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Part II: Bipartite Matching and Covering

A second classical area of combinatorial optimization is formed by bipartite match-
ing. The area gives rise to a number of basic problems and techniques, and has an
abundance of applications in various forms of assignment and transportation.
Work of Frobenius in the 1910s on the decomposition of matrices formed the incen-
tive to Kőnig to study matchings in bipartite graphs. An extension by Egerváry in
the 1930s to weighted matchings inspired Kuhn in the 1950s to design the ‘Hungar-
ian method’ for the assignment problem (which is equivalent to finding a minimum-
weight perfect matching in a complete bipartite graph).
Parallel to this, Tolstŏı, Kantorovich, Hitchcock, and Koopmans had investigated
the transportation problem. It motivated Kantorovich and Dantzig to consider more
general problems, culminating in the development of linear programming. It led in
turn to solving the assignment problem by linear programming, and thus to a
polyhedral approach.
Several variations and extensions of bipartite matching, like edge covers, factors, and
transversals, can be handled similarly. Major explanation is the total unimodularity
of the underlying matrices.
Bipartite matching and transportation can be considered as special cases of disjoint
paths and of transshipment, studied in the previous part — just consider a bipartite
graph as a directed graph, by orienting all edges from one colour class to the other.
It was however observed by Hoffman and Orden that this can be turned around,
and that disjoint paths and transshipment problems can be reduced to bipartite
matching and transportation problems. So several results in this part on bipartite
matching are matched by results in the previous part on paths and flows. Viewed
this way, the present part forms a link between the previous part and the next part
on nonbipartite matching, where the underlying matrices generally are not totally
unimodular.

Chapters:

16. Cardinality bipartite matching and vertex cover . . . . . . . . . . . . . . . . . . . . . . . . . 259
17. Weighted bipartite matching and the assignment problem. . . . . . . . . . . . . . . . 285
18. Linear programming methods and the bipartite matching polytope . . . . . . 301
19. Bipartite edge cover and stable set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
20. Bipartite edge-colouring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
21. Bipartite b-matchings and transportation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
22. Transversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
23. Common transversals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393



Chapter 16

Cardinality bipartite matching
and vertex cover

‘Cardinality matching’ deals with maximum-size matchings. In this chapter
we give the theorems of Frobenius on the existence of a perfect matching
in a bipartite graph, and the extension by Kőnig on the maximum size of
a matching in a bipartite graph. We also discuss finding a maximum-size
matching in a bipartite graph algorithmically.
We start with an easy but fundamental theorem relating maximum-size
matchings and M -alternating paths, that applies to any graph and that
will also be important for nonbipartite matching.
In this chapter, graphs can be assumed to be simple.

16.1. M -augmenting paths

Let G = (V, E) be an undirected graph. A matching in G is a set of disjoint
edges. An important concept in finding a maximum-size matching, both in
bipartite and in nonbipartite graphs, is that of an ‘augmenting path’ (intro-
duced by Petersen [1891]).

Let M be a matching in a graph G = (V, E). A path P in G is called
M -augmenting if P has odd length, its ends are not covered by M , and its
edges are alternatingly out of and in M .

edge in M

edge not in M

vertex covered by M

vertex not covered by M

Figure 16.1
An M -augmenting path

Clearly, if P is an M -augmenting path, then

(16.1) M ′ := M�EP
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is again a matching and satisfies |M ′| = |M | + 1.1 In fact, it is not difficult
to show (Petersen [1891]):

Theorem 16.1. Let G = (V, E) be a graph and let M be a matching in
G. Then either M is a matching of maximum size or there exists an M -
augmenting path.

Proof. If M is a maximum-size matching, there cannot exist an M -augment-
ing path P , since otherwise M�EP would be a larger matching.

Conversely, if M ′ is a matching larger than M , consider the components
of the graph G′ := (V, M ∪ M ′). Then G′ has maximum degree two. Hence
each component of G′ is either a path (possibly of length 0) or a circuit. Since
|M ′| > |M |, at least one of these components should contain more edges in
M ′ than in M . Such a component forms an M -augmenting path.

So in any graph, if we have an algorithm finding an M -augmenting path
for any matching M , then we can find a maximum-size matching: we itera-
tively find matchings M0, M1, . . ., with |Mi| = i, until we have a matching
Mk such that there exists no Mk-augmenting path. (Also this was observed
by Petersen [1891].)

16.2. Frobenius’ and Kőnig’s theorems

A classical min-max relation due to Kőnig [1931] characterizes the maximum
size of a matching in a bipartite graph. To this end, call a set C of vertices
of a graph G a vertex cover if each edge of G intersects C. Define

(16.2) ν(G) := the maximum size of a matching in G,
τ(G) := the minimum size of a vertex cover in G.

These numbers are called the matching number and the vertex cover number
of G, respectively. It is easy to see that, for any graph G,

(16.3) ν(G) ≤ τ(G),

since any two edges in any matching contain different vertices in any vertex
cover. The graph K3 has strict inequality in (16.3). However, if G is bipartite,
equality holds, which is the content of Kőnig’s matching theorem (Kőnig
[1931]). It can be seen to be equivalent to a theorem of Frobenius [1917]
(Corollary 16.2a below).

Theorem 16.2 (Kőnig’s matching theorem). For any bipartite graph G =
(V, E) one has

(16.4) ν(G) = τ(G).
1 EP denotes the set of edges in P . � denotes symmetric difference.
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That is, the maximum size of a matching in a bipartite graph is equal to the
minimum size of a vertex cover.

Proof. By (16.3) it suffices to show that ν(G) ≥ τ(G). We may assume that
G has at least one edge. Then:

(16.5) G has a vertex u covered by each maximum-size matching.

To see this, let e = uv be any edge of G, and suppose that there are maximum-
size matchings M and N missing u and v respectively2. Let P be the com-
ponent of M ∪ N containing u. So P is a path with end vertex u. Since P is
not M -augmenting (as M has maximum size), P has even length, and hence
does not traverse v (otherwise, P ends at v, contradicting the bipartiteness
of G). So P ∪ e would form an N -augmenting path, a contradiction (as N
has maximum size). This proves (16.5).

Now (16.5) implies that for the graph G′ := G − u one has ν(G′) =
ν(G) − 1. Moreover, by induction, G′ has a vertex cover C of size ν(G′).
Then C ∪ {u} is a vertex cover of G of size ν(G′) + 1 = ν(G).

(This proof is due to De Caen [1988]. For Kőnig’s original, algorithmic proof,
see the proof of Theorem 16.6. Note that also Menger’s theorem implies
Kőnig’s matching theorem (using the construction given in the proof of The-
orem 16.4 below). For a proof based on showing that any minimum bipartite
graph with a given vertex cover number is a matching, see Lovász [1975d]. For
another proof (of Rizzi [2000a]), see Section 16.2c. As we will see in Chapter
18, Kőnig’s matching theorem also follows from the total unimodularity of
the incidence matrix of a bipartite graph. (Flood [1960] and Entringer and
Jackson [1969] gave proofs similar to Kőnig’s proof.))

A consequence of Theorem 16.2 is a theorem of Frobenius [1917] that
characterizes the existence of a perfect matching in a bipartite graph. (A
matching is perfect if it covers all vertices.) Actually, this theorem motivated
Kőnig to study matchings in graphs, and in turn it can be seen to imply
Kőnig’s matching theorem.

Corollary 16.2a (Frobenius’ theorem). A bipartite graph G = (V, E) has a
perfect matching if and only if each vertex cover has size at least 1

2 |V |.
Proof. Directly from Kőnig’s matching theorem, since G has a perfect match-
ing if and only if ν(G) ≥ 1

2 |V |.

This implies an earlier theorem of Kőnig [1916] on regular bipartite graphs:

2 M misses a vertex u if u �∈ ⋃
M . Here

⋃
M denotes the union of the edges in M ; that

is, the set of vertices covered by the edges in M .
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Corollary 16.2b. Each regular bipartite graph (of positive degree) has a
perfect matching.

Proof. Let G = (V, E) be a k-regular bipartite graph. So each vertex is
incident with k edges. Since |E| = 1

2k|V |, we need at least 1
2 |V | vertices

to cover all edges. Hence Corollary 16.2a implies the existence of a perfect
matching.

Let A be the V × E incidence matrix of the bipartite graph G = (V, E).
Kőnig’s matching theorem (Theorem 16.2) states that the optima in the linear
programming duality equation

(16.6) max{1Tx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ 1T}
are attained by integer vectors x and y. This can also be derived from the
total unimodularity of A — see Section 18.3.

16.2a. Frobenius’ proof of his theorem

The proof method given by Frobenius [1917] of Corollary 16.2a is in terms of ma-
trices, but can be formulated in terms of graphs as follows. Necessity of the con-
dition being easy, we prove sufficiency. Let U and W be the colour classes of G.
As both U and W are vertex covers, and hence have size at least 1

2 |V |, we have
|U | = |W | = 1

2 |V |.
Choose an edge e = {u, w} with u ∈ U and w ∈ W . We may assume that

G−u−w has no perfect matching. So, inductively, G−u−w has a vertex cover C′

with |C′| < |U | − 1. Then C := C′ ∪ {u, w} is a vertex cover of G, with |C| ≤ |U |,
and hence |C| = |U |.

Now U�C and W�C partition V (where � denotes symmetric difference).
If both U�C and W�C are matchable3, then G has a perfect matching. So, by
symmetry, we may assume that U�C is not matchable. Now U�C �= V as u �∈
U�C. Hence we can apply induction, giving that G[U�C] has a vertex cover D
with |D| < 1

2 |U�C|. Then the set D∪(U ∩C) is a vertex cover of G (since each edge
of G intersects both U and C, and hence it either intersects U ∩ C, or is contained
in U�C and hence intersects D). However, |D| + |U ∩ C| < 1

2 |U�C| + |U ∩ C| =
1
2 (|U | + |C|) = 1

2 |V |, a contradiction.
(This is essentially also the proof method of Rado [1933] and Dulmage and

Halperin [1955].)

16.2b. Linear-algebraic proof of Frobenius’ theorem

Frobenius [1917] was motivated by a determinant problem, namely by the following
direct consequence of his theorem. Let A = (ai,j) be an n×n matrix in which each
entry ai,j is either 0 or a variable xi,j (where the variables xi,j are independent).
Then Frobenius’ theorem is equivalent to: det A = 0 if and only if A has a k × l
all-zero submatrix with k + l > n. (Earlier, Frobenius [1912] showed that for such

3 A set T of vertices is called matchable if there exists a matching M with T =
⋃

M .
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a matrix A, det A is reducible (that is, there exist nonconstant polynomials p and
q with det A = p · q) if and only if A has a k × l all-zero submatrix with k + l = n
and k, l ≥ 1.)

Edmonds [1967b] showed that the argumentation can be applied also the other
way around. This gives the following linear-algebraic proof of Frobenius’ theorem
(implying linear-algebraic proofs also of other bipartite matching theorems).

Let G = (V, E) be a bipartite graph not having a perfect matching. Let U and
W be the colour classes of G. We may assume that |U | = |W | (otherwise the smaller
colour class is a vertex cover of size less than 1

2 |V |).
Make a U × W matrix A = (au,w), where au,w = 0 if u and w are not adjacent,

and au,w = xu,w otherwise, where the xu,w are independent variables.
As G has no perfect matching, we know that det A = 0, and hence the columns

of A are linearly dependent. Let W ′ ⊆ W be the index set of a minimal set of linearly
dependent columns of A. Then there is a subset U ′ of U with |U ′| = |W ′| − 1 such
that the U ′×W ′ submatrix A′ of A has rank |U ′|. Hence there is a vector y such that
A′y = 0 and such that each entry in y is a nonzero polynomial in those variables
xu,w that occur in A′. Let A′′ be the U × W ′ submatrix of A. Then A′′y = 0, and
hence all entries in the (U \ U ′) × W ′ submatrix of A are 0. Hence the rows in U ′

and columns in W \ W ′ cover all nonzeros. As |U ′| + |W \ W ′| < |W |, we have
Frobenius’ theorem.

16.2c. Rizzi’s proof of Kőnig’s matching theorem

Rizzi [2000a] gave the following short proof of Kőnig’s matching theorem. Let G =
(V, E) be a counterexample with |V | + |E| minimal. Then G has a vertex u of
degree at least 3. Let v be a neighbour of u. By the minimality of G, G − v has
a vertex cover U of size ν(G − v). Then U ∪ {v} is a vertex cover of G. As G is
a counterexample, we have |U ∪ {v}| ≥ ν(G) + 1, and so ν(G − v) = |U | ≥ ν(G).
Therefore, G has a maximum-size matching M not covering v. Let f ∈ E \ M be
incident with u and not with v. Then ν(G − f) ≥ |M | = ν(G). Let W be a vertex
cover of G − f of size ν(G − f) = ν(G). Then v �∈ W , since v is not covered by
M . Hence u ∈ W , as W covers edge uv of G − f . Therefore, W also covers f , and
hence it is a vertex cover of G of size ν(G).

16.3. Maximum-size bipartite matching algorithm

We now focus on the problem of finding a maximum-size matching in a bipar-
tite graph algorithmically. In view of Theorem 16.1, this amounts to finding
an augmenting path. In the bipartite case, this can be done by finding a di-
rected path in an auxiliary directed graph. This method is essentially due to
van der Waerden [1927] and Kőnig [1931].

Matching augmenting algorithm for bipartite graphs

input: a bipartite graph G = (V, E) and a matching M ,
output: a matching M ′ satisfying |M ′| > |M | (if there is one).
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description of the algorithm: Let G have colour classes U and W . Make a
directed graph DM by orienting each edge e = {u, w} of G (with u ∈ U, w ∈
W ) as follows:

(16.7) if e ∈ M , then orient e from w to u,
if e �∈ M , then orient e from u to w.

Let UM and WM be the sets of vertices in U and W (respectively) missed by
M .

Now an M -augmenting path (if any) can be found by finding a directed
path in DM from UM to WM . This gives a matching larger than M .

The correctness of this algorithm is immediate. Since a directed path can
be found in time O(m), we can find an augmenting path in time O(m). Hence
we have the following result (implicit in Kuhn [1955b]):

Theorem 16.3. A maximum-size matching in a bipartite graph can be found
in time O(nm).

Proof. Note that we do at most n iterations, each of which can be done in
time O(m) by breadth-first search (Theorem 6.3).

16.4. An O(n1/2m) algorithm

Hopcroft and Karp [1971,1973] and Karzanov [1973b] proved the following
sharpening of Theorem 16.3, which we derive from the (equivalent) result of
Karzanov [1973a], Tarjan [1974e], and Even and Tarjan [1975] on the com-
plexity of finding a maximum number of vertex-disjoint paths (Corollary
9.7a).

Theorem 16.4. A maximum-size matching in a bipartite graph can be found
in O(n1/2m) time.

Proof. Let G = (V, E) be a bipartite graph, with colour classes U and W .
Make a directed graph D = (V, A) as follows. Orient all edges from U to W .
Moreover, add a new vertex s, with arcs (s, u) for all u ∈ U , and a new vertex
t, with arcs (w, t) for all w ∈ W . Then the maximum number of internally
vertex-disjoint s − t paths in D is equal to the maximum size of a matching
in G. The result now follows from Corollary 9.7a.

In fact, the factor n1/2 can be reduced to ν(G)1/2 (as before, ν(G) and
τ(G) denote the maximum size of a matching and the minimum size of a
vertex cover, respectively):

Theorem 16.5. A maximum-size matching in a bipartite graph G can be
found in O(ν(G)1/2m) time.
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Proof. Similar to the proof of Theorem 16.4, using Theorem 9.8 and the fact
that ν(G) = τ(G).

Gabow and Tarjan [1988a] observed that the method of Corollary 9.7a
applied to the bipartite matching problem implies that for each k one can
find in time O(km) a matching of size at least ν(G) − n

k .

16.5. Finding a minimum-size vertex cover

From a maximum-size matching in a bipartite graph, one can derive a
minimum-size vertex cover. The method gives an alternative proof of Kőnig’s
matching theorem (in fact, this is the original proof of Kőnig [1931]):

Theorem 16.6. Given a bipartite graph G and a maximum-size matching
M in G, we can find a minimum-size vertex cover in G in time O(m).

Proof. Make DM , UM , and WM as in the matching-augmenting algorithm,
and let RM be the set of vertices reachable in DM from UM . So RM ∩WM = ∅.
Then each edge uw in M is either contained in RM or disjoint from RM (that
is, u ∈ RM ⇐⇒ w ∈ RM ). Moreover, no edge of G connects U ∩ RM and
W \ RM , as no arc of DM leaves RM . So C := (U \ RM ) ∪ (W ∩ RM ) is a
vertex cover of G. Since C is disjoint from UM ∪WM and since no edge in M
is contained in C, we have |C| ≤ |M |. Therefore, C is a minimum-size vertex
cover.

Hence:

Corollary 16.6a. A minimum-size vertex cover in a bipartite graph can be
found in O(n1/2m) time.

Proof. Directly from Theorems 16.4 and 16.6.

16.6. Matchings covering given vertices

The following theorem characterizes when one of the colour classes of a bi-
partite graph can be covered by a matching, and is a direct consequence of
Kőnig’s matching theorem (where N(S) denotes the set of vertices not in S
that have a neighbour in S):

Theorem 16.7. Let G = (V, E) be a bipartite graph with colour classes U
and W . Then G has a matching covering U if and only if |N(S)| ≥ |S| for
each S ⊆ U .
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Proof. Necessity being trivial, we show sufficiency. By Kőnig’s matching
theorem (Theorem 16.2) it suffices to show that each vertex cover C has
|C| ≥ |U |. This indeed is the case, since N(U \ C) ⊆ C ∩ W , and hence

(16.8) |C| = |C ∩U |+ |C ∩W | ≥ |C ∩U |+ |N(U \C)| ≥ |C ∩U |+ |U \C|
= |U |.

This can be extended to general subsets of V . First, Hoffman and Kuhn
[1956b] and Mendelsohn and Dulmage [1958a] showed:

Theorem 16.8. Let G = (V, E) be a bipartite graph with colour classes U
and W and let R ⊆ V . Then there exists a matching covering R if and only if
there exist a matching M covering R∩U and a matching N covering R∩W .

Proof. Necessity being trivial, we show sufficiency. We may assume that G
is connected, that E = M ∪ N , and that neither M nor N covers R. This
implies that there is a u ∈ R ∩ U missed by N and a w ∈ R ∩ W missed
by M . So G is an even-length u − w path, a contradiction, since u ∈ U and
w ∈ W .

(This theorem goes back to theorems of F. Bernstein (cf. Borel [1898] p. 103),
Banach [1924], and Knaster [1927] on injective mappings between two sets.)

Theorem 16.8 implies a characterization of sets that are covered by some
matching:

Corollary 16.8a. Let G = (V, E) be a bipartite graph with colour classes U
and W and let R ⊆ V . Then there is a matching covering R if and only if
|N(S)| ≥ |S| for each S ⊆ R ∩ U and for each S ⊆ R ∩ W .

Proof. Directly from Theorems 16.7 and 16.8.

It also gives the following exchange property:

Corollary 16.8b. Let G = (V, E) be a bipartite graph, with colour classes
U and W , let M and N be maximum-size matchings, let U ′ be the set of
vertices in U covered by M , and let W ′ be the set of vertices in W covered
by N . Then there exists a maximum-size matching covering U ′ ∪ W ′.

Proof. Directly from Theorem 16.8: the matching found is maximum-size
since |U ′| = |W ′| = ν(G).

Notes. These results also are special cases of the exchange results on paths dis-
cussed in Section 9.6c. Perfect [1966] gave the following linear-algebraic argument
for Corollary 16.8b. Make a U × W matrix A with au,w = xu,w if uw ∈ E and
au,w := 0 otherwise, where the xu,w are independent variables. Let U ′ be any
maximum-size subset of U covered by some matching and let W ′ be any maximum-
size subset of W covered by some matching. Then U ′ gives a maximum-size set of
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linearly independent rows of A and W ′ gives a maximum-size set of linearly in-
dependent columns of A. Then the U ′ × W ′ submatrix of A is nonsingular, hence
of nonzero determinant. It implies (by the definition of determinant) that G has a
matching covering U ′ ∪ W ′.
(Related work includes Perfect and Pym [1966], Pym [1967], Brualdi [1969b,1971b],
and Mirsky [1969].)

16.7. Further results and notes

16.7a. Complexity survey for cardinality bipartite matching

Complexity survey for cardinality bipartite matching (∗ indicates an asymptotically
best bound in the table):

O(nm) Kőnig [1931], Kuhn [1955b]

O(
√

n m) Hopcroft and Karp [1971,1973], Karzanov
[1973a]

∗ Õ(nω) Ibarra and Moran [1981]

O(n3/2
√

m
log n

) Alt, Blum, Mehlhorn, and Paul [1991]

∗ O(
√

n m logn(n2/m)) Feder and Motwani [1991,1995]

Here ω is any real such that any two n × n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376).

Goldberg and Kennedy [1997] described a bipartite matching algorithm based
on the push-relabel method, of complexity O(

√
n m logn(n2/m)). Balinski and Gon-

zalez [1991] gave an alternative O(nm) bipartite matching algorithm (not using
augmenting paths).

16.7b. Finding perfect matchings in regular bipartite graphs

By Kőnig’s matching theorem, each k-regular bipartite graph has a perfect matching
(if k ≥ 1). One can use the regularity also to find quickly a perfect matching. This
will be used in Chapter 20 on bipartite edge-colouring.

First we show the following result of Cole and Hopcroft [1982] (which will not
be used any further in this book):

Theorem 16.9. A perfect matching in a regular bipartite graph can be found in
O(m log n) time.

Proof. We first describe an O(m log n)-time algorithm for the following problem:

(16.9) given: a k-regular bipartite graph G = (V, E) with k ≥ 2,
find: a nonempty proper subset F of E with (V, F ) regular.
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Let G have colour classes U and W . First let k be even. Then find an Eulerian
orientation of the edges of G (this can be done in O(m) time (Theorem 6.7)). Let
F be the set of edges oriented from U to W .

Next let k be odd. Call a subset F of E almost regular if | degF (v)−degF (u)| ≤ 1
for all u, v ∈ V . (Here degF (v) is the degree of v in the graph (V, F ).)

Moreover, let odd(F ) and even(F ) denote the sets of vertices v with degF (v)
odd and even, respectively, and let ∆(F ) denote the maximum degree of the graph
(V, F ). We give an O(m) algorithm for the following problem:

(16.10) given: an almost regular subset F of E with ∆(F ) ≥ 2,
find: an almost regular subset F ′ of E with ∆(F ′) ≥ 2 and |odd(F ′)| ≤

1
2 |odd(F )|.

In time O(m) we can find a subset F ′′ of F such that

(16.11) � 1
2 degF (v)� ≤ degF ′′(v) ≤ 
 1

2 degF (v)�
for each vertex v: make an Eulerian orientation in the graph obtained from (V, F )
by adding edges so as to make all degrees even, and choose for F ′′ the subset of all
edges oriented from U to W . So F ′′ and F \ F ′′ are almost regular.

We choose F ′′ such that

(16.12) |odd(F ′′) ∩ odd(F )| ≤ 1
2 |odd(F )|

(otherwise replace F ′′ by F \ F ′′). Let 2l be the degree of the even-degree vertices
of (V, F ). We consider two cases.

Case 1: l is even. Define F ′ := F ′′. By (16.11), F ′ is almost regular. Moreover, as
l is even, odd(F ′) ⊆ odd(F ), implying (with (16.12)) that |odd(F ′)| ≤ 1

2 |odd(F )|.
Finally, ∆(F ′) ≥ 2, since otherwise ∆(F ) ≤ 3 and hence l = 0, implying ∆(F ) ≤ 1,
a contradiction.

Case 2: l is odd. Define F ′ := F ′′ ∪ (E \F ). Then F ′ is almost regular, since each
degF ′(v) is either � 1

2 degF (v)� + k − degF (v) = k − 
 1
2 degF (v)� or 
 1

2 degF (v)� +
k − degF (v) = k − � 1

2 degF (v)�.
Since k is odd, one also has (by definition of F ′): degF ′(v) is odd ⇐⇒

degF ′′(v) + k − degF (v) is odd ⇐⇒ degF ′′(v) ≡ degF (v) (mod 2) ⇐⇒
v ∈ odd(F ′′) ∩ odd(F ) (since even(F ) ⊆ odd(F ′′), as l is odd). So |odd(F ′)| =
|odd(F ′′) ∩ odd(F )| ≤ 1

2 |odd(F )|, by (16.12).
Finally, suppose that ∆(F ′) ≤ 1. Choose v ∈ odd(F )\odd(F ′). So v ∈ even(F ′),

hence degF ′(v) = 0, implying degF ′′(v) = 0 and degF (v) = k. But then 0 = � 1
2k�,

and so k ≤ 1, a contradiction.

This describes the O(m)-time algorithm for problem (16.10). It implies that one can
find an almost regular subset F of E with ∆(F ) ≥ 2 and odd(F ) = ∅ in O(m log n)
time. So (V, F ) is a regular subgraph of G, and we have solved (16.9).

This implies an O(m log n) algorithm for finding a perfect matching: First find a
subset F of E as in (16.9). Without loss of generality, |F | ≤ 1

2 |E|. Recursively, find a
perfect matching in (V, F ). The time is bounded by O((m+ 1

2m+ 1
4m+ · · ·) log n) =

O(m log n).

In fact, as was shown by Cole, Ost, and Schirra [2001], one can find a perfect
matching in a regular bipartite graph in O(m) time. To explain this algorithm, we
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first describe an algorithm that finds a perfect matching in a k-regular bipartite
graph in O(km) time (Schrijver [1999]). So for each fixed degree k one can find a
perfect matching in a k-regular graph in linear time, which is also a consequence of
an O(n22O(k)

)-time algorithm of Cole [1982].

Theorem 16.10. A perfect matching in a k-regular bipartite graph can be found in
time O(km).

Proof. Let G = (V, E) be a k-regular bipartite graph. For any function w : E → Z+,
define Ew := {e ∈ E | we > 0}.

Initially, set we := 1 for each e ∈ E. Next apply the following iteratively:

(16.13) Find a circuit C in Ew. Let C = M ∪ N for matchings M and N with
w(M) ≥ w(N). Reset w := w + χM − χN .

Note that at any iteration, the equation w(δ(v)) = k is maintained for all v.
To see that the process terminates, note that at any iteration the sum

(16.14)
∑

e∈E

w2
e

increases by

(16.15)
∑

e∈M

((we+1)2−w2
e)+

∑

e∈N

((we−1)2−w2
e) = 2w(M)+|M |−2w(N)+|N |,

which is at least |M | + |N | = |C|. Since we ≤ k for each e ∈ E, (16.14) is bounded,
and hence the process terminates. We now estimate the running time.

At termination, we have that the set Ew contains no circuit, and hence is a
perfect matching (since w(δ(v)) = k for each vertex v). So at termination, the sum
(16.14) is equal to 1

2nk2 = km.
Now we can find a circuit C in Ew in O(|C|) time on average. Indeed, keep a

path P in Ew such that we < k for each e in P . Let v be the last vertex of P . Then
there is an edge e = vu not occurring in P , with 0 < we < k. Reset P := P ∪{e}. If
P is not a path, it contains a circuit C, and we can apply (16.13) to C, after which
we reset P := P \ C. We continue with P .

Concluding, as each step increases the sum (16.14) by at least |C|, and takes
O(|C|) time on average, the algorithm terminates in O(km) time.

The bound given in this theorem was improved to linear time independent of
the degree, by Cole, Ost, and Schirra [2001]. Their method forms a sharpening of
the method described in the proof of Theorem 16.10, utilizing the fact that when
breaking a circuit, the path segments left (‘chains’) can be used in the further path
search to extend the path by chains, rather than just edge by edge. To this end,
these chains need to be supplied with some extra data structure, the ‘self-adjusting
binary trees’, in order to avoid that we have to run through the chain to find an
end of the chain where it can be attached to the path. The basic operation is the
‘splay’.

The main technique of Cole, Ost, and Schirra’s theorem is contained in the
proof of the following theorem. For any graph G = (V, E) call a (‘weight’) function
w : E → R k-regular if w(δ(v)) = k for all v ∈ V .
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Theorem 16.11. Given a bipartite graph G = (V, E) and a k-regular w : E → Z+,
for some k ≥ 2, a perfect matching in G can be found in time O(m log2 k).

Proof. I. Conceptual outline. We first give a conceptual description, as extension of
the algorithm described in the previous proof. First delete all edges e with we = 0.

We keep a set F of edges such that each component of (V, F ) is a path (possibly
a singleton) with at most k2 vertices, and we keep a path

(16.16) Q = (P0, e1, P1, . . . , et, Pt),

where each Pj is a (path) component of (V, F ). Let v be the last vertex of Q and let
e = vu be an edge in E \ F incident with v with we < k. Let P be the component
of (V, F ) containing u.

If u is not on Q, let R be a longest segment of P starting from u. Delete the
first edge of the other segment of P (if any) from F . If |Pt| + |R| ≤ k2, add e to F ,
and reset Pt to Pt, e, R. (Here and below, |X| denotes the number of vertices of a
path X.) Otherwise, extend Q by e, R.

If u is on Q, then:

(16.17) split Q into a part Q1 from the beginning to u, and a part Q2 from u
to the end;
split the circuit Q2, e into two matchings M and N , such that w(M) ≥
w(N);
let α be the minimum of the weights in N ;
reset w := w + α(χM − χN );
delete the edges g with w(g) = 0 or w(g) = k (in the latter case, also
delete the two ends of g);
delete the first edge of Q2 from F if it was in F ;
reset Q := Q1;
iterate.

If v is incident with no edge e ∈ E \ F satisfying we < k, start Q in a new
vertex that is incident with an edge e with we < k. If no such vertex exists, we are
done: the edges left form a perfect matching.

II. Data structure. In order to make profit of storing paths, we need additional
data structure (based on ‘self-adjusting binary trees’, analyzed by Sleator and Tar-
jan [1983b,1985], cf. Tarjan [1983]).

We keep a collection P of paths (possibly singletons), each being a subpath of
a component of F , such that

(16.18) (i) each component of F itself is a path in P;
(ii) P is laminar, that is, any two paths in P are vertex disjoint, or one

is a subpath of the other;
(iii) any nonsingleton path P ∈ P has an edge eP such that the two

components of P − eP again belong to P.

With any path P ∈ P we keep the following information:

(16.19) (i) the number |P | of vertices in P ;
(ii) a list ends(P ) of the ends of P (so ends(P ) contains one or two

vertices);
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(iii) if P is not a singleton, the edge eP , and a list subpaths(P ) of the
two components of P − eP ;

(iv) the smallest path parent(P ) in P that properly contains P (null if
there is no such path).

Then for each edge e ∈ F there is a unique path Pe ∈ P traversing e such that
both components of Pe − e again belong to P (that is, ePe = e). We keep with any
e ∈ F the path Pe.

Call a path P ∈ P a root if parent(P ) = null. So the roots correspond to the
components of the graph (V, F ). Along a path P ∈ P we call edges alternatingly
odd and even in P in such a way that eP is odd.

We also store information on the current values of the we. Algorithmically, we
only reset explicitly those we for which e is not in F . For e ∈ F , these values are
stored implicitly, such that it takes only O(1) time to update we for all e in a root
when adding α to the odd edges and −α to the even edges in it. This can be done
as follows.

If P is a root, we store w(eP ) at P . If P has a parent Q, we store

(16.20) w(eP ) ± w(eQ)

at P , where ± is − if eP is odd in Q, and + otherwise.
We also need the following values for any P ∈ P with EP �= ∅:

(16.21) minodd(P ) := min{we | e odd in P}, mineven(P ) := min{we | e even
in P},
diffsum(P ) :=

∑
(we | e odd in P ) − ∑

(we | e even in P )

(taking a minimum ∞ if the range is empty). When storing these data, we relate
them to w(eP ), again so as to make them invariant under updates. Thus we store

(16.22) diffsum(P ) − |EP |w(eP ), minodd(P ) − w(eP ), mineven(P ) + w(eP )

at P . So for any root P we have diffsum(P ), minodd(P ), and mineven(P ) ready at
hand, as we know w(eP ).

III. The splay. We now describe splaying an edge e ∈ F . It changes the data
structure so that Pe becomes a root, keeping F invariant. It modifies the tree
associated with the laminar family through three generations at a time, so as to
attain efficiency on average. (The adjustments make future searches more efficient.)

The splay is as follows. While parent(Pe) �= null, do the following:

(16.23) Let Pf := parent(Pe).
Case 1: parent(Pf ) = null. Reset as in:

Pe

PePf

Pf

e
e

f
f

Case 2: parent(Pf ) �= null. Let Pg := parent(Pf ). If Pe and Pg have
an end in common, reset as in:

Pe

Pe

Pf Pf

Pg

Pg

e

e
ff

g

g

If Pe and Pg have no end in common, reset as in:

Pe

Pe

PfPf

Pg

Pg

e

e
f f

g
g
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Note that Case 1 applies only in the last iteration of the while loop. It is straight-
forward to check that the data associated with the paths can be restored in O(1)
time at any iteration.

IV. Running time of one splay. To estimate the running time of a splay, define:

(16.24) γ :=
∑

P∈P
log |P |,

taking logarithms with base 2 (again, |P | denotes the number of vertices of P ).
For any splay of e one has (adding ′ to parameters after the splay):

(16.25) the number of iterations of (16.23) is at most γ − γ′ + 3(log |P ′
e| −

log |Pe|) + 1.

To show this, consider any iteration (16.23) (adding ′ to parameters after the iter-
ation).

If Case 1 applies, then

(16.26) γ − γ′ + 3(log |P ′
e| − log |Pe|) + 1

= log |Pe| + log |Pf | − log |P ′
e| − log |P ′

f | + 3 log |P ′
e| − 3 log |Pe| + 1

= 3 log |Pf | − log |P ′
f | − 2 log |Pe| + 1 ≥ 1,

since P ′
e = Pf and since P ′

f and Pe are subpaths of Pf . If Case 2 applies, then

(16.27) γ − γ′ + 3(log |P ′
e| − log |Pe|) = log |Pe| + log |Pf | + log |Pg|

− log |P ′
e| − log |P ′

f | − log |P ′
g| + 3 log |P ′

e| − 3 log |Pe|
= 3 log |Pg| + log |Pf | − log |P ′

f | − log |P ′
g| − 2 log |Pe| ≥ 1.

The last equality follows from P ′
e = Pg. The last inequality holds since Pe

is a subpath of Pf , and P ′
f , P ′

g, and Pe are subpaths of Pg, and since, if the
first alternative in Case 2 holds, then Pe and P ′

g are vertex-disjoint (implying
2 log |Pg| ≥ log |Pe| + log |P ′

g| + 1), and, if the second alternative in Case 2 holds,
then P ′

f and P ′
g are vertex-disjoint (implying 2 log |Pg| ≥ log |P ′

f | + log |P ′
g| + 1).

(16.26) and (16.27) imply (16.25).

V. The algorithm. Now we use the splay to perform the conceptual operations
described in the conceptual outline (proof section I above). Thus, let v be the last
vertex of the current path Q (cf. (16.16)) and let e = vu be an edge in E\F incident
with u. Determine the root P ∈ P containing u (possibly by splaying an edge in F
incident with u).

Case A: P is not on Q. (We keep a pointer to indicate if a root belongs to Q.)
Find a root R as follows. If u is incident with no edge in F , then R := {u}. If u is
incident with exactly one edge f ∈ F , splay f and let R := Pf . If u is incident with
two edges in F , by splaying find f ∈ F incident with u such that (after splaying f)
subpaths(Pf ) = {R, R′} where u ∈ ends(R) and |R| > |R′|; then delete Pf from P,
and f from F .

This determines R. If |Pt| + |R| ≤ k2, add e to F , let Pe be the join of Pt, e,
and R, and reset Pt in Q to Pe. If |Pt| + |R| > k2, extend Q by e, Pt+1 := R.

Case B: P is on Q, say P = Pj . By (possibly) splaying, we can decide if u is at
the end of Pj or not. In the former case, reset Q := P0, e1, P1, . . . , ej , Pj and let
C := ej+1, Pj+1, . . . , Pt, e. In the latter case, split Pj to P ′

j , f, P ′′
j in such a way that
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Q := P0, e1, P1, . . . , ej , P
′
j is the initial segment of the original Q ending at u, and

let C := f, P ′′
j , ej+1, Pj+1, . . . , Pt, e.

Determine the difference of the sum of the we over the odd edges in C and that
over the even edges in C. As we know diffsum(S) for any root S, this can be done
in time O(t − j + 1). Depending on whether this difference is positive or not, we
know (implicitly) which splitting of the edges on C into matchings M and N gives
w(M) ≥ w(N). From the values of minodd and mineven for the paths P ∈ P on C
and from the values of we for the edges ej+1, . . . , et, e on C (and possibly f), we
can find the maximum decrease α on the edges in N , and reset the parameters.

Next, for any P ∈ P on C with minodd(P ) = 0 or mineven(P ) = 0, deter-
mine the edges on P of weight 0, delete them after splaying, and decompose P
accordingly. Delete any edge ei on C with w(ei) = 0 (similarly f).

This describes the iteration.

VI. Running time of the algorithm. We finally estimate the running time. In
any iteration, let γ be the number of roots of P that are not on Q. Initially, γ ≤ n.
During the algorithm, γ only increases when we are in Case B and break a circuit
C, in which case γ increases by at most

(16.28) 2
LC

k2 + mC + 2,

where LC is the length of C in G (that is, the number of edges ei plus the sum of
the lengths of the paths Pi in C), and where mC is the number of edges of weight
0 deleted at the end of the iteration. Bound (16.28) uses the fact that the sizes of
any two consecutive paths along C sum up to more than k2, except possibly at the
beginning and the end of the circuit, and that any edge of weight 0 can split a root
into two new roots.

Now if we sum bound (16.28) over all circuits C throughout the iterations, we
have

(16.29)
∑

C

(2
LC

k2 + mC + 2) = O(m),

since
∑

C LC ≤ nk2, like in the proof of the previous theorem (note that mC ≥ 1
for each C, so the term 2 is absorbed by mC). So the number of roots created
throughout the Case B iterations is O(m). Now at each Case A iteration, we split
off a part of a root of size less than half the size of the root; the split off part can
be used again by Q some time in later iterations. Hence any root can be split at
most log k2 times, and therefore, the number of Case A iterations is O(m log k). In
particular, the number of times we join two paths in P and make a new path is
O(m log k).

Next consider γ as defined in (16.24). Note that at any iteration except for
joins and splays, γ does not increase. At any join, γ increases by at most log k2,
and hence the total increase of γ during joins is O(m log2 k).

Now the number of splays during any Case A iteration is O(1), and during any
Case B iteration O(LC/k2 +mC +1). Hence by (16.29), the total number of splays
is O(m log k). By (16.25), each splay takes time O(δ+log k), where δ is the decrease
of γ (possibly δ < 0). The sum of δ over all splays is O(m log2 k), as this is the total
increase of γ during joins. So all splays take time O(m log2 k). As the number of
splits is proportional to the number of splays, and each takes O(1) time, we have
the overall time bound of O(m log2 k).
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This implies a linear-time perfect matching algorithm for regular bipartite
graphs:

Corollary 16.11a. A perfect matching in a regular bipartite graph can be found in
linear time.

Proof. Let G = (V, E) be a k-regular bipartite graph. We keep a weight function
w : E → Z+, with the property that w(δ(v)) = k for each v ∈ V . Throughout
the algorithm, let Gi be the subgraph of G consisting of those edges e of G with
we = 2i (for i = 1, . . .).

Initially, define a weight we := 1 for each edge e. For i = 0, 1, . . . , �log2 k� do
the following. Perform a depth-first search in Gi. If we meet a circuit C in Gi, then
split C arbitrarily into matchings M and N , reset w := w + 2i(χM − χN ), delete
the edges in N , and update Gi (that is, delete the edges of C from Gi).

As Gi has at most m/2i edges (since w(E) = 1
2kn = m), and as depth-first

search can be done in time linear in the number of edges, this can be done in
O(m + 1

2m + 1
4m + · · ·) = O(m) time.

For the final G and w, all weights are a power of 2 and each graph Gi has no
circuits, and hence has at most |V | − 1 edges. So G has at most |V | log2 k edges.
As w is k-regular, by Theorem 16.11 we can find a perfect matching in G in time
O(|V | log3 k), which is linear in the number of edges of the original graph G.

This result will be used in obtaining a fast edge-colouring algorithm for bipartite
graphs (Section 20.9a).

Notes. Alon [2000] gave the following easy O(m log m)-time method for finding a
perfect matching in a regular bipartite graph G = (V, E). Let k be the degree, and
choose t with 2t ≥ kn. Let α := �2t/k� and β := 2t − kα. So β < k. Let H be the
graph obtained from G by replacing each edge by α parallel edges, and by adding
a β-regular set F of (new) edges, consisting of 1

2n disjoint classes, each consisting
of β parallel edges. So H is 2t-regular.

Iteratively, split H into two regular graphs of equal degree (by determining an
Eulerian orientation), and reset H to the graph that has a least number of edges
in F .

As |F | = 1
2βn < 2t, after log2 |F | < t iterations, H contains no edge in F .

Hence after t iterations we have a perfect matching in H not intersecting F ; that
is, we have a perfect matching in G.

This gives an O(m log m)-time method, provided that we do not display the
graph H fully, but handle the parallel edges implicitly (by the sizes as a function
of the underlying edges).

Note that O(m log m) = O(nk(log k + log n)). An O(nk + n log n log k)-time
algorithm finding a perfect matching in a k-regular bipartite graph was given by
Rizzi [2002].

(Csima and Lovász [1992] described a space-efficient O(n2k log k)-time algo-
rithm for finding a perfect matching in a k-regular bipartite graph.)
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16.7c. The equivalence of Menger’s theorem and Kőnig’s theorem

We have seen that Kőnig’s matching theorem can be derived from Menger’s theorem
(by the construction given in the proof of Theorem 16.4) — in fact it forms the
induction basis in Menger’s proof. The interrelation however is even stronger, as was
noticed by Hoffman [1960] (cf. Orden [1955], Ford and Fulkerson [1958c], Hoffman
and Markowitz [1963], Ingleton and Piff [1973]): in turn Menger’s theorem (in the
form of Theorem 9.1) can be derived from Kőnig’s matching theorem by a direct
(noninductive) construction.

Let D = (V, A) be a directed graph and let S, T ⊆ V . We may assume that
S ∩T = ∅. For each v ∈ V \S introduce a vertex v′ and for each v ∈ V \T introduce
a vertex v′′. Let E be the set of pairs {u′, v′′} with u ∈ V \S and v ∈ V \T with the
property that (u, v) ∈ A or u = v. This makes the bipartite graph G, containing
the matching

(16.30) M := {{v′, v′′} | v ∈ V \ (S ∪ T )}.

For any X ⊆ V , let X ′ := {v′ | v ∈ X} and X ′′ := {v′′ | v ∈ X}.
Now let M ′ be a matching in G of size ν(G). For each component of M�M ′

having more than one vertex, we may assume that it is an M -augmenting path
(since any other component K has an equal number of edges in M and in M ′, and
hence we can replace M ′ by M ′�K). Each M -augmenting path is an S′′ −T ′ path.
Hence there exist |M ′| − |M | = ν(G) − |V \ (S ∪ T )| vertex-disjoint S − T paths.

Let U ⊆ V \ T and W ⊆ V \ S be such that D := U ′′ ∪ W ′ is a vertex cover of
G, with |U | + |W | = τ(G). Then

(16.31) C := (U ∩ S) ∪ (U ∩ W ) ∪ (W ∩ T )

intersects each S − T path in D. Indeed, suppose P = (v0, v1, . . . , vk) is an S − T
path not intersecting C. We may assume that P intersects S and T only at v0 and
vk, respectively. Now

(16.32) Q := (v′′
0 , v′

1, v
′′
1 , . . . , v′

k−1, v
′′
k−1, v

′
k)

is a path in G of odd length 2k − 1. Hence D intersects Q in at least k vertices.
Therefore, v′′

0 ∈ D (hence v0 ∈ U ∩ S ⊆ C), or v′
k ∈ D (hence vk ∈ W ∩ T ⊆ C),

or v′
i, v

′′
i ∈ D for some i ∈ {1, . . . , k − 1} (hence vi ∈ U ∩ W ⊆ C). So C intersects

each S − T path in D.
As

(16.33) |C| = |U∩S|+|U∩W |+|W ∩T | = |U∩S|+|U |+|W |−|U∪W |+|W ∩T |
= |U | + |W | − |V \ (S ∪ T )|

(since (U ∪ W ) \ (S ∪ T ) = V \ (S ∪ T )), and as |U | + |W | = τ(G) = ν(G), we have
that the size of C is at most the number of disjoint S − T paths found above.

The converse construction (described by Kuhn [1956]) also applies. Let be given
a bipartite graph G = (V, E), with colour classes U and W , and a matching M in
G. Orient each edge from U to W , and next contract all edges in M . This gives a
directed graph D = (V ′, A). Let S and T be the sets of vertices in U and W missed
by M . Then the maximum number of vertex-disjoint S − T paths in D is equal to
ν(G) − |M |.

These constructions also imply:
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Theorem 16.12. For any function φ(n, m) one has: the bipartite matching problem
with n vertices and m edges is solvable in time O(φ(n, m)) ⇐⇒ the disjoint s − t
paths problem with n vertices and m arcs is solvable in time O(φ(n, m)).

Proof. See above.

16.7d. Equivalent formulations in terms of matrices

Frobenius [1917] proved his theorem (Corollary 16.2a) in terms of matrices, in the
following form:

(16.34) Each diagonal of an n × n matrix has product 0 if and only if M has
a k × l all-zero submatrix with k + l > n.

Similarly, Kőnig’s matching can be formulated in matrix terms as follows:

(16.35) In a matrix, the maximum number of nonzero entries with no two in
the same line (=row or column) is equal to the minimum number of
lines that include all nonzero entries.

An equivalent form of Kőnig’s theorem on the existence of a perfect matching in a
regular bipartite graph (Corollary 16.2b) is:

(16.36) If in a nonnegative matrix each row and each column has the same
positive sum, then it has a diagonal with positive entries.

16.7e. Equivalent formulations in terms of partitions

Bipartite graphs can be studied also as unions of two partitions of a given set.
Indeed, let G = (V, E) be a bipartite graph. Then the family (δ(v) | v ∈ V ) is a
union of two partitions of E. Since each union of two partitions arises in this way,
we can formulate theorems on bipartite graphs equivalently as theorems on unions
of two partitions of a set.

The following equivalent form of Frobenius’ theorem (Corollary 16.2a) was given
by Maak [1936]:

(16.37) Let A and B be two partitions of the finite set X. Then there is a
subset Y of X intersecting each set in A ∪ B in exactly one element if
and only if for each natural number k, the union of any collection of k
classes of A intersects at least k classes of B.

This implies the following equivalent form of Corollary 16.2b, given by van der
Waerden [1927] (with short proof by Sperner [1927] — see Section 22.7d):

(16.38) Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two partitions of a
finite set X with |A1| = · · · = |An| = |B1| = · · · = |Bn|. Then there
is a subset Y of X intersecting each Ai and each Bi in exactly one
element.

Some of the matching results can be formulated in terms of (common) transver-
sals. We will discuss this more extensively in Chapters 22 and 23.
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16.7f. On the complexity of bipartite matching and vertex cover

In a bipartite graph we can derive a minimum-size vertex cover from a maximum-
size matching in linear time (for general graphs this would imply NP=P) — see
Theorems 16.6.

So knowing a maximum-size matching in a bipartite graph gives us a minimum-
size vertex cover in linear time. The reverse, however, is unlikely, unless there would
exist an algorithm to find a perfect matching in a bipartite graph in linear time.
To see this, suppose that there is an algorithm A to derive from a minimum-size
vertex cover a maximum-size matching in linear time. Now let G = (V, E) be a
bipartite graph in which we want to find a perfect matching. Then we may assume
that G has a perfect matching. So we may assume by Frobenius’ theorem that the
colour classes U and W are minimum-size vertex covers. Then apply A to G and
U . Then either we obtain a perfect matching if U indeed is a minimum-size vertex
cover, or else (if our assumption is wrong) the algorithm gets stuck, in which case
we may conclude that G has no perfect matching.

16.7g. Further notes

Extensions of Frobenius’ and Kőnig’s theorems to the infinite case were considered
by Kőnig and Valkó [1925], Shmushkovich [1939], de Bruijn [1943], Rado [1949b],
Brualdi [1971f], Aharoni [1983b,1984b], and Aharoni, Magidor, and Shore [1992].

Itai, Rodeh, and Tanimoto [1978] showed that, given a bipartite graph G =
(V, E), F ⊆ E, and k ∈ Z+, one can find a perfect matching M with |M ∩ F | ≤ k
(or decide that no such perfect matching exists) in time O(nm). (This amounts to
a minimum-cost flow problem.)

Karp, Vazirani, and Vazirani [1990] gave an optimal on-line bipartite matching
algorithm. Motwani [1989,1994] investigated the expected running time of matching
algorithms.

The following question was posed by A. Frank: Given a bipartite graph
G = (V, E) whose edges are coloured red and blue, and given k and l; when does
there exist a matching containing k red edges and l blue edges? This problem is
NP-complete, but for complete bipartite graphs it was characterized by Karzanov
[1987c].

An extension of Frobenius’ theorem to more general matrices than described in
Section 16.2b was given by Hartfiel and Loewy [1984].

Dulmage and Mendelsohn [1958] study minimum-size vertex covers in a bipar-
tite graph as a lattice. For maintaining perfect matchings ‘in the presence of failure’,
see Sha and Steiglitz [1993]. Lovász [1970a] gave a generalization of Kőnig’s match-
ing theorem — see Section 60.1a. Uniqueness of a maximum-size matching in a
bipartite graph was investigated by Cechlárová [1991], and related work was re-
ported by Costa [1994]. A variant of Kőnig’s matching theorem was given by de
Werra [1984].

For surveys on matching algorithms, see Galil [1983,1986a,1986b]. For sur-
veys on bipartite matching, see Woodall [1978a,1978b]. Books discussing bipartite
matching include Ford and Fulkerson [1962], Ore [1962], Dantzig [1963], Christofi-
des [1975], Lawler [1976b], Even [1979], Papadimitriou and Steiglitz [1982], Tarjan
[1983], Tutte [1984], Halin [1989], Cook, Cunningham, Pulleyblank, and Schrijver
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[1998], Jungnickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000].

16.7h. Historical notes on bipartite matching

The fundaments of matching theory in bipartite graphs were laid by Frobenius
(in terms of matrices and determinants) and Kőnig. In his article Über Matrizen
aus nicht negativen Elementen (On matrices with nonnegative elements), Frobenius
[1912] investigated the decomposition of matrices:

In §11 dehne ich die Untersuchung auf zerlegbare Matrizen aus, und in §12 zeige
ich, daß eine solche nur auf eine Art in unzerlegbare Teile zerfällt werden kann.
Dabei ergibt sich der merkwürdige Determinantensatz:
I. Die Elemente einer Determinante nten Grades seien n2 unabhängige Verän-
derliche. Man setze einige derselben Null, doch so, daß die Determinante nicht
identisch verschwindet. Dann bleibt sie eine irreduzible Funktion, außer wenn für
einen Wert m < n alle Elemente verschwinden, die m Zeilen mit n − m Spalten
gemeinsam haben.4

Frobenius gave a combinatorial and an algebraic proof.
In a reaction to Frobenius’ paper, Kőnig [1915] (‘presented to Class III of the

Hungarian Academy of Sciences on 16 November 1914’) next gave a proof of Frobe-
nius’ result with the help of graph theory:

A graphok alkalmazásával e tételnek egyszerű és szemléletes új bizonyitását adjuk
a következőkben.5

He introduced a now quite standard construction of making a bipartite graph from
a matrix (ai,j): for each row index i there is a vertex Ai and for each column index
j there is a vertex Bj ; then vertices Ai and Bj are connected by an edge if and
only if ai,j �= 0.

Kőnig was interested in graphs because of his interest in set theory, especially
cardinal numbers (cf. footnotes in Kőnig [1916]). In proving Schröder-Bernstein
type results on the equivalence of sets, graph-theoretic arguments (in particular:
matchings) can be illustrative. This led Kőnig to studying graphs (in particular
bipartite graphs) and its applications in other areas of mathematics.

Kőnig’s work on matchings in regular bipartite graphs

Earlier, on 7 April 1914, Kőnig had presented the following theorem at the Congrès
de Philosophie mathématique in Paris (cf. Kőnig [1923]):

A. Chaque graphe régulier à circuits pairs possède un facteur du premier degré.6

4 In §11, I extend the investigation to decomposable matrices, and in §12, I show that
such a matrix can be decomposed in only one way into indecomposable parts. With
that, the [following] curious determinant theorem comes up:

I. Let the elements of a determinant of degree n be n2 independent variables. One sets
some of them equal to zero, but such that the determinant does not vanish identically.
Then it remains an irreducible function, except when for some value m < n all elements
vanish that have m rows in common with n − m columns.

5 In the following we will give a simple and clear new proof by applying graphs to this
theorem.

6 A. Each regular graph with even circuits has a factor of the first degree.
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That is, every regular bipartite graph has a perfect matching (= factor of degree
1). As a corollary, Kőnig derived:

B. Chaque graphe régulier à circuits pairs est le produit de facteurs du premier
degré; le nombre de ces facteurs est égal au degré du graphe.7

That is, each k-regular bipartite graph is k-edge-colourable (cf. Chapter 20).
Kőnig did not give a proof of the theorem in the Paris paper, but expressed the
hope to give a complete proof ‘at another occasion’.

This occasion came in Kőnig [1916] (‘presented to Class III of the Hungarian
Academy of Sciences on 15 November 1915’) where next to the above mentioned
Theorems A and B, Kőnig gave the following result:

C) Ha egy páros körüljárású graph bármelyik csúcsába legfeljebb k-számú él fut,
akkor minden éléhez oly módon lehet k-számú index valamelyikét hozzárendelni,
hogy ugyanabba a csúcsba futó két élhez mindenkor két különböző index legyen
rendelve.8

In other words, the edge-colouring number of a bipartite graph is equal to its
maximum degree. Kőnig gave a proof of result C), and derived A and B. (See the
proof of Theorem 20.1 below of Kőnig’s proof.)

In §2 of Kőnig [1916], applications of his results to matrices and determinants
are studied. First:

D) Ha egy nem negativ [egész számú] elemekből álló determináns minden sora
és minden oszlopa ugyanazt a positiv összeget adja, akkor van a determinánsnak
legalább egy el nem tünő tagja.9

Next:

E) Ha egy determináns minden sorában és oszlopában pontosan k-számú el nem
tünő elem van, akkor legalább k-számú determinánstag nem tünik el.10

Third:

F) Ha egy n2 mezejű quadratikus táblán kn-számú figura úgy van elhelyezve
(ugyanazon a mezőn több figura is lehet), hogy minden sorban és oszlopban
pontosan k-számú figura fordul elő, akkor e konfiguráczió mindig mint k-számú
ugyancsak n2 mezejű oly konfiguráczió egyeśıtése keletkeztethető, melyek minde-
gyikében egy-egy figura van minden sorban és minden oszlopban.11

7 B. Each regular graph with even circuits is the product of factors of the first degree;
the number of these factors is equal to the degree of the graph.

8 C) If in each vertex of an even circuit graph at most k edges meet, then one can assign
to each of the edges of the graph one from k indices in such a way that two edges that
meet in a point always obtain different indices.

9 D) If in a determinant of nonnegative [integer] numbers each row and each column
yield the same positive sum, then at least one member of the determinant is different
from zero.

10 E) If the number of nonvanishing elements in each row and column of a determinant
is exactly equal to k, then there are at least k nonvanishing determinant members.

11 F) If kn pieces are placed on a quadratic board with n2 fields (where several pieces
may stand in the same field), such that each row and each column contains exactly k
pieces, then this configuration always arises by joining k such configurations with also
n2 fields, in which each row and each column contains exactly one piece.
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Frobenius’ theorem

Chronologically next is a paper of Frobenius [1917]. In order to give an elemen-
tary proof of his result in Frobenius [1912] quoted above, he proved the following
‘Hilfssatz’:

II. Wenn in einer Determinante nten Grades alle Elemente verschwinden, welche
p (≤ n) Zeilen mit n − p + 1 Spalten gemeinsam haben, so verschwinden alle
Glieder der entwickelten Determinante.
Wenn alle Glieder einer Determinante nten Grades verschwinden, so verschwin-
den alle Elemente, welche p Zeilen mit n − p + 1 Spalten gemeinsam haben für
p = 1 oder 2, · · · oder n.12

That is, if A = (ai,j) is an n×n matrix, and if
∏n

i=1 ai,j = 0 for each permutation
π of {1, . . . , n}, then for some p there exist p rows and n − p + 1 columns of A such
that each element that is both in one of these rows and in one of these columns, is
equal to 0.

In other words, a bipartite graph G = (V, E) with colour classes V1 and V2

satisfying |V1| = |V2| = n has a perfect matching if and only if one cannot select p
vertices in V1 and n − p + 1 vertices in V2 such that no edge is connecting two of
these vertices.

Frobenius noticed with respect to Kőnig’s work:

Aus dem Satze II ergibt sich auch leicht ein Ergebnis der Hrn. Dénis Kőnig,
Uber Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre,
Math. Ann. Bd. 77.
Wenn in einer Determinante aus nicht negativen Elementen die Größen jeder
Zeile und jeder Spalte dieselbe, von Null verschiedene Summe haben, so können
ihre Glieder nicht sämtlich verschwinden.13

Frobenius gave a short combinatorial proof of his theorem — see Section 16.2a.
His proof is in terms of determinants, and he offered his opinion on graph-theoretic
methods:

Die Theorie der Graphen, mittels deren Hr. Kőnig den obigen Satz abgeleitet
hat, ist nach meiner Ansicht ein wenig geeignetes Hilfsmittel für die Entwick-
lung der Determinantentheorie. In diesem Falle führt sie zu einem ganz speziellen
Satze von geringem Werte. Was von seinem Inhalt Wert hat, ist in dem Satze II
ausgesprochen.14

(See Schneider [1977] for some comments.)

12 II. If in a determinant of the nth degree all elements vanish that p (≤ n) rows have in
common with n−p+1 columns, then all members of the expanded determinant vanish.

If all members of a determinant of degree n vanish, then all elements vanish that p
rows have in common with n − p + 1 columns for p = 1 or 2, · · · or n.

13 From Theorem II, a result of Mr Dénis Kőnig, Uber Graphen und ihre Anwendung auf
Determinantentheorie und Mengenlehre, Math. Ann. Vol. 77 follows also easily.

If in a determinant of nonnegative elements the quantities of each row and of each
column have the same nonzero sum, then its members cannot vanish altogether.

14 The theory of graphs, by which Mr Kőnig has derived the theorem above, is to my
opinion of little appropriate help for the development of determinant theory. In this
case it leads to a very special theorem of little value. What from its contents has value,
is enunciated in Theorem II.
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Equivalent formulations in terms of partitions

In October 1926, van der Waerden [1927] presented the following theorem at the
Mathematisches Seminar in Hamburg:

Es seien zwei Klasseneinteilungen einer endlichen Menge M gegeben. Die eine
soll die Menge in µ zueinander fremde Klassen A1, . . . , Aµ zu je n Elementen
zerlegen, die andere ebenfalls in µ fremde Klassen B1, . . . , Bµ zu je n Elementen.
Dann gibt es ein System von Elementen x1, . . . , xµ, derart, daß jede A-Klasse
und ebenso jede B-Klasse under den xi durch ein Element vertreten wird.15

The proof of van der Waerden is based on an augmenting path argument. More-
over, van der Waerden remarked that E. Artin has communicated orally to him that
the result can be sharpened to the existence of n disjoint such common transversals.

In the article, the following note is added in proof:

Zusatz bei der Korrektur. Ich bemerke jetzt, daß der hier bewiesene Satz mit
einem Satz von Dénes Kőnig über reguläre Graphen äquivalent ist.16

The article of van der Waerden is followed by an article of Sperner [1927] (presented
at the Mathematisches Seminar in Januari 1927), which gives a ‘simple proof’ of
van der Waerden’s result — we quote the full paper in Section 22.7d.

Kőnig’s matching theorem

At the meeting of 26 March 1931 of the Eötvös Loránd Matematikai és Fizikai
Társulat (Loránd Eötvös Mathematical and Physical Society) in Budapest, Kőnig
[1931] presented a new result that formed the basis for Menger’s theorem:

Páros körüljárású graphban az éleket kimeŕıtő szögpontok minimális száma meg-
egyezik a páronként közös végpontot nem tartalmazó élek maximális számával.17

In other words, the maximum size of a matching in a bipartite graph is equal to
the minimum number of vertices needed to cover all edges. As we discussed in
Section 9.6e, Kőnig’s proof formed the missing basis for Menger’s theorem. Kőnig
also referred to the work of Frobenius (but did not notice that his theorem can be
derived from Frobenius’ theorem).

The proof of Kőnig [1931] is based on an augmenting path argument. A German
version of it was published in Kőnig [1932] (stating that another proof was given
by L. Kalmár), in which paper he described several other results as consequences
of the theorem. First he derived his theorem on the existence of a perfect matching
in a regular bipartite graph:

15 Let be given two partitions of a finite set M. One of them should decompose the set
into µ mutually disjoint classes A1, . . . , Aµ each of n elements, the other likewise in µ
disjoint classes B1, . . . , Bµ each of n elements. Then there exists a system of elements
x1, . . . , xµ such that each A-class and likewise each B-class is represented by one element
among the xi.

16 Note added in proof. I now notice that the theorem proved here is equivalent to a
theorem of Dénes Kőnig on regular graphs.

17 In an even circuit graph, the minimal number of vertices that exhaust the edges agrees
with the maximal number of edges that pairwise do not contain any common end point.
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Um die Tragweite dieses Satzes zu beleuchten, wollen wir noch zeigen, daß ein
von mir schon vor längerer Zeit bewiesener Satz über die Faktorenzerlegung von
regulären endlichen paaren Graphen aus Satz 13 unmittelbar abgeleitet werden
kann.
Der betreffende Satz lautet:
14. Jeder endliche paare reguläre Graph besitzt einen Faktor ersten Grades.18

In a footnote, Kőnig mentioned:

Später wurden für diesen Satz, bzw. für seine Interpretation in der Determi-
nantentheorie und in der Kombinatorik verschiedene Beweise gegeben, so durch
Frobenius, Sainte-Laguë, van der Waerden, Sperner, Skolem, Egerváry.19

Another consequence is a graph-theoretic variant of the result of Frobenius
[1912] on reducible determinants:

16. Im (paaren) Graphen G soll jede Kante einen der Punkte von Π1 =
(P1, P2, . . . , Pn) mit einem der Punkte von Π2 = (Q1, Q2, . . . , Qn) verbinden
(Pi �= Qj) und diejenigen Kanten von G, die in einem Faktor ersten Grades von
G enthalten sind, sollen einen nichtzusammenhängenden Graphen G∗ bilden.
Dann kann man r(> 0) Punkte aus Π1 und n − r(> 0) Punkte aus Π2 so
auswählen, daß keine Kante von G zwei ausgewählte Punkte verbinde.20

As consequences in matrix theory, Kőnig [1932] gave:

17. Verschwinden sämtliche Entwicklungsglieder aller Unterdeterminanten n-ter
Ordnung einer Matrix von p Zeilen und q Spalten (wo n ≤ p, n ≤ q ist), so
verschwinden alle Elemente, welche r Zeilen mit (p + q − n + 1) − r Spalten
gemeinsam haben für r = 1, oder 2, . . . , oder p.21

and

18. Die Minimalzahl der Reihen (Zeilen und Spalten), welche in ihr Gesamtheit
jedes nicht-verschwindende Element einer Matrix enthalten, ist gleich der Maxi-
malzahl von nicht-verschwindenden Elementen, welche paarweise verschiedenen
Zeilen und verschiedenen Spalten angehören.22

Again, a footnote is added:

18 To illustrate the bearing of this theorem, we want to show that a theorem, proved by me
already long ago, on the factorization of regular finite bipartite graphs, can be derived
immediately from Theorem 13.

The theorem referred to reads:
14. Every finite bipartite regular graph possesses a factor of first degree.

19 Later, several proofs were given for this theorem, respectively for its interpretation in
determinant theory and in combinatorics, so by Frobenius, Sainte-Laguë, van der
Waerden, Sperner, Skolem, Egerváry.

20 16. Let every edge in the (bipartite) graph G connect a vertex of Π1 = (P1, . . . , Pn) with
a vertex of Π2 = (Q1, . . . , Qn) (Pi �= Qj), and let those edges of G that are contained
in a factor of first degree form a disconnected graph G∗. Then one can choose r(> 0)
vertices in Π1 and n − r(> 0) vertices in Π2 such that no edge of G connects two of
the chosen vertices.

21 17. If all expansion terms of all underdeterminants of the order n of a matrix with p
rows and q columns vanish (where n ≤ p, n ≤ q), then all entries vanish that r rows
have in common with (p + q − n + 1) − r columns, for r = 1, or 2, . . . , or p.

22 18. The minimum number of lines (rows and columns) that together contain each non-
vanishing entry of a matrix, is equal to the maximum number of nonvanishing entries
that pairwise belong to different rows and different columns.



Section 16.7h. Historical notes on bipartite matching 283

Die Sätze 17 und 18 hat der Verfasser, mit den hier gegebenen Beweisen, am 26.
März 1931 in der Budapester Mathematischen und Physikalischen Gesellschaft
vorgetragen, s. [6]. Hieran anschließend hat dann E. Egerváry [1] für den Satz
18 einen anderen Beweis und eine interessante Verallgemeinerung gegeben.23

(We note that references [6] and [1] in Kőnig’s article correspond to our references
Kőnig [1931] and Egerváry [1931].)

Kőnig also derived the theorems of Frobenius [1912,1917] mentioned above:

19. Wenn alle Glieder einer Determinante n-ter Ordnung verschwinden, so ver-
schwinden alle Elemente, welche r Zeilen mit n−r+1 Spalten gemeinsam haben,
für r = 1 oder 2, . . . , oder n.24

20. In einer Determinante n-ter Ordnung D seien die nichtverschwindenden Ele-
mente unabhängige Veränderliche. Ist D eine reduzible Funktion ihrer (nichtver-
schwindenden) Elemente, so verschwinden alle Elemente von D, welche r Zeilen
mit n − r Spalten gemeinsam haben für r = 1 oder 2, . . . , oder n − 1.25

With respect to Frobenius [1912], Kőnig noticed in a footnote:

Dort wird dieser Satz “aus verborgenen Eigenschaften der Determinanten mit
nichtnegativen Elementen” durch komplizierte Betrachtungen bewiesen. Ich gab
dann in 1915 in meiner Arbeit [4] einen elementaren graphentheoretischen Beweis
(welcher hier durch einen noch einfacheren ersetzt wird). In 1917 hat dann auch
Frobenius [3] einen elementaren Beweis publiziert, und zwar nach dem ich ihm
meinen Beweis (in deutscher Übersetzung) zugeschickt hatte. Frobenius hat es
dort unterlassen, diese Tatsache, sowie überhaupt meine Arbeit [4] zu erwähnen.
Jedoch zitiert er meine Arbeit [5] und zwar mit folgender Bemerkung: “Die Theo-
rie der Graphen, mittels deren Hr. Kőnig den obigen Satz [dies ist die determinan-
tentheoretische Interpretation von Satz 14] abgeleitet hat, ist nach meiner Ansicht
ein wenig geeignetes Hilfsmittel für die Entwicklung der Determinantentheorie.
In diesem Falle führt sie zu einem ganz speziellen Satz vom geringem Werte. Was
von seinem Inhalt Wert hat, ist in dem Satze II [dies ist der Frobeniussche Satz
19] ausgesprochen.”
Es ist wohl natürlich, daß der Verfasser vorliegender Abhandlung diese Meinung
nicht unterschreiben wird. Die Gründe, die man für oder gegen den Wert oder
Unwert eines Satzes oder eine Methode anführen könnte, haben stets, mehr oder
weniger, einen subjektiven Character, so daß es vom geringen wissenschaftlichen
Wert wäre, wenn wir hier den Standpunkt von Frobenius zu bekämpfen ver-
suchten. Wollte aber Frobenius seine verwerfende Kritik über die Anwendbarkeit
der Graphen auf Determinantentheorie damit begründen, daß sein tatsächlich
“wertvoller” Satz 19 nicht graphentheoretisch bewiesen werden kann, so ist seine
Begründung—wie wir gesehen haben—sicherlich nicht stichhaltig. Der graphen-
theoretische Beweis, den wir für Satz 19 gegeben haben, scheint uns ein ein-
facher und anschaulicher Beweis zu sein, der dem kombinatorischen Character
der Satzes in natürlicher Weise entspricht und auch zu einer bemerkenswerten
Verallgemeinerung (Satz 17) führt.

23 The author has presented Theorems 17 and 18, with the proofs given here, on 26 March
1931 to the Budapest Mathematical and Physical Society, see [6]. Following this, E.
Egerváry [1] has next given another proof for Theorem 18 and an interesting general-
ization.

24 19. When all members of a determinant of the order n vanish, then all elements vanish
that have r rows in common with n − r + 1 columns, for r = 1 or 2, . . . , or n.

25 20. Let, in a determinant D of order n, the nonvanishing entries be independent vari-
ables. If D is a reducible function of its (nonvanishing) entries, then all entries of D
vanish that have r rows in common with n − r columns for r = 1 or 2, . . . , or n − 1.
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Es sei noch erwähnt, daß wir oben, im §2, beim Beweis des Satzes 16 einen
Gedanken von Frobenius benützt haben, den er bei seiner Zurückführung des
Satzes 20 auf Satz 19 angewendet hat.26

(We note that Kőnig’s quotation ‘aus verborgenen Eigenschaften der Determinanten
mit nichtnegativen Elementen’ is from Frobenius [1917]. The references [3], [4], and
[5] in Kőnig’s article correspond to our references Frobenius [1917], Kőnig [1915],
and Kőnig [1916], respectively.)

In terms of transversals, the theorems of Frobenius and Kőnig have been redis-
covered by Hall [1935] — see the historical notes on transversals in Section 22.7d.
Other developments are mentioned in Section 19.5a.

26 This theorem was proved there ‘from hidden properties of determinants with nonneg-
ative elements’ by complicated arguments. Next, I gave in 1915, in my work [4], an
elementary, graph-theoretic proof (which was replaced here by an even simpler one).
Next, in 1917, also Frobenius [3] has published an elementary proof, and that after I
had sent him my proof (in German translation). Frobenius has refrained from men-
tioning this fact there, as well as my work [4] at all. Yet, he quotes my work [5], and
that with the following remark: ‘The theory of graphs, by which Mr. Kőnig has derived
the theorem above [this is the determinant-theoretic interpretation of Theorem 14], is,
to my opinion, of little appropriate help for the development of determinant theory. In
this case it leads to a very special theorem of little value. What from its contents has
value, is expressed in Theorem II [this is Theorem 19 of Frobenius]’.

Obviously, the author of the present treatise will not subscribe to this opinion. The
arguments that one can produce for or against the value or valuelessness of a theorem
or a method, have always, more or less, a subjective character, so that it would be of
little scientific value when we here tried to fight the point of view of Frobenius. But
if Frobenius wants to base his rejecting criticism about the applicability of graphs to
determinant theory on the fact that his actually ‘more valuable’ Theorem 19 cannot
be proved graph-theoretically, then his ground is—as we have seen—certainly not solid.
The graph-theoretic proof that we have given for Theorem 19 seems to us to be a simple
and illustrative proof, that corresponds naturally to the combinatorial character of the
theorem and also leads to a remarkable generalization (Theorem 17).

Let it finally be mentioned that above, in §2, in the proof of Theorem 16, we have
used an idea of Frobenius, which he has applied at his reduction of Theorem 20 to
Theorem 19.



Chapter 17

Weighted bipartite matching
and the assignment problem

The methods and results of the previous chapter can be extended to han-
dle maximum-weight matchings. Egerváry’s theorem is the weighted ver-
sion of Kőnig’s matching theorem. It led Kuhn to develop the ‘Hungarian
method’ for the assignment problem. This problem is equivalent to finding
a minimum-weight perfect matching in a complete bipartite graph.

17.1. Weighted bipartite matching

For bipartite graphs, Egerváry [1931] characterized the maximum weight of
a matching by the following duality relation:

Theorem 17.1 (Egerváry’s theorem). Let G = (V, E) be a bipartite graph
and let w : E → R+ be a weight function. Then the maximum weight of a
matching in G is equal to the minimum value of y(V ), where y : V → R+ is
such that

(17.1) yu + yv ≥ we

for each edge e = uv. If w is integer, we can take y integer.

Proof. The maximum is not more than the minimum, since for any matching
M and any y ∈ R

V
+ satisfying (17.1) for each edge e = uv, one has

(17.2) w(M) ≤
∑

e=uv∈M

(yu + yv) ≤
∑

v∈V

yv.

To see equality, choose a y ∈ R
V
+ attaining the minimum value. Let F be the

set of edges e having equality in (17.1) and let R be the set of vertices v with
yv > 0.

If F contains a matching M covering R, we have equality throughout in
(17.2), showing that the maximum is equal to the minimum value.

So we may assume that no such matching exists. Then by Corollary 16.8a
there exists a stable set S ⊆ R containing no edge and such that |N(S)| < |S|.
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Then there is an α > 0 such that decreasing yv by α for v ∈ S and increasing
yv by α for v ∈ N(S) gives a better y — a contradiction.

If w is integer we can keep y integer, by taking ε = 1 throughout.

(This is essentially the proof method of Egerváry [1931].)
We can formulate Egerváry’s theorem in combinatorial terms. Let G =

(V, E) be a graph and let w ∈ Z
E
+. A w-vertex cover is a vector y ∈ Z

V
+ such

that

(17.3) yu + yv ≥ we

for each edge e = uv of G. The size of any vector y ∈ R
V is the sum of its

components.

Corollary 17.1a. Let G = (V, E) be a bipartite graph and let w : E → Z+
be a weight function. Then the maximum weight of a matching in G is equal
to the minimum size of a w-vertex cover.

Proof. The corollary is a reformulation of the integer part of Egerváry’s
theorem (Theorem 17.1).

Let A be the V ×E incidence matrix of G. Egerváry’s theorem states that
for w ∈ Z

V
+, the optima in the linear programming duality equation

(17.4) max{wTx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ wT}
are attained by integer vectors x and y. This also follows from the total
unimodularity of A — see Section 18.3.

17.2. The Hungarian method

We describe the Hungarian method for the maximum-weight matching prob-
lem. In its basic form it is due to Kuhn [1955b], based on Egerváry’s proof
above. Sharpenings were given by Munkres [1957] (yielding a polynomial-time
method), Iri [1960], Edmonds and Karp [1970], and Tomizawa [1971].

Let G = (V, E) be a bipartite graph, with colour classes U and W , and
let w : E → Q be a weight function.

We start with matching M = ∅. If we have found a matching M , let DM

be the directed graph obtained from G by orienting each edge e in M from
W to U , with length le := we, and orienting each edge e not in M from U to
W , with length le := −we. Let UM and WM be the set of vertices in U and
W , respectively, missed by M . If there is a UM − WM path, find a shortest
such path, P say, and reset M ′ := M�EP .

We iterate until no UM − WM path exists in DM (whence M is a
maximum-size matching). The maximum-weight matching among the match-
ings found, has maximum weight among all matchings.
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To see this, call a matching M extreme if it has maximum weight among
all matchings of size |M |. Then, inductively:

Theorem 17.2. Each matching M found is extreme.

Proof. This is clearly true if M = ∅. Suppose next that M is extreme, and
let P and M ′ be the path and matching found in the iteration. Consider any
extreme matching N of size |M | + 1. As |N | > |M |, M ∪ N has a component
Q that is an M -augmenting path. As P is a shortest M -augmenting path,
we know l(Q) ≥ l(P ). As N�Q is a matching of size |M |, and as M is
extreme, we have w(N�Q) ≤ w(M). Hence w(N) = w(N�Q) − l(Q) ≤
w(M) − l(P ) = w(M ′).

If M is extreme, then DM has no negative-length circuit C (otherwise
M�C is a matching of size |M | and larger weight than M). So by the theo-
rem, we can find with the Bellman-Ford method a shortest UM − WM path
in time O(nm), yielding an O(n2m) method overall (Iri [1960]).

But in fact one may apply Dijkstra’s method (Edmonds and Karp [1970],
Tomizawa [1971]) and obtain a better time bound:

Theorem 17.3. The method can be performed in time O(n(m + n log n)).

Proof. Let RM denote the set of vertices reachable in DM from UM . We show
that along with M we can keep a potential p for the subgraph DM [RM ] of
DM induced by RM (with respect to the length function l defined above).27

When M = ∅ we take p(v) := max{we | e ∈ E} if v ∈ U and p(v) := 0 if
v ∈ W .

Suppose next that for given extreme M we have a potential p for DM [RM ].
Then define p′(v) := distl(UM , v) for each v ∈ RM . Note that having p, one
can determine p′ in O(m + n log n) time (cf. Section 8.2).

Then p′ is a potential for DM ′ [RM ′ ]. To see this, let P be the path in
DM with M ′ = M�EP . Trivially, UM ′ ⊆ UM . Moreover, RM ′ ⊆ RM . In-
deed, otherwise some arc of DM ′ leaves RM . As no arc of DM leaves RM ,
this implies that P has an arc entering RM . So P has an arc leaving RM ,
contradicting the definition of RM . Concluding, RM ′ ⊆ RM .

Finally consider an arc (u, v) of DM ′ [RM ′ ]. If (u, v) is also an arc of DM ,
then p′(v) ≤ p′(u) + l(u, v). If (u, v) is not an arc of DM , then (v, u) belongs
to P , and hence (as P is shortest) p′(u) = p′(v) + l(v, u). So p′(v) − p′(u) =
−l(v, u) = l(u, v).

Observe that in the Hungarian method one can stop as soon as matching
M ′ has no larger weight than M ; that is, DM has no UM − WM path of
negative length. For let N be a matching with w(N) > w(M). So |N | > |M |
27 A potential for a digraph D = (V, A) with respect to a length function l : A → R is a

function p : V → R satisfying p(v) − p(u) ≤ l(a) for each arc a = (u, v).
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(since all matchings of size ≤ |M | have weight ≤ w(M)). Choose N with
|N�M | minimal. By similar arguments as used in the proof of Theorem
17.2, we may assume that N�M has |N | − |M | nontrivial components, each
having one more edge in N than in M . So each component gives a UM −WM

path in DM . As none of them have negative length, we have w(N) ≤ w(M),
a contradiction.

Hence we can reduce the factor n in the time bound:

Theorem 17.4. In a weighted bipartite graph, a maximum-weight matching
can be found in time O(n′(m + n log n)), where n′ is the minimum size of a
maximum-weight matching.

Proof. See above.

17.3. Perfect matching and assignment problems

The methods described above also find a maximum-weight perfect match-
ing in a bipartite graph. This follows from the fact that a maximum-weight
perfect matching is an extreme matching of size 1

2 |V |.
By multiplying all weights by −1, this problem can be seen to be equiva-

lent to finding a minimum-weight perfect matching. Hence:

Corollary 17.4a. A minimum-weight perfect matching can be found in time
O(n(m + n log n)).

Proof. Directly from the above.

This in turn gives an algorithm for the assignment problem:

(17.5) given: a rational n × n matrix A = (ai,j);

find: a permutation π of {1, . . . , n} minimizing
n∑

i=1

ai,π(i).

Corollary 17.4b. The assignment problem can be solved in time O(n3).

Proof. Take G = Kn,n in Corollary 17.4a.

The following characterization of the minimum weight of a perfect match-
ing can be derived from Egerváry’s theorem — we however give a direct proof
that might be illuminating:

Theorem 17.5. Let G = (V, E) be a bipartite graph having a perfect matching
and let w : E → Q be a weight function. The minimum weight of a perfect
matching is equal to the maximum value of y(V ) taken over y : V → Q with
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(17.6) yu + yv ≤ we for each edge e = uv.

If w is integer, we can take y integer.

Proof. Clearly, the minimum is not less than the maximum, since for any
perfect matching M and any y ∈ Q

V satisfying (17.6) one has

(17.7) w(M) =
∑

e∈M

we ≥
∑

v∈V

yv = y(V ).

To see the reverse inequality, let M be a minimum-weight perfect matching.
Make a digraph D = (V, A), with length function, as follows. Orient any
edge e of G from one colour class, U say, to the other, W say, with length
we. Moreover, add for each edge e in M an arc parallel to e oriented from
W to U , with length −we. As M is minimum-weight, the digraph has no
negative-weight directed circuits (otherwise we could make a perfect matching
of smaller weight). Hence, by Theorem 8.2, there exists a function p : V → Q

such that w(a) ≥ p(v)−p(u) for each arc a = (u, v) of D. Defining yv := −p(v)
for v ∈ U and yv := p(v) for v ∈ W , we obtain a function y satisfying (17.6).
For each edge e = uv in M , the arcs (u, v) and (v, u) form a zero-length
directed circuit in D, and therefore we = yu + yv. This gives equality in
(17.7).

If w is integer, we can take p and hence y integer.

17.4. Finding a minimum-size w-vertex cover

Given a maximum-weight matching M in a bipartite graph G = (V, E) with
weight w : E → Z+, we can find a minimum-size w-vertex cover as follows.
Let U and W be the colour classes of G. As before, define UM := U \ ⋃

M
and WM := W \ ⋃

M .
For any edge e = uv, with u ∈ U , v ∈ W , make an arc a = (u, v), of length

l(a) := −we. If e ∈ M , make also an arc a′ = (v, u), of length l(a′) := we. We
obtain a directed graph D = (V, A) without negative-length directed circuits
and no negative-length directed path from UM ∪(W \WM ) to WM ∪(U \UM )
(otherwise we can improve M). Then we can find a potential p : V → Z such
that l(a) ≥ p(v)−p(u) for each arc a = (u, v) of D and such that p(v) = 0 for
each v ∈ UM ∪WM , p(v) ≥ 0 for each v ∈ U , and p(v) ≤ 0 for each v ∈ W . To
see this, add an extra vertex r, and arcs (r, v) for each v ∈ UM ∪ (W \ WM )
and (v, r) for each v ∈ WM ∪ (U \ UM ). Let the new arcs have length 0.
Then the extended digraph D′ has no negative-length circuits. Let p be a
potential for D′. By translating, we can assume p(r) = 0. Resetting p(v) to
0 if v ∈ UM ∪ WM maintains that p is a potential. This gives a potential for
D as described.

Now set yv := −p(v) if v ∈ U and yv := p(v) if v ∈ W . Then y is a
w-vertex cover of size w(M), and hence it is a minimum-size w-vertex cover.
Therefore (Iri [1960]):
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Theorem 17.6. A minimum-size w-vertex cover in a bipartite graph can be
found in O(n(m + n log n)) time.

Proof. See above.

17.5. Further results and notes

17.5a. Complexity survey for maximum-weight bipartite matching

Complexity survey for the maximum-weight bipartite matching (∗ indicates an
asymptotically best bound in the table):

O(nW · VC(n, m)) Egerváry [1931] (implicitly)

O(2nn2) Easterfield [1946]

O(nW · DC(n, m, W )) Robinson [1949]

O(n4) Kuhn [1955b], Munkres [1957]28 Hungarian
method

O(n2m) Iri [1960]

O(n3) Dinits and Kronrod [1969]

∗ O(n · SP+(n, m, W )) Edmonds and Karp [1970], Tomizawa [1971]

O(n3/4m log W ) Gabow [1983b,1985a,1985b]

∗ O(
√

n m log(nW )) Gabow and Tarjan [1988b,1989] (cf. Orlin
and Ahuja [1992])

O(
√

n mW ) Kao, Lam, Sung, and Ting [1999]

∗ O(
√

n mW logn(n2/m)) Kao, Lam, Sung, and Ting [2001]

Here W := ‖w‖∞ (assuming w to be integer-valued). Moreover, SP+(n, m, W ) is
the time needed to find a shortest path in a directed graph with n vertices and
m arcs, with nonnegative integer lengths on the arcs, each at most W . Similarly,
DC(n, m, W ) is the time required to find a negative-length directed circuit in a
directed graph with n vertices and m arcs, with integer lengths on the arcs, each
at most W in absolute value. Moreover, VC(n, m) is the time required to find a
minimum-size vertex cover in a bipartite graph with n vertices and m edges.

Dinits [1976] gave an algorithm for finding a minimum-weight matching in Kp,q

of size p, with time bound O(|p|3 + pq) (taking p ≤ q).

17.5b. Further notes

Simplex method. Finding a maximum-weight matching in a bipartite graph is a
special case of a linear programming problem (see Chapter 18), and hence linear
programming methods like the simplex method apply.

28 Munkres showed that Kuhn’s ‘Hungarian method’ takes O(n4) time.
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Gassner [1964] studied cycling of the simplex method when applied to the as-
signment problem. Using the ‘strongly feasible’ trees of Cunningham [1976], Roohy-
Laleh [1980] showed that a version of the simplex method solves the assignment
problem in less than n3 pivots (cf. Hung [1983], Orlin [1985], and Akgül [1993];
the last paper gives a method with O(n2) pivots, yielding an O(n(m + n log n))
algorithm).

Balinski [1985] (cf. Goldfarb [1985]) showed that a version of the dual simplex
method (the signature method) solves the assignment problem in strongly poly-
nomial time (O(n2) pivots, yielding an O(n3) algorithm). More can be found in
Dantzig [1963], Barr, Glover, and Klingman [1977], Balinski [1986], Ahuja and Or-
lin [1988,1992], Akgül [1988], Paparrizos [1988], and Akgül and Ekin [1991].

For further algorithmic studies of the assignment problem, consult Flood [1960],
Kurtzberg [1962], Hoffman and Markowitz [1963], Balinski and Gomory [1964],
Tabourier [1972], Carpaneto and Toth [1980a,1983,1987], Hung and Rom [1980],
Karp [1980], Bertsekas [1981,1987,1992] (‘auction method’), Engquist [1982], Avis
[1983], Avis and Devroye [1985], Derigs [1985b,1988a], Carraresi and Sodini [1986],
Derigs and Metz [1986a], Glover, Glover, and Klingman [1986], Jonker and Vol-
genant [1986], Kleinschmidt, Lee, and Schannath [1987], Avis and Lai [1988], Bert-
sekas and Eckstein [1988], Motwani [1989,1994], Kalyanasundaram and Pruhs [1991,
1993], Khuller, Mitchell, and Vazirani [1991,1994], Goldberg and Kennedy [1997]
(push-relabel), and Arora, Frieze, and Kaplan [1996,2002].

For computational studies, see Silver [1960], Florian and Klein [1970], Barr,
Glover, and Klingman [1977] (simplex method), Gavish, Schweitzer, and Shlifer
[1977] (simplex method), Bertsekas [1981], Engquist [1982], McGinnis [1983], Lind-
berg and Ólafsson [1984] (simplex method), Glover, Glover, and Klingman [1986],
Jonker and Volgenant [1987], Bertsekas and Eckstein [1988], and Goldberg and
Kennedy [1995] (push-relabel). Consult also Johnson and McGeoch [1993].

Linear-time algorithm for weighted bipartite matching problems satisfying a
quadrangle or other inequality were given by Karp and Li [1975], Buss and Yianilos
[1994,1998], and Aggarwal, Bar-Noy, Khuller, Kravets, and Schieber [1995].

For generating all minimum-weight perfect matchings, see Fukuda and Matsui
[1992]. For studies of the ‘most vital’ edges in a weighted bipartite graph, see Hung,
Hsu, and Sung [1993].

Aráoz and Edmonds [1985] gave an example showing that iterative dual im-
provements in the linear programming problem dual to the assignment problem,
need not converge for irrational data.

For the ‘bottleneck’ assignment problem, see Gross [1959] and Garfinkel [1971].
An algebraic approach to assignment problems was described by Burkard, Hahn,
and Zimmermann [1977].

For surveys on matching algorithms, see Galil [1983,1986a,1986b]. Books cov-
ering the weighted bipartite matching and assignment problems include Ford
and Fulkerson [1962], Dantzig [1963], Christofides [1975], Lawler [1976b], Bazaraa
and Jarvis [1977], Burkard and Derigs [1980], Papadimitriou and Steiglitz [1982],
Gondran and Minoux [1984], Rockafellar [1984], Derigs [1988a], Bazaraa, Jarvis,
and Sherali [1990], Cook, Cunningham, Pulleyblank, and Schrijver [1998], Jung-
nickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000].
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17.5c. Historical notes on weighted bipartite matching and
optimum assignment

Monge: optimum assignment

The assignment problem is one of the first studied combinatorial optimization prob-
lems. It was investigated by Monge [1784], albeit camouflaged as a continuous prob-
lem, and often called a transportation problem.

Monge was motivated by transporting earth, which he considered as the dis-
continuous, combinatorial problem of transporting molecules:

Lorsqu’on doit transporter des terres d’un lieu dans un autre, on a coutime de
donner le nom de Déblai au volume des terres que l’on doit transporter, & le nom
de Remblai à l’espace qu’elles doivent occuper après le transport.
Le prix du transport d’une molécule étant, toutes choses d’ailleurs égales, pro-
portionnel à son poids & à l’espace qu’on lui fait parcourir, & par conséquent le
prix du transport total devant être proportionnel à la somme des produits des
molécules multipliées chacune par l’espace parcouru, il s’ensuit que le déblai &
le remblai étant donnés de figure & de position, il n’est pas indifférent que telle
molécule du déblai soit transportée dans tel ou tel autre endroit du remblai, mais
qu’il y a une certaine distribution à faire des molécules du premier dans le second,
d’après laquelle la somme de ces produits sera la moindre possible, & le prix du
transport total sera un minimum.29

Monge described an interesting geometric method to solve this problem. Con-
sider a line that is tangent to both areas, and move the molecule m touched in the
first area to the position x touched in the second area, and repeat, until all earth
has been transported. Monge’s argument that this would be optimum is simple:
if molecule m would be moved to another position, then another molecule should
be moved to position x, implying that the two routes traversed by these molecules
cross, and that therefore a shorter assignment exists:

Étant données sur un même plan deux aires égales ABCD, & abcd, terminées
par des contours quelconques, continus ou discontinus, trouver la route que doit
suivre chaque molécule M de la premiere, & le point m où elle doit arriver dans la
seconde, pour que tous les points étant semblablement transportés, ils replissent
exactement la seconde aire, & que la somme des produits de chaque molécule
multipliée par l’espace parcouru soit un minimum.
Si par un point M quelconque de la première aire, on mène une droite Bd, telle
que le segment BAD soit égal au segment bad, je dis que pour satisfaire à la
question, il faut que toutes les molécules du segment BAD, soient portées sur le
segment bad, & que par conséquent les molécules du segment BCD soient portées

29 When one must transport earth from one place to another, one usually gives the name
of Déblai to the volume of earth that one must transport, & the name of Remblai to
the space that they should occupy after the transport.

The price of the transport of one molecule being, if all the rest is equal, proportional
to its weight & to the distance that one makes it covering, & hence the price of the
total transport having to be proportional to the sum of the products of the molecules
each multiplied by the distance covered, it follows that, the déblai & the remblai being
given by figure and position, it makes difference if a certain molecule of the déblai
is transported to one or to another place of the remblai, but that there is a certain
distribution to make of the molecules from the first to the second, after which the sum
of these products will be as little as possible, & the price of the total transport will be
a minimum.
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sur le segment égal bcd; car si un point K quelconque du segment BAD, étoit
porté sur un point k de bcd, il faudroit nécessairement qu’un point égal L, pris
quelque part dans BCD, fût transporté dans un certain point l de bad, ce qui
ne pourroit pas se faire sans que les routes Kk, Ll, ne se coupassent entre leurs
extrémités, & la somme des produits des molécules par les espaces parcourus ne
seroit pas un minimum. Pareillement, si par un point M ′ infiniment proche du
point M , on mène la droite B′d′, telle qu’on ait encore le segment B′A′D′, égal
au segment b′a′d′, il faut pour que la question soit satisfaite, que les molécules
du segment B′A′D′ soient transportées sur b′a′d′. Donc toutes les molécules de
l’élément BB′D′D doivent être transportées sur l’élément égal bb′d′d. Ainsi en
divisant le déblai & le remblai en une infinité d’élémens par des droites qui coupent
dans l’un & dans l’autre des segmens égaux entr’eux, chaque élément du déblai
doit être porté sur l’élément correspondant du remblai.
Les droites Bd & B′d′ étant infiniment proches, il est indifférent dans quel or-
dre les molécules de l’élément BB′D′D se distribuent sur l’élément bb′d′d; de
quelque manière en effet que se fasse cette distribution, la somme des produits
des molécules par les espaces parcourus, est toujours la même, mais si l’on remar-
que que dans la pratique il convient de débleyer premièrement les parties qui se
trouvent sur le passage des autres, & de n’occuper que les dernières les parties du
remblai qui sont dans le même cas; la molécule MM ′ ne devra se transporter que
lorsque toute la partie MM ′D′D qui la précêde, aura été transportée en mm′d′d;
donc dans cette hypothèse, si l’on fait mm′d′d = MM ′D′D, le point m sera celui
sur lequel le point M sera transporté.30

Although geometrically intuitive, the method is however not fully correct, as
was noted by Appell [1928]:
30 Being given, in the same plane, two equal areas ABCD & abcd, bounded by arbitrary

contours, continuous or discontinuous, find the route that every molecule M of the first
should follow & the point m where it should arrive in the second, so that, all points
being transported likewise, they fill precisely the second area & so that the sum of the
products of each molecule multiplied by the distance covered, is minimum.

If one draws a straight line Bd through an arbitrary point M of the first area, such
that the segment BAD is equal to the segment bad, I assert that, in order to satisfy
the question, all molecules of the segment BAD should be carried on the segment bad,
& hence the molecules of the segment BCD should be carried on the equal segment
bcd; for, if an arbitrary point K of segment BAD, is carried to a point k of bcd, then
necessarily some point L somewhere in BCD is transported to a certain point l in bad,
which cannot be done without that the routes Kk, Ll cross each other between their
end points, & the sum of the products of the molecules by the distances covered would
not be a minimum. Likewise, if one draws a straight line B′d′ through a point M ′
infinitely close to point M , in such a way that one still has that segment B′A′D′ is
equal to segment b′a′d′, then in order to satisfy the question, the molecules of segment
B′A′D′ should be transported to b′a′d′. So all molecules of the element BB′D′D must
be transported to the equal element bb′d′d. Dividing the déblai & the remblai in this
way into an infinity of elements by straight lines that cut in the one & in the other
segments that are equal to each other, every element of the déblai must be carried to
the corresponding element of the remblai.

The straight lines Bd & B′d′ being infinitely close, it does not matter in which
order the molecules of element BB′D′D are distributed on the element bb′d′d; indeed,
in whatever manner this distribution is being made, the sum of the products of the
molecules by the distances covered is always the same; but if one observes that in
practice it is convenient first to dig off the parts that are in the way of others, & only at
last to cover similar parts of the remblai; the molecule MM ′ must be transported only
when the whole part MM ′D′D that precedes it will have been transported to mm′d′d;
hence with this hypothesis, if one has mm′d′d = MM ′D′D, point m will be the one to
which point M will be transported.
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Il est bien facile de faire la figure de manière que les chemins suivis par les deux
parcelles dont parle Monge ne se croisent pas.31

(cf. Taton [1951]).

Egerváry

Egerváry [1931] published a weighted version of Kőnig’s theorem:

Ha az ‖aij‖ n-edrendű matrix elemei adott nem negat́ıv egész számok, úgy a

λi + µj ≥ aij , (i, j = 1, 2, ...n),
(λi, µj nem negat́ıv egész számok)

feltételek mellett

min .
n∑

k=1

(λk + µk) = max .(a1ν1 + a2ν2 + · · · + anνn ).

hol ν1, ν2, ...νn az 1, 2, ...n számok összes permutációit befutják.32

The proof method of Egerváry is essentially algorithmic. Assume that the ai,j are
integer. Let λ∗

i , µ∗
j attain the minimum. If there is a permutation ν of {1, . . . , n}

with λ∗
i + µ∗

νi
= ai,νi for all i, then this permutation attains the maximum, and we

have the required equality. If no such permutation exists, by Frobenius’ theorem
there are subsets I, J of {1, . . . , n} such that

(17.8) λ∗
i + µ∗

j > ai,j for all i ∈ I, j ∈ J

and such that |I| + |J | = n + 1. Resetting λ∗
i := λ∗

i − 1 if i ∈ I and µ∗
j := µ∗

j + 1
if j �∈ J , would give feasible values for the λi and µj , however with their total sum
being decreased. This is a contradiction.

Translated into an algorithm, it consists of applying O(nW ) times a cardinality
bipartite matching algorithm, where W is the maximum weight. So its running
time is O(nW ·B(n)), where B(n) is a bound on the running time of any algorithm
finding a maximum-size matching and a minimum-size vertex cover in a bipartite
graph with n vertices.

This method forms the basis for the Hungarian method of Kuhn [1955b,1956]
— see below.

31 It is very easy to make the figure in such a way that the routes followed by the two
particles of which Monge speaks, do not cross each other.

32 If the elements of the matrix ‖aij‖ of order n are given nonnegative integers, then
under the assumption

λi + µj ≥ aij , (i, j = 1, 2, ...n),
(λi, µj nonnegative integers)

we have

min .
n∑

k=1

(λk + µk) = max .(a1ν1 + a2ν2 + · · · + anνn ).

where ν1, ν2, ...νn run over all possible permutations of the numbers 1, 2, ...n.
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The 1940s

The first algorithm for the assignment problem might have been published by East-
erfield [1946], who described his motivation as follows:

In the course of a piece of organisational research into the problems of demobili-
sation in the R.A.F., it seemed that it might be possible to arrange the posting of
men from disbanded units into other units in such a way that they would not need
to be posted again before they were demobilised; and that a study of the numbers
of men in the various release groups in each unit might enable this process to be
carried out with a minimum number of postings. Unfortunately the unexpected
ending of the Japanese war prevented the implications of this approach from be-
ing worked out in time for effective use. The algorithm of this paper arose directly
in the course of the investigation.

Easterfield seems to have worked without knowledge of the existing literature.
He formulated and proved a theorem equivalent to Hall’s marriage theorem (see
Section 22.1a) and he described a primal-dual type method for the assignment
problem from which Egerváry’s result given above follows. The idea of the method
can be described as follows.

Let A = (ai,j) be an n × n matrix and let for each column index j, Ij be the
set of row indices i for which ai,j is minimum among all entries in row i. If the
collection (I1, . . . , In) has a transversal, say i1, . . . , in (with ij ∈ Ij), then ij → j is
an optimum assignment.

If (I1, . . . , In) has no transversal, let J be the collection of subsets J of
{1, . . . , n} for which (Ij | j ∈ J) has a transversal. Select an inclusionwise min-
imal set J that is not in J . Then there exists an ε > 0 such that subtracting ε
from each entry in each of the columns in J extends J by (at least) J . (This can
be seen using Hall’s condition.)

Easterfield described an implementation (including scanning all subsets in lex-
icographic order), that has running time O(2nn2). (This is better than scanning
all permutations, which takes time Ω(n!).) The algorithm was explained again by
Easterfield [1960].

Birkhoff [1946] derived from Hall’s marriage theorem that each doubly stochas-
tic matrix is a convex combination of permutation matrices. Birkhoff’s motivation
was:

Estas matrices son interesantes para la probabilidad, y los cuadrados mágicos son
múltiplos escalares de estas matrices.33

A breakthrough in solving the assignment problem came when Dantzig [1951a]
showed that the assignment problem can be formulated as a linear programming
problem that automatically has an integer optimum solution. Indeed, by Birkhoff’s
theorem, minimizing a linear functional over the set of doubly stochastic matrices
(which is a linear programming problem) gives a permutation matrix, being the
optimum assignment. So the assignment problem can be solved with the simplex
method.

In an address delivered on 9 September 1949 at a meeting of the American Psy-
chological Association at Denver, Colorado, Thorndike [1950] studied the problem
of the ‘classification’ of personnel:

33 These matrices are interesting because of the probability, and the magic squares are
scalar multiples of these matrices.
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The past decade, and particularly the war years, have witnessed a great concern
about the classification of personnel and a vast expenditure of effort presumably
directed towards this end.

He exhibited little trust in mathematicians:

There are, as has been indicated, a finite number of permutations in the assign-
ment of men to jobs. When the classification problem as formulated above was
presented to a mathematician, he pointed to this fact and said that from the
point of view of the mathematician there was no problem. Since the number of
permutations was finite, one had only to try them all and choose the best. He
dismissed the problem at that point. This is rather cold comfort to the psychol-
ogist, however, when one considers that only ten men and ten jobs mean over
three and a half million permutations. Trying out all the permutations may be a
mathematical solution to the problem, it is not a practical solution.

Thorndike next presented three heuristics for the assignment problem, the Method
of Divine Intuition, the Method of Daily Quotas, and the Method of Predicted Yield.

In a RAND Report dated 5 December 1949, Robinson [1949] reported that
an ‘unsuccessful attempt’ to solve the traveling salesman problem, led her to the
following ‘cycle-cancelling’ method for the optimum assignment problem.

Let matrix (ai,j) be given, and consider any permutation π. Define for all i, j
a ‘length’ li,j by: li,j := aj,π(i) − ai,π(i) if j �= π(i) and li,π(i) = ∞. If there exists
a negative-length directed circuit, there is a straightforward way to improve π. If
there is no such circuit, then π is an optimal permutation.

This clearly is a finite method. Robinson remarked:

I believe it would be feasible to apply it to as many as 50 points provided suitable
calculating equipment is available.

The early 1950s

Von Neumann considered the complexity of the assignment problem. In a talk in
the Princeton University Game Seminar on 26 October 1951, he showed that the
assignment problem can be reduced to finding an optimum column strategy in a
certain zero-sum two-person game, and that it can be found by a method given by
Brown and von Neumann [1950]. We give first the mathematical background.

A zero-sum two-person game is given by a matrix A, the ‘pay-off matrix’. The
interpretation as a game is that a ‘row player’ chooses a row index i and a ‘column
player’ chooses simultaneously a column index j. After that, the column player pays
the row player Ai,j . The game is played repeatedly, and the question is what is the
best strategy.

Let A have order m × n. A row strategy is a vector x ∈ R
m
+ satisfying 1Tx = 1.

Similarly, a column strategy is a vector y ∈ R
n
+ satisfying 1Ty = 1. Then

(17.9) max
x

min
j

(xTA)j = min
y

max
i

(Ay)i,

where x ranges over row strategies, y over column strategies, i over row indices,
and j over column indices. Equality (17.9) follows from LP-duality.

It implies that the best strategy for the row player is to choose rows with
distribution an optimum x in (17.9). Similarly, the best strategy for the column
player is to choose columns with distribution an optimum y in (17.9). The average
pay-off then is the value of (17.9).
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The method of Brown [1951] to determine the optimum strategies is that each
player chooses in turn the line that is best with respect to the distribution of the
lines chosen by the opponent so far. It was proved by Robinson [1951] that this
converges to optimum strategies. The method of Brown and von Neumann [1950] is
a continuous version of this, and amounts to solving a system of linear differential
equations.

Now von Neumann noted that the following reduces the assignment problem to
the problem of finding an optimum column strategy. Let C = (ci,j) be an n×n cost
matrix, as input for the assignment problem. We may assume that C is positive.
Consider the following pay-off matrix A, of order 2n × n2, with columns indexed
by ordered pairs (i, j) with i, j = 1, . . . , n. The entries of A are given by: Ai,(i,j) :=
1/ci,j and An+j,(i,j) := 1/ci,j for i, j = 1, . . . , n, and Ak,(i,j) := 0 for all i, j, k with
k �= i and k �= n + j. Then any minimum-cost assignment, of cost γ say, yields an
optimum column strategy y by: y(i,j) := ci,j/γ if i is assigned to j, and y(i,j) := 0
otherwise. Any optimum column strategy is a convex combination of strategies
obtained this way from optimum assignments. So an optimum assignment can in
principle be found by finding an optimum column strategy.

According to a transcript of the talk (cf. von Neumann [1951,1953]), von Neu-
mann noted the following on the number of steps:

It turns out that this number is a moderate power of n, i.e., considerably smaller
than the ”obvious” estimate n! mentioned earlier.

However, no further argumentation is given. (Related observations were given by
Dulmage and Halperin [1955] and Koopmans and Beckmann [1955,1957].)

Beckmann and Koopmans [1952] studied the quadratic assignment problem, and
they noted that the traveling salesman problem is a special case. In a Cowles Com-
mission Discussion Paper of 2 April 1953, Beckmann and Koopmans [1953] men-
tioned applying polyhedral methods to solve the assignment problem, and noted:

It should be added that in all the assignment problems discussed, there is, of
course, the obvious brute force method of enumerating all assignments, evaluating
the maximand at each of these, and selecting the assignment giving the highest
value. This is too costly in most cases of practical importance, and by a method
of solution we have meant a procedure that reduces the computational work to
manageable proportions in a wider class of cases.

Geometric methods were proposed by Lord [1952] and Dwyer [1954] (the
‘method of optimal regions’) and other heuristics by Votaw and Orden [1952] and
Törnqvist [1953]. A survey of developments on the assignment problem until 1955
was given by Motzkin [1956].

Computational results of the early 1950s

In a paper presented at the Symposium on Linear Inequalities and Linear Program-
ming (14–16 June 1951 in Washington, D.C.), Votaw and Orden [1952] mentioned
that solving a 10 × 10 transportation problem took 3 minutes on the SEAC (Na-
tional Bureau of Standards Eastern Automatic Computer). However, in a later
paper (submitted 1 November 1951), Votaw [1952] said that solving a 10 × 10
assignment problem with the simplex method on the SEAC took 20 minutes.

Moreover, in his reminiscences, Kuhn [1991] mentioned:
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The story begins in the summer of 1953 when the National Bureau of Stan-
dards and other US government agencies had gathered an outstanding group of
combinatorialists and algebraists at the Institute for Numerical Analysis (INA)
located on the campus of the University of California at Los Angeles. Since space
was tight, I shared an office with Ted Motzkin, whose pioneering work on linear
inequalities and related systems predates linear programming by more than ten
years. A rather unique feature of the INA was the presence of the Standards West-
ern Automatic Computer (SWAC), the entire memory of which consisted of 256
Williamson cathode ray tubes. The SWAC was faster but smaller than its sibling
machine, the Standards Eastern Automatic Computer (SEAC), which boasted a
liquid mercury memory and which had been coded to solve linear programs.

During the summer, C.B. Tompkins was attempting to solve 10 by 10 assign-
ment problems by programming the SWAC to enumerate the 10! = 3, 628, 800
permutations of 10 objects. He never succeeded in this project.

Thus, the 10 by 10 assignment problem is a linear program with 100 nonnegative
variables and 20 equation constraints (of which only 19 are needed). In 1953,
there was no machine in the world that had been programmed to solve a linear
program this large!

If ‘the world’ includes the Eastern Coast of the U.S.A., there seems to be some
discrepancy with the remarks of Votaw [1952] mentioned above.

On 23 April 1954, Gleyzal [1955] wrote that a code of his algorithm for the
transportation problem, for the special case of the assignment problem with an
8 × 8 matrix, had just been composed for the SWAC.

Tompkins [1956] mentioned the following ‘branch-and-bound’ approach to the
assignment problem:

Benjamin Handy, on the suggestion of D.H. Lehmer and with advice from T.S.
Motzkin [1], coded this problem for SWAC; he used exhaustive search including
rejection of blocks of permutations when the first few elements of the trace led to
a hopelessly low contribution. The problem worked for a problem whose matrix
had 12 rows and 12 columns and was composed of random three-digit numbers.
The solution in this case took three hours. Some restrictions which had been
imposed concerning the types of problems to which the code should be applicable
led to some inefficiencies; however, the simplex method of G.B. Dantzig [7] and
various other methods of solution of this problem seem greatly superior to this
method of exhaustive search;

(References [1] and [7] in this quotation are Motzkin [1956] and Dantzig [1951b].)

Kuhn, Munkres: the Hungarian method

Kuhn [1955b,1956] developed a new combinatorial procedure for solving the assign-
ment problem. The method is based on the work of Egerváry [1931], and therefore
Kuhn introduced the name Hungarian method for it. (According to Kuhn [1955b],
the algorithm is ‘latent in work of D. Kőnig and J. Egerváry’.) The method was
sharpened by Munkres [1957].

In an article On the origin of the Hungarian method, Kuhn [1991] presented the
following reminiscences on the Hungarian method, from the time starting Summer
1953:
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During this period, I was reading Kőnig’s classical book on the theory of graphs
and realized that the matching problem for a bipartite graph on two sets of n
vertices was exactly the same as an n by n assignment problem with all aij = 0
or 1. More significantly, Kőnig had given a combinatorial algorithm (based on
augmenting paths) that produces optimal solutions to the matching problem and
its combinatorial (or linear programming) dual. In one of the several formulations
given by Kőnig (p. 240, Theorem D), given an n by n matrix A = (aij) with all
aij = 0 or 1, the maximum number of 1’s that can be chosen with no two in the
same line (horizontal row or vertical column) is equal to the minimum number
of lines that contain all of the 1’s. Moreover, the algorithm seemed to be ‘good’
in a sense that will be made precise later. The problem then was: how could the
general assignment problem be reduced to the 0-1 special case?
Reading Kőnig’s book more carefully, I was struck by the following footnote (p.
238, footnote 2): “... Eine Verallgemeinerung dieser Sätze gab Egerváry, Ma-
trixok kombinatorius tulajdonságairól (Über kombinatorische Eigenschaften von
Matrizen), Matematikai és Fizikai Lapok, 38, 1931, S. 16-28 (ungarisch mit einem
deutschen Auszug) ...” This indicated that the key to the problem might be in
Egerváry’s paper. When I returned to Bryn Mawr College in the fall, I obtained
a copy of the paper together with a large Hungarian dictionary and grammar
from the Haverford College library. I then spent two weeks learning Hungarian
and translated the paper [1]. As I had suspected, the paper contained a method
by which a general assignment problem could be reduced to a finite number of
0-1 assignment problems.
Using Egerváry’s reduction and Kőnig’s maximum matching algorithm, in the fall
of 1953 I solved several 12 by 12 assignment problems (with 3-digit integers as
data) by hand. Each of these examples took under two hours to solve and I was
convinced that the combined algorithm was ‘good’. This must have been one of
the last times when pencil and paper could beat the largest and fastest electronic
computer in the world.

(Reference [1] is the English translation of the paper of Egerváry [1931].)
The method described by Kuhn is a sharpening of the method of Egerváry

sketched above, in two respects: (i) it gives an (augmenting path) method to find
either a perfect matching or sets I and J as required, and (ii) it improves the λi

and µj not by 1, but by the largest value possible.
Kuhn [1955b] described the method in terms of matrices — in terms of graphs

it amounts to the following algorithm for the maximum weighted perfect matching
problem in a complete bipartite graph G = (V, E), with weight function w : E →
Z+. Let U and W be the colour classes of G. Throughout there is a function
p : V → Z satisfying

(17.10) p(u) + p(v) ≥ w(uv) for each edge uv

and a matching M in the subgraph G′ = (V, E′) of G consisting of those edges
having equality in (17.10).

If M is not a perfect matching, orient each edge in M from W to U , and every
other edge of G′ from U to W , giving graph D′

M . Let UM and WM be the sets of
vertices in U and W missed by M .

Kuhn [1955b] described a depth-first search to find the set RM of vertices that
are reachable by a directed path in D′

M from UM . (In a subsequent paper, Kuhn
[1956] described a breadth-first search, starting at only one vertex in UM .)

Case 1: RM ∩ WM �= ∅. We have an M -augmenting path in G′, by which we
increase M .

Case 2: RM ∩ UM = ∅. Determine
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(17.11) µ := min{p(u) + p(v) − w(u, v) | u ∈ U ∩ RM , v ∈ W \ RM}.

This number is positive, since no edge of G′ connects U ∩RM and W \RM . Decrease
p(u) by µ if u ∈ U ∩ RM and increase p(v) by µ if v ∈ W ∩ RM . Then (17.10) is
maintained, while the sum

∑

v∈V p(v) decreases (as |U ∩ RM | > |W ∩ RM |).
After this we iterate, until we have a perfect matching M in G′, which is a

maximum-weight perfect matching.
Kuhn [1955b] contented himself with stating that the number of iterations is

finite (since the number of iterations where Case 2 applies is finite (as
∑

v p(v) is
nonnegative)).

It was observed by Munkres [1957] that the method runs in strongly polynomial
time, since, between any two occurrences of Case 1, the number of iterations where
Case 2 applies is at most n, as at each such iteration RM ∩ W increases (namely
by all vertices v that attain the minimum (17.11)).

So the number of iterations is at most n2 (since M can increase at most n times).
As the (depth- or breadth-first) search takes O(n2) this gives an O(n4) algorithm.

Munkres [1957] observed also that after an occurrence of Case 2 one can continue
the search of the previous iteration, since edges of G′ traversed in the search from
UM , remain edges of the new graph G′. Hence between any two occurrences of
Case 1, the depth-first search takes time O(n2). This still gives an O(n4) algorithm,
since calculating the minimum (17.11) takes O(n2) time. (Munkres claimed that his
algorithm takes O(n3) operations, but he takes ‘scanning a line’ (that is, considering
all edges incident with a given vertex) as one operation.)

(However, all Case 2-iterations can be combined to one iteration, by finding
distances from UM , with respect to the length function w in the oriented G′. It
amounts to including a Dijkstra-like labeling, yielding an O(n3) time bound. This
is the method we described in Section 17.2. This principle was noticed by Edmonds
and Karp [1970] and Tomizawa [1971].)

Ford and Fulkerson [1955,1957b] (cf. Ford and Fulkerson [1956c,1956d]) ex-
tended the Hungarian method to general transportation problems. They state in
Ford and Fulkerson [1956c,1956d]:

Large systems involving hundreds of equations in thousands of unknowns have
been successfully solved by hand using the simplex computation. The procedure of
this paper has been compared with the simplex method on a number of randomly
chosen problems and has been found to take roughly half the effort for small
problems. We believe that as the size of the problem increases, the advantages of
the present method become even more marked.

In a footnote, the authors add as to the assignment problem:

The largest example tried was a 20 × 20 optimal assignment problem. For this
example, the simplex method required well over an hour, the present method
about thirty minutes of hand computation.



Chapter 18

Linear programming methods
and the bipartite matching

polytope

The weighted matching problem for bipartite graphs discussed in the previ-
ous chapter is related to the ‘matching polytope’ and the ‘perfect matching
polytope’, and can be handled with linear programming methods by the
total unimodularity of the incidence matrix of a bipartite graph.
In this chapter, graphs can be assumed to be simple.

18.1. The matching and the perfect matching polytope

Let G = (V, E) be a graph. The perfect matching polytope Pperfect matching(G)
of G is defined as the convex hull of the incidence vectors of perfect matchings
in G. So Pperfect matching(G) is a polytope in R

E .
The perfect matching polytope is a polyhedron, and hence can be de-

scribed by linear inequalities. The following are clearly valid inequalities:

(18.1) (i) xe ≥ 0 for each edge e,
(ii) x(δ(v)) = 1 for each vertex v.

These inequalities are generally not enough (for instance, not for K3). How-
ever, as Birkhoff [1946] showed, for bipartite graphs they are enough:

Theorem 18.1. If G is bipartite, the perfect matching polytope of G is de-
termined by (18.1).

Proof. Let x be a vertex of the polytope determined by (18.1). Let F be the
set of edges e with xe > 0. Suppose that F contains a circuit C. As C has
even length, EC = M ∪ N for two disjoint matchings M and N . Then for ε
close enough to 0, both x + ε(χM − χN ) and x − ε(χM − χN ) satisfy (18.1),
contradicting the fact that x is a vertex of the polytope. So (V, F ) is a forest,
and hence by (18.1), F is a perfect matching.
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Figure 18.1

The implication cannot be reversed, as is shown by the graph in Figure
18.1.

Theorem 18.1 was shown by Birkhoff in the terminology of doubly stochas-
tic matrices. A matrix A is called doubly stochastic if A is nonnegative and
each row sum and each column sum equals 1. A permutation matrix is an
integer doubly stochastic matrix (so it is {0, 1}-valued, and has precisely one
1 in each row and in each column). Then:

Corollary 18.1a (Birkhoff’s theorem). Each doubly stochastic matrix is a
convex combination of permutation matrices.

Proof. Directly from Theorem 18.1, by taking G = Kn,n.

Theorem 18.1 also implies a characterization of the matching polytope
for bipartite graphs. For any graph G = (V, E), the matching polytope
Pmatching(G) of G is the convex hull of the incidence vectors of matchings
in G. So again it is a polytope in R

E . The following are valid inequalities for
the matching polytope:

(18.2) (i) xe ≥ 0 for each edge e,
(ii) x(δ(v)) ≤ 1 for each vertex v.

Then:

Corollary 18.1b. The matching polytope of G is determined by (18.2) if and
only if G is bipartite.

Proof. To see necessity, suppose that G is not bipartite, and let C be an odd
circuit in G. Define xe := 1

2 if e ∈ C and xe := 0 otherwise. Then x satisfies
(18.2) but does not belong to the matching polytope of G.

To see sufficiency, let G be bipartite and let x satisfy (18.2). Let G′ and
x′ be a copy of G and x, and add edges vv′, where v′ is the copy of v ∈ V .
Define y(vv′) := 1 − x(δ(v)). Then x, x′, y satisfy (18.1) with respect to
the new graph, and hence by Theorem 18.1, it is a convex combination of
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incidence vectors of perfect matchings in the new graph. Hence x is a convex
combination of incidence vectors of matchings in G.

Notes. Birkhoff derived Corollary 18.1a from Hall’s marriage theorem (Theo-
rem 22.1), which is equivalent to Kőnig’s matching theorem. (Also Dulmage and
Halperin [1955] derived Birkhoff’s theorem from Kőnig’s matching theorem.) Other
proofs were given by von Neumann [1951,1953], Dantzig [1952], Hoffman and
Wielandt [1953], Koopmans and Beckmann [1955,1957], Hammersley and Mauldon
[1956] (a polyhedral proof based on total unimodularity), Tompkins [1956], Mirsky
[1958], and Vogel [1961]. A survey was given by Mirsky [1962]. More can be found
in Johnson, Dulmage, and Mendelsohn [1960], Nishi [1979], and Brualdi [1982].

18.2. Totally unimodular matrices from bipartite graphs

In this section we show that the results on matchings discussed above can
also be derived from linear programming duality with total unimodularity
(Hoffman [1956b]).

Let A be the V × E incidence matrix of a graph G = (V, E). The matrix
A generally is not totally unimodular. E.g., if G is the complete graph K3 on
three vertices, then the determinant of A is equal to +2 or −2.

However, the following can be proved (necessity can also be derived di-
rectly from the total unimodularity of the incidence matrix of a directed
graph (Theorem 13.9) — we give a direct proof):

Theorem 18.2. A graph G = (V, E) is bipartite if and only if its incidence
matrix A is totally unimodular.

Proof. Sufficiency. Assume that A is totally unimodular and G is not bipar-
tite. Then G has a circuit of odd length, t say. The submatrix of A induced
by the vertices and edges in C is a t × t matrix with exactly two ones in
each row and each column. As t is odd, the determinant of this matrix is ±2,
contradicting the total unimodularity of A.

Necessity. Let G be bipartite. We show that A is totally unimodular. Let
B be a square submatrix of A, of order t × t say. We show that det B equals
0 or ±1 by induction on t. If t = 1, the statement is trivial. So let t > 1. We
distinguish three cases.

Case 1: B has a column with only 0’s. Then det B=0.
Case 2: B has a column with exactly one 1. In that case we can write

(possibly after permuting rows or columns):

(18.3) B =
(

1 bT

0 B′

)
,

for some matrix B′ and vector b, where 0 denotes the all-zero vector in R
t−1.

By the induction hypothesis, detB′ ∈ {0,±1}. Hence, by (18.3), detB ∈
{0,±1}.
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Case 3. Each column of B contains exactly two 1’s. Then, since G is
bipartite, we can write (possibly after permuting rows):

(18.4) B =
(

B′

B′′

)
,

in such a way that each column of B′ contains exactly one 1 and each column
of B′′ contains exactly one 1. So adding up all rows in B′ gives the all-one
vector, and also adding up all rows in B′′ gives the all-one vector. The rows
of B therefore are linearly dependent, and hence detB=0.

18.3. Consequences of total unimodularity

Let G = (V, E) be a bipartite graph and let A be its V ×E incidence matrix.
Consider Kőnig’s matching theorem (Theorem 16.2): the maximum size of a
matching in G is equal to the minimum size of a vertex cover in G. This can
be derived from the total unimodularity of A as follows. By Corollary 5.20a,
both optima in the LP-duality equation

(18.5) max{1Tx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ 1T}
have integer optimum solutions x∗ and y∗. Now x∗ necessarily is the incidence
vector of a matching and y∗ is the incidence vector of a vertex cover. So we
have Kőnig’s matching theorem.

One can also derive the weighted version of Kőnig’s matching theorem,
Egerváry’s theorem (Theorem 17.1): for any weight function w : E → Z+,
the maximum weight of a matching in G is equal to the minimum value of∑

v∈V yv, where y ranges over all y : V → Z+ with yu + yv ≥ we for each
edge e = uv of G. To derive this, consider the LP-duality equation

(18.6) max{wTx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ wT}.

By the total unimodularity of A, these optima are attained by integer x∗ and
y∗, and we have the theorem.

The min-max relation for minimum-weight perfect matching (Theorem
17.5) follows similarly.

One can also derive the characterizations of the matching polytope and
perfect matching polytope of a bipartite graph (Theorem 18.1 and Corollary
18.1b) from the total unimodularity of the incidence matrix of a bipartite
graph. This amounts to the fact that the polyhedra

(18.7) {x | x ≥ 0, Ax ≤ 1}
and

(18.8) {x | x ≥ 0, Ax = 1}
are integer polyhedra, by the total unimodularity of A.
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18.4. The vertex cover polytope

One can similarly derive, from the total unimodularity, a description of the
vertex cover polytope of a bipartite graph. The vertex cover polytope of a
graph G is the convex hull of the incidence vectors of vertex covers. It is a
polytope in R

V .
For bipartite graphs, it is determined by:

(18.9) (i) 0 ≤ yv ≤ 1 for each v ∈ V ,
(ii) yu + yv ≥ 1 for each e = uv ∈ E.

In fact, this characterizes bipartiteness:

Theorem 18.3. A graph G is bipartite if and only if the vertex cover polytope
of G is determined by (18.9).

Proof. Necessity follows from the total unimodularity of the incidence matrix
of A (Theorem 18.2). Sufficiency can be seen as follows. Suppose that G
contains an odd circuit C. Define yv := 1

2 for each v ∈ V . Then y satisfies
(18.9) but does not belong to the vertex cover polytope, as each vertex cover
contains more than 1

2 |V C| vertices in C.

The total unimodularity of A also yields descriptions of the edge cover
and stable set polytopes of a bipartite graph — see Section 19.5.

18.5. Further results and notes

18.5a. Derivation of Kőnig’s matching theorem from the matching
polytope

We note here that Kőnig’s matching theorem quite easily follows from description
(18.2) of the matching polytope of a bipartite graph.

Since the matching polytope of a bipartite graph G = (V, E) is determined by
(18.2), the maximum size of a matching in G is equal to the minimum value of
∑

v∈V yv where yv ≥ 0 (v ∈ V ) such that yu + yv ≤ 1 for each edge e = uv.
Now consider any vertex u with yu > 0. Then by complementary slackness,

each maximum-size matching covers u. That is, we have (16.5), which (as we saw)
directly implies Kőnig’s matching theorem, by applying induction to G − u.

18.5b. Dual, primal-dual, primal?

The Hungarian method is considered as the first so-called ‘primal-dual’ method. It
maintains a feasible dual solution, and tries to build up a feasible primal solution
fulfilling the complementary slackness conditions. We will show that in a certain
sense the method can also be considered as just dual or just primal.

We consider the problem of finding a minimum-weight perfect matching in a
bipartite graph G = (V, E), with weight function w : E → Q+. Let U and W be
the colour classes of G, with |U | = |W |. The corresponding LP-duality equation is
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(18.10) min{wTx | x ≥ 0, Ax = 1} = max{yT1 | yTA ≤ wT},

where A is the V × E incidence matrix of G.
To describe the Hungarian method as a purely dual method one can start with

y = 0. So y satisfies

(18.11) yu + yv ≤ we

for each edge e = uv of G. Consider the subset

(18.12) F := {e = uv ∈ E | yu + yv = we}
of E. If F contains a perfect matching M , then M is a minimum-weight perfect
matching, by complementary slackness applied to (18.10). If F contains no perfect
matching, by Frobenius’ theorem (Corollary 16.2a) there exist U ′ ⊆ U and W ′ ⊆ W
such that each edge in F intersecting U ′ also intersects W ′ and such that |W ′| <
|U ′|. Now we can reset

(18.13) yv :=
{

yv + α if v ∈ U ′,
yv − α if v ∈ W ′,

choosing α as large as possible while maintaining (18.11). That is, α is equal to the
minimum of we − yu − yv over all edges e = uv ∈ E with u ∈ U ′ and v �∈ W ′. So
α > 0, and hence yT1 increases. After that we iterate.

Described in this way it is a purely dual method, since only in the last iteration
we see a primal solution. In each iteration we test the existence of a perfect matching
from scratch. We could, however, remember our work of the previous iteration in
our search for a perfect matching in F .

To this end, we keep at any iteration a maximum-size matching M in F . Let
DM be the directed graph obtained from (V, F ) by orienting each edge in M from
W to U and each edge in F \M from U to W . Let UM and WM be the set of vertices
in U and W , respectively, missed by M . We also keep, throughout the iterations,
the set RM of vertices reachable in DM from UM .

Then we can take U ′ := U ∩ RM and W ′ := W ∩ RM . Resetting (18.13) of y
increases RM , since at least one edge connecting U ′ and W \ W ′ is added to F ,
while all edges in F that were contained in U ′ ∪ W ′ remain in F . So after at most
n iterations, RM contains a vertex in WM , in which case we can augment M .

Described in this way it is a primal-dual method. Throughout the iterations we
keep a feasible dual solution y and a partially feasible primal solution M .

We could however combine all updates of y, between any two augmentations of
M , by taking le := we − yu − yv as a length function, and by determining, for each
vertex v, the distance d(v) from v to WM in DM with respect to length function l.
Resetting

(18.14) yv :=
{

yv + d(v) if v ∈ U ,
yv − d(v) if v ∈ W ,

maintains (18.10), while the new F contains an M -augmenting path (namely, any
shortest UM − WM path in DM ). Note that this updating of y is the same as the
aggregated updating of y (in (18.13)) between any two matching augmentations.

This still is a primal-dual method, since we keep sequences of vectors y and
matchings M . It enables us to apply Dijkstra’s method to find the distances and
the shortest path, since the length function l is nonnegative. We can however do
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without y, at the cost of an increase in the complexity, since we then must use
the Bellman-Ford method (like in our description in Section 17.2). We can use this
method since DM has no negative-length directed circuit, because M is an extreme
matching (that is, a matching of minimum weight among all matchings M ′ with
|M ′| = |M |).

Indeed, we can define the length function l by le := we if e ∈ E \ M and
le := −we if e ∈ M . Then DM has no negative-length directed circuits. Any shortest
UM − WM path is an M -augmenting path yielding an extreme matching M ′ with
|M ′| = |M | + 1.

Described in this way we have a purely primal method, since we keep no vector
y ∈ Q

V anymore.

18.5c. Adjacency and diameter of the matching polytope

Clearly, for each perfect matching M , the incidence vector χM is a vertex of the
perfect matching polytope. Adjacency is also easily characterized (Balinski and
Russakoff [1974]):

Theorem 18.4. Let M and N be perfect matchings in a graph G = (V, E). Then
χM and χN are adjacent vertices of the perfect matching polytope if and only if
M�N is a circuit.

Proof. To see necessity, let χM and χN be adjacent. Then M�N is the vertex-
disjoint union of circuits C1, . . . , Ck. If k = 1 we are done so assume k ≥ 2. Let
M ′ := M�C1 and N ′ := N�C1. Then 1

2 (χM + χN ) = 1
2 (χM′

+ χN′
). This contra-

dicts the adjacency of χM and χN .
To see sufficiency, define a weight function w : E → R by we := 0 if e ∈ M ∪ N

and we := 1 otherwise. Then M and N are the only two perfect matchings in G of
minimum weight. Hence χM and χN are adjacent.

This gives for the diameter:

Corollary 18.4a. The perfect matching polytope of a graph G = (V, E) has diam-
eter at most 1

2 |V |. If G is simple, the diameter is at most 1
4 |V |.

Proof. Let M and N be perfect matchings of G. Let M�N be the vertex-disjoint
union of circuits C1, . . . , Ck. Define Mi := M�(C1 ∪ · · · ∪ Ci), for i = 0, . . . , k.
Then M = M0, N = Mk, and Mi and Mi+1 give adjacent vertices of the perfect
matching polytope of G (by Theorem 18.4). As each Ci has at least two vertices,
we have k ≤ 1

2 |V |. If G is simple, each Ci has at least four vertices, and hence
k ≤ 1

4 |V |.

For complete bipartite graphs, this bound can be strengthened. The assignment
polytope is the perfect matching polytope of a complete bipartite graph Kn,n. So in
matrix terms, it is the polytope of the n × n doubly stochastic matrices. Balinski
and Russakoff [1974] showed:

Theorem 18.5. The diameter of the assignment polytope is 2 (if n ≥ 4).
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Proof. Let U and W be the two colour classes of Kn,n. Let M and N be two
distinct perfect matchings in Kn,n. Assume that M �= N and that M and N are
not adjacent. Let M�N be the vertex-disjoint union of the circuits C1, . . . , Ck.
As M and N are not adjacent, k ≥ 2. For each i = 1, . . . , k, choose an edge
uiwi ∈ Ci ∩ M , with ui ∈ U and wi ∈ W . Let C be the circuit

(18.15) C := {u1w1, u2w1, u2w2, u3w2, . . . , unwn, u1wn}
and let L := M�C. As M�L = C, L is a perfect matching adjacent to M . Now L
is adjacent also to N as well, since N�L = (C1 ∪ · · · ∪ Ck)�C, which is a circuit.

Naddef [1982] characterized the dimension of the perfect matching polytope of
a bipartite graph (cf. Lovász and Plummer [1986]):

Theorem 18.6. Let G = (V, E) be a bipartite graph with at least one perfect
matching. Then the dimension of the perfect matching polytope of G is equal to
|E0|−|V |+k, where E0 is the set of edges contained in at least one perfect matching
and where k is the number of components of the graph (V, E0).

Proof. It is easy to see that we may assume that E0 = E and that G is connected
and has at least four vertices. Let T be the edge set of a spanning tree in G. So
|E\T | = |E|−|V |+1. Now for any x ∈ Pperfect matching(G), the values xe with e ∈ T
are determined by the values xe with e ∈ E \T . Hence dim(Pperfect matching(G)) ≤
|E \ T | = |E| − |V | + 1.

To see the reverse inequality, choose a vector x in the relative interior of
Pperfect matching(G). So 0 < xe < 1 for each e ∈ E (as each edge is contained
in some perfect matching and is missed by some perfect matching). Then any small
enough change of xe for any e ∈ E \ T can be corrected by changing values of x(e′)
with e′ ∈ T . Therefore dim(Pperfect matching(G)) ≥ |E \ T |.

Rispoli [1992] showed that the ‘monotonic diameter’ (that is, the maximum
length of a shortest path on the polytope where a given objective function is mono-
tonically increasing) of the assignment polytope is equal to �n

2 �. More can be found
in Balinski and Russakoff [1974], Padberg and Rao [1974], Brualdi and Gibson
[1976,1977a,1977b,1977c], Roohy-Laleh [1980], Hung [1983], Balinski [1985], and
Goldfarb [1985].

18.5d. The perfect matching space of a bipartite graph

The perfect matching space of a graph G = (V, E) is the linear hull of the incidence
vectors of perfect matchings:

(18.16) Sperfect matching(G) := lin.hull{χM | M perfect matching in G}.

(Here lin.hull denotes linear hull.)
Note that Theorem 18.6 directly implies the dimension of the perfect matching

space of a bipartite graph:

Corollary 18.6a. Let G = (V, E) be a bipartite graph with at least one perfect
matching. Then the dimension of the perfect matching space of G is equal to |E0|−
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|V |+k+1, where E0 is the set of edges contained in at least one of perfect matching,
and where k is the number of components of the graph (V, E0).

Proof. The dimension of the perfect matching space is 1 more than the dimension
of the perfect matching polytope (as 0 does not belong to the affine hull of the
incidence vectors of perfect matchings). So the Corollary follows from Theorem
18.6.

With the help of the description of the perfect matching polytope we can simi-
larly describe the perfect matching space in terms of equations:

Theorem 18.7. The perfect matching space of a bipartite graph G = (V, E) is equal
to the set of vectors x ∈ R

E such that

(18.17) (i) xe = 0 if e is contained in no perfect matching,
(ii) x(δ(u)) = x(δ(v)) for all u, v ∈ V .

Proof. (18.17) clearly is a necessary condition for each vector x in the perfect
matching space. To see sufficiency, let x ∈ R

E satisfy (18.17). We can assume that
G has at least one perfect matching.

By adding sufficiently many incidence vectors of perfect matchings to x, we can
achieve that xe ≥ 0 for all e ∈ E. By scaling we can achieve that x(δ(v)) = 1 for
each v ∈ V . Then x belongs to the perfect matching polytope of G, and hence to
the perfect matching space.

This theorem has as direct consequence a characterization of the linear space
orthogonal to the perfect matching space:

Corollary 18.7a. Let G = (V, E) be a bipartite graph and let w ∈ R
E. Then

w(M) = 0 for each perfect matching M if and only if there exists a vector b ∈ R
V

with b(V ) = 0 such that we = bu + bv for each edge e = uv contained in at least one
perfect matching.

Proof. Directly by orthogonality from Theorem 18.7.

18.5e. Up and down hull of the perfect matching polytope

Fulkerson [1970b] studied the up hull of the perfect matching polytope of a graph
G = (V, E), that is,

(18.18) P ↑
perfect matching(G) = Pperfect matching(G) + R

E
+.

Any x in this polyhedron satisfies:

(18.19) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≥ |S| − 1

2 |V | for each S ⊆ V .

Here E[S] denotes the set of edges spanned by S. Inequality (18.19)(ii) follows from
the fact that any perfect matching M has at most |V \ S| edges not contained in
S, and hence at least 1

2 |V | − |V \ S| = |S| − 1
2 |V | edges contained in S.
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Fulkerson [1970b] showed that for bipartite graphs these inequalities are enough
to characterize polyhedron (18.18):

Theorem 18.8. If G is bipartite, then P ↑
perfect matching(G) is determined by

(18.19).

Proof. Let U and W be the colour classes of G. Let x ∈ R
E satisfy (18.19). Note

that this implies that |U | = |W | = 1
2 |V |, for if (say) |U | > 1

2 |V |, then (18.19)
implies that 0 = x(E[U ]) ≥ |U | − 1

2 |V | > 0, a contradiction.
We must show that there exists a vector y such that 0 ≤ y ≤ x and such that

y(δ(v)) = 1 for each v ∈ V . This can be shown quite directly with flow theory, for
instance with Gale’s theorem (Corollary 11.2g): Make a directed graph by orienting
each edge from U to W . Then by Gale’s theorem (taking b(v) := −1 if v ∈ U and
b(v) := 1 if v ∈ W ), it suffices to show that |W ′| − |U ′| ≤ x(δin(U ′ ∪ W ′)) for each
U ′ ⊆ U and W ′ ⊆ W . Let S := (U \ U ′) ∪ W ′. Then δin(U ′ ∪ W ′) = E[S] and
|W ′| − |U ′| = |S| − 1

2 |V |, giving the required inequality.

(Fulkerson [1970b] derived Theorem 18.8 from an earlier result in Fulkerson [1964b],
which is Corollary 20.9a below. Related results were given by O’Neil [1971,1975],
Cruse [1975], and Houck and Pittenger [1979].)

Note that the theorem gives also a characterization of the convex hull of the
incidence vectors of edge sets containing a perfect matching in a bipartite graph:

Corollary 18.8a. Let G = (V, E) be a bipartite graph. Then the convex hull of
the incidence vectors of edge sets containing a perfect matching is determined by
(18.19) together with xe ≤ 1 for each e ∈ E.

Proof. Directly from Theorem 18.8.

One can similarly characterize the convex hull of the incidence vectors of subsets
of perfect matchings in a bipartite graph. Consider:

(18.20) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≤ |S| − 1

2 |V | for each vertex cover S.

Theorem 18.9. The convex hull of the incidence vectors of subsets of perfect match-
ings in a bipartite graph is determined by (18.20).

Proof. Similar to the proof of Theorem 18.8.

(Alternative proofs of Theorems 18.8 and 18.9 were given by Cunningham and
Green-Krótki [1986].)

See Section 20.6a for more results on P ↑
perfect matching(G).

18.5f. Matchings of given size

Let G = (V, E) be a graph and let k, l ∈ Z+ with k ≤ l. It is easy to derive from the
description of the matching polytope, a description of the convex hull of incidence
vectors of matchings M satisfying k ≤ |M | ≤ l. To this end we show:
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Theorem 18.10. Let G = (V, E) be an undirected graph and let x ∈ Pmatching(G).
Then x is a convex combination of incidence vectors of matchings M satisfying

(18.21) �1Tx� ≤ |M | ≤ 
1Tx�.

Proof. Write x =
∑

M λMχM , where M ranges over all matchings in G and where
λM ≥ 0 with

∑

M λM = 1. Assume that we have chosen the λM such that

(18.22)
∑

M

λM |M |2

is as small as possible. We show that if M and N are matchings with λM > 0 and
λN > 0, then

∣
∣|M | − |N |∣∣ ≤ 1. This implies the theorem.

Suppose that |M | ≥ |N | + 2. Let P be a component of M ∪ N having more
elements in M than in N . Let M ′ := M�EP and N ′ := N�EP . Then χM′

+χN′
=

χM + χN and |M ′|2 + |N ′|2 < |M |2 + |N |2. So decreasing λM and λN by ε, and
increasing λM′ and λN′ by ε, where ε := min{λM , λN}, would decrease sum (18.22),
contradicting our assumption.

This implies that certain slices of the matching polytope are again integer poly-
topes:

Corollary 18.10a. Let G = (V, E) be an undirected graph and let k, l ∈ Z+ with
k ≤ l. Then the convex hull of the incidence vectors of matchings M satisfying
k ≤ |M | ≤ l is equal to the set of those vectors x in the matching polytope of G
satisfying k ≤ 1Tx ≤ l.

Proof. Directly from Theorem 18.10.

A special case is the following result of Mendelsohn and Dulmage [1958b]. Call
a matrix a subpermutation matrix if it is a {0, 1}-valued matrix with at most one 1
in each row and in each column. Then:

Corollary 18.10b. A matrix M belongs to the convex hull of the subpermutation
matrices of rank r if and only if M is nonnegative, each row and column sum is at
most 1, and the sum of the entries in M is equal to r.

Proof. Directly from Theorem 18.10.

18.5g. Stable matchings

Let G = (V, E) be a graph and let for each v ∈ V , ≤v be a total order on δ(v). Put
e � f if e and f have a vertex v in common with e ≤v f . Call a set M of edges
stable if for each e ∈ E there exists an f ∈ M with e � f .

In general, stable matchings need not exist (e.g., generally not for K3). However,
Gale and Shapley [1962] showed that if G is bipartite, they do exist:

Theorem 18.11 (Gale-Shapley theorem). If G is bipartite, then there exists a
stable matching.
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Proof. Let U and W be the colour classes of G. For each edge e = uw with u ∈ U
and w ∈ W , let φ(e) be the height of e in (δ(w), ≤w). (The height of e is the
maximum size of a chain with maximum e.) Choose a matching M in G such that
for each edge e = uw of G, with u ∈ U and w ∈ W ,

(18.23) if f ≤u e for some f ∈ M , then e ≤w g for some g ∈ M ,

and such that
∑

e∈M φ(e) is as large as possible. (Such a matching exists, since
M = ∅ satisfies (18.23).) We show that M is stable.

Choose e = uw ∈ E with u ∈ U and w ∈ W and suppose that there is no
e′ ∈ M with e � e′. Choose e largest in ≤u with this property. Then by (18.23)
there is no f ∈ M with f ≤u e; and moreover, there is no f ∈ M with e ≤u f .
Hence u is missed by M .

Since also there is no g ∈ M with e ≤w g, we can remove any edge in M incident
with w and add e to M , so as to obtain a matching satisfying (18.23) with larger
∑

e∈M φ(e), a contradiction.

This proof also gives a polynomial-time algorithm to find a stable matching34.
The following fact was shown by McVitie and Wilson [1970]:

Theorem 18.12. Each two stable matchings cover the same set of vertices.

Proof. Let M and N be two stable matchings, and suppose that there exists a
vertex v covered by M but not by N . Let P be the path component of M ∪ N
starting at v. Denote P = (v0, e1, v1, e2, . . . , ek, vk) with v = v0. As v0 is missed by
N , e1 <v1 e2. As M and N are stable, if ei−1 <vi−1 ei, then ei <vi ei+1 for each
i < k. So ek−1 <vk−1 ek. However, as vk is missed by M or N , ek <vk−1 ek−1. So
we have a contradiction.

In particular:

Corollary 18.12a. All stable matchings have the same size.

Proof. Directly from Theorem 18.12.

In order to find a maximum-weight stable matching, we consider the stable
matching polytope Pstable matching(G) of G, which is defined as the convex hull of
the incidence vectors of the stable matchings. Vande Vate [1989] (also Rothblum
[1992]) characterized the inequalities determining the stable matching polytope if
G is bipartite. In that case it suffices to add the following inequalities to the system
defining the matching polytope:

(18.24)
∑

f�e

x(f) ≥ 1 for each e ∈ E.

Theorem 18.13. If G is bipartite, then x ∈ Pstable matching(G) if and only if
x ∈ Pmatching(G) and x satisfies (18.24).

34 It was noted by Roth [1984] that this algorithm is in fact in use in practice since 1951
in the U.S., to match hospitals and medical students (cf. Roth and Sotomayor [1990]).
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Proof. Necessity is easy, since the incidence vector of any stable matching satis-
fies (18.24). To see sufficiency, let x be a vertex of the polytope of all vectors in
Pmatching(G) satisfying (18.24). Define E+ to be the set of edges e with xe > 0,
and V + the set of vertices covered by E+. For each v ∈ V +, let ev be the maximum
element of (δ(v) ∩ E+, ≤v).

We first show that for each v ∈ V +, with say ev = vv′,

(18.25) ev is the minimum element in (δ(v′) ∩ E+, ≤v′) and that x(δ(v′)) = 1.

Indeed, (18.24) implies (writing e := ev):

(18.26) 1 ≤
∑

f�e

x(f) =
∑

f≥v′ e

x(f) = x(δ(v′)) −
∑

f<v′ e

x(f) ≤ 1 −
∑

f<v′ e

x(f).

Hence we have equality throughout in (18.26). This implies that x(f) = 0 for each
f <v′ e and that x(δ(v′)) = 1. This proves (18.25).

It follows that for each v′ ∈ V + there is exactly one v ∈ V + with ev = vv′.
Now let U and W be the colour classes of G. The sets M := {ev | v ∈ U ∩ V +}
and N := {ev | v ∈ W ∩ V +} are matchings covering V +. Consider the vector
x′ = x + εχM − εχN , with ε close enough to 0 (positive or negative). It is easy to
see that x′ again belongs to the matching polytope. To see that x′ satisfies (18.24)
for ε close enough to 0, let e be an edge of G attaining equality in (18.24). We show
that e � f for exactly one f ∈ M . If e ∈ M , this is trivial, so assume that e �∈ M .
Let e = uw with u ∈ U and w ∈ W . Then

(18.27) there is an f ∈ M with e <u f ⇐⇒
∑

f>ue

x(f) > 0 ⇐⇒
∑

g≥we

x(g) < 1

⇐⇒ there is no g ∈ M with e <w g.

Similarly, e � f for exactly one f ∈ N . Concluding,

(18.28)
∑

f�e

x′(f) =
∑

f�e

x(f) = 1

if ε is close enough to 0. So x′ again satisfies (18.24). Since x is a vertex, we have
χM = χN , that is, M = N . So E+ = M , and hence x = χM , and therefore x is
{0, 1}-valued.

As for algorithms, this theorem directly implies:

Corollary 18.13a. A maximum-weight stable matching can be found in polynomial
time.

Proof. This follows from the fact that Theorem 18.13 transforms the problem to
a linear programming problem.

For surveys and further results, see Wilson [1972a], Knuth [1976], Itoga [1978,
1981], Roth [1982], Gale and Sotomayor [1985], Irving [1985], Gusfield [1987b,1988],
Irving, Leather, and Gusfield [1987], Blair [1988], Gusfield and Irving [1989], Ng
[1989], Knuth, Motwani, and Pittel [1990a,1990b], Ng and Hirschberg [1990], Ronn
[1990], Roth and Sotomayor [1990], Khuller, Mitchell, and Vazirani [1991,1994],
Tan [1991], Feder [1992], Roth, Rothblum, and Vande Vate [1993], Abeledo and
Rothblum [1994], Feder, Megiddo, and Plotkin [1994,2000], Subramanian [1994],
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Abeledo and Blum [1996], Balinski and Ratier [1997], Teo and Sethuraman [1997,
1998], Teo, Sethuraman, and Tan [1999], Fleiner [2001a], and Aharoni and Fleiner
[2002].

18.5h. Further notes

Perfect and Mirsky [1965] characterized which patterns can occur as the support
of a doubly stochastic matrix. It is equivalent to characterizing matching-covered
bipartite graphs (that is, bipartite graphs in which each edge belongs to at least
one perfect matching).

Frank and Karzanov [1992] gave a polynomial-time combinatorial algorithm to
determine the Euclidean distance of the perfect matching polytope of a bipartite
graph to the origin.



Chapter 19

Bipartite edge cover and stable
set

While matchings cover each vertex at most once, edge covers are required
to cover each vertex at least once. Most edge cover results can be proved
similarly to matching results, but in fact, they often can be reduced to
matching results, by a method of Gallai.
In this chapter, graphs can be assumed to be simple.

19.1. Matchings, edge covers, and Gallai’s theorem

Let G = (V, E) be a graph. An edge cover is a subset F of E such that for
each vertex v there exists an edge e ∈ F satisfying v ∈ e. Note that an edge
cover can exist only if G has no isolated vertices.

A stable set is a subset S of V such that no two vertices in S are adjacent.
So for any U ⊆ V :

(19.1) S is a stable set ⇐⇒ V \ S is a vertex cover.

Define:

(19.2) α(G) := the maximum size of a stable set in G,
ρ(G) := the minimum size of an edge cover in G.

These numbers are called the stable set number and the edge cover number,
respectively.

It is not difficult to show that:

(19.3) α(G) ≤ ρ(G).

The triangle K3 shows that strict inequality is possible. Recall that for the
matching number ν(G) and the vertex cover number τ(G) we have

(19.4) ν(G) ≤ τ(G).

In fact, equality in one of the relations (19.3) and (19.4) implies equality in
the other, as Gallai [1959a] proved the following35:
35 Gallai mentioned that he had formulated and proved this theorem in 1932 (cf. also

Erdős [1982]), and that to his knowledge also D. Kőnig had known this theorem.
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Theorem 19.1 (Gallai’s theorem). For any graph G = (V, E) without iso-
lated vertices one has

(19.5) α(G) + τ(G) = |V | = ν(G) + ρ(G).

Proof. The first equality follows directly from (19.1).
To see the second equality, let M be a maximum-size matching and let U

be the set of vertices missed by M . For each vertex v ∈ U , choose an edge ev

containing v. Then F = M ∪ {ev | v ∈ U} is an edge cover of size

(19.6) |F | = |M | + |U | = |M | + (|V | − 2|M |) = |V | − |M | = |V | − ν(G).

So ρ(G) ≤ |V | − ν(G).
To see the reverse inequality, let F be a minimum-size edge cover. Let M

be an inclusionwise maximal matching contained in F . Let U be the set of
vertices missed by M . Since U spans no edge in F , we have |U | ≤ |F \ M |.
Hence |V | − 2|M | = |U | ≤ |F \ M | = |F | − |M |. This implies ν(G) ≥ |M | ≥
|V | − |F | = |V | − ρ(G).

This proof method implies the following theorem (observed by Gallai
[1959a] and Norman and Rabin [1959]):

Theorem 19.2. Let G = (V, E) be a graph without isolated vertices. Then
every maximum-size matching is contained in a minimum-size edge cover,
and every minimum-size edge cover contains a maximum-size matching.

Proof. See above.

Moreover, there is the following complexity result, observed by Norman
and Rabin [1959]:

Theorem 19.3. Let G = (V, E) be an undirected graph with n vertices and m
edges. If we have a maximum-size matching in G, we can find a minimum-size
edge cover in time O(m), and vice versa.

Proof. See the proof of Gallai’s theorem (Theorem 19.1).

This gives:

Corollary 19.3a. A minimum-size edge cover and a maximum-size stable
set in a bipartite graph can be found in time O(n1/2m).

Proof. By Theorems 16.4 and 19.3 and Corollary 16.6a.

Short proof of Gallai’s theorem. For any partition Π of V into edges and
singletons, let f(Π) be the number of edges in Π. So f(Π)+ |Π| = |V |. Then ν(G)
is equal to the maximum of f(Π) over all such partitions, and ρ(G) is equal to the
minimum of |Π| over all such partitions. Hence ν(G) + ρ(G) = |V |.
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19.2. The Kőnig-Rado edge cover theorem

Combination of Theorems 19.1 and 16.2 yields the following theorem, which
Gallai [1958a,1958b] attributes to oral communication from D. Kőnig in 1932.
In a different but equivalent form it was stated by Rado [1933] — see Section
19.5a. (Hoffman [1956b] called it a ‘well-known theorem’.)

Theorem 19.4 (Kőnig-Rado edge cover theorem). For any bipartite graph
G = (V, E) without isolated vertices one has

(19.7) α(G) = ρ(G).

That is, the maximum size of a stable set in a bipartite graph is equal to the
minimum size of an edge cover.

Proof. Directly from Theorems 19.1 and 16.2, as α(G) = |V | − τ(G) =
|V | − ν(G) = ρ(G).

By representing a bipartite graph as a partially ordered set, the Kőnig-
Rado edge cover theorem can be derived also from Dilworth’s decomposition
theorem (Theorem 14.2).

19.3. Finding a minimum-weight edge cover

There is a straightforward reduction of the minimum-weight edge cover prob-
lem to the minimum-weight perfect matching problem. Indeed, let G = (V, E)
be a graph without isolated vertices, and let w : E → Q+. Let G′ = (V ′, E′)
be the graph obtained from G by adding a disjoint copy G̃ = (Ṽ , Ẽ) of G,
and adding for each vertex v of G an edge vṽ connecting v with its copy ṽ.
Let w′ be the weight function on E′ defined by:

(19.8) w′(e) := w′(ẽ) := w(e) for each e ∈ E (where ẽ is the copy of e);
w′(vṽ) := 2µ(v) for each v ∈ V , where µ(v) is the minimum
weight of the edges of G incident with v.

Then a minimum-weight perfect matching M in G′ yields a minimum-weight
edge cover F in G: replace any edge vṽ in M by an edge ev of minimum
weight of G incident with v, and delete all edges in M ∩ Ẽ. Then w(F ) =
1
2w′(M). Conversely, any edge cover F ′ of G gives by a reverse construction a
perfect matching M ′ in G′ with w′(M ′) ≤ 2w(F ′). Hence w(F ) = 1

2w′(M) ≤
1
2w′(M ′) ≤ w(F ′). So F is a minimum-weight edge cover in G.

Note that if G is bipartite, then also G′ is bipartite. Hence:

Corollary 19.4a. A minimum-weight edge cover in a bipartite graph can be
found in time O(n(m + n log n)).

Proof. From the above, using Theorem 17.3.
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19.4. Bipartite edge covers and total unimodularity

Similarly to Kőnig’s matching theorem, also the Kőnig-Rado edge cover theo-
rem (Theorem 19.4) can be derived from the total unimodularity of the V ×E
incidence matrix of a bipartite graph G = (V, E). This follows by considering
the LP-duality equation

(19.9) min{1Tx | x ≥ 0, Ax ≥ 1} = max{yT1 | y ≥ 0, yTA ≤ 1T}.

More generally, we can derive the analogue of Egerváry’s theorem:

Theorem 19.5. Let G = (V, E) be a bipartite graph and let w : E → R+
be a weight function on E. Then the minimum weight of an edge cover in
G is equal to the maximum value of y(V ), where y ranges over all functions
y : V → R+ with yu + yv ≤ we for each edge e = uv of G. If w is integer, we
can restrict y to be integer.

Proof. Again, let A be the V ×E incidence matrix of G. Then the statement
is equivalent to the statement that the minimum in

(19.10) min{wTx | x ≥ 0, Ax ≥ 1} = max{yT1 | y ≥ 0, yTA ≤ wT}
has an integer optimum solution x. This fact follows from the total unimod-
ularity of A. If w is integer, we can take also y integer.

The integer part of this theorem can be formulated as follows. For any
graph G = (V, E) and w ∈ Z

E
+, a w-stable set is a function y ∈ Z

V
+ with

yu + yv ≤ we for each edge e = uv. So if w = 1 and G has no isolated
vertices, w-stable sets coincide with the incidence vectors of stable sets.

The size of a vector y ∈ R
V is equal to y(V ). Then:

Corollary 19.5a. Let G = (V, E) be a bipartite graph and let w : E → Z+
be a weight function on E. Then the minimum weight of an edge cover in G
is equal to the maximum size of a w-stable set.

Proof. Directly from Theorem 19.5.

19.5. The edge cover and stable set polytope

Like in Sections 18.3 and 18.4, the total unimodularity of the incidence matrix
of a bipartite graph yields descriptions of the edge cover and the stable set
polytope for bipartite graphs.

The edge cover polytope Pedge cover(G) of a graph is the convex hull of the
incidence vectors of the edge covers in G. For any graph, each vector x in
Pedge cover(G) satisfies:

(19.11) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(v)) ≥ 1 for each v ∈ V .
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Theorem 19.6. If G is bipartite, the edge cover polytope is determined by
(19.11).

Proof. Directly from the total unimodularity of the constraint matrix in
(19.11).

This implication cannot be turned around, as is shown by the graph in
Figure 18.1.

The stable set polytope Pstable set(G) of a graph G = (V, E) is the convex
hull of the incidence vectors of the stable sets in G. For any graph G, each
vector x in Pstable set(G) satisfies:

(19.12) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) xu + xv ≤ 1 for each edge e = uv ∈ E.

Theorem 19.7. The stable set polytope is determined by (19.12) if and only
if G is bipartite.

Proof. Sufficiency follows from the total unimodularity of the incidence ma-
trix of a bipartite graph. Necessity follows from the fact that if C is an odd
circuit in G, then defining xv := 1

2 for each v ∈ V , we obtain a vector x
satisfying (19.12) but not belonging to the stable set polytope of G, since
any stable set intersects C in at most 1

2 |V C| − 1
2 vertices.

In fact, there is an easy direct proof of sufficiency in Theorem 19.7. Let x
satisfy (19.12) and let U and W be the colour classes of G. For any λ ∈ [0, 1],
define

(19.13) Sλ := {u ∈ U | xu > λ} ∪ {w ∈ W | xw > 1 − λ}.

Then Sλ is a stable set, and

(19.14) x =
∫ 1

0
χSλdλ.

This describes x as a convex combination of incidence vectors of stable sets.

19.5a. Some historical notes on bipartite edge covers

Gallai [1958a,1958b,1959a] wrote that the edge cover theorem (Theorem 19.4) was
orally communicated to him by Kőnig in 1932. In the latter paper, Gallai also
mentioned that he found Theorem 19.1 in 1932, and that, to his knowledge, also D.
Kőnig knew this theorem. Together with Theorem 16.2 of Kőnig [1931] it implies
Theorem 19.4.

The oldest written version of Theorem 19.4 seems to be the paper of Rado
[1933] entitled Bemerkungen zur Kombinatorik im Anschluß an Untersuchungen
von Herrn D. Kőnig36. The investigations referred to in the title are those of Kőnig
[1916] on matchings in regular bipartite graphs.
36 Remarks on combinatorics in connection to investigations of Mr D. Kőnig.



320 Chapter 19. Bipartite edge cover and stable set

Rado formulated the edge cover theorem in terms of partitions:

Es seien A1, A2, . . . , Am endlich viele nicht leere, paarweise elementenfremde
Mengen. Ebenso seien B1, B2, . . . , Bn endlich viele nicht leere, paarweise ele-
mentenfremde Mengen. Alle Mengen Aµ und Bν seien Teilmengen einer Menge
M. Unter dieser Annahme gilt: Dann und nur dann sind die Mengen
(26) A1, A2, . . . , Am, B1, B2, . . . , Bn

durch k Elemente von M zu repräsentieren, wenn es unter den Mengen (26)
keine k + 1 zu einander fremde Mengen gibt.37

The proof of Rado is based on a decomposition similar to that used by Frobenius
(see Section 16.2a). The equivalence with Theorem 19.4 follows with the construc-
tion described in Section 16.7e. (A theorem similar to Rado’s was published by
Kreweras [1946].)

37 Let A1, A2, . . . , Am be finitely many nonempty, pairwise disjoint sets. Similarly, let
B1, B2, . . . , Bn be finitely many nonempty, pairwise disjoint sets. All sets Aµ and Bν

are subsets of a set M. Under this condition the following holds: The sets
(26) A1, A2, . . . , Am, B1, B2, . . . , Bn

can be represented by k elements of M, if and only if there are no k + 1 disjoint sets
among the sets (26).



Chapter 20

Bipartite edge-colouring

Edge-colouring means partitioning the edge set into matchings. While for
general graphs, finding a minimum edge-colouring is NP-complete, another
fundamental theorem of Kőnig gives a min-max relation for bipartite edge-
colouring, and his proof method yields a polynomial-time algorithm. Also
the capacitated case and the ‘dual’ problem of partitioning the edge set
into edge covers are tractable for bipartite graphs.

20.1. Edge-colourings of bipartite graphs

For any graph G = (V, E), an edge-colouring or k-edge-colouring is a partition
Π = (M1, . . . , Mk) of the edge set E into matchings. Each of the Mi is called
a colour. If e ∈ Mi we say that e has colour i.

The edge-colouring number χ(G) of G is the minimum number of colours
in an edge-colouring of G.

Let ∆(G) denote the maximum degree of (the vertices of) G. Clearly,

(20.1) χ(G) ≥ ∆(G),

since at each vertex v, the edges incident with v should have different colours.
The triangle K3 has strict inequality in (20.1). Kőnig [1916] showed that for
bipartite graphs the two numbers are equal:

Theorem 20.1 (Kőnig’s edge-colouring theorem). For any bipartite graph
G = (V, E),

(20.2) χ(G) = ∆(G).

That is, the edge-colouring number of a bipartite graph is equal to its maxi-
mum degree.

Proof. Let M1, . . . , M∆(G) be a collection of disjoint matchings covering a
maximum number of edges. If all edges are covered, we are done. So suppose
that edge e = uv, say, is not covered. Then (since deg(u) ≤ ∆(G)) some
Mi misses u and (similarly) some Mj misses v. If i = j we can extend Mi to
Mi∪{e}. If i �= j, Mi∪Mj∪{e} makes a bipartite graph of maximum degree at
most two. Hence there exist matchings M and N with Mi∪Mj∪{e} = M∪N .
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So replacing Mi and Mj by M and N , increases the number of edges covered,
contradicting our assumption.

This proof, due to Kőnig [1916] (using a simplification of Skolem [1927]),
also gives a polynomial-time algorithm to find a ∆(G)-edge-colouring with
∆(G) colours. In fact, if G is simple, it gives an O(nm) algorithm for edge-
colouring. This bound can be achieved also for bipartite multigraphs using
an appropriate data-structure — see Section 20.9a.

20.1a. Edge-colouring regular bipartite graphs

Kőnig’s edge-colouring theorem is directly equivalent to the special case of regular
bipartite graphs (since any bipartite graph of maximum degree ∆ is a subgraph of a
∆-regular bipartite graph (Kőnig [1932])). Rizzi [1997,1998] gave the following very
elegant short argument for the k-edge-colourability of k-regular bipartite graphs.
(A similar proof in terms of common transversals of two partitions of a set into
equally sized classes was given by Sperner [1927] — see Section 22.7d.)

Let G be a counterexample with fewest edges. So G has no perfect matching.
Choose an edge e = uv. Then we can extend the graph G − u − v to a k-regular
bipartite graph H by adding at most k − 1 new edges. As H has fewer edges than
G, H has a k-edge-colouring. Since less than k new edges have been added, there
is a colour M that uses none of the new edges. Then M ∪ {e} is a perfect matching
in G, a contradiction.

20.2. The capacitated case

Egerváry [1931] observed that the following capacitated version directly fol-
lows from Kőnig’s edge-colouring theorem:

Corollary 20.1a. Let G = (V, E) be a bipartite graph and let c : E → Z+ be
a capacity function. Then the minimum size of a family of matchings such
that each edge e is in at least ce of them is equal to the maximum of c(δ(v))
over all v ∈ V .

Proof. Directly from Kőnig’s edge-colouring theorem, by replacing each edge
e by ce parallel edges.

This reduction being easy, it might not be satisfactory algorithmically. It
would not yield a polynomial-time reduction for the following problem:

(20.3) given: a bipartite graph G = (V, E) and a capacity function c :
E → Z+;

find: matchings M1, . . . , Mk and nonnegative integers λ1, . . . , λk

such that
∑k

i=1 λiχ
Mi = c and such that

∑k
i=1 λi is mini-

mized.
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However, there is an easy strongly polynomial-time algorithm for this
problem: Let F be the subset of edges e of G with ce > 0. Find a matching
M in F covering all vertices v of G that maximize c(δ(v)). Let λ := min{ce |
e ∈ M}, and replace c by c − λχM . Next iterate this.

Since in each iteration the number of edges e with ce > 0 decreases, there
are at most |E| iterations. Since a matching covering a given set R of vertices
can be found in time O(|R||E|), this gives an O(nm2) algorithm. However, by
starting in each iteration with the matching left from the previous iteration,
one can do better (Gonzalez and Sahni [1976]):

Theorem 20.2. Problem (20.3) can be solved in time O(m2).

Proof. We may assume that c(δ(v)) is equal for all v, by duplicating G
and connecting each vertex with its copy, giving the new edges appropriate
capacities. We can also assume that ce > 0 for each edge e.

First we find a perfect matching in G, which can be done in time O(nm),
since we can apply O(n) matching-augmenting iterations to find a perfect
matching.

In any further iteration, let M be the matching obtained in the previous
iteration. Suppose that after resetting c, there exist α edges e in M with
ce = 0. Delete these edges. Then in α matching-augmenting steps we can
obtain a perfect matching M ′ in the new graph. So the iteration takes O(αm)
time. Since over all iterations the α add up to |E|, we have the time bound
O(m2).

20.3. Edge-colouring polyhedrally

Polyhedrally, edge-colouring can be studied with the help of the ‘substar
polytope’ of an undirected graph G = (V, E). Call a set F of edges of G a
substar if F ⊆ δ(v) for some v ∈ V . The substar polytope Psubstar(G) of G
is the convex hull of the incidence vectors of substars. So it is a polytope in
R

E .
Each vector x in the substar polytope trivially satisfies

(20.4) (i) xe ≥ 0 for each e ∈ E,
(ii) x(M) ≤ 1 for each matching M .

The following is direct from the description of the bipartite matching polytope
(Corollary 18.1b) with the theory of antiblocking polyhedra:

Theorem 20.3. The substar polytope of a bipartite graph is determined by
(20.4).

Proof. By Corollary 18.1b, the matching polytope is the antiblocking polyhe-
dron of the substar polytope. Hence the substar polytope is the antiblocking
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polyhedron of the matching polytope (cf. Section 5.9), which is the content
of the theorem.

What Kőnig’s edge-colouring theorem adds to it is:

Theorem 20.4. System (20.4) is TDI.

Proof. This is equivalent to Corollary 20.1a.

Note that Kőnig’s edge-colouring theorem also can be derived easily from
the characterization of the matching polytope. For any bipartite graph G =
(V, E), the vector ∆(G)−1 ·1 belongs to the matching polytope (where 1 is the
all-one vector in R

E), and hence it is a convex combination of matchings. Each
of these matchings should cover each maximum-degree vertex. So there exists
a matching M covering all maximum-degree vertices. Hence ∆(G − M) =
∆(G) − 1, and we can apply induction.

Also, the integer decomposition property of the matching polytope is
equivalent to Kőnig’s edge-colouring theorem. (The integer decomposition
property follows from the total unimodularity of the incidence matrix of G.)

20.4. Packing edge covers

A theorem ‘dual’ to Kőnig’s edge-colouring theorem was shown by Gupta
[1967,1978]. The edge-colouring number χ(G) of a graph G is the minimum
number of matchings needed to cover the edges of a G. Dually, one can define
the edge cover packing number ξ(G) of a graph by:

(20.5) ξ(G) := the maximum number of disjoint edge covers in G.

So, in terms of colours, ξ(G) is the maximum number of colours that can be
used in colouring the edges of G in such a way that at each vertex all colours
occur. Hence, if δ(G) denotes the minimum degree of G, then

(20.6) ξ(G) ≤ δ(G).

The triangle K3 again is an example having strict inequality. For bipartite
graphs however Gupta [1967,1978] showed:

Theorem 20.5. For any bipartite graph G = (V, E):

(20.7) ξ(G) = δ(G).

That is, the maximum number of disjoint edge covers is equal to the minimum
degree.

Proof. We give a reduction to Kőnig’s edge-colouring theorem (Theorem
20.1).
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One may derive from G a bipartite graph H, each vertex of which has
degree δ(G) or 1, by repeated application of the following procedure:

(20.8) for any vertex v of degree larger than δ(G), add a new vertex
u, and replace one of the edges incident with v, {v, w} say, by
{u, w}.

So there is a one-to-one correspondence between the edges of the final
graph H and the edges of G. Since H has maximum degree δ(G), by Theorem
20.1 the edges of H can be coloured with δ(G) colours such that no two edges
of the same colour intersect. So at any vertex of H of degree δ(G), all colours
occur. This gives a colouring of the edges of G with δ(G) colours such that
at any vertex of G all colours occur.

Gupta [1974,1978] gave the following common generalization of Theorems
20.1 on edge-colouring and 20.5 on disjoint edge covers:

Theorem 20.6. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then E
can be partitioned into classes E1, . . . , Ek such that each vertex v is covered
by at least min{k,degG(v)} of the Ei.

Proof. Like in the proof of Theorem 20.5, split off edges from vertices of
degree larger than k, until each vertex has degree at most k. Applying Kőnig’s
edge-colouring theorem to the final graph yields a partitioning of the original
edge set as required.

Call a set F of edges of a graph G = (V, E) a superstar if F ⊇ δ(v) for
some v ∈ V . The superstar polytope Psuperstar(G) of G is the convex hull of
the incidence vectors of superstars in G. Consider

(20.9) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(F ) ≥ 1 for each edge cover F .

Theorem 20.7. If G is bipartite, system (20.9) determines the superstar
polytope and is TDI.

Proof. With the theory of blocking polyhedra, Theorem 19.6 implies that the
superstar polytope is determined by (20.9). Total dual integrality of (20.9) is
equivalent to the capacitated version of Theorem 20.5.

20.5. Balanced colours

McDiarmid [1972] and de Werra [1970,1972] showed the following general-
ization of Kőnig’s edge-colouring theorem (in fact, it is a special case of a
theorem of Folkman and Fulkerson [1969] (see Theorem 20.10 below), and
also it is a consequence of the result in Dulmage and Mendelsohn [1969]):
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Theorem 20.8. Let G = (V, E) be a bipartite graph and let k ≥ ∆(G). Then
E can be partitioned into matchings M1, . . . , Mk such that

(20.10) �|E|/k� ≤ |Mi| ≤ �|E|/k�
for each i = 1, . . . , k.

Proof. As k ≥ ∆(G), by Kőnig’s edge-colouring theorem, E can be par-
titioned into matchings M1, . . . , Mk (possibly empty). Choose M1, . . . , Mk

such that

(20.11)
k∑

i=1

|Mi|2

is minimized.
Suppose that (20.10) is violated. Then there exist Mi and Mj with |Mi| ≥

|Mj |+2. Then Mi∪Mj has at least one component K containing more edges in
Mi than in Mj . Let M ′

i := Mi�K and M ′
j := Mj�K. Then |M ′

i |2 + |M ′
j |2 =

(|Mi|−1)2+(|Mj |+1)2 = |Mi|2+|Mj |2−2|Mi|+2|Mj |+2 < |Mi|2+|Mj |2. So
replacing Mi and Mj by M ′

i and M ′
j decreases the sum (20.11), contradicting

our minimality assumption.

Related results can be found in Dulmage and Mendelsohn [1969], Folkman
and Fulkerson [1969], Brualdi [1971b], and de Werra [1971,1976].

20.6. Packing perfect matchings

Packing perfect matchings seems less directly reducible to partitioning into
matchings or edge covers. It can be handled with the following more general
result of Folkman and Fulkerson [1969] on packing matchings of a fixed size
p, which is proved by reduction to Menger’s theorem:

Theorem 20.9. Let G = (V, E) be a bipartite graph and let k, p ∈ Z+. Then
there exist k disjoint matchings of size p if and only if each subset X of V
spans at least k(p + |X| − |V |) edges.

Proof. To see necessity, let X ⊆ V and consider a matching M in G of size p.
Since at most |V |−|X| edges in M intersect V \X, at least |M |−(|V |−|X|) =
p + |X| − |V | edges of M are spanned by X. So k disjoint matchings of size
p have at least k(p + |X| − |V |) edges spanned by X.

To see sufficiency, let U and W be the colour classes of G. Orient all edges
from U to W . Moreover, add vertices s and t, and, for each u ∈ U , add k
parallel arcs from s to u, and, for each w ∈ W , add k parallel arcs from w to
t. Let D be the directed graph arising.

We show with Menger’s theorem that D contains kp arc-disjoint s − t
paths. Consider any s− t cut δout(Y ), with s ∈ Y , t �∈ Y . Let X := (U ∩Y )∪
(W \ Y ). Then
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(20.12) |δout(Y )| = k|U \Y |+k|W ∩Y |+ |E[X]| = k(|V |− |X|)+ |E[X]|,
where E[X] is the set of edges spanned by X. As |E[X]| ≥ k(p + |X| − |V |),
it follows that |δout(Y )| ≥ kp.

So D contains kp arc-disjoint s − t paths. The edges of G that belong to
these paths form a subgraph of G with kp edges, of maximum degree at most
k. So by Theorem 20.8, G has k disjoint matchings of size p.

This implies the following theorem of Fulkerson [1964b] on the maximum
number of disjoint perfect matchings (in fact equivalent to a result of Ore
[1956], see Corollary 20.9b below):

Corollary 20.9a. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
G has k disjoint perfect matchings if and only if each subset X of V spans at
least k(|X| − 1

2 |V |) edges.

Proof. Directly by taking p := 1
2 |V | in Theorem 20.9.

(Lebensold [1977] and Murty [1978] gave other proofs of this corollary.)
Note that, by Kőnig’s edge-colouring theorem, a bipartite graph G =

(V, E) has k disjoint perfect matchings if and only if G has a k-factor. (A
k-factor is a subset F of E with the graph (V, F ) k-regular.)

So Corollary 20.9a is equivalent to the following result of Ore [1956]:

Corollary 20.9b. A bipartite graph G = (V, E) has a k-factor if and only if
each subset X of V spans at least k(|X| − 1

2 |V |) edges.

Proof. Directly from Corollary 20.9a.

20.6a. Polyhedral interpretation

We can interpret these results polyhedrally. In Theorem 18.8 we saw that for any
bipartite graph G = (V, E), the up hull of the perfect matching polytope of G,

(20.13) P ↑
perfect matching(G) = Pperfect matching(G) + R

E
+

is determined by the inequalities

(20.14) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≥ |S| − 1

2 |V | for each S ⊆ V .
Then Corollary 20.9a implies that for each k ∈ Z+, each integer vector w ∈

k · P ↑
perfect matching(G) is the sum of k vectors in P ↑

perfect matching(G). In other
words:

Corollary 20.9c. P ↑
perfect matching(G) has the integer decomposition property.

Proof. From Corollary 20.9a, by replacing each edge by w(e) parallel edges.

We can view this also in terms of the blocking polyhedron of P ↑
perfect matching(G),

which is the polyhedron Q determined by
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(20.15) (i) xe ≥ 0 for each e ∈ E,
(ii) x(M) ≥ 1 for each perfect matching M .

Since P ↑
perfect matching(G) is determined by (20.14), the theory of blocking polyhe-

dra gives that Q is equal to the up hull of the convex hull of the vectors

(20.16) 1

|S|− 1
2 |V |

χE[S]

where S ⊆ V with |S| > 1
2 |V |.

So the minimum value of 1Tx over Q is equal to

(20.17) min{ |E[S]|
|S|− 1

2 |V |
| S ⊆ V, |S| > 1

2 |V |}.

By LP-duality, this is equal to the maximum value of
∑

M λM , where M ranges over
perfect matchings and where λM ≥ 0 such that

∑

M λMχM ≤ 1. So Corollary 20.9a
states: the maximum number of disjoint perfect matchings in a bipartite graph is
equal to

(20.18) �max{
∑

M

λM | λM ≥ 0,
∑

M

λMχM ≤ 1}�.

As we can directly extend this to a weighted version, one has:

Corollary 20.9d. System (20.15) has the integer rounding property.

Proof. See above.

20.6b. Extensions

The results of Sections 20.5 and 20.6 can be extended as follows, as was shown by
Folkman and Fulkerson [1969]. It is based on the following theorem:

Theorem 20.10. Let G = (V, E) be a bipartite graph, let k ≥ ∆(G), and let
p ≥ |E|/k. Then G has a k-edge-colouring in which l colours have size p if and only
if G has l disjoint matchings of size p.

Proof. Necessity being trivial, we show sufficiency. Let G have l disjoint matchings
of size p. We must show that there exist l disjoint matchings of size p such that at
each vertex v at most k − l edges incident with v are in none of these matchings
(since then the edges not contained in the matchings can be properly coloured by
k − l colours).

That is, by Theorem 20.8 it suffices to show that there exists a subset F of E
such that

(20.19) (i) degF (v) ≤ l and degE\F (v) ≤ k − l for each vertex v;
(ii) |F | = lp.

Let F be any subset of E satisfying (20.19)(i), with |F | ≤ lp, and with |F | as large
as possible. Such an F exists, since by Theorem 20.8 we can k-edge-colour G such
that each colour has size at most 
|E|/k� ≤ p. Any l of the colours gives F as
required.
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If |F | = lp we are done, so assume that |F | < lp. Since G has l disjoint matchings
of size p, E has a subset F ′ of size lp with degF ′(v) ≤ l for each vertex v. Choose
F ′ with F ′ \ F as small as possible.

Consider an orientation D of the graph (V, F�F ′), where each edge in F \F ′ is
oriented from colour class U (say) to colour class W (say), and where each edge in
F ′ \ F is oriented from W to U . If D contains a directed circuit C, we can reduce
F ′ \F , by replacing F ′ by F ′�C. So D is acyclic, and hence we can partition F�F ′

into directed paths, where each path starts at a vertex v with degout
D (v) > degin

D (v)
and ends at a vertex v with degin

D (v) > degout
D (v). As |F ′| > |F |, at least one of

these paths, P say, has more edges in F ′ than in F . Now replacing F by F�EP
does not violate (20.19)(i), since degF�EP (v) = degF (v) + 1 ≤ degF ′(v) ≤ l if v is
an end of P and degF�EP (v) = degF (v) for any other vertex v. As this increases
|F |, it contradicts our maximality assumption.

This implies the following result of Folkman and Fulkerson [1969], generalizing
Theorems 20.8 and 20.9 (by taking p2 = 1):

Corollary 20.10a. Let G = (V, E) be a bipartite graph and let k1, k2, p1, p2 ∈ Z+

be such that k1 + k2 ≥ ∆(G), k1p1 + k2p2 = |E|, and p1 ≥ p2. Then E can be
partitioned into k1 matchings of size p1 and k2 matchings of size p2 if and only if
each subset X of V spans at least k1(p1 + |X| − |V |) edges.

Proof. Necessity being easy, we prove sufficiency. By Theorem 20.9, G has k1

disjoint matchings of size p1. Let k := k1 + k2. Since p1 ≥ p2, we have p1 ≥
(p1k1 + p2k2)/k = |E|/k. Hence, by Theorem 20.10, G has k1 disjoint matchings
of size p1, such that the uncovered edges form a subgraph of maximum degree at
most k2. As this subgraph has |E| − p1k1 = p2k2 edges, by Theorem 20.8 we can
split its edge set into k2 matchings of size p2.

These results relate to simple b-matchings — see Corollary 21.29a.

20.7. Covering by perfect matchings

A series of results similar to those in Section 20.6 can be derived for covering
by perfect matchings and for the down hull of the perfect matching polytope.
Brualdi [1979] showed the covering analogue of Corollary 20.9a:

Theorem 20.11. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
E can be covered by k perfect matchings if and only if any vertex cover X
spans at most k(|X| − 1

2 |V |) edges.

Proof. Necessity. Let G be covered by k perfect matchings and let X be a
vertex cover. Each perfect matching contains |V \ X| edges not spanned by
X, and hence 1

2 |V | − |V \ X| = |X| − 1
2 |V | edges spanned by X. This proves

necessity.
Sufficiency. Assume that the condition holds. This implies that both

colour classes of G have size 1
2 |V |, since each of them is a vertex cover X
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spanning no edge, implying |X| ≥ 1
2 |V |. It also implies that the maximum

degree of G is at most k, since for each vertex v the set U ∪ {v} (where U is
the colour class of G not containing v) spans at most k edges.

For each vertex v, let bv := k−deg(v). Split each vertex v into bv vertices,
and replace any edge uv by bubv edges connecting the bu copies of u with the
bv copies of v. This yields the bipartite graph H, with k|V | − 2|E| vertices.

Now H has a perfect matching, as follows from Frobenius’ theorem: if Y
is a vertex cover in H, then the set X of vertices v of G for which all copies
in H belong to Y , is a vertex cover in G. Now by the condition, X spans at
most k(|X| − 1

2 |V |) edges of G. Hence

(20.20) |Y | ≥
∑

v∈X

(k − deg(v)) = k|X| − |E| − |E[X]| ≥ 1
2k|V | − |E|.

So Y is not smaller than half the number of vertices of H. Therefore, by
Frobenius’ theorem, H has a perfect matching M .

For each edge e of G, add parallel edges to e as often as a copy of e occurs
in M . We obtain a k-regular bipartite graph G′. By Kőnig’s edge-colouring
theorem, the edges of G′ can be partitioned into k perfect matchings. This
gives k perfect matchings in G covering E.

(This proof method in fact consists of showing that G has a perfect b-matching
— see Chapter 21.)

The result is equivalent to characterizing bipartite graphs that are k-
regularizable. A graph G = (V, E) is k-regularizable if we can replace each
edge by a positive number of parallel edges so as to obtain a k-regular graph.
Then:

Corollary 20.11a. Let G = (V, E) be a bipartite graph and let k ∈ Z+.
Then G is k-regularizable if and only if any vertex cover X spans at most
k(|X| − 1

2 |V |) edges.

Proof. Directly from Theorem 20.11.

20.7a. Polyhedral interpretation

Again we can interpret Theorem 20.11 polyhedrally. In Theorem 18.9 we saw that
for a bipartite graph G = (V, E), the down hull of the perfect matching polytope
of G,

(20.21) P ↓
perfect matching(G) = (Pperfect matching(G) − R

E
+) ∩ R

E
+

is determined by the inequalities

(20.22) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≤ |S| − 1

2 |V | for each vertex cover S.

Then Theorem 20.11 implies that for each k ∈ Z+, each integer vector w ∈
k · P ↓

perfect matching(G) is a sum of k integer vectors in P ↓
perfect matching(G). That

is:
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Corollary 20.11b. P ↓
perfect matching(G) has the integer decomposition property.

Proof. See above.

We can view this result also in terms of the antiblocking polyhedron of
P ↓

perfect matching(G), which is the polyhedron Q determined by

(20.23) (i) xe ≥ 0 for each e ∈ E,
(ii) x(M) ≤ 1 for each perfect matching M .

By the theory of antiblocking polyhedra, Q is equal to the down hull of the convex
hull of the vectors

(20.24) 1

|S|− 1
2 |V |

χE[S]

where S is a vertex cover with |S| > 1
2 |V |.

So the maximum value of 1Tx over Q is equal to

(20.25) max{ |E[S]|
|S|− 1

2 |V |
| S vertex cover, |S| > 1

2 |V |}.

By LP-duality, this is equal to the minimum value of
∑

M λM , where M ranges
over perfect matchings and where λM ≥ 0 with

∑

M λMχM ≥ 1. So Theorem 20.11
states: the minimum number of perfect matchings needed to cover all edges in a
bipartite graph is equal to

(20.26) 
min{
∑

M

λM |λM ≥ 0,
∑

M

λMχM ≥ 1}�.

As we can directly extend this to a weighted version, one has:

Corollary 20.11c. The polyhedron determined by (20.23) has the integer rounding
property.

Proof. See above.

20.8. The perfect matching lattice of a bipartite graph

The perfect matching lattice (often briefly the matching lattice) of a graph G =
(V, E) is the lattice generated by the incidence vectors of perfect matchings
in G; that is,

(20.27) Lperfect matching(G) := lattice{χM | M perfect matching in G}.

With the help of Kőnig’s edge-colouring theorem, it is not difficult to
characterize the perfect matching lattice of a bipartite graph (cf. Lovász
[1985]). Recall that the perfect matching space of a graph G is the linear hull
of the incidence vectors of the perfect matchings in G (cf. Section 18.5d).

Theorem 20.12. The perfect matching lattice of a bipartite graph G = (V, E)
is equal to the set of integer vectors in the perfect matching space of G.
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Proof. Obviously, each vector in the perfect matching lattice is integer and
belongs to the perfect matching space. To see the reverse inclusion, let x be an
integer vector in the perfect matching space. So xe = 0 for each edge covered
by no perfect matching, and x(δ(u)) = x(δ(v)) for all u, v ∈ V . By adding to
x incidence vectors of perfect matchings, we can assume that xe ≥ 0 for all
e ∈ E.

Replace any edge e by xe parallel copies. We obtain a k-regular bipartite
graph H, with k := x(δ(v)) for any v ∈ V . Hence, by Kőnig’s edge-colouring
theorem, H is k-edge-colourable. As each colour is a perfect matching in H,
we can decompose x as a sum of k incidence vectors of perfect matchings in
G. So x belongs to the perfect matching lattice of G.

This gives a characterization of the perfect matching lattice for matching-
covered bipartite graphs (which will be used in the characterization of the
perfect matching lattice of an arbitrary graph in Chapter 38). A graph is
called matching-covered if each edge belongs to a perfect matching.

Corollary 20.12a. Let G = (V, E) be a matching-covered bipartite graph
and let x ∈ Z

E be such that x(δ(u)) = x(δ(v)) for any two vertices u and v.
Then x belongs to the perfect matching lattice of G.

Proof. Directly from Theorems 20.12 and 18.7.

By lattice duality theory, Theorem 20.12 is equivalent to the following.

Corollary 20.12b. Let G = (V, E) be a bipartite graph and let w ∈ R
E be a

weight function. Then each perfect matching has integer weight if and only if
there exists a vector b ∈ R

V with b(V ) = 0 and with we − bu − bv integer for
each edge e = uv covered by at least one perfect matching.

Proof. Sufficiency is easy, since if such a b exists, then, for each perfect
matching M ,

(20.28) w(M) = b(V ) +
∑

e=uv∈M

(we − bu − bv) =
∑

e=uv∈M

(we − bu − bv)

is an integer.
To see necessity, suppose that w(M) is integer for each perfect matching

M . Then (by definition of dual lattice) w belongs to the dual lattice of the
perfect matching lattice. Theorem 20.12 implies that the dual lattice is the
sum of Z

E and the linear space orthogonal to the perfect matching space. So
w = w′ + w′′, where w′ ∈ Z

E and w′′ is orthogonal to the perfect matching
space; that is, w′′(M) = 0 for each perfect matching M . By Corollary 18.7a,
there exists a vector b ∈ R

V with b(V ) = 0 and with w′′
e = bu + bv for each

edge e = uv covered by at least one perfect matching. This is equivalent to
the present Corollary.
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20.9. Further results and notes

20.9a. Some further edge-colouring algorithms

As mentioned, it is easy to implement an O(nm)-time algorithm for finding a ∆(G)-
edge-colouring in a simple bipartite graph G. Such an algorithm also exists if G has
multiple edges:

Theorem 20.13. The edges of a bipartite graph G can be coloured with ∆(G)
colours in O(nm) time.

Proof. Let ∆ := ∆(G). We update a collection of disjoint matchings M1, . . . , M∆

(the colours), each stored as a doubly linked list. For each edge e, we keep the i for
which e ∈ Mi (i = 0 if e is in no Mi). Initially we set Mi := ∅ for i := 1, . . . , ∆. We
also store the colour classes U and W as lists.

The algorithm runs along all pairs of vertices u ∈ U and w ∈ W . Fixing u ∈ U
and w ∈ W , make a list L of edges e connecting u and w (taking O(deg(u)) time,
by scanning δ(u)); define d(u, w) := |L|; make a list I of d(u, w) indices i for which
Mi misses u (taking O(deg(u)) time, by scanning δ(u)); make a list J of d(u, w)
indices j for which Mj misses w (taking O(deg(w)) time, by scanning δ(w)); next,
while there is an edge e0 in L:

(20.29) choose i ∈ I and j ∈ J ;
if i = j, insert e0 in Mi, delete e0 from L, and delete i from I and J ;
if i �= j, make for each v ∈ V a list Tv of edges in Mi ∪ Mj incident
with v (taking O(n) time, by scanning Mi and Mj);
identify the path component P in Mi ∪ Mj starting at u (taking O(n)
time, using the Tv);
for each edge e on P , if e is in Mi move e to Mj and if e is in Mj we
move e to Mi (taking O(n) time);
insert e0 in Mj , delete e0 from L, delete i from I, and delete j from J .

Fixing u and w, the preprocessing takes O(deg(u) + deg(w)) time, and each of the
d(u, w) iterations takes O(n) time. As

∑

u∈U

∑

w∈W (deg(u)+deg(w)+nd(u, w)) =
2nm, we obtain an algorithm as required.

From their linear-time perfect matching algorithm for regular bipartite graphs,
Cole, Ost, and Schirra [2001] derived (using an idea of Gabow [1976c]):

Theorem 20.14. A k-regular bipartite graph G = (V, E) can be k-edge-coloured in
time O(m log k).

Proof. We describe a recursive algorithm, the case k = 1 being the basis.
If k is even, find an Eulerian orientation of G, let G′ be the 1

2k-regular graph
consisting of all edges oriented from one colour class of G to the other, let G′′ be the
1
2k-regular graph consisting of the remaining edges, and recursively 1

2k-edge-colour
G′ and G′′. This gives a k-edge-colouring of G.

If k is odd and ≥ 3, find a perfect matching M in G, and recursively (k − 1)-
edge-colour G − M . With M , this gives a k-edge-colouring of G.
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We show that the running time is O(m log k). The recursive step takes time
O(m), since finding an Eulerian orientation or finding a perfect matching takes
O(m) time (Corollary 16.11a). Moreover, in one or two recursive steps, the graph
is split into two graphs with half the number of edges. Since m log2 k = m +
2( 1

2m log2(
1
2k)), the result follows.

Corollary 20.14a. The edges of a bipartite graph G can be coloured with ∆(G)
colours in O(m log ∆(G)) time.

Proof. Let k := ∆(G). First iteratively merge any two vertices in the same colour
class of G if each of them has degree at most 1

2k. The final graph H will have at
most two vertices of degree at most 1

2k, and moreover, ∆(H) = k and any k-edge-
colouring of H yields a k-edge-colouring of G. Next make a copy H ′ of H, and join
each vertex v of H by k − degH(v) parallel edges with its copy v′ in H ′ (where
degH(v) is the degree of v in H). This gives the k-regular bipartite graph G′, with
|EG′| = O(|EG|).

By Theorem 20.14, we can find a k-edge-colouring of G′ in O(m log k) time.
This gives a k-edge-colouring of H and hence a k-edge-colouring of G.

20.9b. Complexity survey for bipartite edge-colouring

O(nm) Kőnig [1916]

O(
√

n m∆) Hopcroft and Karp [1971,1973] (cf.
Gabow and Kariv [1978])

∗ O(m̃2) Gonzalez and Sahni [1976]

O(
√

n m log ∆) Gabow [1976c]

O(m
√

n log n) Gabow and Kariv [1978]

O(m∆ log n) Gabow and Kariv [1978]

O((m + n2) log ∆) Gabow and Kariv [1978,1982]

O(m(log n)2 log ∆) Lev, Pippenger, and Valiant [1981]

O(m(log m)2) Gabow and Kariv [1982]

O(m log m) Cole and Hopcroft [1982]

∗ O(nm̃ log µ) Gabow and Kariv [1982]

O((m + n log n log2 ∆) log ∆) Cole and Hopcroft [1982]

O((m + n log n log ∆) log ∆) Cole [1982]

O(n22O(∆)
) Cole [1982]

O((m + n log n) log ∆) R. Cole and K. Ost (cf. Ost [1995]),
Kapoor and Rizzi [2000]

O(m∆) Schrijver [1999]

O(m log ∆ + n log n log ∆) Rizzi [2002]

∗ O(m log ∆) Cole, Ost, and Schirra [2001]
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Here m̃ denotes the number of parallel classes of edges, µ the maximum size of a
parallel class, and ∆ the maximum degree. As before, ∗ indicates an asymptotically
best bound in the table.

Kapoor and Rizzi [2000] showed that a bipartite graph of maximum degree ∆
can be ∆-edge-coloured in time T +O(m log ∆), where T is the time needed to find
a perfect matching in a k-regular bipartite graph with m edges and k ≤ ∆. (So this
is applied only once!)

20.9c. List-edge-colouring

An interesting extension of Kőnig’s edge-colouring theorem was shown by Galvin
[1995], which was the ‘list-edge-colouring conjecture’ for bipartite graphs (cf. Alon
[1993], Häggkvist and Chetwynd [1992]). It implies the conjecture of J. Dinitz (1979)
that the list-edge-colouring number of the complete bipartite graph Kn,n equals n.
(This is in fact a special case of the conjecture, formulated by V.G. Vizing in 1975,
that the list-edge-colouring number of any graph is equal to its edge-colouring
number (see Häggkvist and Chetwynd [1992]).) The proof of Galvin is based on the
Gale-Shapley theorem on stable matchings (Theorem 18.11).

Let G = (V, E) be a graph. Then G is k-list-edge-colourable if for each choice
of finite sets Le for e ∈ E with |Le| = k, we can choose le ∈ Le for e ∈ E such that
le �= lf if e and f are incident. The smallest k for which G is k-list-edge-colourable
is called the list-edge-colouring number of G.

Trivially, the list-edge-colouring number of G is at least the edge-colouring
number of G, and hence at least the maximum degree ∆(G) of G. Galvin [1995]
showed:

Theorem 20.15. The list-edge-colouring number of a bipartite graph is equal to its
maximum degree.

Proof. Let G = (V, E) be a bipartite graph, with colour classes U and W , and
with maximum degree k := ∆(G). The theorem follows by applying the following
statement to any ∆(G)-edge-colouring φ : E → {1, . . . , ∆(G)} of G.

(20.30) Let φ : E → Z be such that φ(e) �= φ(f) if e and f are incident. For
each e = uw ∈ E with u ∈ U and w ∈ W , let Le be a finite set
satisfying

|Le| > |{f ∈ δ(u) | φ(f) < φ(e)}| + |{f ∈ δ(w) | φ(f) > φ(e)}|.
Then there exist le ∈ Le (e ∈ E) such that le �= lf if e and f are
incident.

So it suffices to prove (20.30), which is done by induction on |E|. Choose p ∈ ⋃
Le

and let F := {e ∈ E | p ∈ Le}. Define for each v ∈ V a total order <v on δF (v) by:

(20.31) e ≤v f ⇐⇒ φ(e) ≥ φ(f), if v ∈ U ,
e ≤v f ⇐⇒ φ(e) ≤ φ(f), if v ∈ W ,

for e, f ∈ δF (v). By the Gale-Shapley theorem (Theorem 18.11), F contains a stable
matching M . So M is a matching such that for each e ∈ F there is an f ∈ M with
e ≤v f for some v ∈ e. Hence for each edge e = uw ∈ F \ M , with u ∈ U and
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w ∈ W : ∃f ∈ M ∩ δ(u) : φ(f) < φ(e) or ∃f ∈ M ∩ δ(w) : φ(f) > φ(e). So removing
M from E and resetting Le := Le \{p} for each e ∈ F \M , we can apply induction.

(The proof by Slivnik [1996] is similar.) An extension of Galvin’s theorem was given
by Borodin, Kostochka, and Woodall [1997].

20.9d. Further notes

Edge-colouring relates to timetabling — see Appleby, Blake, and Newman [1960],
Gotlieb [1963], Broder [1964], Cole [1964], Csima and Gotlieb [1964], Barraclough
[1965], Duncan [1965], Almond [1966], Lions [1966b,1966a,1967], Welsh and Powell
[1967], Yule [1967], Dempster [1968,1971], Wood [1968], de Werra [1970,1972], and
McDiarmid [1972].

However, most practical timetabling problems require more than just bipartite
edge-colouring, and are NP-complete. It is NP-complete to decide if a given partial
edge-colouring in a bipartite graph can be extended to a minimum edge-colouring
(Even, Itai, and Shamir [1975,1976]). This corresponds to a timetabling problem
with ‘time windows’. Moreover, the 3-dimensional analogue is NP-complete (Karp
[1972b]): given three disjoint sets R, S, and T and a family F of triples {r, s, t}
with r ∈ R, s ∈ S, and t ∈ T , colour the sets in F with a minimum number of
colours in such a way that sets of the same colour are disjoint.

Analogues of Kőnig’s edge-colouring theorem, in terms of odd paths packing
and covering, were given by de Werra [1986,1987]. The edge-colouring number of
almost bipartite graphs (graphs which have a vertex whose deletion makes the graph
bipartite) was characterized by Eggan and Plantholt [1986] and Reed [1999b].

Kőnig [1916] also proved an infinite extension of Theorem 20.1. We refer to
Section 16.7h for some historical notes on the fundamental paper Kőnig [1916].

Sainte-Laguë [1923] mentioned (without proof and without reference to Kőnig’s
work) the result that each k-regular bipartite graph is k-edge-colourable.



Chapter 21

Bipartite b-matchings and
transportation

The total unimodularity of the incidence matrix of a bipartite graph leads
to general min-max relations, for b-matchings, b-edge covers, w-vertex cov-
ers, w-stable sets, and b-factors. The weighted versions of these problems
relate to the classical transportation problem.
In this chapter, graphs can be assumed to be simple.

21.1. b-matchings and w-vertex covers

Let G = (V, E) be a graph, with V ×E incidence matrix A. We introduce the
concepts of b-matching and w-vertex cover, which will turn out to be dual.

For b : V → Z+, a b-matching is a function x : E → Z+ such that for each
vertex v of G:

(21.1) x(δ(v)) ≤ bv,

where δ(v) is the set of edges incident with v. In other words, x is a b-matching
if and only if x is an integer vector satisfying x ≥ 0, Ax ≤ b. So if b = 1,
then b-matchings are precisely the incidence vectors of matchings.

For w : E → Z+, a w-vertex cover is a function y : V → Z+ such that for
each edge e = uv of G:

(21.2) yu + yv ≥ we.

In other words, y is a w-vertex cover if and only if y is an integer vector
satisfying y ≥ 0, yTA ≥ wT. So if w = 1, then {0, 1}-valued w-vertex covers
are precisely the incidence vectors of vertex covers.

b-matchings and w-vertex covers are related by the following LP-duality
equation:

(21.3) max{wTx | x ≥ 0, Ax ≤ b} = min{yTb | y ≥ 0, yTA ≥ wT}.

Since A is totally unimodular (Theorem 18.2), both optima are attained by
integer vectors. In other words (where the w-weight of a vector x equals wTx
and the b-weight of a vector y equals yTb):
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Theorem 21.1. Let G = (V, E) be a bipartite graph and let b : V → Z+ and
w : E → Z+. Then the maximum w-weight of a b-matching is equal to the
minimum b-weight of a w-vertex cover.

Proof. See above.

Taking b = 1, we obtain Corollary 17.1a. For w = 1, we get the following
min-max relation for maximum-size b-matching (again, the sum of the entries
in a vector is called its size):

Corollary 21.1a. Let G = (V, E) be a bipartite graph and let b : V → Z+.
Then the maximum size of a b-matching is equal to the minimum b-weight of
a vertex cover.

Proof. This is the special case w = 1 of Theorem 21.1.

An alternative way of proving this is by derivation from Kőnig’s matching
theorem: Split each vertex v into bv copies, and replace each edge uv by bubv

edges connecting the bu copies of u with the bv copies of v. (This construction
is due to Tutte [1954b].)

Corollary 21.1a implies a characterization of the existence of a perfect
b-matching. A b-matching is called perfect if equality holds in (21.1) for each
vertex v. So a b-matching is perfect if and only if it has size 1

2b(V ). Hence:

Corollary 21.1b. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+. Then

there exists a perfect b-matching if and only if b(C) ≥ 1
2b(V ) for each vertex

cover C.

Proof. Directly from Corollary 21.1a.

21.2. The b-matching polytope and the w-vertex cover
polyhedron

The total unimodularity of the incidence matrix also implies characterizations
of the corresponding polyhedra.

The b-matching polytope is the convex hull of the b-matchings. For bipar-
tite graphs it is determined by:

(21.4) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ bv for each v ∈ V .

Theorem 21.2. The b-matching polytope of a bipartite graph G = (V, E) is
determined by (21.4).

Proof. Directly from the facts that system (21.4) amounts to x ≥ 0, Ax ≤ b
and that A is totally unimodular, where A is the V × E incidence matrix
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of G. By Theorem 5.20, the vertices of the polytope {x ≥ 0 | Ax ≤ b} are
integer, hence they are b-matchings.

This generalizes the sufficiency part of Corollary 18.1b.
Similarly, the w-vertex cover polyhedron, being the convex hull of the w-

vertex covers, is, for bipartite graphs, determined by:

(21.5) (i) yv ≥ 0 for each v ∈ V ,
(ii) yu + yv ≥ we for each e = uv ∈ E.

Theorem 21.3. The w-vertex cover polyhedron of a bipartite graph is deter-
mined by (21.5).

Proof. Directly from the total unimodularity of the incidence matrix of a
bipartite graph.

This generalizes the necessity part in Theorem 18.3.

21.3. Simple b-matchings and b-factors

In the context of b-matchings, call a vector x simple if it is {0, 1}-valued. So a
simple b-matching is the incidence vector of a set F of edges with degF (v) ≤
bv for each vertex v. We will identify the vector and the subset.

To characterize the maximum size of a simple b-matching, let, for any
X ⊆ V , E[X] denote the set of edges spanned by X.

Theorem 21.4. The maximum size of a simple b-matching in a bipartite
graph G = (V, E) is equal to the minimum value of b(V \ X) + |E[X]| taken
over X ⊆ V .

Proof. This can be reduced to the nonsimple case by replacing each edge uv
by a path of length 3 connecting u and v (thus introducing two new vertices
for each edge), and extending b by defining b(s) := 1 for each new vertex s.
Then the maximum size of a simple b-matching in the original graph is equal
to the maximum size of a b-matching in the new graph minus |E|, and we
can apply Corollary 21.1a.

(This construction is due to Tutte [1954b].)
The theorem can also be derived from the fact that both optima in the

LP-duality equation:

(21.6) max{1Tx | 0 ≤ x ≤ 1, Ax ≤ b}
= min{yTb + zT1 | y ≥ 0, z ≥ 0, yTA + zT ≥ 1T}

have integer optimum solutions, since A (the incidence matrix of G) is totally
unimodular.



340 Chapter 21. Bipartite b-matchings and transportation

Theorem 21.4 implies the following result of Ore [1956] (who formulated
it in terms of directed graphs). A b-factor is a simple perfect b-matching. So
it is a subset F of E with degF (v) = bv for each v ∈ V (again identifying a
subset of E with its incidence vector in R

E).

Corollary 21.4a. Let G = (V, E) be a bipartite graph and let b : V →
Z+. Then G has a b-factor if and only if each subset X of V spans at least
b(X) − 1

2b(V ) edges.

Proof. Directly from Theorem 21.4.

If b is equal to a constant k, Theorem 21.4 amounts to (with the help of
Kőnig’s edge-colouring theorem):

Corollary 21.4b. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
the maximum size of the union of k matchings is equal to the minimum value
of k|V \ X| + |E[X]| taken over X ⊆ V .

Proof. Apply Theorem 21.4 to bv := k for all v ∈ V . We obtain a formula
for the maximum size of a subset F of E with degF (v) ≤ k for all v ∈ V . By
Theorem 20.1, this is the union of k matchings.

A k-factor in a graph G = (V, E) is a subset F of E with degF (v) = k for
each v ∈ V . Then:

Corollary 21.4c. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
G has a k-factor if and only if each subset X of V spans at least k(|X|− 1

2 |V |)
edges.

Proof. Directly from Corollary 21.4a.

From this one can derive the result of Fulkerson [1964b] (Corollary 20.9a)
that a bipartite graph has k disjoint perfect matchings if and only if each
subset X of V spans at least k(|X| − 1

2 |V |) edges.
By the total unimodularity of the incidence matrix of bipartite graphs,

the simple b-matching polytope (the convex hull of the simple b-matchings)
of a bipartite graph G = (V, E) is determined by:

(21.7) 0 ≤ xe ≤ 1 for each e ∈ E,
x(δ(v)) ≤ bv for each v ∈ V .

Similarly, the following min-max relation for maximum-weight simple b-
matching follows (Vogel [1963]):

Theorem 21.5. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

w ∈ Z
E
+. Then the maximum weight wTx of a simple b-matching x is equal

to the minimum value of
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(21.8)
∑

v∈V

yvbv +
∑

e∈E

ze

where y ∈ Z
V
+ and z ∈ Z

E
+ with yu + yv + ze ≥ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.9) max{wTx | 0 ≤ x ≤ 1, Ax ≤ b}
= min{yTb + zT1 | y ≥ 0, z ≥ 0, yTA + zT ≥ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

Moreover:

Theorem 21.6. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

w ∈ Z
E
+. Then the minimum weight wTx of a b-factor x is equal to the

maximum value of

(21.10)
∑

v∈V

yvbv +
∑

e∈E

ze

where y ∈ Z
V and z ∈ Z

E
+ with yu + yv − ze ≤ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.11) min{wTx | 0 ≤ x ≤ 1, Ax = b}
= max{yTb − zT1 | z ≥ 0, yTA − zT ≤ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

Notes. Hartvigsen [1999] gave a characterization of the convex hull of square-free
simple 2-matching in a bipartite graph. (A 2-matching is a b-matching with b = 2.
A simple 2-matching is square-free if it contains no circuit of length 4.) It implies
that a maximum-weight square-free 2-matching in a bipartite graph can be found
in strongly polynomial time.

21.4. Capacitated b-matchings

If we require that a b-matching x satisfies x ≤ c for some ‘capacity’ function
c : E → Z+, we speak of a capacitated b-matching. So simple b-matchings
correspond to capacitated b-matchings for c = 1.

Theorem 21.7. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

c ∈ Z
E
+. Then the maximum size of a b-matching x ≤ c is equal to

(21.12) min
X⊆V

b(V \ X) + c(E[X]).
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Proof. The proof is similar to that of Theorem 21.4. Now we define b(s) := ce

if s is a new vertex on the path connecting the end vertices of e.

Alternatively, we can reduce this theorem to Theorem 21.4, by replacing
each edge e by ce parallel edges, or we can use total unimodularity similarly
to (21.6).

Again we have the perfect case as direct consequence:

Corollary 21.7a. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

c ∈ Z
E
+. Then there exists a perfect b-matching x ≤ c if and only if

(21.13) c(E[X]) ≥ b(X) − 1
2b(V )

for each X ⊆ V .

Proof. Directly from Theorem 21.7.

Again, by the total unimodularity of the incidence matrix of bipartite
graphs, the c-capacitated b-matching polytope (the convex hull of the b-
matchings x ≤ c) of a bipartite graph G = (V, E) is determined by:

(21.14) 0 ≤ xe ≤ ce for each e ∈ E,
x(δ(v)) ≤ bv for each v ∈ V .

Similarly, the following min-max relation for maximum-weight capacitated
b-matching follows:

Theorem 21.8. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

w, c ∈ Z
E
+. Then the maximum weight wTx of a b-matching x ≤ c is equal to

the minimum value of

(21.15)
∑

v∈V

yvbv +
∑

e∈E

zece

where y ∈ Z
V
+ and z ∈ Z

E
+ satisfy yu + yv + ze ≥ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.16) max{wTx | 0 ≤ x ≤ c, Ax ≤ b}
= min{yTb + zTc | y ≥ 0, z ≥ 0, yTA + zT ≥ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

21.5. Bipartite b-matching and w-vertex cover
algorithmically

Algorithmically, optimization problems on b-matchings and w-vertex covers
in bipartite graphs can be reduced to minimum-cost flow problems, and hence
can be solved in strongly polynomial time.
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Theorem 21.9. Given a bipartite graph G = (V, E), b : V → Z+, c : E →
Z+, and w : E → Q, a b-matching x ≤ c maximizing wTx can be found in
strongly polynomial time. Similarly, a perfect b-matching x ≤ c minimizing
wTx can be found in strongly polynomial time.

Proof. Let S and T be the colour classes of G, and orient the edges of G from
S to T , giving the digraph D. Then b-matchings in G correspond to integer
z-transshipments in D with 0 ≤ z(v) ≤ b(v) if v ∈ T and −b(v) ≤ z(v) ≤ 0
if v ∈ S. Perfect b-matchings correspond to integer b′-transshipments, where
b′(v) := −b(v) if v ∈ S and b′(v) := b(v) if v ∈ T . Hence this theorem follows
from Corollary 12.2d.

Wagner [1958] (cf. Dantzig [1955]) observed that the capacitated version
of the minimum-weight perfect b-matching problem can be reduced to the
uncapacitated version, by a construction similar to that used in proving The-
orem 21.4.

One similarly has for w-vertex covers:

Theorem 21.10. Given a bipartite graph G = (V, E), b : V → Q+, c : V →
Z+, and w : E → Z+, a w-vertex cover y ≤ c minimizing yTb can be found
in strongly polynomial time.

Proof. By reduction to Corollary 12.2e.

Although these results suggest a symmetry between matchings and ver-
tex covers, we mention here that the nonbipartite version of Theorem 21.9
holds true (Section 32.4), but that finding a maximum-size stable set in a
nonbipartite graph is NP-complete (see Section 64.2).

21.6. Transportation

The minimum-weight perfect b-matching problem is close to the classical
transportation problem. Given a bipartite graph G = (V, E) and a vector
b ∈ R

V
+, a b-transportation is a vector x ∈ R

E
+ with

(21.17) x(δ(v)) = bv

for each v ∈ V . So a b-transportation is a fractional version of a perfect
b-matching. Integer b-transportations are exactly the perfect b-matchings.

The following characterization of the existence of a b-transportation was
shown (in a much more general form) by Rado [1943] — compare Corollary
21.1b:

Theorem 21.11. Let G = (V, E) be a bipartite graph and let b ∈ R
V
+. Then

there exists a b-transportation if and only if b(C) ≥ 1
2b(V ) for each vertex

cover C.
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Proof. Since the inequalities b(C) ≥ 1
2b(V ) (for vertex covers C), define a

rational polyhedral cone, we can assume that b is rational, and hence, by
scaling, that b is integer. Then the theorem follows from Corollary 21.1b.

Note that, trivially, there exists a b-transportation if and only if b belongs
to the convex cone in R

V generated by the incidence vectors of the edges of
G. So Theorem 21.11 characterizes this cone.

A negative cycle criterion follows directly from the corresponding criterion
for transshipments. For any b-transportation x in a bipartite graph G =
(V, E) and any cost function c : E → R, make the directed graph Dx = (V, A)
as follows. Let U and W be the colour classes of G. For each edge e = uv of
G, with u ∈ U and v ∈ W , let A have an arc (u, v) of cost ce, and, if xe > 0,
an arc (v, u).of cost −ce. Then (Tolstŏı [1930]):

Theorem 21.12. x is a minimum-cost b-transportation if and only if Dx

has no negative-cost directed circuits.

Proof. Directly from Theorem 12.3.

Transportations in a complete bipartite graph can be formulated in terms
of matrices. Fixing vectors a ∈ R

m
+ and b ∈ R

n
+, an m × n matrix X = (xi,j)

is called a transportation if

(21.18) (i) xi,j ≥ 0 i = 1, . . . , m; j = 1, . . . , n,

(ii)
n∑

j=1

xi,j = ai i = 1, . . . , m,

(iii)
m∑

i=1

xi,j = bj j = 1, . . . , n.

Clearly, a transportation exists if and only if
∑

i ai =
∑

j bj .
Given an m × n ‘cost’ matrix C = (ci,j), the cost of a transportation

X = (xi,j) is defined as
∑

i,j ci,jxi,j . Then the transportation problem (also
called the Hitchcock-Koopmans transportation problem) is:

(21.19) given: vectors a ∈ Q
m
+ , b ∈ Q

n
+ and an m × n ‘cost’ matrix C =

(ci,j),
find: a minimum-cost transportation.

So it is equivalent to solving the LP problem of minimizing
∑

i,j ci,jxi,j over
(21.18). The transportation problem formed a major impulse to introduce
linear programming. Hitchcock [1941] and Dantzig [1951a] showed that the
simplex method applies to the transportation problem.

The transportation problem is also a special case of the minimum-cost b-
transshipment problem, and hence can be solved with the methods of Chapter
12. In particular, it is solvable in strongly polynomial time.

Linear programming also yields a min-max relation, originally due to
Hitchcock [1941] (also implicit in Kantorovich [1939]):
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Theorem 21.13 (Hitchcock’s theorem). The minimum cost of a transporta-
tion is equal to the maximum value of yTa + zTb, where y ∈ R

m and z ∈ R
n

such that yi + zj ≤ ci,j for all i, j.

Proof. This is LP-duality.

(Hitchcock [1941] gave a direct proof.)
The transportation problem differs from the minimum-weight perfect b-

matching problem in having a complete bipartite graph Km,n as underlying
bipartite graph and in not requiring integrality of the output. This last how-
ever is not a restriction, as Dantzig [1951a] showed:

Theorem 21.14. If a and b are integer, the transportation problem has an
integer optimum solution x.

Proof. Directly from the total unimodularity of the matrix underlying the
system (21.18), which is the incidence matrix of the complete bipartite graph
Km,n.

For a different proof, see the proof of Corollary 21.15a below.

Notes. Ford and Fulkerson [1955,1957b], Gleyzal [1955], Munkres [1957], and
Egerváry [1958] described primal-dual methods for the transportation problem,
and Ford and Fulkerson [1956a,1957a] extended it to the capacitated version.

If the ai and bj are small integers, the transportation problem can be reduced to
the assignment problem, by ‘splitting’ each i into ai or bi copies. (This observation
is due to Egerváry [1958], and in a different context to Tutte [1954b].)

21.6a. Reduction of transshipment to transportation

It is direct to transform a transportation problem to a transshipment problem.
Orden [1955] observed a reverse reduction (similar to the reduction described in
Section 16.7c). Indeed, let input D = (V, A), b ∈ R

V and k ∈ R
A for the trans-

shipment problem be given. Split each vertex v into two vertices v′, v′′ and replace
each arc (u, v) by an arc (u′, v′′), with cost k(u, v). Moreover, add arcs (v′, v′′), each
with cost 0. Let N :=

∑

v∈V |b(v)|. Define b′(v′) := −N and b′(v′′) := b(v) + N .
Then a minimum-cost b′-transshipment in the new structure gives a minimum-cost
b-transshipment in the original structure. Since the new graph is bipartite with
all edges oriented from one colour class to the other, we have a reduction to the
transportation problem.

(Orden [1955] also gave an alternative reduction of the transshipment problem
to the transportation problem. Let A′ be the set of pairs (u, v) with bu < 0 and
bv > 0 and with v is reachable in D from U . For each (u, v) ∈ A′, let k′(u, v) be
the length of a shortest u − v path in D, taking k as length function. Then the
(bipartite) transshipment problem for D′ := (V, A′), b, and k′ is equivalent to the
original transshipment problem.)

Fulkerson [1960] gave the following reduction of the capacitated transshipment
problem to the uncapacitated transportation problem. Let be given directed graph
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D = (V, A), b ∈ R
V , a ‘capacity’ function c ∈ R

A, and a ‘cost’ function k ∈
R

A. Define V ′ := V ∪ A and E′ := {{a, v} | a = (v, u) or a = (u, v)}. Define
w({a, v}) := k(a) if v is head of a, and := 0 if v is tail of a. Let b′(a) := c(a)
and b′(v) := b(v) + c(δout(v)). Then a minimum-cost b-transshipment subject to c
corresponds to a minimum-cost b′-transportation. (More can be found in Wagner
[1958].)

21.6b. The transportation polytope

Given a ∈ R
m
+ and b ∈ R

n
+, the transportation polytope is the set of all matrices

X = (xi,j) in R
m×n satisfying (21.18). The transportation polytope was first studied

by Hitchcock [1941]. The following result is due to Dantzig [1951a].

Theorem 21.15. Let X = (xi,j) belong to the transportation polytope. Then X is
a vertex of the transportation polytope if and only if the set F := {ij | xi,j > 0}
forms a forest in the complete bipartite graph Km,n.

Proof. If F contains a circuit C = (i0, j1, i1, j2, i2, . . . , jk, ik), with ik = i0, define
Y = (yi,j) by: yi,j := 1 if (i, j) = (ih, jh) for some h = 1, . . . , k, yi,j := −1 if
(i, j) = (ih−1, jh) for some h = 1, . . . , k, and yi,j := 0 for all other (i, j). Then
X +εY belongs to the transportation polytope for any ε close enough to 0 (positive
or negative), and hence X is not a vertex of the transportation polytope.

Conversely, if X is not a vertex of the transportation polytope, there exists
a nonzero matrix Y = (yi,j) such that X + εY is in the transportation polytope
for any ε close enough to 0 (positive or negative). Then Y satisfies

∑n
j=1 yi,j = 0

for i = 1, . . . , m and
∑m

i=1 yi,j = 0 for j = 1, . . . , n. Since Y is nonzero, the set
F ′ := {ij | yi,j �= 0} contains a circuit. Since F ′ ⊆ F , it implies that F contains a
circuit.

This gives:

Corollary 21.15a. If a and b are integer vectors, the transportation polytope is an
integer polyhedron.

Proof. By Theorem 21.15, for any vertex X = (xi,j) of the transportation polytope,
the set of pairs (i, j) with xi,j not an integer is a forest. Hence, if it is nonempty,
this forest has an end edge, say (i, j). Assume without loss of generality that i has
degree 1 in this forest. Then xi,j is equal to ai minus

∑

j′ 
=j xi,j′ , which is an integer
as ai and each of the xi,j′ (j′ �= j) is an integer.

The dimension of the transportation polytope is easy to determine (Koopmans
and Reiter [1951], Dulmage and Mendelsohn [1962], Klee and Witzgall [1968]):

Theorem 21.16. If a > 0 and b > 0, the dimension of the transportation polytope
is equal to (m − 1)(n − 1).

Proof. Let X = (xi,j) be a vector in the relative interior of the transportation
polytope. So xi,j > 0 for all i, j. For each (i, j) with i ∈ {1, . . . , m − 1} and j ∈
{1, . . . , n − 1}, we can correct any small perturbation of xi,j by a unique change of
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the xi,n and xm,j . So the dimension of the transportation polytope is (m−1)(n−1).

Notes. Balinski [1974] (cf. Balinski and Rispoli [1993]) showed the Hirsch conjec-
ture for some classes of transportation polytopes. For counting and estimating the
number of vertices of transportation polytopes, see Simonnard and Hadley [1959],
Demuth [1961], Wintgen [1964], Szwarc and Wintgen [1965], Klee and Witzgall
[1968], Bolker [1972], and Ahrens [1981]. For counting facets, see Klee and Witzgall
[1968].

Given C = (ci,j) ∈ R
m×n, the dual transportation polyhedron is the set of all

vectors (u; v) ∈ R
m × R

n satisfying38:

(21.20) u1 = 0
ui + vj ≥ ci,j i = 1, . . . , m; j = 1, . . . , n.

(The condition u1 = 0 is added for normalization.) It is easy to see that the dimen-
sion of the dual transportation polyhedron is m + n − 1, and that (u; v) satisfying
(21.20) is a vertex of the dual transportation polyhedron if and only if the graph
with vertex set {p1, . . . , pm, q1, . . . , qn} and edge set {{pi, qj} | ui + vj = ci,j} is
connected.

Balinski [1984] showed with the ‘signature method’ that the diameter of the
dual transportation polyhedron is at most (m − 1)(n − 1), thus proving the Hirsch
conjecture for this class of polyhedra.

Balinski and Russakoff [1984] characterized vertices and higher-dimensional
faces of dual transportation polyhedra. More can be found in Zhu [1963], Balin-
ski [1983], and Kleinschmidt, Lee, and Schannath [1987].

21.7. b-edge covers and w-stable sets

Exchanging ≤ and ≥ appropriately in the definitions of b-matchings and w-
vertex covers gives the b-edge covers and the w-stable sets. These concepts
again turn out to be each others dual.

Let G = (V, E) be a graph, with V × E incidence matrix A. For b : V →
Z+, a b-edge cover is a function x : E → Z+ such that for each vertex v of G:

(21.21) x(δ(v)) ≥ bv.

In other words, x is a b-edge cover if and only if x is an integer vector satisfying
x ≥ 0, Ax ≥ b. So if b = 1, then {0, 1}-valued b-edge covers are precisely the
incidence vectors of edge covers.

For w : E → Z+, a w-stable set is a function y : V → Z+ such that for
each edge e = uv of G:

(21.22) yu + yv ≤ we.

38 We write (u; v) for
(

u
v

)

.
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In other words, y is a w-stable set if and only if y is an integer vector satisfying
y ≥ 0, yTA ≤ wT. So if w = 1, then {0, 1}-valued w-stable sets are precisely
the incidence vectors of stable sets.

In this case, b-edge covers and w-stable sets are related by the following
LP-duality equation:

(21.23) min{wTx | x ≥ 0, Ax ≥ b} = max{yTb | y ≥ 0, yTA ≤ wT}.

Since A is totally unimodular (Theorem 18.2), both optima are attained by
integer vectors. This gives (where the w-weight of a vector x equals wTx and
the b-weight of a vector y equals yTb):

Theorem 21.17. Let G = (V, E) be a bipartite graph and let b : V → Z+
and w : E → Z+. Then the minimum w-weight wTx of a b-edge cover x is
equal to the maximum b-weight of a w-stable set.

Proof. See above.

Taking b = 1, we obtain Corollary 19.5a. For w = 1, we get a min-max
relation for minimum-size b-edge cover:

Corollary 21.17a. Let G = (V, E) be a bipartite graph and let b : V → Z+.
Then the minimum size of a b-edge cover is equal to the maximum b-weight
of a stable set.

Proof. This is the special case w = 1 of Theorem 21.17.

Again, an alternative way of proving this is by derivation from the Kőnig-
Rado edge cover theorem (Theorem 19.4): Split each vertex v into bv copies,
replace each edge uv by bubv edges connecting the bu copies of u with the bv

copies of v.

21.8. The b-edge cover and the w-stable set polyhedron

The total unimodularity of the incidence matrix of a bipartite graph also
gives descriptions of the corresponding polyhedra.

The b-edge cover polyhedron is the convex hull of the b-edge covers. For
bipartite graphs it is determined by:

(21.24) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≥ bv for each v ∈ V .

Theorem 21.18. The b-edge cover polyhedron of a bipartite graph G = (V, E)
is determined by (21.24).

Proof. Directly from the facts that system (21.24) amounts to x ≥ 0, Ax ≥ b
and that A is totally unimodular.
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This extends Theorem 19.6 on the edge cover polytope.
Similarly, the w-stable set polyhedron, being the convex hull of the w-

stable sets, is, for bipartite graphs, determined by:

(21.25) (i) yv ≥ 0 for each v ∈ V ,
(ii) yu + yv ≤ we for each e = uv ∈ E.

Theorem 21.19. The w-stable set polyhedron of a bipartite graph is deter-
mined by (21.25).

Proof. Directly from the total unimodularity of the incidence matrix of a
bipartite graph.

This generalizes the necessity part of Theorem 19.7.

21.9. Simple b-edge covers

Again, call a vector x simple if it is {0, 1}-valued. Then a simple b-edge cover
corresponds to a set F of edges with degF (v) ≥ bv for each v ∈ V . We will
identify the vector and the set. Note that a simple b-edge cover can exist only
if bv ≤ deg(v) for each vertex v.

It is easy to derive the following min-max relation for simple b-edge covers
from Theorem 21.4 on the maximum size of a simple b-matching (E[X] denote
the set of edges spanned by X):

Theorem 21.20. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ with

bv ≤ deg(v) for each vertex v. Then the minimum size of a simple b-edge cover
in G is equal to the maximum value of b(X) − |E[X]| taken over X ⊆ V .

Proof. Define b′(v) := deg(v) − b(v) for each vertex v. Then a subset F
of E is a simple b-edge cover if and only if E \ F is a simple b′-matching.
By Theorem 21.4, the maximum size of a simple b′-matching is equal to the
minimum value of b′(V \X)+ |E[X]| taken over X ⊆ V . Hence the minimum
size of a simple b-edge cover is equal to the maximum value of

(21.26) |E| − b′(V \ X) − |E[X]| = |E| −
∑

v∈V \X

(deg(v) − b(v)) − |E[X]|

= |E| − 2|E[V \ X]| − |δ(X)| + b(V \ X) − |E[X]|
= b(V \ X) − |E[V \ X]|,

taken over X ⊆ V .

Alternatively, the theorem follows from the fact that both optima in the
LP-duality equation (where A is the V × E incidence matrix of G):

(21.27) min{1Tx | 0 ≤ x ≤ 1, Ax ≥ b}
= max{yTb − zT1 | y ≥ 0, z ≥ 0, yTA − zT ≤ 1T}
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have integer optimum solutions, since A is totally unimodular.
If b is equal to a constant k, Theorem 21.20 amounts to (with the help of

the edge cover variant of Kőnig’s edge-colouring theorem (Theorem 20.5)):

Corollary 21.20a. Let G = (V, E) be a bipartite graph and let k ∈ Z+.
Then the minimum size of the union of k disjoint edge covers is equal to the
maximum value of k|X| − |E[X]| taken over X ⊆ V .

Proof. Apply Theorem 21.20 to bv := k for all v ∈ V . We obtain a formula
for the maximum size of a subset F of E with degF (v) ≥ k for all v ∈ V . By
Theorem 20.5, F is the union of k disjoint edge covers.

By the total unimodularity of the incidence matrix of bipartite graphs,
the simple b-edge cover polytope (the convex hull of the simple b-edge covers)
of a bipartite graph G = (V, E) is determined by:

(21.28) 0 ≤ xe ≤ 1 for each e ∈ E,
x(δ(v)) ≥ bv for each v ∈ V .

LP-duality also gives a min-max formula for the minimum weight of simple
b-edge covers:

Theorem 21.21. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

w ∈ Z
E
+. Then the minimum weight wTx of a simple b-edge cover x is equal

to the maximum value of

(21.29)
∑

v∈V

yvbv −
∑

e∈E

ze

where y ∈ Z
V
+ and z ∈ Z

E
+ with yu + yv − ze ≤ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.30) min{wTx | 0 ≤ x ≤ 1, Ax ≥ b}
= max{yTb − zT1 | y ≥ 0, z ≥ 0, yTA − zT ≤ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

21.10. Capacitated b-edge covers

If we require that a b-edge cover x satisfies x ≤ c for some ‘capacity’ function
c : E → Z+, we speak of a capacitated b-edge cover. So simple b-edge covers
correspond to capacitated b-edge covers with c = 1.

Theorem 21.22. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

c ∈ Z
E
+ with c(δ(v)) ≥ bv for each v ∈ V . Then the minimum size of a b-edge

cover x ≤ c is equal to
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(21.31) max
X⊆V

b(X) − c(E[X]).

Proof. The proof is similar to that of Theorem 21.20.

Alternatively, we can reduce this theorem to Theorem 21.20, by replacing
each edge e by ce parallel edges, or we can use total unimodularity similarly
to (21.27).

Theorem 21.23. Let G = (V, E) be a bipartite graph and let b ∈ Z
V
+ and

c, w ∈ Z
E
+. Then the minimum weight wTx of a b-edge cover x ≤ c is equal

to the maximum value of

(21.32)
∑

v∈V

yvbv −
∑

e∈E

zece

where y ∈ Z
V
+ and z ∈ Z

E
+ with yu + yv − ze ≤ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.33) min{wTx | 0 ≤ x ≤ c, Ax ≥ b}
= max{yTb − zTc | y ≥ 0, z ≥ 0, yTA − zT ≤ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

By the total unimodularity of the incidence matrix of G, the convex hull
of b-edge covers x ≤ c of a bipartite graph G is determined by the inequalities

(21.34) (i) 0 ≤ xe ≤ ce for each e ∈ E,
(ii) x(δ(v)) ≥ bv for each v ∈ V .

21.11. Relations between b-matchings and b-edge covers

Like for matchings and edge covers, there is also a close relation between
maximum-size b-matchings and minimum-size b-edge covers, as was shown
by Gallai [1959a]. This gives a connection between Corollaries 21.1a and
21.17a.

Let G = (V, E) be an undirected graph without isolated vertices, and let
b ∈ Z

V
+. Define:

(21.35) νb(G) := the maximum size of a b-matching,
ρb(G) := the minimum size of a b-edge cover.

Theorem 21.24. Let G = (V, E) be an undirected graph without isolated
vertices, and let b ∈ Z

V
+. Then

(21.36) νb(G) + ρb(G) = b(V ).
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Proof. This can be reduced to Gallai’s theorem (Theorem 19.1), by splitting
each vertex v into bv copies, and replacing each edge e = uv by bubv edges
connecting the bu copies of u with the bv copies of v.

A direct proof of the previous theorem is given in the proof of the following
theorem, also due to Gallai [1959a]:

Theorem 21.25. Let G = (V, E) be an undirected graph and let b ∈ Z
V
+.

Then for each maximum-size b-matching x there is a minimum-size b-edge
cover y with x ≤ y. Conversely, for each minimum-size b-edge cover y there
is a maximum-size b-matching x with x ≤ y.

Proof. Let x be a maximum-size b-matching. For each vertex v of G, increase
the value of x on some edge incident with v, by bv − x(δ(v)). We obtain a
b-edge cover y satisfying

(21.37) y(E) = x(E) +
∑

v∈V

(bv − x(δ(v))) = b(V ) − x(E).

Conversely, let y be a minimum-size b-edge cover. For each vertex v of
G, decrease the value of y on edges incident with v, by a total amount of
y(δ(v)) − bv (as long as y ≥ 0). We obtain a b-matching x satisfying

(21.38) x(E) ≥ y(E) −
∑

v∈V

(y(δ(v)) − bv) = b(V ) − y(E).

(21.37) and (21.38) imply that the y (x, respectively) obtained from x
(y, respectively) is optimum, thus showing the theorem, and also showing
(21.36).

In a bipartite graph, a minimum-size b-edge cover and a maximum-weight
stable set can be found in strongly polynomial time, by reduction to Theorem
21.9:

Corollary 21.25a. Given a bipartite graph G = (V, E) and b ∈ Z
V
+, a

minimum-size b-edge cover and a maximum b-weight stable set can be found
in strongly polynomial time.

Proof. Since stable sets are exactly the complements of vertex covers, finding
a maximum b-weight stable sets is directly reduced to finding a minimum b-
weight vertex cover. The construction given in the proof of Theorem 21.25
implies that a maximum-size b-matching gives a minimum-size b-edge cover
in polynomial time. So Theorem 21.9 gives the present corollary.

Moreover, for the weighted case:

Theorem 21.26. A minimum-weight capacitated b-edge cover in a bipartite
graph can be found in strongly polynomial time.
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Proof. Directly from Corollary 12.2d, by orienting the edges from one colour
class to the other.

21.12. Upper and lower bounds

We finally consider upper and lower bounds. That is, for a graph G = (V, E)
and a, b ∈ R

V and d, c ∈ R
E , we consider vectors x ∈ R

E satisfying:

(21.39) (i) de ≤ xe ≤ ce for each e ∈ E,
(ii) av ≤ x(δ(v)) ≤ bv for each v ∈ V ,

If integer, x is both a b-matching and an a-edge cover.
The optimization problem can be reduced again to minimum-cost circu-

lation, and hence:

Theorem 21.27. Given w : E → Q, an integer vector x maximizing wTx
over (21.39) can be found in strongly polynomial time.

Proof. This is a special case of Corollary 12.2d, by orienting the edges of G
from one colour class to the other.

Corresponding min-max and polyhedral characterizations directly follow
from LP-duality and the total unimodularity of the incidence matrix of G.
We formulate them for existence and optimum size of solutions of (21.39).

The following was formulated by Kellerer [1964]:

Theorem 21.28. Let G = (V, E) be a bipartite graph and let a, b ∈ Z
V and

d, c ∈ Z
E with a ≤ b and d ≤ c. Then there exists an x ∈ Z

E satisfying
(21.39) if and only if for each X ⊆ V one has

(21.40) c(E[X]) − d(E[V \ X])
≥ max{a(S ∩ X) − b(T \ X), a(T ∩ X) − b(S \ X)},

where S and T are the colour classes of G.

Proof. From Corollary 11.2i, by orienting all edges from S to T and taking
U := (S \ X) ∪ (T ∩ X).

This theorem has several special cases. For d = 0 it implies the following
result due to Fulkerson [1959a] (a generalization of Theorem 16.8):

Corollary 21.28a. Let G = (V, E) be a bipartite graph with colour classes
S and T , let a, b ∈ Z

V
+ with a ≤ b, and let c ∈ Z

E
+. Then there is a vector

x ≤ c that is both a b-matching and an a-edge cover if and only if there exist
y ∈ Z

E
+ and z ∈ Z

E
+ with y ≤ c and z ≤ c, such that

(21.41) y(δ(v)) ≤ bv and z(δ(v)) ≥ av for each v ∈ S and
y(δ(v)) ≥ av and z(δ(v)) ≤ bv for each v ∈ T .
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Proof. Note that (21.40) can be decomposed into two inequalities, one in-
volving a|S and b|T only, the other involving a|T and b|S only39. This gives
the present corollary.

The special case d = 0, c = 1 is:

Corollary 21.28b. Let G = (V, E) be a bipartite graph with colour classes
S and T and let a, b ∈ Z

V
+ with a ≤ b. Then E has a subset F that is both a

b-matching and an a-edge cover if and only if E has subsets F ′ and F ′′ such
that F ′ contains at least av edges covering v if v ∈ S and at most bv edges
covering v if v ∈ T , and F ′′ contains at least av edges covering v if v ∈ T
and at most bv edges covering v if v ∈ S.

Proof. Directly from Corollary 21.28a by taking c = 1.

A min-max relation for such vectors can be derived from Hoffman’s cir-
culation theorem (Theorem 11.2):

Theorem 21.29. Let G = (V, E) be a bipartite graph and let a, b ∈ Z
V

and d, c ∈ Z
E, such that there exists an x ∈ Z

E satisfying (21.39). Then the
minimum size of such a vector x is equal to

(21.42) max
Z⊆V

(a(Z) − c(E[Z)) + d(E[V \ Z]]),

while the maximum size of such a vector x is equal to

(21.43) min
Z⊆V

(c(E[V \ Z]) − d(E[Z]) + b(Z)).

For each integer value τ between (21.42) and (21.43) there exists such a vector
x of size τ .

Proof. Choose τ ∈ Z. Make a directed graph D = (V, A) as follows.
Let S and T be the colour classes of G. Orient each edge of G from S

to T . Add new vertices s and t. For each v ∈ S, make an arc from s to v,
with d(s, v) := av and c(s, v) := bv. For each v ∈ T , make an arc from v to
t, with d(v, t) := av and c(v, t) := bv. Finally, make an arc from t to s with
d(t, s) := c(t, s) := τ .

It suffices to show that D has a circulation x satisfying d ≤ x ≤ c if
and only if τ is between (21.42) and (21.43). We do this by using Hoffman’s
circulation theorem. Choose a subset X of the vertex set of D. Consider
Hoffman’s condition:

(21.44) d(δin(X)) ≤ c(δout(X)).

Since by assumption some vector x satisfying (21.39) exists, (21.44) holds if
s, t ∈ X or s, t �∈ X (as ignoring the bounds on (t, s) there is a circulation).

If s ∈ X and t �∈ X, we have
39 f |X denotes the restriction of a function f to a set X.
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(21.45) d(δin(X)) = τ + d(E[(S \ X) ∪ (T ∩ X)])

and

(21.46) c(δout(X)) = b(S \ X) + c(E[(S ∩ X) ∪ (T \ X)]) + b(T ∩ X).

Hence (21.44) for such X is equivalent to

(21.47) τ ≤ b(Z) + c(E[V \ Z]) − d(E[Z])

for all Z ⊆ V (take Z = (S \ X) ∪ (T ∩ X)). That is, to τ being at most
(21.43).

If t ∈ X and s �∈ X, we have

(21.48) d(δin(X)) = a(S ∩ X) + d(E[(S \ X) ∪ (T ∩ X)]) + a(T \ X)

and

(21.49) c(δout(X)) = τ + c(E[(S ∩ X) ∪ (T \ X)]).

Hence (21.44) for such X is equivalent to

(21.50) τ ≥ a(Z) − c(E[Z]) + d(E[V \ Z])

for all Z ⊆ V (take Z = (S ∩ X) ∪ (T \ X)). That is, to τ being at least
(21.42).

A special case is the following theorem of Folkman and Fulkerson [1969]:

Corollary 21.29a. Let G = (V, E) be a bipartite graph, let a, b ∈ Z
V
+, and

let τ ∈ Z+. Then E has a subset F with av ≤ degF (v) ≤ bv for each v ∈ V
and with |F | = τ if and only if

(21.51) |E[Z]| ≥ max{a(Z) − τ, τ − b(V \ Z), a(S ∩ Z) − b(T \ Z), a(T ∩
Z) − b(S \ Z)}

for each Z ⊆ V , where S and T are the colour classes of G.

Proof. Directly from Theorems 21.28 and 21.29.

21.13. Further results and notes

21.13a. Complexity survey on weighted bipartite b-matching and
transportation

Complexity survey for weighted b-matching in bipartite graphs (∗ indicates an
asymptotically best bound in the table):

O(n4B) Munkres [1957]

O(β · MF(n, m, B)) Ford and Fulkerson [1955,1957b]
�
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continued
O(n2mB) Iri [1960]

∗ O(β · SP+(n, m, W )) Edmonds and Karp [1970]

O(nW · MF(n, m, B)) Edmonds and Karp [1972]

∗ O(m log B · SP+(n, m, W )) Edmonds and Karp [1972]

O(nm log(nB)) Dinits [1973a]

O(n log β · SP+(n, m, W )) Lawler [1976b]

O(n log W · MF(n, m, B)) Röck [1980]

O(m2 log n · MF(n, m, B)) Tardos [1985a]

∗ O(β3/4m log W ) Gabow [1985b]

∗ O(β1/2n1/3m log W ) Gabow [1985b] for simple graphs

O(n2 log n · SP+(n, m, W )) Galil and Tardos [1986,1988]

O(nm log(n2/m) log(nW )) Goldberg and Tarjan [1987,1990]

O(n log n(m + n log n)) Orlin [1988,1993]

∗ O((β1/2m + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1m + n3
1 log(n1W )) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n1m log(2 + n2
1

m
log(n1W ))) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n log n(m + n1 log n1)) Kleinschmidt and Schannath [1995]

Here B := ‖b‖∞, β := ‖b‖1, W := ‖w‖∞ (assumed to be integer), and n1 :=
min{|S|, |T |}, where S and T are the colour classes of the bipartite graph. By
SP+(n, m, W ) we denote the time required for solving a shortest path problem
in a digraph with n vertices, m arcs, and nonnegative integer length function l
with ‖l‖∞ ≤ W . MF(n, m, B) denotes the time required to solve a maximum flow
problem in a digraph with n vertices, m arcs, and integer capacity function c with
‖c‖∞ ≤ B.

Complexity survey for the uncapacitated transportation problem:

O(n4B) Munkres [1957]

O(β · MF(n, n2, B)) Ford and Fulkerson [1955,1957b]

∗ O(n3 log(nB)) Edmonds and Karp [1972], Dinits
[1973a]

O(n4W ) Edmonds and Karp [1972]

∗ O(β3/4n2 log W ) Gabow [1985b]

∗ O(β1/2n7/3 log W ) Gabow [1985b]

O(n4 log n · MF(n, n2, W )) Tardos [1985a]

O(n4 log n) Galil and Tardos [1986,1988]

O(n3 log(nW )) Goldberg and Tarjan [1987,1990]
�
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continued
O(n3 log n) Orlin [1988,1993]

∗ O((β1/2n2 + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1n
2 + n3

1 log(n1W )) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n1n
2 log(2 + n2

1
n2 log(n1W ))) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n2
1n log2 n) Tokuyama and Nakano [1992,1995]

∗ O(n1n
2 log n) Kleinschmidt and Schannath [1995]

Complexity survey for weighted capacitated b-matching in bipartite graphs:

∗ O(n max{B, C} · SP+(n, m, W )) Edmonds and Karp [1970]

O(nW · MF(n, m, max{B, C})) Edmonds and Karp [1972]

∗ O(n log β · SP+(n, m, W )) Lawler [1976b]

O(n log W · MF(n, m, max{B, C})) Röck [1980]

O(m2 log n · MF(n, m, max{B, C})) Tardos [1985a]

O(β3/4mC log W ) Gabow [1985b]

O(β1/2n1/3mC log W ) Gabow [1985b]

O(n2 log n · SP+(n, m, W )) Galil and Tardos [1986,1988]

∗ O(nm log(n2/m) log(nW )) Goldberg and Tarjan [1987,1990]

∗ O(m log n · SP+(n, m, W )) Orlin [1988,1993]

∗ O(β1/2mC log(nW )) Gabow and Tarjan [1988b,1989]

∗ O(n2/3mC4/3 log(nW )) Gabow and Tarjan [1989]

∗ O((β1/2m + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O((nm + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1m + n3
1 log(n1W )) Ahuja, Orlin, Stein, and Tarjan

[1994]

∗ O(n1m log(2 + n2
1

m
log(n1W ))) Ahuja, Orlin, Stein, and Tarjan

[1994]

Here C := ‖c‖∞.
Complexity survey for the capacitated transportation problem:

O(n4W ) Edmonds and Karp [1972]

O(n3 log max{B, C}) Edmonds and Karp [1972]

O(n4 log W ) Röck [1980]

O(n4 log n · MF(n, n2, max{B, C})) Tardos [1985a]

∗ O(n2B) Gabow [1985b]
�
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continued
O(β3/4n2C log W ) Gabow [1985b]

O(β1/2n7/3C log W ) Gabow [1985b]

∗ O(n3 log(nW )) Goldberg and Tarjan [1987,1990]

∗ O(n4 log n) Galil and Tardos [1986,1988],
Orlin [1988,1993]

∗ O(n2β1/2C log(nW )) Gabow and Tarjan [1988b,1989]

∗ O(n8/3C4/3 log(nW )) Gabow and Tarjan [1989]

∗ O((β1/2n2 + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1n
2 + n3

1 log(n1W )) Ahuja, Orlin, Stein, and Tarjan
[1994]

∗ O(n1n
2 log(2 + n2

1
n2 log(n1W ))) Ahuja, Orlin, Stein, and Tarjan

[1994]

Let G = (V, E) be a bipartite graph, with colour classes S and T say. The existence
of a perfect (capacitated) b-matching can be reduced quite directly to the problem
of finding a maximum s − t flow in the digraph obtained from G by adding two
new vertices s and t, orienting each edge from S to T , and adding an arc (s, s′)
for each s′ ∈ S, and adding an arc (t′, t) for each t′ ∈ T . Similarly, a maximum
(capacitated) b-matching can be found.

It implies that if MF(n, m, C) is the running time of a maximum flow algo-
rithm for inputs with n vertices, m arcs, and integer capacity function c with
‖c‖∞ ≤ C, then a maximum-size (capacitated) b-matching can be found in time
O(MF(n, m, C)), for bipartite graphs with n vertices, m edges and b ∈ Z

V satisfying
‖b‖∞ ≤ C (and capacity function c ∈ Z

E satisfying ‖c‖∞ ≤ C).
In some cases, one can obtain better bounds, in particular if one of the colour

classes is considerably smaller than the other. To this end, let n1 := min{|S|, |T |}.
Implementing the shortest augmenting path rule described in Section 10.5, then
gives an O(n1m

2) running time, since a shortest s − t path has length at most
2n1 + 1 = O(n1), implying that the number of iterations is bounded by n1m.

Similarly, the blocking flow method of Dinits [1970] described in Section 10.6 can
be performed in O(n2

1m) time, since the bound in Theorem 10.6 becomes O(n1m),
while there are O(n1) blocking flow iterations. The method of Karzanov [1974] can
be sharpened to O(n2

1n), as was shown by Gusfield, Martel, and Fernández-Baca
[1987]. Ahuja, Orlin, Stein, and Tarjan [1994] gave a method taking the minimum

of O(n1m + n3
1), O(n1m + n2

1
√

m), O(n1m + n2
1
√

log C), and O(n1m log(2 + n2
1

m
))

time.
For the special case where bu = 1 for each u in the smaller colour class, Adel’son-

Vel’skĭı, Dinits, and Karzanov [1975] gave an O(n5/3
1 n) algorithm for finding a b-

factor.
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21.13b. The matchable set polytope

Let G = (V, E) be a graph. A subset X of V is called matchable, if G has a matching
M with

⋃
M = X; that is, if the subgraph G[X] of G induced by X has a perfect

matching.
The matchable set polytope of G is the convex hull of the incidence vectors

of matchable sets. Theorem 21.11 implies a characterization of the matchable set
polytope in case G is bipartite.

For any graph, each vector in the matchable set polytope trivially satisfies:

(21.52) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) x(C) ≤ 1

2x(V ) for each stable set C.

If G is bipartite, this set of inequalities determines the matchable set polytope, a
result of Balas and Pulleyblank [1983]:

Theorem 21.30. If G is bipartite, the matchable set polytope is determined by
(21.52).

Proof. Let x satisfy (21.52). By Theorem 21.11, there exists an x-transportation
y ∈ R

E
+. That is, x = Ay, where A is the V × E incidence matrix of G.

As x satisfies (21.52)(i), y satisfies y ≥ 0, Ay ≤ 1. So, by Corollary 18.1b, y
belongs to the matching polytope of G. So y is a convex combination of vectors
χM , where M ranges over the matchings in G. Then x is a convex combination of
the vectors χS , where S is matchable (that is, the set of vertices covered by some
matching M). This follows from the fact that AχM = χS if M is a matching and
S is the set of vertices covered by M .

So x belongs to the matchable set polytope.

It is easy to check that only for bipartite graphs the matchable set polytope is
determined by (21.52).

Note that for bipartite graphs G = (V, E), by Theorem 21.11, condition
(21.52)(ii) is equivalent to x belonging to the convex cone generated by the in-
cidence vectors (in R

V ) of edges, considered as subsets of V .
Qi [1987] gave an algorithm for the separation problem for the matchable set

polytope of a bipartite graph. For more on the matchable set polytope, see Balas
and Pulleyblank [1983] and Section 25.5d.

21.13c. Existence of matrices

If the bipartite graph is a complete bipartite graph, theorems on the existence of
b-matchings and b-edge covers amount to theorems on the existence of matrices
obeying prescribed bounds on the row and column sums. This gives the following
theorem of Gale [1956,1957] and Ryser [1957]:

Theorem 21.31 (Gale-Ryser theorem). Let a, b ∈ Z
m
+ and a′, b′ ∈ Z

n
+ with a ≤ b

and a′ ≤ b′ and satisfying a1 ≥ a2 ≥ · · · ≥ am and a′
1 ≥ a′

2 ≥ · · · ≥ a′
n. Then there

exists a {0, 1}-valued m×n matrix with ith row sum between ai and bi (i = 1, . . . , m)
and jth column sum between a′

j and b′
j (j = 1, . . . , n) if and only if
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(21.53) (i)
k∑

i=1

ai ≤
n∑

j=1

min{k, b′
j} for all k = 1, . . . , m,

(ii)
k∑

j=1

a′
j ≤

m∑

i=1

min{k, bi} for all k = 1, . . . , n.

Proof. Necessity. Consider any inequality in (21.53)(i). The number of 1’s in rows
1, . . . , k is at least the left-hand side and at most the right-hand side. This proves
necessity of the inequality. Necessity of the inequalities (ii) is shown similarly.

Sufficiency. This follows from Theorem 21.28 applied to the complete bipartite
graph G = Km,n. Then we must show that for each I ⊆ {1, . . . , m} and J ⊆
{1, . . . , n} one has:

(21.54) |I| · |J | ≥ max{a(I) − b′(J), a′(J) − b(I)},

where I := {1, . . . , m} \ I and J := {1, . . . , n} \ J . By symmetry, it suffices to show

(21.55) |I| · |J | ≥ a(I) − b′(J).

This follows from (21.53)(i), since

(21.56) a(I) ≤
|I|
∑

i=1

≤
n∑

j=1

min{|I|, b′
j} ≤ |J | · |I| + b′(J)

for any J ⊆ {1, . . . , n}.

(Gale [1956,1957] proved this theorem for a = 0 and b′ = ∞, and Ryser [1957] for
a = b and a′ = b′.)

Corollary 21.28a due to Fulkerson [1959a], is equivalent to the following result
extending the Gale-Ryser theorem:

Theorem 21.32. Let (ci,j) be a nonnegative m × n matrix and let a, b ∈ Z
m
+ and

a′, b′ ∈ Z
n
+ with a ≤ b and a′ ≤ b′. Then there exists an integer m × n matrix (xi,j)

satisfying

(21.57) (i) 0 ≤ xi,j ≤ ci,j for all i = 1, . . . , m and j = 1, . . . , n,

(ii) ai ≤
n∑

j=1

xi,j ≤ bi for all i = 1, . . . , m,

(iii) a′
j ≤

m∑

i=1

xi,j ≤ b′
j for all j = 1, . . . , n,

if and only if there exist an m × n matrix (x′
i,j) satisfying

(21.58) (i) 0 ≤ x′
i,j ≤ ci,j for all i = 1, . . . , m and j = 1, . . . , n,

(ii)
n∑

j=1

x′
i,j ≤ bi for all i = 1, . . . , m,

(iii) a′
j ≤

m∑

i=1

x′
i,j for all j = 1, . . . , n,

and an m × n matrix (x′′
i,j) satisfying
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(21.59) (i) 0 ≤ x′′
i,j ≤ ci,j for all i = 1, . . . , m and j = 1, . . . , n,

(ii) ai ≤
n∑

j=1

x′′
i,j for all i = 1, . . . , m,

(iii)
m∑

i=1

x′′
i,j ≤ b′

j for all j = 1, . . . , n.

Proof. This is equivalent to Corollary 21.28a.

21.13d. Further notes

Corollary 11.2c implies the following result of Hoffman [1956a]. Let G = (V, E) be
a bipartite graph and let 0 < α < 1. Then E has a subset F such that

(21.60) �degE(v)
α

� ≤ degF (v) ≤ 
degE(v)
α

�
for each vertex v.

Ikura and Nemhauser [1982] gave a strongly polynomial-time primal simplex al-
gorithm for the maximum-weight stable set problem in bipartite graphs (the number
of pivot steps is at most n2; the method corresponds to a strongly polynomial-time
dual simplex algorithm for the minimum-size b-edge cover problem, which is a spe-
cial case of a minimum-flow problem). (An improvement was given by Armstrong
and Jin [1996].) An interior-point method was described by Mizuno and Masuzawa
[1989]. For more on capacitated b-matchings (in terms of matrices), see Anstee
[1983].

We refer for further notes on algorithmic aspects of the transportation problem
to Section 12.5d on the equivalent transshipment problem.

Heller [1963,1964] gave necessary and sufficient conditions for a linear program
to be equivalent to a transportation problem. Katerinis [1987] and Enomoto, Ota,
and Kano [1988] gave sufficient conditions for bipartite graphs to have a k-factor.

Goodman, Hedetniemi, and Tarjan [1976] gave a linear-time algorithm finding
a maximum-weight simple b-matching in a tree.

Faster algorithms for transportation problems where the cost satisfies a quad-
rangle inequality where given by Karp and Li [1975] and Aggarwal, Bar-Noy,
Khuller, Kravets, and Schieber [1995].

Variants of the transportation problem (minimax, bottleneck) were investigated
by Szwarc [1966,1971], Hammer [1969,1971], Garfinkel and Rao [1971], Srinivasan
and Thompson [1972a,1972b,1976], Derigs and Zimmermann [1979], Derigs [1982],
Russell, Klingman, and Partow-Navid [1983], and Ahuja [1986]. Prager [1957b] and
Kellerer [1961] gave a generalization.

Prager [1955] gave an extension to quadratic cost functions, i.e. given b ∈ R
m,

d ∈ R
n, and ci,j ≥ 0, qi,j ≥ 0 (i = 1, . . . , m; j = 1, . . . , n):

(21.61) minimize
m∑

i=1

n∑

j=1

(ci,jxi,j + qi,jx
2
i,j),

subject to
n∑

j=1

xi,j = bi for i = 1, . . . , m,

m∑

i=1

xi,j = dj for j = 1, . . . , n,

xi,j ≥ 0 for i = 1, . . . , m; j = 1, . . . , n.
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Among the books surveying transportation are Ford and Fulkerson [1962],
Dantzig [1963], Murty [1976,1983], Bazaraa and Jarvis [1977], Papadimitriou and
Steiglitz [1982], Gondran and Minoux [1984], Derigs [1988a], Nemhauser and Wolsey
[1988], and Bazaraa, Jarvis, and Sherali [1990].

21.13e. Historical notes on the transportation and transshipment
problems

Transportation can be considered as the special case of transshipment where all arcs
are oriented from a source to a sink. By the techniques described in Section 21.6a,
transshipment problems can be reduced conversely to transportation problems. This
makes the history of the two problems intertwined. We should notice also that
the transshipment problems studied by Kantorovich and Koopmans were in fact
transportation problems, due to the fact that their cost functions are metrics.

Tolstŏı

The first to study the transportation problem mathematically seems to be A.N.
Tolstŏı. In the collection Transportation Planning, Volume I of the National Com-
missariat of Transportation of the Soviet Union, Tolstŏı [1930] published an arti-
cle called Methods of finding the minimal total kilometrage in cargo-transportation
planning in space. In it, Tolstŏı described a number of approaches to solve the
transportation problem, illuminated by applications to the transportation of salt,
cement, and other cargo between sources and destination points along the railway
network of the Soviet Union. He seems to be the first to give a negative cycle
criterion for optimality. Moreover, a for that time large-scale instance of the trans-
portation problem was solved to optimality.

First, Tolstŏı considered the problem for the case where there are two sources.
He observed that in that case one can order the destination points by the difference
between the distances to the two sources. In that case, one source can provide
the destinations starting from the beginning of the list, until the supply of that
source has been used up. The other source supplies the remaining demands. Tolstŏı
observed that the list is independent of the supplies and demands, and hence

such table is applicable for the whole life-time of factories, or sources of produc-
tion.
Using this table, one can immediately compose an optimal transportation plan ev-
ery year, given quantities of output produced by these two factories and demands
of the destination points.

Next, Tolstŏı studied the transportation problem for the case where all sources
and destinations are along one circular railway line. In this case, considering the neg-
ative cycle criterion yields directly the optimum solution. He calls this phenomenon
‘circle dependency’.

Finally, Tolstŏı combined the two methods into a heuristic to solve a concrete
transportation problem coming from cargo transportation along the Soviet railway
network. The problem has 10 sources and 68 sinks, and 155 links between sources
and sinks (all other distances are taken infinite):
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demand:

Agryz 709 1064 693 2
Aleksandrov 397 1180 4
Almaznaya 81 65 1.5
Alchevskaya 106 114 4
Baku 1554 1563 10
Barybino 985 968 2
Berendeevo 135 430 10
Bilimbai 200 59 1
Bobrinskaya 655 663 10
Bologoe 389 1398 1
Verkhov’e 678 661 1
Volovo 757 740 3
Vologda 634 1236 2
Voskresensk 427 1022 1005 1
V.Volochek 434 1353 1343 5
Galich 815 224 1056 0.5
Goroblagodatskaya 434 196 0.5
Zhlobin 882 890 8
Zverevo 227 235 5
Ivanovo 259 6
Inza 380 735 1272 2
Kagan 2445 2379 0.5
Kasimov 0 1
Kinel’ 752 1208 454 1447 2
Kovylkino 355 1213 2
Kyshtym 421 159 3
Leningrad 1237 709 1667 1675 55
Likino 223 328 15
Liski 443 426 1
Lyuberdzhy 268 411 1074 1
Magnitogorskaya 932 678 818 1
Mauk 398 136 5
Moskva 288 378 405 1030 1022 141
Navashino 12 78 2
Nizhegol’ 333 316 1
Nerekhta 50 349 5
Nechaevskaya 92 0.5
N.-Novgorod 32 25
Omsk 1159 904 1746 5
Orenburg 76 1.5
Penza 411 1040 883 1023 7
Perm’ 1749 121 1
Petrozavodsk 1394 1
Poltoradzhk 1739 3085 1748 4
Pskov 1497 1505 10
Rostov/Don 287 296 20
Rostov/Yarosl 56 454 2
Rtishchevo 880 863 1
Savelovo 325 1206 1196 5
Samara 711 495 1406 7
San-Donato 416 157 1
Saratov 1072 1055 15
Sasovo 504 1096 1079 1
Slavyanoserbsk 119 115 1.1
Sonkovo 193 1337 0.5
Stalingrad 624 607 15.4
St.Russa 558 1507 1515 5
Tambov 783 766 4
Tashkent 3051 1775 3
Tula 840 848 8
Tyumen’ 584 329 6
Khar’kov 251 259 60
Chelyabinsk 511 257 949 2
Chishmy 1123 773 889 0.5
Shchigry 566 549 4
Yudino 403 757 999 0.5
Yama 44 52 5
Yasinovataya 85 93 6

supply: 5 11.5 8.5 12 100 12 15 314 10 55 543

Table of distances (in kilometers) between sources and destinations, and of
supplies and demands (in kilotons).
Tolstŏı gave no distance for Kasimov. We have inserted a distance 0 to Murom,
since from Tolstŏı’s solution it appears that Kasimov is connected only to
Murom (by a waterway). Hence the distance is irrelevant.
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Tolstŏı’s heuristic also makes use of insight into the geography of the Soviet
Union. He goes along all sources (starting with the most remote source), where, for
each source X, he lists those sinks for which X is the closest source or the second
closest source. Based on the difference of the distances to the closest and second
closest sources, he assigns cargo from X to the sinks, until the supply of X has
been used up. In case Tolstŏı foresees circle dependency, he deviates from this rule
to avoid that a negative-length circuit would arise. No backtracking occurs.

Figure 21.1
Figure from Tolstŏı [1930] to illustrate a negative cycle.

In the following quotation, Tolstŏı considers the cycles Dzerzhinsk-Rostov-
Yaroslavl’-Leningrad-Artemovsk-Moscow-Dzerzhinsk and Dzerzhinsk-Nerekhta-Ya-
roslavl’-Leningrad-Artemovsk-Moscow-Dzerzhinsk. It is the sixth step in his meth-
od, after the transports from the factories in Iletsk, Sverdlovsk, Kishert’, Bal-
akhonikha, and Murom have been set:

6. The Dzerzhinsk factory produces 100,000 tons. It can forward its production
only in the Northeastern direction, where it sets its boundaries in interdependency
with the Yaroslavl’ and Artemovsk (or Dekonskaya) factories.

From Dzerzhinsk From Yaroslavl’
Difference
to Dzerzhinsk

Berendeevo 430 km 135 km −295 km
Nerekhta 349 ,, 50 ,, −299 ,,
Rostov 454 ,, 56 ,, −398 ,,

From Dzerzhinsk From Artemovsk
Difference
to Dzerzhinsk

Aleksandrov 397 km 1,180 km +783 km
Moscow 405 ,, 1,030 ,, +625 ,,

The method of differences does not help to determine the boundary between the
Dzerzhinsk and Yaroslavl’ factories. Only the circle dependency, specified to be
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an interdependency between the Dzerzhinsk, Yaroslavl’ and Artemovsk factories,
enables us to exactly determine how far the production of the Dzerzhinsk factory
should be advanced in the Yaroslavl’ direction.
Suppose we attach point Rostov to the Dzerzhinsk factory; then, by the circle
dependency, we get:

Dzerzhinsk-Rostov 454 km −398 km Nerekhta 349 km −299 km
Yaroslavl’- ,, 56 ,, ,, 50 ,,
Yaroslavl’-Leningrad 709 ,, +958 ,, These points remain
Artemovsk- ,, 1,667 ,, unchanged because only the
Artemovsk-Moscow 1,030 ,, −625 ,, quantity of production sent
Dzerzhinsk- ,, 405 ,, by each factory changes

Total −65 km +34 km

Therefore, the attachment of Rostov to the Dzerzhinsk factory causes over-run in
65 km, and only Nerekhta gives a positive sum of differences and hence it is the
last point supplied by the Dzerzhinsk factory in this direction.
As a result, the following points are attached to the Dzerzhinsk factory:

N. Novgorod 25,000 tons
Ivanova 6,000 ,,
Nerekhta 5,000 ,,
Aleksandrov 4,000 ,,
Berendeevo 10,000 ,,
Likino 15,000 ,,
Moscow 35,000 ,, (remainder of factory’s production)

Total 100,000 tons

After 10 steps, when the transports from all 10 factories have been set, Tolstŏı
‘verifies’ the solution by considering a number of cycles in the network, and he
concludes that his solution is optimum:

Thus, by use of successive applications of the method of differences, followed by
a verification of the results by the circle dependency, we managed to compose the
transportation plan which results in the minimum total kilometrage.

The objective value of Tolstŏı’s solution is 395,052 kiloton-kilometers. Solving the
problem with modern linear programming tools (CPLEX) shows that Tolstŏı’s so-
lution indeed is optimum. But it is unclear how sure Tolstŏı could have been about
his claim that his solution is optimum. Geographical insight probably has helped
him in growing convinced of the optimality of his solution. On the other hand, it
can be checked that there exist feasible solutions that have none of the negative-cost
cycles considered by Tolstŏı in their residual graph, but that are yet not optimum40.

In the September 1939 issue of Sotsialisticheskĭı Transport, Tolstŏı [1939] pub-
lished an article Methods of removing irrational transportations in planning, in
which he again described his method of ‘circle dependency’, and applied it to the
planning of driving empty cars and transporting heavy cargoes on the U.S.S.R. rail-
way network. In this paper, Tolstŏı restricted himself to sources and sinks arranged
along a circular railway line, for which he gave his ‘circle dependency’ method:

40 The maximum objective value of a feasible solution, whose residual graph contains no
nonnegative-cost cycle of length 4, and none of the seven longer nonnegative-length
cycles considered by Tolstŏı (of lengths 6 and 8), is equal to 397,226.
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Before counting distances from cargo-senders to points of destination which form
a circle dependency, it is necessary to attach points of destination to cargo-senders
with complete distribution of waggons. In case of circle dependency determined
by geographical location it can be done without special calculations. Then, by
calculation of km in circle dependency, the initial attachment can be verified and
if not correct, then it can be improved.

Tolstŏı illustrated the method by the circuit Smolensk - Vitebsk - Velikiye-Luki
- Zemtsy - Rzhev - Vyazma - Smolensk of the U.S.S.R. network. A negative-length
directed circuit in the auxiliary directed graph gives an improvement, as in the
following Table given by Tolstŏı [1939]:

Source of cargoes Amount Difference Amount
km of distance of carriages

Vyazma-Smolensk 176 −37 4 − 3 = 1
Vitebsk ,, 139 0 + 3 = 4
Vitebsk-V. Luki 156 −37 3 − 3 = 0
Zemtsy ,, 119 2 + 3 = 5
Zemtsy-Rzhev 123 +7 5 − 3 = 2
Vyazma ,, 130 1 + 3 = 4

Altogether . . . −67

Tolstŏı then remarked:

The negative total difference shows that the distribution was wrong and that there
is an over-run of 67 km for every waggon which goes from upper cargo-senders.

According to Kantorovich [1987], there were some attempts to introduce Tol-
stŏı’s work by the appropriate department of the People’s Commissariat of Trans-
port. Tolstŏı’s method was also explained in the book Planning Goods Transporta-
tion by Parĭıskaya, Tolstŏı, and Mots [1947].

Kantorovich

Apparently unaware (by that time) of the work of Tolstŏı, L.V. Kantorovich studied
a general class of problems, that includes the transportation problem. It formed a
major impulse to the study of linear programming. In his memoirs, Kantorovich
[1987] writes:

Once some engineers from the veneer trust laboratory came to me for consul-
tation with a quite skilful presentation of their problems. Different productivity
is obtained for veneer-cutting machines for different types of materials; linked
to this the output of production of this group of machines depended, it would
seem, on the chance factor of which group of raw materials to which machine was
assigned. How could this fact be used rationally?
This question interested me, but nevertheless appeared to be quite particular
and elementary, so I did not begin to study it by giving up everything else. I
put this question for discussion at a meeting of the mathematics department,
where there were such great specialists as Gyunter, Smirnov himself, Kuz’min,
and Tartakovskii. Everyone listened but no one proposed a solution; they had
already turned to someone earlier in individual order, apparently to Kuz’min.
However, this question nevertheless kept me in suspense. This was the year of my
marriage, so I was also distracted by this. In the summer or after the vacation
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concrete, to some extent similar, economic, engineering, and managerial situations
started to come into my head, that also required the solving of a maximization
problem in the presence of a series of linear constraints.
In the simplest case of one or two variables such problems are easily solved—by
going through all the possible extreme points and choosing the best. But, let
us say in the veneer trust problem for five machines and eight types of materials
such a search would already have required solving about a billion systems of linear
equations and it was evident that this was not a realistic method. I constructed
particular devices and was probably the first to report on this problem in 1938 at
the October scientific session of the Herzen Institute, where in the main a number
of problems were posed with some ideas for their solution.
The universality of this class of problems, in conjunction with their difficulty,
made me study them seriously and bring in my mathematical knowledge, in par-
ticular, some ideas from functional analysis.

In a footnote, Kantorovich’s son V.L. Kantorovich adds:
In L.V. Kantorovich’s archives a manuscript from 1938 is preserved on “Some
mathematical problems of the economics of industry, agriculture, and transport”
that in content, apparently, corresponds to this report and where, in essence, the
simplex method for the machine problem is described.

L.V. Kantorovich recalled that he created in January 1939 ‘a method of Lagrange
(resolving) multipliers’.

What became clear was both the solubility of these problems and the fact that
they were widespread, so representatives of industry were invited to a discussion
of my report at the university.

This meeting took place on 13 May 1939 at the Mathematical Section of the In-
stitute of Mathematics and Mechanics of the Leningrad State University. A second
meeting, which was devoted specifically to problems connected with construction,
was held on 26 May 1939 at the Leningrad Institute for Engineers of Industrial
Construction. These meetings provided the basis of the monograph Mathematical
Methods in the Organization and Planning of Production (Kantorovich [1939]).

According to the Foreword by A.R. Marchenko to this monograph, Kan-
torovich’s work was highly praised by mathematicians, and, in addition, at the
special meeting industrial workers unanimously evinced great interest in the work.

The relevance was described by Kantorovich as follows:
I want to emphasize again that the greater part of the problems of which I shall
speak, relating to the organization and planning of production, are connected
specifically with the Soviet system of economy and in the majority of cases do
not arise in the economy of a capitalist society. There the choice of output is
determined not by the plan but by the interests and profits of individual capi-
talists. The owner of the enterprise chooses for production those goods which at
a given moment have the highest price, can most easily be sold, and therefore
give the largest profit. The raw material used is not that of which there are huge
supplies in the country, but that which the entrepreneur can buy most cheaply.
The question of the maximum utilization of equipment is not raised; in any case,
the majority of enterprises work at half capacity.
In the USSR the situation is different. Everything is subordinated not to the
interests and advantage of the individual enterprise, but to the task of fulfilling
the state plan. The basic task of an enterprise is the fulfillment and overfulfillment
of its plan, which is a part of the general state plan. Moreover, this not only means
fulfillment of the plan in aggregate terms (i.e. total value of output, total tonnage,
and so on), but the certain fulfillment of the plan for all kinds of output; that is,
the fulfillment of the assortment plan (the fulfillment of the plan for each kind of
output, the completeness of individual items of output, and so on).
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In the monograph, Kantorovich outlined a new method to maximize a linear func-
tion under given linear constraints. One of the problems studied was a rudimentary
form of a transportation problem:

(21.62) given: an m × n matrix (ai,j);
find: an m × n matrix (xi,j) such that:

(i) xi,j ≥ 0 for all i, j;

(ii)
m∑

i=1

xi,j = 1 for each j = 1, . . . , n;

(iii)
n∑

j=1

ai,jxi,j is independent of i and is maximized.

Another problem studied by Kantorovich was ‘Problem C’ which can be stated as
follows:

(21.63) maximize λ

subject to
m∑

i=1

xi,j = 1 (j = 1, . . . , n)

m∑

i=1

n∑

j=1

ai,j,kxi,j = λ (k = 1, . . . , t)

xi,j ≥ 0 (i = 1, . . . , m; j = 1, . . . , n).

The interpretation is: let there be n machines, which can do m jobs. Let there be
one final product consisting of t parts. When machine i does job j, ai,j,k units of
part k are produced (k = 1, . . . , t). Now xi,j is the fraction of time machine i does
job j. The number λ is the amount of the final product produced. ‘Problem C’
was later seen (by H.E. Scarf, upon a suggestion by Kantorovich — see Koopmans
[1959]) to be equivalent to the general linear programming problem.

Kantorovich’s method consists of determining dual variables (‘resolving multi-
pliers’) and finding the corresponding primal solution. If the primal solution is not
feasible, the dual solution is modified following prescribed rules. Kantorovich also
indicated the role of the dual variables in sensitivity analysis, and he showed that
a feasible primal solution for Problem C can be shown to be optimal by specifying
optimal dual variables.

Kantorovich gave a wealth of practical applications of his methods, which he
based mainly in the Soviet plan economy:

Here are included, for instance, such questions as the distribution of work among
individual machines of the enterprise or among mechanisms, the correct distribu-
tion of orders among enterprises, the correct distribution of different kinds of raw
materials, fuel, and other factors. Both are clearly mentioned in the resolutions
of the 18th Party Congress.

He described the applications to transportation:

Let us first examine the following question. A number of freights (oil, grain,
machines and so on) can be transported from one point to another by various
methods; by railroads, by steamship; there can be mixed methods, in part by
railroad, in part by automobile transportation, and so on. Moreover, depending
on the kind of freight, the method of loading, the suitability of the transportation,
and the efficiency of the different kinds of transportation is different. For example,
it is particularly advantageous to carry oil by water transportation if oil tankers
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are available, and so on. The solution of the problem of the distribution of a given
freight flow over kinds of transportation, in order to complete the haulage plan
in the shortest time, or within a given period with the least expenditure of fuel,
is possible by our methods and leads to Problems A or C.
Let us mention still another problem of different character which, although it does
not lead directly to questions A, B, and C, can still be solved by our methods.
That is the choice of transportation routes.

B

A C
E

D

Let there be several points A, B, C, D, E (Fig. 1) which are connected to one
another by a railroad network. It is possible to make the shipments from B to
D by the shortest route BED, but it is also possible to use other routes as well:
namely, BCD, BAD. Let there also be given a schedule of freight shipments; that
is, it is necessary to ship from A to B a certain number of carloads, from D to
C a certain number, and so on. The problem consists of the following. There is
given a maximum capacity for each route under the given conditions (it can of
course change under new methods of operation in transportation). It is necessary
to distribute the freight flows among the different routes in such a way as to
complete the necessary shipments with a minimum expenditure of fuel, under the
condition of minimizing the empty runs of freight cars and taking account of the
maximum capacity of the routes. As was already shown, this problem can also be
solved by our methods.

Kantorovich [1987] wrote in his memoirs:
The university immediately published my pamphlet, and it was sent to fifty Peo-
ple’s Commissariats. It was distributed only in the Soviet Union, since in the days
just before the start of the World War it came out in an edition of one thousand
copies in all.
The number of responses was not very large. There was quite an interesting
reference from the People’s Commissariat of Transportation in which some opti-
mization problems directed at decreasing the mileage of wagons was considered,
and a good review of the pamphlet appeared in the journal The Timber Industry.
At the beginning of 1940 I published a purely mathematical version of this work in
Doklady Akad. Nauk [76], expressed in terms of functional analysis and algebra.
However, I did not even put in it a reference to my published pamphlet—taking
into account the circumstances I did not want my practical work to be used
outside the country.

In the spring of 1939 I gave some more reports—at the Polytechnic Institute
and the House of Scientists, but several times met with the objection that the
work used mathematical methods, and in the West the mathematical school in
economics was an anti-Marxist school and mathematics in economics was a means
for apologists of capitalism. This forced me when writing a pamphlet to avoid
the term “economic” as much as possible and talk about the organization and
planning of production; the role and meaning of the Lagrange multipliers had
to be given somewhere in the outskirts of the second appendix and in the semi
Aesopian language.
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(Here reference [76] is Kantorovich [1940].) Kantorovich mentioned that the new
area opened by his work played a definite role in forming the Leningrad Branch of
the Mathematical Institute (LOMI), where he worked with M.K. Gavurin on this
area. The problem that they studied occurred to them by itself, but they soon found
out that railway workers were already studying the problem of planning haulage on
railways, applied to questions of driving empty cars and transport of heavy cargoes.

Kantorovich and Gavurin wrote their method (the method of ‘potentials’) in
a paper Application of mathematical methods in questions of analysis of freight
traffic (Kantorovich and Gavurin [1949]), which was presented in January 1941 to
the mathematics section of the Leningrad House of Scientists, but according to
Kantorovich [1987]:

The publication of this paper met with many difficulties. It had already been
submitted to the journal Railway Transport in 1940, but because of the dread of
mathematics already mentioned it was not printed then either in this or in any
other journal, despite the support of Academicians A.N. Kolmogorov and V.N.
Obraztsov, a well-known transport specialist and first-rank railway General.

Kantorovich [1987] said that he fortunately made an abstract version of the prob-
lem, Kantorovich [1942], in which he considered the following generalization of the
transportation problem.

Let R be a compact metric space, with two measures µ and µ′. Let B be the
collection of measurable sets in R. A translocation (of masses) is a function Ψ :
B × B → R+ such that for each X ∈ B the functions Ψ(X, .) and Ψ(., X) are
measures and such that

(21.64) Ψ(X, R) = µ(X) and Ψ(R, X) = µ′(X)

for each X ∈ B.
Let a continuous function r : R × R → R+ be given. (The value r(x, y) rep-

resents the work needed to transfer a unit mass from x to y.) Then the work of a
translocation Ψ is by definition:

(21.65)
∫

R

∫

R

r(x, y)Ψ(dµ, dµ′).

Kantorovich argued that, if there exists a translocation, then there exists a minimal
translocation, that is, a translocation Ψ minimizing (21.65).

He calls a translocation Ψ potential if there exists a function p : R → R such
that for all x, y ∈ R:

(21.66) (i) |p(x) − p(y)| ≤ r(x, y);
(ii) p(y) − p(x) = r(x, y) if Ψ(Ux, Uy) > 0 for any neighbourhoods Ux

of x and Uy of y.

Kantorovich showed:

Theorem 21.33. A translocation Ψ is minimal if and only if it is potential.

This framework applies to the transportation problem (when m = n), by taking for
R the space {1, . . . , n}, with the discrete topology.

Kantorovich’s proof of Theorem 21.33 is by a construction of a potential, that
however only is correct if r satisfies the triangle inequality. Kantorovich remarked
that his method is algorithmic:
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The theorem just demonstrated makes it easy for one to prove that a given mass
translocation is or is not minimal. He has only to try and construct the potential
in the way outlined above. If this construction turns out to be impossible, i.e. the
given translocation is not minimal, he at least will find himself in the possession
of the method how to lower the translocation work and eventually come to the
minimal translocation.

Beside to a problem of leveling a land area, Kantorovich gave as application:

Problem 1. Location of consumption stations with respect to production stations.
Stations A1, A2, · · · , Am, attached to a network of railways deliver goods to an
extent of a1, a2, · · · , am carriages per day respectively. These goods are consumed
at stations B1, B2, · · · , Bn of the same network at a rate of b1, b2, · · · , bn carriages
per day respectively (

∑
ai =

∑
bk). Given the costs ri,k involved in moving

one carriage from station Ai to station Bk, assign the consumption stations such
places with respect to the production stations as would reduce the total transport
expenses to a minimum.

As mentioned, Kantorovich’s results remained unnoticed for some time by West-
ern researchers. In a note introducing a reprint of the article of Kantorovich [1942],
in Management Science in 1958, the following reassurance is given:

It is to be noted, however, that the problem of determining an effective method
of actually acquiring the solution to a specific problem is not solved in this paper.
In the category of development of such methods we seem to be, currently, ahead
of the Russians.

Kantorovich’s method was elaborated by Kantorovich and Gavurin [1949],
where moreover single- and multicommodity transportation models are studied,
with applications to the railway network of the U.S.S.R.

Hitchcock

Independently, Hitchcock [1941] studied the transportation problem:

(21.67) given: an m × n matrix C = (ci,j) and vectors a ∈ R
m and b ∈ R

n;
find: an m × n matrix X = (xi,j) such that:

(i) xi,j ≥ 0 for all i, j;

(ii)
n∑

j=1

xi,j = ai for each i = 1, . . . , m;

(iii)
m∑

i=1

xi,j = bj for each j = 1, . . . , n;

(iv)
m∑

i=1

n∑

j=1

ci,jxi,j is as small as possible.

The interpretation of the problem is, in Hitchcock’s words:

When several factories supply a product to a number of cities we desire the least
costly manner of distribution. Due to freight rates and other matters the cost of
a ton of product to a particular city will vary according to which factory supplies
it, and will also vary from city to city.
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Hitchcock showed that the minimum is attained at a vertex of the feasible region,
and he outlined a scheme for solving the transportation problem which has much
in common with the simplex method for linear programming. It includes pivoting
(eliminating and introducing basic variables) and the fact that nonnegativity of
certain dual variables implies optimality. He showed that the complementary slack-
ness conditions characterize optimality: (x∗

i,j) is an optimum vertex if and only if
there exists a combination

∑

i,j λi,jxi,j of the left-hand sides of the constraints (ii)
and (iii) such that λi,j ≥ ci,j for all i, j and such that λi,j = ci,j if x∗

i,j > 0.
Hitchcock however seemed to have overlooked the possibility of cycling of his

method, although he pointed at an example in which some dual variables are neg-
ative while yet the primal solution is optimum.

Hitchcock also gave a method to find an initial basic solution, now known as
the north-west rule: set x1,1 := min{a1, b1}; if the minimum is attained by a1, reset
b1 := b1 − a1 and recursively find a basic solution xi,j satisfying

∑n
j=1 xi,j = ai

for each i = 2, . . . , m and
∑m

i=2 xi,j = bj for each j = 1, . . . , n; if the minimum
is attained by b1, proceed symmetrically. (The north-west rule was also described
by Salvemini [1939] and Fréchet [1951] in a statistical context, namely in order to
complete correlation tables given the marginal distributions.)

Koopmans

Also independently, Koopmans investigated transportation problems. In March
1942, Koopmans was appointed as a statistician on the staff of the British Merchant
Shipping Mission, and later the Combined Shipping Adjustment Board (CSAB),
a British-American agency dealing with merchant shipping problems during the
Second World War (as they should go in convoys, under military protection). Influ-
enced by his teacher J. Tinbergen (cf. Tinbergen [1934]) he was interested in tanker
freights and capacities (cf. Koopmans [1939]). According to Koopmans’ personal
diary, in August 1942 while the Board was being organized, there was not much
work for the statisticians,

and I had a fairly good time working out exchange ratio’s between cargoes for
various routes, figuring how much could be carried monthly from one route if
monthly shipments on another route were reduced by one unit.

At the Board he studied the assignment of ships to convoys so as to accomplish pre-
scribed deliveries, while minimizing empty voyages (cf. Dorfman [1984]). According
to the memoirs of his wife (Wanningen Koopmans [1995]), when Koopmans was
with the Board,

he had been appalled by the way the ships were routed. There was a lot of
redundancy, no intensive planning. Often a ship returned home in ballast, when
with a little effort it could have been rerouted to pick up a load elsewhere.

In his autobiography (published posthumously), Koopmans [1992] described how
he came to the problem:

My direct assignment was to help fit information about losses, deliveries from
new construction, and employment of British-controlled and U.S-controlled ships
into a unified statement. Even in this humble role I learned a great deal about
the difficulties of organizing a large-scale effort under dual control—or rather in
this case four-way control, military and civilian cutting across U.S. and U.K.
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controls. I did my study of optimal routing and the associated shadow costs of
transportation on the various routes, expressed in ship days, in August 1942 when
an impending redrawing of the lines of administrative control left me temporarily
without urgent duties. My memorandum, cited below, was well received in a
meeting of the Combined Shipping Adjustment Board (that I did not attend)
as an explanation of the “paradoxes of shipping” which were always difficult to
explain to higher authority. However, I have no knowledge of any systematic use
of my ideas in the combined U.K.-U.S. shipping problems thereafter.

In the memorandum to the Board, Koopmans [1942] analyzed the sensitivity of
the optimum shipments for small changes in the demands. In this memorandum,
Koopmans did not give a method to find an optimum shipment. Further study
led him to a ‘local search’ method for the transportation problem, stating that
it leads to an optimum solution. According to Dorfman [1984], Koopmans found
these results in 1943, but, due to wartime restrictions, published them only after
the war (Koopmans [1948], Koopmans and Reiter [1949a,1949b,1951]). Koopmans
[1948] wrote:

Let us now for the purpose of argument (since no figures of war experience are
available) assume that one particular organization is charged with carrying out a
world dry-cargo transportation program corresponding to the actual cargo flows
of 1925. How would that organization solve the problem of moving the empty
ships economically from where they become available to where they are needed?
It seems appropriate to apply a procedure of trial and error whereby one draws
tentative lines on the map that link up the surplus areas with the deficit areas,
trying to lay out flows of empty ships along these lines in such a way that a
minimum of shipping is at any time tied up in empty movements.

The ‘trial and error’ method mentioned is one of local improvements, corresponding
to finding a negative-cost directed circuit in the residual digraph. Koopmans’ first
theorem is that it leads to an optimum solution:

If, under the assumptions that have been stated, no improvement in the use of
shipping is possible by small variations such as have been illustrated, then there
is no—however thoroughgoing—rearrangement in the routing of empty ships that
can achieve a greater economy of tonnage.

He illustrated the method by giving an optimum solution for a 3×12 transportation
problem, with the following supplies and demands:

Net receipt of dry cargo in overseas trade, 1925
Unit: Millions of metric tons per annum

Harbour Received Dispatched Net receipts
New York 23.5 32.7 −9.2
San Francisco 7.2 9.7 −2.5
St. Thomas 10.3 11.5 −1.2
Buenos Aires 7.0 9.6 −2.6
Antofagasta 1.4 4.6 −3.2
Rotterdam 126.4 130.5 − 4.1
Lisbon 37.5 17.0 20.5
Athens 28.3 14.4 13.9
Odessa 0.5 4.7 −4.2
Lagos 2.0 2.4 −0.4
Durban 2.1 4.3 −2.2
Bombay 5.0 8.9 −3.9
Singapore 3.6 6.8 −3.2
Yokohama 9.2 3.0 6.2
Sydney 2.8 6.7 −3.9
Total 266.8 266.8 0.0
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Koopmans [1948] moreover claimed that there exist potentials p1, . . . , pn and
q1, . . . , qm such that ci,j ≥ pi − qj for all i, j and such that ci,j = pi − qj for each
i, j for which xi,j > 0.

The potentials give the marginal costs when modifying the input data. That is,
if both ai and bj increase by 1, then the minimum cost increases by at least pi − qj .
This is Koopmans’ second theorem.

In the proof, Koopmans assumed that the cost function is symmetric and sat-
isfies the triangle inequality. Moreover, he assumed that the graph of arcs having
a positive transshipment value is weakly connected. The latter restriction was re-
moved in a later paper by Koopmans and Reiter [1951]. In this paper, they inves-
tigated the economic implications of the model and the method:

For the sake of definiteness we shall speak in terms of the transportation of car-
goes on ocean-going ships. In considering only shipping we do not lose generality
of application since ships may be “translated” into trucks, aircraft, or, in first
approximation, trains, and ports into the various sorts of terminals. Such transla-
tion is possible because all the above examples involve particular types of movable
transportation equipment.

They use the graph model, and in a footnote they remark:

The cultural lag of economic thought in the application of mathematical methods
is strikingly illustrated by the fact that linear graphs are making their entrance
into transportation theory just about a century after they were first studied in
relation to electrical networks, although organized transportation systems are
much older than the study of electricity.

(For a review of Koopmans’ research, see Scarf [1992].)

Robinson, 1950

Robinson [1950] might be the earliest reference stating clearly and generally that
the absence of a negative-cost directed circuit in the residual digraph is necessary
and sufficient for optimality. She mentioned that it can be ‘verified directly’, and ob-
served that it gives an algorithm to find an optimum transportation. She concluded
with:

The number of steps in the iterative procedure depends on the “goodness” of
the initial choice of X0. The method does not seem to lend itself to machine
calculation but may be efficient for hand computation with matrices of small
order.

Linear programming and the simplex method

The breakthrough of general linear programming came at the end of the 1940s.
In 1947, Dantzig formulated the linear programming problem and designed the
simplex method for the linear programming problem, published in Dantzig [1951b].
The success of the method was enlarged by a simple tableau-form and a simple
pivoting rule, and by the efficiency in practice. In another paper, Dantzig [1951a]
described a direct implementation of the simplex method to the transportation
problem (including an anti-cycling rule based on perturbation; variants were given
by Charnes and Cooper [1954] and Eisemann [1956]).
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The simplex method for transportation was described in terms of graphs by
Koopmans and Reiter [1951], and Flood [1952,1953] aimed at giving a purely math-
ematical description of it. A continuous model of transportation was studied by
Beckmann [1952].

Votaw and Orden [1952] reported on early computational results (on the SEAC),
and claimed (without proof) that the simplex method is polynomial-time for the
transportation problem (a statement refuted by Zadeh [1973a]):

As to computation time, it should be noted that for moderate size problems, say
m × n up to 500, the time of computation is of the same order of magnitude as
the time required to type the initial data. The computation time on a sample
computation in which m and n were both 10 was 3 minutes. The time of com-
putation can be shown by study of the computing method and the code to be
proportional to (m + n)3.

Application to practice

The new ideas of applying linear programming to the transportation problem were
quickly disseminated. Applications to routing empty boxcars over the U.S. railroads
were given by Fox [1952] and Nerlove [1953]. Dantzig and Fulkerson [1954b,1954a]
studied a rudimentary form of a minimum-cost circulation problem in order to
determine the minimum number of tankers to meet a fixed schedule. Similarly,
Bartlett [1957] and Bartlett and Charnes [1957] studied methods to determine the
minimum railway stock to run a given schedule.

Applicability of linear programming to transportation to practice was also met
with scepticism. At a Conference on Linear Programming in May 1954 in London,
Land [1954] presented a study of applying linear programming to the problem of
transporting coal for the British Coke Industry:

The real crux of this piece of research is whether the saving in transport cost
exceeds the cost of using linear programming.

In the discussion which followed, T. Whitwell of Powers Samas Accounting Ma-
chines Ltd remarked

that in practice one could have one’s ideas of a solution confirmed or, much more
frequently, completely upset by taking a couple of managers out to lunch.

Gleyzal’s primal-dual method for the transportation problem

Gleyzal [1955] published the following primal-dual method for the transportation
problem (with integer data). Let xi,j be a feasible solution of the transportation
problem. Transform xi,j such that the set {uivj | xi,j > 0} contains no circuit,
and transform ci,j such that ci,j = 0 if xi,j > 0. (These are easy by first cancelling
circuits, and next redefining ci,j .)

If ci,j ≥ 0 for all i, j we are done. Suppose that ci0,j0 < 0 for some i0, j0. Let
A := {(ui, vj) | ci,j ≤ 0} ∪ {(vj , ui) | xi,j > 0}. If ui0 is reachable in A from vj0 , A
contains a directed circuit C containing (ui0 , vj0). Then we can reset xi,j := xi,j −1
if (vj , ui) is in C and xi,j := xi,j + 1 if (ui, vj) is in C. This decreases cTx.

If ui0 is not reachable in A from vj0 , then for any vertex v let r(v) := 1 if v is
reachable in A from vj0 and r(v) := 0 otherwise. Reset ci,j := ci,j − r(ui) + r(vj).
This increases

∑
(ci,j | ci,j < 0), and hence the method terminates.
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Munkres on the transportation problem

Munkres [1957] extended his variant of the Hungarian method for the assignment
problem to the transportation problem. In graph terms, it amounts to the following.

Let G = (V, E) be a complete bipartite graph, with colour classes U and W of
size n, and let be given a weight function w : E → Z+ and a function b : V → Z+

with b(U) = b(W ). We must find a function x : E → Q+ such that
∑

e∈δ(v) xe = bv

for each vertex v and such that
∑

e wexe is minimized.
Let F be the set of edges e with we = 0 and let H = (V, F ). Suppose that we

have found an x : E → Q+ such that xe = 0 if e �∈ F and such that
∑

e∈δ(v) xe ≤ bv

for each v ∈ V . Let U ′ and W ′ be the sets of vertices v in U and W for which
strict inequality holds. If U ′, and hence W ′, are empty, x is an optimum solution.
Otherwise, perform the following iteratively.

Orient each edge of H from U to W , and orient each edge e of H with xe > 0
also from W to U (so they are two-way). Now determine the set RM of vertices
reachable by a directed path from U ′.

Case 1: RM ∩W ′ �= ∅. Then D has a U ′−W ′ path, on which we can alternatingly
increase and decrease the value of xe, so as to make

∑

e xe larger.
Case 2: RM ∩W ′ = ∅. So w(uv) > 0 for each u ∈ U ∩RM and v ∈ W \RM . Let

h be the minimum of these w(uv). Decrease w(uv) by h if u ∈ U ∩RM , v ∈ W \RM ,
and increase w(uv) by h if u ∈ U \ RM , v ∈ W ∩ RM .

This describes the iteration. Note that between any two occurrences of Case 1,
only n times Case 2 can occur, since at each such iteration the set RM ∩W increases.
Moreover, after Case 2 we can continue the previous search for RM . So between
any two Case 1-iterations, the Case 2-iterations take O(n2) time altogether.

Now Case 1 can occur at most
∑

v∈U bv times. So the algorithm is finite, and
has running time O(n4B) where B := max{bv | v ∈ V }. This specializes to the
Hungarian method if bv = 1 for all v ∈ V .

Further early methods

Also Ford and Fulkerson [1955,1957b] (cf. Ford and Fulkerson [1956c,1956d]) ex-
tended the Hungarian method to general transportation problems. Their method is
essentially the same as that of Munkres [1957], except that successive occurrences of
Case 1 iterations are combined to a maximum flow computation. A similar primal-
dual method for the transportation problem was described by Egerváry [1958].

Ford and Fulkerson [1956a,1957a] extended the method of Ford and Fulker-
son [1955,1957b] for the uncapacitated transportation problem to the capacitated
transportation problem.

Orden [1955] showed the equivalence of the transshipment problem and the
transportation problem. He also noted that the class of transportation problems
covers the majority of the applications of linear programming which are in practical
use or under active development. Also Prager [1957a] studied the transshipment
problem by reduction to a transportation problem and by methods of elastostatics
(cf. Kuhn [1957]).

Gallai [1957,1958a,1958b] studied the minimum-cost and the maximum-profit
circulation problem, for which he gave min-max relations (see Section 12.5b). He
also considered vertex capacities and demands. Beside combinatorial proofs based
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on potentials, Gallai gave proofs based on linear programming duality and total
unimodularity.

A minimum-cost flow algorithm (in disguised form) was given by Ford and
Fulkerson [1958b], to solve the ‘dynamic flow’ problem described in Section 12.5c.
They described a method which essentially consists of repeatedly finding a zero-
length r − s path in the residual graph, making lengths nonnegative by translating
the cost with the help of the current potential p. If no zero-length path exists,
the potential is updated. (This is Routine I of Ford and Fulkerson [1958b].) The
complexity of this was studied by Fulkerson [1958].

Yakovleva [1959] gave some implementations of the method of Kantorovich and
Gavurin [1949]. The paper considers three cases of the problem in a digraph with
demands (positive, negative, and zero) of vertices and costs of arcs: (i) noncapac-
itated case, (ii) capacitated case, and (iii) bipartite case (without zero demands).
Two methods are developed for finding feasible potentials or improving the current
flow. Time bounds are not indicated.

Among the other early algorithms for minimum-cost flow are successive short-
est paths methods (Busacker and Gowen [1960], Iri [1960]), out-of-kilter meth-
ods (Minty [1960], Fulkerson [1961]), cycle-cancelling (Klein [1967]), and succes-
sive shortest paths maintaining potentials (Tomizawa [1971], Edmonds and Karp
[1972]). An alternative method, which transforms the transportation problem to
a nonlinear programming problem, with computational results, was given by Ger-
stenhaber [1958,1960].

Polynomial-time algorithms

Edmonds and Karp [1972] gave the first polynomial-time algorithm for the mini-
mum-cost flow problem, based on capacity-scaling. They realized that in fact the
method is only weakly polynomial; that is, the number of steps depends also on the
size of the numbers in the input:

Although it is comforting to know that the minimum-cost flow algorithm termi-
nates, the bounds on the number of augmentations are most unfavorable. The
scaling method of the next two sections is a variant of this algorithm in which the
bound depends logarithmically, rather than linearly, on the capacities. A challeng-
ing open problem is to emulate the results of Section 1.2 for the maximum-value
flow problem by giving a method for the minimum-cost flow problem having a
bound on computation which is a polynomial in the number of nodes, and is
independent of both costs and capacities.

Tarjan [1983] wrote: ‘There is still much to be learned about the minimum cost
flow problem’. Soon after, Edmonds and Karp’s question was resolved by Tardos
[1985a], by giving a strongly polynomial-time minimum-cost circulation algorithm.
Her work has inspired a stream of further developments, part of which was discussed
in Chapter 12.
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Transversals

The study of transversals of a family of sets is close to that of matchings
in a bipartite graph, but with a shift in focus. While matchings are subsets
of the edge set, transversals are subsets of one of the colour classes. This
gives rise to a number of optimization and polyhedral problems and results
that deserve special attention.
In this chapter we study transversals of one family of sets, while in the
next chapter we go over to common transversals of two families of sets.

22.1. Transversals

Let A = (A1, . . . , An) be a family of sets. A set T is called a transversal
of A if there exist distinct elements a1 ∈ A1, . . . , an ∈ An such that T =
{a1, . . . , an}. So T is an unordered set with |T | = n. (Instead of ‘transversal’
one uses also the term system of distinct representatives or SDR.)

Transversals are closely related to matchings in bipartite graphs. In par-
ticular, the basic result on the existence of a transversal (Hall [1935]), is a
consequence of Kőnig’s matching theorem. This can be seen with the fol-
lowing basic construction of a bipartite graph G = (V, E) associated with a
family A = (A1, . . . , An) of subsets of a set S:

(22.1) V := {1, . . . , n} ∪ S,
E := {{i, s} | i = 1, . . . , n; s ∈ Ai},

assuming that S is disjoint from {1, . . . , n} (which for our purposes can be
done without loss of generality). So G has colour classes {1, . . . , n} and S.
(This construction was given by Skolem [1917].)

Then trivially

(22.2) a set T is a transversal of A if and only if G has a matching M
of size n such that T is the set of vertices in S covered by M .

So the existence of a transversal of A can be reduced to the existence of
a matching in G of size n. Hence Kőnig’s matching theorem applies to the
existence of transversals.

It is convenient to introduce the following notation, for any family
(A1, . . . , An) of sets and any I ⊆ {1, . . . , n}:
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(22.3) AI :=
⋃

i∈I

Ai.

Theorem 22.1 (Hall’s marriage theorem). A family A = (A1, . . . , An) of
sets has a transversal if and only if

(22.4) |AI | ≥ |I|
for each subset I of {1, . . . , n}.
Proof. Necessity of the condition being easy, we prove sufficiency. Let G be
the graph associated to A (as in (22.1)). Now the theorem is equivalent to
Theorem 16.7 (taking U := {1, . . . , n}).

Condition (22.4) is called Hall’s condition. The name ‘marriage theorem’
is due to Weyl [1949].

The polynomial-time algorithm given in Section 16.3 for finding a max-
imum matching in a bipartite graph directly yields a polynomial-time al-
gorithm for finding a transversal of a family (A1, . . . , An) of sets. In fact,
Theorem 16.5 implies an O(

√
n m) algorithm, where m :=

∑
i |Ai|.

22.1a. Alternative proofs of Hall’s marriage theorem

We give two alternative, direct proofs of the sufficiency of Hall’s condition (22.4)
for the existence of a transversal. Call a subset I of {1, . . . , n} tight if equality holds
in (22.4).

If there is a y ∈ An such that A1 \ {y}, . . . , An−1 \ {y} has a transversal,
then we are done. Hence, we may assume that for each y ∈ An there is a tight
I ⊆ {1, . . . , n − 1} with y ∈ AI (using induction).

The proof given by Easterfield [1946] (also by M. Hall [1948], Halmos and
Vaughan [1950], and Mann and Ryser [1953]) continues as follows. Choose any such
tight subset I. Without loss of generality, I = {1, . . . , k}. By induction, (A1, . . . , Ak)
has a transversal, which must be T := AI . Moreover, (Ak+1 \ T, . . . , An \ T ) has a
transversal, Z say. This follows inductively, since for each J ⊆ {k + 1, . . . , n},

(22.5)
∣
∣
⋃

i∈J

(Ai \ T )
∣
∣ =

∣
∣

⋃

i∈I∪J

Ai

∣
∣ − |T | ≥ |I| + |J | − |T | = |J |.

Then T ∪ Z is a transversal of (A1, . . . , Ak, Ak+1, . . . , An).
The proof due to Everett and Whaples [1949] continues slightly different. They

noted that the collection of tight subsets of {1, . . . , n} is closed under taking inter-
sections and unions. That is, if I and J are tight, then also I ∩ J and I ∪ J are
tight, since

(22.6) |I| + |J | = |AI | + |AJ | ≥ |AI∩J | + |AI∪J | ≥ |I ∩ J | + |I ∪ J | = |I| + |J |,
giving equality throughout. (In (22.6), the first inequality holds as AI∩J ⊆ AI ∩AJ

and AI∪J = AI ∪ AJ .)
Since for each y ∈ An there is a tight subset I of {1, . . . , n − 1} with y ∈ AI , it

follows, by taking the union of them, that there is a tight subset I of {1, . . . , n − 1}
with An ⊆ AI . For J := I ∪{n} this gives the contradiction |AJ | = |AI | = |I| < |J |.
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The the closedness of tight subsets under intersections and unions was also
noticed by Maak [1936] and Weyl [1949], who gave alternative proofs of a theorem
of Rado and Hall’s marriage theorem, respectively.

Edmonds [1967b] gave a linear-algebraic proof of Hall’s marriage theorem (cf.
Section 16.2b). Ford and Fulkerson [1958c] derived Hall’s marriage theorem from
the max-flow min-cut theorem.

22.2. Partial transversals

Let A = (A1, . . . , An) be a family of sets. A set T is called a partial transver-
sal if it is a transversal of some subfamily (Ai1 , . . . , Aik

) of (A1, . . . , An).
(Instead of ‘partial transversal’ one uses also the term partial system of dis-
tinct representatives or partial SDR.)

Again, by the construction (22.1), we can study partial transversals with
the help of bipartite matching theory. In particular, if G is the graph associ-
ated to a family A of subsets of a set S,

(22.7) a set T is a partial transversal of A if and only if G has a matching
M such that T is the set of vertices in S covered by M .

This yields the following so-called defect form of Hall’s marriage theorem,
which is equivalent to Kőnig’s matching theorem (cf. Ore [1955]):

Theorem 22.2 (defect form of Hall’s marriage theorem). Let A = (A1, . . . ,
An) be a family of subsets of a set S. Then the maximum size of a partial
transversal of A is equal to the minimum value of

(22.8) |S \ X| + |{i | Ai ∩ X �= ∅}|,
where X ranges over all subsets of S.

Proof. Let G be the graph constructed in (22.1). The maximum size of a
partial transversal of A is equal to the maximum size of a matching in G.
By Kőnig’s matching theorem, this is equal to the minimum size of a vertex
cover of G. This minimum is attained by a vertex cover of form (S \X)∪{i |
Ai ∩ X �= ∅}, which shows the theorem.

An equivalent way of characterizing the maximum size of a partial
transversal is:

Corollary 22.2a. The maximum size of a partial transversal of A is equal
to the minimum value of

(22.9)
∣∣ ⋃

i∈I

Ai

∣∣ + n − |I|,

taken over I ⊆ {1, . . . , n}.
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Proof. Directly from Theorem 22.2, since we can assume that S \ X = AI

where I := {i | Ai ∩ X = ∅}.

Note that it needs an argument to state that each partial transversal is
a subset of a transversal, if a transversal exists. This was shown by Hoffman
and Kuhn [1956b] (solving a problem of Mann and Ryser [1953]):

Theorem 22.3. Let A = (A1, . . . , An) be a system of sets having a transver-
sal. Then each partial transversal is contained in a transversal.

Proof. Directly from Theorem 16.8, using construction (22.1) (taking R :=
{1, . . . , n} ∪ T , where T is a partial transversal).

One can generalize this to the case where the family need not have a
transversal:

Theorem 22.4. Let A be a family of sets. Then each partial transversal is
contained in a maximum-size partial transversal.

Proof. Again directly from Theorem 16.8, using construction (22.1).

In other words, each inclusionwise maximal partial transversal is a maxi-
mum-size partial transversal. This is the basis of the fact that partial transver-
sals form the independent sets of a matroid — see Chapter 39. It is equivalent
to:

Corollary 22.4a (exchange property of transversals). Let A be a family of
sets and let T and T ′ be partial transversals of A, with |T | < |T ′|. Then there
exists an s ∈ T ′ \ T such that T ∪ {s} is a partial transversal.

Proof. To prove this, we can assume that each set in A is contained in T ∪T ′.
This implies that, if no s as required exists, T is an inclusionwise maximal
partial transversal. However, as |T ′| > |T |, this contradicts Theorem 22.4.

Brualdi and Scrimger [1968] (extending a result of Mirsky and Perfect
[1967]) observed:

Theorem 22.5. Let A = (A1, . . . , An) be a family of sets, let k be the maxi-
mum size of a partial transversal, and let A′ = (A1, . . . , Ak) have a transver-
sal. Then each maximum-size partial transversal of A is a transversal of A′.

Proof. Via construction (22.1) this follows from Corollary 16.8b.

So when studying the collection of partial transversals of a certain collec-
tion A of sets, we can assume that A has a transversal.
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22.3. Weighted transversals

Consider the problem of finding a minimum-weight transversal: given a family
A = (A1, . . . , An) of subsets of a set S and a weight function w : S → Q, find
a transversal T of A minimizing w(T ). This problem can be easily reduced
to a minimum-weight perfect matching problem, implying that a minimum-
weight transversal can be found in strongly polynomial time. In fact:

Theorem 22.6. A minimum-weight transversal can be found in time O(nm)
where n is the number of sets and m :=

∑
i |Ai|.

Proof. Make the graph G as in (22.1) and define w({i, s}) := w(s) for each
edge {i, s} of G. Denote R := {1, . . . , n}. Starting with M = ∅, we can
apply the Hungarian method, to obtain an extreme matching of size n. The
elements of S covered by M form a maximum-weight transversal. As each
iteration of the Hungarian method takes O(m) time, this gives the theorem.

Note that in this algorithm, we grow a partial transversal until it is a
(complete) transversal. In this respect it is a ‘greedy method’: we never back-
track. Again, this is a preview of the fact that transversals form a ‘matroid’
— see Chapter 39.

The method similarly solves the problem of finding a maximum-weight
partial transversal:

Theorem 22.7. A maximum-weight partial transversal can be found in time
O(rm), where r is the maximum size of a partial transversal and where m :=∑

i |Ai|.
Proof. As above.

22.4. Min-max relations for weighted transversals

We can also obtain a min-max relation for the minimum weight of a transver-
sal:

Theorem 22.8. Let A = (A1, . . . , An) be a family of subsets of a set S having
a transversal and let w : S → Z be a weight function. Then the minimum
weight of a transversal of A is equal to the maximum value of

(22.10) y(S) +
n∑

i=1

min
s∈Ai

(w(s) − y(s))

taken over y : S → Z+.
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Proof. Let t := |S|. For i = n + 1, . . . , t, let Ai := S. Consider the bipartite
graph G = (V, E) defined by (22.1), for the family (A1, . . . , At). Define a
length function l on the edges of G as follows. For any edge e = is of G, with
s ∈ Ai, define le := w(s) if i ≤ n and le := 0 otherwise. Then the minimum
weight of a transversal of (A1, . . . , An) is equal to the minimum length of a
perfect matching in G. By Theorem 17.5 (a variant of Egerváry’s theorem),
the latter value is equal to the maximum value of y(V ) where y ∈ Q

V with
y(s) + y(i) ≤ l(is) for each i = 1, . . . , t and s ∈ Ai. We can assume that the
minimum of y(s) over s ∈ S is equal to 0 (since subtracting a constant to
y(s) for any s ∈ S and adding it to y(i) for any i ∈ {1, . . . , t} maintains the
properties required for y). Then y(i) = mins∈Ai(w(s) − y(s)) if i ≤ n and
y(i) = 0 if i > n. So y(V ) is equal to the value of (22.10).

A min-max relation for the maximum weight of a partial transversal fol-
lows similarly:

Theorem 22.9. Let A = (A1, . . . , Ak) be a family of subsets of a set S and
let w : S → Z+ be a weight function. Then the maximum weight of a partial
transversal of A is equal to the minimum value of

(22.11) y(S) +
k∑

i=1

max{0, max
s∈Ai

(w(s) − y(s))}

over functions y : S → Z+.

Proof. Directly from Egerváry’s theorem (Theorem 17.1), using construction
(22.1).

22.5. The transversal polytope

Let A = (A1, . . . , An) be a family of subsets of a set S. The partial transversal
polytope Ppartial transversal(A) of A is the convex hull of the incidence vectors
(in R

S) of the partial transversals of A. That is,

(22.12) Ppartial transversal(A) = conv.hull{χT | T is a partial transversal
of A}.

It is easy to see that each vector x in the partial transversal polytope satisfies:

(22.13) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(S \ AI) ≤ n − |I| for each I ⊆ {1, . . . , n}.

Corollary 22.9a. System (22.13) determines the partial transversal polytope
and is TDI.
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Proof. Consider a weight function w : S → Z+. Let ω be the maximum
weight of a partial transversal. By Theorem 22.9, there exists a function
y : S → Z+ such that

(22.14) ω = y(S) +
n∑

i=1

max{0, max
s∈Ai

(w(s) − y(s))}.

For each j ∈ Z+, let Ij be the set of i ∈ {1, . . . , n} with

(22.15) max
s∈Ai

(w(s) − y(s)) ≤ j.

So Ij = {1, . . . , n} for j large enough.
Then

(22.16) w − y ≤
∞∑

j=0

χS\AIj ,

since for k := w(s) − y(s), we have for each j < k there is no i ∈ Ij with
s ∈ Ai. Hence s ∈ S \ AIj for all j < k. So y and the Ij give an integer
feasible dual solution.

The fact that they are optimum follows from:

(22.17) y(S) +
∞∑

j=0

(n − |Ij |) = y(S) +
∞∑

j=0

n∑

i = 1
max
s∈Ai

(w(s) − y(s)) > j

1

= y(S) +
n∑

i=1

∞∑

j = 0
max
s∈Ai

(w(s) − y(s)) > j

1

= y(S) +
n∑

i=1

max{0, max
s∈Ai

(w(s) − y(s))} = ω,

by (22.14).

Let A = (A1, . . . , An) be a family of subsets of a set S. The transversal
polytope Ptransversal(A) of A is the convex hull of the incidence vectors (in
R

S) of the transversals of A. That is,

(22.18) Ptransversal(A) = conv.hull{χT | T is a transversal of A}.

It is easy to see that each vector x in the transversal polytope satisfies:

(22.19) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(AI) ≥ |I| for each I ⊆ {1, . . . , n},
(iii) x(S) = n.

Corollary 22.9b. System (22.19) determines the transversal polytope and is
TDI.
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Proof. The transversal polytope is the facet of the partial transversal poly-
tope determined by the equality x(S) = n. This is constraint (22.13)(ii) for
I = ∅, set to equality. Now each inequality in (22.19) is a nonnegative in-
teger combination of the inequalities in (22.13) and of −x(S) ≤ −n (since
−x(AI) = x(S \ AI) − x(S) ≤ (n − |I|) − n = −|I|). So using Theorem 5.25,
the corollary follows.

One may note that the number of facets of the matching polytope of a
bipartite graph G = (V, E) is at most |V | + |E|, while the number of facets
of the closely related partial transversal polytope can be exponential in the
size of the input (the family A). In fact, the partial transversal polytope is a
projection of the matching polytope of the corresponding graph. Thus we have
an illustration of the phenomenon that projection can increase the number
of facets dramatically, while this has no negative effect on the complexity of
the corresponding optimization problem.

22.6. Packing and covering of transversals

The following min-max relation for the maximum number of disjoint transver-
sals is an easy consequence of Hall’s marriage theorem:

Theorem 22.10. Let A = (A1, . . . , An) be a family of sets and let k be a
natural number. Then A has k disjoint transversals if and only if

(22.20) |AI | ≥ k|I|
for each subset I of {1, . . . , n}.
Proof. Replace each set Ai by k copies, yielding the family A′. Then by
Hall’s marriage theorem and (22.20), A′ has a transversal. This can be split
into k transversals of A.

A generalization to disjoint partial transversals of prescribed sizes was
given by Higgins [1959] (cf. Mirsky [1966], Mirsky and Perfect [1966]):

Theorem 22.11. Let A = (A1, . . . , An) be a family of sets and let d1, . . . , dk

∈ {1, . . . , n}. Then A has k disjoint partial transversals of sizes d1, . . . , dk

respectively if and only if

(22.21) |AI | ≥
k∑

j=1

max{0, |I| − n + dj}

for each I ⊆ {1, . . . , n}.
Proof. Necessity follows from the fact that if T1, . . . , Tk are partial transver-
sals as required, then
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(22.22) |AI | ≥
k∑

j=1

|AI ∩ Tj | ≥
k∑

j=1

max{0, |I| − n + dj}

for each I ⊆ {1, . . . , n}, since |AI ∩ Tj | + (n − dj) ≥ |I|.
To see sufficiency, let B1, . . . , Bk be disjoint sets, disjoint also from all Ai,

with |Bj | = n − dj for j = 1, . . . , k. Define Ai,j := Ai ∪ Bj for i = 1, . . . , n
and j = 1, . . . , k. Then A has k disjoint partial transversals as required,
if (Ai,j | i = 1, . . . , n; j = 1, . . . , k) has a transversal. So it suffices to check
Hall’s condition (22.4) for the latter family. Take K ⊆ {1, . . . , n}×{1, . . . , k}.
Let I := {i | ∃j : (i, j) ∈ K} and J := {j | ∃i : (i, j) ∈ K}. Then

(22.23)
∣∣ ⋃

(i,j)∈K

Ai,j

∣∣ =
∣∣ ⋃

i∈I

Ai

∣∣ +
∣∣ ⋃

j∈J

Bj

∣∣

≥
k∑

j=1

max{0, |I| − n + dj} +
∑

j∈J

(n − dj) ≥
∑

j∈J

|I| = |I| · |J |

≥ |K|.

(A proof based on total unimodularity was given by Hoffman [1976b].)
As to covering by partial transversals, Mirsky [1971b] (p. 51) mentioned

that R. Rado proved in 1965:

Theorem 22.12. Let A = (A1, . . . , An) be a family of subsets of a set S and
let k be a natural number. Then S can be covered by k partial transversals if
and only if

(22.24) k · |{i | Ai ∩ X �= ∅}| ≥ |X|
for each subset X of S.

Proof. Let A′ be the family obtained from A by taking each set k times.
Then S can be covered by k partial transversals if and only if S is a partial
transversal of A′. By the defect form of Hall’s marriage theorem (Theorem
22.2), this last is equivalent to the condition that

(22.25) |S \ X| + k · |{i | Ai ∩ X �= ∅}| ≥ |S|
for each X ⊆ S. This is equivalent to (22.24).

For covering by partial transversals of prescribed size, there is the fol-
lowing easy consequence of the exchange property of transversals (Corollary
22.4a):

Theorem 22.13. Let A be a family of subsets of a set S and let k ∈ Z+.
If S can be covered by k partial transversals, it can be covered by k partial
transversals each of size �|S|/k� or �|S|/k�.
Proof. Let T1, . . . , Tk be partial transversals partitioning S. If |Ti| ≥ |Tj |+2
for some i, j, we can replace Ti and Tj by Ti \ {s} and Tj ∪ {s} for some
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s ∈ Ti. Repeating this, we finally achieve that
∣∣|Ti| − |Tj |

∣∣ ≤ 1 for all i, j.
Hence �|S|/k� ≤ |Ti| ≤ �|S|/k� for all i.

22.7. Further results and notes

22.7a. The capacitated case

Capacitated versions of the theorems on transversals can be derived straightfor-
wardly from the previous results. First, Halmos and Vaughan [1950] showed the
following generalized (but straightforwardly equivalent) version of Hall’s marriage
theorem:

Theorem 22.14. Let A = (A1, . . . , An) be a family of sets and let b ∈ Z
n
+. Then

there exist disjoint subsets B1, . . . , Bn of A1, . . . , An respectively with |Bi| = bi for
i = 1, . . . , n if and only if

(22.26) |AI | ≥ b(I)

for each I ⊆ {1, . . . , n}.

Proof. Let A′ be the family of sets obtained from A by repeating any Ai bi times.
Then the existence of the Bi is equivalent to the existence of a transversal of A′.
Moreover, (22.26) is equivalent to Hall’s condition for A′.

This theorem concerns taking multiplicities on the sets in A. If we put mul-
tiplicities on the elements of S, there is the following observation of R. Rado (as
reported by Mirsky and Perfect [1966]):

Theorem 22.15. Let A = (A1, . . . , An) be a family of sets and let r ∈ Z+. Then
there exist xi ∈ Ai (i = 1, . . . , n) such that no element occurs more than r times
among the si if and only if

(22.27) |AI | ≥ |I|/r

for each I ⊆ {1, . . . , n}.

Proof. Let A′ be the family of sets obtained from A by replacing any Ai by
Ai × {1, . . . , r}. Then the existence of the required si is equivalent to the existence
of a transversal of A′. Moreover, (22.27) is equivalent to Hall’s condition for A′.

These theorems are in fact direct consequences of the general Theorem 21.28.
This theorem moreover gives the following result of Vogel [1961], which puts mul-
tiplicities both on the sets in A and on the elements of the underlying set S:

Theorem 22.16. Let A = (A1, . . . , An) be a family of subsets of a set S. Let
a ∈ Z

n
+ and b ∈ Z

S
+. Then there exist subsets B1, . . . , Bn of A1, . . . , An respectively

such that |Bi| = ai for i = 1, . . . , n and such that each s ∈ S occurs in at most b(s)
of the Bi if and only if

(22.28) b(X) +
∑

i∈I

|Ai \ X| ≥ a(I)
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for each X ⊆ S and each I ⊆ {1, . . . , n}.

Proof. Consider the system

(22.29) 0 ≤ x(i, s) ≤ 1 for i ∈ {1, . . . , n} and s ∈ Ai,
ai ≤ x(δ(i)) ≤ ai for i ∈ {1, . . . , n},
0 ≤ x(δ(s)) ≤ bs for s ∈ S,

and apply Theorem 21.28.

This has as special case (Vogel [1961]):

Corollary 22.16a. Let A = (A1, . . . , An) be a family of subsets of a set S and let
r, s ∈ Z+. Then there exist subsets B1, . . . , Bn of A1, . . . , An respectively such that
|Bi| = s for each i and such that each element belongs to at most r of the Bi if and
only if

(22.30) r|X| +
∑

i∈I

|Ai \ X| ≥ s|I|

for each I ⊆ {1, . . . , n} and each X ⊆ S.

Proof. This is a special case of Theorem 22.16.

Similar methods apply to systems of restricted representatives, considered by
Ford and Fulkerson [1958c]. Let A = (A1, . . . , An) be a collection of subsets of a
set S and let a, b ∈ Z

S
+ with a ≤ b. A system of restricted representatives (or SRR)

of A (with respect to a and b) is a sequence (s1, . . . , sn) such that

(22.31) (i) si ∈ Ai for i = 1, . . . , n;
(ii) a(s) ≤ |{i | si = s}| ≤ b(s) for s ∈ S.

Ford and Fulkerson [1958c] showed:

Theorem 22.17. A has a system of restricted representatives if and only if

(22.32) a(S −
⋃

i
∈I

Ai) ≤ |I| ≤ b(
⋃

i∈I

Ai)

for each I ⊆ {1, . . . , n}.

Proof. Consider the system

(22.33) 0 ≤ x(i, s) ≤ ∞ for i ∈ {1, . . . , n}, s ∈ Ai,
x(δ(i)) = 1 for i ∈ {1, . . . , n},
as ≤ x(δ(s)) ≤ bs for s ∈ S,

and apply Theorem 21.28.

(For an alternative proof, see Mirsky [1968a].)
Considering both upper and lower bounds, the following theorem of Hoffman

and Kuhn [1956a] follows from Hoffman’s circulation theorem:

Theorem 22.18. Let A = (A1, . . . , An) be a collection of subsets of a set S, let
P = (P1, . . . , Pm) be a partition of S, and let a, b ∈ Z

m
+ with a ≤ b. Then A has a

transversal T satisfying ai ≤ |T ∩ Pi| ≤ bi for each i = 1, . . . , m if and only if
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(22.34) |PI ∩ AJ | ≥ max{|J | − b(I), |J | − n + a(I)}
for all I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, where I := {1, . . . , n} \ I.

Proof. Make a directed graph as follows. Its vertex set is {r} ∪ {u1, . . . , un} ∪ S ∪
{p1, . . . , pm} ∪ {t}, and there are arcs

(22.35) (r, ui) for i = 1, . . . , n,
(ui, s) for i = 1, . . . , n and s ∈ Ai,
(s, pj) for j = 1, . . . , m and s ∈ Pj ,
(pj , t) for j = 1, . . . , m.

Put lower bound aj and capacity bj on each arc (pj , t). On any other arc, put lower
bound 0 and capacity 1. Then a transversal as required exists if and only if there is
an integer r− t flow of value n satisfying the lower bounds and capacities. Applying
Corollary 11.2e gives the present theorem.

(The proof of Hoffman and Kuhn [1956a] is based on the duality theorem of linear
programming. Gale [1956,1957] and Fulkerson [1959a] derived the theorem from
network flow theory. For further extensions, see Mirsky [1968b].)

22.7b. A theorem of Rado

Rado [1938] proved the following generalization (but also consequence) of Hall’s
marriage theorem:

Theorem 22.19. Let A1, . . . , An, B1, . . . , Bn be sets. Then there exists an injection
f : A1 ∪ · · · ∪ An → B1 ∪ · · · ∪ Bn such that f [Ai] ⊆ Bi for i = 1, . . . , n if and only
if each set obtained by intersections and unions of sets from A1, . . . , An has size at
most the size of the result of the same operations applied to B1, . . . , Bn.

Proof. Let A := A1 ∪ · · · ∪ An. For each s ∈ A, define

(22.36) Cs :=
⋂

i
s ∈ Ai

Bi.

Then for each subset S of A one has

(22.37)
∣
∣

⋃

s∈S

Cs

∣
∣ =

∣
∣

⋃

s∈S

⋂

i
s ∈ Ai

Bi

∣
∣ ≥ ∣

∣
⋃

s∈S

⋂

i
s ∈ Ai

Ai

∣
∣ ≥ |S|.

Hence, by Hall’s marriage theorem, (Cs | s ∈ A) has a transversal. This gives an
injection f : A → B1 ∪ · · · ∪ Bn with f(s) ∈ Cs for s ∈ A. This is as required.

22.7c. Further notes

Shmushkovich [1939], de Bruijn [1943], Hall [1948], Henkin [1953], Tutte [1953],
Mirsky [1967], Rado [1967a] (with H.A. Jung), Brualdi and Scrimger [1968], Folk-
man [1970], McCarthy [1973], Damerell and Milner [1974], Steffens [1974], Podewski
and Steffens [1976], Nash-Williams [1978], Aharoni [1983c], and Aharoni, Nash-
Williams, and Shelah [1983] considered extensions of Hall’s marriage theorem to the
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infinite case. Perfect [1968] gave proofs of theorems on transversals with Menger’s
theorem.

For a ‘very general theorem’ see Brualdi [1969a]. For counting transversals, see
Hall [1948], Rado [1967b], and Ostrand [1970].

Gale [1968] showed that for any family A of subsets of a finite set S and any
total order < on S, there is a transversal T of A such that for each transversal T ′

of A there exists a one-to-one function φ : T ′ → T with φ(s) ≥ s for each s ∈ T ′.
(Gale showed that this in fact characterizes matroids.)

The standard work on transversal theory is Mirsky [1971b]. Also Brualdi [1975]
and Welsh [1976] provide surveys. Surveys on the relations between the theorems
of Hall, Kőnig, Menger, and Dilworth were given by Jacobs [1969] and Reichmeider
[1984].

22.7d. Historical notes on transversals

Results on transversals go back to the papers by Miller [1910] and Chapman [1912],
who showed that if H is a subgroup of a finite group G, then the partitions of G
into left cosets and into right cosets have a common transversal. This is an easy
result, due to the fact that each component of the intersection graph of left and
right cosets is a complete bipartite graph. This implies that any common partial
transversal can be extended to a common (full) transversal (Chapman [1912]).

This result was extended by Scorza [1927] to: if H and K are subgroups of a finite
group G, with |H| = |K|, then there exist x1, . . . , xm ∈ G with x1H ∪ · · · ∪ xmH =
G = Kx1 ∪ · · · ∪ Kxm and m = |G|/|H|. (Again this can be derived easily from
the fact that each component of the intersection graph of left cosets of H and right
cosets of K is a complete bipartite graph.)

As an extension of these results, in October 1926, van der Waerden [1927]
presented the following theorem at the Mathematisches Seminar in Hamburg:

Es seien zwei Klasseneinteilungen einer endlichen Menge M gegeben. Die eine
soll die Menge in µ zueinander fremde Klassen A1, . . . , Aµ zu je n Elementen
zerlegen, die andere ebenfalls in µ fremde Klassen B1, . . . , Bµ zu je n Elementen.
Dann gibt es ein System von Elementen x1, . . . , xµ, derart, daß jede A-Klasse
und ebenso jede B-Klasse under den xi durch ein Element vertreten wird.41

The proof of van der Waerden is based on an augmenting path argument. More-
over, van der Waerden remarked that E. Artin had communicated orally to him that
the result can be sharpened to the existence of n disjoint such common transversals.

In a note added in proof, van der Waerden observed that his theorem follows
from Kőnig’s theorem on the existence of a perfect matching in a regular bipartite
graph:

Zusatz bei der Korrektur. Ich bemerke jetzt, daß der hier bewiesene Satz mit
einem Satz von Dénes Kőnig über reguläre Graphen äquivalent ist.42

41 Let be given two partitions of a finite set M. One of them should decompose the set
into µ mutually disjoint classes A1, . . . , Aµ each of n elements, the other likewise in µ
disjoint classes B1, . . . , Bµ each of n elements. Then there exists a system of elements
x1, . . . , xµ such that each A-class and likewise each B-class is represented by one element
among the xi.

42 Note added in proof. I now notice that the theorem proved here is equivalent to a
theorem of Dénes Kőnig on regular graphs.
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Van der Waerden’s article is followed by an article of Sperner [1927] (presented at
the Mathematisches Seminar in Januari 1927) that gives a ‘simple proof’ of van der
Waerden’s result. We quote the full article (containing page references to van der
Waerden’s paper):

Der auf S. 185 ff. bewiesene Satz gestattet auch folgenden einfachen Beweis.
Der Satz lautete:
Zwei beliebige Klasseneinteilungen von m · n Elementen in m Klassen zu je n
Elementen haben immer ein gemeinsames Repräsentantensystem (vgl. S. 185).
Der Satz ist evident für die Klassenzahl 1. Wir nehmen an, er sei bewiesen für
die Klassenzahl m (und beliebiges n). Dan folgt für dieses m:
1. Die beiden Klasseneinteilungen haben sogar n verschiedene und zueinander
fremde Repräsentantensysteme.
Beweis wie auf S. 187 oben.
2. Streicht man daher in beiden Einteilungen dieselben k Elemente, wo 0 ≤ k ≤
n−1, dan werden höchstens n−1 Repräsentantensysteme verletzt und wenigstens
eins bleibt erhalten. Da man auch umgekehrt m · n − k Elemente durch k neue
ergänzen kann, um diese nachher wieder zu streichen, so gilt:
Zwei beliebige Klasseneinteilungen von m · n − k Elementen in m Klassen zu
je höchstens n Elementen, wo 0 ≤ k ≤ n − 1, haben immer ein gemeinsames
Repräsentantensystem.
Nunmehr wenden wir vollständige Induktion an. Es seien zwei Klasseneinteilun-
gen von (m+1) ·n Elementen in m+1 Klassen zu je n Elementen gegeben. Dann
greifen wir aus beiden Einteilungen je eine Klasse heraus, etwa die Klassen A
und B, die aber wenigstens 1 Element gemeinsam haben sollen, etwa A. Streichen
wir dann in beiden Einteilungen die in A und B vorkommenden Elemente (also
höchstens 2n − 1, aber wenigstens n Elemente), so bleiben zwei Klasseneinteilun-
gen von m · n − k Elementen in je m Klassen zu je höchstens n Elementen übrig,
wo 0 ≤ k ≤ n − 1. Zwei solche Einteilungen haben aber nach 2. ein gemeinsames
Repräsentantensystem, das man sofort durch Hinzufügen von A zu einem gemein-
samen Repräsentantensysteme der beiden Einteilungen von (m + 1)n Elementen
erweitert.43

43 The theorem proved on p. 185 and following pages allows also the following simple proof.
The theorem reads:
Two arbitrary partitions of m · n elements into m classes of n elements each, always

have a common system of representatives (cf. p. 185).
The theorem is evident for class number 1. We assume that it be proved for class

number m (and arbitrary n). Then the following follows for this m:
1. Both partitions even have n different and disjoint systems of representatives.
Proof like on p. 187 above.
2. Therefore, if one cancels in both partitions the same k elements, where 0 ≤ k ≤

n − 1, then at most n − 1 systems of representatives are injured and at least one is
preserved. As one can also, reversely, complete m · n − k elements by k new ones, to
cancel them after it again, the following therefore holds:

Two arbitrary partitions of m · n − k elements into m classes of at most n elements
each, where 0 ≤ k ≤ n − 1, always have a common system of representatives.

Now we apply complete induction. Let be given two partitions of (m+1) ·n elements
into m+1 classes of n elements each. Then we select from each of the two partitions one
class, say the classes A and B, that however should have at least 1 element in common,
say A. If we then cancel in both partitions the elements occurring in A and B (so at
most 2n−1, but at least n elements), two partitions of m ·n−k elements into m classes
of at most n elements each thus remain, where 0 ≤ k ≤ n − 1. Two such partitions
have however, according to 2., a common system of representatives, that one extends,
by adding A, to a common system of representatives of both partitions of (m + 1)n
elements.
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Hall

After having mentioned Kőnig’s result on the existence of a common transversal
for two partitions of a set where all classes have the same size, Hall [1935] said that
he is ‘concerned with a slightly different problem’: to find a transversal

for a finite collection of (arbitrarily overlapping) subsets of any given set of things.
The solution, Theorem 1, is very simple.

Calling a transversal a ‘C.D.R. (= complete system of distinct representatives)’
and denoting a finite system T1, . . . , Tm of subsets of a set S by ‘(1)’, Hall formulated
his theorem as follows:

In order that a C.D.R. of (1) shall exist, it is sufficient that for each k =
1, 2, . . . , m any selection of k of the sets (1) shall contain between them at least
k elements of S.

This result now is known as ‘Hall’s marriage theorem’.
In order to prove this theorem, Hall first showed the following lemma. Let

(A1, . . . , An) be a system of sets with at least one transversal and let R be the
intersection of all transversals. Then there is an I ⊆ {1, . . . , n} with AI = R and
|I| = |R|.

Hall proved this with the help of an alternating path argument. Having the
lemma, the theorem is easy, by induction on n: we may assume that (A1, . . . , An−1)
has a transversal; let R′ be the intersection of all these transversals. So by the
lemma, R′ = AI′ for some I ′ ⊆ {1, . . . , n−1} with |I ′| = |R′|. Hence An �⊆ R′, since
otherwise for I := I ′∪{n} one has

∣
∣
⋃

i∈I Ai

∣
∣ = |R′| < |I|. Therefore, (A1, . . . , An−1)

has a transversal not containing An as a subset, implying that (A1, . . . , An) has a
transversal.

Hall derived as a consequence that if A1, . . . , An and B1, . . . , Bn are two parti-
tions of a finite set S, then the two partitions have a common transversal if and only
if for each subset I of {1, . . . , n}, the set

⋃

i∈I Ai intersects at least |I| sets among
B1, . . . , Bn. Hall remarked that the theorem of Kőnig [1916] on the existence of
a perfect matching in a regular bipartite graph follows as an immediate corollary,
and that also a theorem of Rado [1933] can be derived (the Kőnig-Rado edge cover
theorem — Theorem 19.4), but he did not observe that Hall’s marriage theorem
is equivalent to a theorem of Kőnig [1931] (Kőnig’s matching theorem — Theorem
16.2).

As for common transversals, Maak [1936] showed that if A = (A1, . . . , An) and
B = (B1, . . . , Bn) are partitions of a finite set S, then A and B have a common
transversal if and only if for each I ⊆ {1, . . . , n}, the set

⋃

i∈I Ai contains at most |I|
of the sets Bi as a subset. This can be derived from Frobenius’ theorem (Frobenius
[1917]).

The basic characterization of common transversals of two arbitrary families of
sets was given by Ford and Fulkerson [1958c] — see Section 23.1.

Shmushkovich [1939] and de Bruijn [1943] extended the results to the infinite
case. Weyl [1949] introduced the name ‘marriage theorem’ for Hall’s marriage the-
orem. Maak [1952] gave some historical notes.
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Common transversals

We consider sets that are transversals of two families of sets simultaneously.
Again we denote, for any family (A1, . . . , An) of sets and any I ⊆
{1, . . . , n},

AI :=
⋃

i∈I

Ai.

23.1. Common transversals

Let A and B be families of sets. A set T is called a common transversal of A
and B if T is a transversal of both A and B. Similarly, T is called a common
partial transversal of A and B if T is a partial transversal of both A and B.

When considering two families A = (A1, . . . , An) and B = (B1, . . . , Bm)
of subsets of a set S, it is helpful to construct the following directed graph
D = (V, A):

(23.1) V := {a1, . . . , an} ∪ S ∪ {b1, . . . , bm},
A := {(ai, s) | i = 1, . . . , n; s ∈ Ai} ∪ {(s, bi) | i = 1, . . . , m; s ∈
Bi},

where a1, . . . , an, b1, . . . , bm are distinct new elements, not in S.
Then one has, if m = n:

(23.2) a subset T of S is a common transversal of A and B if and only
if D has n vertex-disjoint paths from {a1, . . . , an} to {b1, . . . , bn}
such that T is the set of vertices in S traversed by these paths.

A similar statement can be formulated with respect to common partial
transversals.

With Menger’s theorem, it yields the following characterization of the
existence of a common transversal, due to Ford and Fulkerson [1958c]:

Theorem 23.1. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
sets. Then A and B have a common transversal if and only if

(23.3) |AI ∩ BJ | ≥ |I| + |J | − n
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for all I, J ⊆ {1, . . . , n}.
Proof. To see necessity, let T be a common transversal. To prove (23.3), we
can assume that Ai ⊆ T and Bj ⊆ T for all i, j. Then

(23.4) |AI ∩BJ | = |AI |+ |BJ |−|AI ∪BJ | ≥ |I|+ |J |−|T | ≥ |I|+ |J |−n

for all I, J ⊆ {1, . . . , n}.
To see sufficiency, make the digraph D associated to A,B as in (23.1). Let

U := {a1, . . . , an} and W := {b1, . . . , bn}. Then by (23.2), A and B have a
common transversal if D has n disjoint U − W paths. By Menger’s theorem,
these paths exist if |C| ≥ n for each C ⊆ U ∪S ∪W intersecting each U − W
path. To check this condition, let I := {i | ai �∈ C} and J := {j | bj �∈ C}.
Then

(23.5) C ∩ S ⊇ AI ∩ BJ ,

since AI ∩ BJ is equal to the set of vertices in S that are on a U − W path
not intersected by C ∩ (U ∪ W ). So (23.3) implies

(23.6) |C∩S| ≥ |AI∩BJ | ≥ |I|+|J |−n = (n−|C∩U |)+(n−|C∩W |)−n,

giving |C| ≥ n.

(For a direct derivation of this theorem from Hall’s marriage theorem, see
Perfect [1969c]. For a derivation from the Kőnig-Rado edge cover theorem,
see Perfect [1980].)

This construction also implies, with Theorem 9.8, that a common transver-
sal of two collections of n subsets of S can be found in time O(n3/2|S|) (cf.
Adel’son-Vel’skĭı, Dinits, and Karzanov [1975]).

Perfect [1968] (cf. McDiarmid [1973]) strengthened Theorem 23.1 to a
min-max relation for the maximum size of a common partial transversal:

Corollary 23.1a. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families
of sets and let k ∈ Z+. Then A and B have a common partial transversal of
size k if and only if

(23.7) |AI ∩ BJ | ≥ |I| + |J | − n − m + k

for all I ⊆ {1, . . . , n} and J ⊆ {1, . . . , m}.
Proof. We may assume that m = n (if, say, n < m, add m − n copies of ∅
to A). Let X be a set disjoint from all Ai and Bi with |X| = n − k. Replace
each Ai by A′

i := Ai ∪ X and each Bi by B′
i := Bi ∪ X. Then A and B have

a common partial transversal of size k if and only if A′ = (A′
1, . . . , A

′
n) and

B′ = (B′
1, . . . , B

′
n) have a common transversal. Applying Theorem 23.1 to A′

and B′ gives this corollary.

Generally, a common partial transversal of families A and B need not be
contained in a common transversal, even not if a common transversal exists:
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let A := ({a}, {b, c}) and B := ({b}, {a, c}). Then {c} is a common partial
transversal, while {a, b} is the only common transversal.

The following result of Perfect [1968] and Welsh [1968] characterizes sub-
sets contained in common transversals. It is a special case of a theorem of
Ford and Fulkerson [1958c] (cf. Theorem 23.14), and will be derived from
Theorem 23.1 with a method of Mirsky and Perfect [1968].

Corollary 23.1b. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let X ⊆ S. Then A and B have a common transversal
containing X if and only if

(23.8) |AI ∩ BJ | ≥ |I| + |J | − n + |X \ (AI ∪ BJ)|
for all I, J ⊆ {1, . . . , n}.
Proof. To see necessity, we can assume that there is a common transversal
T containing each Ai, each Bj , and X. Then for all I, J ⊆ {1, . . . , n}:

(23.9) |AI ∩BJ | = |AI |+ |BJ |−|AI ∪BJ | ≥ |I|+ |J |+ |X \(AI ∪BJ)|−n

since |AI ∪ BJ | + |X \ (AI ∪ BJ)| ≤ |T | = n.
To see sufficiency, let X = {x1, . . . , xk} and let x′

1, . . . , x
′
k be new elements.

For each i = 1, . . . , n, let A′
i be the set obtained from Ai by replacing any

occurrence of xj by x′
j . Then A and B have a common transversal containing

X if the families

(23.10) A′ := (A′
1, . . . , A

′
n, {x1}, . . . , {xk}) and

B′ := (B1, . . . , Bn, {x′
1}, . . . , {x′

k})

have a common transversal. So by Theorem 23.1 we must check condition
(23.3) for A′ and B′. Let I, J ⊆ {1, . . . , n} and I ′, J ′ ⊆ {1, . . . , k}. Define
Y := {xi | i ∈ I ′} and Z := {xi | i ∈ J ′}. Then

(23.11)
∣∣( ⋃

i∈I

A′
i ∪

⋃

i∈I′
{xi}

) ∩ ( ⋃

j∈J

Bj ∪
⋃

j∈J′
{x′

j}
)∣∣

= |(AI ∩ BJ) \ X| + |AI ∩ Z| + |BJ ∩ Y |
= |(AI ∩ BJ) \ X| + |Z| − |Z \ AI | + |Y | − |Y \ BJ |
≥ |(AI ∩ BJ) \ X| + |Z| − |X \ AI | + |Y | − |X \ BJ |
= |AI ∩ BJ | − |X \ (AI ∪ BJ)| + |Y | + |Z| − |X|
≥ |I| + |J | + |Y | + |Z| − |X| − n = |I| + |I ′| + |J | + |J ′| − n − k

(the last inequality follows from (23.8)).

23.2. Weighted common transversals

Consider the problem of finding a minimum-weight common transversal:
given families A = (A1, . . . , An) and B = (B1, . . . , Bn) of subsets of a set
S and a weight function w : S → Q, find a common transversal T of A and B
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minimizing w(T ). This problem can easily be solved by solving an associated
minimum-cost flow problem.

Alternatively, it can be solved with the Hungarian method, as follows. For
s ∈ S, introduce a copy s′ of s. Let S′ := {s′ | s ∈ S}. Let a1, . . . , an, b1, . . . , bn

be vertices. Make a bipartite graph G with colour classes {a1, . . . , an} ∪ S
and {b1, . . . , bn} ∪ S′. Vertex ai is connected with vertex s′ ∈ S′ if s ∈ Ai.
Vertex bi is connected with vertex s ∈ S if s ∈ Bi. Moreover, each s ∈ S is
connected with its copy s′ ∈ S′. This describes all edges of G.

For any perfect matching M in G, the set of s ∈ S with {s, s′} �∈ M is
a common transversal of A and B. Conversely, each common transversal can
be obtained in this way from a perfect matching in G.

Therefore, a minimum-weight common transversal of A and B can be
found by determining a maximum-weight perfect matching in G, taking
weight w(s) on any edge {s, s′} and weight 0 on any other edge of G. So
by Theorem 17.3 we can find a minimum-weight common transversal in time
O(k(m + k log k)), where

(23.12) k := n + |S| and m :=
n∑

i=1

(|Ai| + |Bi|).

Due to the special structure of G and its weight function one can sharpen
this to:

Theorem 23.2. A minimum-weight common transversal can be found in
time O(n(m + k log k)), with m and k as in (23.12).

Proof. We may assume that w(s) ≥ 0 for each s ∈ S (we can add a constant
to all weights). Then we can start the Hungarian method with the matching
M consisting of all edges {s, s′} with s ∈ S. This matching is extreme (that
is, has maximum weight among all matchings of size |M |), and the Hungar-
ian method requires only n iterations to obtain a maximum-weight perfect
matching.

Note that, unlike what happened in finding a minimum-weight transversal
for one family of sets, in the algorithm above we do not grow a common partial
transversal — we do backtrack.

We can also obtain a min-max relation for the minimum weight of a
common transversal:

Theorem 23.3. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let w : S → Z be a weight function. Then the minimum
weight of a common transversal of A and B is equal to the maximum value
of

(23.13)
n∑

i=1

(min
s∈Ai

w1(s) + min
s∈Bi

w2(s)) + (w(S) − w1(S) − w2(S))
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taken over w1, w2 ∈ Z
S satisfying w1 + w2 ≥ w.

Proof. Consider the graph G above. By Theorem 17.5 (or by total unimod-
ularity), the maximum weight of a perfect matching in G is equal to the
minimum value of

(23.14)
n∑

i=1

(λi + µi) +
∑

s∈S

(w1(s) + w2(s))

taken over λ, µ ∈ Z
n and w1, w2 ∈ Z

S satisfying

(23.15) λi + w1(s) ≥ 0 for i = 1, . . . , n and s ∈ Ai,
w1(s) + w2(s) ≥ w(s) for s ∈ S,
µi + w2(s) ≥ 0 for i = 1, . . . , n and s ∈ Bi.

We can assume that λi = max{−w1(s) | s ∈ Ai} and µi = max{−w2(s) | s ∈
Bi} for each i = 1, . . . , n.

Now the minimum weight of a common transversal is equal to w(S) mi-
nus the maximum weight of a perfect matching in G. So it is equal to the
maximum value of

(23.16) w(S) −
∑

s∈S

(w1(s) + w2(s)) +
n∑

i=1

(min
s∈Ai

w1(s) + min
s∈Bi

w2(s)),

where w1, w2 ∈ Z
S satisfy w1 + w2 ≥ w. This is equal to (23.13).

23.3. Weighted common partial transversals

A maximum-weight common partial transversal can be found with the Hun-
garian method, like described at the beginning of Section 23.2. At any stage
of the Hungarian method the current matching M is extreme (that is, it has
optimum weight among all matchings of size |M |). So we can also apply it
(like in Theorem 23.2) to find a maximum-weight common partial transversal
of two families A = (A1, . . . , Ak) and B = (B1, . . . , Bl) of subsets of a set S.
Taking

(23.17) n := k + l + |S| and m :=
k∑

i=1

|Ai| +
l∑

i=1

|Bi|,

we have:

Theorem 23.4. A maximum-weight common partial transversal can be found
in time O(min{k, l}(m + n log n)).

Proof. As above.

Note that, even if all weights are positive, a maximum-weight common
partial transversal need not be a common transversal (a statement that is true
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if we delete ‘common’). To see this, let A = ({a}, {b, c}), B = ({b}, {a, c}),
and w(a) = w(b) = 1, w(c) = 3. Then {c} is the only maximum-weight
common partial transversal, while {a, b} is the only common transversal.

A min-max relation for the maximum weight of a common partial transver-
sal can be derived from a min-max relation for the maximum weight of a
matching in a bipartite graph, or from linear programming duality using
total unimodularity, as we do in the proof below:

Theorem 23.5. Let A = (A1, . . . , Ak) and B = (B1, . . . , Bl) be families
of subsets of a set S and let w : S → Z+ be a weight function. Then the
maximum weight of a common partial transversal of A and B is equal to the
minimum value of

(23.18)
k∑

i=1

max
s∈Ai

w1(s) +
l∑

i=1

max
s∈Bi

w2(s) + (w − w1 − w2)(S)

where w1, w2 ∈ Z
S
+ with w1 + w2 ≤ w.

Proof. The maximum weight of a common partial transversal is equal to
the maximum of wTx where x ∈ Z

S such that there exist y1(i, s) ∈ Z+
(i = 1, . . . , k; s ∈ Ai) and y2(i, s) ∈ Z+ (i = 1, . . . , l; s ∈ Bi) satisfying

(23.19)
∑

s∈Ai

y1(i, s) ≤ 1 for i = 1, . . . , k,
∑

s∈Bi

y2(i, s) ≤ 1 for i = 1, . . . , l,

xs =
∑

i,s∈Ai

y1(i, s) for s ∈ S,

xs =
∑

i,s∈Bi

y2(i, s) for s ∈ S,

0 ≤ xs ≤ 1 for s ∈ S.

By linear programming duality and the total unimodularity of the constraint
matrix in (23.19), the maximum value is equal to the minimum value of

(23.20)
k∑

i=1

z1(i) +
l∑

i=1

z2(i) +
∑

s∈S

u(s),

where z1, z2 ∈ Z
k
+ and u ∈ Z

S
+ satisfy

(23.21) z1(i) ≥ w1(s) for i = 1, . . . , k and s ∈ Ai,
z2(i) ≥ w2(s) for i = 1, . . . , l and s ∈ Bi,
w1(s) + w2(s) + u(s) ≥ w(s) for s ∈ S,

for some w1, w2 ∈ Z
E . We may assume that w1, w2 ≥ 0, since replacing

any negative wj(s) by 0 does not violate (23.21). We may assume that w1 +
w2 + u = w, since w ≥ 0, and hence we can decrease w1(s), w2(s) or u(s) if
w1(s) + w2(s) + u(s) > w(s). This gives the theorem.
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By specializing w to the all-one function, Theorem 23.5 reduces to Corol-
lary 23.1a on the maximum size of a common partial transversal. We can also
derive an alternative min-max relation for the maximum weight of a common
partial transversal, expressed in

(23.22) m(C, w) := maximum weight of a partial transversal of C
for any family C and weight function w (so we can plug in a min-max relation
for m(C, w) to obtain a genuine min-max relation):

Corollary 23.5a. Let A = (A1, . . . , Ak) and B = (B1, . . . , Bl) be families
of subsets of a set S and let w : S → Z+ be a weight function. Then the
maximum weight of a common partial transversal of A and B is equal to
the minimum value of m(A, w1) + m(B, w2), taken over w1, w2 ∈ Z

S
+ with

w1 + w2 = w.

Proof. Clearly, the maximum value here cannot be larger than the minimum
value, since w(T ) = w1(T )+w2(T ) ≤ m(A, w1)+m(B, w2) for any maximum-
weight common partial transversal T .

To see equality, consider w1 and w2 of Theorem 23.5, and let w′
2 := w−w1.

Then for any partial transversal T1 of A one has

(23.23) w1(T1) ≤
k∑

i=1

max
s∈Ai

w1(s).

Moreover, for any partial transversal T2 of B one has

(23.24) w′
2(T2) = w2(T2) + (w − w1 − w2)(T2)

≤
k∑

i=1

max
s∈Bi

w2(s) + (w − w1 − w2)(S).

So by Theorem 23.5 we have that m(A, w1) + m(B, w′
2) is not more than the

maximum w-weight of a common partial transversal.

The obvious generalization to common partial transversals of three fami-
lies is not true: take

(23.25) A = ({a}, {b, c}), B = ({b}, {a, c}), and C = ({c}, {a, b}),

and w(a) = w(b) = w(c) = 1. Then the maximum weight of a common
partial transversal is 1, but one cannot decompose w as w = w1 + w2 + w3
with m(A, w1) + m(B, w2) + m(C, w3) = 1.

23.4. The common partial transversal polytope

Let A = (A1, . . . , Ak) and B = (B1, . . . , Bl) be families of subsets of a set
S. The common partial transversal polytope Pcommon partial transversal(A,B) of
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A and B is the convex hull of the incidence vectors (in R
S) of the common

partial transversals of A and B. That is,

(23.26) Pcommon partial transversal(A,B) = conv.hull{χT | T is a common
partial transversal of A and B}.

It is easy to see that each vector x in the common partial transversal polytope
satisfies:

(23.27) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(S \ AI) ≤ k − |I| for I ⊆ {1, . . . , k},
(iii) x(S \ BI) ≤ l − |I| for I ⊆ {1, . . . , l}.

In fact, this fully determines the common partial transversal polytope:

Theorem 23.6. The common partial transversal polytope is determined by
(23.27).

Proof. We must show that for any weight function w ∈ Z
S
+, the maximum

value of wTx over (23.27) is equal to the maximum weight µ of any common
partial transversal. By Corollary 23.5a, there exist weight functions w1, w2 ∈
Z

S with w = w1 + w2 and µ = m(A, w1) + m(B, w2). Now any x satisfying
(23.27) belongs to the partial transversal polytopes of A and B. So wT

1 x ≤
m(A, w1) and wT

2 x ≤ m(B, w2). Hence wTx ≤ µ.

Since (23.27) is the union of the systems that determine the partial
transversal polytope of A and of B, we have:

Corollary 23.6a. Let A and B be families of subsets of a set S. Then

(23.28) Pcommon partial transversal(A,B)
= Ppartial transversal(A) ∩ Ppartial transversal(B).

Proof. Directly from Theorem 23.6 and Corollary 22.9a.

Also:

Theorem 23.7. System (23.27) is TDI.

Proof. Directly from Corollaries 23.5a and 22.9a.

Again one cannot make the obvious extension to three families of sets,
by considering the families (23.25). In that case, the vector (1

2 , 1
2 , 1

2 ) belongs
to the intersection of the three partial transversal polytopes, but does not
belong to the common partial transversal polytope.
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23.5. The common transversal polytope

Similar results hold for the common transversal polytope. Let A = (A1, . . . ,
An) and B = (B1, . . . , Bn) be families of subsets of a set S. The common
transversal polytope Pcommon transversal(A) of A and B is the convex hull of
the incidence vectors (in R

S) of the common transversals of A and B. That
is,

(23.29) Pcommon transversal(A,B) = conv.hull{χT | T is a common trans-
versal of A and B}.

It is easy to see that each vector x in the common transversal polytope
satisfies:

(23.30) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(AI) ≥ |I| for I ⊆ {1, . . . , n},
(iii) x(BI) ≥ |I| for I ⊆ {1, . . . , n},
(iv) x(S) = n.

Corollary 23.7a. The common transversal polytope is determined by (23.30).

Proof. The common transversal polytope is the facet of the common partial
transversal polytope determined by the equality x(S) = n. So we must show
that (23.30) implies (23.27), which is trivial, since if x satisfies (23.30), then
x(S \ AI) = x(S) − x(AI) ≤ n − |I| and x(S \ BI) = x(S) − x(BI) ≤ n − |I|
for any I ⊆ {1, . . . , n}.

Again this implies:

Corollary 23.7b. Let A and B be families of subsets of a set S. Then

(23.31) Pcommon transversal(A,B) = Ptransversal(A) ∩ Ptransversal(B).

Proof. Directly from Corollaries 23.7a and 22.9b.

In fact:

Theorem 23.8. System (23.30) is TDI.

Proof. This follows from Theorem 23.7, using Theorem 5.25.

Weinberger [1976] proved the following conjecture of Fulkerson [1971a],
which generalizes Theorem 18.8. Let A = (A1, . . . , An) and B = (B1, . . . , Bn)
be families of subsets of a set S. Then the up hull P ↑

common transversal(A,B) of
the common transversal polytope is determined by:

(23.32) x(U) ≥ n− maximum size of a common partial transversal con-
tained in S \ U ,
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for U ⊆ S. This will follow from Theorem 46.3 on polymatroids.

23.6. Packing and covering of common transversals

Fulkerson [1971b] and de Sousa [1971] detected that results on bipartite edge-
colouring (or related results) imply characterizations of packings of common
transversals. It was noticed by Brualdi [1971b] that the methods in fact yield
more general results.

Basic is the following exchange property given by de Sousa [1971]:

Theorem 23.9. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families of
subsets of a set S and let k ∈ Z+. Suppose that S can be covered by k partial
transversals of A and that S can also be covered by k partial transversals of
B. Then S can be covered by k common partial transversals of A and B.

Proof. Let T1, . . . , Tk be a partition of S into k partial transversals of A.
Since each Ti is a partial transversal of A, it follows that each Ai has a subset
A′

i such that |A′
i| ≤ k and such that A′

1, . . . , A
′
n partition S. We can assume

that A′
i = Ai for each i, and hence that A is a partition of S into classes of

size at most k.
Similarly, we can assume that B is a partition of S into classes of size at

most k.
Now make a bipartite graph G, with colour classes {a1, . . . , an} and

{b1, . . . , bm}, connecting ai and bj by |Ai ∩ Bj | parallel edges. So G has
maximum degree k, and hence, by Kőnig’s edge-colouring theorem, the edges
of G can be coloured with k colours. It implies that S can be partitioned as
required.

A consequence is a min-max formula for the minimum number of common
partial transversals needed to cover S, stated by Brualdi [1971b]:

Corollary 23.9a. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S, each with union S. Then the minimum number of common
partial transversals of A and B needed to cover S is equal to

(23.33)
⌈

max
X ⊆ S
X �= ∅

max{ |X|
|{i|Ai∩X �=∅}| ,

|X|
|{i|Bi∩X �=∅}|}

⌉
.

Proof. From Theorem 23.9, using Theorem 22.12.

Theorem 23.9 also gives a variant of the exchange property (de Sousa
[1971]):

Corollary 23.9b. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families
of subsets of a set S and let k ∈ Z+. Suppose that S can be partitioned into k
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transversals of A, and also can be partitioned into k transversals of B. Then
S can be partitioned into k common transversals of A and B.

Proof. Directly from Theorem 23.9, since |S| = nk.

This implies another variant (de Sousa [1971]):

Corollary 23.9c. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let k ∈ Z+. Suppose that S has a partition (S1, . . . , Sn)
with |Si| = k and Si ⊆ Ai for i = 1, . . . , n. Suppose moreover that S has a
partition (Z1, . . . , Zn) with |Zi| = k and Zi ⊆ Bi for i = 1, . . . , n. Then S
can be partitioned into common transversals of A and B.

Proof. Note that if S has a partition (S1, . . . , Sn) with |Si| = k and Si ⊆ Ai

for i = 1, . . . , n, then S can be partitioned into k transversals of A. Similarly
for B. So the present corollary follows from Corollary 23.9b.

This gives the following basic min-max relation for the maximum number
of disjoint common transversals, given by Fulkerson [1971b] and de Sousa
[1971]:

Corollary 23.9d. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families
of sets and let k be a natural number. Then A and B have k disjoint common
transversals if and only if

(23.34) |AI ∩ BJ | ≥ k(|I| + |J | − n).

for all I, J ⊆ {1, . . . , n}.
Proof. Necessity of (23.34) being easy, we show sufficiency.

Let A′ arise by taking k copies of A and let B′ arise from taking k copies
of B. Condition (23.34) implies that A′ and B′ have a common transversal, S
say (by Theorem 23.1). Then we can partition S into subsets A′

1, . . . , A
′
n, with

A′
i ⊆ Ai and |A′

i| = k. Similarly, we can partition S into subsets B′
1, . . . , B

′
n,

with B′
i ⊆ Bi and |B′

i| = k. Then by Corollary 23.9c, S has a partition into
k common transversals of A and B.

(Note that if A and B are partitions of a set, this corollary reduces to Corol-
lary 20.9a.)

The following open problem, dealing with packing common transversals,
was mentioned by Fulkerson [1971b]: Let A and B be families of subsets of a
set S and let c ∈ Z

S
+. What is the maximum number k of common transversals

T1, . . . , Tk such that

(23.35) χT1 + · · · + χTk ≤ c?

More generally than Corollary 23.9d, one has for disjoint common partial
transversals of prescribed size (Fulkerson [1971b]):
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Theorem 23.10. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families of
sets and let k, p ∈ Z+. Then there exist k disjoint common partial transversals
of size p if and only if

(23.36) |AI ∩ BJ | ≥ k(|I| + |J | + p − n − m)

for all I ⊆ {1, . . . , n} and J ⊆ {1, . . . , m}.
Proof. Construct A′ and B′ as in Corollary 23.9d. By Corollary 23.1a, (23.36)
implies that A′ and B′ have a common partial transversal, T say, of size pk.
Then each Ai has a subset A′

i such that |A′
i| ≤ k and such that A′

1, . . . , A
′
n

partition T . We can assume that A′
i = Ai for each i, and hence that A is a

partition of T into classes of size at most k.
Similarly, we can assume that B is a partition of T into classes of size at

most k.
Now make a bipartite graph G, with colour classes {a1, . . . , an} and

{b1, . . . , bm}, connecting ai and bj by |Ai ∩ Bj | parallel edges. So G has
kp edges and maximum degree k, and hence, by Theorem 20.8, the edges of
G can be coloured with k colours, each of size p. It implies that T can be
partitioned into common partial transversals of A and B of size p.

Similarly to Theorem 23.9 one can prove the following exchange property:

Theorem 23.11. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let k ∈ Z+. Suppose that A has k disjoint transver-
sals and that also B has k disjoint transversals. Then S has k disjoint sub-
sets S1, . . . , Sk such that each Si contains a transversal of A and contains a
transversal of B.

Proof. As A has k disjoint transversals, there exist disjoint sets A′
1, . . . , A

′
n

with A′
i ⊆ Ai and |A′

i| = k for i = 1, . . . , k. For our purposes, we can assume
that A′

i = Ai. Let Y be the union of the Ai. Similarly, we can assume that
B1, . . . , Bn have size k each and partition some set Z.

Again, make a bipartite graph G, with colour classes {a1, . . . , an} and
{b1, . . . , bn}, connecting ai and bj by |Ai ∩ Bj | parallel edges. Then G has
maximum degree at most k, and hence, by Kőnig’s edge-colouring theorem
(Theorem 20.1), G is k-edge-colourable. It gives a partition of Y ∩ Z into
k classes each intersecting any Ai and Bi in at most one element. We can
extend this partition to a partition of Y ∪Z into classes each intersecting any
Ai and any Bi in exactly one element. This is a partition as required.

This implies another min-max relation:

Corollary 23.11a. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families
of subsets of a set S. Then the maximum number k for which there exist dis-
joint subsets S1, . . . , Sk each containing a transversal of A and a transversal
of B is equal to
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(23.37) � min
∅�=I⊆{1,...,n}

min{ |AI |
|I| , |BI |

|I| }�.

Proof. Directly from Theorems 22.10 and 23.11.

An analogue of Corollary 23.9d for covering by common transversals is:

Theorem 23.12. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of S and let X ⊆ S. Then X can be covered by k common transversals
if and only if

(23.38) k|AI ∩ BJ | ≥ k(|I| + |J | − n) + |X \ (AI ∪ BJ)|
for all I, J ⊆ {1, . . . , n}.
Proof. To see necessity, let T1, . . . , Tk be common transversals covering X
and let I, J ⊆ {1, . . . , n}. Then

(23.39) k|AI ∩ BJ | ≥
k∑

j=1

|AI ∩ BJ ∩ Tj |

=
k∑

j=1

(|AI ∩ Tj | + |BJ ∩ Tj | − |Tj ∩ (AI ∪ BJ)|)

≥
k∑

j=1

(|I| + |J | − |Tj ∩ (AI ∪ BJ)|)

= k(|I| + |J | − n) +
k∑

j=1

|Tj \ (AI ∪ BJ)|

≥ k(|I| + |J | − n) + |X \ (AI ∪ BJ)|.
To see sufficiency, make a directed graph D, with vertex set

(23.40) {r} ∪ {a1, . . . , an} ∪ S ∪ S′ ∪ {b1, . . . , bn},

where S′ is a set consisting of, for each s ∈ S, a (new) copy s′ of s, and with
arcs, with demands and capacities, as follows:

(23.41) (r, ai) with demand k and capacity k, for i = 1, . . . , n,
(ai, s) with demand 0 and capacity ∞ for i = 1, . . . , n and s ∈ Ai,
(s, s′) with demand 1 (if s ∈ X) or 0 (if s �∈ X) and capacity k,
for s ∈ S,
(s′, bi) with demand 0 and capacity ∞, for i = 1, . . . , n and s ∈
Bi,
(bi, r) with demand k and capacity k, for i = 1, . . . , n.

Then by Hoffman’s circulation theorem (Theorem 11.2), (23.38) implies the
existence of a circulation f obeying the demands and capacities. Indeed,
consider any set U of vertices of D. Let I := {i | ai ∈ U}, J := {j | bj �∈ U},
Y := U ∩ S and Z := {s ∈ S | s′ �∈ U}. We can assume that the capacity of
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the arcs leaving U is finite, and hence, if i ∈ I, then Ai ⊆ Y and if j ∈ J ,
then Bj ⊆ Z. That is, AI ⊆ Y and BJ ⊆ Z.

If r �∈ U , then the total demand of the arcs entering U is equal to

(23.42) k|I| + |X \ (Y ∪ Z)|
and the total capacity of the arcs leaving U is equal to

(23.43) k|Y ∩ Z| + k(n − |J |).
Since AI ⊆ Y and BJ ⊆ Z, (23.38) implies that (23.42) is at most (23.43).

If r ∈ U , then the total demand of the arcs entering U is equal to

(23.44) k|J | + |X \ (Y ∪ Z)|
and the total capacity of the arcs leaving U is equal to

(23.45) k|Y ∩ Z| + k(n − |I|).
Since AI ⊆ Y and BJ ⊆ Z, (23.38) implies that (23.44) is at most (23.45).

So Hoffman’s condition is satisfied, and hence there exists a circulation
f .

Now f is at most k on any arc. Hence, by Corollary 11.2b, f is the sum
of k {0, 1}-valued circulations f1, . . . , fk. For each circulation fi, the set Ti

of s ∈ S with fi(s, s′) = 1 is a common transversal of A and B. Moreover,
since f(s, s′) ≥ 1 for each s ∈ X, these common transversals cover X.

A covering theorem different from Theorem 23.12 is due to Brualdi
[1971b]:

Theorem 23.13. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be fami-
lies of subsets of a set S. Suppose that S can be covered by k common partial
transversals of A and B. Then S can be covered by k common partial transver-
sals each of size �|S|/k� or �|S|/k�.
Proof. The assumption implies that each Ai contains a subset A′

i with |A′
i| ≤

k, such that the A′
i partition S. For our purposes, we can assume that A′

i = Ai

for each i. Similarly, we can assume that B is a partition of S into classes of
size at most k.

Again, make a bipartite graph G, with colour classes {a1, . . . , an} and
{b1, . . . , bm}, connecting ai and bj by |Ai ∩ Bj | parallel edges. Then G has
maximum degree at most k, and hence, by Theorem 20.8, G is k-edge-
colourable, where each colour has size �|S|/k� or �|S|/k�. This yields a par-
tition of S into k common partial transversals as required.
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23.7. Further results and notes

23.7a. Capacitated common transversals

Recall the definition of system of restricted representatives: Let A = (A1, . . . , An)
be a collection of subsets of a set S and let a, b ∈ Z

S
+ with a ≤ b. A system of

restricted representatives (or SRR) of A (with respect to a and b) is a sequence
(s1, . . . , sn) such that

(23.46) (i) si ∈ Ai for i = 1, . . . , n;
(ii) a(s) ≤ |{i | si = s}| ≤ b(s) for s ∈ S.

Ford and Fulkerson [1958c] derived the following characterization of the existence of
a common system of restricted representatives from the max-flow min-cut theorem
(we give the derivation from Corollary 23.1b based on splitting elements, due to
Mirsky and Perfect [1968]):

Theorem 23.14. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets
of a set S and let a, b ∈ Z

S
+ with a ≤ b. Then A and B have a common system of

restricted representatives if and only if

(23.47) b(AI ∩ BJ) ≥ |I| + |J | − n + a(S \ (AI ∪ BJ))

for all I, J ⊆ {1, . . . , n}.

Proof. Let for any s ∈ S, Zs be a set of b(s) (new) elements. Replace in each Ai

and Bj , any occurrence of any s ∈ S by the elements of Zs. Choose from each
Zs, a(s) elements, forming the set X. Then A and B have a common system of
restricted representatives if and only if the new families have a common transversal
containing X. Trivially, condition (23.47) is equivalent to condition (23.8) for the
new families, and hence the theorem follows from Corollary 23.1b.

(More can be found in Mirsky [1968b].)

23.7b. Exchange properties

Mirsky [1968a] showed the following exchange property of common transversals:

Theorem 23.15. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families of sets.
Let I ′, I ′′ ⊆ {1, . . . , n} and J ′, J ′′ ⊆ {1, . . . , m}. Suppose that (Ai | i ∈ I ′) and
(Bj | j ∈ J ′) have a common transversal, and also that (Ai | i ∈ I ′′) and (Bj | j ∈
J ′′) have a common transversal. Then there exist I and J with I ′ ⊆ I ⊆ I ′ ∪ I ′′

and J ′′ ⊆ J ⊆ J ′ ∪ J ′′ such that (Ai | i ∈ I) and (Bj | j ∈ J) have a common
transversal.

Proof. Directly from Corollary 9.12a applied to the digraph defined in (23.1).

This implies (Mirsky [1968a]):

Corollary 23.15a. Let A and B be families of sets and let A′ and B′ be subfam-
ilies of A and B respectively. Then there exist subfamilies A0 and B0 of A and B
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respectively satisfying A′ ⊆ A0 and B′ ⊆ B0 and having a common transversal if
and only if (i) A′ and some subfamily of B have a common transversal and (ii) B′

and some subfamily of A have a common transversal.

Proof. Directly from Theorem 23.15.

23.7c. Common transversals of three families

It is NP-complete to test if three families of sets have a common transversal, even
if each of the three families is a partition of S (E.L. Lawler — cf. Karp [1972b]).

Theorem 23.16. Testing if three partitions have a common transversal is NP-
complete.

Proof. I. It suffices to show the NP-completeness of the following problem:

(23.48) given disjoint sets X, Y, Z with |X| = |Y | ≥ |Z| and a collection C
of subsets U of W := X ∪ Y ∪ Z with |U ∩ X| = |U ∩ Y | = 1 and
|U ∩ Z| ≤ 1, decide if C contains a partition of W as subcollection.

To see this, first observe that we can assume that |X| = |Y | = |Z|. Indeed, we can
extend Z by a set R of size |X| − |Z| and replace each doubleton {x, y} in C by all
sets {x, y, w} with w ∈ R. Then the new collection contains a partition if and only
if the original collection contains one.

So we can assume that |X| = |Y | = |Z|. For w ∈ W , define Cw := {C ∈
C | w ∈ C}. Then the collection {Cw | w ∈ W} is the union of three partitions
of C. Moreover, these three partitions have a common transversal if and only if C
contains a partition of W . So this reduces problem (23.48) to the problem of finding
a common transversal of three partitions of a set.

II. So it suffices to show the NP-completeness of (23.48). We derive this from the
NP-completeness of the (more general) partition problem: decide if a given collection
B of subsets of a set Z contains a partition of Z as a subcollection (Corollary 4.1b).

Let V := {(B, z) | z ∈ B ∈ B}. Make, for each B ∈ B, an (arbitrary) directed
circuit on {(B, z) | z ∈ B}. This makes the directed graph D on V (consisting of
vertex-disjoint directed circuits). Define X := V × {1} and Y := V × {2}. Let C be
the collection of

(23.49) all triples {(B, z, 1), (B, z, 2), z} for all B ∈ B and z ∈ B, and
all pairs {(B, z, 1), (B, z′, 2)}, for all B ∈ B and z, z′ ∈ B such that D
contains an arc from z to z′.

So each element of X ∪ Y is in precisely two sets in C: a triple and a pair. Any
partition P ⊆ C of X ∪ Y ∪ Z contains, for any B ∈ B, either all triples containing
B or all pairs containing B. (Here containing B means: containing (B, z, i) for some
z, i.)

This implies that C contains a partition of X ∪ Y ∪ Z if and only if B contains
a partition of Z.

As indicated in this proof, the problem of finding a common transversal of three
partitions is equivalent to the 3-dimensional matching problem: given a partition
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U, V, W of a finite set S and a collection C of subsets X of S satisfying |X ∩ U | =
|X ∩ V | = |X ∩ W | = 1, does C have a subcollection that partitions S?

The following necessary condition for the existence of a common transversal of
three families A = (A1, . . . , An), B = (B1, . . . , Bn), and C = (C1, . . . , Cn) of sets is
not sufficient: for all I, J, K ⊆ {1, . . . , n}
(23.50) |AI ∩ BJ ∩ CK | ≥ |I| + |J | + |K| − 2n.

(This would generalize condition (23.3).) To see this, consider A = ({a}, {b, c}),
B = ({b}, {a, c}), C = ({c}, {a, b}).

More on common transversals of more than two families is given by Brown
[1976,1984], Dacić [1977,1979], Longyear [1977], and Zaverdinos [1981]. Woodall
[1982] studied fractional transversals, and described a good characterization for the
existence of a common fractional transversal for more than two families, based on
linear programming.

23.7d. Further notes

Weinberger [1974b] observed that if the families A = (A1, . . . , An) and B =
(B1, . . . , Bn) of subsets of a set S are uniform (that is, all sets have the same
size) and regular (that is, each s ∈ S is in the same number of sets), then A and B
have a common transversal.

Further work on common transversals (including extensions to the infinite case)
is reported by Perfect [1969b], Brualdi [1970b,1971a], and Davies and McDiarmid
[1976].
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