set of paths and circuits.

To see necessity in the theorem, let x be a vertex of P . Suppose that K is a
component of F that forms a path or an even circuit. Then we can split K into
matchings M and N . Then both x + χM − χN and x − χM + χN belong to P ,
contradicting the fact that x is a vertex of P .

To see sufficiency, suppose that x is not a vertex of P . Then there exists a
nonzero vector y such that x + y and x − y belong to P . If xe = 0 or xe = 2, then
ye = 0, as 0 ≤ xe ± ye ≤ 2. If e and f are two edges in F incident with a vertex v,
then ye = −yf , since (xe + xf ) ± (ye + yf ) ≤ 2. Hence, if each component of F is
an odd circuit, we have y = 0, contradicting our assumption.

31.7c. Regularizable graphs

A graph G = (V, E) is called regularizable if there exists a k and a perfect k-
matching x with x ≥ 1. So we obtain a k-regular graph by replacing each edge e
by xe parallel edges. Berge [1978c] characterized regularizability as follows:

Theorem 31.11. Let G = (V, E) be connected and nonbipartite. Then G is regu-
larizable if and only if |N(U)| > |U | for each nonempty stable set U .

Proof. Necessity being easy, we show sufficiency. Make a bipartite graph H by
making for each vertex v a copy v′, and replacing any edge uv by two edges uv′

and u′v. Then every edge of H belongs to some perfect matching of H. To see this,
suppose that edge uv′ belongs to no perfect matching. Then by Frobenius’ theorem
(Corollary 16.2a), there exists a subset X of V \ {u} such that X has less than |X|
neighbours in V ′ \ {v′} (in the graph H; here V ′ := {v′ | v ∈ V }). That is, defining
N ′(X) := ∪u∈XNG(u),

(31.39) |N ′(X) \ {v}| < |X|.
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Let U := X \ N ′(X). Then U is a stable set. Moreover, N(U) ⊆ N ′(X) \ X. By
(31.39), |N ′(X)| ≤ |X|, and therefore |N(U)| ≤ |U |. So by the condition given in
the theorem, U = ∅; that is, X ⊆ N ′(X), and so, by (31.39), X = N ′(X). However,
as G is connected and nonbipartite, H is connected. This contradicts the fact that
X = N ′(X) and X �= V .

So each edge of H belongs to a perfect matching. Hence each edge of G belongs
to a perfect 2-matching. Adding up these perfect 2-matchings gives a perfect k-
matching x ≥ 1 for some k.

Berge [1978b] remarked that this theorem is equivalent to: a connected nonbi-
partite graph G is regularizable if and only if the only 2-vertex cover of size τ2(G)
is the all-1 vector (this follows with (30.2)).

With the help of b-matchings, one can also characterize k-regularizable graphs
— graphs that can become k-regular by adding edges parallel to existing edges. Let
IU denote the set of isolated (hence loopless) vertices of G − U .

Theorem 31.12. Let G = (V, E) be a graph and let k ∈ Z+. Then G is k-
regularizable if and only if for each U ⊆ V , G − U − IU has at most

(31.40) k|U | − k|IU | − 2|E[U ]| − |δ(U ∪ IU )|

components K with k|K| + |δ(K)| odd.

Proof. From Corollary 31.1a applied to b : V → Z+ defined by b(v) := k − deg(v)
for v ∈ V .

Note that the condition implies b(v) ≥ 0 for each vertex v. For suppose deg(v) >
k. If k = 0, then (31.40) is negative for U := V , a contradiction. So k > 0. Taking
U := {v}, the condition implies that k − k|IU | − 2|E[U ]| − |δ({v} ∪ IU )| ≥ 0. As
|δ(v)| > k, it follows that IU �= ∅, hence |IU | = 1, say IU = {w}. So |E[U ]| = 0, that
is, v is loopless. Moreover, δ(U ∪ IU ) = ∅, that is, {v, w} is a component of G. But
then the nonnegativity of (31.40) for U ′ := {v, w} implies 2k ≥ 2|E[U ′]| ≥ 2 deg(v)
(as v is loopless), a contradiction.

See also Berge [1978b,1978d,1981].

31.7d. Further notes

Hoffman and Oppenheim [1978] showed that system (31.17) is ‘locally strongly
modular’; that is, each vertex of the b-matching polytope is determined by a linearly
independent set of inequalities among (31.17) (set to equality), where the matrix
in the system has determinant ±1.

Johnson [1965] characterized the vertices of the fractional b-matching polytope.
Koch [1979] studied bases (in the sense of the simplex method) for the linear pro-
gramming problem of finding a maximum-weight b-matching.

Padberg and Wolsey [1984] described a strongly polynomial-time algorithm to
find for any vector x the largest λ such that λ·x belongs to the b-matching polytope,
and to describe λ · x as a convex combination of b-matchings.

b-matching algorithms are studied in the books by Gondran and Minoux [1984]
and Derigs [1988a].



Chapter 32

Capacitated b-matchings

In the previous chapter we studied b-matchings, without upper bound given
on the values of the edges. In this chapter we refine the results to the case
where each edge has a prescribed ‘capacity’ that bounds the value on the
edge. This can be reduced to uncapacitated b-matching.

32.1. Capacitated b-matchings

The capacitated b-matching problem considers b-matchings x satisfying a
prescribed capacity constraint x ≤ c. By a construction of Tutte [1954b],
results on capacitated b-matchings can be derived from the results for the
uncapacitated case as follows. Denote

(32.1) E[X, Y ] := {e ∈ E | ∃x ∈ X, y ∈ Y : e = {x, y}}.

Theorem 32.1. Let G = (V, E) be a graph and let b ∈ Z
V
+ and c ∈ Z

E
+

with c > 0. Then the maximum size of a b-matching x ≤ c is equal to the
minimum value of

(32.2) b(U) + c(E[W ]) +
∑

K

� 1
2 (b(K) + c(E[K, W ]))�,

taken over disjoint subsets U, W of V , where K ranges over the components
of G − U − W .

Proof. To see that the maximum is not more than the minimum, let x
be a b-matching with x ≤ c and let U, W be disjoint subsets of V . Then
x(E[U ]∪ δ(U)) ≤ b(U) and x(E[W ]) ≤ c(E[W ]). Consider next a component
K of G − U − W . Then 2x(E[K]) + x(E[K, W ]) ≤ b(K) and x(E[K, W ]) ≤
c(E[K, W ]). Hence x(E[K] ∪ E[K, W ]) ≤ � 1

2 (b(K) + c(E[K, W ]))�, and the
inequality follows.

The reverse inequality is proved by reduction to Theorem 31.1. Make a
new graph G′ = (V ′, E′) by replacing each edge of G by a path of length
three. That is, for each edge e = uv introduce two new vertices pe,u and pe,v

and three edges: upe,u, pe,upe,v, and pe,vv.
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Define b′ ∈ Z
V ′
+ by b′(v) := b(v) if v ∈ V and b′(pe,v) := c(e) for any new

vertex pe,v. Then the maximum size of a b-matching x in G with x ≤ c is equal
to the maximum size of a b′-matching in G′, minus c(E). By Theorem 31.1,
there exists a subset U ′ of V ′ such that the maximum size of a b′-matching
in G′ equals

(32.3) b′(U ′) +
∑

K′
� 1

2b′(K ′)�,

where K ′ ranges over the components of G′ − U ′ with |K ′| ≥ 2. (Note that
G′ has no loops.) We choose U ′ with |U ′| as small as possible.

Let U := V ∩ U ′ and let W be the set of isolated vertices of G′ − U ′ that
belong to V . We show that (32.2) is at most (32.3) minus c(E), which proves
the theorem.

First observe that

(32.4) if pe,v ∈ U ′, then v ∈ W .

Otherwise, deleting pe,v from U ′ does not increase (32.3), contradicting the
minimality of |U ′|. (Here we use that pe,v has degree 2 and that b′(pe,v) > 0,
that is, c(e) > 0. Then b′(U ′) decreases by c(e) while the sum in (32.3)
increases by at most � 1

2c(e) + 1�, which is at most c(e).)
Hence

(32.5) b′(U ′) = b(U) + b′(U ′ \ V ) = b(U) +
∑

v∈W

c(δ(v))

= b(U) + 2c(E[W ]) + c(δ(W )).

Consider a component K ′ of G′−U ′ with |K ′| ≥ 2. If K ′ does not intersect
V , then it is equal to {pe,u, pe,v} for some edge e = uv of G with u, v ∈ U . So
b′(K ′) = 2c(e). If K ′ intersect V , let K := K ′ ∩ V . Then K is a component
of G − U − W . Indeed, any edge spanned by K gives a path of length 3 in
K ′ (by (32.4)), and any path in K ′ between vertices in K gives a path in K.
Any edge of G leaving K gives a path of length 3 in G′ connecting K ′ and
U ∪ W . So

(32.6) K ′ = K ∪ {pe,u | e = uv ∈ E, u ∈ K} ∪ {pe,v | e = uv ∈ E, u ∈
K, v ∈ U}.

Hence

(32.7) b′(K ′) = b(K) + c(E[K, W ]) + 2c(E[K]) + 2c(E[K, U ]).

Therefore, (32.3) is equal to

(32.8) b(U) + 2c(E[W ]) + c(δ(W )) + c(E[U ])
+

∑

K

(
� 1

2 (b(K) + c(E[K, W ]))� + c(E[K]) + c(E[K, U ])
)
,

where K ranges over the components of G − U − W . Since
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(32.9) c(E) = c(E[W ])+c(δ(W ))+c(E[U ])+
∑

K

(c(E[K])+c(E[K, U ])),

(32.3) minus c(E) is equal to (32.2).

This implies for perfect b-matchings:

Corollary 32.1a. Let G = (V, E) be a graph and let b ∈ Z
V
+ and c ∈ Z

E
+

with c > 0. Then G has a perfect b-matching x ≤ c if and only if for each
partition T, U, W of V , G[T ] has at most

(32.10) b(U) − b(W ) + 2c(E[W ]) + c(E[T, W ])

components K with b(K) + c(E[K, W ]) odd.

Proof. Directly from Theorem 32.1.

32.2. The capacitated b-matching polytope

Let G = (V, E) be a graph and let b ∈ Z
V
+ and c ∈ Z

E
+. The c-capacitated

b-matching polytope is the convex hull of the b-matchings x satisfying x ≤ c.
A description of this polytope follows again from that for the uncapacitated
b-matching polytope.

Theorem 32.2. Let G = (V, E) be a graph and let b ∈ Z
V
+ and c ∈ Z

E
+. The

c-capacitated b-matching polytope is determined by

(32.11) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ � 1

2 (b(U) + c(F ))� (U ⊆ V, F ⊆ δ(U),
b(U) + c(F ) odd).

Proof. It is easy to show that each b-matching x ≤ c satisfies (32.11). To
show that the inequalities (32.11) completely determine the c-capacitated b-
matching polytope, let x ∈ R

E satisfy (32.11). Let G′ = (V ′, E′) and b′ ∈
Z

V ′
+ be as in the proof of Theorem 32.1. Define x′ ∈ R

E′
by x′(upe,u) :=

x′(vpe,v) := xe and x′(pe,upe,v) := c(e) − xe, for any edge e = uv of G. We
show that x′ belongs to the b′-matching polytope with respect to G′.

By Theorem 31.2, it suffices to check the constraints (31.6) for x′ with
respect to G′ and b′. That is, we should check (where δ′ := δG′ and E′[U ′] is
the set of edges in E′ spanned by U ′):

(32.12) (i) x′(e′) ≥ 0 (e′ ∈ E′),
(ii) x′(δ′(v′)) ≤ b′(v′) (v′ ∈ V ′),
(iii) x′(E′[U ′]) ≤ � 1

2b′(U ′)� (U ′ ⊆ V ′ with b′(U ′) odd).
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Trivially we have (32.12)(i) by (32.11)(i). Moreover, for each vertex v ∈ V one
has x′(δ′(v)) ≤ b′(v) by (32.11)(ii). For any vertex pe,u of G′, with e = uv ∈ E,
one has x′(δ′(pe,u)) = c(e) = b′(pe,u).

To prove (32.12)(iii), we first show that it suffices to prove it for those
U ′ ⊆ V ′ satisfying for each edge e = uv ∈ E:

(32.13) (i) if u, v ∈ U ′, then pe,u ∈ U ′ and pe,v ∈ U ′,
(ii) if pe,u ∈ U ′, then u ∈ U ′.

To see (32.13)(i), first let u, v ∈ U ′ and pe,u �∈ U ′. Define U ′′ := U ′ ∪
{pe,u, pe,v}. Then

(32.14) x′(E′[U ′]) ≤ x′(E′[U ′′]) − x′(δ′(pe,u)) ≤ � 1
2b′(U ′′)� − b′(pe,u)

≤ � 1
2b′(U ′)�.

To see (32.13)(ii), let pe,u ∈ U ′ and u �∈ U ′. Define U ′′ := U ′ \ {pe,u, pe,v}. If
pe,v �∈ U ′, then

(32.15) x′(E′[U ′]) = x′(E′[U ′′]) ≤ � 1
2b′(U ′′)� ≤ � 1

2b′(U ′)�.
If pe,v ∈ U ′, then

(32.16) x′(E′[U ′]) = x′(E′[U ′′]) + x′(δ′(pe,v)) ≤ � 1
2b′(U ′′)� + b′(pe,v)

= � 1
2b′(U ′)�.

This proves that we may assume (32.13) (as repeated application of these
modifications gives finally (32.13)). Let U := U ′ ∩ V and let F be the set
of those edges e = uv in δ(U) with u ∈ U , v �∈ U , and pe,u ∈ U ′. Then
x′(E′[U ′]) = x(E[U ])+ c(E[U ])+x(F ) and b′(U ′) = b(U)+2c(E[U ])+ c(F ).
Hence (32.11)(iii) implies (32.12)(iii).

So x′ is a convex combination of b′-matchings in G′. Each such b′-matching
y satisfies y(δ′(v′)) = b′(v′) for each ‘new’ vertex v′ = pe,u (as x′ satisfies this
equality). Hence each such b′-matching corresponds to a b-matching subject
to c in G, and we obtain x as convex combination of b-matchings subject to
c in G.

Similarly, the c-capacitated perfect b-matching polytope is the convex hull
of the perfect b-matchings x satisfying x ≤ c. Theorem 32.2 implies the fol-
lowing (announced by Edmonds and Johnson [1970] (cf. Green-Krótki [1980],
Aráoz, Cunningham, Edmonds, and Green-Krótki [1983])):

Corollary 32.2a. The c-capacitated perfect b-matching polytope is deter-
mined by

(32.17) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) = b(v) (v ∈ V ),
(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − c(F ) (U ⊆ V, F ⊆ δ(U),

b(U) + c(F ) odd).

Proof. Directly from Theorem 32.2, as (32.17)(ii) implies that x(E[U ]) =
1
2b(U) − 1

2x(δ(U)).
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32.3. Total dual integrality

System (32.11) generally is not TDI (cf. the example in Section 30.5). To
obtain a TDI-system, one should delete the restriction in (32.11)(iii) that
b(U) + c(F ) is odd. Thus we obtain:

(32.18) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ � 1

2 (b(U) + c(F ))� (U ⊆ V, F ⊆ δ(U)).

Theorem 32.3. System (32.18) is TDI.

Proof. Let G′ = (V ′, E′) and b′ ∈ Z
V ′
+ be as in the proof of Theorem 32.1.

By Corollary 31.3a, the following system is TDI:

(32.19) (i) x′(e′) ≥ 0 (e′ ∈ E′),
(ii) x′(δ′(v′)) ≤ b′(v′) (v′ ∈ V ′),
(iii) x′(E′[U ′]) ≤ � 1

2b′(U ′)� (U ′ ⊆ V ′).

Since setting inequalities to equalities maintains total dual integrality (The-
orem 5.25), the following system is TDI:

(32.20) (i) x′(e′) ≥ 0 (e′ ∈ E′),
(ii) x′(δ′(v)) ≤ b(v) (v ∈ V ),
(iii) x′(upe,u) + x′(pe,upe,v) = c(e) (u ∈ e = uv ∈ E),
(iv) x′(E′[U ′]) ≤ � 1

2b′(U ′)� (U ′ ⊆ V ′).

The inequalities (32.14), (32.15), and (32.16) show that in (32.20)(iv) we may
restrict the U ′ to those satisfying (32.13). So U ′ is determined by U := U ′∩V
and F := {e = uv ∈ E | u, pe,u ∈ U ′, v �∈ U ′}.

Moreover, with Theorem 5.27 we can eliminate the variables x′(upe,u) for
e ∈ E and u ∈ e with the equalities (32.20)(iii). That is, we replace x′(upe,u)
by c(e) − ye, where we set ye := x′(pe,upe,v) for e = uv ∈ E. Then:

(32.21) x′(E′[U ′]) = y(E[U ]) + 2(c(E[U ]) − y(E[U ])) + c(F ) − y(F ) and
b′(U ′) = b(U) + 2c(E[U ]) + c(F ).

Hence the system becomes:

(32.22) (i) ye ≥ 0 (e ∈ E),
(ii) ye ≤ c(e) (e ∈ E),
(iii) −y(δ(v)) ≤ b(v) − c(δ(v)) (v ∈ V ),
(iv) −y(E[U ]) − y(F ) ≤ � 1

2b(U) + c(F )� − c(E[U ]) − c(F )
(U ⊆ V, F ⊆ δ(U)).

Setting ye to c(e) − xe, the system becomes (32.18) and remains TDI.
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32.4. The weighted capacitated b-matching problem

By the construction given in the proof of Theorem 32.1, the weighted ca-
pacitated b-matching problem can easily be reduced to the uncapacitated
variant:

Theorem 32.4. Given a graph G = (V, E), b ∈ Z
V
+, c ∈ Z

E
+, and a weight

function w ∈ Q
E, a maximum-weight b-matching x ≤ c can be found in

strongly polynomial time.

Proof. We may assume that w ≥ 0. Make G′ = (V ′, E′) and b′ ∈ Z
V ′
+ as

in the proof of Theorem 32.1. Moreover, define a weight function w′ on the
edges of G′ by w′(upe,u) := w′(pe,upe,v) := w′(pe,vv) := w(e) for any edge
e = uv of G.

Let x′ be a maximum-weight b′-matching in G′. Then we may assume that
for each edge e = uv of G one has x′(upe,u) = c(e) − x′(pe,upe,v) = x′(pe,vv).
(This follows from the fact that we can assume that x′(upe,u) = x′(pe,vv),
since if say x′(upe,u) = x′(pe,vv) + τ with τ > 0, we can decrease x′(upe,u)
by τ and increase x′(pe,upe,v) by τ . Next we can reset x′(pe,upe,v) := c(e) −
x′(upe,u).)

Now define xe := x′(upe,u) for each edge e = uv of G. Then x is a
maximum-weight b-matching with x ≤ c.

Similarly, for the weighted capacitated perfect b-matching problem:

Theorem 32.5. Given a graph G = (V, E), b ∈ Z
V
+, c ∈ Z

E
+, and a weight

function w ∈ Q
E, a minimum-weight perfect b-matching x ≤ c can be found

in strongly polynomial time.

Proof. As in the previous proof replace each edge by a path of length three,
yielding the graph G′, and define b′, and w′ similarly. Let x′ be a maximum-
weight perfect b′-matching in G′. Then for each edge e = uv of G one has
x′(upe,u) = c(e) − x′(pe,upe,v) = x′(pe,vv). Defining xe := x′(upe,u) for each
edge e = uv of G, gives a maximum-weight b-matching x ≤ c.

32.4a. Further notes

Cook [1983b] and Cook and Pulleyblank [1987] determined the facets and the min-
imal TDI-system for the capacitated b-matching polytope.

Johnson [1965] extended Edmonds’ matching algorithm to an algorithm (not
based on reduction to matching) that finds a maximum-size capacitated b-matching,
with running time bounded by a polynomial in n, m, and ‖b‖∞. Gabow [1983a]
gave an O(nm log n)-time algorithm for this.

Cunningham and Green-Krótki [1991] showed the following. Let G = (V, E) be
a graph, let b ∈ Z

V
+ and c ∈ Z

E
+. Then the convex hull of the integer vectors y ≤ b

for which there is a perfect y-matching x ≤ c is determined by the inequalities
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(32.23) 0 ≤ y ≤ b,

y(
k⋃

i=0

Ai) − y(B) ≤
k∑

i=1

(b(Ai) − 1) + c(E[A0]) + c(E[A0, V \ B]),

where A0 and B are disjoint subsets of V and where A1, . . . , Ak are some of the
components of G−A0−B such that b(Ai)+c(E[A0, Ai]) is odd for each i = 1, . . . , k.

This characterizes the convex hull of degree-sequences of capacitated b-match-
ings, where the degree-sequence of x ∈ Z

E is the vector y ∈ Z
E defined by yv =

x(δ(v)) for v ∈ V .
This generalizes the results of Balas and Pulleyblank [1989] on the matchable set

polytope (Section 25.5d) and of Koren [1973] on the convex hull of degree-sequences
of simple graphs (Section 33.6c below). See also Cunningham and Green-Krótki
[1994] and Cunningham and Zhang [1992].
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Simple b-matchings and
b-factors

A special case of capacitated b-matchings is obtained when we take capacity
1 on every edge. So the b-matching takes values 0 and 1 only. Such a b-
matching is called simple. A simple b-matching is the incidence vector of
some set of edges. If the b-matching is simple and perfect it is called a
b-factor.
In this chapter we derive results on simple b-matchings and b-factors in
a straightforward way from those on capacitated b-matchings obtained in
the previous chapter.

33.1. Simple b-matchings and b-factors

Call a b-matching x simple if x is a 0,1 vector. We can identify simple b-
matchings with subsets F of E with degF (v) ≤ b(v) for each v ∈ V .

Simple b-matchings are special cases of capacitated b-matchings, namely
by taking capacity function c = 1. Hence a min-max relation for maximum-
size simple b-matching follows from the more general capacitated version:

Theorem 33.1. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the maxi-

mum size of a simple b-matching is equal to the minimum value of

(33.1) b(U) + |E[W ]| +
∑

K

� 1
2 (b(K) + |E[K, W ]|)�,

taken over all disjoint subsets U, W of V , where K ranges over the compo-
nents of G − U − W .

Proof. The theorem is the special case c = 1 of Theorem 32.1.

A b-factor is a simple perfect b-matching. In other words, it is a subset
F of E with degF (v) = b(v) for each v ∈ V . The existence of a b-factor was
characterized by Tutte [1952,1974] (cf. Ore [1957]):
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Corollary 33.1a. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then G has a

b-factor if and only if for each partition T, U, W of V , the graph G[T ] has at
most

(33.2) b(U) − b(W ) + 2|E[W ]| + |E[T, W ]|
components K with b(K) + |E[K, W ]| odd.

Proof. Directly from Theorem 33.1 (or Corollary 32.1a).

(An algorithmic proof was given by Anstee [1985], yielding an O(n3)-time al-
gorithm to find a b-factor. Tutte [1981] gave another proof and a sharpening.)

33.2. The simple b-matching polytope and the b-factor
polytope

Given a graph G = (V, E) and a vector b ∈ Z
V
+, the simple b-matching poly-

tope is the convex hull of the simple b-matchings in G. It can be characterized
by (Edmonds [1965b]):

Theorem 33.2. The simple b-matching polytope is determined by

(33.3) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ � 1

2 (b(U) + |F |)� (U ⊆ V, F ⊆ δ(U),
b(U) + |F | odd).

Proof. The theorem is a special case of Theorem 32.2.

Given a graph G = (V, E) and a vector b ∈ Z
V
+, the b-factor polytope is

the convex hull of (the incidence vectors of) b-factors in G. As it is a face of
the simple b-matching polytope (if nonempty), we have:

Corollary 33.2a. The b-factor polytope is determined by

(33.4) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) = b(v) (v ∈ V ),
(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V, F ⊆ δ(U),

b(U) + |F | odd).

Proof. Directly from Theorem 33.2.

33.3. Total dual integrality

Consider the system (extending (33.3)):
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(33.5) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ � 1

2 (b(U) + |F |)� (U ⊆ V, F ⊆ δ(U)).

A special case of Theorem 32.3 is (cf. Cook [1983b]):

Theorem 33.3. System (33.5) is TDI.

Proof. Directly from Theorem 32.3.

It implies for the b-factor polytope:

Corollary 33.3a. System (33.4) is totally dual half-integral.

Proof. By Theorems 33.3 and 5.25, the system obtained from (33.5) by
setting (33.5)(ii) to equality, is TDI. Then each inequality (33.5) is a half-
integer sum of inequalities (33.4), and the theorem follows.

This can be extended to:

Corollary 33.3b. Let w ∈ Z
E with w(C) even for each circuit C. Then the

problem of minimizing wTx subject to (33.4) has an integer optimum dual
solution.

Proof. If w(C) is even for each circuit, there is a subset U of V with {e ∈ E |
w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v). Then w′(e) is

an even integer for each edge e. Hence by Corollary 33.3a there is an integer
optimum dual solution y′

v (v ∈ V ), zU (U ⊆ V , b(U) odd) for the problem
of minimizing w′Tx subject to (33.4). Now setting yv := y′

v − 1 if v ∈ U and
yv := y′

v if v �∈ U gives an integer optimum dual solution for w.

33.4. The weighted simple b-matching and b-factor
problem

Also algorithmic results can be derived from the general capacity case, but
some arguments can be simplified. While finding a minimum-weight b-factor
can be reduced to finding a minimum-weight perfect b-matching, there is a
more direct construction, since we can assume that b is not too large. We
give the precise arguments in the proofs below.

Theorem 33.4. Given a graph G = (V, E), b ∈ Z
V
+, and a weight function

w ∈ Q
E, a maximum-weight simple b-matching can be found in strongly

polynomial time.

Proof. We may assume that b(v) ≤ degG(v) for each v ∈ V , since replacing
b(v) by min{b(v), degG(v)} for each v does not change the problem.
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Now the techniques described in Chapters 31 and 32 (replacing each vertex
by b(v) vertices, and next each edge by a path of length three), yield a strongly
polynomial reduction to the maximum-weight matching problem.

So a maximum-size simple b-matching and a b-factor (if any) can be found
in polynomial time.

A similar construction applies to the weighted b-factor problem:

Theorem 33.5. Given a graph G = (V, E), b ∈ Z
V
+, and a weight function

w ∈ Q
E, a minimum-weight b-factor can be found in strongly polynomial

time.

Proof. We may assume that b(v) ≤ degG(v) for each v ∈ V , since otherwise
there is no b-factor. Now the reduction techniques described in Chapters 31
and 32 yield a strongly polynomial reduction to the minimum-weight perfect
matching problem.

33.5. If b is constant

Again we can specialize the results above to k-matchings and k-factors, for
k ∈ Z+. First we have for the maximum size of a simple k-matching:

Theorem 33.6. Let G = (V, E) be a graph and let k ∈ Z+. The maximum
size of a simple k-matching is equal to the minimum value of

(33.6) k|U | + |E[W ]| +
∑

K

� 1
2 (k|K| + |E[K, W ]|)�,

taken over all disjoint subsets U, W of V , where K ranges over the compo-
nents of G − U − W .

Proof. Directly from Theorem 33.1.

A k-factor is a simple perfect k-matching. In other words, it is a subset
F of E with (V, F ) k-regular. Theorem 33.6 implies a classical theorem of
Belck [1950]:

Corollary 33.6a. A graph G = (V, E) has a k-factor if and only if for each
partition T , U , W of V , G[T ] has at most

(33.7) k(|U | − |W |) + 2|E[W ]| + |E[T, W ]|

components K with k|K| + |E[K, W ]| odd.

Proof. Directly from Theorem 33.6.

Petersen [1891] showed that the following is easy:
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Theorem 33.7. Each connected 2k-regular graph G with an even number of
edges has a k-factor.

Proof. Make an Eulerian tour in G, and colour the edges alternatingly red
and blue. Then the red edges form a k-factor.

33.6. Further results and notes

33.6a. Complexity results

Urquhart [1967] gave an O(b(V )n3)-time algorithm for finding a maximum-weight
simple b-matching. This was improved by Gabow [1983a] to O(b(V )m log n) (by
reduction to the O(nm log n)-time algorithm of Galil, Micali, and Gabow [1982,
1986] for maximum-weight matching) and to O(b(V )n2). For maximum-size sim-
ple b-matching, Gabow [1983a] gave algorithms of running time O(

√
b(V ) m) (by

reduction to Micali and Vazirani [1980]) and to O(nm log n).

33.6b. Degree-sequences

A sequence d1, . . . , dn is called a degree-sequence of a graph G = (V, E) if we can
order the vertices as v1, . . . , vn such that degG(vi) = di for i = 1, . . . , n.

From Corollary 33.1a one can derive the characterization of degree-sequences
of simple graphs due to Erdős and Gallai [1960]: there exists a simple graph with
degrees d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 if and only if

∑n
i=1 di is even and

(33.8)
k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}

for k = 1, . . . , n.
Havel [1955] gave the following recursive algorithm to decide if a sequence is the

degree-sequence of a simple graph. A sequence d1 ≥ d2 ≥ · · · ≥ dn is the degree-
sequence of a simple graph if and only if 0 ≤ dn ≤ n−1 and d1 −1, d2 −1, . . . , ddn −
1, ddn+1, . . . , dn−1 is the degree sequence of a simple graph.

Koren [1973] showed that the convex hull of degree-sequences of simple graphs
on a finite vertex set V is determined by:

(33.9) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(U) − x(W ) ≤ |U |(|V | − |W | − 1) for disjoint U, W ⊆ V .

If the graph need not be simple (but yet is loopless), condition (33.8) can be replaced
by

∑n
i=2 di ≥ d1, as can be shown easily (cf. Hakimi [1962a]). Related work was

done by Peled and Srinivasan [1989], who showed that system (33.9) is totally
dual integral and characterized vertices, facets, and adjacency on the polytope
determined by (33.9).

Kundu [1973] showed that if both sequences d1 ≥ · · · ≥ dn ≥ k and d1 − k ≥
· · · ≥ dn − k ≥ 0 are realizable (as degree-sequence of a simple graph), then the
first sequence is realizable by a graph with a k-factor (answering a question of
Grünbaum [1970]). See also Edmonds [1964] and Cai, Deng, and Zang [2000].
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33.6c. Further notes

Cook [1983b] and Cook and Pulleyblank [1987] determined the facets and the min-
imal TDI-system for the simple b-matching polytope. Hausmann [1978a,1981] char-
acterized adjacency on the simple b-matching polytope.

Lovász [1972f] extended the Edmonds-Gallai decomposition to b-factors (cf.
Lovász [1972e] and Graver and Jurkat [1980]). For a sharpening of Corollary 33.1a
by specializing T, U, W , see Tutte [1974,1978].

Fulkerson, Hoffman, and McAndrew [1965] showed the following. Let G = (V, E)
be a graph such that any two odd circuits have a vertex in common or are connected
by an edge. Let b ∈ Z

V
+ . Then G has a b-factor if and only if b(V ) is even and

(33.10) b(U) + 2|E[W ]| + |E[T, W ]| ≥ b(W )

for each partition T, U, W of V (cf. Mahmoodian [1977]).
Baebler [1937] showed that any k-regular l-connected graph has an l-factor if k

is odd and l is even. Era [1985] proved the following conjecture of Akiyama [1982]:
for each k there exists a t such that for each r-regular graph G = (V, E) with
r ≥ t, E can be partitioned into E1, . . . , Es with for each i = 1, . . . , s one has
k ≤ degEi

(v) ≤ k + 1 for each vertex v.
Katerinis [1985] showed that if k′, k, k′′ are odd natural numbers with k′ ≤

k ≤ k′′, then any graph G having a k′-factor and a k′′-factor, also has a k-factor.
Related results are reported in Enomoto, Jackson, Katerinis, and Saito [1985].

Goldman [1964] studied augmenting paths for simple b-matchings by reduction
to 1-matchings. More on b-matchings and b-factors can be found in Bollobás [1978],
Tutte [1984], and Bollobás, Saito, and Wormald [1985].



Chapter 34

b-edge covers

The covering analogue of a b-matching is the b-edge cover. It is not difficult
to derive min-max relations, polyhedral characterizations, and algorithms
for b-edge covers from those for b-matchings.

34.1. b-edge covers

Let G = (V, E) be a graph and let b ∈ Z
V
+. A b-edge cover is a function

x ∈ Z
E
+ satisfying

(34.1) x(δ(v)) ≥ b(v)

for each v ∈ V .
There is a direct analogue of Gallai’s theorem (Theorem 19.1), also given

in Gallai [1959a], relating maximum-size b-matchings and minimum-size b-
edge covers:

Theorem 34.1. Let G = (V, E) be a graph without isolated vertices and let
b ∈ Z

V
+. Then the maximum size of a b-matching plus the minimum size of a

b-edge cover is equal to b(V ).

Proof. Let x be a minimum-size b-edge cover. For any v ∈ V , reduce x(δ(v))
by x(δ(v)) − b(v), by reducing xe on edges e ∈ δ(v). We obtain a b-matching
y of size

(34.2) y(E) ≥ x(E) −
∑

v∈V

(x(δ(v)) − b(v)) = b(V ) − x(E).

Hence the maximum-size of a b-matching is at least b(V ) − x(E).
Conversely, let y be a maximum-size b-matching. For any v ∈ V , increase

y(δ(v)) by b(v) − y(δ(v)), by increasing ye on edges e ∈ δ(v). We obtain a
b-edge cover x of size

(34.3) x(E) ≤ y(E) +
∑

v∈V

(b(v) − y(δ(v))) = b(V ) − y(E).
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Hence the minimum-size of a b-edge cover is at most b(V ) − y(E).

(An alternative way of proving this is by applying Gallai’s theorem for the
case b = 1 directly to the graph Gb described in (31.2), obtained from G by
splitting any vertex v into b(v) vertices.)

With Theorem 34.1, we can derive a min-max relation for minimum-size
b-edge cover from that for maximum-size b-matching. Let IU denote the set
of isolated (hence loopless) vertices of G − U .

Corollary 34.1a. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the

minimum size of a b-edge cover is equal to the maximum value of

(34.4) b(IU ) +
∑

K

� 1
2b(K)�,

taken over U ⊆ V , where K ranges over the components of G − U − IU .

Proof. Directly from Theorems 34.1 and 31.1.

The construction in the proof of Theorem 34.1 also implies that a
minimum-size b-edge cover can be found in polynomial time.

34.2. The b-edge cover polyhedron

Given a graph G = (V, E) and b ∈ Z
V
+, the b-edge cover polyhedron is the

convex hull of the b-edge covers. The inequalities describing the b-edge cover
polyhedron can be easily derived from the description of the edge cover poly-
tope, similar to Theorem 31.2.

Theorem 34.2. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the b-edge

cover polyhedron is determined by the inequalities

(34.5) (i) xe ≥ 0 (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ] ∪ δ(U)) ≥ � 1

2b(U)� (U ⊆ V, b(U) odd).

Proof. Similar to the proof of Theorem 31.2, by construction of Gb and
reduction to the description of the edge cover polytope (Corollary 27.3a).
The theorem also follows from Theorem 34.3 below.

34.3. Total dual integrality

The constraints (34.5) are totally dual integral if we delete the parity condi-
tion in (34.5)(iii):
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(34.6) (i) xe ≥ 0 (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ] ∪ δ(U)) ≥ � 1

2b(U)� (U ⊆ V ).

It is equivalent to the following:

Theorem 34.3. Let G = (V, E) be a graph, b ∈ Z
V
+, and w ∈ Z

E
+. Then the

minimum weight wTx of a b-edge cover x is equal to the maximum value of

(34.7)
∑

v∈V

yvb(v) +
∑

U⊆V

zU� 1
2b(U)�,

where y ∈ Z
V
+ and z ∈ Z

P(V )
+ satisfy

(34.8)
∑

v∈V

yvχδ(v) +
∑

U⊆V

zUχE[U ]∪δ(U) ≤ w.

Proof. We derive this from Theorem 32.3. Define B := b(V ) + 1. Then
the minimum is attained by a b-edge cover x < B · 1. So adding xe ≤ B
for e ∈ E as inequalities to (34.6) does not make it TDI if it wasn’t. Let
b̃(v) := B ·deg(v)−b(v) for each v ∈ V . Then by Theorem 32.3, the following
system is TDI:

(34.9) 0 ≤ x̃e ≤ B (e ∈ E),
x̃(δ(v)) ≤ b̃(v) (v ∈ V ),
x̃(E[U ] ∪ F ) ≤ � 1

2 (b̃(U) + B|F |)� (U ⊆ V, F ⊆ δ(U)).

Hence also the following system is TDI (by resetting xe = B − x̃e for each
e ∈ E):

(34.10) 0 ≤ xe ≤ B (e ∈ E),
x(δ(v)) ≥ b(v) (v ∈ V ),
x(E[U ] ∪ F ) ≥ � 1

2 (b(U) − B|δ(U) \ F |)� (U ⊆ V, F ⊆ δ(U)).

Now we can restrict ourselves in the last set of inequalities to those with
F = δ(U), as otherwise the right-hand side is negative. So we have system
(34.6) added with the superfluous inequalities xe ≤ B for e ∈ E.

Equivalently, in TDI terms:

Corollary 34.3a. System (34.6) is totally dual integral.

Proof. Directly from Theorem 34.3.

34.4. The weighted b-edge cover problem

A minimum-weight b-edge cover can be found in strongly polynomial time,
by reduction to maximum-weight b-matching:
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Theorem 34.4. For any graph G = (V, E), b ∈ Z
V
+, and weight function

w ∈ Q
E, a minimum-weight b-edge cover can be found in strongly polynomial

time.

Proof. Define B := ‖b‖∞. Then we can assume that a minimum-weight b-
edge cover x satisfies xe ≤ B for each e ∈ E. Define b̃(v) := B · deg(v) − b(v)
for each v ∈ V . By Theorem 32.4, we can find a maximum-weight b̃-matching
x in strongly polynomial time. Defining xe := B − x̃e for each e then gives a
minimum-weight b-edge cover.

34.5. If b is even

The results can be simplified if b is even. In that case, the proofs can be
reduced to the bipartite case.

Minimum-size 2b-edge cover relates to maximum-weight 2-stable set, tak-
ing b as weight. Here a 2-stable set is a function y ∈ Z

V
+ with yu + yv ≤ 2 for

each edge uv.

Theorem 34.5. Let G = (V, E) be a graph and let b ∈ Z
V
+. Then the min-

imum size of a 2b-edge cover is equal to the maximum value of yTb where y
is a 2-stable set; equivalently, to the maximum value of

(34.11) b(V ) + b(S) − b(N(S)),

taken over stable sets S.

Proof. Similar to the proof of Theorem 31.5. (Alternatively, the present
theorem can be derived with Theorem 34.1 from Theorem 31.7.)

For a graph G = (V, E) and w : E → Z+, a w-stable set is a function
y : V → Z+ satisfying yu + yv ≤ w(uv) for each edge uv. Gallai [1957,1958a,
1958b] showed:

Theorem 34.6. Let G = (V, E) be a graph and let b ∈ Z
V
+ and w ∈ Z

E
+.

Then the minimum weight wTx of a 2b-edge cover is equal to the maximum
value of yTb where y is a 2w-stable set.

Proof. This follows from Theorem 34.3.

34.6. If b is constant

The above results can also be specialized to k-edge covers, for k ∈ Z+. That
is, b is constant.

Let G = (V, E) be a graph and let k ∈ Z+. A k-edge cover is a function
x ∈ Z

E
+ with x(δ(v)) ≥ k for each vertex v. Thus if we identify k with the all-k



Section 34.7. Capacitated b-edge covers 579

vector in Z
V
+, we have a k-edge cover as before. Therefore, Corollary 34.1a

gives the following, where IU denotes the set of isolated (hence loopless)
vertices of G − U :

Theorem 34.7. Let G = (V, E) be a graph and let k ∈ Z+. Then the mini-
mum size of a k-edge cover is equal to the maximum value of

(34.12) k|IU | +
∑

K

� 1
2k|K|�,

over U ⊆ V , where K ranges over the components of G − U − IU .

Proof. Directly from Corollary 34.1a.

Note that it follows that if k is even, we need not round, and hence the
minimum size of a k-edge cover is equal to 1

2k times the minimum-size of a
2-edge cover.

34.7. Capacitated b-edge covers

The capacitated b-edge cover problem considers b-edge covers x satisfying a
prescribed capacity constraint x ≤ c. Results on capacitated b-edge covers
can be easily derived from the results on capacitated b-matchings.

For minimum-size capacitated b-edge cover, one has:

Theorem 34.8. Let G = (V, E) be a graph and let b ∈ Z
V
+ and c ∈ Z

E
+. Then

the minimum size of a b-edge cover x ≤ c is equal to the maximum value of

(34.13) b(U) − c(E[U ]) +
∑

K

� 1
2 (b(K) − c(E[K, U ]))�,

taken over all pairs T, U of disjoint subsets of V , where K ranges over the
components of G[T ].

Proof. Define b′(v) := c(δ(v))− b(v) for each v ∈ V . Then by Theorem 32.1,

(34.14) minimum size of a b-edge cover x ≤ c
=c(E)−maximum size of a b′-matching x′ ≤ c
= c(E) − min

T,U,W
(b′(U) + c(E[W ])

+
∑

K

� 1
2 (b′(K) + c(E[K, W ]))�)

= max
T,U,W

c(E) − 2c(E[U ]) − c(δ(U)) + b(U) − c(E[W ])

−
∑

K

� 1
2 (2c(E[K]) + c(δ(K)) − b(K) + c(E[K, W ]))�

= max
T,U,W

b(U) − c(E[U ]) +
∑

K

� 1
2 (b(K) − c(E[K, U ]))�
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(since c(E) = c(E[U ]) + c(δ(U)) + c(E[W ]) + c(E[T, W ])), where T , U , W
range over partitions of V and where K ranges over the components of G[T ].

This reduction also implies that a minimum-size b-edge cover x ≤ c can
be found in strongly polynomial time.

Let G = (V, E) be a graph, let b ∈ Z
V
+ and c ∈ Z

E
+. The c-capacitated

b-edge cover polytope is the convex hull of the b-edge covers x satisfying x ≤ c.
The description of the inequalities follows again from that for the capacitated
b-matching polytope.

Theorem 34.9. The c-capacitated b-edge cover polytope is determined by

(34.15) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(δ(U) \ F ) ≥ � 1

2 (b(U) − c(F ))�
(U ⊆ V, F ⊆ δ(U), b(U) − c(F ) odd).

Proof. From Theorem 32.2, by setting b̃(v) := c(δ(v)) − b(v) and x̃e :=
c(e) − xe.

By deleting the parity condition in (34.15)(iii), the system becomes totally
dual integral:

Theorem 34.10. The following system is TDI:

(34.16) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(δ(U) \ F ) ≥ � 1

2 (b(U) − c(F ))�
(U ⊆ V, F ⊆ δ(U)).

Proof. From Theorem 32.3, with the substitutions as given in the proof of
the previous theorem.

The weighted capacitated b-edge cover problem can easily be reduced to
the uncapacitated variant:

Theorem 34.11. Given a graph G = (V, E), b ∈ Z
V
+, c ∈ Z

E
+, and a weight

function w ∈ Q
E, a minimum-weight b-edge cover x ≤ c can be found in

strongly polynomial time.

Proof. From Theorem 32.4, with the construction given in the proof of The-
orem 34.8.

Agarwal, Sharma, and Mittal [1982] showed that a minimum-weight b-
edge cover x ≤ c can be obtained from a minimum-weight ‘fractional’ b-edge
cover x′ ≤ c with the help of a minimum-weight 1-edge cover algorithm.
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34.8. Simple b-edge covers

Call a b-edge cover x simple if x is a 0,1 vector. Thus we can identify simple
b-edge covers with subsets F of E such that degF (v) ≥ b(v) for each v ∈ V .

So defining b̃(v) := degG(v)− b(v) for v ∈ V , a vector x is a simple b-edge
cover if and only if 1 − x is a simple b̃-matching. This reduces simple b-edge
cover problems to simple b̃-matching problems. With this reduction, Theorem
33.1 gives:

Theorem 34.12. Let G = (V, E) be a graph and let b ∈ Z
V
+ with b(v) ≤

deg(v) for each v ∈ V . Then the minimum size of a simple b-edge cover is
equal to the maximum value of

(34.17) b(U) − |E[U ]| +
∑

K

� 1
2 (b(K) − |E[K, U ]|)�,

taken over all pairs T, U of disjoint subsets of V , where K ranges over the
components of G[T ].

Proof. From Theorem 33.1 applied to b̃.

The simple b-edge cover polytope is the convex hull of the simple b-edge
covers in G.

Theorem 34.13. The simple b-edge cover polytope is determined by

(34.18) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(δ(U) \ F ) ≥ � 1

2 (b(U) − |F |)�
(U ⊆ V, F ⊆ δ(U), b(U) − |F | odd).

Proof. This is a special case of Theorem 34.9.

Again the system is TDI:

Theorem 34.14. System (34.18) is totally dual integral after deleting the
parity condition in (iii).

Proof. The theorem is a special case of Theorem 34.10.

Simple b-matchings are special cases of capacitated b-matchings, namely
by taking the capacity function c = 1. Hence a minimum-weight simple b-edge
cover can be found in strongly polynomial time:

Theorem 34.15. Given a graph G = (V, E), b ∈ Z
V
+, and a weight function

w ∈ Q
E, a minimum-weight simple b-edge cover can be found in strongly

polynomial time.



582 Chapter 34. b-edge covers

Proof. The theorem is a special case of Theorem 34.11.

We can specialize these results to k-edge covers, for k ∈ Z+. A simple
k-edge cover is a set of edges covering each vertex at least k times. Thus it
corresponds to subgraphs of minimum degree at least k. A min-max relation
for minimum-size simple k-edge cover reads:

Theorem 34.16. Let G = (V, E) be a graph and let k ∈ Z+. Then the
minimum size of a simple k-edge cover is equal to the maximum value of

(34.19) k|U | − |E[U ]| +
∑

K

� 1
2 (k|K| − |E[K, U ]|)�,

taken over all pairs T, U of disjoint subsets of V , where K ranges over the
components of G[T ].

Proof. This is a special case of Theorem 34.12.

34.8a. Simple b-edge covers and b-matchings

Let G = (V, E) be a graph and let b ∈ Z
V
+ with b(v) ≤ degG(v) for each v ∈ V .

Define
(34.20) νs(b) := the maximum size of a simple b-matching,

ρs(b) := the minimum size of a simple b-edge cover.
Similar to Theorem 34.1, there is a relation between νs(b) and ρs(b), generalizing
Gallai’s theorem (Theorem 19.1):
(34.21) νs(b) + ρs(b) = b(V ).
To see this, let M be a maximum-size simple b-matching. For each v ∈ V , add to M
b(v) − degM (v) edges incident with v. We can do this in such a way that we obtain
a simple b-edge cover F with |F | ≤ |M | +

∑
v∈V (b(v) − degM (v)) = b(V ) − |M |. So

ρs(b) ≤ b(V ) − |M | = b(V ) − νs(b).
To see the reverse inequality, let F be a minimum-size simple b-edge cover.

For each v ∈ V , delete from F degF (v) − b(v) edges incident with v. We obtain a
simple b-matching M with |M | ≥ |F | −

∑
v∈V (degF (v) − b(v)) = b(V ) − |F |. So

νs(b) ≥ b(V ) − |F | = b(V ) − ρs(b), which shows (34.21).
There is a second relation between simple b-matchings and simple b-edge covers.

Define b̃(v) := degG(v) − b(v) for each v ∈ V . Then trivially (by complementing),
(34.22) νs(b) + ρs(b̃) = |E|.
(34.21) implies
(34.23) b(V ) − 2νs(b) = ρs(b) − νs(b) = 2ρs(b) − b(V ),
and (34.22) implies
(34.24) ρs(b) − νs(b) = ρs(b̃) − νs(b̃).
Hence
(34.25) b(V ) − 2νs(b) = b̃(V ) − 2νs(b̃) = 2ρs(b) − b(V ) = 2ρs(b̃) − b̃(V ).
So the ‘deficiency’ of a maximum-size b-matching is equal to the ‘surplus’ of a
minimum-size b-edge cover, and this parameter is invariant under replacing b by
b̃ = degG −b.
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34.8b. Capacitated b-edge covers and b-matchings

The results of the previous section hold more generally for capacitated b-matchings.
Let G = (V, E) be a graph, let b ∈ Z

V
+ and let c ∈ Z

E
+ with b(v) ≤ c(δ(v)) for each

v ∈ V . Define

(34.26) νc(b) := the maximum size of a b-matching x ≤ c,
ρc(b) := the minimum size of a b-edge cover x ≤ c.

Then:

(34.27) νc(b) + ρc(b) = b(V ).

To see this, consider a maximum-size b-matching x ≤ c. We can increase x to obtain
a b-edge cover y ≤ c, in such a way that y(E) ≤ x(E) +

∑
v∈V (b(v) − x(δ(v))) =

b(V ) − x(E). So ρc(b) ≤ b(V ) − x(E) = b(V ) − νc(b).
To see the reverse inequality, consider a minimum-size b-edge cover y ≤ c.

We can decrease y to obtain a b-matching x ≤ y such that x(E) ≥ y(E) −∑
v∈V (y(δ(v)) − b(v)) = b(V ) − y(E). So νc(b) ≥ b(V ) − y(E) = b(V ) − ρc(b),

which shows (34.27).
Again, there is a second relation between capacitated b-matchings and capaci-

tated b-edge covers. Define b̃(v) := c(δ(v)) − b(v) for each v ∈ V . Then trivially (by
replacing x by c − x),

(34.28) νc(b) + ρc(b̃) = c(E).

Combining (34.27) and (34.28) gives as in (34.25):

(34.29) b(V ) − 2νc(b) = b̃(V ) − 2νc(b̃) = 2ρc(b) − b(V ) = 2ρc(b̃) − b̃(V ).

So the ‘deficiency’ of a maximum-size b-matching x ≤ c is equal to the ‘surplus’ of
a minimum-size b-edge cover y ≤ c, and this parameter is invariant under replacing
b by b̃ := c ◦ δ − b.



Chapter 35

Upper and lower bounds

In the previous chapters we considered nonnegative integer functions satis-
fying certain loweror upper bounds. We now turn over to the more general
case where we put both upper and lower bounds. We also relax the condi-
tion that the functions be nonnegative. Again, the results can be proved
by refining the results of previous chapters — thus all results are obtained
essentially by reduction to the fundamental results of Tutte and Edmonds.

35.1. Upper and lower bounds

Let G = (V, E) be a graph and let a, b ∈ Z
V and d, c ∈ Z

E . We will consider
functions x ∈ Z

E satisfying

(35.1) (i) d(e) ≤ xe ≤ c(e) for all e ∈ E,
(ii) a(v) ≤ x(δ(v)) ≤ b(v) for all v ∈ V .

The existence of such a function is characterized in the following theorem.
(As usual, E[X, Y ] denotes the set of edges xy in E with x ∈ X and y ∈ Y .)

Theorem 35.1. Let G = (V, E) be a graph and let a, b ∈ Z
V with a ≤ b

and d, c ∈ Z
E with d < c. Then there exists an x ∈ Z

E satisfying (35.1) if
and only if for each partition T , U , W of V , the number of components K
of G[T ] with b(K) = a(K) and

(35.2) b(K) + c(E[K, W ]) + d(E[K, U ])

odd is at most

(35.3) b(U) − 2d(E[U ]) − d(E[T, U ]) − a(W ) + 2c(E[W ]) + c(E[T, W ]).

Proof. To see necessity, consider a component K of G[T ] with b(K) = a(K).
Then

(35.4) 2x(E[K]) = b(K) − x(δ(K)) = b(K) − x(E[K, U ]) − x(E[K, W ]).

Hence, if (35.2) is odd, we have x(E[K, U ]) ≥ d(E[K, U ])+1 or x(E[K, W ]) ≤
c(E[K, W ]) − 1. So x(E[T, U ]) − d(E[T, U ]) + c(E[T, W ]) − x(E[T, W ]) is at
least the number of such components. On the other hand,
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(35.5) x(E[T, U ]) − x(E[T, W ]) = x(δ(U)) − x(δ(W ))
≤ b(U) − 2d(E[U ]) − a(W ) + 2c(E[W ]).

This proves necessity.
To see sufficiency, we may assume that d = 0, since the theorem is in-

variant under replacing a(v) by a(v) − d(δ(v)) and b(v) by b(v) − d(δ(v)) for
each v, and c by c − d and d by 0. (It does not change the parity of (35.2)
and does not change (35.3).)

We show sufficiency by application of Corollary 32.1a. Define

(35.6) R := {v ∈ V | a(v) < b(v)}.

Extend G to a graph G′ = (V ′, E′), and define b′ ∈ Z
V ′
+ and c′ ∈ Z

E′
+ , as

follows. For each v ∈ V , let b′(v) := b(v) and for each e ∈ E, let c′(e) :=
c(e). Introduce a new vertex v0, with b′(v0) := b(V ), and a loop v0v0 at v0,
with c′(v0v0) := ∞. Moreover, for each v ∈ R introduce an edge vv0 with
c′(vv0) := b(v) − a(v).

Now a function x as required exists if and only if there exists a perfect b′-
matching x′ ≤ c′ in G′. So it suffices to test the constraints given by Corollary
32.1a for G′, b′, and c′. Assuming x′ does not exist, we can partition V ′ into
T ′, U ′, and W ′ such that G′[T ′] has more than b′(U ′)−b′(W ′)+2c′(E′[W ′])+
c′(E′[T ′, W ′]) components K ′ with b′(K ′)+c′(E′[K ′, W ′]) odd. By parity, the
excess is at least 2. (This follows from the fact that b′(V ′) = 2b(V ) is even.)

Let T := T ′ \ {v0}, U := U ′ \ {v0}, and W := W ′ \ {v0}.
First assume that v0 ∈ U ′; so T ′ = T and W ′ = W . Then the number of

components K of G′[T ′] = G[T ] with b(K) + c(E[K, W ]) odd is trivially at
most b(T ) + c(E[T, W ]), and hence at most

(35.7) b(U) + b(V ) − b(W ) + 2c(E[W ]) + c(E[T, W ])
= b′(U ′) − b′(W ′) + 2c′(E′[W ′]) + c′(E′[T ′, W ′]),

a contradiction.
Second assume that v0 ∈ W ′. Then c′(E′W ′) = ∞, which is again a

contradiction.
Hence we may assume that v0 ∈ T ′; so U ′ = U and W ′ = W . Then

G′[T ′] has exactly one component containing v0. All other components K are
components of G[T ] that are disjoint from R (since no vertex in K is adjacent
to v0). So G[T ] has more than

(35.8) b′(U ′) − b′(W ′) + 2c′(E′[W ′]) + c′(E′[T ′, W ′])
= b(U) − a(W ) + 2c(E[W ]) + c(E[T, W ])

components K contained in V \R with b(K)+ c(E[K, W ]) odd. This contra-
dicts the condition of the theorem.

By taking d = 0 and c = ∞ we obtain as special case (where again IU

denotes the set of isolated (hence loopless) vertices of G − U):
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Corollary 35.1a. Let G = (V, E) be a graph and let a, b ∈ Z
V
+ with a ≤ b.

Then there exists a function x ∈ Z
E
+ satisfying

(35.9) a(v) ≤ x(δ(v)) ≤ b(v)

for each v ∈ V if and only if for each U ⊆ V , G − U − IU has at most
b(U) − a(IU ) components K with b(K) odd and a(K) = b(K).

Proof. We show sufficiency. Suppose that no such x exists. By Theorem 35.1
(for d = 0, c = ∞), there exists a partition T , U , W of V with E[W ] = ∅ and
E[T, W ] = ∅ such that the number of components K of G[T ] with b(K) =
a(K) and b(K) odd, is more than b(U) − a(W ). We may assume that each
component K of G[T ] spans at least one edge: otherwise, if K = {v}, moving
v from T to W , decreases the number of such components by at most 1, while
b(U) − a(W ) decreases by at least 1 (since b(v) = a(v) and b(v) is odd).

So we can assume that W = IU , in which case we have a contradiction
with the condition in the present corollary.

Another special case, for d = 0, and c = 1, is the characterization of
Lovász [1970c] of the existence of subgraphs with prescribed degrees:

Corollary 35.1b. Let G = (V, E) be a graph and let a, b ∈ Z
V
+ with a ≤ b.

Then E has a subset F such that

(35.10) a(v) ≤ degF (v) ≤ b(v)

for each v ∈ V if and only if for each partition T, U, W of V , the number of
components K of G[T ] with b(K) = a(K) and b(K) + |E[K, W ]| odd is at
most b(U) − a(W ) + 2|E[W ]| + |E[T, W ]|.

Proof. This is the case d = 0, c = 1 of Theorem 35.1.

The construction described in the proof of Theorem 35.1 also implies:

Theorem 35.2. Given a graph G = (V, E), a, b ∈ Z
V , d, c ∈ Z

E, and
w ∈ Q

E, a vector x ∈ Z
E satisfying d ≤ x ≤ c and a(v) ≤ x(δ(v)) ≤ b(v) for

each v ∈ V , and minimizing wTx, can be found in strongly polynomial time.

Proof. The construction in the proof of Theorem 35.1 reduces this to Theo-
rem 32.4.

35.2. Convex hull

We now characterize the convex hull of the functions x ∈ Z
E satisfying (35.1):

Theorem 35.3. Let G = (V, E) be a graph and let a, b ∈ Z
V and d, c ∈ Z

E

with a ≤ b and d ≤ c. Then the convex hull of the vectors x ∈ Z
E satisfying

(35.1) is determined by (35.1) together with the inequalities
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(35.11) x(E[U ]) − x(E[W ]) + x(F ∩ δ(U)) − x(H ∩ δ(W ))
≤ � 1

2 (b(U) − a(W ) + c(F ) − d(H))�,
where U and W are two disjoint subsets of V and where F and H partition
δ(U ∪ W ), with b(U) − a(W ) + c(F ) − d(H) odd.

Proof. Necessity of (35.11) follows by adding up the following inequalities,
each implied by (35.1):

(35.12) x(E[U ]) + 1
2x(δ(U)) ≤ 1

2b(U),
−x(E[W ]) − 1

2x(δ(W )) ≤ − 1
2a(W ),

1
2x(F ) ≤ 1

2c(F ),
− 1

2x(H) ≤ − 1
2d(H).

The left-hand sides add up to the left-hand side of (35.11), and the right-hand
side to the unrounded right-hand side of (35.11).

To see sufficiency of (35.11), we may assume that d = 0. Indeed, the
theorem is invariant under resetting a(v) := a(v) − d(δ(v)), and b(v) :=
b(v) − d(δ(v)) for all v ∈ V , and c := c − d and d := 0. Then, as above, we
can reduce the theorem to Corollary 32.2a characterizing the convex hull of
capacitated b-matchings.

Let x satisfy (35.1) and (35.11). Let R, G′, b′, and c′ be as in the proof
of Theorem 35.1. Define x′(e) := xe for each e ∈ E, x′(vv0) := b(v) − x(δ(v))
for each v ∈ R, and x′(v0v0) := 2x(E).

We show that x′ belongs to the c′-capacitated perfect b′-matching poly-
tope (with respect to G′). This implies that x belongs to the convex hull of
vectors x ∈ Z

E
+ satisfying (35.1).

By Corollary 32.2a, it suffices to check

(35.13) (i) 0 ≤ x′(e′) ≤ c′(e′) (e′ ∈ E′),
(ii) x′(δ′(v′)) = b′(v′) (v′ ∈ V ′),
(iii) x′(δ′(U ′) \ F ′) − x′(F ′) ≥ 1 − c′(F ′)

(U ′ ⊆ V ′, F ′ ⊆ δ′(U ′) with
b′(U ′) + c′(F ′) odd).

(35.13)(i) and (ii) are direct. To see (35.13)(iii), let U ′ ⊆ V ′ and F ′ ⊆ δ′(U ′)
with b′(U ′)+c′(F ′) odd. We may assume that v0 ∈ U ′ (as we can replace U ′ by
its complement, since b′(V ′) = 2b(V ) is even). Let W := {v ∈ V | vv0 ∈ F}
and U := V \ (U ′ ∪ W ). Let F := F ′ ∩ E and H := δE(U ∪ W ) \ F .

Now b′(U ′) = b(V ) + b(V \ (U ∪ W )) and c′(F ′) = c(F ) + (b − a)(W ). So
b′(U ′) + c′(F ′) odd implies that b(U) − a(W ) + c(F ) is odd. So by (35.11),

(35.14) 2x(E[U ]) − 2x(E[W ]) + 2x(F ∩ δ(U)) − 2x(H ∩ δ(W ))
≤ b(U) − a(W ) + c(F ) − 1.

Hence

(35.15) x′(δ′(U ′) \ F ′) − x′(F ′)
= x(H) +

∑

v∈U

(b(v) − x(δ(v))) − x(F ) −
∑

v∈W

(b(v) − x(δ(v)))
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= x(H) + b(U) − 2x(E[U ]) − x(δ(U)) − x(F ) − b(W )
+2x(E[W ])+x(δ(W )) = −2x(E[U ])+2x(E[W ])−2x(F ∩ δ(U))
+ 2x(H ∩ δ(W )) + (b(U) − b(W ))
≥ 1 − b(U) + a(W ) − c(F ) + (b(U) − b(W ))
= 1 − c(F ) − b(W ) + a(W ) = 1 − c′(F ′),

proving (35.13)(iii).

The special case d = 0, c = ∞ was mentioned by Schrijver and Seymour
[1977]:

Corollary 35.3a. Let G = (V, E) be a graph and let a, b ∈ Z
V
+. Then the

convex hull of those x ∈ Z
E satisfying

(35.16) (i) xe ≥ 0 for each e ∈ E,
(ii) a(v) ≤ x(δ(v)) ≤ b(v) for each v ∈ V ,

is determined by (35.16) together with the inequalities:

(35.17) x(E[U ]) − x(E[W ]) − x(δ(W ) \ δ(U)) ≤ � 1
2 (b(U) − a(W ))�,

where U and W are disjoint subsets of V with b(U) − a(W ) odd.

Proof. This is a special case of Theorem 35.3.

Similarly, we can characterize the convex hull of subgraphs with prescribed
bounds on the degrees:

Corollary 35.3b. Let G = (V, E) be a graph and let a, b ∈ Z
V
+ with a ≤ b.

Then the convex hull of the incidence vectors of subsets F of E satisfying

(35.18) a(v) ≤ degF (v) ≤ b(v)

for each v ∈ V , is determined by

(35.19) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) a(v) ≤ x(δ(v)) ≤ b(v) for each v ∈ V ,

together with the inequalities

(35.20) x(E[U ]) − x(E[W ]) + x(F ∩ δ(U)) − x(H ∩ δ(W ))
≤ � 1

2 (b(U) − a(W ) + |F |)�,

where U and W are disjoint subsets of V and where F and H partition
δ(U ∪ W ), with b(U) − a(W ) + |F | odd.

Proof. Again this is a special case of Theorem 35.3.

We note that for the V ×E incidence matrix M of any graph G = (V, E),
any a, b ∈ Z

V , d, c ∈ Z
E , and any k, l ∈ Z one has:
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(35.21) conv.hull{x ∈ Z
E | d ≤ x ≤ c, a ≤ Mx ≤ b, k ≤ x(E) ≤ l}

= conv.hull{x ∈ Z
E | d ≤ x ≤ c, a ≤ Mx ≤ b}

∩ {x ∈ R
E | k ≤ x(E) ≤ l}.

This can be proved similarly to Corollary 18.10a.

35.3. Total dual integrality

System (35.1) together with the inequalities (35.11) generally is not TDI (cf.
the example in Section 30.5). To obtain a totally dual integral system we
should delete the restriction in (35.11) that b(U) − a(W ) + c(F ) − d(H) be
odd. Thus we obtain the system:

(35.22) (i) d(e) ≤ xe ≤ c(e) (e ∈ E),
(ii) a(v) ≤ x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) − x(E[W ]) + x(F ∩ δ(U)) − x(H ∩ δ(W ))

≤ � 1
2 (b(U) − a(W ) + c(F ) − d(H))�

(U, W ⊆ V, U ∩ W = ∅, F, H
partition δ(U ∪ W )).

Theorem 35.4. System (35.22) is totally dual integral.

Proof. Again we may assume d = 0. Let R, G′, b′, and c′ be as in the proof
of Theorem 35.1. By Theorem 32.3, the following system, in the variable
x′ ∈ R

E′
, is TDI (where δ′ := δG′ and E′[U ′] is the set of edges in E′

spanned by U ′):

(35.23) (i) 0 ≤ x′(e′) ≤ c′(e′) (e′ ∈ E′),
(ii) x′(δ′(v′)) = b′(v′) (v′ ∈ V ′),
(iii) x′(E′[U ′]) + x′(F ′) ≤ � 1

2 (b′(U ′) + c′(F ′))�
(U ′ ⊆ V ′, F ′ ⊆ δ′(U ′)).

Adding the equality

(35.24) x′(v0v0) − x′(E) = 0

to (35.23) maintains total dual integrality (since (35.24) is valid for each
vector x′ satisfying (35.23)).

We can restrict the inequalities (35.23)(iii) to those with v0 �∈ U ′. To see
this, assume v0 ∈ U ′. Define U := U ′ ∩ V and U ′′ := V \ U ′. Then

(35.25) x′(E′[U ′]) = x′(v0v0) + x′(E′[U ]) +
∑

v∈U∩R

x′(vv0)

= x′(E)+x′(E′[U ])+
∑

v∈U∩R

x′(vv0) = x′(E′[U ′′])+
∑

v∈U

x′(δ′(v))

and
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(35.26) � 1
2 (b′(U ′) + c′(F ′))� = � 1

2 (b′(U ′′) + 2b′(U) + c′(F ′))�
= � 1

2 (b′(U ′′) + c′(F ′))� +
∑

v∈U

b′(v),

since b′(U ′) = b′(U) + b′(v0) = b′(U) + b′(V ). So the inequality

(35.27) x′(E′[U ′]) + x′(F ′) ≤ � 1
2 (b′(U ′) + c′(F ′))�

is a sum of

(35.28) x′(E′[U ′′]) + x′(F ′) ≤ � 1
2 (b′(U ′′) + c′(F ′))�

and of x′(δ′(v)) = b′(v) for v ∈ U . So we can assume that v0 �∈ U ′.
Now adding an integer multiple of a valid equality to another constraint,

maintains total dual integrality. So using (35.23)(ii) we can replace (35.23)(i)
by:

(35.29) 0 ≤ x′(e) ≤ c(e) (e ∈ E),
a(v) ≤ x′(δ(v)) ≤ b(v) (v ∈ V ),

since for v ∈ R, subtracting x′(δ′(v)) = b(v) from 0 ≤ x′(vv0) ≤ b(v) − a(v)
gives −b(v) ≤ −x′(δ(v)) ≤ −a(v).

For U ′ ⊆ V and F ′ ⊆ δ′(U ′), let W := {v ∈ V | vv0 ∈ F ′} and F :=
F ′ ∩ E. As

(35.30) x′(E′[U ′]) + x′(F ′) −
∑

v∈W

x′(δ′(v))

= x′(E′[U ′]) + x′(F ′) − 2x′(E[W ]) − x′(δ(W ))
= x′(E′[U ′ \ W ]) + x′(F ′) − x′(E[W ]) − x′(δ(W ) \ δ(U ′ \ W ))

and

(35.31) � 1
2 (b′(U ′) + c′(F ′))� − b(W ) = � 1

2 (b(U ′ \ W ) − a(W ) + c(F ))�,

we can replace (35.23)(iii) by (taking U := U ′ \ W ):

(35.32) x′(E′[U ])+x′(F )−x′(E[W ])−x′(δ(W )\δ(U)) ≤ 1
2�b(U)−a(W )

+c(F )� for U, W ⊆ V with U ∩ W = ∅ and for F ⊆ δ(U ∪ W ).

Each of the variables x′(vv0) (v ∈ R) and x′(v0v0) occurs exactly once in the
system, in an equality constraint, with coefficient 1. So we can delete these
variables maintaining total dual integrality (Theorem 5.27), and we obtain
system (35.22).

As special cases one can derive the total dual integrality of the systems
corresponding to d = 0, c = ∞ and to d = 0, c = 1 (the subgraph polytope).
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35.4. Further results and notes

35.4a. Further results on subgraphs with prescribed degrees

Corollary 35.1b of Lovász [1970c] implies the following. Let G = (V, E) be a graph
and let b, b′ ∈ Z

V
+ with b + b′ > degG. Then E can be partitioned into a simple

b-matching and a simple b′-matching if and only if

(35.33) |E[U, W ]| ≤ b(U) + b′(W )

for each pair of disjoint subsets U and W of V .
This corresponds to the case a < b in Corollary 35.1b, by taking a := degG −b′.

Then there are no components K with a(K) = b(K).
The condition can be equivalently described as:

(35.34)
∑

v 
∈U

max{0, a(v) − degG−U (v)} ≤ b(u)

for U ⊆ V .
This implies the following result of Lovász [1970c]:

(35.35) Let G = (V, E) be a graph of maximum degree k and let k1, k2 ≥ 0 with
k1 + k2 = k + 1. Then E can be partitioned into a simple k1-matching
and a simple k2-matching

(since |E[U, W ]| ≤ (k1 + k2) min{|U |, |W |} ≤ k1|U | + k2|W |). A special case is a
result noted by Tutte [1978]: for all 0 ≤ r ≤ k, each k-regular graph has a subgraph
in which each degree belongs to {r, r + 1}.

Thomassen [1981a] gave the following short direct proof of (35.35). In fact he
proved the following extension of (35.35):

(35.36) Let G = (V, E) be a graph in which each vertex has degree k or k + 1
and let 1 ≤ k′ < k. Then G has a subgraph G′ = (V, E′) in which each
vertex has degree k′ or k′ + 1.

Note that (35.35) follows from this by embedding G into a k-regular graph.
To prove (35.36), it suffices to prove the case k′ = k − 1. Let U be the set of

vertices of degree k + 1 in G. We can assume that deleting any edge of G results
in a vertex of degree less than k. Hence no two distinct vertices in U are adjacent.
There may be loops at the vertices in U ; let W be the set of those vertices in U
that are not incident with a loop. Since each vertex in W has degree k +1 and each
vertex in V \U has degree k, by Hall’s marriage theorem, G contains a matching M
connecting W to V \ U . Now deleting the edges in M and deleting, for each vertex
v ∈ U \ W , one of the loops attached at v, gives a graph G′ as required.

A ‘dual’ consequence was noted by Gupta [1978]:

(35.37) Let G = (V, E) be a graph of minimum degree δ and let δ1, δ2 ≥ 0
with δ1 + δ2 = δ − 1. Then E can be partitioned into E1 and E2 such
that Gi = (V, Ei) has minimum degree at least δi for i = 1, 2.

Gupta [1978] mentioned that the following direct derivation from Theorem 20.6
was shown to him by C. Berge:

Apply induction on δ1, the case δ1 = 0 being trivial. If δ1 > 0, by the induction
hypothesis E can be partitioned into E1 and E2 such that δ(G1) ≥ δ1 − 1 and
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δ(G2) ≥ δ2 + 1 = δ − δ1. (Here Gi = (V, Ei) for i = 1, 2.) We choose this partition
with |E2| minimal.

Let S be the set of vertices v with degE1
(v) = δ1 − 1. By the minimality

of |E2|, S spans no edge of E2. Let F := δ(S) ∩ E2. So degF (v) = degE2
(v) =

degG(v) − degE1
(v) ≥ δ − δ1 + 1 for each v ∈ S. Let p := δ − δ1 + 1 = δ2 + 2. Now

by Theorem 20.6, F can be partitioned into F1, . . . , Fp such that each vertex v is
covered by at least min{p, degF (v)} of the Fi. Then replacing E1 by E1 ∪F1 and E2

by E2 \ F1 gives a partition as required. Indeed, if degF (v) ≥ p, then degFi
(v) ≥ 1

for each i, implying

(35.38) degE1∪F1
(v) = degE1

(v) + degF1
(v) ≥ (δ1 − 1) + 1 = δ1

and

(35.39) degE2\F1
(v) ≥

p∑

i=2

degFi
(v) ≥ p − 1 = δ2 + 1.

If degF (v) < p, then v �∈ S and degF1
(v) ≤ 1, and hence

(35.40) degE1∪F1
(v) ≥ degE1

(v) ≥ δ1

and

(35.41) degE2\F1
(v) ≥ degE2

(v) − 1 ≥ (δ2 + 1) − 1 = δ2.

This proves (35.37).
Las Vergnas [1978] showed that if a ≤ 1 ≤ b holds, a simpler condition can be

formulated in Corollary 35.1b:

(35.42) for each U ⊆ V , the number of odd components K of G − U with
|K| = 1 and a(K) = 1, or with |K| ≥ 3 and a(K) = b(K) is at most
b(U).

Anstee [1985] gave a proof of Lovász’s theorem, with an O(n3)-time algorithm
to find the subgraph. Heinrich, Hell, Kirkpatrick, and Liu [1990] gave a simplified
proof of Lovász’s theorem for a < b, implying an O(

√
a(V ) m)-time algorithm.

Lovász [1970c] also characterized the minimum deviation that subsets can have
from prescribed lower and upper bounds on the degrees. In fact, he showed the
following (where α+ := max{0, α} for any α ∈ R): Let G = (V, E) be a graph and
let a, b ∈ Z

V
+ with a ≤ b. Then the minimum of

(35.43)
∑

v∈V

((a(v) − degF (v))+ + (degF (v) − b(v))+)

over F ⊆ E is equal to the maximum value of

(35.44) a(W )− b(U)−2|E[W ]|− |E[T, W ]|+number of components K of G[T ]
with a(K) = b(K) and with a(K) + |E[K, W ]| odd,

taken over all partitions T , U , W of V .
Let B : V → P(Z+). The B-matching problem asks for a subgraph H of G such

that degH(v) ∈ B(v) for each v ∈ V . In general, this is NP-complete, even when
B(v) ∈ {{1}, {0, 3}} for each v ∈ V (Lovász [1972f]).

If |Z+ \ B(v)| = 1 for each vertex v, Lovász [1973a] gave a characterization.
Lovász [1972f] investigated the case where Z+ \ B(v) contains no two consecutive



Section 35.4b. Odd walks 593

integers, for which Cornuéjols [1988] gave a polynomial-time algorithm, and Sebő
[1993b] a good characterization.

For algorithms to find subgraphs of minimum deviation see Hell and Kirkpatrick
[1993]. Other work on subgraphs with prescribed degrees includes Berge and Las
Vergnas [1978], Shiloach [1981], Kano and Saito [1983], Akiyama and Kano [1985a],
Kano [1985,1986], Anstee [1990], Cai [1991], and Li and Cai [1998]. A survey is
given by Akiyama and Kano [1985b].

35.4b. Odd walks

Let G = (V, E) be an undirected graph, let s, t ∈ V , and let l : E → Q. Call a
walk odd if it has an odd number of edges. Then a shortest odd s − t walk without
repeated edges can be found as follows. For each edge e of G, set d(e) := 0 and
c(e) := 1, and add an edge ẽ parallel to e, of length l(ẽ) := −l(e), and define
d(ẽ) := −1, c(ẽ) := 0. Let M be the V × E′ incidence matrix of the extended
graph G′ = (V, E′). Define b : V → Z by b(s) := b(t) := 1 and b(v) := 0 for each
v ∈ V \ {s, t}. Then a shortest odd s − t walk without repeated edges can be found
by finding an x ∈ Z

E′
satisfying d ≤ x ≤ c and Mx = b and minimizing lTx.

So by Theorem 35.2, this can be solved in strongly polynomial time. Better
running times were given by Goldberg and Karzanov [1994,1996]: O(m) for finding
such an odd s − t walk, O(nm log n) and O(nm

√
log L) for finding a shortest such

odd s−t walk, strengthened to O(m log n) and O(m
√

log L) for nonnegative lengths.
(L is the maximum absolute value of the lengths, assuming they are integer.)



Chapter 36

Bidirected graphs

In the previous chapter we considered integer solutions of d ≤ x ≤ c, a ≤
Mx ≤ b where M is the incidence matrix of an undirected graph. Earlier, in
Chapter 12, we considered the same problem if M is the incidence matrix
of a directed graph.
Edmonds and Johnson [1970] showed that M can more generally be the
incidence matrix of a ‘bidirected’ graph — a structure that comprises both
undirected and directed graphs. That is, M has entries 0, ±1, and ±2, such
that the sum of the absolute values of the entries in any column is equal to
2. The results are obtained by a simple reduction to the undirected case,
although the elaboration takes some effort.
The results could be formulated just in terms of matrices, but the graph-
theoretic interpretation is helpful in formulating, visualizing, and proving
the results.

36.1. Bidirected graphs

A bidirected graph is a triple G = (V, E, σ), where (V, E) is an undirected
graph and where σ assigns to each e ∈ E and v ∈ e a ‘sign’ σe,v ∈ {+1,−1}.

If e is a loop, that is, e is a family {v, v}, we may assign different signs to
the two occurrences of v. However, in the problems discussed in this chapter,
loops where the signs are different are irrelevant. So we assume that the signs
in a loop are the same, either both +1, or both −1.

Clearly, undirected graphs and directed graphs can be considered as spe-
cial cases of bidirected graphs. Graph terminology for the graph (V, E) ex-
tends in an obvious way to the bidirected graph (V, E, σ).

Let G = (V, E, σ) be a bidirected graph. The edges e for which σe,v = 1
for each v ∈ e are called the positive edges, those with σe,v = −1 for each
v ∈ e the negative edges, and the remaining edges are called the directed
edges. The V × E incidence matrix of G is the V × E matrix M defined by:

(36.1) Mv,e := σe,v if e is not a loop,
Mv,e := 2σe,v if e is a loop,

setting σe,v := 0 if v �∈ e. It follows that an integer matrix M is the V × E
incidence matrix of a bidirected graph if and only if the sum of the absolute
values of the entries in any column of M is equal to 2.
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For vectors a, b ∈ Z
V and d, c ∈ Z

E , we consider integer solutions x ∈ R
E

of

(36.2) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b.

The related existence and optimization problems can be reduced as follows
to the case where G is just an undirected graph. First, we can assume that
G has no negative edges, since multiplying the corresponding column of M
by −1 gives an equivalent problem. Next, any directed edge f = su, with
σf,s = −1 and σf,u = +1, can be handled as follows.

(36.3) Extend G by a new vertex t and replace edge e by two new positive
edges st and tu. This makes the bidirected graph G′ = (V ′, E′).
Define a′, b′ ∈ Z

V ′
by a′(v) := a(v) and b′(v) := b(v) for v ∈ V

and a′(t) := b′(t) := 0. Define d′, c′ ∈ Z
E′

by d′(e) := d(e) and
c′(e) := c(e) for e ∈ E \ {f}, and d′(st) := −∞, c′(st) := ∞,
d′(tu) := d(f), and c′(tu) := c(f). Let M ′ be the V ′×E′ incidence
matrix of G′.

Then there is a one-to-one relation between (integer) solutions of (36.2) and
those for the system corresponding to G′, M ′, a′, b′, c′, d′: just define x(tu) :=
xf and x(st) := −xf .

Algorithmically, this gives a direct reduction to the undirected case:

Theorem 36.1. For w ∈ Q
E, an integer vector x maximizing wTx over

(36.2) can be found in strongly polynomial time.

Proof. By multiplying columns of M by −1, we can assume that G has no
negative edges. Next, apply (36.3) to each directed edge. This reduces the
problem to one on a bidirected graph with all edges positive, that is, on an
undirected graph. Hence, the theorem follows from Theorem 35.2.

We next consider characterizations. Let G = (V, E, σ) be a bidirected
graph. For any T ⊆ V , G[T ] denotes the bidirected subgraph of G induced
by T (that is, G[T ] = (T, E[T ], σ′), where σ′ is the restriction of σ to pairs
e, v with e ∈ E[T ]). We set for U ⊆ V :

(36.4) δ(U) := δE(U).

For disjoint X, Y ⊆ V , we denote:

(36.5) E[X, Y +] := {e ∈ δ(X) | ∃v ∈ Y : σe,v = +1},
E[X, Y −] := {e ∈ δ(X) | ∃v ∈ Y : σe,v = −1}.

For any vector z, let z+ be the vector obtained from z by setting each negative
entry to 0. Similarly, let z− be the vector obtained from z by setting each
positive entry to 0. So z = z+ + z−.

In the following theorem the condition that d < c is not really a restriction:
if de = ce we know that xe = de and hence we can dispose of e by contracting
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it appropriately. But if we delete the condition d < c, the formulation of the
theorem would be more complicated.

Theorem 36.2. Let a ≤ b and d < c. Then there exists an integer vector x
satisfying (36.2) if and only if for each partition T , U , W of V , the number
of components K of G[T ] with b(K) = a(K) and

(36.6) b(K)+c(E[K, W+])+c(E[K, U−])+d(E[K, U+])+d(E[K, W−])

odd is at most

(36.7) yT
+b + yT

−a − (yTM)−c − (yTM)+d,

where y := χU − χW .

Proof. The validity of the theorem is invariant under multiplying a row v
of M by −1 and replacing b(v) by −a(v) and a(v) by −b(v) (then if v ∈ U
we move v to W , and if v ∈ W we move v to U). Similarly, the validity is
invariant under multiplying a column e by −1 and replacing c(e) by −d(e)
and d(e) by −c(e).

Hence, to see necessity, we can assume that W = ∅ and E[T, U−] = ∅. So
y+ = y and y− = 0 and E[T, U+] = δ(T ). Then

(36.8) (x − d)(δ(T )) = (x − d)(E[T, U+]) ≤ (yTM)+(x − d)
≤ (yTM)+(x − d) − (yTM)−(c − x)
= yTMx − (yTM)+d − (yTM)−c
= yT

+Mx + yT
−Mx − (yTM)+d − (yTM)−c

≤ yT
+b + yT

−a − (yTM)+d − (yTM)−c.

On the other hand, for each component K of G[T ] one has (x−d)(δ(K)) ≥ 0.
Moreover, if b(K) = a(K) and (36.6) is odd, then (x− d)(δ(K)) is odd, since

(36.9) (x − d)(δ(K)) ≡ (x − d)(δ(K)) + 2x(E[K]) ≡ b(K) + d(δ(K))
(mod 2)

So (x − d)(δ(T )) is not less than the number of components K of G[T ] with
a(K) = b(K) and (36.6) odd, showing necessity of the condition.

To show sufficiency, we can assume that G has no negative edges, since
we can multiply columns of M by −1. We show sufficiency by induction
on the number of directed edges. If this number is 0, the theorem reduces
to Theorem 35.1. So we can assume that there is an edge f = su with
σf,s = −1 and σf,u = +1. Then we apply construction (36.3), to obtain
G′ = (V ′, E′), M ′, a′, b′, d′, c′.

Now there exists an integer vector x satisfying d ≤ x ≤ c and a ≤ Mx ≤ b
if there exists an integer vector x′ satisfying d′ ≤ x′ ≤ c′ and a′ ≤ M ′x′ ≤ b′.
So we can assume that no such x′ exists. By induction (as G′ has fewer
directed edges than G), we know that V ′ can be partitioned into T ′, U ′, and
W ′ such that the number of components K ′ of G′[T ′] with b′(K ′) = a′(K ′)
and
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(36.10) b′(K ′) + c′(E′[K ′, W ′+]) + c′(E′[K ′, U ′−]) + d′(E′[K ′, U ′+])
+ d′(E′[K ′, U ′−])

odd, is more than

(36.11) y′T
+b′ + y′T

−a′ − (y′TM ′)−c′ − (y′TM ′)+d′,

where y′ := χU ′ − χW ′
.

Since c′(st) = ∞ we know that (y′TM ′)st ≥ 0, that is, y′
s + y′

t ≥ 0.
Similarly, since d′(st) = −∞ we know that (y′TM ′)st ≤ 0, that is, y′

s+y′
t ≤ 0.

So y′
s = −y′

t, and hence either s ∈ U ′, t ∈ W ′, or s ∈ W ′, t ∈ U ′, or s, t ∈ T ′.
Let U := U ′ ∩ V , W := W ′ ∩ V , and T := T ′ ∩ V . Then for any compo-

nent K ′ of G′[T ′] with b′(K ′) = a′(K ′) and (36.10) odd, K := K ′ ∩ V is a
component of G[T ] with b(K) = a(K) and (36.6) odd. Moreover, (36.11) is
equal to (36.7). Hence we have a contradiction with the condition given in
the theorem.

36.2. Convex hull

Also the convex hull of the integer solutions of (36.2) can be characterized
(where we do not assume d < c):20

Theorem 36.3. The convex hull of the integer solutions of (36.2) is deter-
mined by

(36.12) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b,

(iii) 1
2 ((χU − χW )M + χF − χH)x

≤ � 1
2 (b(U) − a(W ) + c(F ) − d(H))�

for U, W ⊆ V with U ∩ W = ∅,
and for partitions F, H of δ(U ∪ W )
with b(U) − a(W ) + c(F ) − d(H) odd.

Proof. Necessity of (36.12) follows from the facts that 1
2 ((χU − χW )M +

χF −χH) is an integer vector and that for each vector x satisfying (36.2) one
has χUMx ≤ χUb = b(U), χW Mx ≥ χW a = a(W ), χF x ≤ χF c = c(F ), and
χHx ≥ χHd = d(H).

Again, to show sufficiency, we can assume that G has no negative edges,
and we apply induction on the number of directed edges. If this number is 0,
the theorem reduces to Theorem 35.3.

So we can assume that there is a directed edge f = su. Again, construct
G′ = (V ′, E′), M ′, a′, b′, d′, c′, as in (36.3). By induction we know that the
theorem holds for the new structure.
20 In order to reduce notation, in this chapter we take incidence vectors χU , χW , χF , and

χH as row vectors.
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Let x ∈ R
E satisfy (36.12) for G, a, b, c, d. Define x′ ∈ R

E′
by x′(e) := x(e)

for each e ∈ E \ {f}, and x′(st) := −x(f) and x′(tu) := x(f). Now it suffices
to show that x′ satisfies the inequalities for G′, a′, b′, c′, d′ (since of x′ is a
convex combination of integer solutions, also x is).

So let U ′ and W ′ be disjoint subsets of V ′ and let F ′ and H ′ partition
δ′(U ′ ∪W ′), with b′(U ′)−a′(W ′)+ c′(F ′)−d′(H ′) odd. Since c′(st) = ∞ and
d′(st) = −∞, we know that st �∈ δ′(U ′ ∪ W ′).

Let U := U ′ ∩ V and W := W ′ ∩ V . Moreover, let F and H arise from F ′

and H ′ by replacing any occurrence of tu by f . Then

(36.13) 1
2 ((χU ′ −χW ′

)M ′ +χF ′ −χH′
)x′ = 1

2 ((χU −χW )M +χF −χH)x

since x′(F ′) = x(F ) and x′(H ′) = x(H), and moreover, χU ′
M ′x′ = χUMx

and χW ′
M ′x′ = χW Mx (as χtM ′x′ = x′(st) + x′(tu) = 0).

Also we have

(36.14) � 1
2 (b′(U ′) − a′(W ′) + c′(F ′) − d′(H ′))�

= � 1
2 (b(U) − a(W ) + c(F ) − d(H))�,

as a′(t) = b′(t) = 0. Hence (36.12) gives the required inequality for U ′, W ′,
F ′, H ′.

The special case a = b, d = 0 was announced by Edmonds and Johnson
[1970] and elaborated by Aráoz, Cunningham, Edmonds, and Green-Krótki
[1983]. It amounts to, for b ∈ Z

V
+ and c ∈ Z

E
+:

(36.15) 0 ≤ x ≤ c, Mx = b.

Then:

Corollary 36.3a. The convex hull of the integer solutions of (36.15) is de-
termined by (36.15) together with the constraints

(36.16) x(δ(U) \ F ) − x(F ) ≥ 1 − c(F )

where U ⊆ V and F ⊆ δ(U) with b(U) + c(F ) odd.

Proof. Directly from Theorem 36.3, by replacing Mx by b in (36.12)(iii).

For undirected graphs we obtain a characterization of the capacitated
perfect b-matching polytope as special case — cf. Corollary 32.2a.

36.3. Total dual integrality

System (36.12) generally is not totally dual integral (cf. the example in Sec-
tion 30.5). However, if we delete the parity condition in (36.12)(iii):
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(36.17) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b,

(iii) 1
2 ((χU − χW )M + χF − χH)x

≤ � 1
2 (b(U) − a(W ) + c(F ) − d(H))�
for U, W ⊆ V with U ∩ W = ∅ and for partition
F, H of δ(U ∪ W ),

we obtain a totally dual integral system:

Theorem 36.4. System (36.17) is totally dual integral.

Proof. Again we can assume that there are no negative edges, and apply
induction on the number of directed edges of G. If there is no directed edge,
the theorem reduces to Theorem 35.4. If there is a directed edge f = su, we
again construct G′ = (V ′, E′), M ′, a′, b′, d′, c′ as in (36.3).

Let Σ and Σ′ be the systems for G, a, b, c, d, and for G′, a′, b′, c′,
d′, respectively. By induction we know that Σ′ is totally dual integral. Now
the constraint x′(st) + x′(tu) = 0 belongs to Σ′. This implies the total dual
integrality of the system Σ′′ obtained from Σ′ by adding an integer multiple
of x′(st)+x′(tu) = 0 to any other constraint of Σ′ so as to make the coefficient
of the variable x′(st) equal to 0.

Now deleting the constraints x′(st) + x′(tu) = 1 and the variable x′(st)
from Σ′′, identifying x′(e) = x(e) for all e ∈ E \{f}, and identifying x′(tu) =
x(f), gives again a totally dual integral system. We show that it is system Σ.

Indeed, a′ ≤ M ′x′ ≤ b′ becomes a ≤ Mx ≤ b. Similarly, for each e ∈
E \ {f}, d′(e) ≤ x′(e) ≤ c′(e) becomes d(e) ≤ xe ≤ c(e), and d′(tu) ≤
x′(tu) ≤ c′(tu) becomes d(f) ≤ x(f) ≤ c(f), while d′(st) ≤ x′(st) ≤ c′(st) is
void (as the bounds are −∞ and +∞).

Consider next the following inequality of Σ′:

(36.18) 1
2 ((χU ′ − χW ′

)M + χF ′ − χH′
)x′

≤ � 1
2 (b′(U ′) − a′(W ′) + c′(F ′) − d′(H ′))�,

where U ′ and W ′ are disjoint subsets of V ′ and where F ′ and H ′ partition
δ′(U ′ ∪ W ′).

Since c′(st) = ∞, d′(s, t) = −∞, we know that st �∈ δ′(U ′ ∪W ′). Consider
the coefficient of x′(st) in (36.18). If this coefficient is 0, (36.18) reduces to
(36.17)(iii). If this coefficient is positive, then s, t ∈ U ′. Set U ′′ := U ′ \ {t}
and W ′′ := W ′ ∪ {t}. Then in Σ′′, (36.18) becomes (by subtracting x′(st) +
x′(tu) = 0):

(36.19) 1
2 ((χU ′′ − χW ′′

)M + χF ′ − χH′
)x′

≤ � 1
2 (b′(U ′′) − a′(W ′′) + c′(F ′) − d′(H ′))�

(since b′(t) = a′(t) = 0). In (36.19), the coefficient of x′(st) is 0, and hence
(36.19) reduces to (36.17)(iii).

We proceed similarly if the coefficient of x′(st) in (36.18) is negative.
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A consequence is the total dual half-integrality of the original system:

Corollary 36.4a. System (36.12) is totally dual half-integral.

Proof. This follows from the fact that each inequality in (36.17) is a half-
integer nonnegative combination of inequalities in (36.12).

A special case is the total dual half-integrality of

(36.20) (i) x ≥ 0,
(ii) Mx = b,
(iii) x(δ(U)) ≥ 1 for each U ⊆ V with b(U) odd

(Edmonds and Johnson [1970]):

Corollary 36.4b. System (36.20) is totally dual half-integral.

Proof. This is a special case of Corollary 36.4a.

From this one can derive (Barahona and Cunningham [1989]):

Corollary 36.4c. Let w ∈ Z
E with w(C) even for each circuit C. Then the

problem of minimizing wTx subject to (36.20) has an integer optimum dual
solution.

Proof. If w(C) is even for each circuit, there is a subset U of V with {e ∈
E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U MT

v , where Mv

denotes row v of M . Then w′(e) is an even integer for each edge e. Hence
by Corollary 36.4b there is an integer optimum dual solution y′

v (v ∈ V ), zU

(U ⊆ V , b(U) odd) for the problem of minimizing w′Tx subject to (36.20).
Now setting yv := y′

v − 1 if v ∈ U and yv := y′
v if v �∈ U gives an integer

optimum dual solution for w.

36.4. Including parity conditions

We are not yet at the end of our self-refining trip. As was observed by Ed-
monds and Johnson [1973], the results can be generalized even further by
including parity constraints. This can be reduced to the previous case by
adding loops at the vertices at which there is a parity constraint.

Let G = (V, E, σ) be a bidirected graph and let M be the V ×E incidence
matrix of G. (For definitions and terminology, see Section 36.1.) Let a, b ∈ Z

V

and d, c ∈ Z
E and let Sodd and Seven be two disjoint subsets of V . We consider

integer solutions x of:
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(36.21) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b,
(iii) (Mx)v is odd if v ∈ Sodd,
(iv) (Mx)v is even if v ∈ Seven.

The problem of finding a maximum-weight integer vector x satisfying
(36.21) can be easily reduced to the special case without parity constraints,
discussed in the previous chapter:

Theorem 36.5. For any w ∈ Q
E, an integer vector x maximizing wTx over

(36.21) can be found in strongly polynomial time.

Proof. The condition (Mx)v is odd, can be replaced by 1 ≤ (Mx)v+2zv ≤ 1,
where zv is a new integer variable (bounded by −∞ and ∞). Similarly, for
the even case. This gives a reduction to the problem of Theorem 36.1, which
implies the present theorem.

We next characterize the existence of an integer vector x satisfying
(36.21). To this end we make the following assumptions, which can easily
be satisfied:

(36.22) (i) a(v) and b(v) are odd (if finite) for each v ∈ Sodd,
(ii) a(v) and b(v) are even (if finite) for each v ∈ Seven,
(iii) if a(v) = b(v), then v ∈ Sodd ∪ Seven.

Define S := Sodd ∪ Seven. Moreover, for any vector z, again let z+ arise from
z by replacing any negative component by 0, and let z− arise from z by
replacing any positive component by 0. So z = z+ + z−.

Theorem 36.6. Assume (36.22) and that d < c. Then there exists an integer
vector x ∈ Z

E satisfying (36.21) if and only if for each partition T , U , W of
V , the number of components K of G[T ] contained in Sodd ∪ Seven and with

(36.23) |K ∩ Sodd| + c(E[K, W+]) + c(E[K, U−]) + d(E[K, U+])
+ d(E[K, W−])

odd is at most

(36.24) yT
+b + yT

−a − (yTM)−c − (yTM)+d,

where y := χU − χW .

Proof. Define L := {v ∈ S | a(v) < b(v)}, Lodd := L ∩ Sodd, and Leven :=
L ∩ Seven.

Extend the bidirected graph G by a loop l at any vertex v ∈ L, where l has
two positive ends at v. This makes the bidirected graph G′ = (V, E′, σ′), with
V × E′ incidence matrix M ′. Define a′(v) := a(v) and b′(v) := b(v) for each
v ∈ V \ L. Moreover, a′(v) := b′(v) := 1 for v ∈ Lodd and a′(v) := b′(v) := 0
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for v ∈ Leven. Define d′(e) := d(e) and c′(e) := c(e) for each e ∈ E. For each
loop l at v ∈ L, define d′(l) := 1

2 (b′(v) − b(v)) and c′(l) := 1
2 (a′(v) − a(v)).

Now there exist an integer vector x satisfying (36.21) if and only if there
exists an integer vector x′ ∈ Z

E′
satisfying d′ ≤ x′ ≤ c′ and a′ ≤ M ′x′ ≤ b′.

So we should show that the conditions given in the present theorem imply
those given in Theorem 36.2 (for the modified structure). (Since in Theorem
36.2 the condition d < c is required, we had to exclude loops at vertices in
S \ L.)

To this end, let T , U , W partition V . Then any component K of G′[T ]
with b′(K) = a′(K) and

(36.25) b′(K) + c′(E′[K, W+]) + c′(E′[K, U−]) + d′(E′[K, U+])
+ d′(E[K, W−])

odd, is a component of G[T ] contained in S, with |K ∩Sodd|+c(E[K, W+])+
c(E[K, U−])+d(E[K, U+])+d(E[K, W−]) odd (note that a′(v) = b′(v) ⇐⇒
v ∈ S, and that b′(K) ≡ |K ∩Sodd| mod 2). Moreover, for y := χU −χW one
has

(36.26) yT
+b′ + yT

−a′ − (yTM ′)−c′ − (yTM ′)+d′

= yT
+b + yT

−a − (yTM)−c − (yTM)+d,

since

(36.27) yT
+b′ = b′(U) = b(U \ L) + |U ∩ Lodd|,

yT
−a′ = −a′(W ) = −a(W \ L) − |W ∩ Lodd|,

(yTM ′)−c′ = (yTM)−c − 2( 1
2 (a′(W ∩ L) − a(W ∩ L)))

= (yTM)−c − |W ∩ Lodd| + a(W ∩ L),
(yTM ′)+d′ = (yTM)+d + 2( 1

2 (b′(U ∩ L) − b(U ∩ L)))
= (yTM)+d + |U ∩ Lodd| − b(U ∩ L).

A special case is the following result on orientations by Frank, Tardos,
and Sebő [1984].

Corollary 36.6a. Let G = (V, E) be an undirected graph and let l, u ∈ Z
V
+

be such that l(v) ≡ u(v) (mod 2) for each v ∈ V . Then G has an orientation
D = (V, A) such that

(36.28) l(v) ≤ degout
D (v) ≤ u(v) and degout

D (v) ≡ u(v) (mod 2)

for each v ∈ V if and only if for each partition T, U, W of V , the number of
components K of G[T ] with u(K) + |E[K]| + |E[K, U ]| odd is at most

(36.29) u(U) − l(W ) − |E[U ]| + |E[W ]| + |δ(W )|.

Proof. Let D′ = (V, A′) be an arbitrary orientation of G. Let δout(U) :=
δout
D′ (U) and δin(U) := δin

D′(U) for any U ⊆ V .
Then G has an orientation as required in the theorem if and only if there

exists a vector x ∈ Z
A′

with 0 ≤ x ≤ 1 and
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(36.30) l(v) ≤ x(δin(v)) + |δout(v)| − x(δout(v)) ≤ u(v)

and

(36.31) x(δin(v)) + |δout(v)| − x(δout(v)) ≡ u(v) (mod 2)

for each v ∈ V . (This can be seen by reversing the orientation if and only if
xa = 1.)

Define for each v ∈ V ,

(36.32) a(v) := l(v) − |δout(v)| and b(v) := u(v) − |δout(v)|.

Moreover, let d, c ∈ Z
A′

with d = 0 and c = 1. Let M be the V ×A′ incidence
matrix of D′ (such that Mv,a = −1 if a leaves v and Mv,a = +1 if a enters
v). Let Sodd and Seven be the sets of vertices v with b(v) odd and even,
respectively.

Then the existence of an orientation as required is equivalent the exis-
tence of an integer vector x satisfying (36.21). Hence, by Theorem 36.6, it is
equivalent to the condition that for each partition T, U, W of V the number of
components K of G[T ] with (for the bidirected graph G = (V, E, σ) obtained
from M):

(36.33) b(K) + |E[K, W+]| + |E[K, U−]|

odd is at most

(36.34) u(U)−
∑

v∈U

|δout(v)|− l(W )+
∑

v∈W

|δout(v)|+ |δout(U)|+ |δin(W )|.

Now (36.33) is equal to

(36.35) u(K) −
∑

v∈K

|δout(v)| + |E[K, W+]| + |E[K, U−]|

= u(K) − |E[K]| + |δout(K)| + |E[K, W+]| + |E[K, U−]|
≡ u(K) − |E[K]| + |δout(K)| + |E[K, W+]| + 2|E[K, U+]|
+ |E[K, U−]| ≡ u(K) + |E[K]| + |E[K, U ]| (mod 2),

since |δout(K)| = |E[K, U+]| + |E[K, W+]| and |E[K, U ]| = |E[K, U+]| +
|E[K, U−]|. Moreover, (36.34) is equal to (36.29), proving the corollary.

One can similarly derive the following two further orientation results of
Frank, Tardos, and Sebő [1984].

Corollary 36.6b. Let G = (V, E) be an undirected graph and let u ∈ Z
V
+.

Then G has an orientation D = (V, A) such that

(36.36) degout
D (v) ≤ u(v) and degout

D (v) ≡ u(v) (mod 2)

for each v ∈ V if and only if for each U ⊆ V the number of components K
of G − U with u(K) + |E[K]| + |δ(K)| odd is at most u(U) − |E[U ]|.

Proof. Similar to the proof of Corollary 36.6a.
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Corollary 36.6c. Let G = (V, E) be an undirected graph and let l ∈ Z
V
+.

Then G has an orientation D = (V, A) such that

(36.37) degout
D (v) ≥ l(v) and degout

D (v) ≡ l(v) (mod 2)

for each v ∈ V if and only if for each U ⊆ V the number of components K
of G − U with l(K) + |E[K]| + |δ(K)| odd is at most |E[U ]| + |δ(U)| − l(U).

Proof. Similar to the proof of Corollary 36.6a.

36.5. Convex hull

The convex hull of the integer solutions of (36.21) is characterized by:

Theorem 36.7. Assuming (36.22), the convex hull of the integer solutions
of (36.21) is determined by (36.21)(i) and (ii), together with the constraints

(36.38) 1
2 ((χU −χW )M +χF −χH)x ≤ � 1

2 (b(U)−a(W )+ c(F )−d(H))�,

where U and W are disjoint subsets of V \ S and where F and H partition
δ(U ∪ W ∪ R) for some R ⊆ S with |R ∩ Sodd| + b(U) − a(W ) + c(F ) − d(H)
odd.

Proof. To see necessity of (36.38), let x be an integer vector satisfying (36.21),
and choose U , W , R, F and H as described in the theorem. As x satisfies
d ≤ x ≤ c and a ≤ Mx ≤ b one directly has ((χU − χW )M + χF − χH)x ≤
b(U)−a(W )+c(F )−d(H). So it suffices to show that strict inequality holds.
Now (χU + χW + χR)M + χF + χH is an even vector. So (using (36.21)(iii)
and (iv))

(36.39) ((χU − χW )M + χF − χH)x ≡ χRMx ≡ |R ∩ Sodd|
�≡ b(U) − a(W ) + c(F ) − d(H) (mod 2)

This shows strict inequality.
We next show that (36.38) determines the convex hull, by reduction to

Theorem 36.3. Let L, Lodd, Leven, G′ = (V, E′), M ′, a′, b′, d′, c′ be as in
the proof of Theorem 36.6. Let x ∈ R

E satisfy (36.21)(i) and (ii) and all
constraints (36.38). Define x ∈ R

E′
by x′(e) := x(e) for each e ∈ E, and

x′(l) := a′(v) − x(δ(v)) for the loop l at any v ∈ L. Then d′ ≤ x′ ≤ c′

and a′ ≤ M ′x′ ≤ b′. It suffices to show that x′ is a convex combination
of integer solutions of this system. By Theorem 36.3, it suffices to check
condition (36.12)(iii) for G′, x′.

Let U ′ and W ′ be disjoint subsets of V and let F and H partition δ′(U ′ ∪
W ′), with b′(U ′)−a′(W ′)+c′(F )−d′(H) odd. Define U := U ′\S, W := W ′\S,
and R := (U ′ ∪ W ′) ∩ S. Then |R ∩ Sodd| + b(U) − a(W ) + c(F ) − d(H) is
odd, since |R ∩ Sodd| ≡ b′(U ′ ∩ S) − a′(W ′ ∩ S) (mod 2). Moreover,
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(36.40) χU ′
M ′x′ = χUMx + b(U ′ ∩ (S \ L)) + |U ′ ∩ Lodd|,

χW ′
M ′x′ = χW Mx + a(W ′ ∩ (S \ L)) + |W ′ ∩ Lodd|,

b′(U ′) = b(U) + b(U ′ ∩ (S \ L)) + |U ′ ∩ Lodd|, and
a′(W ′) = a(W ) + a(W ′ ∩ (S \ L)) + |W ′ ∩ Lodd|.

Hence (36.38) for x implies (36.12)(iii) for x′.

36.5a. Convex hull of vertex-disjoint circuits

Green-Krótki [1980] and Aráoz, Cunningham, Edmonds, and Green-Krótki [1983]
showed that the previous theorem implies a characterization of the convex hull of
disjoint sets of circuits:

Corollary 36.7a. Let G = (V, E) be a graph. Then the convex hull of the vectors
χF where F is the edge set of the union of a number of vertex-disjoint circuits is
given by:

(36.41) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ 2 (v ∈ V ),

(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V , F ⊆ δ(U),|F | odd).

Proof. This follows directly from Theorem 36.7, since x is an incidence vector χF

of the edge set of a vertex-disjoint union of disjoint circuits if and only if (36.41)(i)
and (ii) are satisfied, together with: x(δ(v)) even for each v ∈ V . So we can take
a = 0, b = 2, d = 0, c = 1, Seven = V , and Sodd = ∅. In particular, U and W are
empty in (36.38).

Note that Corollaries 29.2e and 36.7a imply that the polytope described in
Corollary 36.7a is obtained from the ∅-join polytope by adding the constraint
(36.41)(ii).

This has as consequence Corollary 29.2f (due to Seymour [1979b]) characterizing
the circuit cone. Given a graph G = (V, E), the circuit cone is the cone in R

E

generated by the incidence vectors of circuits. This cone is determined by:

(36.42) (i) xe ≥ 0 for each e ∈ E,
(ii) x(D) ≥ 2xe for each cut D and e ∈ D.

To prove this, we may assume (by scaling) that x(E) ≤ 1. Then (36.42)(ii) implies
(36.41)(iii), and hence the characterization follows from Corollary 36.7a.

36.6. Total dual integrality

We finally show that the system given by (36.21)(i) and (ii) and (36.38) after
deleting the parity constraint on R, is TDI:

Theorem 36.8. Assuming (36.22), the following system is TDI (setting T :=
V \ S):
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(36.43) (i) d ≤ x ≤ c,
(ii) 1

2av ≤ 1
2 (Mx)v ≤ 1

2bv, for v ∈ S,
(iii) av ≤ (Mx)v ≤ bv, for v ∈ T ,
(iv) 1

2 ((χU − χW )M + χF − χH)x
≤ 1

2 (b(U) − a(W ) + c(F ) − d(H) − ε),

where U and W are disjoint subsets of T , where F and H partition δ(U ∪
W ∪ R) for some R ⊆ S, and where ε ∈ {0, 1} such that ε ≡ |R ∩ Sodd| +
b(U) − a(W ) + c(F ) − d(H) (mod 2).

Proof. The partition of V into S and T induces a partition of M, a, b into
MS , aS , bS and MT , aT , bT . By Theorem 36.4, the system

(36.44) (i) d ≤ x ≤ c,
(ii) 0 ≤ z ≤ 1

2 (bS − aS),
(iii) MSx + 2z = bS ,
(iv) aT ≤ MT x ≤ bT

becomes TDI by adding the inequalities

(36.45) 1
2 ((χU − χW )M + χF − χH)x + z(U ∩ S) − z(W ∩ S)
≤ � 1

2 (b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H))�,

for disjoint subsets U, W of V and partitions F, H of δ(U ∪ W ). (36.44) is
equivalent to:

(36.46) 1
2 ((χU − χW )M + χF − χH)x + z(U ∩ S) − z(W ∩ S)
≤ 1

2 (b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H) − ε),

where ε ∈ {0, 1} and

(36.47) ε ≡ b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H) (mod 2).

Substituting z := 1
2 (bS − MSx) in (36.44)(ii) gives (36.43)(ii), and in (36.46)

gives

(36.48) 1
2 ((χU − χW )M + χF − χH)x + 1

2b(U ∩ S) − 1
2χU∩SMSx

− 1
2b(W ∩ S) + 1

2χW∩SMSx
≤ 1

2 (b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − c(H) − ε).

Equivalently:

(36.49) 1
2 ((χU∩T − χW∩T )M + χF − χH)x
≤ 1

2 (b(U ∩ T ) − a(W ∩ T ) + c(F ) − d(H) − ε).

This is equivalent to (36.43)(iv), and total dual integrality is maintained by
Theorem 5.27. Note that

(36.50) ε ≡ b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H)
≡ b(U ∩ T ) − a(W ∩ T ) + c(F ) − d(H) + b(U ∩ S) + b(W ∩ S)
≡ b(U ∩ T ) − a(W ∩ T ) + c(F ) − d(H) + |R ∩ Sodd| (mod 2),
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where R := (U ∪ W ) ∩ S.

We remark that the coefficients of the inequalities in (36.43) generally are
not all integer.

36.7. Further results and notes

36.7a. The Chvátal rank

The results on the convex hull in this chapter (and in previous chapters) can be
interpreted in terms of the so-called ‘Chvátal rank’ of a system of inequalities or of
a matrix. (This relates to the cutting planes reviewed in Section 5.21.)

For any polyhedron P , let PI denote the integer hull of P , that is, the convex
hull of the integer vectors in P . If P is a rational polyhedron, then PI is again a
rational polyhedron. This polyhedron can be approached as follows.

Define for any polyhedron P , the set P ′ by:

(36.51) P ′ :=
⋂

H⊇P

HI,

where H ranges over all rational affine halfspaces containing P as a subset. Here
an affine halfspace is a set of the form

(36.52) H = {x ∈ R
n | wTx ≤ α}

for some nonzero w ∈ R
n and some α ∈ R. It is rational if w and α are rational. So

trivially (since P ⊆ H ⇒ PI ⊆ HI):

(36.53) P ⊇ P ′ ⊇ PI.

Note that if H is as in (36.52) and w is integer, with relatively prime components,
then

(36.54) HI = {x ∈ R
n | wTx ≤ α�}.

So P ′ arises from P by adding a ‘first round of cuts’. Observe that if P = {x |
Mx ≤ b} for some rational m × n matrix M and some vector b ∈ Q

m, then in
(36.51) we can restrict the affine hyperplanes H to those for which there exists a
vector y ∈ Q

m
+ with yTM integer and nonzero and

(36.55) H = {x | (yTM)x ≤ yTb}

(by Farkas’ lemma).
It can be shown that P ′ is a rational polyhedron again. To P ′ we can apply

this operation again, and obtain P ′′ = (P ′)′. We thus obtain a series of polyhedra
P , P ′, P ′′,. . . , P (t), . . ., satisfying

(36.56) P ⊇ P ′ ⊇ P ′′ ⊇ · · · ⊇ P (t) ⊇ · · · PI .

Now Chvátal [1973a] (cf. Schrijver [1980b]) showed that for each polyhedron P
there is a finite t with P (t) = PI. The smallest such t is called the Chvátal rank of
P .
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It can be proved more strongly (Cook, Gerards, Schrijver, and Tardos [1986])
that for each rational matrix M there is a finite value t such that the polyhedron
P := {x | Mx ≤ b} has Chvátal rank at most t, for each integer vector b (of
appropriate dimension). The smallest such t is called the Chvátal rank of M . So
each totally unimodular matrix has Chvátal rank 0.

The strong Chvátal rank of M is, by definition, the Chvátal rank of the matrix

(36.57)





I
−I
M

−M



 .

So the strong Chvátal rank of M is the smallest t such that for all integer vectors
d, c, a, b the polyhedron {x | d ≤ x ≤ c, a ≤ Mx ≤ b} has Chvátal rank at most
t. So M is totally unimodular if and only if M is integer and has strong Chvátal
rank 0 (this is the Hoffman-Kruskal theorem).

Theorem 36.3 implies that the V × E incidence matrix of a bidirected graph
has strong Chvátal rank at most 1. (Matrices of strong Chvátal rank at most 1 are
said in Gerards and Schrijver [1986] to have the Edmonds-Johnson property.)

Theorem 36.9. The V × E incidence matrix of a bidirected graph has strong
Chvátal rank at most 1.

Proof. We must show that for each integer d, c, a, b, one has P ′ = PI for P := {x |
d ≤ x ≤ c, a ≤ Mx ≤ b}. This follows from

(36.58) P ′ ⊆ {x ∈ P | ∀y ∈ {0, 1
2}n : yTM ∈ Z

n ⇒ yTMx ≤ yTb�}
= PI ⊆ P ′,

where the equality follows from Theorem 36.3.

It is generally not true that also the transpose MT of these matrices have Chvátal
rank at most 1, as is shown by the incidence matrix M of the complete graph K4.
In Section 68.6c we shall study the Chvátal rank of such matrices MT.

36.7b. Further notes

Gabow [1983a] gave an O(m
3
2 )-time algorithm for finding a maximum s−t flow in a

bidirected graph with unit capacities. Moreover, he gave O(m2 log n)- and O(n2m)-
time algorithms for finding a minimum-cost bidirected s−t flow of given value, with
unit capacities.
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The dimension of the perfect
matching polytope

In this chapter the dimension of the perfect matching polytope is charac-
terized. It implies a characterization of the dimension of the perfect match-
ing space — the linear space spanned by the incidence vectors of perfect
matchings.
The basis of determining the dimension is formed by the matching-covered
graphs without nontrivial tight cuts. For such graphs, there is an easy
formula for the dimension.
Key result (needed in characterizing the perfect matching lattice in the next
chapter) is a characterization of Lovász of the matching-covered graphs
without nontrivial tight cuts: the ‘braces’ and the ‘bricks’.

37.1. The dimension of the perfect matching polytope

Naddef [1982] gave a min-max formula for the dimension of the perfect match-
ing polytope. By the work of Edmonds, Lovász, and Pulleyblank [1982], it is
equivalent to the following.

Let G = (V, E) be a graph and let E0 be the set of edges covered by at
least one perfect matching. Defining G0 := (V, E0), one trivially has:

(37.1) dim(Pperfect matching(G)) = dim(Pperfect matching(G0)).

So when investigating the dimension of the perfect matching polytope, we
can confine ourselves to matching-covered graphs, that is, to graphs in which
each edge is contained in at least one perfect matching.

A further reduction can be obtained by considering tight cuts. A cut C is
called odd if C = δ(U) for some U ⊆ V with |U | odd. A cut C is called tight
if it is odd and each perfect matching intersects C in exactly one edge.

Let G = (V, E) be a graph and let U ⊆ V . Recall that G/U denotes the
graph obtained from G by contracting U to one vertex, which vertex we will
call U . In the obvious way, we will consider the edge set of G/U as a subset
of the edge set of G. Hence, for any x ∈ R

E , we can speak of the projection
of x to the edges of G/U .
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Theorem 37.1. Let G = (V, E) be a matching-covered graph and let δ(U) be
a tight cut. Define G1 := G/U and G2 := G/U (where U := V \ U). Then

(37.2) dim(Pperfect matching(G)) =
dim(Pperfect matching(G1))+dim(Pperfect matching(G2))−|δ(U)|+1.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2). Then a vector x ∈ R
E belongs

to the perfect matching polytope of G if and only if its projections to E1
and E2 belong to the perfect matching polytopes of G1 and G2 respectively.
Moreover, since G is matching-covered and since δ(U) is tight, the projection
of Pperfect matching(G) on δ(U) has dimension equal to |δ(U)| − 1.

This theorem gives a reduction if there exists a nontrivial tight cut. (A
cut C is called nontrivial if C = δ(U) for some U with 1 < |U | < |U | − 1.)
Then:

Theorem 37.2. Let G = (V, E) be a matching-covered graph without any
nontrivial tight cut and with at least one perfect matching. Then

(37.3) dim(Pperfect matching(G)) = |E| − |V | + k,

where k is the number of bipartite components of G.

Proof. We may assume that G is connected. If G is bipartite, the result
follows from Theorem 18.6. If G is nonbipartite, consider a vector x in the
relative interior of the perfect matching polytope of G. Since G is matching-
covered, we know that xe > 0 for each edge e, and since G has no nontrivial
tight cut, we know that x(C) > 1 for each nontrivial odd cut C. Hence the
only constraints in (25.2) satisfied by x with equality are the constraints
x(δ(v)) = 1 for v ∈ V . So dim(Pperfect matching(G)) ≥ |E| − |V |.

To see equality, we show that the constraints x(δ(v)) = 1 are independent.
For let u ∈ V , and choose an odd-length u−u walk (u, e1, . . . , et, u). For each
e ∈ E, let xe be the number of odd i with e = ei, minus the number of even
i with e = ei. Then x(δ(u)) = 2 and x(δ(v)) = 0 for all v �= u.

Theorems 37.1 and 37.2 describe the decomposition of the dimension prob-
lem. We now aggregate these results.

For any cut C, any set U with C = δ(U) is called a shore of C. Two cuts
C and C ′ are called cross-free if they have shores U and U ′ that are disjoint.
A collection F of cuts is cross-free if each two cuts in F are cross-free.

Let F be a cross-free collection of nontrivial cuts. An F-contraction of G
is a graph obtained from G by choosing a U0 ⊆ V with δ(U0) ∈ F , contracting
U0, and contracting each maximal proper subset U of V \ U0 with δ(U) ∈ F .

One easily checks that, if G is connected, there exist precisely |F| + 1
F-contractions. Let nonbipG(F) denote the number of F-contractions that
are nonbipartite.
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Corollary 37.2a. Let G = (V, E) be a connected matching-covered graph
with |V | ≥ 2. Let F be any inclusionwise maximal cross-free collection of
nontrivial tight cuts. Then

(37.4) dim(Pperfect matching(G)) = |E| − |V | − nonbipG(F) + 1.

Proof. The corollary follows directly by induction from Theorems 37.1 and
37.2, as follows.

If F = ∅, then (37.4) follows from Theorem 37.2. If F �= ∅, choose a cut
δ(U) ∈ F . Let G1 := G/U and G2 := G/U (where U := V \ U). Then G1
and G2 are connected and matching-covered again.

Let F1 be the set of cuts in F that have a shore properly contained in
V \U and let F2 be the set of cuts in F that have a shore properly contained
in U .

Then F1 forms an inclusionwise maximal cross-free collection of nontrivial
tight cuts in G1. So inductively

(37.5) dim(Pperfect matching(G1)) = |EG1| − |V G1| − nonbipG1
(F1) + 1.

Similarly,

(37.6) dim(Pperfect matching(G2)) = |EG2| − |V G2| − nonbipG2
(F2) + 1.

Now each F-contraction of G is an Fi contraction of Gi for exactly one
i ∈ {1, 2}. Hence

(37.7) nonbipG(F) = nonbipG1
(F1) + nonbipG2

(F2).

Since moreover |EG| = |EG1|+|EG2|−|δ(U)| and |V G1|+|V G2| = |V G|+2,
we obtain (37.4) with Theorem 37.1.

37.2. The perfect matching space

We derive from Corollary 37.2a a characterization of the perfect matching
space and its dimension. The perfect matching space of a graph G = (V, E)
is the linear hull of the incidence vectors of perfect matchings; that is,

(37.8) Sperfect matching(G) := lin.hull{χM | M perfect matching in G}.

(Here lin.hull denotes linear hull.)
Corollary 37.2a directly gives for the dimension of the perfect matching

space:

Corollary 37.2b. Let G = (V, E) be a connected matching-covered graph
with |V | ≥ 2. Let F be any inclusionwise maximal cross-free collection of
nontrivial tight cuts. Then

(37.9) dim(Sperfect matching(G)) = |E| − |V | − nonbipG(F) + 2.
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Proof. The dimension of the perfect matching space is 1 more than the
dimension of the perfect matching polytope. So the corollary follows from
Corollary 37.2a.

With the help of the description of the perfect matching polytope we can
similarly describe the perfect matching space in terms of equations:

Theorem 37.3. The perfect matching space of a graph G = (V, E) is equal
to the set of vectors x ∈ R

E satisfying

(37.10) (i) xe = 0 if e is contained in no perfect matching,
(ii) x(C) = x(δ(v)) for each tight cut C and each vertex v.

Proof. Condition (37.10) clearly is necessary for each vector x in the perfect
matching space. To see sufficiency, let x ∈ R

E satisfy (37.10). We can assume
that G has at least one perfect matching.

By adding sufficiently many incidence vectors of perfect matchings to x,
we can achieve that xe ≥ 0 for each edge e, and xe > 0 for at least one edge
e, and x(C) ≥ x(δ(v)) for each odd cut C and each vertex v. By scaling we
can achieve that x(δ(v)) = 1 for each v ∈ V . Then x belongs to the perfect
matching polytope of G, and hence to the perfect matching space.

37.3. The brick decomposition

For any inclusionwise maximal cross-free collection F of nontrivial tight cuts,
the family of F-contractions is called a brick decomposition. (We note here
that it does not mean that each F-contraction is a brick as defined in Section
37.6.)

Lovász [1987] showed that a brick decomposition is a unique family of
graphs (up to isomorphism), independently of the maximal cross-free collec-
tion of tight cuts chosen:

Theorem 37.4. All brick decompositions of a matching-covered graph G =
(V, E) are the same (up to isomorphism).

Proof. By induction on |V |. Consider two maximal cross-free collection F
and F ′ of nontrivial tight cuts.

Case 1: F and F ′ have a common member δ(U). By induction, the result of
two decompositions of G/U is the same (where U := V \ U). Similarly, the
result of two decompositions of G/U is the same. The theorem follows.

Case 2: There exist C ∈ F and C ′ ∈ F ′ with C and C ′ cross-free. Let F ′′ be
a maximal cross-free collection of nontrivial tight cuts containing C and C ′.
By Case 1, the decompositions of G by F and F ′′ result in the same family of
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graphs. Similarly, the decompositions of G by F ′ and F ′′ result in the same
family of graphs. The theorem follows.

Case 3: There exist C = δ(U) ∈ F and C ′ = δ(U ′) ∈ F ′ with |U ∩ U ′| odd
and at least 3. Then trivially C ′′ := δ(U ∩ U ′) is tight again. Let F ′′ be a
maximal cross-free collection of nontrivial tight cuts containing C ′′. By Case
2, the decompositions of G by F and F ′′ result in the same family of graphs.
Similarly, the decompositions of G by F ′ and F ′′ result in the same family
of graphs. Again, the theorem follows.

Case 4: None of the previous cases applies. Let C = δ(U) ∈ F and C ′ =
δ(U ′) ∈ F ′. Then F = {C} and F ′ = {C ′}. For suppose that say F contains
another cut C ′′ = δ(U ′′). We can assume that U ⊆ U ′′ and that U ′′ ∩ U ′ is
odd. So |U ′′ ∩ U ′| = 1 (as Case 3 does not apply), and therefore |U ∩ U ′| = 1
(as Case 2 does not apply). However, U ∪U ′ is odd and disjoint from U ′′ \U ,
implying that U ∪U ′ is at most |V |−2, and so Case 3 applies, a contradiction.

So F = {C} and F ′ = {C ′}. We can now assume that U ∩U ′ is odd. Since
Case 3 does not apply, |U ∩U ′| = 1 and |U ∪U ′| = |V | − 1. Let U ∩U ′ = {u}
and U ′ ∪ U = V \ {v}.

Now {u, v} is a 2-vertex-cut in G, separating U \ {u} and U ′ \ {u}. For
suppose that there is an edge e connecting U \ {u} and U ′ \ {u}. Let M be
a perfect matching containing e. Let f be the edge in M covering u. Then f
leaves at least one of U and U ′. Since e leaves both U and U ′, this contradicts
the fact that U and U ′ give tight cuts.

As G has no cut vertices (as G is matching-covered), this implies that
G/U and G/U ′ are isomorphic graphs, and similarly that G/U and G/U are
isomorphic. The theorem follows.

37.4. The brick decomposition of a bipartite graph

All graphs in the brick decomposition of a bipartite graph are bipartite:

Theorem 37.5. Let G be a matching-covered graph and let F be an in-
clusionwise maximal cross-free collection of nontrivial tight cuts. Then G is
bipartite if and only if each F-contraction is bipartite.

Proof. It suffices to prove that for any nontrivial tight cut δ(U):

(37.11) G is bipartite if and only if G/U and G/U are bipartite

(where U := V G \ U). Sufficiency in (37.11) is direct (actually, it holds for
any cut). To see necessity in (37.11), note that, since G is matching-covered,
U has neighbours only in the largest colour class of the bipartite graph G−U .
So G/U is bipartite, and similarly, G/U is bipartite.
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37.5. Braces

A bipartite graph G = (V, E), with colour classes U and W , is called a brace
if G is matching-covered with |V | ≥ 4 and for all distinct u, u′ ∈ U and
w, w′ ∈ W , the graph G − u − u′ − w − w′ has a perfect matching.

By Hall’s marriage theorem (Theorem 22.1), a connected bipartite graph
G = (V, E) with equal-sized colour classes U and W is a brace if and only if
for each subset X of U with 1 ≤ |X| ≤ |U | − 2 one has

(37.12) |N(X)| ≥ |X| + 2.

Theorem 37.6. Each tight cut in a brace is trivial.

Proof. Let G = (V, E) be a brace with colour classes U and W , and suppose
that δ(T ) is a nontrivial tight cut. As |T | is odd, by symmetry we can assume
that |U ∩ T | < |W ∩ T |.

Then |U ∩T | = |W ∩T |−1, since there exists a perfect matching intersect-
ing δ(T ) in exactly one edge. Since δ(T ) is nontrivial, 1 ≤ |U ∩ T | ≤ |U | − 2.

Moreover, there is no edge e connecting U ∩ T and W \ T . Otherwise this
e would be contained in a perfect matching M . This perfect matching also
contains an edge connecting U \ T and W ∩ T , contradicting the tightness of
δ(T ).

So N(U ∩T ) ⊆ W ∩T , and hence |N(U ∩T )| ≤ |U ∩T |+1, contradicting
(37.12).

37.6. Bricks

A graph G is called a brick if G is 3-connected and bicritical, and has at
least four vertices. (A graph G is called bicritical if G − u − v has a perfect
matching for any two distinct vertices u, v.)

The following key result was shown by Edmonds, Lovász, and Pulleyblank
[1982]:

Theorem 37.7. Each tight cut in a brick is trivial.

Proof. Let G = (V, E) be a brick, and suppose that it has a nontrivial tight
cut C0. Let C be the collection of odd cuts in G.

For any b ∈ Q
V , consider the linear program

(37.13) minimize
∑

e=uv∈E

(b(u) + b(v))xe

subject to x(C) ≥ 1 (C ∈ C),
xe ≥ 0 (e ∈ E).

and its dual
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(37.14) maximize
∑

C∈C
y(C)

subject to
∑

C�e

y(C) ≤ b(u) + b(v) (e = uv ∈ E),

y(C) ≥ 0 (C ∈ C).

We first show:

(37.15) there exist y ∈ Q
C
+ and b ∈ Q

V
+ such that

∑

C�e

y(C) ≤ b(u) + b(v)

for each edge e = uv, and such that y(C) = b(V ) and y(C0) > 0.

To prove this, define w = χC0 (the incidence vector of C0 in R
E). As C0

is tight, the maximum of w(M) over perfect matchings M is equal to 1.
Hence, by Edmonds’ perfect matching polytope theorem (Theorem 25.1) and
by linear programming duality, there exists a vector z ∈ Q

C such that

(37.16) (i)
∑

C�e

z(C) ≤ −w(e) for each edge e,

(ii) z(C) ≥ 0 if C is nontrivial,
(iii) z(C) = −1.

For v ∈ V , define b(v) := −z(δ(v)) if z(δ(v)) < 0, and b(v) := 0 otherwise.
For C ∈ C, define y(C) := z(C) if z(C) > 0, and y(C) := 0 otherwise. Then
(37.16) implies:

(37.17) (i) b(u) + b(v) ≥
∑

C�e

y(C) + w(e) for each edge e = uv,

(ii) b ≥ 0, y ≥ 0,
(iii) b(V ) = y(C) + 1.

So resetting y(C0) := y(C0) + 1 gives b and y as required in (37.15), proving
(37.15).

This implies:

(37.18) for some vector b ∈ Z
V
+ there exists an integer optimum solution

y ∈ Z
C
+ of (37.14) such that y(C0) ≥ 1.

Indeed, in (37.15) we can assume (by scaling) that b and y are integer. Then
by the properties described in (37.15), y is a feasible solution of (37.14). Since
the maximum in (37.13) is at least b(V ) (as any perfect matching M satisfies
w(M) = b(V )), and since y(C) = b(V ), we know that y is an optimum solution
of (37.14). This proves (37.18).

Now fix a b as in (37.18), with b(v) minimal. Then

(37.19) for any optimum solution y of (37.14) and any C ∈ C one has
that if y(C) > 0, then C is tight.

Indeed, any perfect matching M attains the maximum (37.13) (as the max-
imum value equals b(V )). So if y(C) > 0, by complementary slackness,
|M ∩ C| = 1. This shows (37.19).
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Call a vector y ∈ R
C
+ laminar if the collection {C ∈ C | y(C) > 0} is

laminar. Then:

(37.20) there exists a laminar integer optimum solution of (37.14) such
that y(C) ≥ 1 for at least one nontrivial tight cut C.

To see this, choose an integer optimum solution y of (37.14) such that y(C) ≥
1 for at least one nontrivial tight cut C, with

(37.21)
∑

C∈C
y(C)s(C)

minimized, where s(C) denotes the number of pairs of vertices separated by
C. We show that y is laminar.

Suppose to the contrary that C and C ′ cross, with y(C) > 0 and y(C ′) >
0. We can choose U ′, U ′′ ⊆ V such that C = δ(U), C ′ = δ(U ′), and |U ∩ U ′|
is odd. Let D := δ(U ∩ U ′) and D′ := δ(U ∪ U ′). Let ε := min{y(C), y(C ′)}.
Decrease y(C) and y(C ′) by ε, and increase y(D) and y(D′) by ε. Then we
obtain again a feasible solution of (37.14), while (37.21) is smaller. So both D
and D′ are trivial. Hence U ∩U ′ = {u} and U ∪U ′ = V \{v} for some vertices
u and v. As G is 3-connected, there is an edge e connecting U \U ′ and U ′ \U .
Since G is matching-covered, there is a perfect matching M containing e. So
e ∈ C ∩C ′. As C and C ′ are tight, e is the only edge of M intersecting C ∪C ′.
Hence no edge of M intersects D = δ(U ∩ U ′), a contradiction. This proves
(37.20).

Fix y satisfying (37.20). We note that the first set of constraints in (37.14)
gives:

(37.22) if e = uv ∈ C and y(C) > 0, then b(u) > 0 or b(v) > 0.

Moreover,

(37.23) for each u ∈ V , b(u) = 0 or y(δ(u)) = 0.

Otherwise, decreasing b(u) and y(δ(u)) by 1 would give b and y with smaller
b(V ).

We also show:

(37.24) if y(δ(U)) > 0, then G[U ] is connected.

If not, let K be an odd component of G[U ] and let e be an edge in δ(U)
not incident with K. Let M be a perfect matching containing e. Then M
intersects δ(U) in more than one edge (since K is odd), while δ(U) is tight
since y(δ(U)) > 0. This contradiction proves (37.24).

Now choose an odd cut C = δ(U) with y(C) > 0, an edge e0 = u0v ∈ C
with u0 ∈ U and b(u0) > 0, such that |U | is as small as possible. (Such U ,
e0, u0 exist by (37.22).)

By (37.23), |U | > 1. Let U1, . . . , Uk be the maximal proper subsets of
U with y(δ(Ui)) > 0. By (37.20), the Ui are pairwise disjoint. Note that
u0 �∈ U1 ∪ · · · ∪ Uk, by the minimality of |U |.

Define
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(37.25) U ′ := U \ (U1 ∪ · · · ∪ Uk), U+ := {u ∈ U ′ | b(u) > 0}, and
U0 := U ′ \ U+.

Then

(37.26) there is no edge joining distinct sets among U0, U1, . . . , Uk.

Directly from (37.22) and the minimality of |U |.
Moreover,

(37.27) there is no edge e = uv with u ∈ U+ and v ∈ U ′.

For suppose that such an edge e exists. Then there is a perfect matching
containing e. Hence, by complementary slackness, we have equality in the
corresponding constraint of (37.14). As b(u)+b(v) > 0, we know that y(C) >
0 for some C with e ∈ C. Then C = δ(S) for some S ⊆ U . This contradicts
the definition of the Ui, proving (37.27).

As G[U ] is connected (by (37.24)), it follows that U0 = ∅. Next

(37.28) |U+| = k + 1.

For consider any perfect matching M containing edge e0. Then M intersects
any δ(Ui) in exactly one edge (as each δ(Ui) is tight, by (37.19)) and it also
intersects δ(U) in exactly one edge, namely e0. Since |M ∩δ(U)| = 1, we know
with (37.26) that the edge in M ∩ δ(Ui) connects Ui and U+. Moreover, no
edge in M connects two vertices in U+ (by (37.27)). Hence we have (37.28).

(37.29) No edge connects any Ui with V \ U .

Otherwise, the same counting as for proving (37.28) gives |U+| = k, a con-
tradiction.

As |U | > 1 we know k > 0. Choose s, t ∈ U+. As G is bicritical, G − s − t
has a perfect matching M . Then M intersects each δ(Ui) at least once, and
hence (by (37.29)) |U+ \ {s, t}| ≥ k, a contradiction.

37.7. Matching-covered graphs without nontrivial tight
cuts

The foregoing is used in obtaining the following basic result of Lovász [1987]:

Theorem 37.8. Let G = (V, E) be a connected graph with at least four
vertices. Then G is matching-covered without nontrivial tight cuts if and only
if G is a brick or a brace.

Proof. If G is a brick or a brace, then trivially G is matching-covered. More-
over, Theorems 37.6 and 37.7 show that braces and bricks have no nontrivial
tight cuts.

Conversely, assume that G is matching-covered and has no nontrivial tight
cuts.
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Case 1: G is not bicritical. We show that G is a brace. As G is not bicritical,
by Tutte’s 1-factor theorem (Theorem 24.1a) there exists a subset U of V
such that G − U has |U | odd components, with |U | ≥ 2. As G is matching-
covered, U is a stable set, and G − U has no even components. For each
component K of G − U , δ(K) is tight, and hence trivial, that is |K| = 1. So
G is bipartite, and U is one of its colour classes. If G is not a brace, there
exists a subset X of U with 1 ≤ |X| ≤ |U | − 2 and |N(X)| ≤ |X| + 1. Let
Y ⊆ V \U with N(X) ⊆ Y and |Y | = |X|+ 1. Then δ(X ∪Y ) is a nontrivial
tight cut, a contradiction.

Case 2: G is bicritical. We show that G is a brick. So we must show that G is
3-connected. As G is matching-covered, G is trivially 2-connected. Suppose
that {u, v} is a 2-vertex-cut. Let K be a component of G−u−v. As G−u−v
has a perfect matching, |K| is even. Then δ(K∪{u}) is a nontrivial cut which
is tight, since the intersection of δ(K ∪ {u}) with any perfect matching M is
odd and at most 2 (as each edge in the intersection is incident with u or v).
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The perfect matching lattice

This chapter is devoted to giving a proof of the deep theorem of Lovász
[1987] characterizing the perfect matching lattice of a graph — the lattice
generated by the incidence vectors of perfect matchings.
We summarize concepts and results from previous chapters that we need in
the proof. Let G = (V, E) be a graph. The following notions will be used:
• A cut C in G is tight if each perfect matching intersects C in exactly

one edge.
• A cut C is trivial if C = δ(v) for some vertex v.
• G is matching-covered if each edge is contained in a perfect matching.
• G is bicritical if for each two distinct vertices u and v, the graph G−u−v

has a perfect matching.
• G is a brick if it is 3-connected and bicritical and has at least 4 vertices.
• A subset B of V is a barrier if G−B has at least |B| odd components. A

maximal barrier is an inclusionwise maximal barrier. A nontrivial barrier
is a barrier B with |B| ≥ 2.

Moreover, the following results will be used:
• the perfect matching lattice of a bipartite graph is equal to the set of

integer vectors in the perfect matching space (this is an easy consequence
of Kőnig’s edge-colouring theorem, see Theorem 20.12).

• Any two distinct inclusionwise maximal barriers in a connected matching-
covered graph are disjoint (Corollary 24.11a).

• A graph is a brick if and only if it is nonbipartite and matching-covered
and has no nontrivial tight cuts (a consequence of Theorem 37.8).

• A graph is bicritical if and only if it has no nontrivial barrier (a conse-
quence of Tutte’s 1-factor theorem (Corollary 24.1a)).

Throughout this chapter, U denotes the complement of U .

38.1. The perfect matching lattice

The perfect matching lattice (usually briefly the matching lattice) of a graph
G = (V, E) is the lattice generated by the incidence vectors of perfect match-
ings in G; that is,

(38.1) Lperfect matching(G) := lattice{χM | M perfect matching in G}.
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So it is a sublattice of Z
E and is contained in the perfect matching space of

G.
In Section 20.8 we saw that the perfect matching lattice of a bipartite

graph G = (V, E) is equal to the intersection of Z
E with the perfect matching

space of G. This characterization does not hold in general for nonbipartite
graphs, as is shown by the Petersen graph. However, as was proved by Lovász
[1987], any graph for which the characterization does not hold, contains the
Petersen graph in some sense. In particular, for any graph without Petersen
graph minor, the characterization remains valid.

In analyzing the perfect matching lattice of G, two initial observations
are of interest:

• We can assume that G is matching-covered, since any edge contained in
no perfect matching can be deleted;

• If G has a nontrivial tight cut, we can reduce the analysis by considering
the two graphs obtained by contracting either of the shores of the cut.

So we can focus the investigations on nonbipartite matching-covered graphs
without nontrivial tight cuts; that is, by Theorem 37.8, on bricks.

38.2. The perfect matching lattice of the Petersen graph

We will need a characterization of the perfect matching lattice of the Petersen
graph, which is easy to prove:

Theorem 38.1. Let G be the Petersen graph and let C be a 5-circuit in
G. Then the perfect matching lattice consists of all integer vectors x in the
perfect matching space with x(EC) even.

Proof. Inspection of the Petersen graph (cf. Figure 38.1) shows that each
edge of G is contained in exactly two perfect matchings, that (hence) G has
exactly six perfect matchings, that any two perfect matchings intersect each
other in exactly one edge, and that each perfect matching intersects EC in
an even number of edges.

Let M0 := δ(V C) (the set of edges intersecting V C in one vertex). Then
M0 is a perfect matching of G. Let M1, . . . , M5 be the five other perfect
matchings of G. So each of the Mi intersects M0 in one edge.

By adding appropriate integer multiples of χM1 , . . . , χM5 to x we can
achieve that xe = 0 for each e ∈ M0. As x is in the perfect matching space,
we know that there exists a number t such that x(δ(v)) = t for each vertex
v. Hence, as |EC| is odd, xe = 1

2 t for all e ∈ EC; similarly, for each edge e in
the 5-circuit vertex-disjoint from C one has xe = 1

2 t. As x(EC) is even, we
know that 5

2 t is even, hence 1
2 t is even. Now the vector

(38.2) y := χM1 + · · ·χM5 − χM0
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Figure 38.1
The Petersen graph

satisfies ye = 0 for e ∈ M0 and ye = 2 for e �∈ M0. Hence x is an integer
multiple of y, proving that x belongs to the perfect matching lattice of G.

38.3. A further fact on the Petersen graph

In the proof of the characterization of the perfect matching lattice, we need
a further, technical fact on the Petersen graph.

Let G = (V, E) be a graph and let b : V → Z+. Recall that a b-factor is
a subset F of E with degF (v) = b(v) for each v ∈ V .

Theorem 38.2. Let G = (V, E) be the Petersen graph and let C be a 5-circuit
in G. Let b : V → Z+ be such that

• either there exists a u ∈ V with b(u) = 3 and b(v) = 1 for all v �= u,
• or there exist distinct u, u′ ∈ V with b(u), b(u′) ∈ {0, 2} and b(v) = 1 for

all v �= u, u′, such that if b(u) = b(u′) = 0, then u and u′ are nonadjacent.

Then there exist b-factors F and F ′ such that |F ∩ EC| and |F ′ ∩ EC| have
different parities.

Proof. By induction on b(V ). If b(u) = b(u′) = 0 for some distinct u, u′ ∈ V ,
then u and u′ are nonadjacent. Let x be the common neighbour of u and u′

and let y be the neighbour of x distinct from u and u′. Then G − x − N(x)
forms a 6-circuit (by inspection — cf. Figure 38.1), D say. Split ED into
two matchings, M and M ′. Adding edge xy to M and M ′ gives b-factors
as required since EC intersects ED in an odd number of edges (as ED =
EG \ δ(N(x)), and |EC| is odd and |EC ∩ δ(N(x))| is even).

If b(u′) = 2, choose a neighbour u′′ of u′ with u′′ different from and
nonadjacent to u. Define b′(u′′) := 0, b′(u) := b(u), and b′(v) := 1 for all
other vertices. By induction, there exist b′-factors F and F ′ such that F and
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F ′ intersect EC in different parities. Adding edge u′u′′ to F and F ′ gives
b-factors as required.

If b(u) = 3 for some u ∈ V , we can choose any neighbour u′ of u, define
b′(u) := 2, b′(u′) := 0, and b′(v) := 1 for all v �= u, u′, and apply induction as
above.

38.4. Various useful observations

In this section we prove a few easy facts that turn out to be useful.
Let G = (V, E) be a graph and let U ⊆ V . Recall that G/U denotes the

graph obtained from G by contracting U to one vertex, which vertex we will
call U . In the obvious way, we will consider the edge set of G/U as a subset
of the edge set of G. Hence, for any x ∈ R

E , we can speak of the projection
of x to the edges of G/U .

We now characterize when G/U is a brick if G is a brick:

Theorem 38.3. Let G = (V, E) be a brick and let U ⊆ V . Then G/U is a
brick if and only if G − U is 2-connected and factor-critical.

Proof. Necessity being easy, we prove sufficiency.
First, let G − U be 2-connected. Then G/U is 3-connected, for suppose

that vertices u and u′ of G/U form a 2-vertex-cut of G/U . If both u and u′

are different from vertex U of G/U , then u, u′ would also form a 2-vertex-cut
of G, contradicting the 3-connectivity of G. If, say, u′ is equal to vertex U
of G/U , then u is a cut vertex of G − U , contradicting the 2-connectivity of
G − U .

Second, let G − U be factor-critical. To see that G/U is bicritical, let B
be a nontrivial barrier of G/U . If B does not contain vertex U of G/U , then
B would also be a nontrivial barrier of G, contradicting the bicriticality of
G. If B contains vertex U , then G − U is not factor-critical.

Maximal barriers leave factor-critical components:

Theorem 38.4. Let G = (V, E) be a graph with a perfect matching and let
B be a maximal barrier. Then each component K of G−B is factor-critical.

Proof. Suppose not. Then K has a nonempty subset B′ such that (G[K]) −
B′ has at least |B′| + 1 odd components. Hence B ∪ B′ is a barrier of G,
contradicting the maximality of B.

We note that

(38.3) if B1, . . . , Bk are the maximal nontrivial barriers of a graph G =
(V, E), having a perfect matching, then for each u ∈ V \ (B1 ∪
· · · ∪ Bk), the graph G − u is factor-critical.
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In bicritical graphs, nonempty stable sets have many neighbours (a neigh-
bour of S is a vertex not in S adjacent to at least one vertex in S):

Theorem 38.5. Let G = (V, E) be bicritical with |V | ≥ 4. Then any
nonempty stable set S has at least |S| + 2 neighbours.

Proof. Suppose that |N(S)| ≤ |S| + 1. Since |V \ S| ≥ |S| (as G has a
perfect matching), we know |V \ S| ≥ 2. Hence we can choose two vertices
v, v′ ∈ V \ S such that |N(S) \ {v, v′}| < |S|. This however contradicts the
fact that G − v − v′ has a perfect matching, since each vertex in S should be
matched to a vertex in N(S).

It will also be useful to make the following observation:

Theorem 38.6. Let G = (V, E) be a graph and let U be an odd subset of
V , such that for each edge e ∈ δ(U) there is a perfect matching Me with
Me ∩ δ(U) = {e}. Define G1 := G/U and G2 := G/U , and let x ∈ Z

E. If,
for each i = 1, 2, the projection of x to EGi belongs to the perfect matching
lattice of Gi, then x belongs to the perfect matching lattice of G.

Proof. Let x′ and x′′ be the projections of x to EG1 and to EG2, respectively.
Since x′ belongs to the perfect matching lattice of G1, there exist perfect
matchings M ′

1, . . . , M
′
k′ and N ′

1, . . . , N
′
l′ of G1 such that

(38.4) x′ =
k′∑

i=1

χM ′
i −

l′∑

j=1

χN ′
j .

Similarly, there exist perfect matchings M ′′
1 , . . . , M ′′

k′′ and N ′′
1 , . . . , N ′′

l′′ of G2
such that

(38.5) x′′ =
k′′∑

i=1

χM ′′
i −

l′′∑

j=1

χN ′′
j .

Consider any e ∈ δ(U). Then x′
e = xe = x′′

e . Hence, using the projections of
Me to EG1 and to EG2, we can assume that

(38.6) |{i = 1, . . . , k′ | e ∈ M ′
i}| = |{i = 1, . . . , k′′ | e ∈ M ′′

i }| and
|{j = 1, . . . , l′ | e ∈ N ′

j}| = |{j = 1, . . . , l′′ | e ∈ N ′′
j }|,

since we can add the projection of Me to EG1 to both sums in (38.4), if the
number of i with e ∈ M ′

i is less than the number of i with e ∈ M ′′
i ; similarly,

if it would be more.
We can do this for each e ∈ δ(U), to obtain (38.6) for each e ∈ δ(U).

It implies that k′ = k′′ and l′ = l′′. It also implies that we can ‘match’
the M ′

i and M ′′
i in common edges in δ(U). That is, by permuting indices,

we can assume that M ′
i and M ′′

i have an edge in δ(U) in common, for each
i = 1, . . . , k′. In other words, each M ′

i ∪ M ′′
i is a perfect matching of G.

Similarly, we can assume that each N ′
j ∪N ′′

j is a perfect matching of G. Then
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(38.7) x =
k′∑

i=1

χM ′
i∪M ′′

i −
l′∑

j=1

χN ′
j∪N ′′

j .

So x belongs to the perfect matching lattice of G.

38.5. Simple barriers

In this section, we fix a brick G = (V, E) and an edge e such that G − e
is matching-covered, and study barriers of G − e. In particular we focus on
‘simple’ barriers of G − e. They play an important role in the proof of the
characterization of the perfect matching lattice.

For any B ⊆ V , let I(B) denote the set of isolated vertices of G − e − B
and let K(B) denote the set of nonisolated vertices of G − e − B. Then B is
called a simple barrier of G − e if |I(B)| = |B| − 1. So a simple barrier is a
barrier of G − e, and hence a stable set (as G − e is matching-covered). Note
that each singleton is a simple barrier.

For any simple barrier B of G−e, K(B) is an odd component of G−e−B,
since G−e is matching-covered and connected. (Trivially, |K(B)| is odd, since
|V | is even and |I(B)| = |B| − 1. If K(B) would not be connected, let L be
an odd component of K(B) and let f be an edge connecting K(B) \ L and
B. Let M be a perfect matching of G − e containing f . Necessarily some
edge in M leaves L. But then more that one edge in M connects K(B) and
B, and also each vertex in I(B) is matched to B, while |I(B)| = |B| − 1, a
contradiction.)

Since a barrier B of G − e with |B| ≥ 2 is not a barrier of G (since G
is bicritical), e necessarily connects two odd components of G − e − B. If B
is a simple barrier of G − e with |B| ≥ 2, then e connects K(B) with some
vertex v1 ∈ I(B). (G has a perfect matching M intersecting δ(K(B)) in at
least three edges, and hence M contains an edge connecting K(B) and I(B).
This edge must be e.)

Then the perfect matchings M of G are of two types:

(38.8) M does not contain e, in which case M matches B with the
components of G − e − B,
or M contains e, in which case two of the edges in M leaving B
are incident with K(B), and the other edges in M leaving B are
incident with I(B) \ {v1}.

We now give some further easy properties of simple barriers. Recall that
a subset U of the vertex set V of a graph G is called matchable if G[U ] has
a perfect matching.

Theorem 38.7. Let G = (V, E) be a brick, let e ∈ E be such that G − e is
matching-covered and let B be a simple barrier of G − e. Let e = v1v2 with
v1 ∈ B ∪ I(B) and v2 ∈ K(B). Then:
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(38.9) (i) if |B| ≥ 2, then v1 ∈ I(B);
(ii) for any u ∈ B, the set (B − u) ∪ I(B) is matchable;
(iii) for any distinct u, u′ ∈ B, the set (B − u − u′) ∪ (I(B) − v1) is

matchable;
(iv) G − e/K(B) is matching-covered;
(v) G[B ∪ I(B)] is connected;
(vi) any cut vertex v of G[B ∪ I(B)] belongs to I(B);
(vii) if Y ⊆ I(B) and G[B ∪ I(B)] − Y has at least |Y | + 1 compo-

nents, then it contains precisely |Y | + 1 components and any
component of G[B ∪ I(B)] − Y not containing v1 consists of a
singleton vertex in B.

Proof. Since all assertions are trivial if |B| = 1, we can assume that |B| ≥ 2.
We saw above that then v1 ∈ I(B), proving (i).

(ii) follows from the fact that G−u−v2 has a perfect matching. Similarly,
(iii) follows from the fact that G − u − u′ has a perfect matching, necessarily
containing e. (iv) is directly implied by the fact that G−e is matching-covered,
and (v) follows from (ii).

To see (vi), assume that v ∈ B. Choose a component K of G[B∪I(B)]−v
not containing v1. Since (B − v) ∪ I(B) is matchable by (ii), |K ∩ B| =
|K ∩ I(B)|. Choose v′ ∈ K ∩B. Then (B − v − v′)∪ (I(B)− v1) is matchable
by (iii). However, |K ∩ B \ {v′}| < |K ∩ I(B)|, a contradiction. This proves
(vi).

To prove (vii), let α be the number of components of G[B ∪ I(B)] − Y
containing v1, let β be the number of other components intersecting I(B),
and let γ be the number of other components (hence each consisting of a
singleton vertex in B). So α + β + γ ≥ |Y | + 1. Now by Theorem 38.5, each
component K satisfies

(38.10) |K ∩ B| ≥ |K ∩ I(B)| + 1.

Indeed, if K∩I(B) = ∅, this is trivial. If K∩I(B) �= ∅, then by Theorem 38.5,
|K∩I(B)|+2 ≤ N(K∩I(B))| ≤ |K∩B|+1, as N(K∩I(B)) ⊆ (K∩B)∪{v2}.
This proves (38.10).

Moreover,

(38.11) if v1 �∈ K and K ∩ I(B) �= ∅, then |K ∩ B| ≥ |K ∩ I(B)| + 2,

since then N(K ∩ I(B)) ⊆ K ∩ B.
(38.10) and (38.11) imply

(38.12) α + 2β + γ ≤
∑

K

(|K ∩ B| − |K ∩ I(B)|) = |B| − |I(B) \ Y |

= |Y | + 1 ≤ α + β + γ,

where K ranges over the components of G[B ∪ I(B)] − Y . Hence β = 0, and
(vii) follows.

We next consider the case where v2 is a cut vertex of G[K(B)].
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Theorem 38.8. Let G = (V, E) be a brick and let e = v1v2 be an edge
such that G − e is matching-covered. Let B be a simple barrier of G − e with
v1 ∈ I(B) and v2 ∈ K(B). Let Z be a union of components of G[K(B)]− v2,
with Z �= K(B)−v2. Then G/(Z ∪{v2}) is matching-covered and has exactly
one brick in its brick decomposition.

Proof. Define U := Z ∪ {v2} and L := K(B) \ U . Note that L is matchable,
since G − v − v′ has a perfect matching for some v, v′ ∈ B (necessarily
containing e and containing no edge connecting K(B) and B). So |L| is even.

We first show that

(38.13) G/U is matching-covered.

Consider first any perfect matching M of G − e. Then M has exactly one
edge leaving B ∪ I(B). Hence M has exactly one edge leaving U (since if
there were at least three, then at least two of them should leave B ∪ I(B)).
So M gives a perfect matching in G/U . Since G− e is matching-covered, this
implies that each edge of G/U except the image of e is contained in a perfect
matching of G/U .

As L �= ∅ and |L| is even, G has a perfect matching M with at least three
edges leaving L∪{v2}. So it contains at least two edges connecting L and B.
Hence M contains e, and all other edges leaving B ∪ I(B) connect it with L.
So the image of M is a perfect matching in G/U containing the image of e.
This shows (38.13).

To see that G/U has only one brick in its brick decomposition, choose a
counterexample with |B| as small as possible. This implies:

(38.14) |N(X) ∩ I(B)| > |X| for each nonempty subset X of B \ N(L).

Assume that this is not the case. Since |B ∩N(L)| ≥ 2 (as G is 3-connected),
we know |X| ≤ |B|−2, and so |N(X)∩I(B)| ≤ |B|−2 = |I(B)|−1, implying
I(B) �⊆ N(X). Each neighbour of I(B) \ N(X) belongs to (B \ X) ∪ {v2}, as
there is no edge connecting X and I(B) \ N(X). So, using Theorem 38.5,

(38.15) |B| − |X| = |B \ X| ≥ |N(I(B) \ N(X))| − 1 ≥ |I(B) \ N(X)| + 1
= |B| − |N(X) ∩ I(B)|,

implying |N(X)∩ I(B)| = |X| and v1 �∈ N(X). Define B′ := B \X. Then B′

is a simple barrier of G − e again, with I(B′) = I(B) \ N(X) and K(B′) =
K(B) ∪ N(X) ∪ X.

Let S be the union of X, N(X) ∩ I(B), and the contracted vertex U of
G/U . Then each perfect matching of G/U has exactly one edge leaving S (as
X is matched to (I(B) ∩ N(X)) ∪ {U} in G/U , since X ∩ N(L) = ∅). So S
determines a tight cut in G/U . As G/S is bipartite, it suffices to show that
the brick decomposition of G/U/S contains exactly one brick.

Since X ∩ N(L) = ∅, L is a union of components of G[K(B′)] − v2. Then

(38.16) G/U/S = G/(K(B′) \ L) ∪ {v2}.
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Hence, by the minimality of B, G/U has a brick decomposition with exactly
one brick. This shows (38.14).

We finally derive from (38.14) that G/U has only one brick in its brick
decomposition, in fact, that it is a brick — equivalently that G − U is 2-
connected and factor-critical (Theorem 38.3).

Assume that G−U is not 2-connected, and let v be a cut vertex of G−U .
Then each component of G − U − v intersects B ∪ I(B) as G is 3-connected.
Hence v is a cut vertex of G[B ∪ I(B)]. So Theorem 38.7(vi) applies. In
particular, v ∈ I(B).

Since each component of G[L] is adjacent to at least two vertices in B
(since G is 3-connected), we know by Theorem 38.7(vii) that all vertices in
B adjacent to L belong to the same component of G[B ∪I(B)]−v as v1. Any
other component consists of one vertex, w say, in B. But then this contradicts
(38.14), taking X = {w}. So G − U is 2-connected.

To show that G − U is factor-critical, suppose to the contrary that there
exists a nonempty subset Y of U such that G − U − Y has at least |Y | + 1
odd components.

Then Y ⊆ I(B). Otherwise choose v ∈ Y \ I(B). So v ∈ L ∪ B. Then
G−U −v has no perfect matching. However, as G is bicritical, G−v−v2 has
a perfect matching M . Then the restriction of M to U is a perfect matching
of G − U − v, a contradiction. So Y ⊆ I(B).

Each component of G−U−Y containing a component of L has at least two
elements in B (since G is 3-connected). So G[B∪I(B)]−Y has precisely |Y |+1
components. Hence it has |Y | singleton components in B, without neighbours
in L (by Theorem 38.7(vii)). Let X be the union of these components. Each
neighbour y of any x ∈ X with y �∈ U belongs to Y . So |X| ≥ |Y | ≥
|N(X) ∩ I(B)|, contradicting (38.14).

We next consider pairs of simple barriers B1, B2. The following auxiliary
theorem is of special interest for disjoint simple barriers B1 and B2 of G − e
where B2 intersects I(B1).

B1

B2I(B1)

I(B2)

Figure 38.2

Theorem 38.9. Let G = (V, E) be a brick and let e = v1v2 ∈ E be such that
G−e is matching-covered. Let B1 and B2 be disjoint simple barriers of G−e
with v1 ∈ I(B1) and v2 ∈ I(B2). Then
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(38.17) (i) I(B1) ∩ I(B2) = ∅;
(ii) B1 ∪ I(B2) and B2 ∪ I(B1) are stable sets;
(iii) |B1 ∩ I(B2)| = |B2 ∩ I(B1)|;
(iv) B2 \ I(B1) is again a simple barrier of G − e, with I(B2 \

I(B1)) = I(B2) \ B1.

Proof. (i) follows from the fact that all neighbours of any u ∈ I(B1)∩ I(B2)
belong to B1 ∩ B2 = ∅. Since N(I(B2)) ⊆ B2 ∪ {v1}, which is disjoint from
B1, we have that B1 ∪ I(B2) is a stable set. Similarly, B2 ∪ I(B1) is a stable
set, implying (ii).

Since I(B2) \ B1 ⊆ I(B2 \ I(B1)), we know

(38.18) |I(B2)| − |I(B2) ∩ B1| = |I(B2) \ B1| ≤ |I(B2 \ I(B1))|
≤ |B2 \ I(B1)| − 1 = |B2| − 1 − |B2 ∩ I(B1)|
= |I(B2)| − |B2 ∩ I(B1)|.

So |B2 ∩ I(B1)| ≤ |B1 ∩ I(B2)|, and hence by symmetry |B2 ∩ I(B1)| =
|B1 ∩ I(B2)|, and we have equality throughout in (38.18). This gives (iii) and
(iv).

The last auxiliary theorem in this section reads:

Theorem 38.10. Let G be a brick and let e = v1v2 be an edge of G with
G−e matching-covered. Let B1 and B2 be simple barriers of G−e, and define
Ji := Bi∪I(Bi) for i = 1, 2, with v1 ∈ J1 and v2 ∈ J2, and X := V \(J1∪J2).
Assume that J1 ∩J2 = ∅, and that, for each u ∈ X, G−e−u is factor-critical
and G − u/J1 and G − u/J2 are 2-connected. Then if G − e has a 2-vertex-
cut separating J1 and J2, it has a 2-vertex-cut {u, u′} separating J1 and J2
such that for some component K of G − e − u − u′, both G/(K ∪ {u}) and
G/K ∪ {u} are bricks.21

Proof. Note that if {u, u′} is J1 −J2 separating in G−e (which by definition
implies that u, u′ �∈ J1∪J2), then G−e−u−u′ has a perfect matching (by the
assumption in the theorem). Moreover, since G is 3-connected, G − u − u′ is
connected. Hence G− e−u−u′ has exactly two components, one containing
J1 and one containing J2. We will apply Theorem 38.3.

We first show:

(38.19) Let {u, u′} be J1−J2 separating in G−e and let K be a component
of G − e − u − u′. Then the graph G[K ∪ {u}] is factor-critical.

By symmetry, we may assume that J1 ⊆ K. Define S := K ∪ {u}. Choose
a vertex v ∈ S. We prove that G[S] − v has a perfect matching. If v = u,
then G[S] − v = G[K] has a perfect matching (as K is a component of
G−e−u−u′). So let v �= u. As G−e−u′ is factor-critical by the assumption
21 It is important to note that it is not concluded that also G/(K ∪{u′}) and G/K ∪ {u′}

are bricks.
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in the theorem, G − e − u′ − v has a perfect matching M . Since |K| is even,
the edge in M incident with u, connects u with K. So M contains a matching
spanning S \ {v}. This proves (38.19).

In order to prove that G[K ∪ {u}] is 2-connected, we need a special kind
of 2-vertex-cut and a special order of the components:

(38.20) there exist a pair u, u′ separating J1 and J2 in G − e and compo-
nents K ⊇ J1 and L ⊇ J2 of G − e − u − u′ such that for each
v ∈ K \ J1, {u′, v} does not separate J1 and J2 in G − e and for
each v ∈ L \ J2, {u, v} does not separate J1 and J2 in G − e.

To prove this, let {u, u′} be a 2-vertex-cut separating J1 and J2 in G− e. Let
K and L be the components of G−e−u−u′ containing J1 and J2, respectively.
We choose u and u′ such that L is minimal. Then by the minimality of L,
for each v ∈ L \ J2, neither {u, v} nor {u′, v} separates J1 and J2 in G − e.

If (38.20) does not hold, then there exist v, v′ ∈ K \ J2 such that {u, v}
and {u′, v′} are vertex-cuts in G−e, each separating J1 and J2. Let Y be the
component of G−e−u−v not containing u′. Since NG−e(Y ) ⊆ {u, v}, we know
that v1 ∈ Y and hence J1 ⊆ Y . Let Y ′ be the component of G−e−u′ −v′ not
containing u. Again J1 ⊆ Y ′. Hence J1 ⊆ Y ∩Y ′. Now NG−e(Y ∩Y ′) ⊆ {v, v′}
(since NG−e(Y ∩ Y ′) ⊆ NG−e(Y ) ∪ NG−e(Y ′) ⊆ {u, u′, v, v′}; but u′ is not a
neighbour of Y ∩Y ′ since u′ is not in component Y of G−e−u−v; similarly
for u). This implies v �= v′. Hence v′ ∈ Y .

Let A be the component of G − e − u − v different from Y , and let A′ be
the component of G− e−u′ − v′ different from Y ′. Then Y ′ ∩A = ∅. Indeed,
N(Y ′ ∩ A) ⊆ N(Y ′) ∪ N(A) ⊆ {u, v, u′, v′}. Moreover, u, v′ �∈ N(Y ′ ∩ A),
since u ∈ A′ and v′ ∈ Y . So |N(Y ′ ∩ A)| ≤ 2, implying Y ′ ∩ A = ∅ by the
3-connectivity of G.

Similarly, K∩A∩A′ = ∅. Indeed, N(K∩A∩A′) ⊆ N(K)∪N(A)∪N(A′) =
{u, v, u′, v′}. Moreover, v, v′ �∈ N(K ∩ A ∩ A′), since v ∈ Y ′ and v′ ∈ Y . So
|N(K ∩ A ∩ A′)| ≤ 2, implying K ∩ A ∩ A′ = ∅.

So K ∩ A intersects neither Y ′ nor A′, hence K ∩ A ⊆ {u′, v′}. However,
u′ �∈ K and v′ �∈ A. So K ∩ A = ∅. Hence K ⊆ Y ∪ {v}. So Y = K \ {v},
implying that |Y | is odd, a contradiction (since G − e − u − v has a perfect
matching). This proves (38.20).

Let u, u′ be as in (38.20). By symmetry, it suffices to show:

(38.21) G[K ∪ {u}] is 2-connected.

Let S := K ∪ {u}. Suppose that there exists a v ∈ S with G[S \ {v}] dis-
connected. Let Z be a component of G[S \ {v}] not containing v1, and let Y
be any other component. If u �∈ Z, then N(Z) ⊆ {v, u′}, contradicting the
3-connectivity of G. So u ∈ Z.

So u �∈ Y , and hence N(Y ) ⊆ {u′, v, v2}, implying by the 3-connectivity
of G, that v1 ∈ Y . So NG−e(Y ) = {u′, v}. If v �∈ J1, then J1 ⊆ Y (as G[J1] is
connected), implying that {u′, v} is J1 −J2 separating in G−e, contradicting
the condition in (38.20). So v ∈ J1.
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If Y �⊆ J1, then Y \ J1 has only two neighbours in G/J1: J1 and u′,
contradicting the fact that G − u′/J1 is 2-connected (by the condition in the
theorem). So Y ⊆ J1.

Let M be a perfect matching in G−u′−v1. So M intersects δ(J1) in exactly
two edges (since |I(B1) \ {v1}| = |B1| − 2 and u′ ∈ K(B1), as u′ �∈ J1). If
G[J1 \{v}] is connected, then Y = J1 \{v}. Then M contains an edge leaving
J1 and not incident with v. This contradicts the fact that NG−e(Y ) ⊆ {u′, v}
and that M does not cover u′.

So v is a cut vertex of G[J1], and hence by Theorem 38.7(vi), v belongs to
I(B1). Now v �= v1, since v1 ∈ Y . By Theorem 38.7(vii), G[J1 \ {v}] has two
components, one containing v1 and one consisting only of some neighbour, w
say, of v. So Z ∩ J1 = {w} and |(Y \ {v1}) ∪ {v}| is even. Then M contains a
matching with union (Y \ {v1}) ∪ {v}. Hence at most one edge in M leaves
J1, a contradiction. This shows (38.21).

38.6. The perfect matching lattice of a brick

We now prove the theorem of Lovász [1987]:

Theorem 38.11. Let G = (V, E) be a brick different from the Petersen
graph. Then the perfect matching lattice of G is equal to the set of integer
vectors in the perfect matching space of G.

Proof. We choose a counterexample with |V | + |E| minimal. Let x be an
integer vector in the perfect matching space of G that is not in the perfect
matching lattice of G. We can assume that x(δ(v)) = 0 for each vertex v (this
can be achieved by adding an appropriate integer multiple of χM to x, for
some perfect matching M in G).

Claim 1. Let δ(U) be an odd cut in G such that both G/U and G/U are
matching-covered and have exactly one brick in their brick decompositions.
Then there exist no perfect matchings M and N of G with |M ∩ δ(U)|− |N ∩
δ(U)| = 2.

Proof of Claim 1. Suppose to the contrary that such perfect matchings M, N
exist. In particular, |U |, |U | ≥ 3. As x(δ(U)) is even (since x(δ(v)) is even for
each vertex v), by adding an appropriate integer multiple of χM − χN to x
we can achieve that x(δ(U)) = 0.

Let x′ and x′′ be the projections of x to the edges of G/U and G/U ,
respectively. Let H := G/U .

Consider any minimal subset W of U , such that |W | ≥ 3 and such that
δ(W ) is a tight cut of H. (Such a set exists, since δ(U) is tight in H.) Since H
has exactly one brick in its brick decomposition, we know that H/W or H/W
is bipartite and matching-covered. If H/W is bipartite and matching-covered,
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the colour class of H/W not containing vertex W would be a nontrivial barrier
in G. This contradicts the fact that G is a brick.

So H/W is bipartite and matching-covered. Hence the projection of x′ to
the edges of H/W belongs to the perfect matching lattice of H/W . So (by
Theorem 38.6) the projection y of x′ to the edges of I := H/W is not in the
perfect matching lattice of I.

By the minimality of W , I is a brick. Since y is not in the perfect matching
lattice of I, by the minimality of |V | + |E|, I is the Petersen graph and has
a 5-circuit disjoint from vertex W of I with y(EC) odd.

As δ(W ) is not tight in G (since G is a brick), G has a perfect matching L
satisfying |L ∩ δ(W )| ≥ 3, and hence |L ∩ δ(W )| = 3 (since I is the Petersen
graph). Then by Theorem 38.2 (defining b(W ) := 3 and b(v) := 1 for each
vertex v �= W of I), we can modify L on the edges of I not incident with W
to obtain a perfect matching L′ of G such that the intersections of L and L′

with EC have different parities. Resetting x := x+χL −χL′
we achieve that

x(EC), and hence x′(EC), is even.
Hence the projection of the new x on the edges of G/U is in the perfect

matching lattice of G/U . We can perform similar resettings to achieve that
the projection of the new x on the edges of G/U is in the perfect matching
lattice of G/U . Then the new x, and hence also the original x, belongs to
the perfect matching lattice of G, by Theorem 38.6. This contradicts our
assumption. End of Proof of Claim 1

There exists an edge e with G − e matching-covered

To see this, we first show:

Claim 2. There are no edges e and f such that G−e−f is matching-covered
and bipartite.

Proof of Claim 2. Suppose that such e and f exist. As G−e−f is matching-
covered, the colour classes of G − e − f have the same size, and as G is
matching-covered and nonbipartite, e is spanned by one of the colour classes,
and f by the other.

Let M be a perfect matching in G containing e and f and let N be a
perfect matching in G not containing e and f . By adding an appropriate
integer multiple of χM − χN to x we can achieve that xe = 0. Since x is
in the perfect matching space of G, this implies that xf = 0. By Corollary
20.12a, the restriction of x to G − e − f is in the perfect matching lattice of
G−e−f . Hence x belongs to the perfect matching lattice of G, contradicting
our assumption. End of Proof of Claim 2

This gives:

Claim 3. There is an edge e such that G − e is matching-covered.
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Proof of Claim 3. For each edge e, let Me denote the collection of per-
fect matchings of G containing e. Choose any edge e with Me inclusionwise
minimal. We prove that G − e is matching-covered.

Suppose that G−e is not matching-covered. Hence there is an edge f �= e
such that each perfect matching of G containing f , also contains e; that is,
Mf ⊆ Me. By the minimality of Me, Mf = Me. Hence there is no perfect
matching containing exactly one of e, f . We show that

(38.22) G − e − f is bipartite.

As there is no perfect matching containing e but not containing f , by Tutte’s
1-factor theorem, there exists a subset B of V spanning e such that G−f −B
has more than |B| − 2 odd components; hence, by parity, at least |B| odd
components. As |B| ≥ 2 and as G is bicritical, f connects two distinct odd
components, K1 and K2 say, of G − f − B. Moreover, as G is bicritical, each
component of G − f − B is odd.

We show that G−e−f is bipartite with colour classes B and W := V \B.
That is, e is the only edge contained in B, and each component of G− f −B
is a singleton.

To see this, first assume that some component K of G − f − B is not a
singleton. Then δ(K) is a nontrivial cut, and hence it is not tight. So there
exists a perfect matching M with |M ∩ δ(K)| ≥ 3. If f �∈ M , then (adding up
over all components of G − f − B), |M ∩ δ(B)| ≥ |B| + 2, a contradiction. If
f ∈ M , then similarly |M ∩δ(B)| ≥ |B|, again a contradiction (since e ∈ M).

Second assume that B spans some edge e′ different from e. Let M be a
perfect matching containing e′. If f �∈ M , then |M∩δ(B)| ≥ |B|, contradicting
the fact that e′ ∈ M . If f ∈ M , then |M ∩ δ(B)| ≥ |B| − 2, contradicting the
fact that both e and e′ belong to M . This shows (38.22).

In particular, any odd circuit in G contains exactly one of e and f . By
Claim 2, G−e−f is not matching-covered. Hence there is an edge g such that
each perfect matching containing g contains e or f . Hence Mg = Me = Mf .
So, as before, each of G − e − f , G − e − g, G − f − g is bipartite. Hence each
odd circuit in G contains exactly one edge from each pair taken from e, f, g,
a contradiction. End of Proof of Claim 3

Each maximal barrier of G − e is simple

We fix an edge e with G − e matching-covered. Let e connect vertices v1 and
v2.

Claim 4. Let B be a maximal barrier of G−e. Then B is simple and G/K(B)
is a brick.

Proof of Claim 4. As the claim is trivial if |B| = 1, we can assume |B| ≥ 2;
that is, B is nontrivial. Since G has no nontrivial barrier, B is not a barrier
of G, and hence e connects two different components of G − e − B.
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By Theorem 38.4, each component K of G − e − B is factor-critical. So
it suffices to show (by Theorem 38.3) that G[K(B)] is 2-connected. In other
words, G − e − B has precisely one block22.

Let K denote the collection of components of G− e−B, and let L denote
the collection of blocks of G − e − B. For K ∈ K, let LK denote the set of
blocks of G[K].

It is useful to state the following formulas (38.23) and (38.25). For any
perfect matching M of G and any K ∈ K one has

(38.23)
∑

L∈LK

(|M ∩ δ(L)| − 1) = |M ∩ δ(K)| − 1.

This can be shown inductively as follows. Consider any subsets U ′ and U ′′ of
a set U of vertices with U ′ ∪ U ′′ = U , |U ′ ∩ U ′′| = 1, and no edge connecting
U ′\U ′′ and U ′′\U ′. Then |M∩δ(U)|−1 = (|M∩δ(U ′)|−1)+(|M∩δ(U ′′)|−1),
since

(38.24) |M ∩ δ(U ′)|+ |M ∩ δ(U ′′)| = |M ∩ δ(U ′ ∪U ′′)|+ |M ∩ δ(U ′ ∩U ′′)|
= |M ∩ δ(U)| + 1.

One also has

(38.25)
∑

K∈K
(|M ∩ δ(K)| − 1) = 2|M ∩ {e}|,

since

(38.26)
∑

K∈K
|M ∩ δ(K)| = |M ∩ δ(B)| + 2|M ∩ {e}| = |B| + 2|M ∩ {e}|

= |K| + 2|M ∩ {e}|.

Suppose now that the claim is not true — that is, |L| ≥ 2. We derive:

(38.27) for each L ∈ L and for each edge f ∈ δ(L), G has a perfect
matching M with M ∩ δ(L) = {f}.

Indeed, if f �= e, let M be a perfect matching of G−e containing f . By (38.23)
and (38.25), M intersects δ(L) in exactly one edge. So M ∩ δ(L) = {f}.

Suppose next that f = e. As |L| ≥ 2 by assumption, there exists a block
L′ �= L. As G has no tight nontrivial cuts, G has a perfect matching M with
|M ∩ δ(L′)| ≥ 3, and hence by (38.23) and (38.25), |M ∩ δ(L)| = 1, that is,
M ∩ δ(L) = {e}. This proves (38.27).

Now for each L ∈ L there exists a perfect matching M with |M∩δ(L)| ≥ 3,
and hence, by (38.23) and (38.25), |M ∩ δ(L)| = 3 and |M ∩ δ(L′)| = 1 for all
other L′ ∈ L. Moreover, let N be a perfect matching not containing e. Then
adding an appropriate integer multiple of χM − χN to x we can achieve that
x(δ(L)) = 0, while x(δ(L′)) does not change for any other L′ ∈ L.

As we can do this for all L ∈ L, we can assume that
22 A block of a graph H is an inclusionwise maximal set L of vertices with |L| ≥ 2 and

with G[L] 2-connected.
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(38.28) x(δ(L)) = 0 for all L ∈ L.

Since x is in the perfect matching space, with (38.23) this gives that

(38.29) x(δ(K)) = 0 for all K ∈ K.

Moreover, xe = 0, since

(38.30) 2xe =
∑

K∈K
x(δ(K)) − x(δ(B)) = −x(δ(B)) = −

∑

v∈B

x(δ(v)) = 0.

Let H be the matching-covered bipartite graph obtained from G − e by
contracting each K ∈ K to a vertex. Since x(δ(K)) = 0 for each K ∈ K and
x(δ(v)) = 0 for each v ∈ B, and since xe = 0, we know from Corollary 20.12a
that x|EH is in the perfect matching lattice of H. Now for each K ∈ K and
for each f ∈ δ(K) with f �= e, there exists a matching M in G− e containing
f , and hence there is a matching with union K \{v}, where v is the vertex in
K incident with f . We therefore can extend each perfect matching of H to
a perfect matching of G − e intersecting each δ(K) in one edge. This implies
that we may assume that xf = 0 for each f ∈ δ(B).

Hence each edge f with xf �= 0 is spanned by some L ∈ L. Let L′ be the
collection of those blocks L ∈ L spanning at least one edge f with xf �= 0.
We choose x satisfying all previous assumptions and such that |L′| is as small
as possible.

As each K ∈ K is factor-critical, each L ∈ L is factor-critical. Hence, by
Theorem 38.3,

(38.31) G/L is a brick for each L ∈ L.

Moreover,

(38.32) we can assume that, for each L ∈ L with G/L the Petersen graph,
there is a 5-circuit C in G[L] with x(EC) even.

Indeed, choose any 5-circuit C in G[L], and suppose that x(EC) is odd. Let
M be a perfect matching in G with |M ∩ δ(L)| = 3. By Theorem 38.2, we
can modify M on the edges spanned by L so as to obtain a perfect matching
N with |N ∩ EC| having parity different from |M ∩ EC|, and such that M
and N coincide for all edges not spanned by L. Now adding χM − χN to x
makes x(EC) even, and does not invalidate our previous assumptions. This
shows (38.32).

We show next:

(38.33) for each L0 ⊆ L with xf = 0 for each f ∈ δ(
⋃

L0), one has
L0 ⊆ L′.

We show this by induction on |L0|. If L0 = ∅, this is trivial. If L0 �= ∅, we
can choose an L ∈ L0 such that L has a vertex v such that each L′ ∈ L0 with
L′ �= L is disjoint from L \ {v}. Hence each f ∈ δ(L) with xf �= 0 is incident
with v. By (38.31) and (38.32), x|E(G/L) is in the perfect matching lattice
of G/L. So
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(38.34) x|E(G/L) =
∑

M

λMχM ,

where M ranges over perfect matchings of G/L and where λM ∈ Z. Let M
denote the collection of perfect matchings of G/L not containing an edge
leaving L at v. So if f ∈ M ∈ M and f is incident with L, then xf = 0.
By (38.27), for each f ∈ δ(L) we can choose a perfect matching Nf of G/L

containing f . Then for each perfect matching M of G/L, let M̃ := M ∪ Nf

where f is the edge of M leaving L. Then, by replacing x by

(38.35) x −
∑

M∈M
λMχM̃ ,

x changes only on edges spanned by L, and we achieve that xf = 0 for each
edge f ∈ δ(v) spanned by L. Hence for L′

0 := L0 \ {L} we have xf = 0 for
each f ∈ δ(

⋃
L′

0). Therefore, by the induction hypothesis, L′
0 ⊆ L′. So xf = 0

for each f ∈ δ(L). Hence, taking the λM as above, by replacing x by

(38.36) x −
∑

M

λMχM̃ ,

where M ranges over all perfect matchings of G/L, we achieve that x|E(G/L)
= 0. This proves (38.33).

Applying (38.33) to L0 := L, we derive that x = 0, a contradiction.
End of Proof of Claim 4

We remind that for each maximal nontrivial barrier B of G − e one has
e ∈ δ(K(B)) and:

(38.37) for each perfect matching M of G: e ∈ M ⇐⇒ |M ∩δ(K(B))| =
3.

Pairs of simple barriers of G − e

Claim 5. Let B1 and B2 be simple barriers of G − e and let Ji := Bi ∪ I(Bi)
(for i = 1, 2), with J1 ∩ J2 = ∅ and vi ∈ Ji (for i = 1, 2). Then H :=
G − e/J1/J2 is not a brick.

Proof of Claim 5. Suppose that H is a brick. By adding an appropriate
integer multiple of χM −χN to x, where M and N are perfect matchings in G
containing e and not containing e, respectively, we can achieve xe = 0. Then,
since x(δ(v)) = 0 for each vertex v, we have that x(δ(J1)) = x(δ(J2)) = 0. As
G − e/J1 and G − e/J2 are bipartite and as H is a brick, it follows that the
respective projections of x belong to the perfect matching space of G− e/J1,
G − e/J2, and H.

As x is not in the perfect matching lattice of G, by Theorem 38.6 at
least one of these projections is not in the corresponding perfect matching
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lattice. As G − e/J1 and G − e/J2 are bipartite, it follows (as G is a minimal
counterexample to Theorem 38.11) that H is the Petersen graph and that
x(EC) is odd for some 5-circuit C in H disjoint from vertices J1 and J2 of
H. Then it suffices to show:

(38.38) G has perfect matchings M and N , each containing e, such that
M and N intersect EC in different parities,

since then adding χM − χN to x turns the parity of x(EC).
To prove (38.38), let

(38.39) X := V G \ (J1 ∪ J2) = K(B1) ∩ K(B2).

So V H = X ∪ {J1, J2}. We first show that for i = 1, 2:

(38.40) if |Ji| ≥ 3, and a and b are distinct neighbours of vertex Ji of H
with a, b ∈ X, then {aJi, bJi} is the image of a matching in G.

To see this, we can assume that i = 1.
If J1 and J2 are adjacent vertices of H, then a and b are the only neigh-

bours of J1 in X. Choose z ∈ B2. As G is bicritical, G − v1 − z has a perfect
matching M . Then M matches up all vertices in J2 \ {z}. Moreover, all but
two vertices in B1 are matched with vertices in I(B1)\{v1}. Hence two edges
of M connect B1 and K. So M contains edges connecting a and b with B1.

If J1 and J2 are nonadjacent vertices of H, let z be the vertex distinct from
a, b adjacent in H to J1. Since G is bicritical, G−v1−z has a perfect matching
M . All but two vertices in B1 are matched with vertices in I(B1)\{v1}. Since
M misses z, M contains edges connecting a and b with B1. This shows (38.40).

Moreover, we have:

(38.41) if J1 and J2 are adjacent vertices in H, and |J1| ≥ 3 and |J2| ≥ 3,
then J1 has a neighbour a1 in X, and J2 has a neighbour a2 in
X, such that {a1J1, J1J2, J2a2} is the image of a matching in G.

Let f be an edge of G−e connecting J1 and J2. By (38.40), J1 has a neighbour
a1 in X such that there exists an edge connecting a1 and J1 disjoint from
f . Similarly, J2 has a neighbour a2 in X such that there exists an edge
connecting a2 and J2 disjoint from f . This gives the a1 and a2 required in
(38.41).

By Theorem 38.2, we can find subsets F1 and F2 of the edge set of H
such that for each j = 1, 2,

(38.42) (i) each vertex in X is incident with exactly one edge in Fj ,
(ii) for each i = 1, 2, if |Ji| = 1, then Ji is incident with none of the

edges in Fj , and, if |Ji| ≥ 3, then Ji is incident with exactly
two edges in Fj ,

(iii) |F1 ∩ EC| and |F2 ∩ EC| have different parities.

(Note that if |J1| = |J2| = 1, then J1 and J2 are not adjacent, as then
J1 = {v1} and J2 = {v2}, e = v1v2, and H = G − e.)
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If J1 and J2 are adjacent vertices of H and |J1| ≥ 3, |J2| ≥ 3, we can
choose the Fj such that moreover

(38.43) a1J1, a2J2 belong to both F1 and F2,

where a1 and a2 are as in (38.41). To see this, note that a1 and a2 are
nonadjacent (as the Petersen graph has no 4-circuit). Then there exist by
Theorem 38.2 subsets F ′

1 and F ′
2 of the edge set of H such that for each

j = 1, 2, each vertex of H different from a1 and a2 is incident with exactly
one edge in F ′

j , while a1 and a2 are not covered by F ′
j , and such that |F ′

1∩EC|
and |F ′

2 ∩ EC| have different parities. Extending the F ′
j with the edges a1J1

and a2J2 gives Fj as required.
By Theorem 38.7(iii), (38.40) and (38.41), F1 and F2 are projections of

perfect matchings M and N of G containing e, as required in (38.38).
End of Proof of Claim 5

This claim can be sharpened as follows:

Claim 6. Let B1 and B2 be simple barriers of G − e and let Ji := Bi ∪ I(Bi)
(for i = 1, 2), with J1 ∩ J2 = ∅ and vi ∈ Ji (for i = 1, 2). Define X :=
V \(J1∪J2). If G−e−u is factor-critical for each u ∈ X and H := G−e/J1/J2
is bicritical, then G/J1/J2 has a 2-vertex-cut intersecting {J1, J2}.

Proof of Claim 6. If G − u/J1 is not 2-connected for some u ∈ X, then
{u, J1} is a 2-vertex-cut in G/J1 (since G is 3-connected), hence in G/J1/J2,
as required. So we may assume that G − u/J1 and G − u/J2 are 2-connected
for each u ∈ X.

Let H be bicritical. By Claim 5, H is not a brick. Hence H is not 3-
connected. Let {u, u′} be a 2-vertex-cut of H. If {u, u′} intersects {J1, J2}
we are done. So suppose that {u, u′} is disjoint from {J1, J2}. Since G is
3-connected and e connects J1 and J2, we know that {u, u′} separates J1 and
J2. Hence, by Theorem 38.10, we may assume that the components K and
L of G − e − u − u′ are such that G/(K ∪ {u}) and G/K ∪ {u} are bricks.

Define U := K∪{u}. Then G has a perfect matching M with |M∩δ(U)| ≥
3, since G has no nontrivial tight cuts. As each edge in δ(U) \ {e} is incident
with u or u′, we know |M ∩ δ(U)| = 3. Let f ∈ δ(U) \ {e} and let N be a
perfect matching in G − e containing f . Then |N ∩ δ(U)| = 1, contradicting
Claim 1. End of Proof of Claim 6

G − e has exactly two maximal nontrivial barriers

By Corollary 24.11a, we know:

(38.44) any two distinct maximal barriers of G − e are disjoint.
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Since each maximal nontrivial barrier B contains N(v1)\{v2} or N(v2)\{v1}
(as e connects I(B) and K(B)), we know that G−e has at most two maximal
nontrivial barriers. In fact:

Claim 7. G − e has exactly two maximal nontrivial barriers B1 and B2.

Proof of Claim 7. First assume that G− e has no nontrivial barriers; that is,
G − e is bicritical. This contradicts Claim 6 for B1 := {v1} and B2 := {v2}.
(G − e − u is factor-critical for each u ∈ V by (38.3).) So G − e has at least
one maximal nontrivial barrier, B1 say. Let J1 := B1 ∪ I(B1), and assume
without loss of generality that v1 ∈ I(B1).

Assume that there is exactly one maximal nontrivial barrier. Then G −
e/J1 has no nontrivial barrier; that is, it is bicritical. By Claim 4, G/J1 is a
brick, and hence is 3-connected. This contradicts Claim 6, taking B2 := {v2}.
(G − e − u is factor-critical for each u ∈ V \ J1 by (38.3).)

End of Proof of Claim 7

Decomposition of G

Having the two maximal nontrivial barriers B1 and B2, assuming v1 ∈ I(B1)
and v2 ∈ I(B2), we define

(38.45) J1 := B1 ∪ I(B1) and J2 := B2 ∪ I(B2).

Note that J1 and J2 might intersect. Define J ′
1 := J1 \ J2, J ′

2 := J2 \ J1,
B′

1 := B1 \ I(B2), and B′
2 := B′

2 \ I(B1). By Theorem 38.9, B′
1 and B′

2 are
simple barriers again, with I(B′

1) = I(B1) \ B2 and I(B′
2) = I(B2) \ B1.

B1

B2I(B1)

I(B2)

X

e

v1

v2

Figure 38.3

Thus we obtain a decomposition of V into

(38.46) B′
1, B′

2, I(B′
1), I(B′

2), B1 ∩ I(B2), B2 ∩ I(B1),
X := K(B1) ∩ K(B2),



Section 38.6. The perfect matching lattice of a brick 639

where e connects I(B′
1) and I(B′

2).
By Theorem 38.9, G − X is bipartite, with colour classes B1 ∪ I(B2) and

B2 ∪ I(B1).

G[X] has exactly two components

Claim 8. G[X] is disconnected.

Proof of Claim 8. Consider H := G − e/J1/J ′
2. Note that H is isomorphic

to G − e/J ′
1/J2, since, if J1 ∩ J2 �= ∅, then J1 ∩ J2 has neighbours both in J ′

1
and J ′

2, and nowhere else (by Theorems 38.5 and 38.9).
By Claim 5, H is not a brick. However,

(38.47) H is bicritical.

To see this, choose two distinct vertices v, v′ of H. We can assume that v �= J ′
2

and v′ �= J1. (If v = J ′
2 or v′ = J1 then exchange v and v′.) Let w be equal to

v if v �= J1 and let w be any vertex in B1 if v = J1. Similarly, let w′ be equal
to v′ if v′ �= J ′

2 and let w′ be any vertex in B′
2 if v′ = J ′

2. Then G−e−w−w′

has a perfect matching, since {w, w′} is neither contained in B1 nor in B2. As
B1 is a simple barrier in G−e, each vertex in I(B1) is matched to a vertex in
B1. Similarly, each vertex in I(B′

2) is matched to a vertex in B′
2. Hence this

perfect matching gives a perfect matching of H − v − v′. This proves (38.47).
By Claim 6, G/J1/J ′

2 has a 2-vertex-cut {u, u′} intersecting {J1, J
′
2}. (G−

e − u is factor-critical for each u ∈ X by (38.3).) If {u, u′} = {J1, J
′
2} we are

done. So we can assume that u′ �∈ {J1, J
′
2}. If u = J1, then u′ is a cut vertex of

G−J1, contradicting Claim 4. If u = J ′
2, observe that G/J1/J ′

2 is isomorphic
to G/J ′

1/J2, where the isomorphism brings vertex J1 to vertex J ′
1, and vertex

J ′
2 to vertex J2. So u′ is a cut vertex of G − J2, again contradicting Claim 4.

End of Proof of Claim 8

We have that

(38.48) each component of G[X] is even,

as for any u ∈ B′
1, G[K(B2)]−u has a perfect matching M . Then trivially no

edge in M connects K(B2) and J2. Moreover, no edge in M connects K(B1)
and J1, since e �∈ M (as e is not contained in K(B2)) and since each vertex
in I(B′

1) is matched to a vertex in B′
1 \ {u} (note that J ′

1 ⊆ K(B2)).
For any subset L of X, any perfect matching M of G, and any i ∈ {1, 2},

define

(38.49) λi(M, L) := the number of edges in M connecting L and Bi.

Claim 9. For any component L of G[X] and any perfect matching M of G
containing e one has {λ1(M, L), λ2(M, L)} = {0, 2}.
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Proof of Claim 9. Since λ1(M, L) + λ2(M, L) = |M ∩ δ(L)| is even (as |L| is
even by (38.48)) and since λi(M, L) ≤ 2 for i = 1, 2 (since M has two edges
connecting K(Bi) and Bi), it suffices to show that λ1(M, L) �= λ2(M, L).

Suppose that λ1(M, L) = λ2(M, L). Since e ∈ M , |M ∩ δ(J ′
1)| = 3. As no

edge connects L and I(Bi) (since e is the only edge connecting K(Bi) and
I(Bi), but v1, v2 �∈ L), we have that M has λ1(M, L) edges connecting L and
J ′

1. Hence for U := J ′
1 ∪ L,

(38.50) |M ∩ δ(U)| = |M ∩ δ(J ′
1)| + |M ∩ δ(L)| − 2λ1(M, L)

= 3 + λ1(M, L) + λ2(M, L) − 2λ1(M, L) = 3.

Moreover, any perfect matching N of G − e satisfies |N ∩ δ(U)| = 1. Indeed,
|N∩δ(J ′

1)| = 1 and |N∩δ(J2)| = 1. So |N∩δ(X)| ≤ 2. Hence if |N∩δ(U)| ≥ 3,
then N ∩ δ(U) contains an edge leaving neither J ′

1 nor J2. Hence N has an
edge connecting L and X \ L, a contradiction. So |N ∩ δ(U)| = 1.

We show that both G/U and G/U are matching-covered, AND THat each
has a unique brick in its brick decomposition, contradicting Claim 1.

Consider G′ := G/J2. Then G′ is a brick by Claim 4, and L is a nonempty
union of components of G′ −J ′

1 −{J2}. Moreover, G′ − e is matching-covered
(since each perfect matching of G − e has exactly one edge in δ(J2)) and B′

1
is a simple barrier of G′ − e. So by Theorem 38.8 (taking Z := X \ L and
v2 = J2), G′/U = G/U is matching-covered and has a unique brick in its
brick decomposition.

Let U ′ := J ′
2 ∪ (X \ L). Similarly, G/U ′ is matching-covered and has a

unique brick in its brick decomposition. Since U ′ = U ∪ (J1 ∩ J2), we have
U ∪ U ′ = J1 ∩ J2. So G/U/U ′ is matching-covered and bipartite. As U ′ gives
a tight cut in G/U , also G/U is matching-covered and has a unique brick in
its brick decomposition. End of Proof of Claim 9

Claim 10. G[X] has exactly two components.

Proof of Claim 10. Let M be any perfect matching of G containing e. Then
λi(M, X) ≤ 2 for i = 1, 2, and hence by Claim 9, G[X] has exactly two
components. End of Proof of Claim 10

Conclusion

Let L1 and L2 be the components of G[X]. For j = 1, 2, let Zj be the set
of pairs {b, b′} with b ∈ B1, b′ ∈ B′

2 such that Lj ∪ {b, b′} is matchable. In
particular, if b ∈ B1 and b′ ∈ B′

2 are adjacent, then {b, b′} ∈ Z1 ∩ Z2. Then

Claim 11. For each j = 1, 2, any b ∈ N(Lj) belongs to some pair in Zj.

Proof of Claim 11. As b ∈ N(Lj), there is an edge f joining b and Lj . Let M
be a perfect matching of G−e containing f . Then λ1(M, Lj) = λ2(M, Lj) = 1,
and hence {b, b′} ∈ Zj for some b′. End of Proof of Claim 11
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Note that if b ∈ N(Lj) for some j, then b ∈ B′
1 ∪ B′

2 (since X has no
neighbour in I(B1) ∪ I(B2)).

Claim 12. Each pair in Z1 intersects each pair in Z2.

Proof of Claim 12. Suppose to the contrary that there exist disjoint pairs
{b, b′} ∈ Z1 and {c, c′} ∈ Z2, taking b, c ∈ B1 and b′, c′ ∈ B′

2. By definition
of Zj , L1 ∪ {b, b′} and L2 ∪ {c, c′} are matchable. Moreover, by Theorem
38.7, also J1 \ {b, c, v1} and J ′

2 \ {b′, c′, v2} are matchable. Together with e,
this gives a perfect matching M of G containing e with λ1(M, L1) ≤ 1 and
λ2(M, L1) ≤ 1. This contradicts Claim 9. End of Proof of Claim 12

Claim 13. Z1 ∩ Z2 = ∅, |B1| = |B2| = 2, I(B1) ∩ B2 = I(B2) ∩ B1 = ∅,
B1 ∪ B2 is a stable set, and Z1 and Z2 are perfect matchings on B1 ∪ B2.

Proof of Claim 13. We have |N(Lj) ∩ Bi| ≥ 2 for j = 1, 2 and i = 1, 2, since
(for j = 1, i = 1, say) L1 has at least two neighbours in K(B2) (as G[K(B2)]
is 2-connected), which must belong to B1.

Assume that Z1 ∩ Z2 �= ∅. Let {c, c′} ∈ Z1 ∩ Z2 with c ∈ B1 and c′ ∈ B′
2.

We can choose b ∈ N(L1) ∩ B1 with b �= c. Then {b, c′} ∈ Z1 (by Claims 11
and 12). We can choose b′ ∈ N(L2) ∩ B′

2 with b′ �= c′. Again, {b′, c} ∈ Z2. As
{b, c′} and {b′, c} are disjoint, this contradicts Claim 12. So Z1 ∩ Z2 = ∅.

Then B1 ∪ B′
2 is a stable set, since if there is an edge connecting b ∈ B1

and b′ ∈ B′
2, then L1 ∪ {b, b′} and L2 ∪ {b, b′} are matchable, and hence

{b, b′} ∈ Z1 ∩ Z2, a contradiction.
This implies B1 ∩ I(B2) = ∅, since otherwise there is an edge connecting

b ∈ B1 ∩ I(B2) and b′ ∈ B′
2 = B2 \ I(B1) (since B1 ∩ I(B2) has more than

|B1 ∩ I(B2)| = |B2 ∩ I(B1)| neighbours in B2, by Theorem 38.5). Hence, by
(38.17)(iii), B2 ∩ I(B1) = ∅. So B′

2 = B2.
Next, for each j = 1, 2, no two pairs in Zj intersect. For assume that

{b, b′}, {b, c′} belong to Z1 with b′, c′ different vertices in B2. As |N(L2) ∩
B1| ≥ 2, we can choose (by Claim 11) {d, d′} ∈ Z2, with d ∈ B1 and d �= b.
However, then d′ = b′ and d′ = c′ by Claim 12, a contradiction, as b′ �= c′.

So Zj consists of disjoint pairs. As each pair in Z1 intersects each pair in
Z2, we have that each Zj consists of two disjoint pairs, that Z1 and Z2 cover
the same set of vertices, and that Z1 ∩ Z2 = ∅. In particular,

(38.51) |N(X) ∩ B1| = |N(X) ∩ B2| = 2.

Finally we show that |Bi| = 2 for i = 1, 2. Suppose that (say) |B1| ≥ 3.
Then |I(B1)| ≥ 2. Choose v ∈ I(B1) \ {v1}. As G is bicritical, G − v − v1 has
a perfect matching M . Necessarily, at least three edges of M connect B1 and
K(B1), hence (as B1 ∪ B2 is stable) M has at least three edges connecting
X and B1. So |N(X) ∩ B1| ≥ 3, contradicting (38.51).

End of Proof of Claim 13

This claim in particular implies that
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(38.52) v1 and v2 have degree 3

(since all neighbours of v1 belong to B1 ∪ {v2}). We can set

(38.53) B1 = {b1, b
′
1}, B2 = {b2, b

′
2},

Z1 = {{b1, b
′
2}, {b′

1, b2}}, Z2 = {{b1, b2}, {b′
1, b

′
2}}.

Claim 14. Lj ∪ Bi is matchable for all i, j ∈ {1, 2}.

Proof of Claim 14. We may assume i = 2, j = 1. Let M and N be matchings
spanning L1 ∪ {b′

1, b2} and L1 ∪ {b1, b
′
2}, respectively. The path P in M ∪ N

starting at b′
1 ends at b′

2, as if P would end at b1, then L1∪{b1, b2} is matchable
(while {b1, b2} �∈ Z1), and if it would end at b2, then L1 ∪ {b1, b

′
1, b2, b

′
2} is

matchable, implying that G has a perfect matching M ′ containing e with
λ1(M ′, L1) = λ2(M ′, L1) = 2, contradicting Claim 9. So M
EP is a perfect
matching on L1 ∪ {b2, b

′
2}. End of Proof of Claim 14

Claim 15. G − e′ is matching-covered for each edge e′ of G.

Proof of Claim 15. Since G is connected and e is chosen arbitrarily under the
condition that G − e is matching-covered, we can assume that e′ is incident
with e. In particular, we can assume that e′ connects v1 and b1. Suppose that
G − e′ is not matching-covered. Then there exists an edge f �= e′ such that
each perfect matching of G containing f also contains e′. So f is disjoint from
e′.

First assume that f is incident with v2. We may assume that f connects
v2 with vertex b2. By definition of Z1, L1 ∪ {b1, b

′
2} is matchable. Since also

L2 is matchable, we can find a perfect matching of G containing f but not
e′, contradicting our assumption.

So we may assume that f is incident with L1. Let M ′ be a perfect
matching of G containing f . If M ′ does not intersect δ(L1), we can extend
M ′[L1]∪{v1b

′
1, v2b

′
2} by a matching spanning L2 ∪{b1, b2} to obtain a perfect

matching containing f but not e′, a contradiction. So M ′ intersects δ(L1).
Hence, necessarily, it contains an edge joining L1 with b′

1 (as e′ ∈ M ′). So
also it contains an edge joining L1 and b2. Therefore, M ′ contains a matching
M spanning L1 ∪ {b′

1, b2}. Let N be a matching spanning L1 ∪ {b1, b
′
2}.

Like in Claim 14, the path P in M ∪N starting at b′
1 ends at b′

2. Similarly,
the path Q in M ∪ N starting at b2 ends at b1. At least one of M
EP
and M
EQ contains f (since f is in M and on at most one of P, Q). As
L2 ∪{b1, b

′
1} and L2 ∪{b2, b

′
2} are matchable (by Claim 14), there is a perfect

matching containing f and not e′, a contradiction. End of Proof of Claim 15

This gives with (38.52) that

(38.54) G is 3-regular,

since by Claim 15 we can take for e any edge of G.
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Claim 16. |L1| = |L2| = 2.

Proof of Claim 16. Since G is 3-regular, each b ∈ B1 ∪ B2 has a unique
neighbour in Lj , for each j = 1, 2. In fact, for any j = 1, 2,

(38.55) if b ∈ B1, b′ ∈ B2, and {b, b′} �∈ Zj , then the neighbours of b and
b′ in Lj coincide.

For assume that the neighbour c of b in Lj differs from the neighbour c′ of b′

in Lj . As G is bicritical, G − c − c′ has a perfect matching M . Let M ′ be the
set of edges in M intersecting Lj . As |Lj | is even, M ′ spans either Lj − c− c′

or (Lj − c − c′) ∪ (B1 − b) ∪ (B2 − b′). Extending M ′ with the edges bc and
b′c′, we obtain a matching spanning Lj ∪ {b, b′}, contradicting {b, b′} �∈ Zj ,
or spanning Lj ∪ B1 ∪ B2, contradicting Claim 9. This shows (38.55).

Now (38.55) implies that N(B1) ∩ L1 = N(B2) ∩ L1. As this set is not a
2-vertex-cut of G, we have |L1| = 2. Similarly, |L2| = 2.

End of Proof of Claim 16

So both L1 and L2 consist of a single edge. Therefore, G is the Petersen
graph, contradicting our assumption.

38.7. Synthesis and further consequences of the previous
results

The previous results imply a characterization of the matching lattice for
matching-covered graphs (Lovász [1987]):

Corollary 38.11a. Let G = (V, E) be a matching-covered graph and let
x ∈ Z

E. Then x belongs to the perfect matching lattice of G if and only if for
some maximal cross-free collection F of nontrivial tight cuts:

(38.56) (i) x(D) = x(δ(v)) for each D ∈ F and each v ∈ V ;
(ii) for every Petersen brick resulting from the given tight cut de-

composition, and for some 5-circuit C in that brick, the sum
of the xe over edges e mapping to EC, is even.

Proof. Directly from Theorems 38.6, 38.1, and 38.11.

Corollary 38.11a implies the following (conjectured by Lovász [1985]):

Corollary 38.11b. Let G = (V, E) be a matching-covered graph and let
x ∈ 2Z

E be such that x(C) = x(C ′) for any two tight cuts C and C ′. Then x
belongs to the perfect matching lattice of G.

Proof. Directly from Corollary 38.11a.
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Moreover, there is the following corollary for regular graphs (recall that
a k-graph is a k-regular graph with |C| ≥ k for each odd cut):

Corollary 38.11c. Let G = (V, E) be a k-graph. Then the all-2 vector 2
belongs to the perfect matching lattice of G. If G has no subgraph homeo-
morphic to the Petersen graph, then the all-1 vector belongs to the perfect
matching lattice of G.

Proof. Directly from Corollary 38.11a.

A special case is the following result of Seymour [1979a], which also fol-
lows from the conjecture of Tutte [1966], proved by Robertson, Seymour,
and Thomas [1997], Sanders, Seymour, and Thomas [2000], and Sanders and
Thomas [2000], that each bridgeless cubic graph without Petersen graph mi-
nor, is 3-edge-colourable.

Corollary 38.11d. Let G = (V, E) be a bridgeless cubic graph without Pe-
tersen graph minor. Then the all-1 vector 1 belongs to the perfect matching
lattice of G.

Proof. This is a special case of Corollary 38.11c.

Similarly, the following consequence, a theorem of Seymour [1979a], sup-
ports a positive answer to the question of Fulkerson [1971a] whether each
cubic graph G satisfies χ′(G2) = 6:

Corollary 38.11e. Let G = (V, E) be a bridgeless cubic graph. Then the
all-2 vector 2 in R

E belongs to the perfect matching lattice of G.

Proof. Again, this is a special case of Corollary 38.11c.

38.8. What further might (not) be true

The conjecture that the perfect matchings in any graph would constitute a
Hilbert base, is too bold: Let G be the graph obtained from the Petersen
graph by adding one additional edge (connecting nonadjacent vertices of the
Petersen graph). Let xe := 1 if e is an edge of the Petersen graph, and xe := 0
if e is the new edge. Then x belongs to the perfect matching cone23 and to the
perfect matching lattice (since G is a brick). However, x is not a nonnegative
integer combination of perfect matchings, since the Petersen graph is not
3-edge-colourable. (This example was given by Goddyn [1993].)

Two weaker conjectures might yet hold true. The first one is due to L.
Lovász (cf. Goddyn [1993]):
23 The perfect matching cone is the cone generated by the incidence vectors of the perfect

matchings.



Section 38.8. What further might (not) be true 645

(38.57) (?) for any graph without Petersen graph minor, the incidence
vectors of the perfect matchings form a Hilbert base. (?)

The second one was given in Section 28.6 above ((28.28)), and is due to
Seymour [1979a] (the generalized Fulkerson conjecture):

(38.58) (?) each k-graph contains 2k perfect matchings, covering each
edge exactly twice. (?)

(A k-graph is a k-regular graph G = (V, E) with dG(U) ≥ k for each odd
U ⊆ V .) For k = 3, (38.58) was asked by Fulkerson [1971a]:

(38.59) (?) each bridgeless cubic graph has 6 perfect matchings covering
each edge precisely twice. (?)

What has been proved by Robertson, Seymour, and Thomas [1997], Sanders,
Seymour, and Thomas [2000], and Sanders and Thomas [2000] is:

(38.60) each bridgeless cubic graph without Petersen graph minor is 3-
edge-colourable.

This is a special case of conjecture (38.57), and of the 4-flow conjecture of
Tutte [1966]:

(38.61) (?) each bridgeless graph without Petersen graph minor has three
cycles covering each edge precisely twice. (?)

(A cycle is an edge-disjoint union of circuits.) Related is the following theorem
of Alspach, Goddyn, and Zhang [1994]:

(38.62) the circuits of a graph G form a Hilbert base ⇐⇒ G has no
Petersen graph minor.

It implies that the circuit double cover conjecture (asked by Szekeres [1973],
conjectured by Seymour [1979b]):

(38.63) (?) each bridgeless graph has a family of circuits covering each
edge precisely twice, (?)

is true for graphs without Petersen graph minor:

(38.64) each bridgeless graph without Petersen graph minor has a family
of circuits covering each edge precisely twice.

(For cubic graphs this was shown by Alspach and Zhang [1993].) This is also
a special case of the 4-flow conjecture (38.61).

Seymour [1979b] conjectures that

(38.65) (?) each even integer vector x in the circuit cone is a nonnegative
integer combination of incidence vectors of circuits. (?)

This is more general than the circuit double cover conjecture.
Bermond, Jackson, and Jaeger [1983] have proved that
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(38.66) each bridgeless graph has a family of circuits covering each edge
precisely four times.

Tarsi [1986] mentioned the following strengthening of the circuit double cover
conjecture:

(38.67) (?) in each bridgeless graph there exists a family of at most 5
cycles covering each edge precisely twice. (?)

Finally, the 5-flow conjecture of Tutte [1954a]:

(38.68) (?) each bridgeless graph has a nowhere-zero 5-flow, (?)

can be formulated in terms of circuits as follows (by Theorem 28.4):

(38.69) (?) each bridgeless graph can be oriented such that there exist
directed circuits, covering each edge at least once and at most
four times. (?)

Seymour [1981b] showed that each bridgeless graph has a nowhere-zero 6-
flow; equivalently:

(38.70) each bridgeless graph can be oriented such that there exist di-
rected circuits, covering each edge at least once and at most five
times.

It improves an earlier result of Jaeger [1976,1979] that each bridgeless graph
has a nowhere-zero 8-flow. This is equivalent to: each bridgeless graph con-
tains three cycles covering all edges.

Notes. More on nowhere-zero flows and circuit covers can be found in Itai, Lipton,
Papadimitriou, and Rodeh [1981], Bermond, Jackson, and Jaeger [1983], Bouchet
[1983], Steinberg [1984], Alon and Tarsi [1985], Fraisse [1985], Jaeger, Khelladi,
and Mollard [1985], Tarsi [1986], Khelladi [1987], Möller, Carstens, and Brinkmann
[1988], Catlin [1989], Goddyn [1989], Jamshy and Tarsi [1989,1992], Fan [1990,1993,
1995,1998], Jackson [1990], Zhang [1990,1993c], Raspaud [1991], Alspach and Zhang
[1993], Fan and Raspaud [1994], Huck and Kochol [1995], Lai [1995], Steffen [1996],
and Galluccio and Goddyn [2002]. Surveys were given by Jaeger [1979,1985,1988],
Zhang [1993a,1993b], and Seymour [1995a], and a book was devoted to it by Zhang
[1997b]. The extension to matroids is discussed in Section 81.10.

38.9. Further results and notes

38.9a. The perfect 2-matching space and lattice

Let G = (V, E) be a graph. The perfect 2-matching space of G is the linear hull of
the perfect 2-matchings in G. This space is easily characterized with the help of
Corollary 30.2b:
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Theorem 38.12. The perfect 2-matching space of G consists of all vectors x ∈ R
E

such that xe = 0 if e is not in the support of any perfect 2-matching and such that
x(δ(v)) = x(δ(u)) for all u, v ∈ V .

Proof. Clearly each vector x in the perfect 2-matching space satisfies the condition.
To see the reverse, let x satisfy the condition. By adding appropriate multiples of
perfect 2-matchings, we can assume that x ≥ 0. If x = 0 we are done, so we can
assume x �= 0. Then, by scaling, we can assume that x(δ(v)) = 2 for each vertex v.
Hence, by Corollary 30.2b, x belongs to the perfect 2-matching polytope of F , and
therefore to the perfect 2-matching space.

The perfect 2-matching lattice of G is the lattice generated by the perfect 2-
matchings in G. Jungnickel and Leclerc [1989] showed that a characterization of the
perfect 2-matching lattice can be easily derived from the theorem of Petersen that
the edges of any 2k-regular graph can be decomposed into k 2-factors (Corollary
30.7b):

Theorem 38.13. The perfect 2-matching lattice of G consists of all integer vectors
x in the perfect 2-matching space of G with x(δ(v)) even for one (hence for each)
vertex v.

Proof. Trivially, each vector x in the perfect 2-matching lattice satisfies the con-
dition. To see the reverse, let x satisfy the condition. By adding integer multiples
of perfect 2-matchings, we can assume that x ≥ 0. Replace each edge e by xe

parallel edges, yielding graph G′, of degree 2k for some integer k > 0. Now by
Corollary 30.7b, the edges of G′ can be partitioned into k 2-factors. This gives a
decomposition of x as a sum of k perfect 2-matchings in G.

38.9b. Further notes

De Carvalho, Lucchesi, and Murty [2002a,2002b] showed that each brick G different
from K4, the prism C6, and the Petersen graph, has an edge e such that G − e
is a matching-covered graph with precisely one brick in its brick decomposition
(conjectured by L. Lovász in 1987). Having this, the proof of Theorem 38.11 can be
shortened considerably (de Carvalho, Lucchesi, and Murty [2002c]). (Earlier related
work was done by de Carvalho and Lucchesi [1996].)

Naddef and Pulleyblank [1982] study the relation between ear-decompositions
and the GF(2)-rank of the incidence vectors of the perfect matchings.

Kilakos [1996] characterized the lattice generated by the matchings M that
have a positive coefficient in at least one fractional χ′∗(G)-edge-colouring (these
matchings form a face of the matching polytope of G).
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