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Paths belong to the most basic and important objects in combinatorial optimization.
First of all, paths are of direct practical use, to make connections and to search. One
can imagine that even in very primitive societies, finding short paths and searching
(for instance, for food) is essential. ‘Short’ need not be just in terms of geometric
distance, but might observe factors like differences in height, crosscurrent, and
wind. In modern societies, searching is also an important issue in several kinds of
networks, like in communication webs and data structures. Several other nonspatial
problems (like the knapsack problem, dynamic programming) can be modelled as
a shortest path problem. Also planning tools like PERT and CPM are based on
shortest paths.
Next to that, paths form an important tool in solving other combinatorial optimiza-
tion problems. In a large part of combinatorial algorithms, finding an appropriate
path is the main issue in a subroutine or in the iterations. Several combinatorial
optimization problems can be solved by iteratively finding a shortest path.
Disjoint paths were first investigated in a topological setting by Menger starting in
the 1920s, leading to Menger’s theorem, a min-max relation equating the maximum
number of disjoint s − t paths and the minimum size of an s − t cut. The theorem
is fundamental to graph theory, and provides an important tool to handle the
connectivity of graphs.
In a different environment, the notion of flow in a graph came up, namely at RAND
in the 1950s, motivated by a study of the capacity of the Soviet and East Euro-
pean railway system. It inspired Ford and Fulkerson to develop a maximum flow
algorithm based on augmenting paths and to prove the max-flow min-cut theorem.
As flows can be considered as linear combinations of incidence vectors of paths,
there is a close connection between disjoint paths and flow problems, and it turned
out that the max-flow min-cut theorem and Menger’s theorem can be derived from
each other.
Minimum-cost flows can be considered as the common generalization of shortest
paths and disjoint paths/flows. Related are minimum-cost circulations and trans-
shipments. This connects the topic to the origins of linear programming in the 1940s,
when Koopmans designed pivot-like procedures for minimum-cost transshipment in
order to plan protected ship convoys during World War II.
Actually, linear programming and polyhedral methods apply very favourably to
path and flow problems, by the total unimodularity of the underlying constraint
matrices. They lead to fast, strongly polynomial-time algorithms for such problems,
while also fast direct, combinatorial algorithms have been found.
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Chapter 6

Shortest paths: unit lengths

The first three chapters of this part are devoted to the shortest path prob-
lem. A number of simple but fundamental methods have been developed
for it.
The division into the three chapters is by increasing generality of the length
function. In the present chapter we take unit lengths; that is, each edge or
arc has length 1. Equivalently, we search for paths with a minimum number
of edges or arcs. We also consider ‘zero length’, equivalently, searching for
any path.
Next, in Chapter 7, we consider nonnegative lengths, where Dijkstra’s
method applies. Finally, in Chapter 8, we go over to arbitrary lengths.
If we put no further constraints, the shortest path problem is NP-complete
(in fact, even if all lengths are −1). But if there are no negative-length
directed circuits, the problem is polynomial-time solvable, by the Bellman-
Ford method.
The methods and results in this chapter generally apply to directed and
undirected graphs alike; however, in case of an undirected graph with length
function such that each circuit has nonnegative length, the problem is
polynomial-time, but the method is much more involved. It can be solved
in polynomial time with nonbipartite matching methods, and for this we
refer to Section 29.2.
In this chapter, graphs can be assumed to be simple.

6.1. Shortest paths with unit lengths

Let D = (V, A) be a digraph. In this chapter, the length of any path in D is
the number of its arcs. For s, t ∈ V , the distance from s to t is the minimum
length of any s− t path. If no s− t path exists, we set the distance from s to
t equal to ∞.

There is an easy min-max relation, due to Robacker [1956b], characteriz-
ing the minimum length of an s − t path. Recall that a subset C of A is an
s− t cut if C = δout(U) for some subset U of V satisfying s ∈ U and t �∈ U .1

1 δout(U) and δin(U) denote the sets of arcs leaving and entering U , respectively.
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Theorem 6.1. Let D = (V, A) be a digraph and let s, t ∈ V . Then the
minimum length of an s− t path is equal to the maximum number of disjoint
s− t cuts.

Proof. Trivially, the minimum is at least the maximum, since each s− t path
intersects each s − t cut in at least one arc. That the minimum is equal to
the maximum follows by considering the s− t cuts δout(Ui) for i = 1, . . . , d,
where d is the distance from s to t and where Ui is the set of vertices of
distance less than i from s.

(This is the proof of Robacker [1956b].)
Dantzig [1957] observed the following. Let D = (V, A) be a digraph and

let s ∈ V . A rooted tree T = (V ′, A′) rooted at s is called a shortest paths
tree (rooted at s) if V ′ is the set of vertices in D reachable from s and A′ ⊆ A,
such that for each t ∈ V ′, the s− t path in T is a shortest s− t path in D.

Theorem 6.2. Let D = (V, A) be a digraph and let s ∈ V . Then there exists
a shortest paths tree rooted at s.

Proof. Let V ′ be the set of vertices reachable in D from s. Choose, for each
t ∈ V ′ \ {s}, an arc at that is the last arc of some shortest s − t path in D.
Then A′ := {at | t ∈ V ′ \ {s}} gives the required rooted tree.

The above trivially applies also to undirected graphs.

6.2. Shortest paths with unit lengths algorithmically:
breadth-first search

The following algorithm of Berge [1958b] and Moore [1959], essentially
breadth-first search, determines the distance from s to t. Let Vi denote the
set of vertices of D at distance i from s. Then V0 = {s}, and for each i:

(6.1) Vi+1 is equal to the set of vertices v ∈ V \ (V0 ∪ V1 ∪ · · · ∪ Vi) for
which (u, v) ∈ A for some u ∈ Vi.

This gives us directly an algorithm for determining the sets Vi: we set V0 :=
{s} and next we determine with rule (6.1) the sets V1, V2, . . . successively,
until Vi+1 = ∅.

In fact, it gives a linear-time algorithm, and so:

Theorem 6.3. Given a digraph D = (V, A) and s, t ∈ V , a unit-length
shortest s− t path can be found in linear time.

Proof. Directly from the description.



Section 6.3. Depth-first search 89

In fact, the algorithm finds the distance from s to all vertices reachable
from s. Moreover, it gives the shortest paths, even the shortest paths tree:

Theorem 6.4. Given a digraph D = (V, A) and s ∈ V , a shortest path tree
rooted at s can be found in linear time.

Proof. Use the algorithm described above.

6.3. Depth-first search

In certain cases it is more useful to scan a graph not by breadth-first search
as in Section 6.2, but by depth-first search (a variant of which goes back to
Tarry [1895]).

Let D = (V, A) be a digraph. Define the operation of scanning a vertex v
recursively by:

(6.2) For each arc a = (v, w) ∈ δout(v): delete all arcs entering w and
scan w.

Then depth-first search from a vertex s amounts to scanning s. If each vertex
of D is reachable from s, then all arcs a chosen in (6.2) form a rooted tree
with root s. This tree is called a depth-first search tree.

This can be applied to find a path and to sort and order the vertices of a
digraph D = (V, A). We say that vertices v1, . . . , vn are in topological order
if i < j for all i, j with (vi, vj) ∈ A. So a subset of V can be topologically
ordered only if it induces no directed circuit.

To grasp the case where directed circuits occur, we say that vertices
v1, . . . , vn are in pre-topological order if for all i, j, if vj is reachable from vi

and j < i, then vi is reachable from vj . So if D is acyclic, any pre-topological
order is topological.

We can interpret a pre-topological order as a linear extension of the partial
order ≺ defined on V by:

(6.3) v ≺ w ⇐⇒ w is reachable from v, but v is not reachable from
w.

Thus a pre-topological ordering is one satisfying: vi ≺ vj ⇒ i < j.
The following was shown by Knuth [1968] and Tarjan [1974d] (cf. Kahn

[1962]):

Theorem 6.5. Given a digraph D = (V, A) and s ∈ V , the vertices reachable
from s can be ordered pre-topologically in time O(m′), where m′ is the number
of arcs reachable from s.

Proof. Scan s. Then recursively all vertices reachable from s will be scanned,
and the order in which we finish scanning them is the opposite of a pre-
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topological order: for vertices v, w reachable from s, if D has a v − w path
but no w − v path, then scanning w is finished before scanning v.

This implies:

Corollary 6.5a. Given a digraph D = (V, A), the vertices of D can be ordered
pre-topologically in linear time.

Proof. Add a new vertex s and arcs (s, v) for each v ∈ V . Applying Theorem
6.5 gives the required pre-topological ordering.

For acyclic digraphs, it gives a topological order:

Corollary 6.5b. Given an acyclic digraph D = (V, A), the vertices of D can
be ordered topologically in linear time.

Proof. Directly from Corollary 6.5a, as a pre-topological order of the vertices
of an acyclic graph is topological.

(The existence of a topological order for an acyclic digraph is implicit in the
work of Szpilrajn [1930].)

One can also use a pre-topological order to identify the strong components
of a digraph in linear time (Karzanov [1970], Tarjan [1972]). We give a method
essentially due to S.R. Kosaraju (cf. Aho, Hopcroft, and Ullman [1983]) and
Sharir [1981].

Theorem 6.6. Given a digraph D = (V, A), the strong components of D can
be found in linear time.

Proof. First order the vertices of D pre-topologically as v1, . . . , vn. Next let
V1 be the set of vertices reachable to v1. Then V1 is the strong component
containing v1: each vj in V1 is reachable from v1, by the definition of pre-
topological order.

By Theorem 6.5, the set V1 can be found in time O(|A1|), where A1 is the
set of arcs with head in V1. Delete from D and from v1, . . . , vn all vertices
in V1 and all arcs in A1, yielding the subgraph D′ and the ordered vertices
v′
1, . . . , v

′
n′ . This is a pre-topological order for D′, for suppose that i < j

and that v′
i is reachable from v′

j in D′ while v′
j is not reachable in D′ from

v′
i. Then v′

j is also not reachable in D from v′
i, since otherwise V1 would be

reachable in D from v′
i, and hence v′

i ∈ V1, a contradiction.
So recursion gives all strong components, in linear time.

As a consequence one has for undirected graphs (Shirey [1969]):

Corollary 6.6a. Given a graph G = (V, E), the components of G can be
found in linear time.
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Proof. Directly from Theorem 6.6.

If we apply depth-first search to a connected undirected graph G = (V, E),
starting from a vertex s, then the depth-first search tree T has the property
that

(6.4) for each edge e = uv of G, u is on the s− v path in T or v is on
the s− u path in T .

So the ends of each edge e of G are connected by a directed path in T .

6.4. Finding an Eulerian orientation

An orientation D = (V, A) of an undirected graph G = (V, E) is called an
Eulerian orientation if

(6.5) degin
A (v) = degout

A (v)

for each v ∈ V . As is well-known, an undirected graph G = (V, E) has an
Eulerian orientation if and only if each v ∈ V has even degree in G. (We do
not require connectivity.)

An Eulerian orientation can be found in linear time:

Theorem 6.7. Given an undirected graph G = (V, E) with all degrees even,
an Eulerian orientation of G can be found in O(m) time.

Proof. We assume that we have a list of vertices, and, with each vertex v, a
list of edges incident with v.

Consider the first nonisolated vertex in the list, v say. Starting at v, we
make a walk such that no edge is traversed more than once. We make this
walk as long as possible. Since all degrees are even, we terminate at v.

We orient all edges traversed in the direction as traversed, delete them
from G, find the next nonisolated vertex, and iterate the algorithm. We stop
if all vertices are isolated. Then all edges are oriented as required.

6.5. Further results and notes

6.5a. All-pairs shortest paths in undirected graphs

Theorem 6.3 directly gives that determining the distances in a digraph D = (V, A)
between all pairs of vertices can be done in time O(nm); similarly for undirected
graphs.

Seidel [1992,1995] gave the following faster method for dense undirected graphs
G = (V, E), assuming without loss of generality that G is connected (by Corollary
6.6a).
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For any undirected graph G = (V, E), let distG(v, w) denote the distance
between v and w in G (with unit-length edges). Moreover, let G2 denote the
graph with vertex set V , where two vertices v, w are adjacent in G2 if and only
if distG(v, w) ≤ 2.

Let M(n) denote the time needed to determine the product A · B of two n × n
matrices A and B, each with entries in {0, . . . , n}.

It is not difficult to see that the following problem can be solved in time
O(M(n)):
(6.6) given: an undirected graph G = (V, E);

find: the undirected graph G2.
Moreover, also the following problem can be solved in time O(M(n)):
(6.7) given: an undirected graph G = (V, E) and the function distG2 ;

find: the function distG.

Lemma 6.8α. Problem (6.7) can be solved in time O(M(n)).

Proof. Let A be the adjacency matrix of G and let T be the V × V matrix with
Tv,w = distG2(v, w) for all v, w ∈ V . Note that distG2 = �distG/2�. Let B := T · A.
So for all u, w ∈ V :

(6.8) Bu,w =
∑

v∈N(w)

distG2(u, v).

Now if distG(u, w) = 2�distG(u, w)/2�, then �distG(u, v)/2� ≥ �distG(u, w)/2� for
each neighbour v of w, and hence Bu,w ≥ deg(v)�distG(u, w)/2�. On the other
hand, if distG(u, w) = 2�distG(u, w)/2�− 1, then �distG(u, v)/2� ≤ �distG(u, w)/2�
for each neighbour v of w, with strict inequality for at least one neighbour v of
w (namely any neighbour of w on a shortest u − w path). So we have Bu,w <
deg(v)�distG(u, w)/2�. We conclude that having G, distG2 = �distG/2�, and B, we
can derive distG. As we can calculate B in time O(M(n)), we have the lemma.

The all-pairs shortest paths algorithm now is described recursively as follows:
(6.9) If G is a complete graph, the distance between any two distinct vertices

is 1. If G is not complete, determine G2 and from this (recursively)
distG2 . Next determine distG.

Theorem 6.8. Given an undirected graph G on n vertices, the function distG can be
determined in time O(M(n) log n). Here M(n) denotes the time needed to multiply
two n × n matrices each with entries in {0, . . . , n}.

Proof. Determining G2 from G and determining distG from G and distG2 can be
done in time O(M(n)). Since the depth of the recursion is O(log n), the algorithm
has running time O(M(n) log n).

The results on fast matrix multiplication of Coppersmith and Winograd [1987,
1990] give M(n) = o(n2.376) (extending earlier work of Strassen [1969]).

Seidel [1992,1995] showed in fact that also shortest paths can be found in this
way. More precisely, for all u, w ∈ V with u �= w, a neighbour v of w can be found
such that distG(u, v) = distG(u, w) − 1, in time O(M(n) log n + n2 log2 n). Having
this, one can find, for any u, w ∈ V , a shortest u − w path in time O(distG(u, w)).



Section 6.5c. Ear-decomposition of strongly connected digraphs 93

6.5b. Complexity survey

Complexity survey for all-pairs shortest paths with unit lengths (∗ indicates an
asymptotically best bound in the table):

O(nm) Berge [1958b], Moore [1959]

O(n
3+ω

2 log3 n) Alon, Galil, and Margalit [1991,1997]

∗ O(nm logn(n2/m)) Feder and Motwani [1991,1995]

∗ O(nω log n) undirected Seidel [1992,1995]

Here ω is any real such that any two n × n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376).

Alon, Galil, and Margalit [1991,1997] extended their method to digraphs with
arc lengths in {−1, 0, 1}.

Related work was done by Fredman [1976], Yuval [1976], Romani [1980], Aing-
worth, Chekuri, and Motwani [1996], Zwick [1998,1999a,2002], Aingworth, Chekuri,
Indyk, and Motwani [1999], and Shoshan and Zwick [1999].

6.5c. Ear-decomposition of strongly connected digraphs

Let D = (V, A) be a directed graph. An ear of D is a directed path or circuit P in
D such that all internal vertices of P have indegree and outdegree equal to 1 in D.
The path may consist of a single arc — so any arc of D is an ear. If I is the set
of internal vertices of an ear P , we say that D arises from D − I by adding ear P .
An ear-decomposition of D is a series of digraphs D0, D1, . . . , Dk, where D0 = K1,
Dk = D, and Di arises from Di−1 by adding an ear (i = 1, . . . , k).

Digraphs having an ear-decomposition are be characterized by:

Theorem 6.9. A digraph D = (V, A) is strongly connected if and only if D has an
ear-decomposition.

Proof. Sufficiency of the condition is easy, since adding an ear to a strongly con-
nected graph maintains strong connectivity.

To see necessity, let D = (V, A) be strongly connected. Let D′ = (V ′, A′) be
a subgraph of D which has an ear-decomposition and with |V ′| + |A′| as large as
possible. (Such a subgraph exists, as any single vertex has an ear-decomposition.)

Then D′ = D, for otherwise there exists an arc a ∈ A \A′ with tail in V ′. Then
a is contained in a directed circuit C (as D is strongly connected). This circuit C
contains a subpath (or circuit) P such that P can be added as an ear to D′. This
contradicts the maximality of |V ′| + |A′|.

A related decomposition of strongly connected digraphs was described by Knuth
[1974]. Related work was done by Grötschel [1979].
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6.5d. Transitive closure

Complexity survey for finding the transitive closure of a directed graph (∗ indicates
an asymptotically best bound in the table):

O(n3) Warshall [1962]

∗ O(nm) Purdom [1970], cf. Coffy
[1973] (also Ebert [1981])

O(n3/ log n) Arlazarov, Dinits, Kronrod,
and Faradzhev [1970]

Õ(nω) Furman [1970], Munro [1971]

O(nω log n log log n log log log n) Aho, Hopcroft, and Ullman
[1974]

∗ O(nω log n log log log n log log log log n) Adleman, Booth, Preparata,
and Ruzzo [1978]

Again, ω is any real such that any two n × n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376). Moreover, f = Õ(g) if f = O(g logk g) for
some k.

For more on finding the transitive closure we refer to Fischer and Meyer [1971],
Munro [1971], O’Neil and O’Neil [1973], Dzikiewicz [1975], Sys�lo and Dzikiewicz
[1975], Warren [1975], Eve and Kurki-Suonio [1977], Adleman, Booth, Preparata,
and Ruzzo [1978], Schnorr [1978a], Schmitz [1983], Ioannidis and Ramakrishnan
[1988], Jakobsson [1991], Ullman and Yannakakis [1991], and Cohen [1994a,1997].

Aho, Garey, and Ullman [1972] showed that finding a minimal directed graph
having the same transitive closure as a given directed graph, has the same time
complexity as finding the transitive closure.

6.5e. Further notes

For the decomposition of graphs into 3-connected graphs, see Cunningham and
Edmonds [1980]. Karzanov [1970] and Tarjan [1974b] gave linear-time algorithms
(based on a search method) to find the bridges of an undirected graph.

Theorem 6.1 implies the result of Moore and Shannon [1956] that if D = (V, A)
is a digraph, s, t ∈ V , and l is the minimum length of an s − t path and w is the
minimum size of an s − t cut, then |A| ≥ lw (the length-width inequality).

Finding a shortest (directed) circuit in a (directed) graph can be reduced to
finding a shortest path. More efficient algorithms were given by Itai and Rodeh
[1978].

Barnes and Ruzzo [1991,1997] gave a polynomial-time algorithm to test if there
exists an s − t path in an undirected graph, using sublinear space only. This was
extended to directed graphs by Barnes, Buss, Ruzzo, and Schieber [1992,1998].
Related work was done by Savitch [1970], Cook and Rackoff [1980], Beame, Borodin,
Raghavan, Ruzzo, and Tompa [1990,1996], Nisan [1992,1994], Nisan, Szemeredi,
and Wigderson [1992], Broder, Karlin, Raghavan, and Upfal [1994], and Armoni,
Ta-Shma, Wigderson, and Zhou [1997,2000].
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Karp and Tarjan [1980a,1980b] gave algorithms for finding the connected com-
ponents of an undirected graph, and the strong components of a directed graph, in
O(n) expected time. More on finding strong components can be found in Gabow
[2000a].

Books discussing algorithmic problems on paths with unit lengths (reachability,
closure, etc.) include Even [1973], Aho, Hopcroft, and Ullman [1974,1983], Chris-
tofides [1975], Cormen, Leiserson, and Rivest [1990], Lengauer [1990], Jungnickel
[1999], and Mehlhorn and Näher [1999]. Berge [1958b] gave an early survey on
shortest paths.



Chapter 7

Shortest paths: nonnegative
lengths

In this chapter we consider the shortest path problem in graphs where each
arc has a nonnegative length, and describe Dijkstra’s algorithm, together
with a number of speedups based on heaps.
In this chapter, graphs can be assumed to be simple. If not mentioned ex-
plicitly, length is taken with respect to a given function l.

7.1. Shortest paths with nonnegative lengths

The methods and results discussed in Chapter 6 for unit-length arcs can be
generalized to the case where arcs have a not necessarily unit length. For any
‘length’ function l : A → R and any path P = (v0, a1, v1, . . . , am, vm), the
length l(P ) of P is defined by:

(7.1) l(P ) :=
m∑

i=1

l(a).

The distance from s to t (with respect to l), denoted by distl(s, t), is equal
to the minimum length of any s− t path. If no s− t path exists, distl(s, t) is
set to +∞.

A weighted version of Theorem 6.1 is as follows, again due to Robacker
[1956b] (sometimes called the ‘max-potential min-work theorem’ (Duffin
[1962])):

Theorem 7.1. Let D = (V, A) be a digraph, let s, t ∈ V , and let l : A→ Z+.
Then the minimum length of an s− t path is equal to the maximum size k of
a family of s − t cuts C1, . . . , Ck such that each arc a is in at most l(a) of
the cuts Ci.

Proof. Again, the minimum is not smaller than the maximum, since if P is
any s− t path and C1, . . . , Ck is any collection as described in the theorem,
then
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(7.2) l(P ) =
∑

a∈AP

l(a) ≥
∑

a∈AP

(number of i with a ∈ Ci)

=
k∑

i=1

|Ci ∩AP | ≥
k∑

i=1

1 = k.

To see equality, let d be the distance from s to t and let Ui be the set of
vertices at distance less than i from s, for i = 1, . . . , d. Taking Ci := δout(Ui),
we obtain a collection C1, . . . , Cd as required.

A rooted tree T = (V ′, A′), with root s, is called a shortest paths tree for
a length function l : A→ R+, if V ′ is the set of vertices reachable from s and
A′ ⊆ A such that for each t ∈ V ′, the s− t path in T is a shortest s− t path
in D. Again, Dantzig [1957] showed:

Theorem 7.2. Let D = (V, A) be a digraph, let s ∈ V , and let l : A → R+.
Then there exists a shortest paths tree for l, with root s.

Proof. Let V ′ be the set of vertices reachable from s. Let A′ be an inclu-
sionwise minimal set containing for each t ∈ V ′ a shortest s − t path of D.
Suppose that some vertex v is entered by two arcs in A′. Then at least one of
these arcs can be deleted, contradicting the minimality of A′. One similarly
sees that no arc in A′ enters s.

7.2. Dijkstra’s method

Dijkstra [1959] gave an O(n2) algorithm to find a shortest s − t path for
nonnegative length functions — in fact, the output is a shortest paths tree
with root s. We describe Dijkstra’s method (the idea of this method was
also described by Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz
[1957]).

We keep a subset U of V and a function d : V → R+ (the tentative
distance). Start with U := V and set d(s) := 0 and d(v) =∞ if v �= s. Next
apply the following iteratively:

(7.3) Find u ∈ U minimizing d(u) over u ∈ U . For each a = (u, v) ∈ A
for which d(v) > d(u) + l(a), reset d(v) := d(u) + l(a). Reset
U := U \ {u}.

We stop if d(u) = ∞ for all u ∈ U . The final function d gives the distance
from s. Moreover, if we store for each v �= s the last arc a = (u, v) for which
we have reset d(v) := d(u) + l(a), we obtain a shortest path tree with root s.

Clearly, the number of iterations is at most |V |, while each iteration takes
O(n) time. So the algorithm has running time O(n2). Thus:

Theorem 7.3. Given a digraph D = (V, A), s ∈ V , and a length function
l : A→ Q+, a shortest paths tree with root s can be found in time O(n2).
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Proof. We show correctness of the algorithm. Let dist(v) denote the distance
from s to v, for any vertex v. Trivially, d(v) ≥ dist(v) for all v, throughout
the iterations. We prove that throughout the iterations, d(v) = dist(v) for
each v ∈ V \ U . At the start of the algorithm this is trivial (as U = V ).

Consider any iteration (7.3). It suffices to show that d(u) = dist(u) for
the chosen u ∈ U . Suppose d(u) > dist(u). Let s = v0, v1, . . . , vk = u be a
shortest s− u path. Let i be the smallest index with vi ∈ U .

Then d(vi) = dist(vi). Indeed, if i = 0, then d(vi) = d(s) = 0 = dist(s) =
dist(vi). If i > 0, then (as vi−1 ∈ V \ U):

(7.4) d(vi) ≤ d(vi−1) + l(vi−1, vi) = dist(vi−1) + l(vi−1, vi) = dist(vi).

This implies d(vi) ≤ dist(vi) ≤ dist(u) < d(u), contradicting the choice of u.

7.3. Speeding up Dijkstra’s algorithm with k-heaps

If |A| is asymptotically smaller than |V |2, one may expect faster methods
than O(n2). Such a method based on ‘heaps’ (introduced by Williams [1964]
and Floyd [1964]), was given by Murchland [1967b] and sharpened by Johnson
[1972], Johnson [1973b,1977a] and Tarjan [1983] (see Section 8.6g).

In Dijkstra’s algorithm, we spend (in total) O(m) time on updating the
values d(u), and O(n2) time on finding a u ∈ U minimizing d(u). As m ≤ n2,
a decrease in the running time bound requires a speedup in finding a u
minimizing d(u).

A way of doing this is based on storing U in some order such that a u ∈ U
minimizing d(u) can be found quickly and such that it does not take too much
time to restore the order if we delete a u minimizing d(u) or if we decrease
some d(u).

This can be done by using ‘heaps’, two forms of which we consider: k-heaps
(in this section) and Fibonacci heaps (in the next section).

A k-heap is an ordering u0, . . . , un of the elements of U such that for all
i, j, if ki < j ≤ k(i + 1), then d(ui) ≤ d(uj).

This is a convenient way of defining (and displaying) the heap, but it
is helpful to imagine the heap as a rooted tree on U : its arcs are the pairs
(ui, uj) with ki < j ≤ k(i + 1). So ui has outdegree k if k(i + 1) ≤ n. The
root of this rooted tree is u0.

If one has a k-heap, one easily finds a u minimizing d(u): it is the root
u0. The following two theorems are basic for estimating the time needed for
updating the k-heap if we change U or values of d(u). To swap ui and uj

means exchanging the positions of ui and uj in the order (that is, resetting
uj := ui and ui := the old uj).

Theorem 7.4. If u0 is deleted, the k-heap can be restored in time O(k logk n).
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Proof. Reset u0 := un and n := n − 1. Let i = 0. While there is a j with
ki < j ≤ ki + k, j ≤ n− 1, and d(uj) < d(ui), choose such a j with smallest
d(uj), swap ui and uj , and reset i := j.

The final k-heap is as required.

The operation described is called sift-down. The following theorem de-
scribes the operation sift-up.

Theorem 7.5. If d(ui) is decreased, the k-heap can be restored in time
O(logk n).

Proof. While i > 0 and d(uj) > d(ui) for j := � i−1
k �, swap ui and uj , and

reset i := j. The final k-heap is as required.

In Dijkstra’s algorithm, we delete at most |V | times a u minimizing d(u)
and we decrease at most |A| times any d(u). So using a k-heap, the algorithm
can be done in time O(nk logk n + m logk n). This implies:

Theorem 7.6. Given a digraph D = (V, A), s ∈ V , and a length function
l : A→ Q+, a shortest paths tree with root s can be found in time O(m logk n),
where k := max{2, m

n }.
Proof. See above.

This implies that if for some class of digraphs D = (V, A) one has |A| ≥
|V |1+ε for some fixed ε > 0, then there is a linear-time shortest path algorithm
for these graphs.

7.4. Speeding up Dijkstra’s algorithm with Fibonacci
heaps

Using a more sophisticated heap, the ‘Fibonacci heap’, Dijkstra’s algorithm
can be speeded up to O(m + n log n), as was shown by Fredman and Tarjan
[1984,1987].

A Fibonacci forest is a rooted forest (U, A), such that for each v ∈ U the
children of v can be ordered in such a way that the ith child has at least i−2
children. (If (u, v) ∈ A, v is called a child of u, and u the parent of v.)

Lemma 7.7α. In a Fibonacci forest (U, A), each vertex has outdegree at most
2 log2 |U |.
Proof. We show:

(7.5) if u has outdegree at least k, then at least
√

2
k

vertices are reach-
able from u.
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This implies the lemma, since
√

2
k ≤ |U | is equivalent to k ≤ 2 log2 |U |.

In proving (7.5), we may assume that u is a root. We prove (7.5) by
induction on k, the case k = 0 being trivial. If k ≥ 1, let v be the highest
ordered child of u. So v has outdegree at least k − 2. Then by induction, at
least

√
2

k−2
vertices are reachable from v. Next delete arc (u, v). We keep a

Fibonacci forest, in which u has outdegree at least k − 1. By induction, at
least

√
2

k−1
vertices are reachable from u in the new forest. Hence at least

(7.6)
√

2
k−2

+
√

2
k−1 ≥

√
2

k

vertices are reachable from u in the original forest.

(The recursion (7.6) shows that the Fibonacci numbers give the best bound,
justifying the name Fibonacci forest. The weaker bound given, however, is
sufficient for our purposes.)

A Fibonacci heap consists of a rooted forest F = (U, A) and functions
d : U → R and φ : U → {0, 1}, such that:

(7.7) (i) if (u, v) ∈ A, then d(u) ≤ d(v);
(ii) for each u ∈ U , the children of u can be ordered such that the

ith child v satisfies degout(v) + φ(v) ≥ i− 1;
(iii) if u and v are distinct roots of F , then degout(u) �= degout(v).

Condition (7.7)(ii) implies that F is a Fibonacci forest. So, by Lemma 7.7α,
condition (7.7)(iii) implies that F has at most 1 + 2 log2 |U | roots.

The Fibonacci heap will be specified by the following data structure,
where t := �2 log2 |U |�:
(7.8) (i) for each u ∈ U , a doubly linked list of the children of u (in any

order);
(ii) the function parent : U → U , where parent(u) is the parent of

u if it has one, and parent(u) = u otherwise;
(iii) the functions degout : U → Z+, φ : U → {0, 1}, and d : U → R;
(iv) a function b : {0, . . . , t} → U with b(degout(u)) = u for each

root u.

Theorem 7.7. When inserting p times a new vertex, finding and deleting n
times a root u minimizing d(u), and decreasing m times the value of d(u),
the structure can be restored in time O(m + p + n log p).

Proof. Inserting a new vertex v, with value d(v), can be done by setting
φ(v) := 0 and by applying:

(7.9) plant(v):
Let r := b(degout(v)).
If r is a root with r �= v, then:
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{

if d(r) ≤ d(v), add arc (r, v) to A and plant(r);
if d(r) > d(v), add arc (v, r) to A and plant(v);

else define b(degout(v)) := v.

Throughout we update the lists of children and the functions parent, degout,
φ, and b.

A root u minimizing d(u) can be found in time O(log p), by scanning
d(b(i)) for i = 0, . . . , t where b(i) is a root.

The root u can be deleted as follows. Let v1, . . . , vk be the children of u.
First delete u and all arcs leaving u from the forest. This maintains conditions
(7.7)(i) and (ii). Next, condition (7.7)(iii) can be restored by applying plant(v)
for each v = v1, . . . , vk.

If we decrease the value of d(u) for some u ∈ U we do the following:

(7.10) Determine the longest directed path P in F ending at u such
that each internal vertex v of P satisfies φ(v) = 1. Reset φ(v) :=
1−φ(v) for each v ∈ V P \{u}. Delete all arcs of P from A. Apply
plant(v) to each v ∈ V P that is a root of the new forest.

The fact that this maintains (7.7) uses that if the starting vertex q of P is
not a root of the original forest, then q �= u and φ(q) is reset from 0 to 1 —
hence degout(q) + φ(q) is not changed, and we maintain (7.7)(ii).

We estimate the running time. Throughout all iterations, φ increases at
most m times (at most once in each application of (7.10)). Hence φ decreases
at most m times. So the sum of the lengths of the paths P in (7.10) is at
most 2m. So A decreases at most 2m + 2n log2 p times (since each time we
delete a root we delete at most 2 log2 p arcs). Therefore, A increases at most
2m + 2n log2 p + p times (since the final |A| is less than p). This gives the
running time bound.

This implies for the shortest path problem:

Corollary 7.7a. Given a digraph D = (V, A), s ∈ V , and a length function l :
A→ Q+, a shortest paths tree with root s can be found in time O(m+n log n).

Proof. Directly from Dijkstra’s method and Theorem 7.7.

7.5. Further results and notes

7.5a. Weakly polynomial-time algorithms

The above methods all give a strongly polynomial-time algorithm for the shortest
path problem, with best running time bound O(m + n log n). If we allow also the
size of the numbers to occur in the running time bound, some other methods are
of interest that are in some cases (when the lengths are small integers) faster than
the above methods.
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In Dijkstra’s algorithm, we must select a u ∈ U with d(u) minimum. It was
observed by Dial [1969] that partitioning U into ‘buckets’ according to the values
of d gives a competitive running time bound. The method also gives the following
result of Wagner [1976]:

Theorem 7.8. Given a digraph D = (V, A), s ∈ V , l : A → Z+, and an upper
bound ∆ on max{distl(s, v) | v reachable from s}, a shortest path tree rooted at s
can be found in time O(m + ∆).

Proof. Apply Dijkstra’s algorithm as follows. Next to the function d : U → Z+ ∪
{∞}, we keep doubly linked lists L0, . . . , L∆ such that if d(u) ≤ ∆, then u is in
Ld(u). We keep also, for each i = 0, . . . , ∆, the first element ui of Li. If Li is empty,
then ui is void. Moreover, we keep a ‘current minimum’ µ ∈ {0, . . . , ∆}.

The initialization follows directly from the initialization of d: we set L0 := {s},
u0 := s, while Li is empty and ui void for i = 1, . . . , ∆. Initially, µ := 0.

The iteration is as follows. If Lµ = ∅ and µ ≤ ∆, reset µ := µ + 1. If Lµ �= ∅,
apply Dijkstra’s iteration to uµ: We remove uµ from Lµ. When decreasing some
d(u) from d to d′, we delete u from Ld (if d ≤ ∆) and insert it into Ld′ (if d′ ≤ ∆).

We stop if µ = ∆ + 1. With each removal or insertion, we can update the lists
and the ui in constant time. Hence we have the required running time.

A consequence is the bound of Dial [1969]:

Corollary 7.8a. Given a digraph D = (V, A), s ∈ V , and l : A → Z+, a shortest
path tree rooted at s can be found in time O(m+nL) where L := max{l(a) | a ∈ A}.

Proof. We can take ∆ = nL in Theorem 7.8.

One can derive from Theorem 7.8 also the following result of Gabow [1985b]:

Theorem 7.9. Given a digraph D = (V, A), s ∈ V , and a length function l :
A → Z+, a shortest paths tree rooted at s can be found in time O(m logd L), where
d = max{2, m/n}, and L := max{l(a) | a ∈ A}.

Proof. For each a ∈ A, let l′(a) := �l(a)/d. Recursively we find distl′(s, v) for all
v ∈ V , in time O(m logd L′) where L′ := �L/d. Note that logd L′ ≤ (logd L) − 1.
Now set

(7.11) l̃(a) := l(a) + d · distl′(s, u) − d · distl′(s, v)

for each a = (u, v) ∈ A. Then l̃(a) ≥ 0, since

(7.12) l(a) ≥ d · l′(a) ≥ d(distl′(s, v) − distl′(s, u)).

Moreover, distl̃(s, v) ≤ nd for each v reachable from s, since if P is an s − v path
with l′(P ) = distl′(s, v), then l̃(P ) = l(P ) − dl′(P ) ≤ nd. So by Theorem 7.8 we
can find distl̃(s, v) for all v ∈ V in time O(m), since nd ≤ 2m. As distl(s, v) =
distl̃(s, v) − d · distl′(s, v), we find the required data.

(This improves a result of Hansen [1980a].)
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7.5b. Complexity survey for shortest paths with nonnegative
lengths

The following gives a survey of the development of the running time bound for
the shortest path problem for a digraph D = (V, A), s, t ∈ V , and nonnegative
length-function l, where n := |V |, m := |A|, and L := max{l(a) | a ∈ A} (assuming
l integer). As before, ∗ indicates an asymptotically best bound in the table.

O(n4) Shimbel [1955]

O(n2mL) Ford [1956]

O(nm) Bellman [1958], Moore [1959]

O(n2 log n)
Dantzig [1958,1960], Minty (cf.
Pollack and Wiebenson [1960]),
Whiting and Hillier [1960]

O(n2) Dijkstra [1959]

O(m + nL) Dial [1969] (cf. Wagner [1976],
Filler [1976](=E.A. Dinits))

O(m log(2 + (n2/m))) Johnson [1972]

O(dn logd n + m + m logd(n2/m)) (for any d ≥ 2) Johnson [1973b]

O(m logm/n n) Johnson [1973b,1977a], Tarjan
[1983]

O(L + m log log L) van Emde Boas, Kaas, and Zijlstra
[1977]

O(m log log L + n log L log log L) Johnson [1977b]

O(mink≥2(nkL1/k + m log k)) Denardo and Fox [1979]

O(m log L) Hansen [1980a]

∗ O(m log log L) Johnson [1982], Karlsson and
Poblete [1983]

∗ O(m + n log n) Fredman and Tarjan [1984,1987]2

O(m logm/n L) Gabow [1983b,1985b]

∗ O(m + n
√

log L) Ahuja, Mehlhorn, Orlin, and
Tarjan [1990]

Fredman and Willard [1990,1994] gave an O(m + n log n
log log n

)-time algorithm for
shortest paths with nonnegative lengths, utilizing nonstandard capabilities of a
RAM like addressing. This was extended to O(m + n

√
log n log log n) by Raman

[1996], to O(m log log n) and O(m log log L) by Thorup [1996,2000b] (cf. Hagerup
[2000]), and to O(m+n(log L log log L)1/3) by Raman [1997]. For undirected graphs,

2 Aho, Hopcroft, and Ullman [1983] (p. 208) claimed to give an O(m + n log n)-time
shortest path algorithm based on 2-heaps, but they assume that, after resetting a value,
the heap can be restored in constant time.
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a bound of O(m) was achieved by Thorup [1997,1999,2000a]. Related results were
given by Pettie and Ramachandran [2002b].

The expected complexity of Dijkstra’s algorithm is investigated by Noshita,
Masuda, and Machida [1978], Noshita [1985], Cherkassky, Goldberg, and Silverstein
[1997,1999], Goldberg [2001a,2001b], and Meyer [2001].

In the special case of planar directed graphs:

O(n
√

log n) Frederickson [1983b,1987b]

∗ O(n) Klein, Rao, Rauch, and Subramanian [1994], Henzinger,
Klein, Rao, and Subramanian [1997]

For the all-pairs shortest paths problem with nonnegative lengths one has:

O(n4) Shimbel [1955]

O(n3 log n) Leyzorek, Gray, Johnson, Ladew,
Meaker, Petry, and Seitz [1957]

O(n2m) Bellman [1958], Moore [1959]

O(n3 log n)
Dantzig [1958,1960], Minty (cf.
Pollack and Wiebenson [1960]),
Whiting and Hillier [1960]

O(n3) Dijkstra [1959]

O(nm + n2L) Dial [1969] (cf. Wagner [1976])

O(nm log n) Johnson [1972]

O(n3(log log n/ log n)1/3) Fredman [1976]

O(nm logm/n n) Johnson [1973b,1977a], Tarjan
[1983]

O(nL + nm log log L) van Emde Boas, Kaas, and
Zijlstra [1977]

O(nm log log L + n2 log L log log L) Johnson [1977b]

O(nm log L) Hansen [1980a]

∗ O(nm log log L) Johnson [1982], Karlsson and
Poblete [1983]

∗ O(n(m + n log n)) Fredman and Tarjan [1984,1987]

O(nm logm/n L) Gabow [1983b,1985b]

∗ O(nm + n2√log L) Ahuja, Mehlhorn, Orlin, and
Tarjan [1990]

∗ O(n3(log log n/ log n)1/2) Takaoka [1992a,1992b]

∗ Õ(n
5ω−3
ω+1 L + n

3+ω
2 L

ω−1
2 ) Galil and Margalit [1997a,1997b]

∗ Õ(nωL
ω+1

2 ) undirected Galil and Margalit
[1997a,1997b]
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Here ω is any real such that any two n × n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376). Moreover, f = Õ(g) if f = O(g logk g)
for some k. (At the negative side, Kerr [1970] showed that matrix multiplication
of n × n matrices with addition and multiplication replaced by minimization and
addition, requires time Ω(n3).)

Spira [1973] gave an O(n2 log2 n) expected time algorithm for all-pairs short-
est paths with nonnegative lengths. This was improved to O(n2 log n log log n) by
Takaoka and Moffat [1980], to O(n2 log n log∗ n) by Bloniarz [1980,1983] (defining
log∗ n := min{i | log(i) n ≤ 1}, where log(0) n := n and log(i+1) n := log(log(i) n)),
and to O(n2 log n) by Moffat and Takaoka [1985,1987]. Related work includes Car-
son and Law [1977], Frieze and Grimmett [1985], Hassin and Zemel [1985], Walley
and Tan [1995], and Mehlhorn and Priebe [1997].

Yen [1972] (cf. Williams and White [1973]) described an all-pairs shortest paths
method (based on Dijkstra’s method) using 1

2n3 additions and n3 comparisons.
Nakamori [1972] gave a lower bound on the number of operations. Yao, Avis, and
Rivest [1977] gave a lower bound of Ω(n2 log n) for the time needed for the all-pairs
shortest paths problem.

Karger, Koller, and Phillips [1991,1993] and McGeoch [1995] gave an O(n(m∗ +
n log n)) algorithm for all-pairs shortest paths, where m∗ is the number of arcs that
belong to at least one shortest path. See also Yuval [1976] and Romani [1980] for
relations between all-pairs shortest paths and matrix multiplication.

Frederickson [1983b,1987b] showed that in a planar directed graph, with non-
negative lengths, the all-pairs shortest paths problem can be solved in O(n2) time.

7.5c. Further notes

Spira and Pan [1973,1975], Shier and Witzgall [1980], and Tarjan [1982] studied
the sensitivity of shortest paths trees under modifying arc lengths. Fulkerson and
Harding [1977] studied the problem of lengthening the arc lengths within a given
budget (where each arc has a given cost for lengthening the arc length) so as to
maximize the distance from a given source to a given sink. They reduced this
problem to a parametric minimum-cost flow problem. Land and Stairs [1967] and
Hu [1968] studied decomposition methods for finding all-pairs shortest paths (cf.
Farbey, Land, and Murchland [1967], Hu and Torres [1969], Yen [1971b], Shier
[1973], and Blewett and Hu [1977]).

Frederickson [1989,1995] gave a strongly polynomial-time algorithm to find an
O(n) encoding of shortest paths between all pairs in a directed graph with non-
negative length function. (It extends earlier work of Frederickson [1991] for planar
graphs.)

Algorithms for finding the k shortest paths between pairs of vertices in a directed
graph were given by Clarke, Krikorian, and Rausen [1963], Yen [1971a], Minieka
[1974], Weigand [1976], Lawler [1977], Shier [1979], Katoh, Ibaraki, and Mine [1982],
Byers and Waterman [1984], Perko [1986], Chen [1994], and Eppstein [1994b,1999].

Mondou, Crainic, and Nguyen [1991] gave a survey of shortest paths methods,
with computational results, and Raman [1997] on ‘recent’ results on shortest paths
with nonnegative lengths.
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Books covering shortest path methods for nonnegative lengths include Berge
[1973b], Aho, Hopcroft, and Ullman [1974,1983], Christofides [1975], Lawler [1976b],
Minieka [1978], Even [1979], Hu [1982], Papadimitriou and Steiglitz [1982], Smith
[1982], Sys�lo, Deo, and Kowalik [1983], Tarjan [1983], Gondran and Minoux [1984],
Rockafellar [1984], Nemhauser and Wolsey [1988], Bazaraa, Jarvis, and Sherali
[1990], Chen [1990], Cormen, Leiserson, and Rivest [1990], Lengauer [1990], Ahuja,
Magnanti, and Orlin [1993], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000].



Chapter 8

Shortest paths: arbitrary lengths

We now go over to the shortest path problem for the case where negative
lengths are allowed, but where each directed circuit has nonnegative length
(with no restriction, the problem is NP-complete). The basic algorithm here
is the Bellman-Ford method.
In this chapter, graphs can be assumed to be simple. If not mentioned ex-
plicitly, length is taken with respect to a given function l.

8.1. Shortest paths with arbitrary lengths but no
negative circuits

If lengths of arcs may take negative values, finding a shortest s − t path is
NP-complete — see Theorem 8.11 below. Negative-length directed circuits
seem to be the source of the trouble: if no negative-length directed circuits
exist, there is a polynomial-time algorithm — mainly due to the fact that
running into loops cannot give shortcuts. So a shortest walk (nonsimple path)
exists and yields a shortest path.

We first observe that if no negative-length directed circuits exists, then
the existence of a shortest paths tree is easy:

Theorem 8.1. Let D = (V, A) be a digraph, let s ∈ V , and let l : A→ R be
such that each directed circuit reachable from s has nonnegative length. Then
there exists a shortest paths tree with root s.

Proof. As the proof of Theorem 7.2.

8.2. Potentials

The following observation of Gallai [1958b] is very useful. Let D = (V, A) be
a digraph and let l : A→ R. A function p : V → R is called a potential if for
each arc a = (u, v):

(8.1) l(a) ≥ p(v)− p(u).
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Theorem 8.2. Let D = (V, A) be a digraph and let l : A → R be a length
function. Then there exists a potential if and only if each directed circuit
has nonnegative length. If moreover l is integer, the potential can be taken
integer.

Proof. Suffiency. Suppose that a function p as described exists. Let C =
(v0, a1, v1, . . . , am, vm) be a directed circuit (vm = v0). Then

(8.2) l(C) =
m∑

i=1

l(ai) ≥
m∑

i=1

(p(vi)− p(vi−1)) = 0.

Necessity. Suppose that each directed circuit has nonnegative length. For
each t ∈ V , let p(t) be the minimum length of any path ending at t (starting
wherever). This function satisfies the required condition.

Theorem 8.2 gives a good characterization for the problem of deciding if
there exists a negative-length directed circuit.

A potential is useful in transforming a length function to a nonnegative
length function: if we define l̃(a) := l(a)− p(v) + p(u) for each arc a = (u, v),
then we obtain a nonnegative length function l̃ such that each s − t path is
shortest with respect to l if and only if it is shortest with respect to l̃. So once
we have a potential p, we can find shortest paths with Dijkstra’s algorithm.
This can be used for instance in finding shortest paths between all pairs of
vertices — see Section 8.4.

One can also formulate a min-max relation in terms of functions that are
potentials on an appropriate subgraph. This result is sometimes called the
‘max-potential min-work theorem’ (Duffin [1962]).

Theorem 8.3. Let D = (V, A) be a digraph, let s, t ∈ V and let l : A → R.
Then distl(s, t) is equal to the maximum value of p(t)−p(s), where p : V → R

is such that l(a) ≥ p(v) − p(u) for each arc a = (u, v) traversed by at least
one s− t walk. If l is integer, we can restrict p to be integer.

Proof. Let p(v) := distl(s, v) if v belongs to at least one s − t walk, and
p(v) := 0 otherwise. This p is as required.

The following observation can also be of use, for instance when calculating
shortest paths by linear programming:

Theorem 8.4. Let D = (V, A) be a digraph, let s ∈ V be such that each vertex
of D is reachable from s, and let l : A→ R be such that each directed circuit
has nonnegative length. Let p be a potential with p(s) = 0 and

∑
v∈V p(v)

maximal. Then p(t) = distl(s, t) for each t ∈ V .
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Proof. One easily shows that for any potential p with p(s) = 0 one has
p(t) ≤ distl(s, t) for each t ∈ V . As distl(s, ·) is a potential, the theorem
follows.

8.3. The Bellman-Ford method

Also in the case of a length function without negative-length directed circuit,
there is a polynomial-time shortest path algorithm, the Bellman-Ford method
(Shimbel [1955], Ford [1956], Bellman [1958], Moore [1959]). Again, it finds
a shortest paths tree for any root s.

To describe the method, define for t ∈ V and k ≥ 0:

(8.3) dk(t) := minimum length of any s− t walk traversing at most k
arcs,

setting dk(t) :=∞ if no such walk exists.
Clearly, if there is no negative-length directed circuit reachable from s,

the distance from s to t is equal to dn(v), where n := |V |.
Algorithmically, the function d0 is easy to set: d0(s) = 0 and d0(t) = ∞

if t �= s. Next d1, d2, . . . can be successively computed by the following rule:

(8.4) dk+1(t) = min{dk(t), min
(u,t)∈A

(dk(u) + l(u, t))}

for all t ∈ V .
This method gives us the distance from s to t. It is not difficult to derive

a method finding a shortest paths tree with root s. Thus:

Theorem 8.5. Given a digraph D = (V, A), s ∈ V , and a length function
l : A → Q such that each directed circuit reachable from s has nonnegative
length, a shortest paths tree rooted at s can be found in time O(nm).

Proof. There are at most n iterations, each of which can be performed in
time O(m).

A negative-length directed circuit can be detected similarly:

Theorem 8.6. Given a digraph D = (V, A), s ∈ V , and a length function
l : A→ Q, a directed circuit of negative length reachable from s (if any exists)
can be found in time O(nm).

Proof. If dn �= dn−1, then dn(t) < dn−1(t) for some t ∈ V . So the algorithm
finds an s− t walk P of length dn(t), traversing n arcs. As P traverses n arcs,
it contains a directed circuit C. Removing C gives an s− t walk P ′ with less
than n arcs. So l(P ′) ≥ dn−1(t) > dn(t) = l(P ) and hence l(C) < 0.

If dn = dn−1, then there is no negative-length directed circuit reachable
from s.
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Also a potential can be found with the Bellman-Ford method:

Theorem 8.7. Given a digraph D = (V, A) and a length function l : A→ Q

such that each directed circuit has nonnegative length, a potential can be found
in time O(nm).

Proof. Extend D by a new vertex s and arcs (s, v) for v ∈ V , each of length 0.
Then setting p(v) equal to the distance from s to v (which can be determined
with the Bellman-Ford method) gives a potential.

We remark that the shortest path problem for undirected graphs, for
length functions without negative-length circuits, also can be solved in pol-
ynomial time. However, the obvious reduction — replacing every undirected
edge uv by two arcs (u, v) and (v, u) each of length l(uv) — may yield a
negative-length directed circuit. So in this case, the undirected case does not
reduce to the directed case, and we cannot apply the Bellman-Ford method.
The undirected problem can yet be solved in polynomial time, with the meth-
ods developed for the matching problem — see Section 29.2.

8.4. All-pairs shortest paths

Let D = (V, A) be a digraph and l : A → Q be a length function such
that each directed circuit has nonnegative length. By applying |V | times the
Bellman-Ford method one can find shortest s− t paths for all s, t ∈ V . As the
Bellman-Ford method takes time O(nm), this makes an O(n2m) algorithm.

A more efficient algorithm, the Floyd-Warshall method was described by
Floyd [1962b], based on an idea of Warshall [1962], earlier found by Kleene
[1956], Roy [1959], and McNaughton and Yamada [1960]: Order the vertices
of D (arbitrarily) as v1, . . . , vn. Define for s, t ∈ V and k ∈ {0, . . . , n}:
(8.5) dk(s, t) := minimum length of an s − t walk using only vertices

in {s, t, v1, . . . , vk}.
Clearly, d0(s, t) = l(s, t) if (s, t) ∈ A, while d0(s, t) =∞ otherwise. Moreover:

(8.6) dk+1(s, t) = min{dk(s, t), dk(s, vk+1) + dk(vk+1, t)}
for all s, t ∈ V and k < n.

This gives:

Theorem 8.8. Given a digraph D = (V, A) and a length function l : A→ Q

with no negative-length directed circuit, all distances distl(s, t) can be deter-
mined in time O(n3).

Proof. Note that distl = dn and that dn can be determined in n iterations,
each taking O(n2) time.
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The Floyd-Warshall method can be adapted so as to find for all s ∈ V , a
shortest s− t paths tree rooted at s.

A faster method was observed by Johnson [1973b,1977a] and Bazaraa and
Langley [1974]. Combined with the Fibonacci heap implementation of Dijk-
stra’s algorithm, it gives all-pairs shortest paths in time O(n(m + n log n)),
which is, if n log n = O(m), of the same order as the Bellman-Ford for single-
source shortest path. The idea is to preprocess the data by a potential func-
tion, so as to make the length function nonnegative, and next to apply Dijk-
stra’s method:

Theorem 8.9. Given a digraph D = (V, A) and a length function l : A→ Q

with no negative-length directed circuit, a family (Ts | s ∈ V ) of shortest paths
trees Ts rooted at s can be found in time O(n(m + n log n)).

Proof. With the Bellman-Ford method one finds a potential p in time O(nm)
(Theorem 8.7). Set l̃(a) := l(a) − p(v) + p(u) for each arc a = (u, v). So
l̃(a) ≥ 0 for each arc a. Next with Dijkstra’s method, using Fibonacci heaps,
one can determine for each s ∈ V a shortest paths tree Ts for l̃, in time
O(m + n log n) (Corollary 7.7a). As these are shortest paths trees also for l,
we have the current theorem.

8.5. Finding a minimum-mean length directed circuit

Let D = (V, A) be a directed graph (with n vertices) and let l : A→ R. The
mean length of a directed cycle (directed closed walk) C = (v0, a1, v1, . . . , at,
vt) with vt = v0 and t > 0 is l(C)/t. Karp [1978] gave the following
polynomial-time method for finding a directed cycle of minimum mean length.
For each v ∈ V and each k = 0, 1, 2, . . ., let dk(v) be the minimum length of
a walk with exactly k arcs, ending at v. So for each v one has

(8.7) d0(v) = 0 and dk+1(v) = min{dk(u) + l(a) | a = (u, v) ∈ δin(v)}.
Now Karp [1978] showed:

Theorem 8.10. The minimum mean length of a directed cycle in D is equal
to

(8.8) min
v∈V

max
0≤k≤n−1

dn(v)− dk(v)
n− k

.

Proof. We may assume that the minimum mean length is 0, since adding ε
to the length of each arc increases both minima in the theorem by ε. So we
must show that (8.8) equals 0.

First, let minimum (8.8) be attained by v. Let Pn be a walk with n
arcs ending at v, of length dn(v). So Pn can be decomposed into a path Pk,
say, with k arcs ending at v, and a directed cycle C with n − k arcs (for



112 Chapter 8. Shortest paths: arbitrary lengths

some k < n). Hence dn(v) = l(Pn) = l(Pk) + l(C) ≥ l(Pk) ≥ dk(v) and so
dn(v)− dk(v) ≥ 0. Therefore, (8.8) is nonnegative.

To see that it is 0, let C = (v0, a1, v1, . . . , at, vt) be a directed cycle of
length 0. Then minr dr(v0) is attained by some r with n− t ≤ r < n (as it is
attained by some r < n (since each circuit has nonnegative length), and as
we can add C to the shortest walk ending at v0). Fix this r.

Let v := vn−r, and split C into walks

(8.9) P := (v0, a1, v1, . . . , an−r, vn−r) and
Q := (vn−r, an−r+1,vn−r+1, . . . , at, vt).

Then dn(v) ≤ dr(v0) + l(P ), and therefore for each k:

(8.10) dk(v) + l(Q) ≥ dk+(t−(n−r))(v0) ≥ dr(v0) ≥ dn(v)− l(P ).

This implies dn(v) − dk(v) ≤ l(C) = 0. So the minimum (8.8) is at most 0.

Algorithmically, it gives:

Corollary 8.10a. A minimum-mean length directed circuit can be found in
time O(nm).

Proof. See the method above.

Notes. Karp and Orlin [1981] and Karzanov [1985c] gave generalizations. Orlin and
Ahuja [1992] gave an O(

√
n m log(nL)) algorithm for the minimum-mean length di-

rected circuit problem (cf. McCormick [1993]). Early work on this problem includes
Lawler [1967], Shapiro [1968], and Fox [1969].

8.6. Further results and notes

8.6a. Complexity survey for shortest path without negative-length
circuits

The following gives a survey of the development of the running time bound for the
shortest path problem for a digraph D = (V, A), s, t ∈ V , and l : A → Z (without
negative-length directed circuits), where n := |V |, m := |A|, L := max{|l(a)| ∣∣ a ∈
A}, and L′ := max{−l(a) | a ∈ A} (assuming L′ ≥ 2). As before, ∗ indicates an
asymptotically best bound in the table.

O(n4) Shimbel [1955]

O(n2mL) Ford [1956]

∗ O(nm) Bellman [1958], Moore [1959]

O(n3/4m log L′) Gabow [1983b,1985b]
�
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continued
O(

√
n m log(nL′)) Gabow and Tarjan [1988b,1989]

∗ O(
√

n m log L′) Goldberg [1993b,1995]

(Gabow [1983b,1985b] and Gabow and Tarjan [1988b,1989] give bounds with L
instead of L′, but Goldberg [1995] mentioned that an anonymous referee of his
paper observed that L can be replaced by L′.)

Kolliopoulos and Stein [1996,1998b] proved a bound of o(n3) for the average-
case complexity.

For the special case of planar directed graphs:

O(n3/2) Lipton, Rose, and Tarjan [1979]

O(n4/3 log(nL′)) Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

∗ O(n log3 n) Fakcharoenphol and Rao [2001]

For the all-pairs shortest paths problem, with no negative-length directed circuits,
one has:

O(n4) Shimbel [1955]

O(n3 log n) Leyzorek, Gray, Johnson, Ladew,
Meaker, Petry, and Seitz [1957]

O(n2m) Bellman [1958], Moore [1959]

O(n3) Floyd [1962b]

∗ O(n · SP+(n, m, L)) Johnson [1973b,1977a], Bazaraa
and Langley [1974]

O(nm + n3(log log n/ log n)1/3) Fredman [1976]

O(nm log log L + n2 log L log log L) Johnson [1977b]

O(nL + nm log log L) van Emde Boas, Kaas, and
Zijlstra [1977]

∗ O(nm log log L) Johnson [1982]

O(nm logm/n L) Gabow [1985b]

∗ O(nm + n2√log L) Ahuja, Mehlhorn, Orlin, and
Tarjan [1990]

∗ O((nL)
3+ω

2 log3 n)
Alon, Galil, and Margalit [1991,
1997], Galil and Margalit [1997a,
1997b]

Here SP+(n, m, L) denotes the time needed to find a shortest path in a digraph
with n vertices and m arcs, with nonnegative integer lengths on the arcs, each at
most L. ω is any real such that any two n×n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376).
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Frederickson [1983b,1987b] showed that for planar directed graphs, the all-pairs
shortest paths problem, with no negative-length directed circuits, can be solved in
O(n2) time.

8.6b. NP-completeness of the shortest path problem

In full generality — that is, not requiring that each directed circuit has nonnegative
length — the shortest path problem is NP-complete, even if each arc has length
−1. Equivalently, finding a longest path in a graph (with unit length arcs) is NP-
complete. This is a result of E.L. Lawler and R.E. Tarjan (cf. Karp [1972b]).

This directly follows from the NP-completeness of finding a Hamiltonian path
in a graph. Let D = (V, A) be a digraph. (A directed path P is called Hamiltonian
if each vertex of D is traversed exactly once.)

We show the NP-completeness of the directed Hamiltonian path problem: Given
a digraph D = (V, A) and s, t ∈ V , is there a Hamiltonian s − t path?

Theorem 8.11. The directed Hamiltonian path problem is NP-complete.

Proof. We give a polynomial-time reduction of the partition problem (Section 4.11)
to the directed Hamiltonian path problem. Let C = {C1, . . . , Cm} be a collection of
subsets of the set X = {1, . . . , k}. Introduce vertices r0, r1, . . . , rm, 0, 1, . . . , k.

For each i = 1, . . . , m, we do the following. Let Ci = {j1, . . . , jt}. We construct
a digraph on the vertices ri−1, ri, jh − 1, jh (for h = 1, . . . , t) and 3t new vertices,
as in Figure 8.1. Moreover, we make an arc from rm to 0.

ri−1

jt jt − 1 jt−1 jt−1 − 1 j2 j2 − 1 j1 j1 − 1

ri

Figure 8.1

Let D be the digraph arising in this way. Then it is not difficult to check that
there exists a subcollection C′ of C that partitions X if and only if D has a directed
Hamiltonian r0 − k path P . (Take: (ri−1, ri) ∈ P ⇐⇒ Ci ∈ C′.)

Hence:

Corollary 8.11a. Given a digraph D = (V, A) and s, t ∈ V , finding a longest s − t
path is NP-complete.

Proof. This follows from the fact that there exists an s − t path of length |V | − 1
if and only if there is a directed Hamiltonian s − t path.

From this we derive the NP-completeness of the undirected Hamiltonian path
problem: Given a graph G = (V, E) and s, t ∈ V , does G have a Hamiltonian s − t
path? (R.E. Tarjan (cf. Karp [1972b])).
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Corollary 8.11b. The undirected Hamiltonian path problem is NP-complete.

Proof. We give a polynomial-time reduction of the directed Hamiltonian path
problem to the undirected Hamiltonian path problem. Let D be a digraph. Replace
each vertex v by three vertices v′, v′′, v′′′, and make edges {v′, v′′} and {v′′, v′′′}.
Moreover, for each arc (v1, v2) of D, make an edge {v′′′

1 , v′
2}. Delete the vertices

s′, s′′, t′′, t′′′. This makes the undirected graph G. One easily checks that D has a
directed Hamiltonian s − t path if and only if G has an (undirected) Hamiltonian
s′′′ − t′ path.

Again it implies:

Corollary 8.11c. Given an undirected graph G = (V, E) and s, t ∈ V , finding a
longest s − t path is NP-complete.

Proof. This follows from the fact that there exists an s − t path of length |V | − 1
if and only if there is a Hamiltonian s − t path.

Notes. Corollary 8.11b implies that finding a Hamiltonian circuit in an undirected
graph is NP-complete: just add a new vertex r and edges rs and rt. This reduces
finding a Hamiltonian s − t path in the original graph to finding a Hamiltonian
circuit in the extended graph.

Also the directed Hamiltonian circuit problem is NP-complete, as the undirected
version can be reduced to it by replacing each edge uv by two oppositely oriented
arcs (u, v) and (v, u).

8.6c. Nonpolynomiality of Ford’s method

The method originally described by Ford [1956] consists of the following. Given a
digraph D = (V, A), s, t ∈ V , and a length function l : A → Q, define d(s) := 0 and
d(v) := ∞ for all v �= s; next perform the following iteratively:

(8.11) choose an arc (u, v) with d(v) > d(u) + l(u, v), and reset d(v) :=
d(u) + l(u, v).

Stop if no such arc exists.
If there are no negative-length directed circuits, this is a finite method, since

at each iteration
∑

v d(v) decreases, while it is at least
∑

v distl(s, v) and it is an
integer multiple of the g.c.d. of the l(a).

In fact, it can be shown that the number of iterations is at most 2|V |, if l is
nonnegative. Moreover, if l is arbitrary (without negative directed circuit), there
are at most 2|V |2L iterations, where L := max{|l(a)| ∣∣ a ∈ A}.

However, Johnson [1973a,1973b] showed that the number of iterations is Ω(n2n),
even if we prescribe to choose (u, v) in (8.11) with d(u) minimal. For nonnegative l,
Johnson [1973b,1977a] showed that the number of iterations is Ω(2n) if we prescribe
no selection rule of u.
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8.6d. Shortest and longest paths in acyclic graphs

Let D = (V, A) be a digraph. A subset C of A is called a directed cut if there is a
subset U of V with ∅ �= U �= V such that δout(U) = C and δin(U) = ∅. So each
directed cut is a cut.

It is easy to see that, if D is acyclic, then a set B of arcs is contained in a directed
cut if and only if no two arcs in B are contained in a directed path. Similarly, if D
is acyclic, a set B of arcs is contained in a directed path if and only if no two arcs
in B are contained in a directed cut.

Theorem 8.12. Let D = (V, A) be an acyclic digraph and let s, t ∈ V . Then the
maximum length of an s − t path is equal to the minimum number of directed s − t
cuts covering all arcs that are on at least one s − t path.

Proof. Any s− t path of length k needs at least k directed s− t cuts to be covered,
so the maximum cannot exceed the minimum.

To see equality, let for each v ∈ V , d(v) be equal to the length of a longest
s − v path. Let k := d(t). For i = 1, . . . , k, let Ui := {v ∈ V | d(v) < i}. Then the
δout(Ui) form k directed s − t cuts covering all arcs that are on at least one s − t
path.

One similarly shows for paths not fixing its ends (Vidyasankar and Younger
[1975]):

Theorem 8.13. Let D = (V, A) be an acyclic digraph. Then the maximum length
of any path is equal to the minimum number of directed cuts covering A.

Proof. Similar to the proof above.

Also weighted versions hold, and may be derived similarly. A weighted version
of Theorem 8.12 is:

Theorem 8.14. Let D = (V, A) be an acyclic digraph, let s, t ∈ V and let l : A →
Z+ be a length function. Then the maximum length of an s − t path is equal to the
minimum number of directed s − t cuts covering each arc a that is on at least one
s − t path, at least l(a) times.

Proof. Any s− t path of length k needs at least k directed s− t cuts to be covered
appropriately, so the maximum cannot exceed the minimum.

To see equality, let for each v ∈ V , d(v) be equal to the length of a longest
s − v path. Let k := d(t). For i = 1, . . . , k, let Ui := {v ∈ V | d(v) < i}. Then the
δout(Ui) form k directed s − t cuts covering each arc a on any s − t path at least
l(a) times.

Similarly, a weighted version of Theorem 8.13 is:

Theorem 8.15. Let D = (V, A) be an acyclic digraph and l : A → Z+ be a length
function. Then the maximum length of any path is equal to the minimum number
of directed cuts such that any arc a is in at least l(a) of these directed cuts.
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Proof. Similar to the proof above.

In acyclic graphs one can find shortest paths in linear time (Morávek [1970]):

Theorem 8.16. Given an acyclic digraph D = (V, A), s, t ∈ V , and a length
function l : A → Q, a shortest s − t path can be found in time O(m).

Proof. First order the vertices reachable from s topologically as v1, . . . , vn (cf.
Corollary 6.5b). So v1 = s. Set d(v1) := 0 and determine

(8.12) d(v) := min{d(u) + l(u, v) | (u, v) ∈ δin(v)}
for v = v2, . . . , vn (in this order). Then for each v reachable from s, d(v) is the
distance from s to v.

Note that this implies that also a longest path in an acyclic digraph can be
found in linear time.

Johnson [1973b] showed that, in a not necessarily acyclic digraph, an O(m)-
time algorithm for the single-source shortest path problem exists if the number of
directed circuits in any strongly connected component is bounded by a constant.
Related work was reported by Wagner [2000].

More on longest paths and path covering in acyclic graphs can be found in
Chapter 14.

8.6e. Bottleneck shortest path

Pollack [1960] observed that several of the shortest path algorithms can be modified
to the following maximum-capacity path problem. For any digraph D = (V, A) and
‘capacity’ function c : A → Q, the capacity of a path P is the minimum of the
capacities of the arcs in P . (This is also called sometimes the reliability of P — cf.
Section 50.6c.)

Then the maximum-capacity path problem (also called the maximum reliability
problem), is:

(8.13) given: a digraph D = (V, A), s, t ∈ V , and a ‘capacity’ function c :
A → Q;

find: an s − t path of maximum capacity.

To this end, one should appropriately replace min by max and + by min in these
algorithms. Applying this to Dijkstra’s algorithm gives, with Fibonacci heaps, a
running time of O(m + n log n).

In fact, the following ‘bottleneck’ min-max relation holds (Fulkerson [1966]):

Theorem 8.17. Let D = (V, A) be a digraph, let s, t ∈ V , and let c : A → R be a
capacity function. Then:

(8.14) max
P

min
a∈AP

c(a) = min
C

max
a∈C

c(a),

where P ranges over all s − t paths and C over all s − t cuts.
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Proof. To see ≤ in (8.14), let P be an s − t path and let C be an s − t cut. Since
P and C have at least one arc in common, say a0, we have mina∈AP c(a) ≤ c(a0) ≤
maxa∈C c(a).

To see ≥ in (8.14), let γ := maxP mina∈AP c(a). Let A′ := {a ∈ A | c(a) ≤ γ}.
Then A′ intersects each s−t path. So A′ contains an s−t cut C. Therefore, c(a) ≤ γ
for all a ∈ C; that is, maxa∈C c(a) ≤ γ. Hence minC maxa∈C c(a) ≤ γ.

It is easy to solve the bottleneck shortest path problem by binary search in time
O(m log L), where L := ‖l‖∞ assuming l integer. This was improved by Gabow
[1985b] to O(m logn L).

8.6f. Further notes

Further analyses of shortest path methods were given by Pollack and Wiebenson
[1960], Hoffman and Winograd [1972], Tabourier [1973], Pape [1974], Kershenbaum
[1981], Glover, Glover, and Klingman [1984], Pallottino [1984], Glover, Klingman,
and Phillips [1985], Glover, Klingman, Phillips, and Schneider [1985], Desrochers
[1987], Bertsekas [1991], Goldfarb, Hao, and Kai [1991], Sherali [1991], Cherkassky,
Goldberg, and Radzik [1994,1996], and Cherkassky and Goldberg [1999] (negative
circuit detection).

Spirakis and Tsakalidis [1986] gave an average-case analysis of an O(nm)-time
negative circuit detecting algorithm, and Tarjan [1982] a sensitivity analysis of
shortest paths trees.

Fast approximation algorithms for shortest paths were given by Klein and
Sairam [1992], Cohen [1994b,2000], Aingworth, Chekuri, and Motwani [1996], Dor,
Halperin, and Zwick [1996,2000], Cohen and Zwick [1997,2001], and Aingworth,
Chekuri, Indyk, and Motwani [1999].

Dantzig [1957] observed that the shortest path problem can be formulated as
a linear programming problem, and hence can be solved with the simplex method.
Edmonds [1970a] showed that this may take exponentially many pivot steps, even
for nonnegative arc lengths. On the other hand, Dial, Glover, Karney, and Kling-
man [1979] and Zadeh [1979] gave pivot rules that solve the shortest path problem
with nonnegative arc lengths in O(n) pivots. For arbitrary length Akgül [1985] and
Goldfarb, Hao, and Kai [1990b] gave strongly polynomial simplex algorithms. Akgül
[1993] gave an algorithm using O(n2) pivots, yielding an O(n(m + n log n))-time
algorithm. An improvement to O(nm) (with (n − 1)(n − 2)/2 pivots) was given by
Goldfarb and Jin [1999b]. Related work was done by Dantzig [1963], Orlin [1985],
and Ahuja and Orlin [1988,1992].

Computational results were presented by Pape [1974,1980], Golden [1976], Car-
son and Law [1977], Kelton and Law [1978], van Vliet [1978], Denardo and Fox
[1979], Dial, Glover, Karney, and Klingman [1979], Glover, Glover, and Klingman
[1984], Imai and Iri [1984], Glover, Klingman, Phillips, and Schneider [1985], Gallo
and Pallottino [1988], Mondou, Crainic, and Nguyen [1991], Goldberg and Radzik
[1993] (Bellman-Ford method), Cherkassky, Goldberg, and Radzik [1996], Goldberg
and Silverstein [1997], and Zhan and Noon [1998].

Frederickson [1987a,1991] gave an algorithm that gives a succint encoding of all
pairs shortest path information in a directed planar graph (with arbitrary lengths,
but no negative directed circuits).
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Surveys and bibliographies on shortest paths were presented by Pollack and
Wiebenson [1960], Murchland [1967a], Dreyfus [1969], Gilsinn and Witzgall [1973],
Pierce [1975], Yen [1975], Lawler [1976b], Golden and Magnanti [1977], Deo and
Pang [1984], Gallo and Pallottino [1986], and Mondou, Crainic, and Nguyen [1991].

Books covering shortest path methods include Christofides [1975], Lawler
[1976b], Even [1979], Hu [1982], Papadimitriou and Steiglitz [1982], Smith [1982],
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8.6g. Historical notes on shortest paths

Compared with other combinatorial optimization problems like the minimum span-
ning tree, assignment, and transportation problems, research on the shortest path
problem started relatively late. This might be due to the fact that the problem is ele-
mentary and relatively easy, which is also illustrated by the fact that at the moment
that the problem came into the focus of interest, several researchers independently
developed similar methods. Yet, the problem has offered some substantial difficul-
ties, as is illustrated by the fact that heuristic, nonoptimal approaches have been
investigated (cf. for instance Rosenfeld [1956], who gave a heuristic approach for
determining an optimal trucking route through a given traffic congestion pattern).

Search methods

Depth-first search methods were described in the 19th century in order to traverse
all lanes in a maze without knowing its plan. Wiener [1873] described the following
method:

Man markire sich daher den Weg, den man zurücklegt nebst dem Sinne, in
welchem es geschieht. Sobald man auf einen schon markirten Weg stösst, kehre
man um und durchschreite den schon beschriebenen Weg in umgekehrtem Sinne.
Da man, wenn man nicht ablenkte, denselben hierbei in seiner ganzen Ausdehnung
nochmals zurücklegen würde, so muss mann nothwendig hierbei auf einen noch
nicht markirten einmündenden Weg treffen, den man dann verfolge, bis man
wieder auf einen markirten trifft. Hier kehre man wieder um und verfahre wie
vorher. Es werden dadurch stets neue Wegtheile zu den beschriebenen zugefügt,
so dass man nach einer endlichen Zeit das ganze Labyrinth durchwandern würde
und so jedenfalls den Ausgang fände, wenn er nicht schon vorher erreicht worden
wäre.3

3 One therefore marks the road that one traverses together with the direction in which it
happens. As soon as one hits a road already marked, one turns and traverses the road
already followed in opposite direction. As one, if one would not deviate, would traverse
it to its whole extent another time, by this one should necessarily meet a road running
to a not yet marked one, which one next follows, until one again hits a marked one.
Here one turns again and proceeds as before. In that road always new road parts are
added to those already followed, so that after a finite time one would walk through the
whole labyrinth and in this road in any case would find the exit, if it would not have
been reached already before.
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In his book Recréations mathématiques, Lucas [1882] described a method due to
C.P. Trémaux to traverse all lanes of a maze exactly twice, starting at a vertex
A: First traverse an arbitrary lane starting at A. Next apply the following rule
iteratively when arriving through a lane L at a vertex N :

(8.15) if you did not visit N before, traverse next an arbitrary other lane at
N , except if L is the only lane at N , in which case you return through
L;
if you have visited N before, return through L, except if you have
traversed L already twice; in that case traverse another lane at N not
traversed before; if such a lane does not exist, traverse a lane at L that
you have traversed before once.

The method stops if no lane can be chosen by this rule at N . It is not hard to show
that then one is at the starting vertex A and that all lanes of the maze have been
traversed exactly twice (if the maze is connected).

A simpler rule was given by Tarry [1895]:

Tout labyrinthe peut être parcouru en une seule course, en passant deux fois en
sens contraire par chacune des allées, sans qu’il soit nécessaire d’en connâıtre le
plan.
Pour résoudre ce problème, il suffit d’observer cette règle unique:
Ne reprendre l’allée initiale qui a conduit à un carrefour pour la première fois
que lorsqu’on ne peut pas faire autrement.4

This is equivalent to depth-first search.

Alternate routing

Path problems were also studied at the beginning of the 1950s in the context of
‘alternate routing’, that is, finding a second shortest route if the shortest route is
blocked. This applies to freeway usage (cf. Trueblood [1952]), but also to telephone
call routing. At that time making long-distance calls in the U.S.A. was automatized,
and alternate routes for telephone calls over the U.S. telephone network nation-wide
should be found automatically:

When a telephone customer makes a long-distance call, the major problem fac-
ing the operator is how to get the call to its destination. In some cases, each
toll operator has two main routes by which the call can be started towards this
destination. The first-choice route, of course, is the most direct route. If this is
busy, the second choice is made, followed by other available choices at the oper-
ator’s discretion. When telephone operators are concerned with such a call, they
can exercise choice between alternate routes. But when operator or customer toll
dialing is considered, the choice of routes has to be left to a machine. Since the
“intelligence” of a machine is limited to previously “programmed” operations,
the choice of routes has to be decided upon, and incorporated in, an automatic
alternate routing arrangement.

(Jacobitti [1955], cf. Myers [1953], Clos [1954], and Truitt [1954]).
4 Each maze can be traversed in one single run, by passing each of the corridors twice in

opposite direction, without that it is necessary to know its plan.
To solve this problem, it suffices to observe this only rule:
Retake the initial corridor that has led to a crossing for the first time only when one

cannot do otherwise.
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Matrix methods

Matrix methods were developed to study relations in networks, like finding the
transitive closure of a relation; that is, identifying in a digraph the pairs of vertices
s, t such that t is reachable from s. Such methods were studied because of their
application to communication nets (including neural nets) and to animal sociology
(e.g. peck rights).

The matrix methods consist of representing the relation by a matrix, and then
taking iterative matrix products to calculate the transitive closure. This was studied
by Landahl and Runge [1946], Landahl [1947], Luce and Perry [1949], Luce [1950],
Lunts [1950,1952], and by A. Shimbel.

Shimbel’s interest in matrix methods was motivated by their applications to
neural networks. He analyzed with matrices which sites in a network can communi-
cate to each other, and how much time it takes. To this end, let S be the 0, 1 matrix
indicating that if Si,j = 1, then there is direct communication from i to j (includ-
ing i = j). Shimbel [1951] observed that the positive entries in St correspond to
the pairs between which there exists communication in t steps. An adequate com-
munication system is one for which St is positive for some t. One of the other
observations of Shimbel [1951] is that in an adequate communication system, the
time it takes that all sites have all information, is equal to the minimum value of t
for which St is positive. (A related phenomenon was observed by Luce [1950].)

Shimbel [1953] mentioned that the distance from i to j is equal to the number
of zeros in the i, j position in the matrices S0, S1, S2, . . . , St. So essentially he gave
an O(n4) algorithm to find all distances in a (unit-length) digraph.

Shortest paths

The basic methods for the shortest path problem are the Bellman-Ford method
and Dijkstra’s method. The latter one is faster but is restricted to nonnegative
length functions. The former method only requires that there is no directed circuit
of negative length.

The general framework for both methods is the following scheme, described in
this general form by Ford [1956]. Keep a provisional distance function d. Initially,
set d(s) := 0 and d(v) := ∞ for each v �= s. Next, iteratively,

(8.16) choose an arc (u, v) with d(v) > d(u) + l(u, v) and reset d(v) := d(u) +
l(u, v).

If no such arc exists, d is the distance function.
The difference in the methods is the rule by which the arc (u, v) with d(v) >

d(u) + l(u, v) is chosen. The Bellman-Ford method consists of considering all arcs
consecutively and applying (8.16) where possible, and repeating this (at most |V |
rounds suffice). This is the method described by Shimbel [1955], Bellman [1958],
and Moore [1959].

Dijkstra’s method prescribes to choose an arc (u, v) with d(u) smallest (then
each arc is chosen at most once, if the lengths are nonnegative). This was described
by Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] and Dijkstra
[1959]. A related method, but slightly slower than Dijkstra’s method when imple-
mented, was given by Dantzig [1958], G.J. Minty, and Whiting and Hillier [1960],
and chooses an arc (u, v) with d(u) + l(u, v) smallest.
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Parallel to this, a number of further results were obtained on the shortest path
problem, including a linear programming approach and ‘good characterizations’.

We now describe the developments in greater detail.

The Bellman-Ford method: Shimbel

In April 1954, Shimbel [1955] presented at the Symposium on Information Networks
in New York some observations on calculating distances, which amount to describing
a ‘min-addition’ algebra and a method which later became known as the Bellman-
Ford method. He introduced:

Arithmetic
For any arbitrary real or infinite numbers x and y

x + y ≡ min(x, y) and
xy ≡ the algebraic sum of x and y.

He extended this arithmetic to the matrix product. Calling the distance matrix
associated with a given length matrix S the ‘dispersion’, he stated:

It follows trivially that Sk k ≥ 1 is a matrix giving the shortest paths from site
to site in S given that k − 1 other sites may be traversed in the process. It also
follows that for any S there exists an integer k such that Sk = Sk+1. Clearly, the
dispersion of S (let us label it D(S)) will be the matrix Sk such that Sk = Sk+1.

Although Shimbel did not mention it, one trivially can take k ≤ |V |, and hence
the method yields an O(n4) algorithm to find the distances between all pairs of
vertices.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] noted that
Shimbel’s method can be speeded up by calculating Sk by iteratively raising the
current matrix to the square (in the min-addition matrix algebra). This solves the
all-pairs shortest paths problem in time O(n3 log n).

The Bellman-Ford method: Ford

In a RAND paper dated 14 August 1956, Ford [1956] described a method to find
a shortest path from P0 to PN , in a network with vertices P0, . . . , PN , where lij
denotes the length of an arc from i to j:

Assign initially x0 = 0 and xi = ∞ for i �= 0. Scan the network for a pair Pi

and Pj with the property that xi − xj > lji. For this pair replace xi by xj + lji.
Continue this process. Eventually no such pairs can be found, and xN is now
minimal and represents the minimal distance from P0 to PN .

Ford next argues that the method terminates. It was shown by Johnson [1973a,
1973b,1977a] that Ford’s liberal selection rule can require exponential time.

In their book Studies in the Economics of Transportation, Beckmann, McGuire,
and Winsten [1956] showed that the distance matrix D = (di,j) is the unique matrix
satisfying

(8.17) di,i = 0 for all i;
di,k = minj(li,j + dj,k) for all i, k with i �= k.
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The Bellman-Ford method: Bellman

We next describe the work of Bellman on shortest paths. After publishing several
papers on dynamic programming (in a certain sense a generalization of shortest
path methods), Bellman [1958] eventually focused on the shortest path problem by
itself. He described the following ‘functional equation approach’ (originating from
dynamic programming) for the shortest path problem, which is the same as that of
Shimbel [1955].

Bellman considered N cities, numbered 1, . . . , N , every two of which are linked
by a direct road, together with an N × N matrix T = (ti,j), where ti,j is the time
required to travel from i to j (not necessarily symmetric). Find a path between 1
and N which consumes minimum time. First, Bellman remarked that the problem
is finite:

Since there are only a finite number of paths available, the problem reduces to
choosing the smallest from a finite set of numbers. This direct, or enumerative,
approach is impossible to execute, however, for values of N of the order of mag-
nitude of 20.

Next he gave a ‘functional equation approach’:

The basic method is that of successive approximations. We choose an initial se-
quence {f

(0)
i }, and then proceed iteratively, setting

f
(k+1)
i = Min

j �= i
(tij + f

(k)
j ], i = 1, 2, · · · , N − 1,

f
(k+1)
N = 0,

for k = 0, 1, 2 · · · ,.
For the initial function f

(0)
i , Bellman proposed (upon a suggestion of F. Haight) to

take f
(0)
i = ti,N for all i. Bellman observed that, for each fixed i, starting with this

choice of f
(0)
i gives that f

(k)
i is monotonically nonincreasing in k, and states:

It is clear from the physical interpretation of this iterative scheme that at most
(N − 1) iterations are required for the sequence to converge to the solution.

Since each iteration can be done in time O(N2), the algorithm takes time O(N3).
Bellman also remarks:

It is easily seen that the iterative scheme discussed above is a feasible method for
either hand or machine computation for values of N of the order of magnitude of
50 or 100.

In a footnote, Bellman says:

Added in proof (December 1957): After this paper was written, the author was
informed by Max Woodbury and George Dantzig that the particular iterative
scheme discussed in Sec. 5 had been obtained by them from first principles.

Bellman [1958] mentioned that one could also start with f
(0)
i = minj �=i ti,j (if

i �= N) and f
(0)
N = 0. In that case for each fixed i, the value of f

(k)
i is monotonically

nondecreasing in k, and converges to the distance from i to N . (Indeed, f
(k)
i is equal

to the shortest length of all those paths starting at i that have either exactly k + 1
arcs, or have at most k arcs and end at N .)
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The Bellman-Ford method: Moore

At the International Symposium on the Theory of Switching at Harvard University
in April 1957, Moore [1959] of Bell Laboratories presented a paper ‘The shortest
path through a maze’:

The methods given in this paper require no foresight or ingenuity, and hence
deserve to be called algorithms. They would be especially suited for use in a
machine, either a special-purpose or a general-purpose digital computer.

The motivation of Moore was the routing of toll telephone traffic. He gave algo-
rithms A, B, and C, and D.

First, Moore considered the case of an undirected graph G = (V, E) with no
length function, where a path from vertex A to vertex B should be found with
a minimum number of edges. Algorithm A is: first give A label 0. Next do the
following for k = 0, 1, . . .: give label k + 1 to all unlabeled vertices that are adjacent
to some vertex labeled k. Stop as soon as vertex B is labeled.

If it were done as a program on a digital computer, the steps given as single steps
above would be done serially, with a few operations of the computer for each city
of the maze; but, in the case of complicated mazes, the algorithm would still be
quite fast compared with trial-and-error methods.

In fact, a direct implementation of the method would yield an algorithm with
running time O(m). It is essentially breadth-first search. Algorithms B and C differ
from A in a more economical labeling (by fewer bits).

Moore’s algorithm D finds a shortest route for the case where each edge of
the graph has a nonnegative length. This method gives a refinement of Bellman’s
method described above: (i) it extends to the case that not all pairs of vertices have
a direct connection; that is, if there is an underlying graph G = (V, E) with length
function; (ii) at each iteration only those di,j are considered for which ui has been
decreased in the previous iteration.

The method has running time O(nm). Moore observed that the algorithm is
suitable for parallel implementation, yielding a decrease in the running time bound
to O(n∆(G)), where ∆(G) is the maximum degree of G. He concluded:

The origin of the present methods provides an interesting illustration of the value
of basic research on puzzles and games. Although such research is often frowned
upon as being frivolous, it seems plausible that these algorithms might eventually
lead to savings of very large sums of money by permitting more efficient use
of congested transportation or communication systems. The actual problems in
communication and transportation are so much complicated by timetables, safety
requirements, signal-to-noise ratios, and economic requirements that in the past
those seeking to solve them have not seen the basic simplicity of the problem, and
have continued to use trial-and-error procedures which do not always give the true
shortest path. However, in the case of a simple geometric maze, the absence of
these confusing factors permitted algorithms A, B, and C to be obtained, and from
them a large number of extensions, elaborations, and modifications are obvious.
The problem was first solved in connection with Claude Shannon’s maze-solving
machine. When this machine was used with a maze which had more than one
solution, a visitor asked why it had not been built to always find the shortest
path. Shannon and I each attempted to find economical methods of doing this by
machine. He found several methods suitable for analog computation, and I ob-
tained these algorithms. Months later the applicability of these ideas to practical
problems in communication and transportation systems was suggested.
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Among the further applications of his method, Moore described the example
of finding the fastest connections from one station to another in a given railroad
timetable (cf. also Levin and Hedetniemi [1963]). A similar method was given by
Minty [1958].

Berge [1958b] described a breadth-first search method similar to Moore’s algo-
rithm A, to find the shortest paths from a given vertex a, for unit lengths, but he
described it more generally for directed graphs: let A(0) := {a}; if A(k) has been
found, let A(k + 1) be the set of vertices x for which there is a y ∈ A(k) with (y, x)
an arc and with x �∈ A(i) for all i ≤ k. One directly finds a shortest a− b path from
the A(k). This gives an O(m) algorithm.

D.A. D’Esopo (cf. the survey of Pollack and Wiebenson [1960]) proposed the
following sharpening of Moore’s version of the Bellman-Ford method, by indexing
the vertices during the algorithm. First define index(s) := 1, and let i := 1. Then
apply the following iteratively:

(8.18) Let v be the vertex with index i. For each arc (v, w) leaving v, reset
d(w) := d(v)+l(v, w) if it decreases d(w); if w is not indexed give it the
smallest unused index; if some d(w) has been reset with index(w) < i,
choose the w minimizing index(w), and let i :=index(w); otherwise,
let i := i + 1.

In May 1958, Hoffman and Pavley [1959b] reported, at the Western Joint Com-
puter Conference in Los Angeles, the following computing time for finding the
distances between all pairs of vertices by Moore’s algorithm (with nonnegative
lengths):

It took approximately three hours to obtain the minimum paths for a network of
265 vertices on an IBM 704.

Linear programming and transportation

Orden [1955] observed that the shortest path problem is a special case of the trans-
shipment problem: let be given an n × n matrix (ci,j) and a vector g ∈ R

n

(8.19) minimize
∑

i,j ci,jxi,j

subject to
n∑

j=1

(xi,j − xj,i) = gi for i = 1, . . . , n

and xi,j ≥ 0 for i, j = 1, . . . n,

and showed that it can be reduced to a ‘transportation problem’, and hence to a
linear programming problem. If one wants to find a shortest 1 −n path, set g1 = 1,
gn = −1, and gi = 0 for all other i.

In a paper presented at the Summer 1955 meeting of ORSA at Los Angeles,
Dantzig [1957] formulated the shortest path problem as an integer linear program-
ming problem ‘very similar to the system for the assignment problem’, and similar
to Orden’s formulation. Dantzig observed that replacing the condition xi,j ≥ 0 by
xi,j ∈ {0, 1} does not change the minimum value. (Dantzig assumed di,j = dj,i for
all i, j.)

He described a graphical procedure for the simplex method applied to this
problem. Let T be a rooted tree on {1, . . . , n}, with root 1. For each i = 1, . . . , n,
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let ui be equal to the length of the path from 1 to i in T . Now if uj ≤ ui + di,j

for all i, j, then for each i, the 1 − i path in T is a shortest path. If uj > ui + di,j ,
replace the arc of T entering j by the arc (i, j), and iterate with the new tree.

Trivially, this process terminates (as
∑n

j=1 uj decreases at each iteration, and
as there are only finitely many rooted trees). (Edmonds [1970a] showed that the
method may take exponential time.) Dantzig illustrated his method by an example
of sending a package from Los Angeles to Boston.

Good characterizations

Robacker [1956b] observed that the minimum length of a P0 − Pn path in a graph
N is equal to the maximum number of disjoint P0 − Pn cuts:

the maximum number of mutually disjunct cuts of N is equal to the length of the
shortest chain of N from P0 to Pn.

Gallai [1958b] noticed that if the length function l : A → Z on the arcs of a
digraph (V, A) gives no negative-length directed circuits, then there is a ‘potential’
p : V → Z with l(u, v) ≥ p(v) − p(u) for each arc (u, v).

Case Institute of Technology 1957

In the First Annual Report of the project Investigation of Model Techniques, car-
ried out by the Case Institute of Technology in Cleveland, Ohio for the Combat
Development Department of the Army Electronic Proving Ground, Leyzorek, Gray,
Johnson, Ladew, Meaker, Petry, and Seitz [1957] describe (rudimentarily) a shortest
path algorithm similar to Dijkstra’s algorithm:

(1) All the links joined to the origin, a, may be given an outward orientation. . . .
(2) Pick out the link or links radiating from a, aaα, with the smallest delay. . . .
Then it is impossible to pass from the origin to any other node in the network
by any “shorter” path than aaα. Consequently, the minimal path to the general
node α is aaα.
(3) All of the other links joining α may now be directed outward. Since aaα must
necessarily be the minimal path to α, there is no advantage to be gained by
directing any other links toward α. . . .
(4) Once α has been evaluated, it is possible to evaluate immediately all other
nodes in the network whose minimal values do not exceed the value of the second-
smallest link radiating from the origin. Since the minimal values of these nodes
are less than the values of the second-smallest, third-smallest, and all other links
radiating directly from the origin, only the smallest link, aaα, can form a part
of the minimal path to these nodes. Once a minimal value has been assigned to
these nodes, it is possible to orient all other links except the incoming link in an
outward direction.
(5) Suppose that all those nodes whose minimal values do not exceed the value
of the second-smallest link radiating from the origin have been evaluated. Now it
is possible to evaluate the node on which the second-smallest link terminates. At
this point, it can be observed that if conflicting directions are assigned to a link,
in accordance with the rules which have been given for direction assignment, that
link may be ignored. It will not be a part of the minimal path to either of the
two nodes it joins. . . .
Following these rules, it is now possible to expand from the second-smallest link as
well as the smallest link so long as the value of the third-smallest link radiating
from the origin is not exceeded. It is possible to proceed in this way until the
entire network has been solved.
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(In this quotation we have deleted sentences referring to figures.)
Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] also described

a speedup of solving the all-pairs shortest paths problem by matrix-multiplication:

This process of multiplication may be simplified somewhat by squaring the orig-
inal structure matrix to obtain a dispersion matrix which is the second power
of the structure matrix; squaring the second-power matrix to obtain the fourth
power of the structure matrix; and so forth.

This gives an O(n3 log n)-time all-pairs shortest paths algorithm.

Analog computing

In a reaction to the linear programming approach of Dantzig [1957] discussed above,
Minty [1957] proposed an ‘analog computer’ for the shortest path problem:

Build a string model of the travel network, where knots represent cities and
string lengths represent distances (or costs). Seize the knot ‘Los Angeles’ in your
left hand and the knot ‘Boston’ in your right and pull them apart. If the model
becomes entangled, have an assistant untie and re-tie knots until the entanglement
is resolved. Eventually one or more paths will stretch tight — they then are
alternative shortest routes.
Dantzig’s ‘shortest-route tree’ can be found in this model by weighting the knots
and picking up the model by the knot ‘Los Angeles’.
It is well to label the knots since after one or two uses of the model their identities
are easily confused.

A similar method was proposed by Bock and Cameron [1958] (cf. Peart, Randolph,
and Bartlett [1960]). The method was extended to the directed case by Klee [1964].

Rapaport and Abramson [1959] described an electric analog computer for solv-
ing the shortest path problem.

Dantzig’s O(n2 log n) algorithm

Dantzig [1958,1960] gave an O(n2 log n) algorithm for the shortest path problem
with nonnegative length function. A set X is updated throughout, together with
a function d : X → Q+. Initially X = {s} and d(s) = 0. Then do the following
iteratively:

(8.20) for each v ∈ X, let wv be a vertex not in X with d(wv) minimal.
Choose a v ∈ X minimizing d(v) + l(v, wv). Add wv to X and set
d(wv) := d(v) + l(v, wv).

Stop if X = V .
Note that throughout the iterations, the function d is only extended, and not

updated. Dantzig assumed

(a) that one can write down without effort for each node the arcs leading to other
nodes in increasing order of length and (b) that it is no effort to ignore an arc of
the list if it leads to a node that has been reached earlier.

Indeed, in a preprocessing the arcs can be ordered in time O(n2 log n), and, for
instance by using doubly linked lists, an arc can be deleted from the appropriate
list in time O(1). As each iteration can be done in time O(n) (identifying a v
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minimizing d(v) + l(v, wv) and deleting all arcs entering wv from each list of arcs
leaving x for x ∈ X), Dantzig’s method can be performed in time O(n2 log n).

Dantzig [1958,1960] mentioned that, beside Bellman, Moore, Ford, and himself,
also D. Gale and Fulkerson proposed shortest path methods, ‘in informal conversa-
tions’.

The same method as that of Dantzig (however without the observations con-
cerning storing the outgoing arcs from any vertex in a list) was given by G.J. Minty
(cf. Pollack and Wiebenson [1960]) and by Whiting and Hillier [1960].

Dijkstra’s O(n2) algorithm

Dijkstra [1959] gave an O(n2) method which is slightly different from that of Dantzig
[1958,1960]. Let D = (V, A) be a graph and let a length function l : A → R+ be
given. Dijkstra’s method consists of repeatedly updating a set X and a function
d : V → R+ as follows.

Initially, set X = ∅, d(s) = 0, d(v) = ∞ if v �= s. Next move s into X. Then do
the following iteratively: Let v be the vertex just moved into X;

(8.21) for each arc (v, w) with w �∈ X, reset d(w) := d(v) + l(v, w) if this
would decrease d(w). Choose v′ �∈ X with minimum d(v′), and move
v′ into X.

Stop if no such v′ exists.
Since each iteration can be done in time O(n) and since there are at most |V |

iterations, the algorithm runs in time O(n2). Dijkstra states:

The solution given above is to be preferred to the solution by L.R. Ford [3 ] as
described by C. Berge [4 ], for, irrespective of the number of branches, we need
not store the data for all branches simultaneously but only those for the branches
in sets I and II, and this number is always less than n. Furthermore, the amount
of work to be done seems to be considerably less.

(Dijkstra’s references [3] and [4] are Ford [1956] and Berge [1958b].)
Dijkstra’s method is easier to implement (as an O(n2) algorithm) than Dantzig’s,

since we need not store the information in lists: in order to find v′ �∈ X minimizing
d(v′) we can just scan all vertices that are not in X.

Whiting and Hillier [1960] described the same method as Dijkstra.

Heaps

The 2-heap was introduced by Williams [1964] (describing it as an array, with
subroutines to insert and extract elements of the heap), as a major improvement to
the sorting algorithm ‘treesort’ of Floyd [1962a]. The 2-heap of Williams was next
extended by Floyd [1964] to the sorting algorithm ‘treesort3’.

In an erratum of 24 October 1968 to a report of the London Business School,
Murchland [1967b] seems to be the first to use heaps for finding shortest paths,
although he concludes to a time bound of O(n2 log n) only — worse than Di-
jkstra’s bound O(n2). E.L. Johnson [1972] improved Murchland’s method to
O(m log(n2/m)). He also considers the k-heap for arbitrary k (‘k-tree’).

In his Ph.D. thesis, D.B. Johnson [1973b], using a sharper analysis and k-heaps,
obtains an O((nd + m) logd n)-time algorithm, implying algorithms with running
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time O(m log n) and O(n1+ε + m) (for each ε > 0) (published in D.B. Johnson
[1977a]). Tarjan [1983] observed that taking d := m/n gives O(m logm/n n). Next,
Fredman and Tarjan [1984,1987] showed that Fibonacci heaps give O(m + n log n).

All pairs: Roy, Warshall, Floyd, Dantzig

Based on a study of Kleene [1951,1956], McNaughton and Yamada [1960] gave a for-
mula to calculate a ‘regular expression’ associated with a ‘state graph’ (essentially
describing all paths from a given source) that is quite similar to the fast method
of Roy [1959] and Warshall [1962] to compute the transitive closure A of a digraph
D = (V, A): Assume that the vertices are ordered 1, . . . , n. First set Ã := A. Next,
for k = 1, . . . , n, add to Ã all pairs (i, j) for which both (i, k) and (k, j) belong to Ã.
The final Ã equals A. This gives an O(n3) algorithm, which is faster than iterative
matrix multiplication.

Floyd [1962b] extended this method to an algorithm to find all distances d(i, j)
given a length function l : V × V → Q+: First set d(i, j) := l(i, j) for all i, j. Next,
for k = 1, . . . , n, reset, for all i, j, d(i, j) := d(i, k) + d(k, j) if it decreases d(i, j).
This gives an O(n3) transitive closure algorithm for finding the distances between
all pairs of vertices.

Dantzig [1967] proposed a variant of this method. For i, j, k with i ≤ k and
j ≤ k, let dk

i,j be the length of the shortest i − j path in the graph induced by
{1, . . . , k}. Then there is an easy iterative scheme to determine the dk

i,j from the
dk−1

i,j : first dk
i,k = minj<k(dk−1

i,j + lj,k) and dk
k,i = minj<k(lk,j + dk−1

j,i ). Next, for all
i, j < k, dk

i,j = min(dk−1
i,j , dk

i,k + dk
k,j).

Negative lengths

Ford and Fulkerson [1962] seem to be the first to observe that the Bellman-Ford
method also works for arbitrary lengths as long as each directed circuit has non-
negative length. It is also implicit in the paper of Iri [1960].

PERT and CPM

The application of shortest path (and other) methods in the form of PERT (Program
Evaluation and Review Technique, originally called Program Evaluation Research
Task) started in 1958, and was reported by Malcolm, Roseboom, Clark, and Fazar
[1959]. The use of the Critical Path Method (CPM) was described by Kelley [1957,
1961], and Kelley and Walker [1959].

The kth shortest path

Bock, Kantner, and Haynes [1957,1958] described a method to find the kth shortest
path in a graph, based essentially on enumerating. Hoffman and Pavley [1959a]
described an adaptation of Dantzig’s tree method to obtain the kth shortest path.
Bellman and Kalaba [1960] gave a method to find the kth shortest paths from a
given vertex simultaneously to all other vertices. Also Pollack [1961b] described a
method for the kth shortest path problem, especially suitable if k is small. A survey
was given by Pollack [1961a].



130 Chapter 8. Shortest paths: arbitrary lengths

Bottleneck path problems

Pollack [1960] modified the shortest path algorithm so as to obtain a path with
maximum capacity (the capacity of a path is equal to the minimum of the capacities
of the arcs in the path). Related work was done by Amara, Lindgren, and Pollack
[1961].

Fanning out from both ends

Berge and Ghouila-Houri [1962] and Dantzig [1963] proposed to speed up Dijkstra’s
method by fanning out at both ends simultaneously. Berge and Ghouila-Houri [1962]
proposed to stop as soon as a vertex is permanently labeled from both ends; how-
ever, one may see that this need not yield a shortest path.

Dantzig [1963] proposed to add an arc (s, v) with length d(s, v) as soon as v is
permanently labeled when fanning out from s, and similarly add an arc (w, t) with
length d(w, t) if a vertex w is labeled permanently when fanning out from t:

The algorithm terminates whenever the fan of one of the problems reaches its
terminal in the other.
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Disjoint paths

Having done with shortest paths, we now arrive at disjoint paths. We con-
sider disjoint s−t paths, where s and t are the same for all paths. The more
general problem where we prescribe for each path a (possibly different) pair
of ends, will be discussed in Part VII.
Menger’s theorem equates the maximum number of disjoint s − t paths to
the minimum size of a cut separating s and t. There are several variants
of Menger’s theorem, all about equivalent: undirected, directed, vertex-
disjoint, arc- or edge-disjoint. The meaning of ‘cut’ varies accordingly.
Next to Menger’s min-max relation, we consider the algorithmic side of
disjoint s− t paths. This will be an extract from the related maximum flow
algorithms to be discussed in the next chapter. (Maximum integer flow can
be viewed as the capacitated version of disjoint s − t paths.)

9.1. Menger’s theorem

Menger [1927] gave a min-max theorem for the maximum number of disjoint
S − T paths in an undirected graph. It was observed by Grünwald [1938]
(= T. Gallai) that the theorem also holds for directed graphs. We follow the
proof given by Göring [2000].

Recall that a path is an S − T path if it runs from a vertex in S to a
vertex in T . A set C of vertices is called S − T disconnecting if C intersects
each S − T path (C may intersect S ∪ T ).

Theorem 9.1 (Menger’s theorem (directed vertex-disjoint version)). Let
D = (V, A) be a digraph and let S, T ⊆ V . Then the maximum number
of vertex-disjoint S − T paths is equal to the minimum size of an S − T
disconnecting vertex set.

Proof. Obviously, the maximum does not exceed the minimum. Equality is
shown by induction on |A|, the case A = ∅ being trivial.

Let k be the minimum size of an S − T disconnecting vertex set. Choose
a = (u, v) ∈ A. If each S − T disconnecting vertex set in D − a has size at
least k, then inductively there exist k vertex-disjoint S − T paths in D − a,
hence in D.



132 Chapter 9. Disjoint paths

So we can assume that D− a has an S − T disconnecting vertex set C of
size ≤ k − 1. Then C ∪ {u} and C ∪ {v} are S − T disconnecting vertex sets
of D of size k.

Now each S − (C ∪ {u}) disconnecting vertex set B of D − a has size at
least k, as it is S − T disconnecting in D. Indeed, each S − T path P in D
intersects C ∪ {u}, and hence P contains an S − (C ∪ {u}) path in D− a. So
P intersects B.

So by induction, D − a contains k disjoint S − C ∪ {u} paths. Similarly,
D− a contains k disjoint C ∪ {v} − T paths. Any path in the first collection
intersects any path in the second collection only in C, since otherwise D− a
contains an S − T path avoiding C.

Hence, as |C| = k− 1, we can pairwise concatenate these paths to obtain
disjoint S−T paths, inserting arc a between the path ending at u and starting
at v.

A consequence of this theorem is a variant on internally vertex-disjoint
s− t paths, that is, s− t paths having no vertex in common except for s and
t. Recall that a set U of vertices is called an s − t vertex-cut if s, t �∈ U and
each s− t path intersects U .

Corollary 9.1a (Menger’s theorem (directed internally vertex-disjoint ver-
sion)). Let D = (V, A) be a digraph and let s and t be two nonadjacent vertices
of D. Then the maximum number of internally vertex-disjoint s− t paths is
equal to the minimum size of an s− t vertex-cut.

Proof. Let D′ := D− s− t and let S and T be the sets of outneighbours of s
and of inneighbours of t, respectively. Then Theorem 9.1 applied to D′, S, T
gives the corollary.

In turn, Theorem 9.1 follows from Corollary 9.1a by adding two new
vertices s and t and arcs (s, v) for all v ∈ S and (v, t) for all v ∈ T .

Also an arc-disjoint version can be derived (where paths are arc-disjoint
is they have no arc in common). This version was first formulated by Dantzig
and Fulkerson [1955,1956] for directed graphs and by Kotzig [1956] for undi-
rected graphs.

Recall that a set C of arcs is an s− t cut if C = δout(U) for some subset
U of V with s ∈ U and t �∈ U .

Corollary 9.1b (Menger’s theorem (directed arc-disjoint version)). Let D =
(V, A) be a digraph and s, t ∈ V . Then the maximum number of arc-disjoint
s− t paths is equal to the minimum size of an s− t cut.

Proof. Let L(D) be the line digraph of D and let S := δout
A (s) and T := δin

A (t).
Then Theorem 9.1 for L(D), S, T implies the corollary. Note that a minimum-
size set of arcs intersecting each s− t path necessarily is an s− t cut.
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The internally vertex-disjoint version of Menger’s theorem can be derived
in turn from the arc-disjoint version: make digraph D′ as follows from D:
replace any vertex v by two vertices v′, v′′ and make an arc (v′, v′′); moreover,
replace each arc (u, v) by (u′′, v′). Then Corollary 9.1b for D′, s′′, t′ gives
Corollary 9.1a for D, s, t.

Similar theorems hold for undirected graphs. The undirected vertex-
disjoint version follows immediately from Theorem 9.1 by replacing each
undirected edge by two oppositely oriented arcs. Next, the undirected edge-
disjoint version follows from the undirected vertex-disjoint version applied to
the line graph (like the proof of Corollary 9.1b).

9.1a. Other proofs of Menger’s theorem

The proof above of Theorem 9.1b was given by Göring [2000], which curtails the
proof of Pym [1969a], which by itself is a simplification of a proof of Dirac [1966].
The basic idea (decomposition into two subproblems determined by a minimum-size
cut) is due to Menger [1927], for the undirected vertex-disjoint version. (Menger’s
original proof contains a hole, closed by Kőnig [1931] — see Section 9.6e.)

Hajós [1934] gave a different proof for the undirected vertex-disjoint case, based
on intersections and unions of sets determining a cut. Also the proofs given in Nash-
Williams and Tutte [1977] are based on this. We give the first of their proofs.

Let G = (V, E) be an undirected graph and let s, t ∈ V . Suppose that the
minimum size of an s − t vertex-cut is k. We show by induction on |E| that there
exist k vertex-disjoint s − t paths.

The statement is trivial if each edge is incident with at least one of s and t. So
we can consider an edge e = xy incident with neither s nor t.

We can assume that G − e has an s − t vertex-cut C of size k − 1 — otherwise
the statement follows by induction. Similarly, we can assume that G/e has an s − t
vertex-cut of size k − 1 — otherwise the statement follows by induction again.
Necessarily, this cut contains the new vertex obtained by contracting e. Hence G
has an s − t vertex-cut C′ of size k containing both x and y.

Now let Cs be the set of vertices in C ∪ C′ that are reachable in G from s by
a path with no internal vertex in C ∪ C′. Similarly, let Ct be the set of vertices in
C ∪ C′ that are reachable in G from t by a path with no internal vertex in C ∪ C′.

Trivially, Cs and Ct are s − t vertex-cuts, and Cs ∪ Ct ⊆ C ∪ C′. Moreover,
Cs ∩ Ct ⊆ C ∩ C′, since for any v ∈ Cs ∩ Ct there is an s − t path P intersecting
C ∪ C′ only in v. As x, y ∈ C′, P does not traverse edge e. Hence v ∈ C ∩ C′.

Therefore,

(9.1) |Cs| + |Ct| ≤ |C| + |C′| ≤ 2k − 1,

contradicting the fact that Cs and Ct each have size at least k.
An augmenting path proof for the directed vertex-disjoint version was given by

Grünwald [1938] (= T. Gallai), and for the directed arc-disjoint version by Ford
and Fulkerson [1955,1957b] — see Section 9.2. (O’Neil [1978] gave a proof similar
to that of Grünwald [1938].)

More proof ideas were given by Halin [1964,1968,1989], Hajós [1967], McCuaig
[1984], and Böhme, Göring, and Harant [2001].
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9.2. Path packing algorithmically

A specialization of the maximum flow algorithm of Ford and Fulkerson [1955,
1957b] (to be discussed in the next chapter) yields a polynomial-time algo-
rithm to find a maximum number of disjoint s− t paths and a minimum-size
s− t cut.

Define for any digraph D and any path P in D:

(9.2) D ← P := the digraph arising from D by reversing the orientation
of each arc occurring in P .

Note that if P is an s − t path in D = (V, A), then for each U ⊆ V with
s ∈ U , t �∈ U , we have

(9.3) δout
A′ (U) = δout

A (U)− 1,

where A′ is the arc set of D ← P .
Determine D0, D1, . . . as follows.

(9.4) Set D0 := D. If Dk has been found and contains an s− t path P ,
set Dk+1 := Dk ← P . If Dk contains no s− t path we stop.

The path P is called an augmenting path.
Now finding a minimum-size s− t cut is easy: let U be the set of vertices

reachable in the final Dk from s. Then δout
A (U) is a minimum-size s− t cut,

by (9.3).
Also a maximum packing of s − t paths can be derived. Indeed, the set

B of arcs of D that are reversed in the final Dk contains k arc-disjoint s− t
paths in D. This can be seen as follows.

Let Bi be the set of arcs of D that are reversed in Di, added with i parallel
arcs from t to s. We show by induction on i that (V, Bi) is Eulerian. For i = 0,
this is trivial. Suppose that it has been proved for i. Let P be the s− t path
in Di with Di+1 = Di ← P . Then (V, Bi ∪ AP ∪ {(t, s)}) is Eulerian. Since
Bi+1 arises from Bi ∪AP ∪ {(t, s)} by deleting pairs a, a−1 with a ∈ Bi and
a−1 ∈ AP , also (V, Bi+1) is Eulerian.

A consequence is that k arc-disjoint s−t paths in B can be found in linear
time.

Since an s− t path in Dk can be found in time O(m), and since there are
at most |A| arc-disjoint s− t paths, one has:

Theorem 9.2. A maximum collection of arc-disjoint s − t paths and a
minimum-size s− t cut can be found in time O(m2).

Proof. See above.

Similarly one has for the vertex-disjoint variant:

Theorem 9.3. A maximum collection of internally vertex-disjoint s−t paths
and a minimum-size s− t vertex-cut can be found in time O(nm).
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Proof. Apply the reduction described after Corollary 9.1b. In this case the
number of iterations is at most |V |.

One similarly derives for a fixed number k of arc-disjoint paths:

Corollary 9.3a. Given a digraph D = (V, A), s, t ∈ V , and a natural number
k, we can find k arc-disjoint s− t paths (if they exist) in time O(km).

Proof. Directly from the fact that the path P can be found in time O(m).

9.3. Speeding up by blocking path packings

The algorithm might be speeded up by selecting, at each iteration, not just
one path P , but several arc-disjoint paths P1, . . . , Pl in Di at one go, and
setting

(9.5) Di+1 := Di ← P1 ← · · · ← Pl.

This might reduce the number of iterations — but of course this should be
weighed against the increase in complexity of each iteration.

Such a speedup is obtained by a method of Dinits [1970] as follows. For
any digraph D = (V, A) and s, t ∈ V , let µ(D) denote the minimum length
of an s − t path in D. If no such path exists, set µ(D) = ∞. If we choose
the paths P1, . . . , Pl in such a way that µ(Di+1) > µ(Di), then the number
of iterations clearly is not larger than |V | (as µ(Di) < |V | if finite).

We show that a collection P1, . . . , Pl with the property that µ(D ← P1 ←
· · · ← Pl) > µ(D) indeed can be found quickly, namely in linear time.

To that end, call a collection of arc-disjoint s− t paths P1, . . . , Pl blocking
if D contains no s− t path arc-disjoint from P1, . . . , Pl. This is weaker than
a maximum number of arc-disjoint paths, but a blocking collection can be
found in linear time (Dinits [1970]):

Theorem 9.4. Given an acyclic digraph D = (V, A) and s, t ∈ V , a blocking
collection of arc-disjoint s− t paths can be found in time O(m).

Proof. With depth-first search we can find in time O(|A′|) a subset A′ of A
and an s− t path P1 in A′ such that no arc in A′ \ AP1 is contained in any
s − t path: scan s (cf. (6.2)) and stop as soon as t is reached; let A′ be the
set of arcs considered so far (as D is acyclic).

Next we find (recursively) a blocking collection P2, . . . , Pk of arc-disjoint
s − t paths in the graph D′ := (V, A \ A′). Then P1, . . . , Pk is blocking in
D. For suppose that D contains an s − t path Q that is arc-disjoint from
P1, . . . , Pk. Then AQ ∩ A′ �= ∅, since P2, . . . , Pk is blocking in D′. So AQ
intersects AP1, a contradiction.
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We also need the following. Let α(D) denote the set of arcs contained in
at least one shortest s− t path. Then:

Theorem 9.5. Let D = (V, A) be a digraph and let s, t ∈ V . Define D′ :=
(V, A ∪ α(D)−1). Then µ(D′) = µ(D) and α(D′) = α(D).

Proof. It suffices to show that µ(D) and α(D) are invariant if we add a−1

to D for one arc a ∈ α(D). Suppose not. Then there is a directed s− t path
P in A ∪ {a−1} traversing a−1, of length at most µ(D). As a ∈ α(D), there
is an s − t path Q traversing a, of length µ(D). Hence AP ∪ AQ \ {a, a−1}
contains an s− t path of length less than µ(D), a contradiction.

The previous two theorems imply:

Corollary 9.5a. Given a digraph D = (V, A) and s, t ∈ V , a collection of
arc-disjoint s − t paths P1, . . . , Pl with µ(D ← P1 ← · · · ← Pl) > µ(D) can
be found in time O(m).

Proof. Let D̃ = (V, α(D)). (Note that α(D) can be identified in time O(m)
and that (V, α(Df )) is acyclic.) By Theorem 9.4, we can find in time O(m)
a blocking collection P1, . . . , Pl in D̃. Define:

(9.6) D′ := (V, A ∪ α(D)−1) and D′′ := D ← P1 ← · · · ← Pl.

We show µ(D′′) > µ(D). As D′′ is a subgraph of D′, we have µ(D′′) ≥
µ(D′) = µ(D), by Theorem 9.5. Suppose that µ(D′′) = µ(D′). Then α(D′′) ⊆
α(D′) = α(D) (again by Theorem 9.5). Hence, as α(D′′) contains an s−t path
(of length µ(D′′)), α(D) contains an s− t path arc-disjoint from P1, . . . , Pl.
This contradicts the fact that P1, . . . , Pl is blocking in D̃.

This gives us the speedup in finding a maximum packing of s− t paths:

Corollary 9.5b. Given a digraph D = (V, A) and s, t ∈ V , a maximum
number of arc-disjoint s− t paths and a minimum-size s− t cut can be found
in time O(nm).

Proof. Directly from Corollary 9.5a with the iterations (9.5).

9.4. A sometimes better bound

Since µ(Di) is at most |V | (as long as it is finite), the number k of iterations
is at most |V |. But Karzanov [1973a], Tarjan [1974e], and Even and Tarjan
[1975] showed that an alternative, often tighter bound on k holds.

To see this, it is important to observe that, for each i, the set of arcs of
Di that are reversed in the final Dk (compared with Di) forms a maximum
number of arc-disjoint s− t paths in Di.
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Theorem 9.6. If µ(Di+1) > µ(Di) for each i < k, then k ≤ 2|A|1/2. If
moreover D is simple, then k ≤ 2|V |2/3.

Proof. Let p := �|A|1/2�. Then each s − t path in Dp has length at least
p + 1 ≥ |A|1/2. Hence Dp contains at most |A|/|A|1/2 = |A|1/2 arc-disjoint
s− t paths. Therefore k − p ≤ |A|1/2, and hence k ≤ 2|A|1/2.

If D is simple, let p := �|V |2/3�. Then each s− t path in Dp has length at
least p+1 ≥ |V |2/3. Then Dp contains at most |V |2/3 arc-disjoint s− t paths.
Indeed, let Ui denote the set of vertices at distance i from s in Dp. Then

(9.7)
p∑

i=0

(|Ui|+ |Ui+1|) ≤ 2|V |.

Hence there is an i ≤ p with |Ui|+|Ui+1| ≤ 2|V |1/3. This implies |Ui|·|Ui+1| ≤
1
4 (|Ui| + |Ui+1|)2 ≤ |V |2/3. So Dp contains at most |V |2/3 arc-disjoint s − t

paths. Therefore k − p ≤ |V |2/3, and hence k ≤ 2|V |2/3.

This gives the following time bounds (Karzanov [1973a], Tarjan [1974e],
Even and Tarjan [1975]):

Corollary 9.6a. Given a digraph D = (V, A) and s, t ∈ V , a maximum
number of arc-disjoint s− t paths and a minimum-size s− t cut can be found
in time O(m3/2). If D is simple, the paths and the cut can be found also in
time O(n2/3m).

Proof. Directly from Corollary 9.5a and Theorem 9.6.

(Related work was presented in Ahuja and Orlin [1991].)

9.5. Complexity of the vertex-disjoint case

If we are interested in vertex -disjoint paths, the results can be sharpened.
Recall that if D = (V, A) is a digraph and s, t ∈ V , then the problem of
finding a maximum number of internally vertex-disjoint s − t paths can be
reduced to the arc-disjoint case by replacing each vertex v �= s, t by two
vertices v′, v′′, while each arc with head v is redirected to v′ and each arc
with tail v is redirected from v′′; moreover, an arc (v′, v′′) is added.

By Corollary 9.6a, this construction directly yields algorithms for vertex-
disjoint paths with running time O(m3/2) and O(n2/3m). But one can do
better. Note that, with this construction, each of the digraphs Di has the
property that each vertex has indegree at most 1 or outdegree at most 1.
Under this condition, the bound in Theorem 9.6 can be improved to 2|V |1/2:

Theorem 9.7. If each vertex v �= s, t has indegree or outdegree equal to 1,
and if µ(Di+1) > µ(Di) for each i ≤ k, then k ≤ 2|V |1/2.
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Proof. Let p := �|V |1/2�. Then each s−t path in Dp has length at least p+1.
Let Ui be the set of vertices at distance i from s in Di. Then

∑p
i=1 |Ui| ≤ |V |.

This implies that |Ui| ≤ |V |1/2 for some i. Hence Di has at most |V |1/2 arc-
disjoint s− t paths. So k + 1− p ≤ |V |1/2. Hence k ≤ 2|V |1/2.

This gives, similarly to Corollary 9.6a, another result of Karzanov [1973a],
Tarjan [1974e], and Even and Tarjan [1975] (which can be derived also from
Theorem 16.4 due to Hopcroft and Karp [1971,1973] and Karzanov [1973b],
with the method of Hoffman [1960] given in Section 16.7c):

Corollary 9.7a. Given a digraph D = (V, A) and s, t ∈ V , a maximum
number of internally vertex-disjoint s − t paths and a minimum-size s − t
vertex-cut can be found in time O(n1/2m).

Proof. Directly from Corollary 9.5a and Theorem 9.7.

In fact one can reduce n in this bound to the minimum number τ(D)
of vertices intersecting each arc of D (this bound will be used in deriving
bounds for bipartite matching (Theorem 16.5)):

Theorem 9.8. Given a digraph D = (V, A) and s, t ∈ V , a maximum number
of internally vertex-disjoint s− t paths and a minimum-size s− t vertex-cut
can be found in time O(τ(D)1/2m).

Proof. Similar to Corollary 9.7a, by taking p := �τ(D)1/2� in Theorem 9.7:
Finding Dp takes O(pm) time. Let W be a set of vertices intersecting each
arc of D, of size τ(D). In Dp there are at most 2τ(D)1/2 internally vertex-
disjoint s− t paths, since each s− t path contains at least p/2 vertices in W .

9.6. Further results and notes

9.6a. Complexity survey for the disjoint s − t paths problem

For finding arc-disjoint s − t paths we have the following survey of running time
bounds (∗ indicates an asymptotically best bound in the table):

O(m2) Ford and Fulkerson [1955,1957b]

∗ O(nm) Dinits [1970]

∗ O(m3/2) Karzanov [1973a], Tarjan [1974e], Even and Tarjan
[1975]

∗ O(n2/3m) Karzanov [1973a], Tarjan [1974e], Even and Tarjan
[1975] D simple

�
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continued

∗ O(k2n) Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths

∗ O(kn5/3) Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths

∗ O(kn2) Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths; D simple

∗ O(k3/2n3/2) Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths; D simple

For undirected simple graphs, Goldberg and Rao [1997b,1999] gave an O(n3/2m1/2)
bound, and Karger and Levine [1998] gave (m + nk3/2) and O(nm2/3k1/6) bounds,
where k is the number of paths.

For vertex-disjoint paths:

O(nm) Grünwald [1938], Ford and Fulkerson [1955,
1957b]

O(
√

n m) Karzanov [1973a], Tarjan [1974e], Even and
Tarjan [1975]

∗ O(
√

n m logn(n2/m)) Feder and Motwani [1991,1995]

∗ O(k2n) Nagamochi and Ibaraki [1992a] finding k
vertex-disjoint paths

∗ O(kn3/2) Nagamochi and Ibaraki [1992a] finding k
vertex-disjoint paths

For edge-disjoint s − t paths in simple undirected planar graphs:

O(n2 log n) Itai and Shiloach [1979]

O(n2) Cheston, Probert, and Saxton [1977]

O(n3/2 log n) Johnson and Venkatesan [1982]

O(n log2 n) Reif [1983] (minimum-size s − t cut), Hassin and
Johnson [1985] (edge-disjoint s − t paths)

O(n log n log∗ n) Frederickson [1983b]

O(n log n) Frederickson [1987b]

∗ O(n) Weihe [1994a,1997a]

For arc-disjoint s − t paths in simple directed planar graphs:

O(n3/2 log n) Johnson and Venkatesan [1982]

O(n4/3 log2 n) Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

�
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continued
O(n log n) Weihe [1994b,1997b]

∗ O(n) Brandes and Wagner [1997]

For vertex-disjoint s − t paths in undirected planar graphs:

O(n log n) Suzuki, Akama, and Nishizeki [1990]

∗ O(n) Ripphausen-Lipa, Wagner, and Weihe [1993b,1997]

Orlova and Dorfman [1972] and Hadlock [1975] showed, with matching theory, that
in planar undirected graphs also a maximum-size cut can be found in polynomial-
time (Barahona [1990] gave an O(n3/2 log n) time bound) — see Section 29.1. Karp
[1972b] showed that in general finding a maximum-size cut is NP-complete — see
Section 75.1a.

9.6b. Partially disjoint paths

For any digraph D = (V, A) and any B ⊆ A, call two paths disjoint on B if they
have no common arc in B. One may derive from Menger’s theorem a more general
min-max relation for such partially disjoint paths:

Theorem 9.9. Let D = (V, A) be a digraph, s, t ∈ V , and B ⊆ A. Then the
maximum number of s − t paths such that any two are disjoint on B is equal to the
minimum size of an s − t cut contained in B.

Proof. If there is no s− t cut contained in B, then clearly the maximum is infinite.
If B contains any s− t cut, let k be its minimum size. Replace any arc a ∈ A\B by
|A| parallel arcs. Then by Menger’s theorem there exist k arc-disjoint s− t paths in
the extended graph. This gives k s − t paths in the original graph that are disjoint
on B.

The construction given in this proof can also be used algorithmically, but making
|A| parallel arcs takes Ω(m2) time. However, one can prove:

Theorem 9.10. Given a digraph D = (V, A), s, t ∈ V , and B ⊆ A, a maximum
number of s − t paths such that any two are disjoint on B can be found in time
O(nm).

Proof. The theorem follows from Corollary 10.11a below.

9.6c. Exchange properties of disjoint paths

Disjoint paths have a number of exchange properties that imply a certain matroidal
structure (cf. Section 39.4).

Let D = (V, A) be a directed graph and let X, Y ⊆ V . Call X linked to Y
if |X| = |Y | and D has |X| vertex-disjoint X − Y paths. Note that the following
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theorem follows directly from the algorithm for finding a maximum set of disjoint
paths (since any vertex in S∪T , once covered by the disjoint paths, remains covered
during the further iterations):

Theorem 9.11. Let D = (V, A) be a digraph, let S, T ⊆ V , and suppose that X ⊆ S
and Y ⊆ T are linked. Then there exists a maximum number of vertex-disjoint S−T
paths covering X ∪ Y .

Proof. Directly from the algorithm.

The following result, due to Perfect [1968], says that for two distinct maximum
packings P, Q of S −T paths there exists a maximum packing of S −T paths whose
starting vertices are equal to those of P and whose end vertices are equal to those
of Q.

Theorem 9.12. Let D = (V, A) be a digraph and S, T ⊆ V . Let k be the maximum
number of disjoint S − T paths. Let X ⊆ S be linked to Y ⊆ T , and let X ′ ⊆ S be
linked to Y ′ ⊆ T , with |X| = |X ′| = k. Then X is linked to Y ′.

Proof. Let C be a minimum-size vertex set intersecting each S − T path. So by
Menger’s theorem, |C| = |X| = |Y | = |X ′| = |Y ′| = k. Let P ′

1, . . . , P
′
k be vertex-

disjoint X − Y paths. Similarly, let P ′′
1 , . . . , P ′′

k be vertex-disjoint X ′ − Y ′ paths.
We may assume that, for each i, P ′

i and P ′′
i have a vertex in C in common. Let Pi

be the path obtained by traversing P ′
i until it reaches C, after which it traverses

P ′′
i . Then P1, . . . , Pk are vertex-disjoint X − Y ′ paths.

The previous two theorems imply:

Corollary 9.12a. Let D = (V, A) be a digraph, let X ′ be linked to Y ′, and let
X ′′ be linked to Y ′′. Then there exist X and Y with X ′ ⊆ X ⊆ X ′ ∪ X ′′ and
Y ′′ ⊆ Y ⊆ Y ′ ∪ Y ′′ such that X is linked to Y .

Proof. Directly from Theorems 9.11 and 9.12.

Other proofs of this corollary were given by Pym [1969b,1969c], Brualdi and
Pym [1971], and McDiarmid [1975b].

9.6d. Further notes

Lovász, Neumann-Lara, and Plummer [1978] proved the following on the maximum
number of disjoint paths of bounded length. Let G = (V, E) be an undirected
graph, let s and t be two distinct and nonadjacent vertices, and let k ≥ 2. Then the
minimum number of vertices ( �= s, t) intersecting all s − t paths of length at most
k is at most � 1

2k times the maximum number of internally vertex-disjoint s − t
paths each of length at most k. (A counterexample to a conjecture on this raised by
Lovász, Neumann-Lara, and Plummer [1978] was given by Boyles and Exoo [1982].
Related results are given by Galil and Yu [1995].)

On the other hand, when taking lower bounds on the path lengths, Montejano
and Neumann-Lara [1984] showed that, in a directed graph, the minimum number
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of vertices ( �= s, t) intersecting all s − t paths of length at least k is at most 3k − 5
times the maximum number of internally vertex-disjoint such paths. For k = 3, the
factor was improved to 3 by Hager [1986] and to 2 by Mader [1989].

Egawa, Kaneko, and Matsumoto [1991] gave a version of Menger’s theorem in
which vertex-disjoint and edge-disjoint are mixed: Let G = (V, E) be an undirected
graph, let s, t ∈ V , and k, l ∈ Z+. Then G contains l disjoint edge sets, each
containing k vertex-disjoint s − t paths if and only if for each U ⊆ V \ {s, t} there
exist l(k − |U |) edge-disjoint s − t paths in G − U . Similarly, for directed graphs.
The proof is by reduction to Menger’s theorem using integer flow theory.

Bienstock and Diaz [1993] showed that the problem of finding a minimum-weight
subset of edges intersecting all s−t cuts of size at most k is polynomial-time solvable
if k is fixed, while it is NP-complete if k is not fixed.

Motwani [1989] investigated the expected running time of Dinits’ disjoint paths
algorithm.

Extensions of Menger’s theorem to the infinite case were given by P. Erdős (cf.
Kőnig [1932]), Grünwald [1938] (= T. Gallai), Dirac [1960,1963,1973], Halin [1964],
McDiarmid [1975b], Podewski and Steffens [1977], Aharoni [1983a,1987], and Polat
[1991].

Halin [1964], Lovász [1970b], Escalante [1972], and Polat [1976] made further
studies of (the lattice of) s − t cuts.

9.6e. Historical notes on Menger’s theorem

The topologist Karl Menger published his theorem in an article called Zur allge-
meinen Kurventheorie (On the general theory of curves) (Menger [1927]) in the
following form:

Satz β. Ist K ein kompakter regulär-eindimensionaler Raum, welcher zwischen
den beiden endlichen Mengen P und Q n-punktig zusammenhängend ist, dann
enthält K n paarweise fremde Bögen, von denen jeder einen Punkt von P und
einen Punkt von Q verbindet.5

It can be formulated equivalently in terms of graphs as: Let G = (V, E) be an
undirected graph and let P, Q ⊆ V . Then the maximum number of disjoint P − Q
paths is equal to the minimum size of a set W of vertices such that each P − Q
path intersects W .

The result became known as the n-chain theorem. Menger’s interest in this
question arose from his research on what he called ‘curves’: a curve is a connected
compact topological space X with the property that for each x ∈ X and each
neighbourhood N of x there exists a neighbourhood N ′ ⊆ N of x with bd(N ′)
totally disconnected. (Here bd stands for boundary; a space is totally disconnected
if each point forms an open set.)

The curve is called regular if for each x ∈ X and each neighbourhood N of x
there exists a neighbourhood N ′ ⊆ N of x with |bd(N ′)| finite. The order of a point
x ∈ X is equal to the minimum natural number n such that for each neighbourhood
N of x there exists a neighbourhood N ′ ⊆ N of x satisfying |bd(N ′)| ≤ n.

According to Menger:
5 Theorem β. If K is a compact regularly one-dimensional space which is n-point con-

nected between the two finite sets P and Q, then K contains n pairwise disjoint curves,
each of which connects a point in P and a point in Q.
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Eines der wichtigsten Probleme der Kurventheorie ist die Frage nach den Bezie-
hungen zwischen der Ordnungszahl eines Punktes der regulären Kurve K und
der Anzahl der im betreffenden Punkt zusammenstossenden und sonst fremden
Teilbögen von K.6

In fact, Menger used ‘Satz β’ to show that if a point in a regular curve K has
order n, then there exists a topological n-leg with p as top; that is, K contains n
arcs P1, . . . , Pn such that Pi ∩ Pj = {p} for all i, j with i �= j.

The proof idea is as follows. There exists a series N1 ⊃ N2 ⊃ · · · of open
neighbourhoods of p such that N1 ∩ N2 ∩ · · · = {p} and |bd(Ni)| = n for all
i = 1, 2, . . . and such that

(9.8) |bd(N)| ≥ n for each neighbourhood N ⊆ N1.

This follows quite directly from the definition of order.
Now Menger showed that we may assume that the space Gi := Ni \ Ni+1 is a

(topological) graph. For each i, let Qi := bd(Ni). Then (9.8) gives with Menger’s
theorem that there exist n disjoint paths Pi,1, . . . , Pi,n in G such that each Pi,j runs
from Qi to Qi+1. Properly connecting these paths for i = 1, 2, . . . we obtain n arcs
forming the required n-leg.

It was however noticed by Kőnig [1932] that Menger’s proof of ‘Satz β’ is in-
complete. Menger applied induction on |E|, where E is the edge set of the graph G.
Menger first claimed that one easily shows that |E| ≥ n, and that if |E| = n, then
G consists of n disjoint edges connecting P and Q. He stated that if |E| > n, then
there exists a vertex s �∈ P ∪ Q, or in his words (where the ‘Grad’ denotes |E|):

Wir nehmen also an, der irreduzibel n-punktig zusammenhängende Raum K′
besitze den Grad g(> n). Offenbar enthält dann K′ ein punktförmiges Stück s,
welches in der Menge P + Q nicht enthalten ist.7

Indeed, as Menger showed, if such a vertex s exists one is done: If s is contained
in no set W intersecting each P − Q path with |W | = n, then we can delete s and
the edges incident with s without decreasing the minimum in the theorem. If s is
contained in some set W intersecting each P − Q path such that |W | = n, then we
can split G into two subgraphs G1 and G2 that intersect in W in such a way that
P ⊆ G1 and Q ⊆ G2. By the induction hypothesis, there exist n disjoint P − W
paths in G1 and n disjoint W − Q paths in G2. By pairwise sticking these paths
together at W we obtain paths as required.

However, such a vertex s need not exist. It might be that V is the disjoint union
of P and Q in such a way that each edge connects P and Q, and that there are
more than n edges. In that case, G is a bipartite graph, with colour classes P and
Q, and what should be shown is that G contains a matching of size n. This is a
nontrivial basis of the proof.

At the meeting of 26 March 1931 of the Eötvös Loránd Matematikai és Fizikai
Társulat (Loránd Eötvös Mathematical and Physical Society) in Budapest, Kőnig
[1931] presented a new result that formed the missing basis for Menger’s theorem:

6 One of the most important problems of the theory of curves is the question of the
relations between the order of a point of a regular curve K and the number of subarcs
of K meeting in that point and disjoint elsewhere.

7 Thus we assume that the irreducibly n-point-connected space K′ has degree g(> n).
Obviously, in that case K′ contains a point-shaped piece s, that is not contained in the
set P + Q.
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Páros körüljárású graphban az éleket kimeŕıtő szögpontok minimális száma meg-
egyezik a páronként közös végpontot nem tartalmazó élek maximális számával.8

In other words, in a bipartite graph G = (V, E), the maximum size of a matching
is equal to the minimum number of vertices needed to cover all edges, which is
Kőnig’s matching theorem — see Theorem 16.2.

Kőnig did not mention in his 1931 paper that this result provided the missing
element in Menger’s proof, although he finishes with:

Megemĺıtjük végül, hogy eredményeink szorosan összefüggnek Frobeniusnak de-
terminánsokra és Mengernek graphokra vonatkozó némely vizsgálatával. E kapc-
solatokra másutt fogunk kiterjeszkedni.9

‘Elsewhere’ is Kőnig [1932], in which paper he gave a full proof of Menger’s
theorem. The hole in Menger’s original proof is discussed in a footnote:

Der Beweis von Menger enthält eine Lücke, da es vorausgesetzt wird (S. 102, Zeile
3–4) daß ,,K′ ein punktförmiges Stück s enthält, welches in der Menge P +Q nicht
enthalten ist“, während es recht wohl möglich ist, daß —mit der hier gewählten
Bezeichnungsweise ausgedrückt—jeder Knotenpunkt von G zu H1 + H2 gehört.
Dieser—keineswegs einfacher—Fall wurde in unserer Darstellung durch den Be-
weis des Satzes 13 erledigt. Die weiteren—hier folgenden—Überlegungen, die uns
zum Mengerschen Satz führen werden, stimmen im Wesentlichen mit dem—sehr
kurz gefaßten—Beweis von Menger überein. In Anbetracht der Allgemeinheit
und Wichtigkeit des Mengerschen Satzes wird im Folgenden auch dieser Teil ganz
ausführlich und den Forderungen der rein-kombinatorischen Graphentheorie ent-
sprechend dargestellt.
[Zusatz bei der Korrektur, 10.V.1933] Herr Menger hat die Freundlichkeit
gehabt—nachdem ich ihm die Korrektur meiner vorliegenden Arbeit zugeschickt
habe—mir mitzuteilen, daß ihm die oben beanstandete Lücke seines Beweises
schon bekannt war, daß jedoch sein vor Kurzem erschienenes Buch Kurventhe-
orie (Leipzig, 1932) einen vollkommen lückenlosen und rein kombinatorischen
Beweis des Mengerschen Satzes (des “n-Kettensatzes”) enthält. Mir blieb dieser
Beweis bis jetzt unbekannt.10

8 In an even circuit graph, the minimal number of vertices that exhaust the edges agrees
with the maximal number of edges that pairwise do not contain any common end point.

9 We finally mention that our results are closely connected to some investigations of
Frobenius on determinants and of Menger on graphs. We will enlarge on these con-
nections elsewhere.

10 The proof of Menger contains a hole, as it is assumed (page 102, line 3–4) that ‘K′
contains a point-shaped piece s that is not contained in the set P + Q’, while it is quite
well possible that—expressed in the notation chosen here—every node of G belongs to
H1 + H2. This—by no means simple—case is settled in our presentation by the proof
of Theorem 13. The further arguments following here that will lead us to Menger’s
theorem, agree essentially with the—very briefly couched—proof of Menger. In view of
the generality and the importance of Menger’s theorem, also this part is exhibited in the
following very extensively and conforming to the progress of the purely combinatorial
graph theory.

[Added in proof, 10 May 1933] Mr. Menger has had the kindness—after I have sent
him the galley proofs of my present work—to inform me that the hole in his proof
objected above, was known to him already, but that his, recently appeared, book Kur-
ventheorie (Leipzig, 1932) contains a completely holeless and purely combinatorial proof
of the Menger theorem (the ‘n-chain theorem’). As yet, this proof remained unknown
to me.
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The book Kurventheorie (Curve Theory) mentioned is Menger [1932b], which
contains a complete proof of Menger’s theorem. Menger did not refer to any hole
in his original proof, but remarked:

Über den n-Kettensatz für Graphen und die im vorangehenden zum Beweise
verwendete Methode vgl. Menger (Fund. Math. 10, 1927, S. 101 f.). Die obige
detaillierte Ausarbeitung und Darstellung stammt von Nöbeling.11

In his book Theorie der endlichen und unendlichen Graphen (Theory of finite
and infinite graphs), Kőnig [1936] called his theorem ein wichtiger Satz (an impor-
tant theorem), and he emphasized the chronological order of the proofs of Menger’s
theorem and of Kőnig’s theorem (which is implied by Menger’s theorem):

Ich habe diesen Satz 1931 ausgesprochen und bewiesen, s. Kőnig [9 und 11].
1932 erschien dann der erste lückenlose Beweis des Mengerschen Graphensatzes,
von dem in §4 die Rede sein wird und welcher als eine Verallgemeinerung dieses
Satzes 13 (falls dieser nur für endliche Graphen formuliert wird) angesehen wer-
den kann.12

([9 und 11] are Kőnig [1931] and Kőnig [1932].)
In his reminiscences on the origin of the n-arc theorem, Menger [1981] wrote:

In the spring of 1930, I came through Budapest and met there a galaxy of Hun-
garian mathematicians. In particular, I enjoyed making the acquaintance of Dénes
Kőnig, for I greatly admired the work on set theory of his father, the late Julius
Kőnig—to this day one of the most significant contributions to the continuum
problem—and I had read with interest some of Dénes’ papers. Kőnig told me
that he was about to finish a book that would include all that was known about
graphs. I assured him that such a book would fill a great need; and I brought up my
n-Arc Theorem which, having been published as a lemma in a curve-theoretical
paper, had not yet come to his attention. Kőnig was greatly interested, but did
not believe that the theorem was correct. “This evening,” he said to me in part-
ing, “I won’t go to sleep before having constructed a counterexample.” When we
met again the next day he greeted me with the words, “A sleepless night!” and
asked me to sketch my proof for him. He then said that he would add to his book
a final section devoted to my theorem. This he did; and it is largely thanks to
Kőnig’s valuable book that the n-Arc Theorem has become widely known among
graph theorists.

Related work

In a paper presented 7 May 1927 to the American Mathematical Society, Rutt [1927,
1929] gave the following variant of Menger’s theorem, suggested by J.R. Kline. Let
G = (V, E) be a planar graph and let s, t ∈ V . Then the maximum number of
internally vertex-disjoint s− t paths is equal to the minimum number of vertices in
V \ {s, t} intersecting each s − t path.

11 On the n-chain theorem for graphs and the method used in the foregoing for the proof,
compare Menger (Fund. Math. 10, 1927, p. 101 ff.). The detailed elaboration and ex-
planation above originates from Nöbeling.

12 I have enunciated and proved this theorem in 1931, see Kőnig [9 and 11]. Next, in 1932,
the first holeless proof of the Menger theorem appeared, of which will be spoken in §4
and which can be considered as a generalization of this Theorem 13 (in case this is
formulated only for finite graphs).
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In fact, the theorem follows quite easily from Menger’s version of his theorem by
deleting s and t and taking for P and Q the sets of neighbours of s and t respectively.
(Rutt referred to Menger and gave an independent proof of the theorem.)

This construction was also observed by Knaster [1930] who showed that
Menger’s theorem would follow from Rutt’s theorem for general (not necessarily
planar) graphs. A similar theorem was published by Nöbeling [1932], using Menger’s
result.

A result implied by Menger’s theorem was presented by Whitney [1932a] on
28 February 1931 to the American Mathematical Society: a graph is n-connected
if and only if any two vertices are connected by n internally disjoint paths. While
referring to the papers of Menger and Rutt, Whitney gave a direct proof. Kőnig
[1932] remarked on Whitney’s theorem:

Das interessante Hauptresultat einer Abhandlung von Whitney [10], nämlich
sein Theorem 7, folgt unmittelbar aus diesem Mengerschen Satz, jedoch, wie es
scheint, nicht umgekehrt.13

In the 1930s, other proofs of Menger’s theorem were given by Hajós [1934] and
Grünwald [1938] (= T. Gallai) — the latter paper gives an essentially algorithmic
proof based on augmenting paths, and it observes, in a footnote, that the theorem
also holds for directed graphs:

Die ganze Betrachtung lässt sich auch bei orientierten Graphen durchführen und
liefert dann eine Verallgemeinerung des Mengerschen Satzes.14

The arc-disjoint version of Menger’s theorem seems to be first shown by Ford
and Fulkerson [1954,1956b] and Kotzig [1956] for undirected graphs and by Dantzig
and Fulkerson [1955,1956] for directed graphs.

In his dissertation for the degree of Academical Doctor, Kotzig [1956] defined,
for any undirected graph G and vertices u, v of G, σG(u, v) to be the minimum size
of a u − v cut. Then he states:

Veta 35. Nech G je l’ubovol’ný graf obsahujúci uzly u �= v, o ktorých plat́ı
σG(u, v) = k > 0, potom existuje systém ciest {C1, C2, . . . , Ck} taký že každa
cesta spojuje uzly u, v a žiadne dve rôzne cesty systému nemajú spoločnej hrany.
Takýto systém ciest v G existuje len vtedy, keď je σG(u, v) ≥ k.15

In Theorems 33 and 34 of the dissertation, methods are developed for the proof
of Theorem 35. The method is to consider a minimal graph satisfying the cut
condition, and next to orient it so as to make a directed graph in which each vertex
w (except u and v) has indegree = outdegree, while u has outdegree k and indegree
0. This then yields the required paths.

Although the dissertation has several references to Kőnig’s book, which contains
the undirected vertex-disjoint version of Menger’s theorem, Kotzig did not link his

13 The interesting main result of an article of Whitney [10], namely his Theorem 7, follows
immediately from this theorem of Menger, however, as it seems, not conversely.

14 The whole argument lets itself carry out also for oriented graphs and then yields a
generalization of Menger’s theorem.

15 Theorem 35. Let G be an arbitrary graph containing vertices u �= v for which σG(u, v) =
k > 0, then there exists a system of paths {C1, C2, . . . , Ck} such that each path connects
vertices u, v and no two distinct paths have an edge in common. Such a system of paths
in G exists only if σG(u, v) ≥ k.
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result to that of Menger. (Kotzig [1961a] gave a proof of the directed arc-disjoint
version of Menger’s theorem, without reference to Menger.)

We refer to the historical notes on maximum flows in Section 10.8e for further
notes on the work of Dantzig, Ford, and Fulkerson on Menger’s theorem.



Chapter 10

Maximum flow

An s − t flow is defined as a nonnegative real-valued function on the arcs
of a digraph satisfying the ‘flow conservation law’ at each vertex �= s, t.
In this chapter we consider the problem of finding a maximum-value flow
subject to a given capacity function. Basic results are Ford and Fulkerson’s
max-flow min-cut theorem and their augmenting path algorithm to find a
maximum flow.
Each s − t flow is a nonnegative linear combination of incidence vectors
of s − t paths and of directed circuits. Moreover, an integer flow is an
integer such combination. This makes flows tightly connected to disjoint
paths. Thus, maximum integer flow corresponds to a capacitated version of
a maximum packing of disjoint paths, and the max-flow min-cut theorem
is equivalent to Menger’s theorem on disjoint paths.
Distinguishing characteristic of flow is however that it is not described by
a combination of paths but by a function on the arcs. This promotes the
algorithmic tractability.
In this chapter, graphs can be assumed to be simple.

10.1. Flows: concepts

Let D = (V, A) be a digraph and let s, t ∈ V . A function f : A→ R is called
a flow from s to t, or an s− t flow, if:

(10.1) (i) f(a) ≥ 0 for each a ∈ A,
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t}.

Condition (10.1)(ii) is called the flow conservation law : the amount of flow
entering a vertex v �= s, t should be equal to the amount of flow leaving v.

The value of an s− t flow f is, by definition:

(10.2) value(f) := f(δout(s))− f(δin(s)).

So the value is the net amount of flow leaving s. This is equal to the net
amount of flow entering t (this follows from (10.5) below).

Let c : A → R+ be a capacity function. We say that a flow f is under c
(or subject to c) if

(10.3) f(a) ≤ c(a) for each a ∈ A.
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A maximum s− t flow, or just a maximum flow, is an s− t flow under c, of
maximum value. The maximum flow problem is to find a maximum flow.

By compactness and continuity, a maximum flow exists. It will follow from
the results in this chapter (in particular, Theorem 10.4), that if the capacities
are rational, then there exists a rational-valued maximum flow.

It will be convenient to make an observation on general functions f : A→
R. For any f : A→ R, the excess function is the function excessf : P(V )→ R

defined by

(10.4) excessf (U) := f(δin(U))− f(δout(U))

for U ⊆ V . Set excessf (v) := excessf ({v}) for v ∈ V . Then:

Theorem 10.1. Let D = (V, A) be a digraph, let f : A→ R, and let U ⊆ V .
Then:

(10.5) excessf (U) =
∑

v∈U

excessf (v).

Proof. This follows directly by counting, for each a ∈ A, the multiplicity of
f(a) at both sides of (10.5).

To formulate a min-max relation, define the capacity of a cut δout(U) by
c(δout(U)). Then:

Theorem 10.2. Let D = (V, A) be a digraph, s, t ∈ V , and c : A → R+.
Then

(10.6) value(f) ≤ c(δout(U)),

for each s − t flow f ≤ c and each s − t cut δout(U). Equality holds in
(10.6) if and only if f(a) = c(a) for each a ∈ δout(U) and f(a) = 0 for each
a ∈ δin(U).

Proof. Using (10.5) we have

(10.7) value(f) = −excessf (s) = −excessf (U) = f(δout(U))−f(δin(U))
≤ c(δout(U)),

with equality if and only if f(δout(U)) = c(δout(U)) and f(δin(U))= 0.

Finally, we consider a concept that turns out to be important in studying
flows. Let D = (V, A) be a digraph. For each a = (u, v) ∈ A, let a−1 := (v, u).
Define

(10.8) A−1 := {a−1 | a ∈ A}.
Fix a lower bound function d : A→ R and an upper bound function c : A→
R. Then for any f : A→ R satisfying d ≤ f ≤ c we define

(10.9) Af := {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.
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Clearly, Af depends not only on f , but also on D, d, and c, but in the
applications below D, d, and c are fixed, while f is variable. The digraph

(10.10) Df = (V, Af )

is called the residual graph of f . So Df is a subgraph of the directed graph
(V, A ∪ A−1). As we shall see, the residual graph is very useful in studying
flows and circulations, both theoretically and algorithmically.

In the context of flows we take d = 0. We observe:

Corollary 10.2a. Let f be an s− t flow in D with f ≤ c. Suppose that Df

has no s − t path. Define U as the set of vertices reachable in Df from s.
Then value(f) = c(δout

A (U)). In particular, f has maximum value.

Proof. We apply Theorem 10.2. For each a ∈ δout
A (U), one has a �∈ Af , and

hence f(a) = c(a). Similarly, for each a ∈ δin
A (U) one has a−1 �∈ Af , and hence

f(a) = 0. So value(f) = c(δout
A (U)) and f has maximum value by Theorem

10.2.

Any directed path P in Df gives an undirected path in D = (V, A). Define
χP ∈ R

A by:

(10.11) χP (a) :=






1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

for a ∈ A.

10.2. The max-flow min-cut theorem

The following theorem was proved by Ford and Fulkerson [1954,1956b] for the
undirected case and by Dantzig and Fulkerson [1955,1956] for the directed
case. (According to Robacker [1955a], the max-flow min-cut theorem was
conjectured first by D.R. Fulkerson.)

Theorem 10.3 (max-flow min-cut theorem). Let D = (V, A) be a digraph,
let s, t ∈ V , and let c : A → R+. Then the maximum value of an s − t flow
subject to c is equal to the minimum capacity of an s− t cut.

Proof. Let f be an s− t flow subject to c, of maximum value. By Theorem
10.2, it suffices to show that there is an s− t cut δout(U) with capacity equal
to value(f).

Consider the residual graph Df (for lower bound d := 0). Suppose that it
contains an s− t path P . Then f ′ := f + εχP is again an s− t flow subject
to c, for ε > 0 small enough, with value(f ′) = value(f) + ε. This contradicts
the maximality of value(f).
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So Df contains no s − t path. Let U be the set of vertices reachable in
Df from s. Then value(f) = c(δout(U)) by Corollary 10.2a.

This ‘constructive’ proof method is implied by the algorithm of Ford and
Fulkerson [1955,1957b], to be discussed below.

Moreover, one has (Dantzig and Fulkerson [1955,1956])16:

Corollary 10.3a (integrity theorem). If c is integer, there exists an integer
maximum flow.

Proof. Directly from the proof of the max-flow min-cut theorem, where we
can take ε = 1.

10.3. Paths and flows

The following observation gives an important link between flows at one side
and paths at the other side.

Let D = (V, A) be a digraph, let s, t ∈ V , and let f : A→ R+ be an s− t
flow. Then f is a nonnegative linear combination of at most |A| vectors χP ,
where P is a directed s− t path or a directed circuit. If f is integer, we can
take the linear combination integer-scalared.

Conversely, if P1, . . . , Pk are s− t paths in D, then f := χAP1 + · · ·+χAPk

is an integer s− t flow of value k.
With this observation, Corollary 10.3a implies the arc-disjoint version of

Menger’s theorem (Corollary 9.1b). Conversely, Corollary 10.3a (the integrity
theorem) can be derived from the arc-disjoint version of Menger’s theorem
by replacing each arc a by c(a) parallel arcs.

10.4. Finding a maximum flow

The proof idea of the max-flow min-cut theorem can also be used algorith-
mically to find a maximum s − t flow, as was shown by Ford and Fulkerson
[1955,1957b]. Let D = (V, A) be a digraph and s, t ∈ V and let c : A → Q+
be a ‘capacity’ function.

Initially set f := 0. Next apply the following flow-augmenting algorithm
iteratively:

(10.12) let P be a directed s − t path in Df and reset f := f + εχP ,
where ε is as large as possible so as to maintain 0 ≤ f ≤ c.

If no such path exists, the flow f is maximum, by Corollary 10.2a.
The path P is called a flow-augmenting path or an f-augmenting path, or

just an augmenting path.
16 The name ‘integrity theorem’ was used by Ford and Fulkerson [1962].
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As for termination, we have:

Theorem 10.4. If all capacities c(a) are rational, the algorithm terminates.

Proof. If all capacities are rational, there exists a natural number K such
that Kc(a) is an integer for each a ∈ A. (We can take for K the l.c.m. of the
denominators of the c(a).)

Then in the flow-augmenting iterations, every fi(a) and every ε is a mul-
tiple of 1/K. So at each iteration, the flow value increases by at least 1/K.
Since the flow value cannot exceed c(δout({s})), there are only finitely many
iterations.

If we delete the rationality condition, this theorem is not maintained —
see Section 10.4a. On the other hand, in Section 10.5 we shall see that if
we always choose a shortest possible flow-augmenting path, then the algo-
rithm terminates in a polynomially bounded number of iterations, regardless
whether the capacities are rational or not.

10.4a. Nontermination for irrational capacities

Ford and Fulkerson [1962] showed that Theorem 10.4 is not maintained if we allow
arbitrary real-valued capacities. The example is as follows.

Let D = (V, A) be the complete directed graph on 8 vertices, with s, t ∈ V . Let
A0 = {a1, a2, a3} consist of three disjoint arcs of D, each disjoint from s and t. Let
r be the positive root of r2 + r − 1 = 0; that is, r = (−1 +

√
5)/2 < 1. Define a

capacity function c on A by

(10.13) c(a1) := 1, c(a2) := 1, c(a3) := r,

and c(a) at least

(10.14) q :=
1

1 − r
= 1 + r + r2 + · · ·

for each a ∈ A \ A0. Apply the flow-augmenting algorithm iteratively as follows.
In step 0, choose, as flow-augmenting path, the s− t path of length 3 traversing

a1. After this step, the flow f satisfies, for k = 1:

(10.15) (i) f has value 1 + r + r2 + · · · + rk−1,
(ii) {c(a) − f(a) | a ∈ A0} = {0, rk−1, rk},

(iii) f(a) ≤ 1 + r + r2 + · · · + rk−1 for each a ∈ A.

We describe the further steps. In each step k, for k ≥ 1, the input flow f
satisfies (10.15). Choose a flow-augmenting path P in Df that contains the arc
a ∈ A0 satisfying c(a) − f(a) = 0 in backward direction, and the other two arcs in
A0 in forward direction; all other arcs of P are arcs of D in forward direction. Since
rk < rk−1, and since (1 + r + · · · + rk−1) + rk < q, the flow augmentation increases
the flow value by rk. Since rk−1 − rk = rk+1, the new flow satisfies (10.15) with k
replaced by k + 1.
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We can keep iterating this, making the flow value converge to 1+r+r2+r3+· · · =
q. So the algorithm does not terminate, and the flow value does not converge to the
optimum value, since, trivially, the maximum flow value is more than q.

(Zwick [1995] gave the smallest directed graph (with 6 vertices and 8 arcs) for
which the algorithm (with irrational capacities) need not terminate.)

10.5. A strongly polynomial bound on the number of
iterations

We saw in Theorem 10.4 that the number of iterations in the maximum flow
algorithm is finite, if all capacities are rational. But if we choose as our flow-
augmenting path P in the auxiliary graph Df an arbitrary s − t path, the
number of iterations yet can get quite large. For instance, in the graph in
Figure 10.1 the number of iterations, at an unfavourable choice of paths, can
become 2 · 10k, so exponential in the size of the input data (which is O(k)).

10k

10k

10k

10k

s t1

Figure 10.1

However, if we choose always a shortest s − t path in Df as our flow-
augmenting path P (that is, with a minimum number of arcs), then the
number of iterations is at most |V | · |A| (also if capacities are irrational).
This was shown by Dinits [1970] and Edmonds and Karp [1972]. (The latter
remark that this refinement ‘is so simple that it is likely to be incorporated
innocently into a computer implementation.’)

To see this bound on the number of iterations, let again, for any digraph
D = (V, A) and s, t ∈ V , µ(D) denote the minimum length of an s− t path.
Moreover, let α(D) denote the set of arcs contained in at least one shortest
s− t path. Recall that by Theorem 9.5:

(10.16) for D′ := (V, A ∪ α(D)−1), one has µ(D′) = µ(D) and α(D′) =
α(D).

This implies the result of Dinits [1970] and Edmonds and Karp [1972]:

Theorem 10.5. If we choose in each iteration a shortest s− t path in Df as
flow-augmenting path, the number of iterations is at most |V | · |A|.
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Proof. If we augment flow f along a shortest s− t path P in Df , obtaining
flow f ′, then Df ′ is a subgraph of D′ := (V, Af ∪α(Df )−1). Hence µ(Df ′) ≥
µ(D′) = µ(Df ) (by (10.16)). Moreover, if µ(Df ′) = µ(Df ), then α(Df ′) ⊆
α(D′) = α(Df ) (again by (10.16)). As at least one arc in P belongs to Df

but not to Df ′ , we have a strict inclusion. Since µ(Df ) increases at most |V |
times and, as long as µ(Df ) does not change, α(Df ) decreases at most |A|
times, we have the theorem.

Since a shortest path can be found in time O(m) (Theorem 6.3), this
gives:

Corollary 10.5a. A maximum flow can be found in time O(nm2).

Proof. Directly from Theorem 10.5.

10.6. Dinits’ O(n2m) algorithm

Dinits [1970] observed that one can speed up the maximum flow algorithm,
by not augmenting simply along paths in Df , but along flows in Df . The
approach is similar to that of Section 9.3 for path packing.

To describe this, define a capacity function cf on Af by, for each a ∈ A:

(10.17) cf (a) := c(a)− f(a) if a ∈ Af and
cf (a−1) := f(a) if a−1 ∈ Af .

Then for any flow g in Df subject to cf ,

(10.18) f ′(a) := f(a) + g(a)− g(a−1)

gives a flow f ′ in D subject to c. (We define g(a) or g(a−1) to be 0 if a or
a−1 does not belong to Af .)

Now we shall see that, given a flow f in D, one can find in time O(m) a
flow g in Df such that the flow f ′ arising by (10.18) satisfies µ(Df ′) > µ(Df ).
It implies that there are at most n iterations.

The basis of the method is the concept of ‘blocking flow’. An s− t flow f
is called blocking if for each s− t flow f ′ with f ≤ f ′ ≤ c one has f ′ = f .

Theorem 10.6. Given an acyclic graph D = (V, A), s, t ∈ V , and a capacity
function c : A→ Q+, a blocking s− t flow can be found in time O(nm).

Proof. By depth-first search we can find, in time O(|A′|), a subset A′ of A
and an s − t path P in A′ such that no arc in A′ \ AP is contained in any
s− t path: just scan s (cf. (6.2)) until t is reached; then A′ is the set of arcs
considered so far.

Let f be the maximum flow that can be sent along P , and reset c := c−f .
Delete all arcs in A′ \ AP and all arcs a with c(a) = 0, and recursively find
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a blocking s− t flow f ′ in the new network. Then f ′ + f is a blocking s− t
flow for the original data, as is easily checked.

The running time of the iteration is O(n + t), where t is the number of
arcs deleted. Since there are at most |A| iterations and since at most |A| arcs
can be deleted, we have the required running time bound.

Hence we have an improvement on the running time for finding a maxi-
mum flow:

Corollary 10.6a. A maximum flow can be found in time O(n2m).

Proof. It suffices to describe an O(nm) method to find, for given flow f , a
flow f ′ with µ(Df ′) > µ(Df ).

Find a blocking flow g in (V, α(Df )). (Note that α(Df ) can be determined
in O(m) time.) Let f ′(a) := f(a)+g(a)−g(a−1), taking values 0 if undefined.
Then Df ′ is a subgraph of D′ := (V, Af ∪ α(Df )−1), and hence by (10.16),
µ(Df ′) ≥ µ(D′) = µ(Df ). If µ(Df ′) = µ(Df ), Df ′ has a path P of length
µ(Df ), which (again (10.16)) should also be a path in α(Df ). But then g
could have been increased along this path, contradicting the fact that g is
blocking in Df .

10.6a. Karzanov’s O(n3) algorithm

Karzanov [1974] gave a faster algorithm to find a blocking flow, thus speeding up
the maximum flow algorithm. We give the short proof of Malhotra, Kumar, and
Maheshwari [1978] (see also Cherkasskĭı [1979] and Tarjan [1984]).

Theorem 10.7. Given an acyclic digraph D = (V, A), s, t ∈ V , and a capacity
function c : A → Q+, a blocking s − t flow can be found in time O(n2).

Proof. First order the vertices reachable from s as s = v1, v2, . . . , vn−1, vn topo-
logically ; that is, if (vi, vj) ∈ A, then i < j. This can be done in time O(m) (see
Corollary 6.5b).

We describe the algorithm recursively. Consider the minimum of the values
c(δin(v)) for all v ∈ V \ {s} and c(δout(v)) for all v ∈ V \ {t}. Let the minimum be
attained by vi and c(δout(vi)) (without loss of generality). Define f(a) := c(a) for
each a ∈ δout(vi) and f(a) := 0 for all other a.

Next for j = i+1, . . . , n−1, redefine f(a) for each a ∈ δout(vj) such that f(a) ≤
c(a) and such that f(δout(vj)) = f(δin(vj)). By the minimality of c(δout(vi)), we
can always do this, as initially f(δin(vj)) ≤ c(δout(vi)) ≤ c(δout(vj)). We do this in
such a way that finally f(a) ∈ {0, c(a)} for all but at most one a in δout(vj).

After that, for j = i, i − 1, . . . , 2, redefine similarly f(a) for a ∈ δin(vj) such
that f(a) ≤ c(a), f(δin(vj)) = f(δout(vj)), and f(a) ∈ {0, c(a)} for all but at most
one a in δin(vj).

If vi ∈ {s, t} we stop, and f is a blocking flow. If vi �∈ {s, t}, set c′(a) :=
c(a) − f(a) for each a ∈ A, and delete all arcs a with c′(a) = 0 and delete vi and
all arcs incident with vi, thus obtaining the directed graph D′ = (V ′, A′). Obtain
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(recursively) a blocking flow f ′ in D′ subject to the capacity function c′. Define
f ′′(a) := f(a) + f ′(a) for a ∈ A′ and f ′′(a) = f(a) for a ∈ A \ A′. Then f ′′ is a
blocking flow in D.

This describes the algorithm. The correctness can be seen as follows. If vi ∈
{s, t} the correctness is immediate. If vi �∈ {s, t}, suppose that f ′′ is not a blocking
flow in D, and let P be an s−t path in D with f ′′(a) < c(a) for each arc a in P . Then
each arc of P belongs to A′, since f ′′(a) = f(a) = c(a) for each a ∈ A\(A′∪δin(vi)).
So for each arc a of P one has c′(a) = c(a) − f(a) > f ′′(a) − f(a) = f ′(a). This
contradicts the fact that f ′ is a blocking flow in D′.

The running time of the algorithm is O(n2), since the running time of the
iteration is O(n + |A \ A′|), and since there are at most |V | iterations.

Theorem 10.7 improves the running time for finding a maximum flow as follows:

Corollary 10.7a. A maximum flow can be found in time O(n3).

Proof. Similar to the proof of Corollary 10.6a.

Sharper blocking flow algorithms were found by Cherkasskĭı [1977a] (O(n
√

m)),
Galil [1978,1980a] (O((nm)2/3)), Shiloach [1978] and Galil and Naamad [1979,1980]
(O(m log2 n)), Sleator [1980] and Sleator and Tarjan [1981,1983a] (O(m log n)),
and Goldberg and Tarjan [1990] (O(m log(n2/m))), each yielding a maximum flow
algorithm with running time bound a factor of n higher.

An alternative approach finding a maximum flow in time O(nm log(n2/m)),
based on the ‘push-relabel’ method, was developed by Goldberg [1985,1987] and
Goldberg and Tarjan [1986,1988a], and is described in the following section.

10.7. Goldberg’s push-relabel method

The algorithms for the maximum flow problem described above are all based
on flow augmentation. The basis is updating a flow f until Df has no s − t
path. Goldberg [1985,1987] and Goldberg and Tarjan [1986,1988a] proposed
a different, in a sense dual, method, the ‘push-relabel’ method: update a ‘pre-
flow’ f , maintaining the property that Df has no s− t path, until f is a flow.
(Augmenting flow methods are ‘primal’ as they maintain feasibility of the
primal linear program, while the push-relabel method maintains feasibility
of the dual linear program.)

Let D = (V, A) be a digraph, s, t ∈ V , and c : A → Q+. A function
f : A→ Q is called an s− t preflow, or just a preflow, if

(10.19) (i) 0 ≤ f(a) ≤ c(a) for each a ∈ A,
(ii) excessf (v) ≥ 0 for each vertex v �= s.

(Preflows were introduced by Karzanov [1974]. excessf was defined in Section
10.1.)

Condition (ii) says that at each vertex v �= s, the outgoing preflow does
not exceed the ingoing preflow. For any preflow f , call a vertex v active if
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v �= t and excessf (v) > 0. So f is an s − t flow if and only if there are no
active vertices.

The push-relabel method consists of keeping a pair f, p, where f is a preflow
and p : V → Z+ such that

(10.20) (i) if (u, v) ∈ Af , then p(v) ≥ p(u)− 1,
(ii) p(s) = n and p(t) = 0.

Note that for any given f , such a function p exists if and only if Df has no
s − t path. Hence, if a function p satisfying (10.20) exists and f is an s − t
flow, then f is an s− t flow of maximum value (Corollary 10.2a).

Initially, f and p are set by:

(10.21) f(a) := c(a) if a ∈ δout(s) and f(a) := 0 otherwise;
p(v) := n if v = s and p(v) := 0 otherwise.

Next, while there exist active vertices, choose an active vertex u maximizing
p(u), and apply the following iteratively, until u is inactive:

(10.22) choose an arc (u, v) ∈ Af with p(v) = p(u) − 1 and push over
(u, v); if no such arc exists, relabel u.

Here to push over (u, v) ∈ Af means:

(10.23) if (u, v) ∈ A, reset f(u, v) := f(u, v)+ε, where ε := min{c(u, v)−
f(u, v), excessf (u)};
if (v, u) ∈ A, reset f(v, u) := f(v, u)− ε, where ε := min{f(v, u),
excessf (u)}.

To relabel u means:

(10.24) reset p(u) := p(u) + 1.

Note that if Af has no arc (u, v) with p(v) = p(u)− 1, then we can relabel u
without violating (10.20).

This method terminates, since:

Theorem 10.8. The number of pushes is O(n3) and the number of relabels
is O(n2).

Proof. First we show:

(10.25) throughout the process, p(v) < 2n for each v ∈ V .

Indeed, if v is active, then Df contains a v−s path (since f can be decomposed
as a sum of incidence vectors of s − v paths, for v ∈ V , and of directed
circuits). So by (10.20)(i), p(v) − p(s) ≤ distDf

(v, s) < n. As p(s) = n, we
have p(v) < 2n. This gives (10.25), which directly implies:

(10.26) the number of relabels is at most 2n2.
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To estimate the number of pushes, call a push (10.23) saturating if after
the push one has f(u, v) = c(u, v) (if (u, v) ∈ A) or f(v, u) = 0 (if (v, u) ∈ A).
Then:

(10.27) the number of saturating pushes is O(nm).

For consider any arc a = (u, v) ∈ A. If we increase f(a), then p(v) = p(u)−1,
while if we decrease f(a), then p(u) = p(v)−1. So meantime p(v) should have
been relabeled at least twice. As p is nondecreasing (in time), by (10.25) we
have (10.27).

Finally:

(10.28) the number of nonsaturating pushes is O(n3).

Between any two relabels the function p does not change. Hence there are
O(n) nonsaturating pushes, as each of them makes an active vertex v maxi-
mizing p(v) inactive (while possibly a vertex v′ with p(v′) < p(v) is activated).
With (10.26) this gives (10.28).

There is an efficient implementation of the method:

Theorem 10.9. The push-relabel method finds a maximum flow in time
O(n3).

Proof. We order the vertex set V as a doubly linked list, in order of increasing
value p(v). Moreover, for each u ∈ V we keep the set Lu of arcs (u, v) in Af

with p(v) = p(u)− 1, ordered as a doubly linked list. We also keep with each
vertex v the value excessf (v), and we keep linked lists of arcs of D incident
with v.

Throughout the iterations, we choose an active vertex u maximizing p(u),
and we process u, until u becomes inactive. Between any two relabelings,
this searching takes O(n) time, since as long as we do not relabel, we can
continue searching the list V in order. As we relabel O(n2) times, we can do
the searching in O(n3) time.

Suppose that we have found an active vertex u maximizing p(u). We next
push over each of the arcs in Lu. So finding an arc a = (u, v) for pushing
takes time O(1). If it is a saturating push, we can delete (u, v) from Lu in
time O(1). Moreover, we can update excessf (u) and excessf (v) in time O(1).
Therefore, as there are O(n3) pushes, they can be done in O(n3) time.

We decide to relabel u if Lu = ∅. When relabeling, updating the lists
takes O(n) time: When we reset p(u) from i to i + 1, then for each arc (u, v)
or (v, u) of D, we add (u, v) to Lu if p(v) = i and (u, v) ∈ Af , and we remove
(v, u) from Lv if p(v) = i+1 and (v, u) ∈ Af ; moreover, we move u to its new
rank in the list V . This all takes O(n) time. Therefore, as there are O(n2)
relabels, they can be done in O(n3) time.

Further notes on the push-relabel method. If we allow any active vertex u
to be chosen for (10.22) (not requiring maximality of p(u)), then the bounds of
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O(n2) on the number of relabels and O(nm) on the number of saturating pushes
are maintained, while the number of nonsaturating pushes is O(n2m).

A first-in first-out selection rule was studied by Goldberg [1985], also yield-
ing an O(n3) algorithm. Theorem 10.9 (using the largest-label selection) is due
to Goldberg and Tarjan [1986,1988a], who also showed an implementation of the
push-relabel method with dynamic trees, taking O(nm log(n2/m)) time. Cheriyan
and Maheshwari [1989] and Tunçel [1994] showed that the bound on the number
of pushes in Theorem 10.8 can be improved to O(n2√m), yielding an O(n2√m)
running time bound. Further improvements are given in Ahuja and Orlin [1989]
and Ahuja, Orlin, and Tarjan [1989]. The worst-case behaviour of the push-relabel
method was studied by Cheriyan and Maheshwari [1989].

10.8. Further results and notes

10.8a. A weakly polynomial bound

Edmonds and Karp [1972] considered the following fattest augmenting path rule:
choose a flow-augmenting path for which the flow value increase is maximal. They
showed that, if all capacities are integer, it terminates in at most 1 + m′ log φ
iterations, where φ is the maximum flow value and where m′ is the maximum
number of arcs in any s − t cut. This gives a maximum flow algorithm of running
time O(n2m log nC), where C is the maximum capacity (assuming all capacities
are integer). (For irrational capacities, Queyranne [1980] showed that the method
need not terminate.)

Edmonds and Karp [1970,1972] and Dinits [1973a] introduced the idea of
capacity-scaling, which gives the following stronger running time bound:

Theorem 10.10. For integer capacities, a maximum flow can be found in time
O(m2 log C).

Proof. Let L := �log2 C�+1. For i = L, L−1, . . . , 0, we can obtain a maximum flow
f ′ for capacity function c′ := �c/2i, from a maximum flow f ′′ for capacity function
c′′ := �c/2i+1 as follows. Observe that the maximum flow value for c′ differs by
at most m from that of the maximum flow value φ for 2c′′. For let δout(U) be a
cut with 2c′′(δout(U)) = φ. Then c′(δout(U)) − φ ≤ |δout(U)| ≤ m. So a maximum
flow with respect to c′ can be obtained from 2f ′′ by at most m augmenting path
iterations. As each augmenting path iteration can be done in O(m) time, and as
�c/2L = 0, we have the running time bound given.

With methods similar to those used in Corollary 10.6a, the bound in Theorem
10.10 can be improved to O(nm log C), a result of Dinits [1973a] and Gabow [1985b].
To see this, observe that the proof of Theorem 10.6 also yields:

Theorem 10.11. Given an acyclic graph D = (V, A), s, t ∈ V , and a capacity
function c : A → Z+, an integer blocking flow f can be found in time O(nφ + m),
where φ is the value of f .
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Proof. Consider the proof of Theorem 10.6. We do at most φ iterations, while each
iteration takes O(n + t) time, where t is the number of arcs deleted.

Hence, similarly to Corollary 10.6a one has:

Corollary 10.11a. For integer capacities, a maximum flow can be found in time
O(n(φ + m)), where φ is the maximum flow value.

Proof. Similar to the proof of Corollary 10.6a.

Therefore,

Corollary 10.11b. For integer capacities, a maximum flow can be found in time
O(nm log C).

Proof. In the proof of Theorem 10.10, a maximum flow with respect to c′ can be
obtained from 2f ′′ in time O(nm) (by Corollary 10.11a), since the maximum flow
value in the residual graph Df ′′ is at most m.

10.8b. Complexity survey for the maximum flow problem

Complexity survey (∗ indicates an asymptotically best bound in the table):

O(n2mC) Dantzig [1951a] simplex method

O(nmC) Ford and Fulkerson [1955,1957b]
augmenting path

O(nm2) Dinits [1970], Edmonds and Karp
[1972] shortest augmenting path

O(n2m log nC) Edmonds and Karp [1972] fattest
augmenting path

O(n2m) Dinits [1970] shortest augmenting
path, layered network

O(m2 log C) Edmonds and Karp [1970,1972]
capacity-scaling

O(nm log C) Dinits [1973a], Gabow [1983b,1985b]
capacity-scaling

O(n3)
Karzanov [1974] (preflow push); cf.
Malhotra, Kumar, and Maheshwari
[1978], Tarjan [1984]

O(n2√m) Cherkasskĭı [1977a] blocking preflow
with long pushes

O(nm log2 n) Shiloach [1978], Galil and Naamad
[1979,1980]

O(n5/3m2/3) Galil [1978,1980a]
�



Section 10.8b. Complexity survey for the maximum flow problem 161

continued

O(nm log n) Sleator [1980], Sleator and Tarjan
[1981,1983a] dynamic trees

∗ O(nm log(n2/m)) Goldberg and Tarjan [1986,1988a]
push-relabel+dynamic trees

O(nm + n2 log C) Ahuja and Orlin [1989] push-relabel +
excess scaling

O(nm + n2√log C) Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved

∗ O(nm log((n/m)
√

log C + 2)) Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved + dynamic trees

∗ O(n3/ log n) Cheriyan, Hagerup, and Mehlhorn
[1990,1996]

O(n(m + n5/3 log n)) Alon [1990] (derandomization of
Cheriyan and Hagerup [1989,1995])

O(nm + n2+ε) (for each ε > 0) King, Rao, and Tarjan
[1992]

∗ O(nm logm/n n + n2 log2+ε n) (for each ε > 0) Phillips and
Westbrook [1993,1998]

∗ O(nm log m
n log n

n) King, Rao, and Tarjan [1994]

∗ O(m3/2 log(n2/m) log C) Goldberg and Rao [1997a,1998]

∗ O(n2/3m log(n2/m) log C) Goldberg and Rao [1997a,1998]

Here C := ‖c‖∞ for integer capacity function c. For a complexity survey for unit
capacities, see Section 9.6a.

Research problem: Is there an O(nm)-time maximum flow algorithm?
For the special case of planar undirected graphs:

O(n2 log n) Itai and Shiloach [1979]

O(n log2 n) Reif [1983] (minimum cut), Hassin and Johnson
[1985] (maximum flow)

O(n log n log∗ n) Frederickson [1983b]

∗ O(n log n) Frederickson [1987b]

For directed planar graphs:

O(n3/2 log n) Johnson and Venkatesan [1982]

O(n4/3 log2 n log C) Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

∗ O(n log n) Weihe [1994b,1997b]
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Itai and Shiloach [1979] and Hassin [1981b] showed that if s and t both are on
the outer boundary, then a shortest path algorithm applied to the dual gives an
O(n log n) algorithm for finding a minimum-capacity s−t cut and a maximum-value
s − t flow, also for the directed case. This extends earlier work of Hu [1969].

Khuller, Naor, and Klein [1993] studied the lattice structure of the integer s− t
flows in a planar directed graph. More on planar maximum flow can be found in
Khuller and Naor [1990,1994].

10.8c. An exchange property

Dinits [1973b] and Minieka [1973] observed the following analogue of Theorem 9.12:

Theorem 10.12. Let D = (V, A) be a digraph, let s, t ∈ V , let c : A → R+, and
let f1 and f2 be maximum s − t flows subject to c. Then there exists a maximum
s − t flow f subject to c such that f(a) = f1(a) for each arc a incident with s and
f(a) = f2(a) for each arc a incident with t.

Proof. Let δout(U) be an s − t cut of minimum capacity, with U ⊆ V and s ∈
U ,t �∈ U . So f1 and f2 coincide on δout(U) and on δin(U). Define f(a) := f1(a) if
a is incident with U and f(a) := f2(a) if a is incident with V \ U . This defines a
maximum s − t flow as required.

This was also shown by Megiddo [1974], who used it to prove the following.
Let D = (V, A) be a directed graph, let c : A → R+ be a capacity function,
and let s, t ∈ V , where s is a source, and t is a sink. An s − t flow f ≤ c is
called source-optimal if the vector (f(a) | a ∈ δout(s)) is lexicographically maximal
among all s − t flows subject to c (ordering the a ∈ δout(s) by nonincreasing value
of f(a)). The maximum flow algorithm implies that a source-optimal s − t flow is
a maximum-value s − t flow.

One similarly defines sink-optimal, and Theorem 10.12 implies that there exists
an s − t flow that is both source- and sink-optimal. The proof shows that this flow
can be found by combining a source-optimal and a sink-optimal flow appropriately.

As Megiddo showed, a source-optimal flow can be found iteratively, by updating
a flow f (starting with f = 0), by determining an arc a ∈ δout(s) with f(a) = 0,
on which f(a) can be increased most. Making this increase, gives the next f . Stop
if no increase is possible anymore.

10.8d. Further notes

Simplex method. The maximum flow problem is a linear programming problem,
and hence it can be solved with the simplex method of Dantzig [1951b] (this pa-
per includes an anti-cycling rule based on perturbation). This was elaborated by
Fulkerson and Dantzig [1955a,1955b]. A direct, combinatorial anti-cycling rule for
flow problems was given by Cunningham [1976]. Goldfarb and Hao [1990] gave a
pivot rule that leads to at most nm pivots, yielding an algorithm of running time
O(n2m). Goldberg, Grigoriadis, and Tarjan [1991] showed that with the help of dy-
namic trees there is an O(nm log n) implementation. See also Gallo, Grigoriadis, and
Tarjan [1989], Plotkin and Tardos [1990], Goldfarb and Hao [1991], Orlin, Plotkin,
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and Tardos [1993], Ahuja and Orlin [1997], Armstrong and Jin [1997], Goldfarb
and Chen [1997], Tarjan [1997], Armstrong, Chen, Goldfarb, and Jin [1998], and
Hochbaum [1998].

Worst-case analyses of maximum flow algorithms were given by Zadeh [1972,
1973b] (shortest augmenting path rule), Dinits [1973b] (shortest augmenting path
rule), Tarjan [1974e], Even and Tarjan [1975] (Dinits O(n2m) algorithm), Baratz
[1977] (Karzanov’s O(n3) algorithm), Galil [1981], Cheriyan [1988] (push-relabel
method), Cheriyan and Maheshwari [1989] (push-relabel method), and Martel
[1989] (push-relabel method). For further analysis of maximum flow algorithms,
see Tucker [1977a] and Ahuja and Orlin [1991].

Computational studies were reported by Cherkasskĭı [1979], Glover, Kling-
man, Mote, and Whitman [1979,1980,1984], Hamacher [1979] (Karzanov’s method),
Cheung [1980], Imai [1983b], Goldfarb and Grigoriadis [1988] (Dinits’ method
and the simplex method), Derigs and Meier [1989] (push-relabel method), Al-
izadeh and Goldberg [1993] (push-relabel in parallel), Anderson and Setubal [1993]
(push-relabel), Gallo and Scutellà [1993], Nguyen and Venkateswaran [1993] (push-
relabel), and Cherkassky and Goldberg [1995,1997] (push-relabel method). Consult
also Johnson and McGeoch [1993].

A probabilistic analysis was presented by Karp, Motwani, and Nisan [1993]. A
randomized approximation algorithm for minimum s − t cut was given by Benczúr
and Karger [1996].

Fulkerson [1959b] gave a labeling algorithm for finding the minimum cost of
capacities to be added to make an s − t flow of given value possible. Wollmer
[1964] studied which k arcs to remove from a capacitated digraph so as to reduce
the maximum s − t flow value as much as possible. McCormick [1997] studied the
problem of computing ‘least infeasible’ flows. Akers [1960] described the effect of
∆Y operations on max-flow computations.

Ponstein [1972] gave another rule guaranteeing termination of the augmenting
path iterations in Ford and Fulkerson’s algorithm. Karp [1972b] showed that the
maximum-cut problem is NP-complete — see Section 75.1a. Work on flows with
small capacities was reported by Fernández-Baca and Martel [1989] and Ahuja and
Orlin [1991]. Decomposition algorithms for locating minimal cuts were studied by
Jarvis and Tufekci [1982]. The kth best cut algorithm was given by Hamacher
[1982].

The problem of determining a flow along odd paths in an undirected graph was
considered by Schrijver and Seymour [1994] — see Section 29.11e.

For an in-depth survey of network flows, see Ahuja, Magnanti, and Orlin [1993].
Other surveys were given by Ford and Fulkerson [1962], Dantzig [1963], Busacker
and Saaty [1965], Fulkerson [1966], Hu [1969,1982], Iri [1969], Frank and Frisch
[1971], Berge [1973b], Adel’son-Vel’skĭı, Dinits, and Karzanov [1975] (for a review,
see Goldberg and Gusfield [1991]), Christofides [1975], Lawler [1976b], Bazaraa and
Jarvis [1977], Minieka [1978], Even [1979], Jensen and Barnes [1980], Papadimitriou
and Steiglitz [1982], Smith [1982], Chvátal [1983], Sys�lo, Deo, and Kowalik [1983],
Tarjan [1983], Gondran and Minoux [1984], Rockafellar [1984], Tarjan [1986], Nem-
hauser and Wolsey [1988], Ahuja, Magnanti, and Orlin [1989,1991], Chen [1990],
Cormen, Leiserson, and Rivest [1990], Goldberg, Tardos, and Tarjan [1990], Frank
[1995], Cook, Cunningham, Pulleyblank, and Schrijver [1998], Jungnickel [1999],
Mehlhorn and Näher [1999], and Korte and Vygen [2000].
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Golden and Magnanti [1977] gave a bibliography and Slepian [1968] discussed
the algebraic theory of flows.

10.8e. Historical notes on maximum flow

The problem of sending flow through a network was considered by Kantorovich
[1939]. In fact, he considered multicommodity flows — see the historical notes in
Section 70.13g.

The foundations for one-commodity maximum flow were laid during the period
November 1954-December 1955 at RAND Corporation in Santa Monica, California.
We will review the developments in a chronological order, by the date of the RAND
Reports.

In their basic report Maximal Flow through a Network dated 19 November
1954, Ford and Fulkerson [1954,1956b] showed the max-flow min-cut theorem for
undirected graphs:

Theorem 1. (Minimal cut theorem). The maximal flow value obtainable in a net-
work N is the minimum of v(D) taken over all disconnecting sets D.

(Robacker [1955a] wrote that the max-flow min-cut theorem was conjectured first
by Fulkerson.)

Ford and Fulkerson were motivated by flows and cuts in railway networks — see
below. In the same report, also a simple algorithm was described for the maximum
flow problem in case the graph, added with an extra edge connecting s and t, is
planar.

The authors moreover observed that the maximum flow problem is a special
case of a linear programming problem and that hence it can be solved by Dantzig’s
simplex method.

In a report of 1 January 1955 (revised 15 April 1955), Dantzig and Fulkerson
[1955,1956] showed that the max-flow min-cut theorem can also be deduced from
the duality theorem of linear programming (they mention that also A.J. Hoffman
did this), they generalized it to the directed case, and they observed, using results
of Dantzig [1951a], that if the capacities are integer, there is an integer maximum
flow (the ‘integrity theorem’). Hence (as they mention) Menger’s theorem follows
as a consequence. A simple computational method for the maximum flow problem
based on the simplex method was described in a report of 1 April 1955 by Fulkerson
and Dantzig [1955a,1955b].

Conversely, in a report of 26 May 1955, Robacker [1955a] derived the undirected
max-flow min-cut theorem from the undirected vertex-disjoint version of Menger’s
theorem.

Boldyreff’s heuristic

While the maximum flow algorithms found so far were derived from the simplex
method, the quest for combinatorial methods remained vivid. A heuristic for the
maximum flow problem, the ‘flooding technique’, was presented by Boldyreff [1955c,
1955b] on 3 June 1955 at the New York meeting of the Operations Research Society
of America (published as a RAND Report of 5 August 1955 (Boldyreff [1955a])).
The method is intuitive and the author did not claim generality (we quote from
Boldyreff [1955b]):
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It has been previously assumed that a highly complex railway transportation
system, too complicated to be amenable to analysis, can be represented by a
much simpler model. This was accomplished by representing each complete rail-
way operating division by a point, and by joining pairs of such points by arcs
(lines) with traffic carrying capacities equal to the maximum possible volume of
traffic (expressed in some convenient unit, such as trains per day) between the
corresponding operating divisions.
In this fashion, a network is obtained consisting of three sets of points — points
of origin, intermediate or junction points, and the terminal points (or points of
destination) — and a set of arcs of specified traffic carrying capacities, joining
these points to each other.

Boldyreff’s arguments for designing a heuristic procedure are formulated as follows:

In the process of searching for the methods of solving this problem the following
objectives were used as a guide:
1. That the solution could be obtained quickly, even for complex networks.
2. That the method could be explained easily to personnel without specialized
technical training and used by them effectively.
3. That the validity of the solution be subject to easy, direct verification.
4. That the method would not depend on the use of high-speed computing or
other specialized equipment.

Boldyreff’s ‘flooding technique’ pushes as much flow as possible greedily through
the network. If at some vertex a ‘bottleneck’ arises (i.e., more trains arrive than can
be pushed further through the network), it is eliminated by returning the excess
trains to the origin.

The method is empirical, not using backtracking, and not leading to an optimum
solution in all cases:

Whenever arbitrary decisions have to be made, ordinary common sense is used as
a guide. At each step the guiding principle is to move forward the maximum pos-
sible number of trains, and to maintain the greatest flexibility for the remaining
network.

Boldyreff speculates:

In dealing with the usual railway networks a single flooding, followed by removal
of bottlenecks, should lead to a maximal flow.

In the abstract of his lecture, Boldyreff [1955c] mentions:

The mechanics of the solutions is formulated as a simple game which can be
taught to a ten-year-old boy in a few minutes.

In his article, Boldyreff [1955b] gave as example the model of a real, comprehensive,
railway transportation system with 41 vertices and 85 arcs:

The total time of solving the problem is less than thirty minutes.

His closing remarks are:

Finally there is the question of a systematic formal foundation, the comprehensive
mathematical basis for empiricism and intuition, and the relation of the present
techniques to other processes, such as, for instance, the multistage decision process
(a suggestion of Bellman’s).
All this is reserved for the future.
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Ford and Fulkerson’s motivation: The Harris-Ross report

In their first report on maximum flow, Maximal Flow through a Network, Ford and
Fulkerson [1954,1956b] mentioned that the maximum flow problem was formulated
by T.E. Harris as follows:

Consider a rail network connecting two cities by way of a number of intermediate
cities, where each link of the network has a number assigned to it representing its
capacity. Assuming a steady state condition, find a maximal flow from one given
city to the other.

Later, in their book Flows in Networks, Ford and Fulkerson [1962] gave a more
precise reference17:

It was posed to the authors in the spring of 1955 by T.E. Harris, who, in conjunc-
tion with General F.S. Ross (Ret.), had formulated a simplified model of railway
traffic flow, and pinpointed this particular problem as the central one suggested
by the model [11].

Ford and Fulkerson’s reference [11] here is the secret report by Harris and Ross
[1955] entitled Fundamentals of a Method for Evaluating Rail Net Capacities, dated
24 October 195518, and written for the Air Force. The report was downgraded to
‘unclassified’ on 21 May 1999.

Unlike what Ford and Fulkerson write, the interest of Harris and Ross was not
to find a maximum flow, but rather a minimum cut (‘interdiction’) of the Soviet
railway system. We quote:

Air power is an effective means of interdicting an enemy’s rail system, and such
usage is a logical and important mission for this Arm.
As in many military operations, however, the success of interdiction depends
largely on how complete, accurate, and timely is the commander’s information,
particularly concerning the effect of his interdiction-program efforts on the en-
emy’s capability to move men and supplies. This information should be available
at the time the results are being achieved.
The present paper describes the fundamentals of a method intended to help the
specialist who is engaged in estimating railway capabilities, so that he might more
readily accomplish this purpose and thus assist the commander and his staff with
greater efficiency than is possible at present.

In the Harris-Ross report, first much attention is given to modelling a railway
network: taking each railway junction as a vertex would give a too refined net-
work (for their purposes). Therefore, Harris and Ross proposed to take ‘railway
divisions’ (organizational units based on geographical areas) as vertices, and to es-
timate the capacity of the connections between any two adjacent railway divisions.
In an interview with Alexander [1996], Harris remembered:

We were studying rail transportation in consultation with a retired army general,
Frank Ross, who had been chief of the Army’s Transportation Corps in Europe.
We thought of modeling a rail system as a network. At first it didn’t make sense,
because there’s no reason why the crossing point of two lines should be a special

17 There seems to be some discrepancy between the date of the RAND Report of Ford
and Fulkerson (19 November 1954) and the date mentioned in the quotation (spring of
1955).

18 In their book, Ford and Fulkerson incorrectly date the Harris-Ross report 24 October
1956.
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sort of node. But Ross realized that, in the region we were studying, the “divi-
sions” (little administrative districts) should be the nodes. The link between two
adjacent nodes represents the total transportation capacity between them. This
made a reasonable and manageable model for our rail system.

The Harris-Ross report stresses that specialists remain needed to make up the
model (which seems always a good strategy to get new methods accepted):

It is not the purpose that the highly specialized individual who estimates track
and network capacities should be replaced by a novice with a calculating machine.
Rather, it is accepted that the evaluation of track capacities remains a task for
the specialist.

[...]
The ability to estimate with relative accuracy the capacity of single railway lines
is largely an art. Specialists in this field have no authoritative text (insofar as the
authors are informed) to guide their efforts, and very few individuals have either
the experience or talent for this type of work. The authors assume that this job
will continue to be done by the specialist.

The authors next disputed the naive belief that a railway network is just a set of
disjoint through lines, and that cutting these lines would imply cutting the network:

It is even more difficult and time-consuming to evaluate the capacity of a railway
network comprising a multitude of rail lines which have widely varying charac-
teristics. Practices among individuals engaged in this field vary considerably, but
all consume a great deal of time. Most, if not all, specialists attack the problem
by viewing the railway network as an aggregate of through lines.
The authors contend that the foregoing practice does not portray the full flexi-
bility of a large network. In particular it tends to gloss over the fact that even if
every one of a set of independent through lines is made inoperative, there may
exist alternative routings which can still move the traffic.
This paper proposes a method that departs from present practices in that it
views the network as an aggregate of railway operating divisions. All trackage
capacities within the divisions are appraised, and these appraisals form the basis
for estimating the capability of railway operating divisions to receive trains from
and concurrently pass trains to each neighboring division in 24-hour periods.

Whereas experts are needed to set up the model, to solve it is routine (when having
the ‘work sheets’):

The foregoing appraisal (accomplished by the expert) is then used in the prepara-
tion of comparatively simple work sheets that will enable relatively inexperienced
assistants to compute the results and thus help the expert to provide specific
answers to the problems, based on many assumptions, which may be propounded
to him.

While Ford and Fulkerson flow-augmenting path algorithm for the maximum
flow problem was not found yet, the Harris-Ross report suggests applying Boldyr-
eff’s flooding technique described above. The authors preferred this above the sim-
plex method for maximum flow:

The calculation would be cumbersome; and, even if it could be performed, suffi-
ciently accurate data could not be obtained to justify such detail.

However, later in the report their assessment of the simplex method is more
favourable:

These methods do not require elaborate computations and can be performed by
a relatively untrained person.
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The Harris-Ross report applies Boldyreff’s flooding technique to a network
model of the Soviet and East European railways. For the data it refers to several
secret reports of the Central Intelligence Agency (C.I.A.) on sections of the Soviet
and East European railway networks. After the aggregation of railway divisions to
vertices, the network has 44 vertices and 105 (undirected) edges.

Figure 10.2
From Harris and Ross [1955]: Schematic diagram of the railway network of the Western
Soviet Union and East European countries, with a maximum flow of value 163,000 tons
from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The
bottleneck’.

The application of the flooding technique to the problem is displayed step by
step in an appendix of the report, supported by several diagrams of the railway
network. (Also work sheets are provided, to allow for future changes in capacities.)
It yields a flow of value 163,000 tons from sources in the Soviet Union to destinations
in East European ‘satellite’ countries, together with a cut with a capacity of, again,
163,000 tons. So the flow value and the cut capacity are equal, hence optimum. In
the report, the minimum cut is indicated as ‘the bottleneck’ (Figure 10.2).
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Further developments

Soon after the Harris-Ross report, Ford and Fulkerson [1955,1957b] presented in a
RAND Report of 29 December 1955 their ‘very simple algorithm’ for the maximum
flow problem, based on finding ‘augmenting paths’ as described in Section 10.4
above. The algorithm finds in a finite number of steps a maximum flow, if all
capacities have integer values. We quote:

This problem is of course a linear programming problem, and hence may be solved
by Dantzig’s simplex algorithm. In fact, the simplex computation for a problem of
this kind is particularly efficient, since it can be shown that the sets of equations
one solves in the process are always triangular [2]. However, for the flow problem,
we shall describe what appears to be a considerably more efficient algorithm; it is,
moreover, readily learned by a person with no special training, and may easily be
mechanized for handling large networks. We believe that problems involving more
than 500 nodes and 4,000 arcs are within reach of present computing machines.

(Reference [2] is Dantzig and Fulkerson [1955].)
In the RAND Report, Ford and Fulkerson [1955] mention that Boldyreff’s flood-

ing technique might give a good starting flow, but in the final paper (Ford and
Fulkerson [1957b]) this suggestion has been omitted.

An alternative proof of the max-flow min-cut theorem was given by Elias, Fein-
stein, and Shannon [1956] (‘manuscript received by the PGIT, July 11,1956’), who
claimed that the result was known by workers in communication theory:

This theorem may appear almost obvious on physical grounds and appears to have
been accepted without proof for some time by workers in communication theory.
However, while the fact that this flow cannot be exceeded is indeed almost trivial,
the fact that it can actually be achieved is by no means obvious. We understand
that proofs of the theorem have been given by Ford and Fulkerson and Fulkerson
and Dantzig. The following proof is relatively simple, and we believe different in
principle.

The proof of Elias, Feinstein, and Shannon is based on a reduction technique similar
to that used by Menger [1927] in proving his theorem.
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Circulations and transshipments

Circulations and transshipments are variants of flows. Circulations have no
source or sink — so flow conservation holds in each vertex — while trans-
shipments have several sources and sinks — so any nonnegative function
is a transshipment (however, the problem is to find a transshipment with
prescribed excess function).
Problems on circulations and transshipments can be reduced to flow prob-
lems, or can be treated with similar methods.

11.1. A useful fact on arc functions

Recall that for any digraph D = (V, A) and any f : A → R, the excess
function excessf : V → R is defined by

(11.1) excessf (v) := f(δin(v))− f(δout(v))

for v ∈ V .
The following theorem of Gallai [1958a,1958b] will turn out to be useful

in this chapter:

Theorem 11.1. Let D = (V, A) be a digraph and let f : A → R+. Then f
is a nonnegative linear combination of at most |A| vectors χP , where P is a
directed path or circuit. If P is a path, it starts at a vertex v with excessf (v) <
0 and ends at a vertex with excessf (v) > 0. If f is integer, we can take the
linear combination integer-scalared. The combination can be found in O(nm)
time.

Proof. We may assume that excessf = 0, since we can add a new ver-
tex u, for each v ∈ V with excessf (v) > 0, an arc (v, u), and for each
v ∈ V with excessf (v) < 0, an arc (u, v). Define f(v, u) := excessf (v) and
f(u, v) := −excessf (v) for any new arc (u, v) or (v, u). Then the new f sat-
isfies excessf = 0, and a decomposition for the new f gives a decomposition
for the original f .

Define A′ := {a | f(a) > 0}. We apply induction on |A′|. We may assume
that A′ �= ∅. Then A′ contains a directed circuit, C say. Let τ be the minimum
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of the f(a) for a ∈ AC and let f ′ := f − τχC . Then the theorem follows by
induction.

Since we can find C in O(n) time, we can find the decomposition in O(nm)
time.

11.2. Circulations

Let D = (V, A) be a digraph. A function f : A→ R is called a circulation if

(11.2) f(δin(v)) = f(δout(v))

for each vertex v ∈ V . So now the flow conservation law holds in each vertex
v. By Theorem 11.1,

(11.3) each nonnegative circulation is a nonnegative linear combination
of incidence vectors of directed circuits; each nonnegative integer
circulation is the sum of incidence vectors of directed circuits.

Hoffman [1960] mentioned that he proved the following characterization
of the existence of circulations in 195619:

Theorem 11.2 (Hoffman’s circulation theorem). Let D = (V, A) be a digraph
and let d, c : A → R with d ≤ c. Then there exists a circulation f satisfying
d ≤ f ≤ c if and only if

(11.4) d(δin(U)) ≤ c(δout(U))

for each subset U of V . If moreover d and c are integer, f can be taken
integer.

Proof. To see necessity of (11.4), suppose that a circulation f satisfying
d ≤ f ≤ c exists. Then for each U ⊆ V ,

(11.5) d(δin(U)) ≤ f(δin(U)) = f(δout(U)) ≤ c(δout(U)).

To see sufficiency, choose a function f satisfying d ≤ f ≤ c and mini-
mizing ‖excessf‖1. Let S := {v ∈ V | excessf (v) > 0} and T := {v ∈ V |
excessf (v) < 0}. Suppose that S �= ∅. Let Df = (V, Af ) be the residual graph
(defined in (10.9)). If Df contains an S−T path P , we can modify f along P
so as to reduce ‖excessf‖1. So Df contains no S−T path. Let U be the set of
vertices reachable in Df from S. Then for each a ∈ δout

A (U) we have a �∈ Af

and hence f(a) = c(a). Similarly, for each a ∈ δin
A (U) we have a−1 �∈ Af and

hence f(a) = d(a). Therefore,

(11.6) d(δin(U))− c(δout(U)) = f(δin(U))− f(δout(U)) = excessf (U)
= excessf (S) > 0,

19 In fact, A.J. Hoffman [1960] attributes it to A.H. Hoffman, but this is a misprint (A.J.
Hoffman, personal communication 1995).
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contradicting (11.4).

(One can derive this theorem also from the max-flow min-cut theorem, with
the methods described in Section 11.6 below.)

Theorem 11.2 implies that any circulation can be rounded:

Corollary 11.2a. Let D = (V, A) be a digraph and let f : A → R be a
circulation. Then there exists an integer circulation f ′ with �f(a)� ≤ f ′(a) ≤
�f(a)� for each arc a.

Proof. Take d := �f� and c := �f� in Theorem 11.2.

Another consequence is:

Corollary 11.2b. Let D = (V, A) be a digraph, let k ∈ Z+ (with k ≥ 1), and
let f : A → Z be a circulation. Then f = f1 + · · · + fk where each fi is an
integer circulation satisfying

(11.7) � 1
kf� ≤ fi ≤ � 1

kf�.
Proof. By induction on k. Define d := � 1

kf� and c := � 1
kf�. It suffices to

show that there exists an integer circulation fk such that

(11.8) d ≤ fk ≤ c and (k − 1)d ≤ f − fk ≤ (k − 1)c,

equivalently,

(11.9) max{d(a), f(a)− (k − 1)c(a)} ≤ fk(a)
≤ min{c(a), f(a)− (k − 1)d(a)}

for each a ∈ A. Since these bounds are integer, by Corollary 11.2a it suffices
to show that there is any circulation obeying these bounds. For that we can
take 1

kf .

This corollary implies that the set of circulations f satisfying d ≤ f ≤ c
for some integer bounds d, c, has the integer decomposition property.

11.3. Flows with upper and lower bounds

We can derive from Corollary 11.2a that flows can be rounded similarly:

Corollary 11.2c. Let D = (V, A) be a digraph, let s, t ∈ V , and let f be an
s− t flow of value k ∈ Z. Then there exists an integer s− t flow f ′ of value
k with �f(a)� ≤ f ′(a) ≤ �f(a)� for each arc a.

Proof. Add an arc (t, s) and define f(t, s) := k. We obtain a circulation to
which we can apply Corollary 11.2a. Deleting the new arc, we obtain an s− t
flow as required.
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According to Berge [1958b], A.J. Hoffman showed the following on the
existence of a flow obeying both an upper bound (capacity) and a lower
bound (demand):

Corollary 11.2d. Let D = (V, A) be a digraph, let s, t ∈ V , and let d, c :
A→ R+ with d ≤ c. Then there exists an s− t flow f with d ≤ f ≤ c if and
only if

(11.10) c(δout(U)) ≥ d(δin(U))

for each U ⊆ V not separating s and t. If moreover d and c are integer, f
can be taken integer.

Proof. Necessity being direct, we show sufficiency. Identify s and t. By The-
orem 11.2, there exists a circulation in the shrunk network. This gives a flow
as required in the original network.

(Berge [1958b] wrote that this result was shown by Hoffman with linear
programming techniques, and was reduced to network theory by L.R. Ford,
Jr.)

Moreover, a min-max relation for the maximum value of a flow obeying
upper and lower bounds can be derived:

Corollary 11.2e. Let D = (V, A) be a digraph, let s, t ∈ V , and let d, c :
A → R+ with d ≤ c, such that there exists an s − t flow f with d ≤ f ≤ c.
Then the maximum value of an s − t flow f with d ≤ f ≤ c is equal to the
minimum value of

(11.11) c(δout(U))− d(δin(U))

taken over U ⊆ V with s ∈ U and t �∈ U . If d and c are integer, the maximum
is attained by an integer flow f .

Proof. Let µ be the minimum value of (11.11). Add to D an arc (t, s),
with d(t, s) = c(t, s) = µ. Then the extended network has a circulation by
Theorem 11.2. Indeed, condition (11.4) for U not separating s and t follows
from (11.10). If s ∈ U , t �∈ U , (11.4) follows from the definition of µ. If s �∈ U ,
t ∈ U , then µ ≥ value(f). Hence

(11.12) µ + c(δout(U))− d(δin(U)) ≥ µ + f(δout(U))− f(δin(U))
= µ− value(f) ≥ 0.

Therefore, the original network has a flow as required.

11.4. b-transshipments

Let D = (V, A) be a digraph and let b ∈ R
V . A function f : A → R is

called a b-transshipment if excessf = b. (So each function f : A → R is a
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b-transshipment for some b. excessf is defined in Section 10.1.) By reduction
to Hoffman’s circulation theorem, one may characterize the existence of a
b-transshipment obeying given upper and lower bounds on the arcs:

Corollary 11.2f. Let D = (V, A) be a digraph, let d, c : A → R with d ≤ c,
and let b : V → R with b(V ) = 0. Then there exists a b-transshipment f with
d ≤ f ≤ c if and only if

(11.13) c(δin(U))− d(δout(U)) ≥ b(U)

for each U ⊆ V . If moreover b, c, and d are integer, f can be taken integer.

Proof. The corollary can be reduced to Hoffman’s circulation theorem (The-
orem 11.2). Add a new vertex u, and for each v ∈ V an arc (v, u) with
d(v, u) := c(v, u) := b(v). Then a function f as required exists if and only if
the extended graph has a circulation f ′ satisfying d ≤ f ′ ≤ c. The condition
in Hoffman’s circulation theorem is equivalent to (11.13).

Conversely, Hoffman’s circulation theorem is the special case b = 0. The
special case d = 0 is the following result of Gale [1956,1957]:

Corollary 11.2g (Gale’s theorem). Let D = (V, A) be a digraph and let
c : A→ R and b : V → R with b(V ) = 0. Then there exists a b-transshipment
f satisfying 0 ≤ f ≤ c if and only if

(11.14) c(δin(U)) ≥ b(U)

for each U ⊆ V . If moreover b and c are integer, f can be taken integer.

Proof. Take d = 0 in Corollary 11.2f.

The proof of Gale is by reduction to the max-flow min-cut theorem. Con-
versely, the max-flow min-cut theorem follows easily: if s, t ∈ V and φ is
the minimum capacity of an s − t cut, then set b(s) := −φ, b(t) := φ, and
b(v) := 0 for each v �= s, t. As (11.14) is satisfied, by Gale’s theorem there
exists a b-transshipment f with 0 ≤ f ≤ c. This is an s− t flow of value φ.

Taking c = ∞ in Gale’s theorem gives the following result of Rado [1943]:

Corollary 11.2h. Let D = (V, A) be a digraph and let b : V → R with
b(V ) = 0. Then there exists a b-transshipment f ≥ 0 if and only if b(U) ≤ 0
for each U ⊆ V with δin(U) = ∅.
Proof. This is Gale’s theorem (Corollary 11.2g) for c = ∞.

11.5. Upper and lower bounds on excessf

Instead of equality constraints on excessf one may put upper and lower
bounds b and a. This has the following characterization:
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Corollary 11.2i. Let D = (V, A) be a digraph, let d, c : A → R with d ≤ c,
and let a, b : V → R with a ≤ b. Then there exists a z-transshipment f with
d ≤ f ≤ c for some z with a ≤ z ≤ b if and only if

(11.15) c(δin(U))− d(δout(U)) ≥ max{a(U),−b(V \ U)}
for each U ⊆ V . If moreover a, b, c, and d are integer, f can be taken integer.

Proof. The corollary can be reduced to Hoffman’s circulation theorem: Add
a new vertex u, and for each v ∈ V an arc (v, u) with d(v, u) := a(v) and
c(v, u) := b(v). Then a function f as required exists if and only if the extended
graph has a circulation f ′ satisfying d ≤ f ′ ≤ c.

This characterization can be formulated equivalently as:

Corollary 11.2j. Let D = (V, A) be a digraph, let d, c : A → R with d ≤ c,
and let a, b : V → R with a ≤ b. Then there exists a z-transshipment f
with d ≤ f ≤ c for some z with a ≤ z ≤ b if and only if there exists a
z-transshipment f ′ with d ≤ f ′ ≤ c for some z ≥ a and there exists a z-
transshipment f ′′ with d ≤ f ′′ ≤ c for some z ≤ b.

Proof. Directly from Corollary 11.2i, since (11.15) can be split into a condi-
tion on a and one on b.

For d = 0, Corollary 11.2i gives a result of Fulkerson [1959a]:

Corollary 11.2k. Let D = (V, A) be a digraph, let c : A → R+, and let
a, b : V → R with a ≤ b. Then there exists a z-transshipment f satisfying
0 ≤ f ≤ c, for some z with a ≤ z ≤ b if and only if

(11.16) c(δin(U)) ≥ max{a(U),−b(V \ U)}
for each U ⊆ V . If moreover a, b, and c are integer, f can be taken integer.

Proof. Directly from Corollary 11.2i, taking d = 0.

11.6. Finding circulations and transshipments
algorithmically

Algorithmic and complexity results for circulations and transshipments fol-
low directly from those for the maximum flow problem, by the following
construction.

Let D = (V, A) be a digraph and let d, c : A → Q with d ≤ c. Then a
circulation f satisfying d ≤ f ≤ c can be found as follows. Give each arc a a
new capacity

(11.17) c′(a) := c(a)− d(a).
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Add two new vertices s and t. For each v ∈ V with excessd(v) > 0, add an arc
(s, v) with capacity c′(s, v) := excessd(v). For each v ∈ V with excessd(v) <
0, add an arc (v, t) with capacity c′(v, t) := −excessd(v). This makes the
extended graph D′ = (V ′, A′).

Then D has a circulation f satisfying d ≤ f ≤ c if and only if D′ has an
s− t flow f ′ ≤ c′ of value

(11.18)
∑

v ∈ V
excessd(v) > 0

excessd(v)

(by taking f(a) = f ′(a) + d(a) for each a ∈ A).
This yields:

Theorem 11.3. If a maximum flow can be found in time MF(n, m), then a
circulation can be found in time O(MF(n, m)).

Proof. Apply the above construction.

If, in addition, functions a, b : V → Q are given, we can reduce the problem
of finding a transshipment f satisfying d ≤ f ≤ c and a ≤ excessf ≤ b to
finding a circulation in a slightly larger graph — see the proof of Corollary
11.2i. This gives:

Corollary 11.3a. If a maximum flow can be found in time MF(n, m), then
(given a, b, d, c) a z-transshipment f satisfying d ≤ f ≤ c and a ≤ z ≤ b can
be found in time O(MF(n, m)).

Proof. Reduce the problem with the construction of Corollary 11.2i to the
circulation problem, and use Theorem 11.3.

11.6a. Further notes

The results on flows, circulations, and transshipments extend directly to the case
where also each vertex has an upper and/or lower bound on the amount of flow
traversing that vertex. We can reduce this to the cases considered above by splitting
any vertex v into two vertices v′ and v′′, adding an arc from v′ to v′′ with bounds
equal to the vertex bounds, and replacing any arc (u, v) by (u′′, v′).

The results of this chapter also apply to characterizing the existence of a sub-
graph D′ = (V, A′) of a given graph D = (V, A), where D′ has prescribed bounds
on the indegrees and outdegrees (cf. Hakimi [1965]).



Chapter 12

Minimum-cost flows and
circulations

Minimum-cost flows can be seen to generalize both shortest path and max-
imum flow. A shortest s − t path can be deduced from a minimum-cost
s − t flow of value 1, while a maximum s − t flow is a minimum-cost s − t
flow if we take cost −1 on arcs leaving s and 0 on all other arcs (assuming
no arc enters s).
Minimum-cost flows, circulations, and transshipments are closely related,
and when describing algorithms, we will choose the most suitable variant.
In this chapter, graphs can be assumed to be simple.

12.1. Minimum-cost flows and circulations

Let D = (V, A) be a digraph and let k : A→ R, called the cost function. For
any function f : A→ R, the cost of f is, by definition,

(12.1) cost(f) :=
∑

a∈A

k(a)f(a).

The minimum-cost s − t flow problem is: given a digraph D = (V, A),
s, t ∈ V , a ‘capacity’ function c : A → Q+, a ‘cost’ function k : A → Q, and
a value φ ∈ Q+, find an s − t flow f ≤ c of value φ that minimizes cost(f).
This problem includes the problem of finding a maximum-value s − t flow
that has minimum cost among all maximum-value s− t flows.

Related is the minimum-cost circulation problem: given a digraph D =
(V, A), a ‘demand’ function d : A → Q, a ‘capacity’ function c : A → Q,
and a ‘cost’ function k : A → Q, find a circulation f subject to d ≤ f ≤ c,
minimizing cost(f).

One can easily reduce the minimum-cost flow problem to the minimum-
cost circulation problem: just add an arc a0 := (t, s) with d(a0) := c(a0) = φ
and k(a0) := 0. Also, let d(a) := 0 for each arc a �= a0. Then a minimum-cost
circulation in the extended digraph gives a minimum-cost flow of value φ in
the original digraph.

Also the problem of finding a maximum-value s − t flow can be reduced
easily to a minimum-cost circulation problem in the extended digraph: now
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define d(a0) := 0, c(a0) := ∞, and k(a0) := −1. Moreover, set k(a) := 0 for
each a �= a0. Then a minimum-cost circulation gives a maximum-value s− t
flow.

Edmonds and Karp [1970,1972] showed that the minimum-cost circu-
lation problem is solvable in polynomial time. Their algorithm is based
on a technique called capacity-scaling and can be implemented to run in
O(m(m + n log n) log C) time, where C := ‖c‖∞ (assuming c integer). So
it is weakly polynomial-time. They raised the question of the existence of a
strongly polynomial-time algorithm.

Tardos [1985a] answered this question positively. Her algorithm has re-
sulted in a stream of further research on strongly polynomial-time algorithms
for the minimum-cost circulation problem. It stood at the basis of the strongly
polynomial-time algorithms discussed in this chapter.

12.2. Minimum-cost circulations and the residual graph
Df

It will be useful again to consider the residual graph Df = (V, Af ) of f : A→
R (with respect to d and c), where

(12.2) Af := {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.
Here a−1 := (v, u) if a = (u, v).

We extend any cost function k to A−1 by defining the cost k(a−1) of a−1

by:

(12.3) k(a−1) := −k(a)

for each a ∈ A.
We also use the following notation. Any directed circuit C in Df gives an

undirected circuit in D = (V, A). We define χC ∈ R
A by:

(12.4) χC(a) :=






1 if C traverses a,
−1 if C traverses a−1,

0 if C traverses neither a nor a−1,

for a ∈ A.
Given D = (V, A), d, c : A → R, a circulation f in D is called feasible if

d ≤ f ≤ c. The following observation is fundamental20:

Theorem 12.1. Let D = (V, A) be a digraph and let d, c, k : A → R. Let
f : A → R be a feasible circulation. Then f has minimum cost among all
feasible circulations if and only if each directed circuit of Df has nonnegative
cost.
20 The idea goes back to Tolstŏı [1930,1939] (for the transportation problem), and was

observed also by Robinson [1949,1950] (for the transportation problem), Gallai [1957,
1958b], Busacker and Gowen [1960], Fulkerson [1961], and Klein [1967].
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Proof. Necessity. Let C be a directed circuit in Df of negative cost. Then for
small enough ε > 0, f ′ := f +εχC is again a circulation satisfying d ≤ f ′ ≤ c.
Since cost(f ′) < cost(f), f is not minimum-cost.

Sufficiency. Suppose that each directed circuit in Df has nonnegative
cost. Let f ′ be any feasible circulation. Then f ′ − f is a circulation, and
hence

(12.5) f ′ − f =
m∑

j=1

λjχ
Cj

for some directed circuits C1, . . . , Cm in Df and λ1, . . . , λm > 0. Hence

(12.6) cost(f ′)− cost(f) = cost(f ′ − f) =
m∑

j=1

λjk(Cj) ≥ 0.

So cost(f ′) ≥ cost(f).

This directly implies a strong result: optimality of a given feasible circu-
lation f can be checked in polynomial time, namely in time O(nm) (with
the Bellman-Ford method). It also implies the following good characteriza-
tion (Gallai [1957,1958b], Ford and Fulkerson [1962]; for the simpler case
of a symmetric cost function satisfying the triangle inequality it was shown
by Kantorovich [1942], Kantorovich and Gavurin [1949], and Koopmans and
Reiter [1951]):

Corollary 12.1a. Let D = (V, A) be a digraph, let d, c, k : A→ R, and let f
be a feasible circulation. Then f is minimum-cost if and only if there exists
a function p : V → R such that

(12.7) k(a) ≥ p(v)− p(u) if f(a) < c(a),
k(a) ≤ p(v)− p(u) if f(a) > d(a),

for each arc a = (u, v) ∈ A.

Proof. Directly from Theorem 12.1 with Theorem 8.2.

From this characterization, a min-max relation for minimum-cost circu-
lations can be derived — see Section 12.5b. It also follows directly from the
duality theorem of linear programming — see Chapter 13.

12.3. Strongly polynomial-time algorithm

Theorem 12.1 gives us a method to improve a given circulation f :

(12.8) Choose a negative-cost directed circuit C in the residual graph
Df , and reset f := f + τχC where τ is maximal subject to d ≤
f ≤ c. If no such directed circuit exists, f is a minimum-cost
circulation.
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It is not difficult to see that for rational data this leads to a finite algorithm.
However, if we just select circuits in an arbitrary fashion, the algorithm

may take exponential time, as follows by application to the maximum flow
problem given in Figure 10.1 (by adding an arc from t to s of cost −1). Zadeh
[1973a,1973b] showed that several strategies of selecting a circuit do not lead
to a strongly polynomial-time algorithm.

Goldberg and Tarjan [1988b,1989] were able to prove that one obtains a
strongly polynomial-time algorithm if one chooses in (12.8) a directed circuit
C of minimum mean cost, that is, one minimizing

(12.9)
k(C)
|C| .

(We identify C with its set AC of arcs.) In Corollary 8.10a we saw that such
a circuit can be found in time O(nm).

Note that if we formulate a maximum s− t flow problem as a minimum-
cost circulation problem, by adding an arc (t, s) of cost −1 and capacity
+∞, then the minimum-mean cost cycle-cancelling algorithm reduces to the
shortest augmenting path method of Dinits [1970] and Edmonds and Karp
[1972] (Section 10.5).

We now prove the result of Goldberg and Tarjan (as usual, n := |V |,
m := |A|):

Theorem 12.2. Choosing a minimum-mean cost cycle C in (12.8), the num-
ber of iterations is at most 4nm2�lnn�.
Proof. Let f0, f1, . . . be the circulations found. For each i ≥ 0, define Ai :=
Afi

, let εi be minus the minimum of (12.9) in (V, Ai), and let Ci be the
directed circuit in Ai chosen to obtain fi+1 (taking circuits as arc sets). So

(12.10) k(Ci) = −εi|Ci|.
εi is the smallest value such that if we would add εi to the cost of each arc

of Ai, then each directed circuit has nonnegative cost. So εi is the smallest
value for which there exists a function pi : V → Q such that

(12.11) k(a) + εi ≥ pi(v)− pi(u) for each a = (u, v) ∈ Ai.

The proof of the theorem is based on the following two facts on the de-
crease of the εi:

(12.12) (i) εi+1 ≤ εi and (ii) εi+m ≤ (1− 1
n )εi

(assuming in (ii) that we reach iteration i + m). To prove (12.12), we may
assume that i = 0 and p0 = 0. Then k(a) ≥ −ε0 for each a ∈ A0, with
equality if a ∈ C0.

Since A1 ⊆ A0 ∪C−1
0 and since each arc in C−1

0 has cost ε0 ≥ 0, we know
that k(a) ≥ −ε0 for each a ∈ A1. Hence ε1 ≤ ε0. This proves (12.12)(i).

To prove (ii), we may assume εm > 0. We first show that at least one of
the directed circuits C0, . . . , Cm−1 contains an arc a with k(a) ≥ 0. Otherwise
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each Ah arises from Ah−1 by deleting at least one negative-cost arc and adding
only positive-cost arcs. This implies that Am contains no negative-cost arc,
and hence fm has minimum cost; so εm = 0, contradicting our assumption.

Let h be the smallest index such that Ch contains an arc a with k(a) ≥ 0.
So all negative-cost arcs in Ch also belong to A0, and hence have cost at least
−ε0. So k(Ch) ≥ −(|Ch|− 1)ε0 and therefore εh = −k(Ch)/|Ch| ≤ (1− 1

n )ε0.
This proves (12.12).

Now define

(12.13) t := 2nm�lnn�.
Then by (12.12)(ii):

(12.14) εt ≤ (1− 1
n

)2n�ln n�ε0 < ε0/2n,

since (1− 1
n )n < e−1 and e−2 ln n = n−2 ≤ 1

2n .
We finally show that for each i there exists an arc a in Ci such that a �∈ Ch

for each h ≥ i + t. Since |A ∪ A−1| = 2m, this implies that the number of
iterations is at most 4mt, as required.

To prove this, we may assume that i = 0 and that pt = 0. As k(C0) =
−ε0|C0|, C0 contains an arc a0 with k(a0) ≤ −ε0 < −2nεt. Without loss of
generality, a0 ∈ A.

Suppose that fh(a0) �= ft(a0) for some h > t. Since k(a0) < −2nεt ≤ −εt,
we have that a0 �∈ At (by (12.11)). So ft(a0) = c(a0), and hence fh(a0) <
ft(a0). Then, by (11.3) applied to ft − fh, Ah has a directed circuit C con-
taining a0 such that At contains C−1. By (12.11), −k(a) = k(a−1) ≥ −εt for
each a ∈ C. This gives (using (12.12)(i)):

(12.15) k(C) = k(a0) + k(C \ {a0}) < −2nεt + (|C| − 1)εt ≤ −nεt

≤ −nεh ≤ −|C|εh,

contradicting the definition of εh.

This gives for finding a minimum-cost circulation:

Corollary 12.2a. A minimum-cost circulation can be found in O(n2m3 log n)
time. If d and c are integer, an integer minimum-cost circulation is found.

Proof. Directly from Theorem 12.2 and Corollary 8.10a. Note that if d and c
are integer and we start with an integer circulation f0, all further circulations
obtained by (12.8) are integer.

So we have the theorem of Tardos [1985a]:

Corollary 12.2b. A minimum-cost circulation can be found in strongly pol-
ynomial time. If d and c are integer, an integer circulation is found.

Proof. Directly from Corollary 12.2a.
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Notes. Goldberg and Tarjan [1988b,1989] showed that, with the help of dynamic
trees, the running time of the minimum-mean cost cycle-cancelling method can be
improved to O(nm log n min{log(nK), m log n}), where K := ‖k‖∞, assuming k to
be integer.

Weintraub [1974] showed that if we take always a directed circuit C in Df

such that, by resetting f to f + τχC as in (12.8), the cost decreases most, then
the number of iterations (12.8) is polynomially bounded. However, finding such
a circuit is NP-complete (finding a Hamiltonian circuit in a directed graph is a
special case). Weintraub [1974] also proposed a heuristic of finding a short (negative)
circuit by finding a minimum-cost set of vertex-disjoint circuits in Df (by solving
an assignment problem), and choosing the shortest among them. Barahona and
Tardos [1989] showed that this also leads to a (weakly) polynomial-time algorithm.

12.4. Related problems

Corollary 12.2b concerns solving the minimization problem in the following
LP-duality equation, where M denotes the V ×A incidence matrix of D:

(12.16) min{kTx | d ≤ x ≤ c, Mx = 0}
= max{zT

1 d− zT
2 c | z1, z2 ≥ 0,∃y : zT

1 − zT
2 + yTM = kT}.

It implies that also the maximization problem can be solved in strongly pol-
ynomial time:

Corollary 12.2c. The maximization problem in (12.16) can be solved in
strongly polynomial time. If k is integer, an integer optimum solution is
found.

Proof. Let x be an optimum solution of the minimization problem, that
is, a minimum-cost circulation. Since x is extreme, the digraph Dx has no
negative-cost directed circuits. Hence we can find a function (‘potential’)
y : V → Q such that k(u, v) ≥ y(v) − y(u) if x(u, v) < c(u, v) and k(u, v) ≤
y(v) − y(u) if x(u, v) > d(u, v), in strongly polynomial time (Theorem 8.7).
If k is integer, we find an integer y.

Let z1 and z2 be the unique vectors with z1, z2 ≥ 0, zT
1 − zT

2 = kT− yTM
and z1(a)z2(a) = 0 for each a ∈ A. So z1(a) = 0 if x(a) > d(a) and z2(a) = 0
if x(a) < c(a). Hence

(12.17) zT
1 d− zT

2 c = zT
1 x− zT

2 x = (kT − yTM)x = kTx.

So z1, z2 form an optimum solution for the maximization problem.

By an easy construction, Corollary 12.2b implies that a more general
problem is solvable in strongly polynomial time:

(12.18) input: a digraph D = (V, A) and functions a, b : V → Q and
d, c, k : A→ Q,
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find: a z-transshipment x with a ≤ z ≤ b and d ≤ x ≤ c, mini-
mizing kTx.

Corollary 12.2d. Problem (12.18) is solvable in strongly polynomial time.
If a, b, d, and c are integer, an integer optimum solution is found.

Proof. Extend D by a new vertex u and arcs (v, u) for each v ∈ V . Extend
d, c, and k by defining d(v, u) := a(v), c(v, u) := b(v) and k(v, u) := 0 for
each v ∈ V . By Corollary 12.2b, we can find a minimum-cost circulation x
with d ≤ x ≤ c in the extended digraph in strongly polynomial time. It gives
a b-transshipment in the original graph as required.

For later reference, we derive that also the dual problem (in the LP sense)
can be solved in strongly polynomial time. If M denotes V × A incidence
matrix of D, problem (12.18) corresponds to the minimum in the LP-duality
equation:

(12.19) min{kTx | d ≤ x ≤ c, a ≤Mx ≤ b}
= max{yT

1 b− yT
2 a + zT

1 d− zT
2 c | y1, y2, z1, z2 ≥ 0,

(y1 − y2)TM + (z1 − z2)T = kT}.

Corollary 12.2e. An optimum solution for the maximum in (12.19) can be
found in strongly polynomial time. If k is integer, we find an integer optimum
solution.

Proof. By reduction to Corollary 12.2c, using a reduction similar to that
given in the proof of Corollary 12.2d.

12.4a. A dual approach

The approach above consists of keeping a feasible circulation, and throughout im-
proving its cost. A dual approach can best be described in terms of b-transshipments:
we keep a b′-transshipment f such that Df has no negative-cost directed circuits,
and improve b′ until b′ = b. This can be studied with the concept of ‘extreme
function’.

Let D = (V, A) be a digraph and let d, c, k : A → R be given, the lower bound
function, the capacity function, and the cost function, respectively. Let f : A → R

be such that d ≤ f ≤ c. We call f extreme if cost(f ′) ≥ cost(f) for each function f ′

satisfying d ≤ f ′ ≤ c and excessf ′ = excessf ; in other words, setting b := excessf ,
f is a minimum-cost b-transshipment subject to d ≤ f ≤ c. (excessf is defined in
Section 10.1.)

Note that the concept of extreme depends on k, d, and c. So it might be better
to define a function to be extreme with respect to k, d, and c. However, when
considering extreme functions f , the functions k, d, and c are generally fixed, or
follow from the context.

Again it will be useful to consider the residual graph Df = (V, Af ) of f (with
respect to d and c), where
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(12.20) Af := {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.

Here a−1 := (v, u) if a = (u, v).
We extend k to A−1 := {a−1 | a ∈ A} by defining

(12.21) k(a−1) := −k(a)

for each a ∈ A. We call k(a−1) the cost of a−1.
We also use the following notation. Any directed path P in Df gives an undi-

rected path in D = (V, A). We define χP ∈ R
A by:

(12.22) χP (a) :=






1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

for a ∈ A.
Theorem 12.1 for minimum-cost circulations can be directly extended to ex-

treme functions:

Theorem 12.3. Let D = (V, A) be a digraph and let d, c, k, f : A → R with d ≤
f ≤ c. Then f is extreme if and only if each directed circuit of Df has nonnegative
cost.

Proof. Like the proof of Theorem 12.1.

This implies that the optimality of a given feasible solution f of a b-transship-
ment problem can be checked in polynomial time, namely in time O(nm) (with the
Bellman-Ford method). It also implies the following good characterization (Kan-
torovich [1942], Gallai [1957,1958b], Ford and Fulkerson [1962]):

Corollary 12.3a. Let D = (V, A) be a digraph and let d, c, k, f : A → R with
d ≤ f ≤ c. Then f is extreme if and only if there exists a function p : V → R such
that

(12.23) k(a) ≥ p(v) − p(u) if f(a) < c(a),
k(a) ≤ p(v) − p(u) if f(a) > d(a),

for each arc a = (u, v) ∈ A.

Proof. Directly from Theorem 12.3 with Theorem 8.2.

As for the algorithmic side, the following observation (Jewell [1958], Busacker
and Gowen [1960], Iri [1960]) is very useful in analyzing algorithms (‘This theorem
may properly be regarded as the central one concerning minimal cost flows’ — Ford
and Fulkerson [1962]):

Theorem 12.4. Let D = (V, A) be a digraph and let d, c, k, f : A → R with
d ≤ f ≤ c and with f extreme. Let P be a minimum-cost s− t path in Df , for some
s, t ∈ V , and let ε > 0 be such that f ′ := f + εχP satisfies d ≤ f ′ ≤ c. Then f ′ is
extreme again.

Proof. Let f ′′ satisfy d ≤ f ′′ ≤ c and excessf ′′ = excessf ′ . Then by Theorem 11.1,
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(12.24) f ′′ − f =
n∑

i=1

µiχ
Pi +

m∑

j=1

λjχ
Cj ,

where P1, . . . , Pn are s − t paths in Df , C1, . . . , Cm are directed circuits in Df ,
µ1, . . . , µn > 0, and λ1, . . . , λm > 0, with

∑
i µi = ε. Then

(12.25) cost(f ′′ − f) =
∑

i

µi · cost(Pi) +
∑

j

λj · cost(Cj) ≥
∑

i

µiτ = ετ,

where τ := cost(P ). As cost(f ′ − f) = ετ , we have cost(f ′′ − f) ≥ cost(f ′ − f), and
therefore cost(f ′′) ≥ cost(f ′).

We will refer to updating f to f + εχP as in Theorem 12.4 as to sending a flow
of value ε over P .

Also the following observation is useful in algorithms (Edmonds and Karp
[1970], Tomizawa [1971]):

Theorem 12.5. In Theorem 12.4, if p is a potential for Df such that p(t)−p(s) =
distk(s, t), then p is also a potential for Df ′ .

Proof. Choose a = (u, v) ∈ Af ′ . If a ∈ Af , then p(v) ≤ p(u)+k(a). If a �∈ Af , then
a−1 is traversed by P , and hence p(u) = p(v) + k(a−1) = p(v) − k(a). Therefore
p(v) ≤ p(u) + k(a).

These theorems lead to the following minimum-cost s − t flow algorithm due
to Ford and Fulkerson [1958b], Jewell [1958], Busacker and Gowen [1960], and Iri
[1960] (an equivalent ‘primal-dual’ algorithm was given by Fujisawa [1959]).

Let be given D = (V, A), s, t ∈ V , and c, k : A → Q+, the capacity and cost
function, respectively.

Algorithm for minimum-cost s − t flow
Starting with f = 0 apply the following iteratively:
Iteration: Let P be an s− t path in Df minimizing k(P ). Reset f := f +εχP , where
ε is maximal subject to 0 ≤ f + ε · χP ≤ c.

Termination of this algorithm for rational capacities follows similarly as for the
maximum flow algorithm (Theorem 10.4).

One may use the Bellman-Ford method to obtain the path P , since Df has
no negative-cost directed circuits (by Theorems 12.3 and 12.4). However, using
a trick of Edmonds and Karp [1970] and Tomizawa [1971], one can use Dijkstra’s
algorithm, since by Theorem 12.5 we can maintain a potential that makes all lengths
(= costs) nonnegative. This leads to the following theorem (where SP+(n, m, K)
denotes the time needed to find a shortest path in a digraph with n vertices, m
arcs, and nonnegative integer lengths, each at most K):

Theorem 12.6. For c, k : A → Z+ and φ ∈ Z+, a minimum-cost s − t flow f ≤ c
of value φ can be found in time O(φ · SP+(n, m, K)), where K := ‖k‖∞.

Proof. Note that each iteration consists of finding a shortest path in Df . Simulta-
neously we can find a potential for Df satisfying p(t) − p(s) = distk(s, t). Since by
Theorem 12.5, p is a potential also for Df ′ , we can perform each iteration in time
SP+(n, m, K).
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12.4b. A strongly polynomial-time algorithm using
capacity-scaling

The algorithm given in Theorem 12.6 is not polynomial-time, but several improve-
ments leading to a polynomial-time algorithm have been found. Orlin [1988,1993]
gave the currently fastest strongly polynomial-time algorithm for minimum-cost
circulation, which is based on this dual approach: while keeping an extreme b′-
transshipment, it throughout improves b′, until b′ = b. This implies an algorithm
for minimum-cost circulation.

Let D = (V, A) be a digraph, let k : A → Q+ be a cost function, and let b :
V → Q be such that there exists a nonnegative b-transshipment. For any f : A → Q

define deff : V → Q by

(12.26) deff := b − excessf .

So deff (v) is the ‘deficiency’ of f at v. Then deff (V ) = b(V ) − excessf (V ) = 0.
The algorithm determines a sequence of functions fi : A → Q+ and rationals βi

(i = 0, 1, 2, . . .). Initially, set f0 := 0 and β0 := ‖b‖∞. If fi and βi have been found,
we find fi+1 and βi+1 by the following iteration (later referred to as iteration i).

Let Ai be the set of arcs a with fi(a) > 12nβi and let Ki be the collection
of weak components of the digraph (V, Ai). We are going to update a function gi

starting with gi := fi.

(12.27) If there exists a component K ∈ Ki and distinct u, v ∈ K with
|defgi(u)| ≥ |defgi(v)| > 0, then update gi by sending a flow of value
|defgi(v)| from v to u or conversely along a path in Ai, so as to make
defgi(v) equal to 0.

(In (12.32) it is shown that this is possible, and that it does not modify Dgi , hence
gi remains extreme.) We iterate (12.27), so that finally each K ∈ Ki contains at
most one vertex u with defgi(u) �= 0.

Next do the following repeatedly, as long as there exists a u ∈ V with
|defgi(u)| > n−1

n
βi:

(12.28) If defgi(u) > n−1
n

βi, then there exists a v ∈ V such that defgi(v) <
− 1

n
βi and such that u reachable from v in the residual graph Dgi .

Update gi by sending a flow of value βi along a minimum-cost v − u
path in Dgi .
If defgi(u) < −n−1

n
βi, proceed symmetrically.

(The existence of v in (12.28) follows from the assumption that there exists a
nonnegative b-transshipment, f say, by applying Theorem 11.1 to f − gi. The fact
that we can send a flow of value βi in the residual graph follows from (12.36).)

When we cannot apply (12.27) anymore, we define fi+1 := gi. Let T :=
‖deffi+1‖∞. If T = 0 we stop. Otherwise, define:

(12.29) βi+1 :=
{ 1

2βi if T ≥ 1
12n

βi,
T if 0 < T < 1

12n
βi,

and iterate.

Theorem 12.7. The algorithm stops after at most n iterations of (12.27) and at
most O(n log n) iterations of (12.28).

Proof. Throughout the proof we assume n ≥ 2. We first observe that for each i:
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(12.30) ‖deffi+1‖∞ ≤ n − 1
n

βi,

since otherwise we could have applied (12.28) to the final gi(= fi+1). This implies
that for each i:

(12.31) ‖deffi‖∞ ≤ 2βi.

This is direct for i = 0. If βi+1 = 1
2βi, then, by (12.30), ‖deffi+1‖∞ ≤ n−1

n
βi ≤ βi =

2βi+1. If βi+1 < 1
2βi, then ‖deffi+1‖∞ = T = βi+1 ≤ 2βi+1. This proves (12.31).

We next show, that, for any i:

(12.32) in the iterations (12.27) and (12.28), for any a ∈ Ai the value of gi(a)
remains more than 6nβi.

In each iteration (12.27), for any arc a ∈ Ai, the value of gi(a) changes by at most
‖deffi‖∞, which is at most 2βi (by (12.31)). For any fixed i, we apply (12.27) at
most n times. So the value of gi(a) on any arc a ∈ Ai changes by at most 2nβi.

In the iterations (12.28), the value of gi(a) changes by at most 4nβi. To see
this, consider the sum

(12.33)
∑

v ∈ V
|defgi

(v)| > n−1
n βi

|defgi(v)|.

In each iteration (12.28), this sum decreases by at least n−1
n

βi, which is at least
1
2βi. On the other hand, gi(a) changes by at most βi. Since (12.33) initially is at
most ‖defgi‖1 ≤ ‖deffi‖1 ≤ 2nβi, we conclude that in the iterations (12.28), gi(a)
changes by at most 4nβi.

Concluding, in the iterations (12.27) and (12.28), any gi(a) changes by at most
6nβi. Since at the beginning of these iterations we have gi(a) > 12nβi for a ∈ Ai,
this proves (12.32).

(12.32) implies that in iteration (12.27) we can make defgi(v) equal to 0. (After
that it will remain 0.) Hence, iteration (12.27) can be applied at most n times in
total (over all i), since each time the number of vertices v with deffi(v) �= 0 drops.

(12.32) also implies:

(12.34) each fi is extreme.

This is clearly true if i = 0 (since the cost function k is nonnegative). Suppose that
fi is extreme. Then also gi is extreme initially, and remains extreme during the
iterations (12.27) (since by (12.32) the residual graph Dgi does not change during
the iterations (12.27)). Moreover, also during the iterations (12.28) the function gi

remains extreme, since we send flow over a minimum-cost path in Dgi (Theorem
12.4). This proves (12.34).

Directly from (12.32) we have, for each i:

(12.35) Ai ⊆ Ai+1,

since βi+1 ≤ 1
2βi. This implies that each set in Ki is contained in some set in Ki+1.

Next, throughout iteration i,

(12.36) If a ∈ A \ Ai, then βi|gi(a).

The proof is by induction on i, the case i = 0 being trivial (since for i = 0 we do
not apply (12.27), as A0 = ∅). Suppose that we know (12.36). Choose a ∈ A\Ai+1.
Then a ∈ A \ Ai by (12.35). Hence βi|gi(a), and so βi|fi+1(a). If fi+1(a) > 0 and
βi+1 < 1

2βi, then βi > 12nT = 12n‖deffi+1‖∞, and hence
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(12.37) fi+1(a) ≥ βi > 12n‖deffi+1‖∞ = 12nβi+1,

contradicting the fact that a does not belong to Ai+1.
So fi+1(a) = 0 or βi+1 = 1

2βi. This implies that βi+1|fi+1(a). In iteration i + 1,
only flow packages of size βi+1 are sent over arc a (since a �∈ Ai+1). Therefore,
throughout iteration i + 1 we have βi+1|gi+1(a), which proves (12.36).

So in iteration (12.28) we indeed can send a flow of value βi in the residual
graph Dgi . Since fi+1 is equal to the final gi, (12.36) also implies:

(12.38) if a ∈ A \ Ai, then βi|fi+1(a).

Next we come to the kernel in the proof, which gives two bounds on b(K) for
K ∈ Ki:

Claim 1. For each i and each K ∈ Ki:

(12.39) (i) |b(K)| ≤ 13n3βi;
(ii) suppose i > 0, K ∈ Ki−1, and (12.28) is applied to a vertex u in K;

then |b(K)| ≥ 1
n
βi.

Proof of Claim 1. I. We first show (12.39)(i). If i = 0, then |b(K)| ≤ n‖b‖∞ =
nβ0 ≤ 13n3β0. If i > 0, then, by (12.31),

(12.40) |deffi(K)| ≤ n‖deffi‖∞ ≤ 2nβi.

Moreover, since fi(a) ≤ 12nβi for each a ∈ δin(K),

(12.41) |excessfi(K)| ≤ 12nβi · |δin(K)| ≤ 12n3βi.

Hence

(12.42) |b(K)| ≤ |deffi(K)| + |excessfi(K)| ≤ 2nβi + 12n3βi ≤ 13n3βi.

This proves (12.39)(i).
II. Next we show (12.39)(ii). Since K ∈ Ki−1 ∩ Ki, u is the only vertex in K

with deffi(u) �= 0. So, in iteration i, we do not apply (12.27) to a vertex in K.
Moreover, by applying (12.28), |defgi(K)| does not increase. This gives

(12.43)
n − 1

n
βi < |defgi(K)| ≤ |deffi(K)| ≤ n − 1

n
βi−1.

The first inequality holds as we apply (12.28) to u, and the last inequality follows
from (12.30).

To prove (12.39)(ii), first assume βi = 1
2βi−1. Since deffi(K) = deffi(u), we

have, by (12.43),

(12.44)
n − 1

2n
βi−1 =

n − 1
n

βi ≤ |deffi(K)| ≤ n − 1
n

βi−1.

So |deffi(K)|/βi−1 has distance at least 1/2n to Z. Since fi(a) ≡ 0 (mod βi−1) by
(12.38), we have

(12.45) |b(K)|/βi−1 ≡ |deffi(K)|/βi−1 (mod 1).

Hence also |b(K)|/βi−1 has distance at least 1/2n to Z. So |b(K)| ≥ 1
2n

βi−1 ≥ 1
n
βi,

as required.
Second assume βi < 1

2βi−1. Then βi = ‖deffi‖∞ < 1
12n

βi−1. Now as K ∈ Ki,
we have for each a ∈ δ(K): 0 ≤ fi(a) < 12nβi < βi−1, while fi(a) ≡ 0 (mod βi−1)
by (12.38). So fi(a) = 0 for each a ∈ δ(K). Hence by (12.43),
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(12.46) |b(K)| = |deffi(K)| ≥ n − 1
n

βi ≥ 1
n

βi,

which proves (12.39)(ii). End of Proof of Claim 1

Define K∗ :=
⋃

i Ki, and consider any K ∈ K∗. Let I be the set of i with K ∈ Ki.
Let t be the smallest element of I. Let λK be the number of components in Kt−1

contained in K. (Set λK := 1 if t = 0.) Then in iteration t, (12.28) is applied at
most 4λK times to a vertex u in K, since (at the start of applying (12.28))

(12.47) |defgt(K)| = |defft(K)| ≤ λK‖defft‖∞ ≤ 2λKβt

(by (12.31)). In any further iteration i > t with i ∈ I, (12.28) is applied at most
twice to u (again by (12.31)).

We estimate now the number of iterations i ∈ I in which (12.28) is applied to
u ∈ K. Consider the smallest such i with i > t. Then:

(12.48) if j > i + log2(13n4), then j �∈ I.

For suppose to the contrary that K ∈ Kj . Since βi ≥ 2j−iβj > 13n4βj , Claim 1
gives the contradiction b(K) ≤ 13n3βj < 1

n
βi ≤ b(K). This proves (12.48).

So (12.28) is applied at most 4λK + 2 log2(13n4) times to a vertex u ∈ K, in
iterations i ∈ I. Since

(12.49)
∑

K∈K∗
λK ≤ |K∗| < 2n

(as K∗ is laminar — cf. Theorem 3.5), (12.28) is applied at most 8n+4n log2(13n4)
times in total.

This bound on the number of iterations gives:

Corollary 12.7a. A minimum-cost nonnegative b-transshipment can be found in
time O(n log n(m + n log n)).

Proof. Directly from Theorem 12.7, since any iteration (12.27) or (12.28) takes
O(m + n log n) time, using Fibonacci heaps (Corollary 7.7a) and maintaining a
potential as in Theorem 12.5.

We can derive a bound for finding a minimum-cost circulation:

Corollary 12.7b. A minimum-cost circulation can be found in time O(m log n(m+
n log n)).

Proof. The minimum-cost circulation problem can be reduced to the minimum-
cost transshipment problem as follows. Let D = (V, A), d, c, k : A → Q be the input
for the minimum-cost circulation problem. Define

(12.50) b(v) := d(δout(v)) − d(δin(v))

for each v ∈ V . Then any minimum-cost b-transshipment x satisfying 0 ≤ x ≤ c−d
gives a minimum-cost circulation x′ := x + d satisfying d ≤ x′ ≤ c. So we can
assume d = 0.

Now replace each arc a = (u, v) by three arcs (u, ua), (va, ua), and (va, v), where
ua and va are new vertices. This makes the digraph D′ say.
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Define b(ua) := c(a) and b(va) := −c(a). Moreover, define a cost function k′ on
the arcs of D′ by k′(u, ua) := k(a), k′(va, ua) := 0, k′(va, v) := 0 if k(a) ≥ 0, and
k′(u, ua) := 0, k′(va, ua) := −k(a), k′(va, v) := 0 if k(a) < 0. Then a minimum-cost
b-transshipment x ≥ 0 in D′ gives a minimum-cost b-transshipment x satisfying
0 ≤ x ≤ c in the original digraph D.

By Theorem 12.7, a minimum-cost b-transshipment x ≥ 0 in D′ can be found by
finding O(n log n) times a shortest path in a residual graph D′

x. While this digraph
has 2m + n vertices, it can be reduced in O(m) time to finding a shortest path in
an auxiliary digraph with O(n) vertices only. Hence again it takes O(m + n log n)
time by using Fibonacci heaps (Corollary 7.7a) and maintaining a potential as in
Theorem 12.5.

12.5. Further results and notes

12.5a. Complexity survey for minimum-cost circulation

Complexity survey for minimum-cost circulation (∗ indicates an asymptotically best
bound in the table):

O(n4CK) Ford and Fulkerson [1958b] labeling

O(m3C)
Yakovleva [1959], Minty [1960],
Fulkerson [1961] out-of-kilter
method

O(nm2C) Busacker and Gowen [1960], Iri
[1960] successive shortest paths

∗ O(nC · SP+(n, m, K))

Edmonds and Karp [1970],
Tomizawa [1971] successive shortest
paths with nonnegative lengths
using vertex potentials

O(nK · MF(n, m, C)) Edmonds and Karp [1972]

∗ O(m log C · SP+(n, m, K)) Edmonds and Karp [1972]
capacity-scaling

O(nm log(nC)) Dinits [1973a] capacity-scaling

O(n log K · MF(n, m, C)) Röck [1980] (cf. Bland and Jensen
[1992]) cost-scaling

O(m2 log n · MF(n, m, C)) Tardos [1985a]

O(m2 log n · SP+(n, m, K)) Orlin [1984a], Fujishige [1986]

O(n2 log n · SP+(n, m, K)) Galil and Tardos [1986,1988]

O(n3 log(nK)) Goldberg and Tarjan [1987],
Bertsekas and Eckstein [1988]

∗ O(n5/3m2/3 log(nK)) Goldberg and Tarjan [1987]
generalized cost-scaling

�
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continued

O(nm log n log(nK))

Goldberg and Tarjan [1987]
generalized cost-scaling; Goldberg
and Tarjan [1988b,1989]
minimum-mean cost cycle-cancelling

∗ O(m log n · SP+(n, m, K)) Orlin [1988,1993]

∗ O(nm log(n2/m) log(nK)) Goldberg and Tarjan [1990]
generalized cost-scaling

∗ O(nm log log C log(nK)) Ahuja, Goldberg, Orlin, and Tarjan
[1992] double scaling

∗ O(n log C(m + n log n)) circulations with lower bounds only
Gabow and Tarjan [1989]

∗ O((m3/2C1/2 + γ log γ) log(nK)) Gabow and Tarjan [1989]

∗ O((nm + γ log γ) log(nK)) Gabow and Tarjan [1989]

Here K := ‖k‖∞, C := ‖c‖∞, and γ := ‖c‖1, for integer cost function k and integer
capacity function c. Moreover, SP+(n, m, K) denotes the running time of any algo-
rithm finding a shortest path in a digraph with n vertices, m arcs, and nonnegative
integer length function l with K = ‖l‖∞. Similarly, MF(n, m, C) denotes the run-
ning time of any algorithm finding a maximum flow in a digraph with n vertices,
m arcs, and nonnegative integer capacity function c with C = ‖c‖∞.

Complexity survey for minimum-cost nonnegative transshipment:

∗ O(n log B · SP+(n, m, K)) Edmonds and Karp [1970,1972]

O(n2 log n · SP+(n, m, K)) Galil and Tardos [1986,1988]

∗ O(n log n · SP+(n, m, K)) Orlin [1988,1993]

Here B := ‖b‖∞ for integer b.

12.5b. Min-max relations for minimum-cost flows and circulations

From Corollary 12.1a, the following min-max equality for minimum-cost circulation
can be derived. The equality also follows directly from linear programming duality
and total unimodularity. Both approaches were considered by Gallai [1957,1958a,
1958b].

Theorem 12.8. Let D = (V, A) be a digraph and let c, d, k : A → R. Then the
minimum of

∑
a∈A k(a)f(a) taken over all circulations f in D satisfying d ≤ f ≤ c

is equal to the maximum value of

(12.51)
∑

a∈A

(y(a)d(a) − z(a)c(a)),

where y, z : A → R+ are such that there exists a function p : V → R with the
property that
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(12.52) y(a) − z(a) = k(a) − p(v) + p(u)

for each arc a = (u, v) of D.
If d and c are integer, we can take f integer. If k is integer, we can take y and

z integer.

Proof. The minimum is not less than the maximum, since if f is any circulation
in D with d ≤ f ≤ c and y, z, p satisfy (12.52), then

(12.53)
∑

a∈A

k(a)f(a) =
∑

a=(u,v)∈A

(k(a)+p(u)−p(v))f(a) =
∑

a∈A

(y(a)−z(a))f(a)

≥
∑

a∈A

(y(a)d(a) − z(a)c(a)).

To see equality, let f be a minimum-cost circulation. By Corollary 12.1a, there
is a function p : V → R satisfying (12.7). Define for each arc a = (u, v):

(12.54) y(a) := max{0, k(a) − p(v) + p(u)},
z(a) := max{0, −k(a) + p(v) − p(u)}.

So y and z satisfy (12.52). Moreover, we have by (12.7) that y(a)(f(a) − d(a)) = 0
and z(a)(c(a) − f(a)) = 0 for each arc a. Hence we have equality throughout in
(12.53).

We consider a special case (Gallai [1957,1958a,1958b]). Let D = (V, A) be a
strongly connected digraph, let d : A → Z+, and let k : A → Z+ be a cost function,
with k(C) ≥ 0 for each directed circuit C. Then:

(12.55) the minimum cost
∑

a∈A k(a)f(a) of an integer circulation f in D
with f ≥ d is equal to the maximum value of

∑
a∈A d(a)y(a) where

y : A → Z+ with y(C) = k(C) for each directed circuit C in D.

A consequence of this applies to the ‘directed Chinese postman problem’: given
a strongly connected directed graph, find a shortest directed closed path traversing
each arc at least once. If we take unit length, we obtain the following. The minimum
number of arcs in any closed directed path traversing each arc at least once is equal
to the maximum value of

(12.56) |A| +
∑

U∈U
(|δin(U)| − |δout(U)|),

where U is a collection of subsets U of V such that the δout(U) are disjoint.
This equality follows from (12.55), by taking d = 1 and k = 1: then there is a

p : V → Z with y(a) = 1 − p(v) + p(u) for each arc a = (u, v). So p(v) ≤ p(u) + 1
for each arc a = (u, v). Taking Ui := {v ∈ V | p(v) ≤ i} for each i ∈ Z gives the
required cuts δout(Ui).

12.5c. Dynamic flows

A minimum-cost flow algorithm (in disguised form) was given by Ford and Fulkerson
[1958b]. They considered the following ‘dynamic flow’ problem. Let D = (V, A) be
a digraph and let r, s ∈ V (for convenience we assume that r is a source and s is a
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sink of D). Let c : A → Z+ be a capacity function. Moreover, let a ‘traversal time’
function τ : A → Z+ be given, and a ‘time limit’ T .

The problem now is to send a maximum amount of flow from r to s, such that,
for each arc a, at each time unit at most c(a) flow is sent over a; it takes τ(a) time
to traverse a. All flow is sent from r at one of the times 1, 2, . . . , T , while it reaches
s at time at most T .

More formally, for any arc a = (u, v) and any t ∈ {1, 2, . . . , T}, let x(a, t) denote
the amount of flow sent from u over a at time t, reaching v at time t + τ(a). A first
constraint is:

(12.57) 0 ≤ x(a, t) ≤ c(a)

for each a ∈ A and each t ∈ {1, . . . , T}. Next a flow conservation law can be
formulated. Flow may ‘wait’ at any vertex until there is capacity enough to be
transmitted further. This can be described as follows:

(12.58)
∑

a∈δin(v)

t′−τ(a)∑

t=1

x(a, t) ≥
∑

a∈δout(v)

t′∑

t=1

x(a, t)

for each v ∈ V \ {r, s} and each t′ ∈ {1, . . . , T}. We maximize the amount of flow
reaching s not later than time T ; that is, we

(12.59) maximize
∑

a∈δin(s)

T−τ(a)∑

t=1

x(a, t).

Since we may assume that we do not send flow from r that will not reach s, we
may assume that we have equality in (12.58) if t′ = T .

As Ford and Fulkerson [1958b] observed, this ‘dynamic flow’ problem can be
transformed to a ‘static’ flow problem as follows. Let D′ be the digraph with vertices
all pairs (v, t) with v ∈ V and t ∈ {1, . . . , T}, and arcs

(12.60) (i) ((u, t), (v, t+τ(a))) for each a = (u, v) ∈ A and t ∈ {1, . . . , T −τ(a)},
(ii) ((v, t), (v, t + 1)) for each v ∈ V and t ∈ {1, . . . , T − 1}.

Let any arc of type (i) have capacity c(a) and let any arc of type (ii) have capacity
+∞. Then the maximum dynamic flow problem is equivalent to finding a maximum
flow in the new network from (r, 1) to (s, T ).

By this construction, a maximum dynamic flow can be found by solving a max-
imum flow problem in the large graph D′. Ford and Fulkerson [1958b] however
described an alternative way of finding a dynamic flow that has a number of advan-
tages. First of all, no ‘large’ graph D′ has to be constructed (and the final algorithm
can be modified with the scaling method of Edmonds and Karp [1972] to a method
that is polynomial also in log T ). Second, the solution can be represented as a rel-
atively small number of paths over which flow is transmitted repeatedly. Finally,
the method shows that at intermediate vertices hold-over of flows is not necessary
(that is, all arcs of type (12.60)(ii) with v �= r, s can be deleted).

Ford and Fulkerson [1958b] showed that a solution of the dynamic flow problem
can be found by solving the following problem:

(12.61) maximize
∑

a∈δin(s)

Tx(a) −
∑

a∈A

τ(a)x(a),

where x is an r − s flow satisfying 0 ≤ x ≤ c.
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This is equivalent to a minimum-cost flow problem, with cost k(a) := τ(a) − T for
a ∈ δin(s), and k(a) := τ(a) for all other a. Note that there are arcs of negative
cost (generally), and that the value of the flow is not prescribed. So by adding an
arc (s, r) we obtain a minimum-cost circulation problem.

How is problem (12.61) related to the dynamic flow problem? Given an optimum
solution x : A → Z+ of (12.61), there exist r − s paths P1, . . . , Pm in D such that

(12.62) x ≥
m∑

i=1

χPi

where m is the value of x. (We identify a path P and its set of arcs.) For any path
P , let τ(P ) be the traversal time of P (= the sum of the traversal times of the arcs
in P ). Then τ(Pi) ≤ T for each i, since otherwise we could replace x by x − χPi ,
while increasing the objective value in (12.61).

Now send, for each i = 1, . . . , m, a flow of value 1 along Pi at times 1, . . . , T −
τ(Pi). It is not difficult to describe this in terms of the x(a, t), yielding a feasible
solution for the dynamic flow problem, of value

(12.63)
m∑

i=1

(T − τ(Pi)) ≥ mT −
∑

a∈A

τ(a)x(a),

which is the optimum value of (12.61).
In fact, this dynamic flow is optimum. Indeed, by Theorem 12.8 (alternatively,

by LP-duality and total unimodularity), the optimum value of (12.61) is equal to
that of:

(12.64) minimize
∑

a∈A

c(a)y(a)

where y : A → Z+ such that there exists p : V → Z satisfying:

(12.65) p(u) − p(v) + y(a) ≥ −τ(a) for each a = (u, v) ∈ A,

where p(r) = 0 and p(s) = T .
Now if x(a, t) is a feasible solution of the dynamic flow problem, then by (12.58),

(12.57) and (12.63),

(12.66)
∑

a∈δin(s)

T−τ(a)∑

t=1

x(a, t) ≤
∑

a∈δin(s)

T−τ(a)∑

t=1

x(a, t)

+
∑

v �=s

( ∑

a∈δin(v)

p(v)−τ(a)∑

t=1

x(a, t) −
∑

a∈δout(v)

p(v)∑

t=1

x(a, t)
)

=
∑

a=(u,v)∈A

( p(v)−τ(a)∑

t=1

x(a, t) −
p(u)∑

t=1

x(a, t)
)

≤
∑

a=(u,v)∈A

p(v)−τ(a)∑

t=p(u)+1

x(a, t) ≤
∑

a=(u,v)∈A

c(a)(p(v) − τ(a) − p(u))

≤
∑

a∈A

c(a)y(a).



Section 12.5d. Further notes 195

Therefore, the dynamic flow constructed is optimum.
Ford and Fulkerson [1958b] described a method for solving (12.61) which es-

sentially consists of repeatedly finding a shortest r − s path in the residual graph,
making costs nonnegative by translating the cost with the help of the current po-
tential p (this is ‘Routine I’ of Ford and Fulkerson [1958b]). In this formulation, it
is a primal-dual method.

The method of Ford and Fulkerson [1958b] improves the algorithm of Ford [1956]
for the dynamic flow problem. More on this and related problems can be found
in Wilkinson [1971], Minieka [1973], Orlin [1983,1984b], Aronson [1989], Burkard,
Dlaska, and Klinz [1993], Hoppe and Tardos [1994,1995,2000], Klinz and Woeginger
[1995], Fleischer and Tardos [1998], and Fleischer [1998b,1999c,2001b,2001a].

12.5d. Further notes

The minimum-cost flow problem is a linear programming problem, and hence it can
be solved with the primal simplex method or the dual simplex method. Strongly
polynomial dual simplex algorithms for minimum-cost flow have been given by
Orlin [1985] (O(m3) pivots) and Plotkin and Tardos [1990] (O(m2/ log n) pivots)
(cf. Orlin, Plotkin, and Tardos [1993]). No pivot rule is known however that finds
a minimum-cost flow with the primal simplex method in polynomial time. Partial
results were found by Goldfarb and Hao [1990] and Tarjan [1991].

Further work on the primal simplex method applied to the minimum-cost flow
problem is discussed by Dantzig [1963], Gassner [1964], Johnson [1966b], Grigoriadis
and Walker [1968], Srinivasan and Thompson [1973], Glover, Karney, and Kling-
man [1974], Glover, Karney, Klingman, and Napier [1974], Glover, Klingman, and
Stutz [1974], Ross, Klingman, and Napier [1975], Cunningham [1976,1979], Bradley,
Brown, and Graves [1977], Gavish, Schweitzer, and Shlifer [1977], Barr, Glover, and
Klingman [1978,1979], Mulvey [1978a], Kennington and Helgason [1980], Chvátal
[1983], Cunningham and Klincewicz [1983], Gibby, Glover, Klingman, and Mead
[1983], Grigoriadis [1986], Ahuja and Orlin [1988,1992], Goldfarb, Hao, and Kai
[1990a], Tarjan [1991,1997], Eppstein [1994a,2000], Orlin [1997], and Sokkalingam,
Sharma, and Ahuja [1997].

Further results on the dual simplex method applied to minimum-cost flows
are given by Dantzig [1963], Helgason and Kennington [1977b], Armstrong, Kling-
man, and Whitman [1979], Orlin [1984a], Ikura and Nemhauser [1986], Adler and
Cosares [1990], Plotkin and Tardos [1990], Orlin, Plotkin, and Tardos [1993], Epp-
stein [1994a,2000], and Armstrong and Jin [1997].

Further algorithmic work is presented by Briggs [1962], Pla [1971] (dual out-
of-kilter), Barr, Glover, and Klingman [1974] (out-of-kilter), Hassin [1983,1992],
Bertsekas [1985], Kapoor and Vaidya [1986] (interior-point method), Bertsekas and
Tseng [1988] (‘relaxation method’), Masuzawa, Mizuno, and Mori [1990] (interior-
point method), Cohen and Megiddo [1991], Bertsekas [1992] (‘auction algorithm’),
Norton, Plotkin, and Tardos [1992], Wallacher and Zimmermann [1992] (combi-
natorial interior-point method), Ervolina and McCormick [1993a,1993b], Fujishige,
Iwano, Nakano, and Tezuka [1993], McCormick and Ervolina [1994], Hadjiat and
Maurras [1997], Goldfarb and Jin [1999a], McCormick and Shioura [2000a,2000b]
(cycle canceling), Shigeno, Iwata, and McCormick [2000] (cycle- and cut-canceling),
and Vygen [2000].
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Worst-case studies are made by Zadeh [1973a,1973b,1979] (cf. Niedringhaus
and Steiglitz [1978]), Adel’son-Vel’skĭı, Dinits, and Karzanov [1975], Dinits and
Karzanov [1974], Radzik and Goldberg [1991,1994] (minimum-mean cost cycle-
cancelling), and Hadjiat [1998] (dual out-of-kilter).

Computational studies were presented by Glover, Karney, and Klingman [1974]
(simplex method), Glover, Karney, Klingman, and Napier [1974], Harris [1976], Kar-
ney and Klingman [1976], Bradley, Brown, and Graves [1977], Helgason and Ken-
nington [1977b] (dual simplex method), Ali, Helgason, Kennington, and Lall [1978],
Mulvey [1978b] (simplex method), Armstrong, Klingman, and Whitman [1979],
Monma and Segal [1982] (simplex method), Gibby, Glover, Klingman, and Mead
[1983], Grigoriadis [1986] (simplex method), Ikura and Nemhauser [1986] (dual
simplex method), Bertsekas and Tseng [1988], Bland and Jensen [1992], Bland,
Cheriyan, Jensen, and Ladányi [1993], Fujishige, Iwano, Nakano, and Tezuka [1993],
Goldberg [1993a,1997] (push-relabel and successive approximation), Goldberg and
Kharitonov [1993] (push-relabel), and Resende and Veiga [1993] (interior-point).
Consult also Johnson and McGeoch [1993].

Bein, Brucker, and Tamir [1985] and Hoffman [1988] considered minimum-cost
circulation for series-parallel digraphs. Wagner and Wan [1993] gave a polynomial-
time simplex method for the maximum k-flow problem (with a profit for every unit
of flow sent, and a cost for every unit capacity added to any arc a), which can be
reduced to a minimum-cost circulation problem.

Maximum flows where the cost may not exceed a given ‘budget’ were considered
by Fulkerson [1959b] and Ahuja and Orlin [1995].

‘Unsplittable’ flows (with one source and several sinks, where all flow from the
source to any sink follows the same path) were investigated by Kleinberg [1996,
1998], Kolliopoulos and Stein [1997,1998a,1999,2002], Srinivasan [1997], Dinitz,
Garg, and Goemans [1998,1999], Skutella [2000,2002], Azar and Regev [2001], Er-
lebach and Hall [2002], and Kolman and Scheideler [2002].

For generalized flows (with ‘gains’ on arcs), see Jewell [1962], Fujisawa [1963],
Eisemann [1964], Mayeda and van Valkenburg [1965], Charnes and Raike [1966], On-
aga [1966,1967], Glover, Klingman, and Napier [1972], Maurras [1972], Glover and
Klingman [1973], Grinold [1973], Truemper [1977], Minieka [1978], Elam, Glover,
and Klingman [1979], Jensen and Barnes [1980], Gondran and Minoux [1984],
Kapoor and Vaidya [1986], Bertsekas and Tseng [1988], Ruhe [1988], Vaidya [1989c],
Goldberg, Tardos, and Tarjan [1990], Goldberg, Plotkin, and Tardos [1991], Cohen
and Megiddo [1994], Goldfarb and Jin [1996], Tseng and Bertsekas [1996,2000],
Goldfarb, Jin, and Orlin [1997], Radzik [1998], Tardos and Wayne [1998], Oldham
[1999,2001], Wayne [1999,2002], Wayne and Fleischer [1999], Fleischer and Wayne
[2002], and Goldfarb, Jin, and Lin [2002].

For convex costs,see Charnes and Cooper [1958], Beale [1959], Shetty [1959],
Berge [1960b], Minty [1960,1961,1962], Tu. y [1963,1964], Menon [1965], Hu [1966],
Weintraub [1974], Jensen and Barnes [1980], Kennington and Helgason [1980],
Dembo and Klincewicz [1981], Hassin [1981a], Klincewicz [1983], Ahuja, Batra, and
Gupta [1984], Minoux [1984,1986], Rockafellar [1984], Florian [1986], Bertsekas,
Hosein, and Tseng [1987], Katsura, Fukushima, and Ibaraki [1989], Karzanov and
McCormick [1995,1997], Tseng and Bertsekas [1996,2000], and Ahuja, Hochbaum,
and Orlin [1999].
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Concave costs were studied by Zangwill [1968], Rothfarb and Frisch [1970],
Daeninck and Smeers [1977], Jensen and Barnes [1980], Graves and Orlin [1985],
and Erickson, Monma, and Veinott [1987].

The basic references on network flows are the books of Ford and Fulkerson [1962]
(historical) and Ahuja, Magnanti, and Orlin [1993]. Minimum-cost flow problems
are discussed also in the books of Hu [1969,1982], Iri [1969], Frank and Frisch
[1971], Potts and Oliver [1972], Adel’son-Vel’skĭı, Dinits, and Karzanov [1975] (for
a review, see Goldberg and Gusfield [1991]), Christofides [1975], Lawler [1976b],
Murty [1976], Bazaraa and Jarvis [1977], Minieka [1978], Jensen and Barnes [1980],
Kennington and Helgason [1980], Phillips and Garcia-Diaz [1981], Swamy and Thu-
lasiraman [1981], Papadimitriou and Steiglitz [1982], Smith [1982], Chvátal [1983],
Sys�lo, Deo, and Kowalik [1983], Tarjan [1983], Gondran and Minoux [1984], Rock-
afellar [1984], Derigs [1988a], Nemhauser and Wolsey [1988], Bazaraa, Jarvis, and
Sherali [1990], Chen [1990], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], and Korte and Vygen [2000].

Survey papers include Glover and Klingman [1977], Ahuja, Magnanti, and Orlin
[1989,1991], Goldberg, Tardos, and Tarjan [1990], and Frank [1995]. A bibliography
was given by Golden and Magnanti [1977].

The history of the minimum-cost flow, circulation, and transshipment problems
is closely intertwined with that of the transportation problem — see Section 21.13e.



Chapter 13

Path and flow polyhedra and
total unimodularity

A large part of the theory of paths and flows can be represented geometri-
cally by polytopes and polyhedra, and can be studied with methods from
geometry and linear programming. Theorems like Menger’s theorem, the
max-flow min-cut theorem, and Hoffman’s circulation theorem can be de-
rived and interpreted with elementary polyhedral tools.
This can be done with the help of the total unimodularity of the incidence
matrices of directed graphs, and of the more general network matrices. It
again yields proofs of basic flow theorems and implies the polynomial-time
solvability of flow problems.

13.1. Path polyhedra

Let D = (V, A) be a digraph and let s, t ∈ V . The s − t path polytope
Ps − t path(D) is the convex hull of the incidence vectors in R

A of s− t paths
in D. (We recall that paths are simple, by definition.) So Ps − t path(D) is
a polytope in the space R

A. Since finding a maximum-length s − t path
in D is NP-complete, we may not expect to have a decent description of
the inequalities determining Ps − t path(D) (cf. Corollary 5.16a). That is, the
separation problem for Ps − t path(D) is NP-hard.

However, if we extend the s− t path polytope to its dominant, it becomes
more tractable. This leads to an illuminating geometric framework, in which
the (easy) max-potential min-work theorem (Theorem 7.1) and the (more
difficult) max-flow min-cut theorem (Theorem 10.3) show up as polars of each
other, and can be derived from each other. This duality forms a prototype
for many other dual theorems and problems.

The dominant P ↑
s − t path(D) of Ps − t path(D) is the set of vectors x ∈ R

A

with x ≥ y for some y ∈ Ps − t path(D). So

(13.1) P ↑
s − t path(D) = Ps − t path(D) + R

A
+.

An alternative way of describing this polyhedron is as the set of all capacity
functions c : A→ R+ for which there exists a flow x ≤ c of value 1.

It is not difficult to derive from the (easy) max-potential min-work theo-
rem that the following inequalities determine P ↑

s − t path(D):
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(13.2) (i) x(a) ≥ 0 for each a ∈ A,
(ii) x(C) ≥ 1 for each s− t cut C.

Theorem 13.1. P ↑
s − t path(D) is determined by (13.2).

Proof. Clearly, each vector in P ↑
s − t path(D) satisfies (13.2). So P ↑

s − t path(D)
is contained in the polyhedron Q determined by (13.2). Suppose that the re-
verse inclusion does not hold. Then there is an l ∈ Z

A such that the minimum
of lTx over x ∈ Q is smaller than over x ∈ P ↑

s − t path(D). If l �∈ Z
A
+, the mini-

mum in both cases is −∞; so l ∈ Z
A
+. Then the minimum over P ↑

s − t path(D)
is equal to the minimum length k of an s−t path, taking l as length function.
By Theorem 7.1, there exist s− t cuts C1, . . . , Ck such that each arc a is in
at most l(a) of the Ci. Hence for any x ∈ Q one has

(13.3) lTx ≥
( k∑

i=1

χCi

)T
x =

k∑

i=1

x(Ci) ≥ k,

by (13.2)(ii). So the minimum over Q is at least k, contradicting our assump-
tion.

So the characterization of the dominant P ↑
s − t path(D) of the s − t path

polytope follows directly from the easy Theorem 7.1 (the max-potential min-
work theorem).

Note that Theorem 13.1 is equivalent to:

Corollary 13.1a. The polyhedron determined by (13.2) is integer.

Proof. The vertices are integer, as they are incidence vectors of paths.

Next, the theory of blocking polyhedra implies a similar result when we
interchange ‘paths’ and ‘cuts’, thus deriving the max-flow min-cut theorem.

The s − t cut polytope Ps − t cut(D) is the convex hull of the incidence
vectors of s− t cuts in D. Again, Ps − t cut(D) is a polytope in the space R

A.
Since finding a maximum-size s− t cut in D is NP-complete (Theorem 75.1),
we may not expect to have a decent description of inequalities determining
Ps − t cut(D). That is, the separation problem for Ps − t cut(D) is NP-hard.

Again, a polyhedron that behaves more satisfactorily is the dominant
P ↑

s − t cut(D) of the s − t cut polytope, which is the set of vectors x ∈ R
A

with x ≥ y for some y ∈ Ps − t cut(D). That is,

(13.4) P ↑
s − t cut(D) = Ps − t cut(D) + R

A
+.

Now the following inequalities determine P ↑
s − t cut(D):

(13.5) (i) x(a) ≥ 0 for a ∈ A,
(ii) x(AQ) ≥ 1 for each s− t path Q.
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Corollary 13.1b. P ↑
s − t cut(D) is determined by (13.5).

Proof. Directly with the theory of blocking polyhedra (Theorem 5.8) from
Theorem 13.1.

Equivalently:

Corollary 13.1c. The polyhedron determined by (13.5) is integer.

Proof. The vertices are integer, as they are incidence vectors of s − t cuts.

The two polyhedra are connected by the blocking relation:

Corollary 13.1d. The polyhedra P ↑
s − t path(D) and P ↑

s − t cut(D) form a
blocking pair of polyhedra.

Proof. Directly from the above.

With linear programming duality, this theorem implies the max-flow min-
cut theorem:

Corollary 13.1e (max-flow min-cut theorem). Let D = (V, A), let s, t ∈ V
and let c : A → R+ be a capacity function. Then the maximum value of an
s− t flow f ≤ c is equal to the minimum capacity of an s− t cut.

Proof. The minimum capacity of an s − t cut is equal to the minimum of
cTx over x ∈ P ↑

s − t cut(D) (by definition (13.4)). By Corollary 13.1b, this
is equal to the minimum value µ of cTx where x satisfies (13.5). By linear
programming duality, µ is equal to the maximum value of

∑
Q λQ, where

λQ ≥ 0 for each s− t path Q, such that

(13.6)
∑

Q

λQχAQ ≤ c.

Then f :=
∑

Q λQχAQ is an s− t flow of value µ.

Thus the theory of blocking polyhedra links minimum-length paths and
minimum-capacity cuts.

Algorithmic duality. The duality of paths and cuts can be extended to
the polynomial-time solvability of the corresponding optimization problems.
Indeed, Corollary 5.14a implies that the following can be derived from the
fact that P ↑

s − t path(D) and P ↑
s − t cut(D) form a blocking pair of polyhedra

(Corollary 13.1d):
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(13.7) the minimum-length path problem is polynomial-time solvable
⇐⇒
the minimum-capacity cut problem is polynomial-time solvable.

(Here the length and capacity functions are restricted to be nonnegative.)
By Theorem 5.15, one can also find a dual solution, which implies:

(13.8) the minimum-capacity cut problem is polynomial-time solvable
⇐⇒
the maximum flow problem is polynomial-time solvable.

The statements in (13.7) by themselves are not surprising, since the poly-
nomial-time solvability of neither of the problems has turned out to be hard,
although finding a shortest path in polynomial time is easier than finding a
maximum flow in polynomial time.

However, it is good to realize that the equivalence has been derived purely
from the theoretical fact that the two polyhedra form a blocking pair. In
further chapters we will see more sophisticated applications of this principle.

Dual integrality. The fact that P ↑
s − t path(D) and P ↑

s − t cut(D) form a block-
ing pair of polyhedra, is equivalent to the fact that the polyhedra determined
by (13.2) and (13.5) each are integer (that is, have integer vertices only).
More precisely, blocking polyhedra theory tells us:

(13.9) the polyhedron determined by (13.2) is integer ⇐⇒ the polyhe-
dron determined by (13.5) is integer.

In other words, minimizing any linear function over (13.2) gives an integer
optimum solution if and only if minimizing any linear function over (13.5)
gives an integer optimum solution. Thus there is an equivalence of the exis-
tence of integer optimum solutions between two classes of linear programming
problems. What can be said about the dual linear programs?

There is no general theorem known that links the existence of integer op-
timum dual solutions of blocking pairs of polyhedra. In fact, it is not the case
that if two systems Ax ≤ b and A′x ≤ b′ of linear inequalities represent a
blocking pair of polyhedra, then the existence of integer optimum dual solu-
tions for one system implies the existence of integer optimum dual solutions
for the other. That is, the total dual integrality of Ax ≤ b is not equivalent to
the total dual integrality of A′x ≤ b′ (even not if one puts strong conditions
on the two systems, like A, b, A′, and b′ being 0, 1).

Yet, in the special case of paths and cuts the systems are totally dual
integral, as follows directly from theorems proved in previous chapters. (In
particular, total dual integrality of (13.5) amounts to the integrity theorem
for flows.)

Theorem 13.2. The systems (13.2) and (13.5) are totally dual integral.
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Proof. Total dual integrality of (13.2) is equivalent to Theorem 7.1, and total
dual integrality of (13.5) is equivalent to Corollary 10.3a.

By Theorem 5.22, total dual integrality of a system Ax ≤ b (with b
integer) implies total primal integrality; that is, integrality of the polyhedron
determined by Ax ≤ b. So general polyhedral theory gives the following
implications:

(13.10)

(13.2) determines an
integer polyhedron

⇐⇒ (13.5) determines an
integer polyhedron

⇑ ⇑
(13.2) is totally dual
integral

(13.5) is totally dual
integral

13.1a. Vertices, adjacency, and facets

Vertices of the dominant of the s − t path polytope have a simple characterization:

Theorem 13.3. A vector x is a vertex of P ↑
s − t path if and only if x = χπ for some

s − t path π.

Proof. If x = χπ for some s − t path π, then x is a vertex of P ↑
s − t path, as for the

length function l defined by l(a) := 0 if a ∈ Aπ and l(a) := 1 otherwise, the path π
is the unique shortest s − t path.

Conversely, let x be a vertex. As x is integer, x ≥ χπ for some s−t path π. Then
χπ and 2x − χπ = x + (x − χπ) belong to P ↑

s − t path. As x = (χπ + (2x − χπ))/2,
we have x = χπ.

As for adjacency, one has:

Theorem 13.4. Let π and π′ be two distinct s − t paths in D. Then χπ and χπ′

are adjacent vertices of P ↑
s − t path if and only if Aπ�Aπ′ is an undirected circuit

consisting of two internally vertex-disjoint directed paths.

Proof. If Aπ�Aπ′ is an undirected circuit consisting of two internally vertex-
disjoint paths, define the length function l by l(a) := 0 if a ∈ Aπ ∪ Aπ′ and
l(a) := 1 otherwise. Then π and π′ are the only two shortest s − t paths.

Conversely, let χπ and χπ′
be adjacent. Suppose that Aπ∪Aπ′ contains an s− t

path π′′ different from π and π′. Then χπ + χπ′ − χπ′′
= χπ′′′

for some s − t path
π′′′, contradicting the adjacency of χπ and χπ′

. This implies that Aπ�Aπ′ is an
undirected circuit consisting of two internally vertex-disjoint directed paths.

Finally, for the facets we have:

Theorem 13.5. Let C be an s − t cut. Then the inequality x(C) ≥ 1 determines a
facet of P ↑

s − t path if and only if C is an inclusionwise minimal s − t cut.
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Proof. Necessity. Suppose that there is an s − t cut C′ ⊂ C. Then the inequalities
x ≥ 0 and x(C′) ≥ 1 imply x(C) ≥ 1, and hence x(C) ≥ 1 is not facet-inducing.

Sufficiency. If the inequality x(C) ≥ 1 is not facet-inducing, it is a nonnegative
linear combination of other inequalities in system (13.2). At least one of them is of
the form x(C′) ≥ 1 for some s − t cut C′. Then necessarily C′ ⊂ C.

Garg and Vazirani [1993,1995] characterized the vertices of and adjacency on a
variant of the s − t cut polytope.

13.1b. The s − t connector polytope

There are a number of related polyhedra for which similar results hold. Call a subset
A′ of A an s − t connector if A′ contains the arc set of an s − t path as a subset.
The s − t connector polytope Ps − t connector(D) is the convex hull of the incidence
vectors of the s − t connectors.

This polytope turns out to be determined by the following system of linear
inequalities:

(13.11) (i) 0 ≤ x(a) ≤ 1 for each a ∈ A,
(ii) x(C) ≥ 1 for each s − t cut C.

Again, the fact that the s − t connector polytope is contained in the polytope
determined by (13.11) follows from the fact that χP satisfies (13.11) for each s − t
connector P .

Also in this case one has:

Theorem 13.6. System (13.11) is totally dual integral.

Proof. Directly from Theorem 13.2, using Theorem 5.23.

It implies primal integrality:

Corollary 13.6a. The s − t connector polytope is equal to the solution set of
(13.11).

Proof. Directly from Theorem 13.6.

The dimension of Ps − t connector(D) is easily determined:

Theorem 13.7. Let A′ be the set of arcs a for which there exists an s − t path not
traversing a. Then dim Ps − t connector(D) = |A′|.

Proof. We use Theorem 5.6. Clearly, no inequality xa ≥ 0 is an implicit equality.
Moreover, the inequality xa ≤ 1 is an implicit equality if and only if a ∈ A\A′. For
distinct arcs a ∈ A \ A′, these equalities are independent.

Suppose that there is a U ⊆ V with s ∈ U , t �∈ U , such that x(δout(U)) ≥ 1
is an implicit equality. Then |δout(U)| = 1, since the all-one vector belongs to the
polytope. So the arc in δout(U) belongs to A \ A′.

We conclude that the maximum number of independent implicit equalities is
equal to |A \ A′|. Hence dim P = |A′|.
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Let D = (V, A) be a digraph, let s, t ∈ V , and let k ∈ Z+. By the results above,
the convex hull P of the incidence vectors χB of those subsets B of A that contain
k arc-disjoint s − t paths, is determined by

(13.12) (i) 0 ≤ x(a) ≤ 1 for each a ∈ A,
(ii) x(C) ≥ k for each s − t cut C.

L.E. Trotter, Jr observed that this polytope P has the integer decomposition prop-
erty ; that is, for each l ∈ Z+, any integer vector x ∈ l · P is the sum of l integer
vectors in P .

Theorem 13.8. The polytope P determined by (13.12) has the integer decomposi-
tion property.

Proof. Let l ∈ Z+ and let x ∈ l ·P . Then there exists an integer s− t flow f ≤ x of
value l · k (by the max-flow min-cut theorem). We can assume that x = f . As 1

l
f

is an s − t flow of value k, by Corollary 11.2c there exists an integer s − t flow f ′

of value k with

(13.13) �1
l
f(a) ≤ f ′(a) ≤ �1

l
f(a)�

for each arc a. Then f ′ is an integer vector in P , since f ′(a) ≤ 1 for each arc a, as
f(a) ≤ l for each arc a. Moreover, f −f ′ is an integer vector belonging to (l−1) ·P ,
as f − f ′ is an s − t flow of value (l − 1) · k and as (f − f ′)(a) ≤ l − 1 for each arc
a, since if f(a) = l, then f ′(a) = 1 by (13.13).

13.2. Total unimodularity

Let D = (V, A) be a digraph. Recall that the V × A incidence matrix M
of D is defined by Mv,a := −1 if a leaves v, Mv,a := +1 if a enters v, and
Mv,a := 0 otherwise. So each column of M contains exactly one +1 and
exactly one −1, while all other entries are 0. The following basic statement
follows from a theorem of Poincaré [1900]21 (we follow the proofs of Chuard
[1922] and Veblen and Franklin [1921]):

Theorem 13.9. The incidence matrix M of any digraph D is totally uni-
modular.

Proof. Let B be a square submatrix of M , of order k say. We prove that
det B ∈ {0,±1} by induction on k, the case k = 1 being trivial. Let k > 1.
We distinguish three cases.
21 Poincaré [1900] showed the total unimodularity of any {0, ±1} matrix M = (Mi,j) with

the property that for each k and all distinct row indices i1, . . . , ik and all distinct column
indices j1, . . . , jk, the product

Mi1,j1Mi1,j2Mi2,j2Mi2,j3 · · · Mik−1,jk−1Mik−1,jk
Mik,jk

Mik,j1

belongs to {0, 1} if k is even and to {0, −1} if k is odd. Incidence matrices of digraphs
have this property.
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Case 1: B has a column with only zeros. Then det B = 0.
Case 2: B has a column with exactly one nonzero. Then we can write (up

to permuting rows and columns):

(13.14) B =
(±1 bT

0 B′

)
,

for some vector b and matrix B′. Then by the induction hypothesis, detB′ ∈
{0,±1}, and hence detB ∈ {0,±1}.

Case 3 : Each column of B contains two nonzeros. Then each column of
B contains one +1 and one −1, while all other entries are 0. So each row of
B adds up to 0, and hence detB = 0.

One can derive several results on circulations, flows, and transshipments
from the total unimodularity of the incidence matrix of a digraph, like the
max-flow min-cut theorem (see Section 13.2a below) and theorems charac-
terizing the existence of a circulation or a b-transshipment (Theorem 11.2
and Corollary 11.2f). Moreover, min-max equalities for minimum-cost flow,
circulation (cf. Theorem 12.8), and b-transshipment follow. We discuss some
of the previous and some new results in the following sections.

13.2a. Consequences for flows

We show that the max-flow min-cut theorem can be derived from the total uni-
modularity of the incidence matrix of a digraph:

Corollary 13.9a (max-flow min-cut theorem). Let D = (V, A), let s, t ∈ V , and
let c : A → R+ be a capacity function. Then the maximum value of an s − t flow
f ≤ c is equal to the minimum capacity of an s − t cut.

Proof. Since the maximum clearly cannot exceed the minimum, it suffices to show
that there exists an s − t flow x ≤ c and an s − t cut, whose capacity is not more
than the value of x.

Let M be the incidence matrix of D and let M ′ arise from M by deleting the
rows corresponding to s and t. So the condition M ′x = 0 means that the flow
conservation law should hold at any vertex v �= s, t.

Let w be the row of M corresponding to vertex t. So for any arc a, wa = +1 if
a enters t, wa = −1 if a leaves t, and wa = 0 otherwise.

Now the maximum value of an s − t flow subject to c is equal to

(13.15) max{wTx | 0 ≤ x ≤ c; M ′x = 0}.

By LP-duality, this is equal to

(13.16) min{yTc | y ≥ 0; ∃z : yT + zTM ′ ≥ wT}.

Since M ′ is totally unimodular by Theorem 13.9 and since w is an integer vector,
minimum (13.16) is attained by integer vectors y and z. Extend z by defining
zt := −1 and zs := 0. Then yT + zTM ≥ 0.

Now define
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(13.17) U := {v ∈ V | zv ≥ 0}.

Then U is a subset of V containing s and not containing t.
It suffices to show that

(13.18) c(δout(U)) ≤ yTc,

since yTc is equal to the maximum flow value (13.15).
To prove (13.18), it suffices to show that

(13.19) if a = (u, v) ∈ δout(U), then ya ≥ 1.

To see this, note that zu ≥ 0 and zv ≤ −1. Moreover, yT + zTM ≥ 0 implies
ya + zv − zu ≥ 0. So ya ≥ zu − zv ≥ 1. This proves (13.19).

It follows similarly that if all capacities are integers, then there exists a maxi-
mum integer flow; that is, we have the integrity theorem (Corollary 10.3a).

Let D = (V, A) be a digraph and s, t ∈ V . The set of all s − t flows of value 1
is a polyhedron Ps − t flow(D), determined by:

(13.20) (i) x(a) ≥ 0 for each a ∈ A,
(ii) x(δin(v)) = x(δout(v)) for each v ∈ V \ {s, t},

(iii) x(δout(s)) − x(δin(s)) = 1.

The set of all s − t flows of value φ trivially equals φ · Ps − t flow(D).
The total unimodularity of M gives that, for integer φ, the intersection of φ ·

Ps − t flow(D) with an integer box {x | 0 ≤ x ≤ c} is an integer polytope. In other
words:

Theorem 13.10. Let D = (V, A) be a digraph, s, t ∈ V , c : A → Z, and φ ∈ Z+.
Then the set of s − t flows x ≤ c of value φ forms an integer polytope.

Proof. Directly from the total unimodularity of the incidence matrix of a digraph
(using Theorem 5.20).

In particular this gives:

Corollary 13.10a. Let D = (V, A) be a digraph, s, t ∈ V , c : A → Z and φ ∈ Z. If
there exists an s − t flow x ≤ c of value φ, then there exists an integer such flow.

Proof. Directly from Theorem 13.10.

Notes. A relation of Ps − t flow(D) with the polytope Ps − t path(D) is that

(13.21) Ps − t path(D) ⊆ Ps − t flow(D) ⊆ P ↑
s − t path(D).

Hence

(13.22) P ↑
s − t path(D) = P ↑

s − t flow(D).

Dantzig [1963] (pp. 352–366) showed that each vertex x of Ps − t flow(D) is the
incidence vector χP of some s − t path P . It can be shown that, if each arc of D is
in some s − t path, then Ps − t flow(D) is the topological closure of the convex hull
of the vectors χP ∈ R

A where P is an s − t walk and where
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(13.23) χP (a) := number of times P traverses a,

for a ∈ A.
For two distinct s − t paths, the vertices χP and χP ′

are adjacent if and only
if the symmetric difference AP�AP ′ forms an undirected circuit consisting of two
internally vertex disjoint directed paths.

Saigal [1969] proved that any two vertices of Ps − t flow(D) are connected by
a path on the 1-skeleton of Ps − t flow(D) with at most |A| − 1 edges — this im-
plies the Hirsch conjecture for this class of polyhedra. (The Hirsch conjecture (cf.
Dantzig [1963,1964]) says that the 1-skeleton of a polytope in R

n determined by
m inequalities has diameter at most m − n.) In fact, Saigal showed more strongly
that for any two feasible bases B, B′ of (13.20), there is a series of at most |A| − 1
pivots bringing B to B′. It amounts to the following. Call a spanning tree T of D
feasible if it contains a directed s − t path. Call two feasible spanning trees T, T ′

adjacent if |AT \ AT ′| = 1. Then for any two feasible spanning trees T, T ′ there
exists a sequence T0, . . . , Tk of feasible spanning trees such that T0 = T , Tk = T ′,
k ≤ |A| − 1, and Ti−1 and Ti adjacent for i = 1, . . . , k.

Rispoli [1992] showed that if D is the complete directed graph, then for each
length function l and each vertex x0 of (13.20), there is a path x0, x1, . . . , xd on the
1-skeleton of (13.20), where lTxi ≤ lTxi−1 for i = 1, . . . , d, where xd minimizes lTx
over (13.20), and where d ≤ 2

3 (|V | − 1).

13.2b. Consequences for circulations

Another consequence is:

Corollary 13.10b. Let D = (V, A) be a digraph and let c, d : A → Z. Then the set
of circulations x satisfying d ≤ x ≤ c forms an integer polytope.

Proof. Directly from the total unimodularity of the incidence matrix of a digraph.

In particular this implies:

Corollary 13.10c. Let D = (V, A) be a digraph and let c, d : A → Z. If there exists
a circulation x satisfying d ≤ x ≤ c, then there exists an integer such circulation.

Proof. Directly from Corollary 13.10b.

Another consequence is the integer decomposition property as in Corollary
11.2b.

13.2c. Consequences for transshipments

Let D = (V, A) be a digraph, d, c ∈ R
A
+, and b ∈ R

V . The b-transshipment polytope
is the set of all b-transshipments x with d ≤ x ≤ c. So it is equal to

(13.24) P := {x ∈ R
A | d ≤ x ≤ c, Mx = b},
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where M is the V × A incidence matrix of D.
Again, the total unimodularity of M (Theorem 13.9) implies:

Theorem 13.11. Let D = (V, A) be a digraph, b : V → Z, and c, d : A → Z. Then
the b-transshipment polytope is an integer polytope.

Proof. Directly from the total unimodularity of the incidence matrix of a digraph.

In particular this gives:

Corollary 13.11a. Let D = (V, A) be a digraph, b : V → Z, and c, d : A → Z. If
there exists a b-transshipment x with d ≤ x ≤ c, then there exists an integer such
b-transshipment.

Proof. Directly from Theorem 13.11.

Also Corollary 11.2f can be derived:

Theorem 13.12. There exists a b-transshipment x satisfying d ≤ x ≤ c if and only
if b(V ) = 0, d ≤ c and c(δin(U)) − d(δout(U)) ≥ b(U) for each U ⊆ V .

Proof. Necessity being easy, we show sufficiency. If no b-transshipment as required
exists, then by Farkas’ lemma, there exist vectors y ∈ R

V and z′, z′′ ∈ R
A
+ such

that yTM + z′T − z′′T = 0 and yTb + z′Tc − z′′Td < 0. By adding a multiple of 1
to y we can assume that y ≥ 0 (since 1TM = 0 and 1Tb = 0). Next, by scaling we
can assume that 0 ≤ y ≤ 1. As M is totally unimodular, we can assume moreover
that y is integer. So y = χU for some U ⊆ V . Since d ≤ c, we can assume that
z′(a) = 0 or z′′(a) = 0 for each a ∈ A. Hence z′ = χδout(U) and z′′ = χδin(U). Then
yTb + z′Tc − z′′Td < 0 contradicts the condition for V \ U .

For any digraph D = (V, A) and b ∈ R
V , let Pb denote the set of b-

transshipments. So

(13.25) Pb = {x | Mx = b}
where M is the V × A incidence matrix of D. Koopmans and Reiter [1951] charac-
terized the dimension of the transshipment space:

(13.26) if Pb is nonempty, then it has dimension |A| − |V | + k, where k is the
number of weak components of D.

(A weak component of a digraph is a component of the underlying undirected graph.)
To see (13.26), let F ⊆ A form a spanning forest in the underlying undirected

graph. So (V, F ) has k weak components and contains no undirected circuit. Then
|F | = |V | − k. Now each x ∈ R

A\F can be extended uniquely to a b-transshipment
x ∈ R

A. Hence Pb has dimension |A \ F | = |A| − |V | + k.
Consider next the polyhedron

(13.27) Qb := {x ∈ R
A | there exists a nonnegative b-transshipment f ≤ x}

So
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(13.28) Qb = (Pb ∩ R
A
+) + R

A
+.

By Gale’s theorem (Corollary 11.2g), Qb is determined by:

(13.29) (i) x(a) ≥ 0 for each a ∈ A,
(ii) x(δin(U)) ≥ b(U) for each U ⊆ V .

Fulkerson and Weinberger [1975] showed that this system is TDI:

Theorem 13.13. System (13.29) is TDI.

Proof. Choose w ∈ Z
A
+. We must show that the dual of minimizing wTx over

(13.29) has an integer optimum solution.
Let µ be the minimum value of wTx over (13.29). As (13.29) determines Qb, µ

is equal to the minimum value of wTx over x ≥ 0, Mx = b, where M is the V × A
incidence matrix of D. Since M is totally unimodular, this LP-problem has an
integer optimum dual solution. That is, there exists a y ∈ Z

V such that yTM ≤ wT

and yTb = µ. We can assume that y ≥ 0, since 1TM = 0 and 1Tb = 0 (we can add
a multiple of 1 to y). For each i ∈ Z+, let Ui := {v | yv ≥ i}. (So Ui = ∅ for i large
enough.) Then

(13.30)
∞∑

i=1

χδout(Ui) ≤ w,

since for each arc a = (u, v) we have yv − yu ≤ w(a), implying that the number
of i such that a enters Ui is at most max{0, yv − yu}, which is at most w(a). So
this gives a feasible integer dual solution to the problem of minimizing wTx over
(13.29). It is in fact optimum, since

(13.31)
∞∑

i=1

b(Ui) = yTb = µ.

This proves the theorem.

This implies for primal integrality:

Corollary 13.13a. If b is integer, then Qb is integer.

Proof. Directly from Theorem 13.13.

Fulkerson and Weinberger [1975] also showed an integer decomposition theorem
for nonnegative b-transshipments (it also follows directly from the total unimodu-
larity of the incidence matrix M of D):

Theorem 13.14. Let D = (V, A), b ∈ Z
V , and k ∈ Z+, with k ≥ 1, and let f : A →

Z+ be a k · b-transshipment. Then there exist b-transshipments f1, . . . , fk : A → Z+

such that f = f1 + · · · + fk.

Proof. It suffices to show that there exists a b-transshipment g : A → Z+ such that
g ≤ f — the theorem then follows by induction on k.

The existence of g follows from Gale’s theorem (Corollary 11.2g), since b(U) ≤
f(δin(U)) for each U ⊆ V , as either b(U) < 0, or b(U) ≤ kb(U) ≤ f(δin(U)).
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Theorem 13.14 implies the integer decomposition property for the polyhedron
Qb:

Corollary 13.14a. If b is integer, the polyhedron Qb has the integer decomposition
property.

Proof. Let k ∈ Z+ and let c be an integer vector in kQb. So c ∈ Qk·b, implying
that there exists an integer k · b-transshipment f ≤ c. By Theorem 13.14, there
exist integer b-transshipments f1, . . . , fk ≥ 0 with f = f1 + · · · + fk. Define f ′

1 :=
f1 + (c − f). Then f ′

1, f2, . . . , fk ∈ Qb and c = f ′
1 + f2 + · · · + fk.

If b is integer, we know:

(13.32) Qb = conv.hull{f | f nonnegative integer b-transshipment} + R
A
+.

Hence the blocking polyhedron B(Qb) of Qb is determined by:

(13.33) (i) x(a) ≥ 0 for each a ∈ A,
(ii) fTx ≥ 1 for each nonnegative integer b-transshipment f .

Fulkerson and Weinberger [1975] derived from Corollary 13.14a that this system
has the integer rounding property if b is integer:

Corollary 13.14b. If b is integer, system (13.33) has the integer rounding prop-
erty.

Proof. Choose c ∈ Z
A. Let

(13.34) µ := max{
∑

f

zf | zf ≥ 0,
∑

f

zff ≤ c}

and let µ′ be the maximum in which the zf are restricted to nonnegative integers
(here f ranges over minimal nonnegative integer b-transshipments). Let k := �µ.
We must show that µ′ = k.

As µ = min{cTx | x ∈ B(Qb)}, we know that c ∈ µ · Qb. Hence, as k ≤ µ,
c ∈ kQb. By Corollary 13.14a, there exist nonnegative integer b-transshipments
f1, . . . , fk with f1 + · · · + fk ≤ c. Hence µ′ ≥ k. Since µ′ ≤ µ, we have µ′ = k.

Generally, we cannot restrict (13.33) to those f that form a vertex of Qb

while maintaining the integer rounding property, as was shown by Fulkerson and
Weinberger [1975]. Trotter and Weinberger [1978] extended these results to b-
transshipments with upper and lower bounds on the arcs. For related results, see
Bixby, Marcotte, and Trotter [1987].

13.2d. Unions of disjoint paths and cuts

The total unimodularity of the incidence matrix of a digraph can also be used to
derive min-max relations for the minimum number of arcs covered by l arc-disjoint
s − t paths:

Theorem 13.15. Let D = (V, A) be a digraph, s, t ∈ V , and l ∈ Z+. Then the
minimum value of |AP1| + · · · + |APl| where P1, . . . , Pl are arc-disjoint s − t paths
is equal to the maximum value of



Section 13.2d. Unions of disjoint paths and cuts 211

(13.35)
∣∣⋃C∣∣ −

∑

C∈C
(|C| − l),

where C ranges over all collections of s − t cuts.

Proof. The minimum in the theorem is equal to the minimum value of
∑

a∈A f(a)
subject to

(13.36) 0 ≤ f(a) ≤ 1 for each a ∈ A,
f(δin(v)) − f(δout(v)) = 0 for each v ∈ V \ {s, t},
f(δin(t)) − f(δout(t)) = l.

By LP-duality and total unimodularity of the constraint matrix, this minimum
value µ is equal to the maximum value of l · p(t) − ∑

a∈A y(a), where y ∈ Z
A
+ and

p ∈ Z
V satisfy:

(13.37) p(s) = 0;
p(v) − p(u) − y(a) ≤ 1 for each a = (u, v) ∈ A.

As µ ≥ 0, we know p(t) ≥ 0. Let r := p(t), and for j = 1, . . . , r, let Uj := {v ∈ V |
p(v) < j} and Cj := δout(Uj). Then

(13.38)
r∑

j=1

|Cj | ≤
∑

a = (u, v) ∈ A
p(v) > p(u)

p(v) ≥ 0
p(u) < r

(p(v) − p(u)) ≤
∑

a = (u, v) ∈ A
p(v) > p(u)

p(v) ≥ 0
p(u) < r

(1 + y(a))

≤
∣∣∣

r⋃

j=1

Cj

∣∣∣ +
∑

a∈A

y(a) =
∣∣∣

r⋃

j=1

Cj

∣∣∣ + l · r − µ.

So

(13.39) µ ≤
∣∣∣

r⋃

j=1

Cj

∣∣∣ −
r∑

j=1

(|Cj | − l),

and we have the required min-max equality.

A similar formula holds for unions of arc-disjoint s − t cuts:

Theorem 13.16. Let D = (V, A) be a digraph, s, t ∈ V , and l ∈ Z+. Then the
minimum value of |C1| + · · · + |Cl| where C1, . . . , Cl are disjoint s − t cuts is equal
to the maximum value of

(13.40)
∣∣⋃P∣∣ −

∑

P∈P
(|AP | − l),

where P ranges over all collections of s − t paths.

Proof. By total unimodularity, the minimum size of the union of l disjoint s − t
cuts is equal to the minimum value of

∑
a∈A x(a) where x ∈ R

A and p ∈ R
V such

that

(13.41) 0 ≤ x(a) ≤ 1 for each a ∈ A,
p(v) − p(u) − x(a) ≤ 0 for each a = (u, v) ∈ A;
p(t) − p(s) = l.



212 Chapter 13. Path and flow polyhedra and total unimodularity

By LP-duality and total unimodularity, this is equal to the maximum value of
l · r − ∑

a∈A y(a), where r ∈ Z, y ∈ Z
A
+, f ∈ Z

A
+ such that

(13.42) f(δin(v)) − f(δout(v)) = 0 for each v ∈ V \ {s, t},
f(δin(t)) − f(δout(t)) = r,
f(a) − y(a) ≤ 1 for each a ∈ A.

As f is an s − t flow of value r, it is the sum of the incidence vectors of s − t paths
P1, . . . , Pr, say. Then

(13.43)
∑

a∈A

y(a) ≥
r∑

j=1

|APj | −
∣∣∣

r⋃

j=1

APj

∣∣∣.

Hence we have the required equality.

One may derive similarly min-max formulas for the minimum number of vertices
in l internally vertex-disjoint s − t paths and for the minimum number of vertices
in l disjoint s − t vertex-cuts.

Minimum-cost flow methods also provide fast algorithms to find optimum
unions of disjoint paths:

Theorem 13.17. Given a digraph D = (V, A), s, t ∈ V , and l ∈ Z+, a collection
of arc-disjoint s − t paths P1, . . . , Pl minimizing |AP1| + · · · + |APl| can be found in
time O(lm).

Proof. Directly from Theorems 12.6 and 11.1 and Corollary 7.8a.

Similarly for disjoint cuts:

Theorem 13.18. Given a digraph D = (V, A), s, t ∈ V , l ∈ Z+, and a length
function k : A → Q+, a collection of arc-disjoint s − t paths P1, . . . , Pl minimizing
k(P1) + · · · + k(Pl) can be found in time O(l(m + n log n)).

Complexity survey for finding k arc-disjoint s−t paths of minimum total length
(∗ indicates an asymptotically best bound in the table):

∗ O(k · SP(n, m, L)) Ford and Fulkerson [1958b], Jewell [1958],
Busacker and Gowen [1960], Iri [1960]

O(nL · DPk(n, m)) Edmonds and Karp [1972]

∗ O(n log L · DPk(n, m)) Röck [1980] (cf. Bland and Jensen [1992])

Here DPk(n, m) denotes the time needed to find k arc-disjoint disjoint s − t paths
in a digraph with n vertices and m edges.

Suurballe and Tarjan [1984] described an O(m logm/n n) algorithm for finding,
in a digraph with nonnegative length function and fixed vertex s, for all v a pair of
edge-disjoint s − v paths Pv, Qv with length(Pv) + length(Qv) minimum.

Gabow [1983b,1985b] described minimum-cost flow algorithms for networks
with unit capacities. The running times are O(m7/4 log L) and, if D is simple,
O(n1/3m3/2 log L). For the vertex-disjoint case, he gave algorithms with running
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time O(n3/4m log L) and O(nm log2+ m
n

L). Goldberg and Tarjan [1990] gave an
O(nm log(nL)) algorithm for minimum-cost flow with unit capacities. More com-
plexity results follow from the table in Section 12.5a. Disjoint s − t cuts were con-
sidered by Wagner [1990] and Talluri and Wagner [1994].

13.3. Network matrices

Let D = (V, A) be a digraph and let T = (V, A′) be a directed tree. Let C be
the A′ × A matrix defined as follows. Take a′ ∈ A′ and a = (u, v) ∈ A and
let P be the undirected u− v path in T . Define

(13.44) Ca′,a :=






+1 if a′ occurs in forward direction in P ,
−1 if a′ occurs in backward direction in P ,

0 if a′ does not occur in P .

Matrix C is called a network matrix, generated by T = (V, A′) and D = (V, A).

Theorem 13.19. Any submatrix of a network matrix is again a network
matrix.

Proof. Deleting column indexed by a ∈ A corresponds to deleting a from
D = (V, A). Deleting the row indexed by a′ = (u, v) ∈ A′ corresponds to
contracting a′ in the tree T = (V, A′) and identifying u and v in D.

The following theorem is implicit in Tutte [1965a]:

Theorem 13.20. A network matrix is totally unimodular.

Proof. By Theorem 13.19, it suffices to show that any square network matrix
C has determinant 0, 1, or −1. We prove this by induction on the size of C,
the case of 1× 1 matrices being trivial. We use notation as above.

Assume that det C �= 0. Let u be an end vertex of T and let a′ be the arc
in T incident with u. By reversing orientations, we can assume that each arc
in A and A′ incident with u, has u as tail. Then, by definition of C, the row
indexed by a′ contains only 0’s and 1’s.

Consider two 1’s in row a′. That is, consider two columns indexed by arcs
a1 = (u, v1) and a2 = (u, v2) in A. Subtracting column a1 from column a2,
has the effect of resetting a2 to (v1, v2). So after that, column a2 has a 0 in
position a′. Since this subtraction does not change the determinant, we can
assume that there is exactly one arc in A incident with u; that is, row a′

has exactly one nonzero. Then by expanding the determinant by row a′, we
obtain inductively that detC = ±1.

The incidence matrix of a digraph D = (V, A) is a network matrix: add a
new vertex u to D giving digraph D′ = (V ∪ {u}, A). Let T be the directed
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tree on V ∪{u} with arcs (u, v) for v ∈ V . Then the network matrix generated
by T and D′ is equal to the incidence matrix of D.

Notes. Recognizing whether a given matrix is a network matrix has been studied by
Gould [1958], Auslander and Trent [1959,1961], Tutte [1960,1965a,1967], Tomizawa
[1976b], and Fujishige [1980a] (cf. Bixby and Wagner [1988] and Section 20.1 in
Schrijver [1986b]).

Seymour [1980a] showed that all totally unimodular matrices can be obtained
by glueing network matrices and copies of a certain 5 × 5 matrix together (cf.
Schrijver [1986b] and Truemper [1992]).

13.4. Cross-free and laminar families

We now show how cross-free and laminar families of sets give rise to network
matrices. The results in this section will be used mainly in Part V.

A family C of subsets of a finite set S is called cross-free if for all X, Y ∈ C
one has

(13.45) X ⊆ Y or Y ⊆ X or X ∩ Y = ∅ or X ∪ Y = S.

C is called laminar if for all X, Y ∈ C one has

(13.46) X ⊆ Y or Y ⊆ X or X ∩ Y = ∅.
So each laminar family is cross-free.

Cross-free families could be characterized geometrically as having a ‘Venn-
diagram’ representation on the sphere without crossing lines. If the family is
laminar we have such a representation in the plane.

A laminar collection C can be partitioned into ‘levels’: the ith level consists
of all sets X ∈ C such that there are i− 1 sets Y ∈ C satisfying Y ⊃ X. Then
each level consists of disjoint sets, and for each set X of level i + 1 there is a
unique set of level i containing X.

Note that if C is a cross-free family, then adding, for each set X ∈ C,
the complement S \X to C maintains cross-freeness. Moreover, for any fixed
s ∈ S, the family {X ∈ C | s �∈ X} is laminar.

In order to relate cross-free families and directed trees, suppose that we
have a directed tree T = (V, A) and a function π : S → V , for some set S.
Then the pair T, π defines a family C of subsets of S as follows. Define for
each arc a = (u, v) of T the subset Xa of S by:

(13.47) Xa := the set of vertices in the weak component of T − a con-
taining v.

So Xa is the set of s ∈ S for which arc a ‘points’ in the direction of π(s) in
T .

Let CT,π be the family of sets Xa; that is,

(13.48) CT,π := {Xa | a ∈ A}.
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If C = CT,π, the pair T, π is called a tree-representation for C. If moreover T
is a rooted tree, then T, π is called a rooted tree-representation for C.

It is easy to see that CT,π is cross-free. Moreover, if T is a rooted tree,
then CT,π is laminar. In fact, each cross-free family has a tree-representation,
and each laminar family has a rooted tree-representation, as is shown by the
following theorem of Edmonds and Giles [1977]:

Theorem 13.21. A family C of subsets of S is cross-free if and only if C has
a tree-representation. Moreover, C is laminar if and only if C has a rooted
tree-representation.

Proof. As sufficiency of the conditions is easy, we show necessity. We first
show that each laminar family C of subsets of a set S has a rooted tree-
representation. The proof is by induction on |C|, the case C = ∅ being trivial.
If C �= ∅, choose an inclusionwise minimal X ∈ C. By induction, the family
C′ := C \ {X} has a rooted tree-representation T = (V, A), π : S → V .

If X = ∅, then we can add to T a new arc from any vertex to a new
vertex, to obtain a rooted tree-representation T ′, π of C. So we can assume
that X �= ∅.

Now |π(X)| = 1, since if π(x) �= π(y) for some x, y ∈ X, then there is
an arc a of T separating π(x) and π(y). Hence the set Xa ∈ C′ contains one
of π(x) and π(y), say π(y). As C is laminar, this implies that Xa is properly
contained in X, contradicting the minimality of X.

This proves that |π(X)| = 1. Let v be the vertex of T with π(X) = {v}.
Augment T by a new vertex w and a new arc b = (v, w). Reset π(z) := w for
each z ∈ X. Then the new tree and π form a rooted tree-representation for
C. This shows that each laminar family has a rooted tree-representation.

To see that each cross-free family C has a tree-representation, choose
s ∈ S, and let G be obtained from C by replacing any set containing s by its
complement. Then G is laminar, and hence it has a rooted tree-representation
by the foregoing. Reversing arcs in the tree if necessary, it gives a tree-
representation for C.

From Theorems 13.20 and 13.21 we derive the total unimodularity of
certain matrices. Let D = (V, A) be a directed graph and let C be a family
of subsets of V . Let N be the C ×A matrix defined by:

(13.49) NX,a :=






1 if a enters X,
−1 if a leaves X,

0 otherwise,

for X ∈ C and a ∈ A.

Corollary 13.21a. If C is cross-free, then N is a network matrix, and hence
N is totally unimodular.



216 Chapter 13. Path and flow polyhedra and total unimodularity

Proof. Let T = (W, B), π : V → W be a tree-representation for C. Let
D′ = (W, A′) be the directed graph with

(13.50) A′ := {(π(u), π(v)) | (u, v) ∈ A}.
Then N is equal to the network matrix generated by T and D′ (up to identi-
fying any arc b of T with the set Xb in C determined by b, and any arc (u, v)
of D with the arc (π(u), π(v)) of D′). Hence by Theorem 13.20, N is totally
unimodular.



Chapter 14

Partially ordered sets and path
coverings

Partially ordered sets can be considered as a special type of networks, and
several optimization problems on partially ordered sets can be handled
with flow techniques. Basic theorem is Dilworth’s min-max relation for the
maximum size of an antichain.

14.1. Partially ordered sets

A partially ordered set is a pair (S,≤) where S is a set and where ≤ is a
relation on S satisfying:

(14.1) (i) s ≤ s,
(ii) if s ≤ t and t ≤ s, then s = t,
(iii) if s ≤ t and t ≤ u, then s ≤ u,

for all s, t, u ∈ S. We put s < t if s ≤ t and s �= t. We restrict ourselves to
finite partially ordered sets; that is, with S finite.

A subset C of S is called a chain if s ≤ t or t ≤ s for all s, t ∈ C. A subset
A of S is called an antichain if s �< t and t �< s for all s, t ∈ A. Hence if C is
a chain and A is an antichain, then

(14.2) |C ∩A| ≤ 1.

First we notice the following easy min-max relation:

Theorem 14.1. Let (S,≤) be a partially ordered set. Then the minimum
number of antichains covering S is equal to the maximum size of a chain.

Proof. That the maximum cannot be larger than the minimum follows easily
from (14.2). To see that the two numbers are equal, define for any element
s ∈ S the height of s as the maximum size of any chain in S with maximum
s. For any i ∈ Z+, let Ai denote the set of elements of height i. Let k be
the maximum height of the elements of S. Then A1, . . . , Ak are antichains
covering S, and moreover there exists a chain of size k, since there exists an
element of height k.
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This result can also be formulated in terms of graphs. Let D = (V, A) be
a digraph. A subset C of A is called a directed cut if there exists a subset U
of V such that ∅ �= U �= V , δout(U) = C, and δin(U) = ∅. Then Vidyasankar
and Younger [1975] observed:

Corollary 14.1a. Let D = (V, A) be an acyclic digraph. Then the mini-
mum number of directed cuts covering A is equal to the maximum length of
a directed path.

Proof. Define a partial order ≤ on A by: a < a′ if there exists a directed path
traversing a and a′, in this order. Applying Theorem 14.1 gives the Corollary.

14.2. Dilworth’s decomposition theorem

Dilworth [1950] proved that Theorem 14.1 remains true after interchanging
the terms ‘chain’ and ‘antichain’, which is less simple to prove:

Theorem 14.2 (Dilworth’s decomposition theorem). Let (S,≤) be a partially
ordered set. Then the minimum number of chains covering S is equal to the
maximum size of an antichain.

Proof. That the maximum cannot be larger than the minimum follows easily
from (14.2). To see that the two numbers are equal, we apply induction on
|S|. Let α be the maximum size of an antichain and let A be an antichain of
size α. Define

(14.3) A↓ := {s ∈ S | ∃t ∈ A : s ≤ t},
A↑ := {s ∈ S | ∃t ∈ A : s ≥ t}.

Then A↓ ∩A↑ = A and A↓ ∪A↑ = S (otherwise we can augment A).
First assume that A↓ �= S and A↑ �= S. Then, by induction, A↓ can be

covered by α chains. Since A ⊆ A↓, each of these chains contains exactly one
element in A. For each s ∈ A, let Cs denote the chain containing s. Similarly,
there exist α chains C ′

s (for s ∈ A) covering A↑, where C ′
s contains s. Then

for each s ∈ A, Cs ∪ C ′
s forms a chain in S, and moreover these chains cover

S.
So we may assume that A↓ = S or A↑ = S for each antichain A of size α.

It means that each antichain A of size α is either the set of minimal elements
of S or the set of maximal elements of S. Now choose a minimal element
s and a maximal element t of S with s ≤ t. Then the maximum size of an
antichain in S \ {s, t} is equal to α − 1 (since each antichain in S of size
α contains s or t). By induction, S \ {s, t} can be covered by α − 1 chains.
Adding the chain {s, t} yields a covering of S by α chains.
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Notes. This proof is due to Perles [1963]. Dilworth original proof is based on a
different induction. For a proof using linear programming duality, see Dantzig and
Hoffman [1956]. For a deduction of Dilworth’s decomposition theorem from Kőnig’s
matching theorem (Theorem 16.2), see Fulkerson [1956], Ford and Fulkerson [1962]
(pp. 61–64), and Mirsky and Perfect [1966]. Further proofs were given by Dilworth
[1960], Tverberg [1967], and Pretzel [1979].

14.3. Path coverings

Dilworth’s decomposition theorem can be formulated equivalently in terms
of covering vertices of a digraph22:

Corollary 14.2a. Let D = (V, A) be an acyclic digraph. Then the minimum
number of paths covering all vertices is equal to the maximum number of
vertices no two of which belong to a directed path.

Proof. Apply Dilworth’s decomposition theorem to the partially ordered set
(V,≤) where u ≤ v if and only if v is reachable in D from u.

As for covering the arcs, we have:

Corollary 14.2b. Let D = (V, A) be an acyclic digraph. Then the minimum
number of paths covering all arcs is equal to the maximum size of a directed
cut.

Proof. Apply Dilworth’s decomposition theorem to the partially ordered set
(A,≤) where a < a′ if and only if there exists a directed path traversing a
and a′, in this order.

Similarly, for s− t paths:

Corollary 14.2c. Let D = (V, A) be an acyclic digraph with exactly one
source, s, and exactly one sink, t. Then the minimum number of s− t paths
covering A is equal to the maximum size of a directed s− t cut.

Proof. Apply Dilworth’s decomposition theorem to the partially ordered set
(A,≤) defined by: a ≤ a′ if and only if there exists an s − t path traversing
a and a′, in this order.

If only a subset of the arcs has to be covered, one has more generally:

Corollary 14.2d. Given an acyclic digraph D = (V, A) and B ⊆ A, the
minimum number of paths covering B is equal to the maximum of |C ∩ B|
where C is a directed cut.
22 Gallai and Milgram [1960] claim to have found this result in 1947.
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Proof. Consider the partially ordered set (B,≤) with a < a′ if there exists
a directed path traversing a and a′, in this order. Then for each chain K in
(B,≤) there is a path in D covering K, and for each antichain L in (B,≤)
there is a directed cut C in D with L ⊆ C ∩ B. Hence the theorem follows
from Dilworth’s decomposition theorem.

14.4. The weighted case

Dilworth’s decomposition theorem has a self-refining nature, and implies a
weighted version. Let (S,≤) be a partially ordered set. Let C andA denote the
collections of chains and antichains in (S,≤), respectively. Let w : S → Z+
be a ‘weight’ function. Then:

Theorem 14.3. The maximum weight w(A) of an antichain A is equal to
the minimum size of a family of chains covering each element s exactly w(s)
times.

Proof. Replace each element s of S by w(s) copies, making the set S′. For
any copy s′ of s and t′ of t, define s′ <′ t′ if and only if s < t. This gives the
partially ordered set (S′,≤′). Note that the copies of one element of S form
an antichain in S′.

Then the maximum weight w(A) of an antichain A in S is equal to the
maximum size |A′| of an antichain A′ in S′. By Dilworth’s decomposition
theorem, S′ can be covered by a collection Λ of |A′| chains. Replacing the
elements of each chain by their originals in S, gives the required equality.

In terms of digraphs this gives the following result of Gallai [1958a,1958b]:

Corollary 14.3a. Let D = (V, A) be an acyclic digraph and let S and T be
subsets of V such that each vertex is on at least one S − T path. Let c ∈ Z

V
+.

Then the minimum number k of S−T paths P1, . . . , Pk such that each vertex
v is covered at least c(v) times by the Pi is equal to the maximum of c(U)
where U is a set of vertices intersecting each S − T path at most once.

Proof. Directly from Theorem 14.3 by defining the partially ordered set
(V,≤) by: u ≤ v if and only if there exists a u− v path.

Similarly, there is the following ‘min-flow max-cut theorem’:

Corollary 14.3b. Let D = (V, A) be an acyclic digraph with exactly one
source, s, and exactly one sink, t. Let d : A→ R+. Then the minimum value
of any s − t flow f satisfying f ≥ d is equal to the maximum value of d(C)
where C is a directed s− t cut. If d is integer, we can take f integer.
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Proof. Define a partial order ≤ on A by: a < a′ if there is an s − t path
traversing a and a′ in this order. Then any chain in A is contained in some
s−t path and any antichain is contained in some directed s−t cut. Hence this
Corollary can be derived from Theorem 14.3 (using continuity, compactness,
and scaling).

A similar weighted variant of the easier Theorem 14.1 holds: Again, let
(S,≤) be a partially ordered set. Let w : S → Z+ be a ‘weight’ function.

Theorem 14.4. The maximum weight w(C) of any chain is equal to the
minimum size of a family of antichains covering each element s exactly w(s)
times.

Proof. Similar to the proof of Theorem 14.3.

The following ‘length-width inequality’ follows similarly:

Theorem 14.5. Let (S,≤) be a partially ordered set and let l, w : S → R+.
Then

(14.4) max
C chain

l(C) · max
A antichain

w(A) ≥
∑

s∈S

l(s)w(s).

Proof. We can assume that l and w are rational (by continuity), and hence
integer. Let t be the maximum of l(C) taken over all chains C.

For each s ∈ S, let h(s) be the maximum of l(C) taken over all chains C
with maximum element s. For each k ∈ Z, let Ak be the set of those elements
s ∈ S with h(s)− l(s) < k ≤ h(s).

Then each Ak is an antichain. Moreover, Ak = ∅ if k > t, and

(14.5)
t∑

k=1

χAk = l.

Therefore,

(14.6) max
C

l(C) ·max
A

w(A) = t ·max
A

w(A) ≥
t∑

k=1

w(Ak) =
t∑

k=1

wTχAk

= wTl,

where C and A range over chains and antichains, respectively.

14.5. The chain and antichain polytopes

Let (S,≤) be a partially ordered set. The chain polytope Pchain(S) of S is
the convex hull of the incidence vectors (in R

S) of chains in S. Similarly,



222 Chapter 14. Partially ordered sets and path coverings

the antichain polytope Pantichain(S) of S is the convex hull of the incidence
vectors (in R

S) of antichains in S.
These two polytopes turn out to form an antiblocking pair of polyhedra.

To see this, we first show:

Corollary 14.5a. The chain polytope of S is determined by

(14.7) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(A) ≤ 1 for each antichain A,

and this system is TDI.

Proof. Directly from Theorem 14.4, by LP-duality: for any chain C, χC is
a feasible solution of (14.7). An antichain family covering each element s
precisely w(s) times gives a dual feasible solution. As the minimum of w(C)
is equal to the maximum value of these dual feasible solutions (by Theorem
14.4), the linear program of minimizing wTx over (14.7) has integer optimum
primal and dual solutions.

Similarly for the antichain polytope:

Theorem 14.6. The antichain polytope of S is determined by the inequalities

(14.8) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(C) ≤ 1 for each chain C,

and this system is TDI.

Proof. Similar to the previous proof, now using Theorem 14.3.

This implies that the chain and antichain polytope are related by the
antiblocking relation:

Corollary 14.6a. P ↑
chain(S) and P ↑

antichain(S) form an antiblocking pair of
polyhedra.

Proof. Directly from the previous results.

14.5a. Path coverings algorithmically

When studying partially ordered sets (S, ≤) algorithmically, we should know how
these are represented. Generally, giving all pairs (s, t) with s ≤ t yields a large,
redundant input. It suffices to give an acyclic digraph D = (S, A) such that s ≤ t if
and only if t is reachable from s. So it is best to formulate the algorithmic results
in terms of acyclic digraphs.

The strong polynomial-time solvability of the problems discussed below follow
from the strong polynomial-time solvability of minimum-cost circulation. We give
some better running time bounds.
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Theorem 14.7. Given an acyclic digraph D = (V, A) and B ⊆ A, a minimum
number of paths covering B can be found in time O(nm).

Proof. Add two vertices s and t to D, and, for each vertex v, make degin
B (v)

parallel arcs from s to v and degout
B (v) parallel arcs from v to t. Let D′ = (V ′, A′)

be the extended graph. By Theorem 9.10, we can find in time O(nm) a maximum
collection P1, . . . , Pk of s − t paths that are disjoint on the set A′ \ A of new arcs.

We make another auxiliary graph D̃ = (V, Ã) as follows. Each arc in B belongs
to Ã. Moreover, for each a = (u, v) ∈ A, we make r parallel arcs from u to v, where
r is the number of times a is traversed by the Pi. (So if a ∈ B, there are r+1 parallel
arcs from u to v.) This gives the acyclic graph D̃. Now choose, repeatedly as long
as possible, in D̃ a path from a (current) source to a (current) sink and remove its
arcs. This gives us a collection of paths in D̃ and hence also in D, covering all arcs
in B. We claim that it has minimum size.

For each i, let P ′
i be the path obtained from Pi by deleting the first and last

arc. For each v ∈ V , let σ(v) be the number of Pi that start with (s, v) and let τ(v)
be the number of Pi that and with (v, t).

Let U ⊆ V give a minimum s − t cut δout
A′ (U ∪ {s}) in D′ with δout

A (U) = ∅. As
P1, . . . , Pk form a maximum s − t path packing in D′, we have for each v ∈ V :

(14.9) σ(v) ≤ δin
B (v), with equality if v ∈ V \ U ,

τ(v) ≤ δout
B (v), with equality if v ∈ U .

So

(14.10) degin
Ã

(v) = degin
B (v) +

k∑

i=1

degin
AP ′

i
(v) ≥ σ(v) +

k∑

i=1

degin
AP ′

i
(v)

=
k∑

i=1

degin
APi

(v),

with equality if v ∈ V \ U . Similarly,

(14.11) degout
Ã

(v) = degout
B (v) +

k∑

i=1

degout
AP ′

i
(v) ≥ τ(v) +

k∑

i=1

degout
AP ′

i
(v)

=
k∑

i=1

degout
APi

(v),

with equality if v ∈ U . Hence, since degin
APi

(v) = degout
APi

(v) for each v ∈ V and
each i = 1, . . . , k:

(14.12) degin
D̃

(v) ≥ degout
D̃

(v) for each v ∈ U and
degin

D̃
(v) ≤ degout

D̃
(v) for each v ∈ V \ U .

Now deleting any source-sink path P in D̃ does not invalidate (14.12). Moreover, P
runs from V \ U to U . Since none of the arcs in δin

A (U) are traversed by any Pi, we
know that P should use an arc of B ∩ δin(U). So the number of paths found is at
most |B ∩ δin

A (U)|. Therefore, by Corollary 14.2d, the paths form a minimum-size
collection of paths covering B.

The special case where all arcs must be covered, is:
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Corollary 14.7a. Given an acyclic digraph D = (V, A), a minimum collection of
paths covering all arcs can be found in time O(nm).

Proof. Directly from the foregoing, by taking B := A.

The theorem also applies to vertex coverings:

Corollary 14.7b. Given an acyclic digraph D = (V, A), a minimum number of
paths covering all vertices can be found in time O(nm).

Proof. Introduce for each vertex v of D vertices v′ and v′′. Define V ′ := {v′ | v ∈
V }, V ′′ := {v′′ | v ∈ V }, A′ := {(v′, v′′) | v ∈ V }, and A′′ := {(u′′, v′) | (u, v) ∈ A}.

Then a minimum cover of A′ by paths in the new graph (V ′ ∪V ′′, A′ ∪A′′) gives
a minimum cover of V by paths in the original graph.

It is trivial to extend the results to s − t paths:

Corollary 14.7c. Given an acyclic digraph D = (V, A) and s, t ∈ V , a minimum
collection of s − t paths covering all arcs can be found in time O(nm).

Proof. We may assume that each arc of D is contained in at least one s−t path. But
then each path can be extended to an s − t path, and hence a minimum collection
of paths gives a minimum collection of s − t paths.

One similarly has for covering the vertices:

Corollary 14.7d. Given an acyclic digraph D = (V, A) and s, t ∈ V , a minimum
collection of s − t paths covering all vertices can be found in time O(nm).

Proof. Similar to the proof of Corollary 14.7b.

These bounds are best possible, as the size of the output is Ω(nm). As for paths
covering the arcs, this can be seen by taking vertices v1, . . . , vn, with r parallel arcs
from v1 to v2, r parallel arcs from vn−1 to vn, and one arc from vi−1 to vi for each
i = 2, . . . , n − 1. Then the number of arcs is 2r + n − 2, while any minimum path
covering of the arcs consists of r paths of length n − 1 each.

14.6. Unions of directed cuts and antichains

The following theorem is (in the terminology of partially ordered sets — see
Corollary 14.8a) due to Greene and Kleitman [1976]. We follow the proof
method of Fomin [1978] and Frank [1980a] based on minimum-cost circula-
tions.

Theorem 14.8. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let
k ∈ Z+. Then the maximum of |B ∩⋃ C|, where C is a collection of at most
k directed cuts is equal to the minimum value of
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(14.13) |B \⋃P|+ k · |P|,
where P is a collection of directed paths.

Proof. To see max ≤ min, let C be a collection of at most k directed cuts and
let P be a collection of directed paths. Then, setting Γ :=

⋃ C and Π :=
⋃P,

(14.14) |B ∩ Γ | ≤ |B \Π|+ |Γ ∩Π| ≤ |B \Π|+ k · |P|.
(Note that any directed path P intersects any directed cut in at most one
edge; hence |Γ ∩AP | ≤ k for each P ∈ P.)

In proving equality, we may assume that D has exactly one source, s say,
and exactly one sink, t say. (Adding s to V , and all arcs (s, v) for v ∈ V does
not change the theorem. Similarly for adding a sink.)

Define for each a ∈ A, a capacity c(a) := ∞ and a cost l(a) := 0. For
each arc a = (u, v) ∈ B, introduce a new arc a′ = (u, v) parallel to a, with
c(a) := 1 and l(a) := −1. Finally, add an arc (t, s), with c(t, s) := ∞ and
l(t, s) := k. This makes the digraph D̃ = (V, Ã).

Let f : Ã→ Z be a minimum-cost nonnegative circulation in D̃ subject to
c. As Df has no negative-cost directed circuits (Theorem 12.1), there exists
a function p : V → Z such that for each a = (u, v) ∈ A:

(14.15) p(v) ≤ p(u), with equality if f(a) ≥ 1.

Moreover, for each a = (u, v) ∈ B:

(14.16) p(v) ≤ p(u)− 1 if f(a′) = 0,
p(v) ≥ p(u)− 1 if f(a′) = 1.

Finally,

(14.17) p(s) ≤ p(t) + k, with equality if f(t, s) ≥ 1.

We may assume that p(t) = 0. So by (14.15), p(s) ≥ 0 and by (14.17),
p(s) ≤ k. For each i = 1, . . . , p(s), let Ui := {v ∈ V | p(v) ≥ i}. Then for each
i, δout

A (Ui) is a directed s− t cut, since s ∈ Ui, t �∈ Ui, and no arc in A enters
Ui: if (u, v) ∈ A with v ∈ Ui, then p(v) ≥ i, and hence by (14.15), p(u) ≥ i,
that is u ∈ Ui.

Let C be the collection of these directed cuts and let Γ :=
⋃ C. We can

decompose f as a sum of incidence vectors of directed circuits in D̃. Each of
these circuits contains exactly one arc (t, s). Deleting it, and identifying any
a′ with a (for a ∈ B) gives a path collection P in D. Let Π :=

⋃P.
Then B \Π = B ∩Γ \Π. For let a = (u, v) ∈ B \Π. Then f(a′) = 0, and

hence by (14.16), p(v) ≤ p(u)−1. Hence a ∈ δout(Ui) for i := p(u). So a ∈ Γ .
Moreover,

(14.18) k · |P| = (p(s)− p(t))f(t, s)
=

∑

a=(u,v)∈A

(p(u)− p(v))f(a) +
∑

a=(u,v)∈B

(p(u)− p(v))f(a′)

=
∑

a=(u,v)∈B

(p(u)− p(v))f(a′) = |B ∩ Γ ∩Π|.
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Thus |B\Π|+k·|P| = |B\Π|+|B∩Γ∩Π| = |B∩Γ \Π|+|B∩Γ∩Π| = |B∩Γ |.

This implies for partially ordered sets:

Corollary 14.8a. Let (S,≤) be a partially ordered set and let k ∈ Z+. Then
the maximum size of the union of k antichains is equal to the minimum value
of

(14.19)
∑

C∈C
min{k, |C|},

where C ranges over partitions of S into chains.

Proof. This can be reduced to Theorem 14.8, by making a digraph D =
(V, A) as follows. Let for each s ∈ S, s′ be a copy of s, and let V := S ∪ {s′ |
s ∈ S}. Let A consist of all pairs (s, s′) with s ∈ S and all pairs (s′, t) with
s < t. Taking B := {(s, s′) | s ∈ S} reduces Corollary 14.8a to Theorem 14.8.
(For each arcs (s, s′) in B \⋃P, we take a singleton C = {s}.)

Corollary 14.8a can be stated in a slightly different form. For any partially
ordered set (S,≤), any Y ⊆ S, and any k ∈ Z+, let

(14.20) ak(Y ) := max{|Z| ∣∣ Z ⊆ Y is the union of k antichains}.
Then:

Corollary 14.8b. ak(S) = min
Y ⊆S

(|S \ Y |+ k · a1(Y )).

Proof. The inequality ≤ follows from the fact that if Z is the union of k
antichains and Y ⊆ S, then |Z| ≤ |Z \ Y |+ ak(Z ∩ Y ) ≤ |S \ Y |+ k · a1(Y ).

To obtain equality, let C be a partition of S into chains attaining the
minimum in Corollary 14.8a. Let C′ be the collection of those chains C ∈ C
with |C| ≥ k. Let Y be the union of the chains in C′. Then (14.19) is equal
to |S \ Y |+ k|C′|. This is at least |S \ Y |+ k · a1(Y ) (as |C′| ≥ a1(Y )). Thus
we have equality.

Note that the proof of Theorem 14.8 gives a polynomial-time algorithm
to find a maximum union of k directed cuts or antichains. For a proof of
the results in this section based on LP-duality, see Hoffman and Schwartz
[1977]. For other proofs, see Saks [1979]. For extensions, see Linial [1981] and
Cameron [1986].

14.6a. Common saturating collections of chains

Greene and Kleitman [1976] also showed that for each h there is a chain partition
C of a partially ordered set (S, ≤) attaining the minimum of (14.19) both for k = h
and for k = h + 1.
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More generally, in terms of acyclic digraphs, there is the following result of
Greene and Kleitman [1976] on the minimum in Theorem 14.8:

Theorem 14.9. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let h ∈ Z+.
Then there is a collection P of directed paths attaining

(14.21) min
P

(|B \ ⋃P| + k · |P|)

both for k = h and for k = h + 1.

Proof. It suffices to show that in the proof of Theorem 14.8 the minimum-cost
circulation f can be chosen such that it has minimum cost simultaneously with
respect to the given cost function l, and with respect to the cost function l′ which
is the same as l except that l′(t, s) = k + 1.

For choose f such that it has minimum cost with respect to l, and with l′Tf as
small as possible. Suppose that f does not have minimum cost with respect to l′.
Then Df has a directed circuit C with l′(C) < 0. As l(C) ≥ 0, C traverses (s, t).
So l(C) − l′(C) = l(s, t) − l′(s, t) = 1, and therefore l(C) = 0. So f ′ := f + χC

is a feasible circulation with lTf ′ = lTf and l′Tf ′ < l′Tf . This contradicts our
assumption.

For partially ordered sets it gives (using definition (14.20)):

Corollary 14.9a. Let (S, ≤) be a partially ordered set and let k ∈ Z+. Then there
exists a chain partition C of S such that

(14.22) ak(S) =
∑

C∈C
min{k, |C|} and ak+1(S) =

∑

C∈C
min{k + 1, |C|}.

Proof. Directly from Theorem 14.9.

(For a linear programming proof and an extension, see Hoffman and Schwartz
[1977]. For another proof, see Perfect [1984]. Denig [1981] showed that the common
saturating chain collections determine a matroid.)

14.7. Unions of directed paths and chains

Results dual to those of the previous sections were obtained by Greene [1976]
and Edmonds and Giles [1977]. They can be formulated by interchanging the
terms ‘chain’ and ‘antichain’. Again we follow the proof method of Fomin
[1978] and Frank [1980a] based on minimum-cost flows.

Theorem 14.10. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let
k ∈ Z+. Then the maximum of |B ∩⋃P|, where P is a collection of the arc
sets of at most k directed paths, is equal to the minimum value of

(14.23) |B \⋃C|+ k · |C|,
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where C is a collection of directed cuts.

Proof. The inequality max ≤ min is shown similarly as in Theorem 14.8. In
proving the theorem, we may again assume that D has only one source, s
say, and only one sink, t say.

To obtain equality, we again consider the extended graph D̃ as in the
proof of Theorem 14.8, with capacity c and cost l, except that we delete arc
(t, s).

Let f : Ã → Z be a minimum-cost s − t flow in D̃ of value k subject
to c. As Df has no negative-cost directed circuits, there exists a function
p : V → Z such that for each a = (u, v) ∈ A:

(14.24) p(v) ≤ p(u), with equality if f(a) ≥ 1.

Moreover, for each a = (u, v) ∈ B:

(14.25) p(v) ≤ p(u)− 1 if f(a′) = 0,
p(v) ≥ p(u)− 1 if f(a′) = 1.

We may assume that p(t) = 0. By (14.24), p(s) ≥ 0. For each i = 1, . . . , p(s),
let Ui := {v ∈ V | p(v) ≥ i}. Then for each i, δout(Ui) is a directed cut, since
s ∈ Ui, t �∈ Ui, and no arc in A enters Ui: if (u, v) ∈ A with v ∈ Ui, then
p(v) ≥ i, and hence by (14.24), p(u) ≥ i, that is u ∈ Ui.

Let C be the collection of these directed cuts and let Γ :=
⋃ C. We

can decompose f as a sum of incidence vectors of k directed paths in D̃.
Identifying any a′ with a (for a ∈ B) this gives a collection P of s− t paths.
Let Π :=

⋃
P∈P AP .

Then B \Π ⊆ Γ . For let a = (u, v) ∈ B \Π. Then f(a′) = 0, and hence
by (14.25), p(v) ≤ p(u)− 1. Hence a ∈ δout(Ui) for i = p(u). So a ∈ Γ .

Moreover,

(14.26) k · |C| = k(p(s)− p(t))
=

∑

a=(u,v)∈A

(p(u)− p(v))f(a) +
∑

a=(u,v)∈B

(p(u)− p(v))f(a′)

=
∑

a∈B

(p(u)− p(v))f(a′) = |B ∩ Γ ∩Π|.

So |B \Γ |+k|C| = |B \Γ |+ |B∩Γ ∩Π| = |B∩Π \Γ |+ |B∩Γ ∩Π| = |B∩Π|.

This implies for partially ordered sets:

Corollary 14.10a. Let (S,≤) be a partially ordered set and let k ∈ Z+. Then
the maximum size of the union of k chains is equal to the minimum value of

(14.27)
∑

A∈A
min{k, |A|},
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where A ranges over partitions of S into antichains.

Proof. Similar to the proof of Corollary 14.8a.

Like the result in the previous section, also this theorem can be stated in
a different form. For any partially ordered set (S,≤), Y ⊆ S and k ∈ Z+, let

(14.28) ck(Y ) := max{|Z| ∣∣ Z ⊆ Y is the union of k chains}.
Then:

Corollary 14.10b. ck(S) = min
Y ⊆S

(|S \ Y |+ k · c1(Y )).

Proof. Similar to the proof of Corollary 14.8b.

Note that the proof method gives a polynomial-time algorithm to find
a maximum union of k paths or chains. A weighted version was given by
Edmonds and Giles [1977]. For an extension, see Hoffman [1983].

14.7a. Common saturating collections of antichains

Similar results to those in Section 14.6a were obtained for antichain partitions by
Greene [1976]. Consider the proof of Theorem 14.10. By Theorem 12.5, there exist
minimum-cost flows f and f ′ of values k and k + 1 respectively and a function
p : V → Z that is both a potential for f and for f ′.

This implies the following result of Greene [1976] on the minimum in Theorem
14.10:

Theorem 14.11. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let h ∈ Z+.
Then there is a collection C of directed cuts attaining

(14.29) min
C

(|B \ ⋃C| + k · |C|)

both for k = h and for k = h + 1.

Proof. Directly from the foregoing observation.

For partially ordered sets it gives (using definition (14.28)):

Corollary 14.11a. Let (S, ≤) be a partially ordered set and let k ∈ Z+. Then there
exists an antichain partition A of S such that

(14.30) ck(S) =
∑

A∈A
min{k, |A|} and ck+1(S) =

∑

A∈A
min{k + 1, |A|}.

Proof. Directly from Theorem 14.11.

More on this can be found in Perfect [1984]. For more on chain and antichain
partitions, see Frank [1980a].
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14.7b. Conjugacy of partitions

Greene [1976] showed that the numbers studied above give so-called ‘conjugate’
partitions, implying that in fact the results of Section 14.6 and those of 14.7 can
be derived from each other.

Fix a partially ordered set (S, ≤). For each k = 0, 1, 2, . . ., let ak be the maxi-
mum size of the union of k antichains in S and let ck be the maximum size of the
union of k chains in S.

Then Corollary 14.8a is equivalent to:

(14.31) ak = |S| + min
p≥0

(kp − cp).

Similarly, Corollary 14.10a is equivalent to:

(14.32) ck = |S| + min
p≥0

(kp − ap).

Define for each k = 1, 2, . . .:

(14.33) αk := ak − ak−1 and γk := ck − ck−1.

Trivially, each αk and γk is nonnegative, and both α1, α2, . . . and γ1, γ2, . . . are
partitions of the number |S|. In fact:

Theorem 14.12. α1 ≥ α2 ≥ · · · and γ1 ≥ γ2 ≥ · · ·.

Proof. For each k ≥ 1, one has αk ≥ αk+1; equivalently

(14.34) ak+1 + ak−1 ≤ 2ak.

Indeed, by Corollary 14.8a there is a collection C of chains satisfying

(14.35) ak =
∑

C∈C
min{k, |C|}.

Then

(14.36) 2ak =
∑

C∈C
2 min{k, |C|} ≥

∑

C∈C
(min{k − 1, |C|} + min{k + 1, |C|})

≥ ak−1 + ak+1.

The second part of the theorem is shown similarly (with Corollary 14.10a).

In fact, the partitions (α1, α2, . . .) and (γ1, γ2, . . .) of |S| are conjugate. To show
this, we mention some of the theory of partitions of numbers.

Let ν1 ≥ ν2 ≥ · · · be integers forming a partition of the number n; that is,
ν1 + ν2 + · · · = n. (So νk = 0 for almost all k.) The conjugate partition (ν∗

p) of (νk)
is defined by:

(14.37) ν∗
p := max{k | νk ≥ p}

for p = 1, 2, . . .. Then it is easy to see that ν∗
1 ≥ ν∗

2 ≥ · · ·, and that

(14.38) for all p, k ≥ 1: p ≤ νk ⇐⇒ k ≤ ν∗
p .

The conjugate partition can be interpreted in terms of the ‘Young diagram’.
The Young diagram F of (νk) is the collection of pairs (x, y) of natural numbers
x, y ≥ 1 satisfying y ≤ νx. So the Young diagram uniquely determines the sequence
(νk). The number of pairs in the Young diagram is equal to n. Now the Young
diagram F ∗ of the conjugate partition (ν∗

p) satisfies
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(14.39) F ∗ = {(y, x) | (x, y) ∈ F}.

This follows directly from (14.38). It implies that the conjugate partition (ν∗
p) is

again a partition of n, and that the conjugate of (ν∗
p) is (νk).

The following interprets conjugacy of partitions in terms of their partial sums.
Let ν1 ≥ ν2 ≥ · · · and ν′

1 ≥ ν′
2 ≥ · · · be partitions of n. For each k = 0, 1, . . ., let

(14.40) nk := ν1 + · · · + νk and n′
k := ν′

1 + · · · + ν′
k.

Then:

Lemma 14.13α. (νk) and (ν′
k) are conjugate partitions if and only if

(14.41) n′
p = n + min

k≥0
(pk − nk)

for each p = 0, 1, 2, . . ..

Proof. First note that, for each p = 1, 2, . . .,
(14.42) min

k≥0
(pk − nk) is attained by k = ν∗

p .

Indeed, choose k ≥ 0 attaining mink≥0(pk − nk), with k as large as possible. Then
(k + 1)p − nk+1 > pk − nk, and hence νk+1 < p. Moreover, if k ≥ 1, then (k − 1)p −
nk−1 ≥ pk − nk, and hence νk ≥ p, implying ν∗

p = k. If k = 0, then ν1 < p, again
implying ν∗

p = 0 = k. This shows (14.42).
Moreover,

(14.43)
p∑

q=1

ν∗
q = n + min

k≥0
(pk − nk),

since

(14.44)
p∑

q=1

ν∗
q =

p∑

q=1

max{k | νk ≥ q} =
p∑

q=1

∞∑

k = 1
νk ≥ q

1 =
∞∑

k=1

min{νk, p}

=
∞∑

k=1

νk −
ν∗

p∑

k=1

(νk − p) = n + pν∗
p −

ν∗
p∑

k=1

νk = n + pν∗
p − nν∗

p

= n + min
k≥0

(pk − nk),

by (14.42).
By (14.43), condition (14.41) is equivalent to

(14.45) n′
p =

p∑

q=1

ν∗
q for p = 0, 1, . . ..

Hence it is equivalent to: ν′
q = ν∗

q for each q = 1, 2, . . .; that is to: (νk) and (ν′
k) are

conjugate.

This yields the conjugacy of the αk and γp:

Theorem 14.13. (αk) and (γp) are conjugate partitions of |S|.

Proof. Directly from Lemma 14.13α and Corollary 14.10b.

Lemma 14.13α gives the equivalence of the Corollaries 14.10b and 14.8b. For
other proofs of the conjugacy of (αk) and (γp), see Fomin [1978] and Frank [1980a].
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14.8. Further results and notes

14.8a. The Gallai-Milgram theorem

Gallai and Milgram [1960] showed the following generalization of Dilworth’s decom-
position theorem. It applies to any directed graph, but generally is not a min-max
relation.

Theorem 14.14 (Gallai-Milgram theorem). Let D = (V, A) be a digraph and let
α(D) be the maximum number of vertices that are pairwise nonadjacent in the
underlying undirected graph. Then V can be partitioned into α(D) directed paths.

Proof. For any partition Π of V into directed paths, let CΠ be the set of end
vertices of the paths in Π. For any subset U of V , let α(U) be the maximum
number of pairwise nonadjacent vertices in U . We show by induction on |V | that

(14.46) for each partition Π of V into directed paths there is a partition Π ′

into directed paths with CΠ′ ⊆ CΠ and |CΠ′ | ≤ α(V ).

This implies the theorem.
Let Π be a partition of V into directed paths. To prove (14.46), we may assume

that CΠ is inclusionwise minimal among all such partitions.
If CΠ is a stable set, then (14.46) is trivial. If CΠ is not a stable set, take

u, v ∈ CΠ with (v, u) ∈ A. By the minimality of CΠ , the path Pu in Π ending at u
consists of more than u alone, since otherwise we could extend the path ending at
v by u. So Pu has a one but last vertex, w say.

Let Π̃ be obtained from Π by deleting u from Pu. So Π̃ is a partition of V \{u}
into directed paths. By induction, there is a partition Π̃ ′ of V \ {u} into directed
paths such that C

Π̃′ ⊆ C
Π̃

and such that |C
Π̃′ | ≤ α(V \ {u}).

If one of the paths in Π̃ ′ ends at w, we can extend it with u, and obtain a
partition Π ′ of V as required. If none of the paths in Π̃ ′ end at w, but one of the
paths ends at v, we can extend it with u, again obtaining a partition Π ′ as required.
If none of the paths in Π̃ ′ end at v or w, then augmenting Π̃ ′ by a path consisting
of u alone, gives a partition Π ′ of V with CΠ′ ⊂ CΠ , contradicting the minimality
of CΠ .

Theorem 14.14 gives no min-max relation, as is shown by a directed circuit of
length 2k: the vertices can be covered by one directed path, while there exist k
pairwise nonadjacent vertices.

A consequence of Theorem 14.14 is Dilworth’s decomposition theorem: for any
partially ordered set (S, ≤) take V := S and A := {(x, y) | x < y}. Another
consequence is the graph-theoretical result of Rédei [1934] that each tournament
has a Hamiltonian path:

Corollary 14.14a (Rédei’s theorem). Each tournament has a Hamiltonian path.

Proof. This is the special case where α(D) = 1 in the Gallai-Milgram theorem.

Berge [1982b] posed the following conjecture generalizing the Gallai-Milgram
theorem. Let D = (V, A) be a digraph and let k ∈ Z+. Then for each path collection
P partitioning V and minimizing
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(14.47)
∑

P∈P
min{|V P |, k},

there exist disjoint stable sets C1, . . . , Ck in D such that each P ∈ P intersects
min{|V P |, k} of them. This was proved by Saks [1986] for acyclic graphs. For exten-
sions and related results, see Linial [1978,1981], Saks [1986], and Thomassé [2001].

14.8b. Partially ordered sets and distributive lattices

There is a strong relation between the class of partially ordered sets and the class
of partially ordered sets of a special type, the distributive lattices. It formed the
original motivation for Dilworth to study minimum chain partitions of partially
ordered sets.

Let (S, ≤) be a partially ordered set and let a, b ∈ S. Then an element c ∈ S is
called the meet of a and b if for each s ∈ S:

(14.48) s ≤ c if and only if s ≤ a and s ≤ b.

Note that if the meet of a and b exists, it is unique. Similarly, c is called the join
of a and b if for each s ∈ S:

(14.49) s ≥ c if and only if s ≥ a and s ≥ b.

Again, if the join of a and b exists, it is unique.
S is called a lattice if each pair s, t of elements of S has a meet and a join; they

are denoted by s ∧ t and s ∨ t, respectively. The lattice is called distributive if

(14.50) s ∧ (t ∨ u) = (s ∧ t) ∨ (s ∧ u) and s ∨ (t ∧ u) = (s ∨ t) ∧ (s ∨ u)

for all s, t, u ∈ S. (In fact it suffices to require only one of the two equalities.)
Each partially ordered set (S, ≤) gives a distributive lattice in the following

way. Call a subset I ⊆ S a lower ideal, or just an ideal, if t ∈ I and s ≤ t implies
that s ∈ I. Let IS be the collection of ideals in S. Then (IS , ⊆) is a distributive
lattice. This follows directly from the fact that for I, J ∈ IS one has I ∧ J = I ∩ J
and I ∨ J = I ∪ J , and hence (14.50) is elementary set theory. Thus

(14.51) (S, ≤) → (IS , ⊆)

associates a distributive lattice with any partially ordered set.
In fact, each finite distributive lattice can be obtained in this way; that is, we

can reverse (14.51). For any lattice (L, ≤), call an element u ∈ L join-irreducible
if there exist no s, t ∈ L with s �= u, t �= u, and u = s ∨ t. Let JL be the set of
join-irreducible elements in L. Trivially,

(14.52) (L, ≤) → (JL, ≤)

associates a partially ordered set with any distributive lattice.

Theorem 14.15. Functions (14.51) and (14.52) are inverse to each other.

Proof. First, let (S ≤) be a partially ordered set. For each s ∈ S, let Is := {t ∈
S | t ≤ s}. Then an element I of IS is join-irreducible if and only if there exists
an s ∈ S with I = Is. Moreover, s ≤ t if and only if Is ⊆ It. Thus we have an
isomorphism of (S, ≤) and (JIS , ⊆).
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Conversely, let (L, ≤) be a distributive lattice. For each s ∈ L, let Js := {t ∈
JL | t ≤ s}. This gives a one-to-one relation between elements of L and ideals in
JL. Indeed, if I is an ideal in JL, let s :=

∨
I. Then I = Js. Clearly, I ⊆ Js, since

t ≤ s for each t ∈ I. Conversely, let u ∈ Js. Then, as L is distributive,

(14.53) u = u ∧ s = u ∧
∨

t∈I

t =
∨

t∈I

(u ∧ t).

Since u is join-irreducible, u = u ∧ t for some t ∈ I. Hence u ≤ t, and therefore
u ∈ I.

Moreover, for any s, t ∈ L one has: s ≤ t if and only if Js ⊆ Jt. So we have an
isomorphism of (L, ≤) and (IJL , ⊆).

There is moreover a one-to-one relation between ideals I in a partially ordered
set (S, ≤) and antichains A in S, given by:

(14.54) A = Imax and I = A↓.

Here, for any Y ⊆ S, Y max denotes the set of maximal elements of Y and

(14.55) Y ↓ := {s ∈ S | ∃t ∈ Y : s ≤ t}.

For each d, the set Z
d is a distributive lattice, under the usual order: x ≤ y if

and only if xi ≤ yi for each i = 1, . . . , d. Any finite distributive lattice (L, ≤) is a
sublattice of Z

d for some d (as will follow from the next theorem). That is, there is
an injection φ : L → Z

d such that φ(s ∧ t) = φ(s) ∧ φ(t) and φ(s ∨ t) = φ(s) ∨ φ(t)
for all s, t ∈ L.

Let d(L) be the minimum number d for which L is (isomorphic to) a sublat-
tice Z

d. As Dilworth [1950] showed, the number d(L) can be characterized with
Dilworth’s decomposition theorem.

To this end, an element s of a partially ordered set (S, ≤) is said to cover t ∈ S
if s > t and there is no u ∈ S with s > u > t. For any s ∈ S, let cover(s) be the
number of elements covered by s.

Then the following result of Dilworth [1950] can be derived from Dilworth’s
decomposition theorem:

Theorem 14.16. Let L be a finite distributive lattice. Then

(14.56) d(L) = max
s∈L

cover(s).

Proof. We first show that d(L) ≥ cover(s) for each s ∈ L. Let d := d(L), let
L ⊂ Z

d, and choose s ∈ L. Let Y be the set of elements covered by s. For each
t ∈ Y , let Ut := {i | ti < si}. Now for all t, u ∈ Y with t �= u one has t ∨ u = s;
hence Ut ∩ Uu = ∅. As Ut �= ∅ for all t ∈ Y , we have |Y | ≤ d.

So d(L) ≥ maxs∈L cover(s). To see equality, by Theorem 14.15 we may assume
that L = IS (the set of ideals in S) for some partially ordered set (S, ≤), ordered
by inclusion. For any ideal I in S, cover(I) is the number of inclusionwise maximal
ideals J ⊂ I. Each such ideal J is equal to I \ {t} for some t ∈ Imax. So cover(I) =
|Imax|. Hence maxs∈L cover(s) is equal to the maximum antichain size in S. Let
this be d, say.

By Dilworth’s decomposition theorem, S can be covered by d chains, C1, . . . , Cd

say. For each j, the collection ICj of ideals in Cj is again a chain (ordered by
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inclusion). Now I → (I∩C1, . . . , I∩Cd) embeds IS into the product IC1 ×· · ·×ICd .
Therefore d(IS) ≤ d.

The following was noted by Dilworth [1960]. The relations (14.54) give the
following partial order on the collection AS of antichains in a partially ordered set
(S, ≤):

(14.57) A � B if and only if A↓ ⊆ B↓

for A, B ∈ AS . As (IS , ⊆) is a lattice, also (AS , �) is a lattice.

Theorem 14.17. Let (S, ≤) be a partially ordered set and let A and B be maximum-
size antichains. Then also A ∧ B and A ∨ B are maximum-size antichains.

Proof. One has |A ∧ B| + |A ∨ B| ≥ |A| + |B|. Indeed, A ∪ B ⊆ (A ∧ B) ∪ (A ∨ B)
and A ∩ B ⊆ (A ∧ B) ∩ (A ∨ B). So

(14.58) |A ∧ B| + |A ∨ B| = |(A ∧ B) ∪ (A ∨ B)| + |(A ∧ B) ∩ (A ∨ B)|
≥ |A ∪ B| + |A ∩ B| = |A| + |B|.

As |A∧B| ≤ |A| = |B| and |A∨B| ≤ |A| = |B|, we have |A∧B| = |A∨B| = |A| =
|B|.

In terms of distributive lattices this gives:

Corollary 14.17a. Let L be a finite distributive lattice. Then the elements s max-
imizing cover(s) form a sublattice of L.

Proof. We can represent L as the set IS of ideals in a partially ordered set (S, ≤).
As one has cover(I) = |Imax| for any I ∈ IS , the result follows from Theorem 14.17.

Theorem 14.17 led Dilworth [1960] to derive an alternative proof of Dilworth’s
decomposition theorem. For another proof and application of Theorem 14.17, see
Freese [1974]. Theorem 14.17 was extended to maximum-size unions of k antichains
by Greene and Kleitman [1976].

14.8c. Maximal chains

Let (S, ≤) be a partially ordered set. Call a chain maximal if it is contained in no
other chain. As ‘complementary’ to Dilworth’s decomposition theorem, Greene and
Kleitman [1976] observed:

Theorem 14.18. The maximum number of disjoint maximal chains is equal to the
minimum size of a set intersecting all maximal chains.

Proof. Define a digraph D = (S, A) where A consists of all pairs (s, t) where t covers
s. Let U and W be the sets of minimal and maximal elements of S, respectively. So
maximal chains correspond to U −W paths, and the theorem follows from Menger’s
theorem.
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14.8d. Further notes

Related results were given by Bogart [1970], Saks [1986], and Behrendt [1988], ex-
tensions and algorithms by Cameron and Edmonds [1979], Frank [1980a], Linial
[1981], Cameron [1982,1985,1986], and Hoffman [1983], surveys by Greene [1974b],
Hoffman [1982], West [1982], and Bogart, Greene, and Kung [1990], and an intro-
duction to and historical account of Dilworth’s decomposition theorem by Dilworth
[1990].

Fleiner [1997] proved the following conjecture of A. Frank: Let (S, ≤) be a
partially ordered set and let M be a perfect matching on S such that for any two
uu′, vv′ ∈ M with u ≤ v, one has v′ ≤ u′. (This is called a symmetric partially
ordered set.) Call a subset C of M a symmetric chain if S has a chain intersecting
each edge in C. Then the minimum number of symmetric chains covering M is
equal to the maximum value of

(14.59)
k∑

i=1

� 1
2 |Xi|�,

where X1, . . . , Xk are disjoint subsets of M (for some k) with the properties that
(i) no Xi contains a symmetric chain of size 3, and (ii) if i �= j, then there exist no
x ∈ e ∈ Xi and y ∈ f ∈ Xj with x ≤ y.



Chapter 15

Connectivity and Gomory-Hu
trees

Since a minimum s − t cut can be found in polynomial time, also the
connectivity of a graph can be determined in polynomial time, just by
checking all pairs s, t. However, there are more economical methods, which
we discuss in this chapter.
A finer description of the edge-connectivity of a graph G is given by the
function rG(s, t), defined as the minimum size of a cut separating s and t.
A concise description of the corresponding minimum-size cuts is given by
the Gomory-Hu tree — see Section 15.4.

15.1. Vertex-, edge-, and arc-connectivity

For any undirected graph G = (V, E), the vertex-connectivity, or just con-
nectivity, of G is the minimum size of a subset U of V for which G − U
is not connected. A subset U of V attaining the minimum is called a min-
imum vertex-cut. If no such U exists (namely, if G is complete), then the
(vertex-)connectivity is ∞.

The connectivity of G is denoted by κ(G). If κ(G) ≥ k, G is called k-
vertex-connected, or just k-connected.

The following direct consequence of Menger’s theorem was formulated by
Whitney [1932a]:

Theorem 15.1. An undirected graph G = (V, E) is k-connected if and only
if there exist k internally vertex-disjoint paths between any two nonadjacent
vertices s and t.

Proof. Directly from the vertex-disjoint version of Menger’s theorem (Corol-
lary 9.1a).

Similarly, the edge-connectivity of G is the minimum size of a subset C
of E for which G − C is not connected. So it is the minimum size of any
cut δ(U) with ∅ �= U �= V . A cut C attaining the minimum size is called a
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minimum cut. The edge-connectivity of G is denoted by λ(G). If λ(G) ≥ k,
G is called k-edge connected. Then:

Theorem 15.2. An undirected graph G = (V, E) is k-edge-connected if and
only if there exist k edge-disjoint paths between any two vertices s and t.

Proof. Directly from the edge-disjoint version of Menger’s theorem (Corol-
lary 9.1b).

Similar terminology and characterizations apply to digraphs. For any di-
graph D = (V, A) the vertex-connectivity, or just connectivity, of D is the
minimum size of a subset U of V for which D−U is not strongly connected.
A set U attaining the minimum is called a minimum vertex-cut. If no such
U exists (that is, if each pair (u, v) of vertices is an arc), then the (vertex-
)connectivity of D is ∞.

The connectivity of D is denoted by κ(D). If κ(D) ≥ k, D is called k-
vertex-connected, or just k-connected. Now one has:

Theorem 15.3. A digraph D = (V, A) is k-connected if and only if there
exist k internally vertex-disjoint s− t paths for any s, t ∈ V for which there
is no arc from s to t.

Proof. Directly from the vertex-disjoint version of Menger’s theorem (Corol-
lary 9.1a).

Finally, the arc-connectivity of D is the minimum size of a subset C of
A for which D − C is not strongly connected. That is, it is the minimum
size of any cut δout(U) with ∅ �= U �= V . Any cut attaining the minimum
size is called a minimum cut. The arc-connectivity of D is denoted by λ(D).
If λ(D) ≥ k, D is called k-arc-connected or strongly k-connected. (So D is
1-arc-connected if and only if D is strongly connected.) Then:

Theorem 15.4. A digraph D = (V, A) is k-arc-connected if and only if there
exist k arc-disjoint paths between any two vertices s and t.

Proof. Directly from the arc-disjoint version of Menger’s theorem (Corollary
9.1b).

Shiloach [1979a] observed that Edmonds’ disjoint arborescences theorem
(to be discussed in Chapter 53) implies a stronger characterization of k-arc-
connectivity: a digraph D = (V, A) is k-arc-connected if and only if for all
s1, t1, . . . , sk, tk ∈ V there exist arc-disjoint paths P1, . . . , Pk, where Pi runs
from si to ti (i = 1, . . . , k) — see Corollary 53.1d.

A similar characterization does not hold for the undirected case, as is
shown by the 2-edge-connected graph in Figure 15.1.
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s1

t1s2

t2

Figure 15.1

15.2. Vertex-connectivity algorithmically

It is clear that the vertex-connectivity of a directed or undirected graph
can be determined in polynomial time, just by finding a minimum-size s− t
vertex-cut for each pair s, t of vertices. Since by Corollary 9.7a, a minimum-
size s− t vertex-cut can be found in O(n1/2m) time, this yields an O(n5/2m)
algorithm. In fact, Podderyugin [1973] (for undirected graphs) and Even and
Tarjan [1975] observed that one need not consider every pair of vertices:

Theorem 15.5. A minimum-size vertex-cut in a digraph D can be found in
O(κ(D)n3/2m) time.

Proof. Let D = (V, A) be a digraph. We may assume that D is simple.
Order V arbitrarily as v1, . . . , vn. For i = 1, 2, . . ., determine, for each v ∈ V ,
a minimum vi − v vertex-cut Cvi,v and a minimum v − vi vertex-cut Cv,vi .
(This takes O(n3/2m) time by Corollary 9.7a.) At any moment, let c be the
minimum size of the cuts found so far. We stop if i > c + 1. Then c is the
vertex-connectivity of D.

Indeed let C be a minimum-size vertex-cut. Then for i := κ(D)+2, there
is a j < i with vj �∈ C. Hence there is a vertex v such that C is a vj − v
or a v − vj vertex-cut. Assume without loss of generality that C is a vj − v
vertex-cut. Then c ≤ |Cvj ,v| = |C| = κ(D).

Since κ(D) ≤ m/n if D is not complete, this implies:

Corollary 15.5a. A minimum-size vertex-cut in a digraph can be found in
O(n1/2m2) time.

Proof. Immediately from Theorem 15.5, since if D is not complete, κ(D) is
at most the minimum outdegree of D, and hence κ(D) ≤ m/n.

If we want to test the k-connectivity for some fixed k, we may use the
following result given by Even [1975]:

Theorem 15.6. Given a digraph D and an integer k, one can decide in
O((k +

√
n)k
√

nm) time if D is k-connected, and if not, find a minimum
cut.
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Proof. Let V = {1, . . . , n}. Determine

(15.1) (i) for all i, j ∈ {1, . . . , k} with (i, j) �∈ A, a minimum-size i − j
vertex-cut if it has size less than k;

(ii) for each i = k + 1, . . . , n a minimum-size {1, . . . , i − 1} − i
vertex-cut if it has size less than k, and a minimum-size i −
{1, . . . , i− 1} vertex-cut if it has size less than k.

We claim that if we find any vertex-cut, the smallest among them is a
minimum-size vertex-cut. If we find no vertex-cuts, then D is k-connected.

To see this, let U be a minimum-size vertex-cut with |U | < k. Suppose that
each vertex-cut found has size > |U |. Then for all distinct i, j ∈ {1, . . . , k}\U
there is an i−j path avoiding U . So {1, . . . , k}\U is contained in some strong
component K of D − U . As D − U is not strongly connected, D − U has a
vertex not in K. Let i be the smallest index i �∈ K ∪U . As there exist |U |+1
disjoint {1, . . . , i − 1} − i paths, D − U has a j − i path for some j < i;
then j ∈ K. Similarly, D − U contains an i− j′ path for some j′ ∈ K. This
contradicts the fact that i �∈ K and K is a strong component.

This implies the theorem. Indeed, by Corollaries 9.3a and 9.7a one can
find a vertex-cut as in (15.1)(i) or (ii) in time O(min{k,

√
n}m) time. So in

total it takes O((k2 + n) min{k,
√

n}m) = O((k +
√

n)k
√

n m) time.

This implies:

Corollary 15.6a. A minimum-size vertex-cut in a digraph can be found in
time O(max{ m3

n
√

n
,m2}).

Proof. From Theorem 15.6 by taking k := �m/n�.

Matula [1987] showed that Theorem 15.6 implies the following result of
Galil [1980b], where κ(D) is the vertex-connectivity of D:

Corollary 15.6b. A minimum-size vertex-cut in a digraph D can be found
in O((κ(D) +

√
n)κ(D)

√
n m) time.

Proof. For k = 2, 22, 23, . . . test with the algorithm of Theorem 15.6 if D
is k-connected. Stop if D is not k-connected; then the algorithm gives a
minimum-size vertex-cut. Let l be such that k = 2l. As 2l ≤ 2κ(D), this
takes time

(15.2) O(
l∑

i=1

((2i +
√

n)2i
√

n m)) = O((4l+1 + 2l+1√n)
√

n m)

= O((κ(D)2 + κ(D)
√

n)
√

n m).

Since vertex-cuts in an undirected graph G are equal to vertex-cuts in the
digraph obtained from G by replacing each edge by two oppositely oriented
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arcs, the results above immediately imply similar results for vertex-cuts and
vertex-connectivity in undirected graphs.

15.2a. Complexity survey for vertex-connectivity

Complexity survey for vertex-connectivity (in directed graphs, unless stated other-
wise; again, ∗ indicates an asymptotically best bound in the table):

O(n2 · VC(n, m)) (trivial)

O(kn · VCk(n, m)) Kleitman [1969]

O(κn · VC(n, m)) Podderyugin [1973], Even and Tarjan
[1975]

O((k2 + n) · VCk(n, m)) Even [1975] (cf. Esfahanian and
Hakimi [1984])

O((κ2 + n) · VCκ(n, m)) Galil [1980b] (cf. Matula [1987])

O((κ +
√

n)κ2n3/2)
undirected Nagamochi and Ibaraki
[1992a], Cheriyan and Thurimella
[1991]

O((κ +
√

n)κ2n3/2 logn(n2/m)) undirected Feder and Motwani [1991,
1995]

O((κ3 + n)m) Henzinger, Rao, and Gabow [1996,
2000]

O(κnm) Henzinger, Rao, and Gabow [1996,
2000]

O((κ3 + n)κn) undirected Henzinger, Rao, and
Gabow [1996,2000]

O(κ2n2) undirected Henzinger, Rao, and
Gabow [1996,2000]

∗ O((κ5/2 + n)m) Gabow [2000b]

∗ O((κ + n1/4)n3/4m) Gabow [2000b]

∗ O((κ5/2 + n)κn) undirected Gabow [2000b]

∗ O((n1/4 + κ)κn7/4) undirected Gabow [2000b]

Here κ denotes the vertex-connectivity of the graph. Note that κ ≤ m/n. If k is
involved, the time bound is for determining min{κ, k}. By VC(n, m) we denote the
time needed to find the minimum size of an s− t vertex-cut for fixed s, t. Moreover,
VCk(n, m) denotes the time needed to find the minimum size of an s− t vertex-cut
if this size is less than k. We refer to Sections 9.5 and 9.6a for bounds on VC(n, m)
and VCk(n, m). Note that VCk(n, m) = O(min{k,

√
n}m).

By the observation of Matula [1987] (cf. Corollary 15.6b above), if min{k, κ} can
be determined in time O(kαf(n, m)) (for some α ≥ 1), then κ can be determined
in time O(καf(n, m)).
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15.2b. Finding the 2-connected components

In this section we show the result due to Paton [1971], Tarjan [1972], and Dinits,
Zajtsev, and Karzanov [1974] (cf. Hopcroft and Tarjan [1973a]) that the 2-vertex-
connected components of an undirected graph can be found in linear time. Hence,
the 2-connectivity of an undirected graph can be tested in linear time.

Let G = (V, E) be an undirected graph and let k ∈ Z+. A k-connected compo-
nent is an inclusionwise maximal subset U of V for which G[U ] is k-connected. A
block is a 2-connected component U with |U | ≥ 2.

We note

(15.3) if U and W are two different k-connected components, then |U ∩W | <
k.

Indeed, as G[U ∪ W ] is not k-connected, there is a subset C of U ∪ W with G[(U ∪
W ) \ C] disconnected and |C| < k. As (U ∪ W ) \ C = (U \ C) ∪ (W \ C) and as
G[U \ C] and G[W \ C] are connected, it follows that (U \ C) ∩ (W \ C) = ∅. Hence
C ⊇ U ∩ W , and therefore |U ∩ W | < k.

(15.3) implies that each edge of G is contained in a unique 2-connected compo-
nent. So the 2-connected components partition the edge set. One may show:

(15.4) edges e and e′ are contained in the same 2-connected component if and
only if G has a circuit C containing both e and e′.

Indeed, if C exists, it forms a 2-connected subgraph of G, and hence e and e′ are
contained in some 2-connected component. Conversely, if e = uv and e′ = u′v′

are contained in a 2-connected component H, by Menger’s theorem H has two
vertex-disjoint {u, v}−{u′, v′} paths; with e and e′ these paths form a circuit C as
required.

Theorem 15.7. The collection of blocks of a graph G = (V, E) can be identified in
linear time.

Proof. By Corollary 6.6a, we may assume that G is connected. Choose s ∈ V
arbitrarily. Apply depth-first search starting at s. If we orient the final tree to
become a rooted tree (V, T ) with root s, all further edges of G connect two vertices
u, v such that T has a directed u − v path P . For each such edge, make an arc
(v, u′), where u′ is the second vertex of P . The arcs in T and these new arcs form
a directed graph denoted by D = (V, A).

By adapting the depth-first search, we can find A is linear time. Indeed, while
scanning s, we keep a directed path Q in T formed by the vertices whose scanning
has begun but is not yet finished. If we scan v and meet an edge uv with u on Q,
we can find u′ and construct the arc (v, u′).

Since no arc of D enters s, {s} is a strong component. For any strong component
K of D one has:

(15.5) the subgraph of T induced by K is a subtree.

Indeed, for any arc (u, v) ∈ A\T spanned by K, the v −u path in T is contained in
K, since it forms a directed circuit with (u, v) and since K is a strong component.
This proves (15.5).

(15.5) implies that for each strong component K of D with K �= {s}, there is
a unique arc of T entering K; let uK be its tail and define K′ := K ∪ {uK}. We
finally show
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(15.6) {K′ | K strong component of D, K �= {s}} is equal to the collection
of blocks of G.

This proves the theorem (using Theorem 6.6).
Let (t, u, v) be a directed path in T . Then

(15.7) tu and uv are contained in the same block of G if and only if D has a
directed v − u path.

To see this, let W be the set of vertices reachable in (V, T ) from v. Then:

(15.8) D has a directed v − u path ⇐⇒ D has an arc leaving W ⇐⇒ G
has an edge leaving W and not containing u ⇐⇒ G has a v − t path
not traversing u ⇐⇒ tu and uv are contained in a circuit of G ⇐⇒
tu and uv are contained in the same block of G.

This proves (15.7).
(15.7) implies that for each strong component K ⊆ V \ {s} of D, the set K′

is contained in a block of G. Conversely, let B be a block of G. Then B induces a
subtree of T . Otherwise, B contains two vertices u and v such that the undirected
u − v path P in T has length at least two and such that no internal vertex of P
belongs to B. Let Q be a u − v path in B. Then P and Q form a circuit, hence a
2-connected graph. So P is contained in B, a contradiction.

So B induces a subtree of T . Let u be its root. As B \ {u} induces a connected
subgraph of G, there is a unique arc in T entering B \ {u}. So also B \ {u} induces
a subtree of T . Then (15.7) implies that B \{u} is contained in a strong component
of D.

Corollary 15.7a. The 2-connectivity of an undirected graph can be tested in linear
time.

Proof. A graph (V, E) is 2-connected if and only if V is a 2-connected component.
So Theorem 15.7 implies the result.

Hopcroft and Tarjan [1973b] gave a linear-time algorithm to test 3-connectivity
of an undirected graph; more generally, to decompose an undirected graph into 3-
connected components (cf. Miller and Ramachandran [1987,1992]). Kanevsky and
Ramachandran [1987,1991] gave an O(n2) algorithm to test 4-connectivity of an
undirected graph.

Finding all 2- and 3-vertex-cuts of an undirected graph has been investigated by
Tarjan [1972], Hopcroft and Tarjan [1973b], Kanevsky and Ramachandran [1987,
1991], Miller and Ramachandran [1987,1992], and Kanevsky [1990a]. Kanevsky
[1990b] showed that for each fixed k, the number of vertex-cuts of size k in a
k-vertex-connected graph is O(n2) (cf. Kanevsky [1993]). Related results can be
found in Gusfield and Naor [1990], Cohen, Di Battista, Kanevsky, and Tamassia
[1993], Gabow [1993b,1995c], and Cheriyan and Thurimella [1996b,1999].

15.3. Arc- and edge-connectivity algorithmically

Denote by EC(n, m) the time needed to find a minimum-size s− t cut for any
given pair of vertices s, t. Even and Tarjan [1975] (and Podderyugin [1973]
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for undirected graphs) observed that one need not check all pairs of vertices
to find a minimum cut:

Theorem 15.8. A minimum-size cut in a digraph can be found in O(n ·
EC(n, m)) time.

Proof. Choose s ∈ V . For each t �= s, determine a minimum s−t cut Cs,t and
a minimum t − s cut Ct,s. The smallest among all these cuts is a minimum
cut.

Hence we have for the arc-connectivity:

Corollary 15.8a. The arc-connectivity of a digraph can be determined in
O(n · EC(n, m)) time.

Proof. Directly from Theorem 15.8.

As EC(n, m) = O(m3/2) by Corollary 9.6a, it follows that the arc-
connectivity can be determined in time O(nm3/2). Actually, also in time
O(m2), since we need to apply the disjoint paths algorithm only until we
have at most k := �m/n� arc-disjoint paths, as the arc-connectivity is at
most m/n (there is a v ∈ V with |δout(v)| ≤ �m/n�).

Moreover, again by Corollary 9.6a, EC(n, m) = O(n2/3m) for simple di-
graphs, and hence the arc-connectivity of a simple directed graph can be
determined in time O(n5/3m) (cf. Esfahanian and Hakimi [1984]).

Schnorr [1978b,1979] showed that in fact:

Theorem 15.9. Given a digraph D and an integer k, one can decide in
O(knm) time if D is k-arc-connected, and if not, find a minimum cut.

Proof. In Theorem 15.8 one needs to check only if there exist k arc-disjoint
s − t paths, and if not find a minimum-size s − t cut. This can be done in
time O(km), as we saw in Corollary 9.3a.

With a method of Matula [1987] this implies, where λ(D) is the arc-
connectivity of D:

Corollary 15.9a. A minimum-size cut in a digraph D can be found in time
O(λ(D)nm).

Proof. For k = 2, 22, 23, . . . test if D is k-arc-connected, until we find that
D is not k-arc-connected, and have a minimum-size cut. With the method of
Theorem 15.9 this takes time O((2+22 +23 + · · ·+2l)nm), with 2l ≤ 2λ(D).
So 2 + 22 + 23 + · · ·+ 2l ≤ 2l+1 ≤ 4λ(D), and the result follows.
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For undirected graphs, Nagamochi and Ibaraki [1992b] showed that the
edge-connectivity of an undirected graph can be determined in time O(nm)
(for simple graphs this bound is due to Podderyugin [1973]). We follow the
shortened algorithm described by Frank [1994b] and Stoer and Wagner [1994,
1997].

Theorem 15.10. Given an undirected graph G, a minimum cut in G can be
found in time O(nm).

Proof. Let G = (V, E) be a graph. For U ⊆ V and v ∈ V \ U , let d(U, v)
denote the number of edges connecting U and v. Let r(u, v) denote the min-
imum capacity of a u− v cut.

Call an ordering v1, . . . , vn of the vertices of G a legal order for G if
d({v1, . . . , vi−1}, vi) ≥ d({v1, . . . , vi−1}, vj) for all i, j with 1 ≤ i < j ≤ n.
Then:

(15.9) If v1, . . . , vn is a legal order for G = (V, E), then r(vn−1, vn) =
d(vn).

To see this, let C be any vn−1− vn cut. Define u0 := v1. For i = 1, . . . , n− 1,
define ui := vj , where j is the smallest index such that j > i and C is a
vi − vj cut. Note that for each i = 1, . . . , n− 1 one has

(15.10) d({v1, . . . , vi−1}, ui) ≤ d({v1, . . . , vi−1}, ui−1),

since if ui−1 �= ui, then ui−1 = vi, in which case (15.10) follows from the
legality of the order.

Then we have

(15.11) d(C) ≥
n−1∑

i=1

d(vi, ui)

=
n−1∑

i=1

(d({v1, . . . , vi}, ui)− d({v1, . . . , vi−1}, ui))

≥
n−1∑

i=1

(d({v1, . . . , vi}, ui)− d({v1, . . . , vi−1}, ui−1))

= d({v1, . . . , vn−1}, vn) = d(vn),

showing (15.9).
Next one has that a legal order for a given graph G can be found in

time O(m). Indeed, one can find v1, v2, v3, . . . successively: if v1, . . . , vi−1
have been found, we need to find a v ∈ V \ {v1, . . . , vi−1} maximizing
d({v1, . . . , vi−1}, v). With a ‘bucket’ data structure this can be done in O(m)
time.23

23 Suppose that we have a set V and a function φ : V → Z. We can select and delete a v
maximizing φ(v) in O(1) time and to reset φ(v) from k to k′ in O(|k′ − k|) time.
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Concluding, in any given graph G = (V, E) with |V | ≥ 2, we can find two
vertices s and t with r(s, t) = d(s) in time O(m). Identify s and t, and find
recursively a minimum cut C in the new graph. Then δ(s) is a minimum cut
separating s and t, and C is a minimum cut not separating s and t. Hence,
the smallest of the two is a minimum cut.

(Another correctness proof was given by Fujishige [1998].)
Theorem 15.10 extends to capacitated graphs (Nagamochi and Ibaraki

[1992b]):

Theorem 15.11. Given an undirected graph G = (V, E) and a capacity
function c : E → Q+, a minimum-capacity cut can be found in time O(n(m+
n log n)).

Proof. This can be shown in the same way as Theorem 15.10, using Fibonacci
heaps for finding a legal order.

15.3a. Complexity survey for arc- and edge-connectivity

Survey for arc-complexity (in uncapacitated directed graphs, unless stated other-
wise):

O(n · EC(n, m)) (trivial)

O(nm) simple undirected Podderyugin [1973]

O(n · ECl(n, m)) Schnorr [1978b,1979]

O(λ3n2 + λm) Timofeev [1982]

O(λn2) simple undirected Karzanov and Timofeev
[1986], Matula [1987]

O(n · ECλ(n, m)) Matula [1987]

O(nm) simple Mansour and Schieber [1989]

O(λ2n2) simple Mansour and Schieber [1989]

∗ O(n log δ
δ

· EC(n, m)) simple N. Alon, 1988 (cf. Mansour and
Schieber [1989])

O(nm logn(n2/m)) undirected Feder and Motwani [1991,1995]
�

To this end, partition V into classes Vj , where Vj := {v ∈ V | φ(v) = j}. Each
nonempty Vj is ordered as a doubly linked list, and the nonempty Vj among them are
ordered as a doubly linked list L, in increasing order of j. Then in O(1) time we can
choose the largest j for which Vj is nonempty, choose v ∈ Vj , delete v from Vj , and
possibly delete Vj from L (if Vj has become empty). Resetting φ(v) from k to k′ can be
done by finding or creating Vk′ in L, which takes O(|k′ − k|) time.

Having this data structure, throughout let U := V \ {v1, . . . , vi}, and for each v ∈ U
let φ(v) := d({v1, . . . , vi}, v). If vi+1 has been found, we must delete vi+1 from U , and
reset, for each neighbour v of vi+1 in U , φ(v) to d({v1, . . . , vi+1}, v). This gives an
O(m)-time algorithm.
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continued
O(nm) undirected Nagamochi and Ibaraki [1992b]

O(m + λ2n2) undirected Nagamochi and Ibaraki [1992b]

O(m + m̃n + n2 log n) undirected Nagamochi and Ibaraki [1992b]

∗ O(n(m + n log n)) capacitated undirected Nagamochi and Ibaraki
[1992b]

∗ O(nm log(n2/m)) capacitated Hao and Orlin [1992,1994]

∗ O(λm log(n2/m)) Gabow [1991a,1995a]

∗ O(m + λ2n log(n/λ)) undirected Gabow [1991a,1995a]

Here λ denotes the arc- or edge-connectivity of the graph, m̃ the number of parallel
classes of edges, and δ the minimum (out-)degree. Note that λ ≤ δ ≤ 2m/n. If l is
involved, the time bound is for determining min{λ, l}.

EC(n, m) denotes the time needed to find the minimum size of an s − t cut, for
fixed s, t. Moreover, ECl(n, m) denotes the time needed to find the minimum size
of an s − t cut (for fixed s, t) if this size is less than l. We refer to Sections 9.4 and
9.6a for bounds on EC(n, m) and ECl(n, m).

By the observation of Matula [1987] (cf. Corollary 15.9a above), if min{λ, l} can
be determined in time O(lαf(n, m)) (for some α ≥ 1), then λ can be determined
in time O(λαf(n, m)).

Matula [1993] gave a linear-time 2+ε-approximative algorithm determining the
edge-connectivity. (Related work was done by Henzinger [1997].)

Galil and Italiano [1991] described a linear-time method to make from a graph
G a graph φk(G), with m+(k −2)n vertices and (2k −3)m edges such that: G is k-
edge-connected ⇐⇒ φk(G) is k-vertex-connected. This implies, for instance, that
3-edge-connectivity can be tested in linear time (as Hopcroft and Tarjan [1973b]
showed that 3-vertex-connectivity can be tested in linear time). Related work was
reported by Esfahanian and Hakimi [1984] and Padberg and Rinaldi [1990a].

Karger and Stein [1993,1996] gave a randomized minimum cut algorithm for
undirected graphs, with running time O(n2 log3 n). Karger [1996,2000] gave an im-
provement to O(m log3 n).

Nagamochi, Ono, and Ibaraki [1994] report on computational experiments with
the Nagamochi-Ibaraki algorithm. An experimental study of several minimum cut
algorithms was presented by Chekuri, Goldberg, Karger, Levine, and Stein [1997].

15.3b. Finding the 2-edge-connected components

Let G = (V, E) be an undirected graph and let k ∈ Z+. Consider the relation ∼ on
V defined by:

(15.12) u ∼ v ⇐⇒ G has k edge-disjoint u − v paths.

Then ∼ is an equivalence relation. This can be seen with Menger’s theorem. If u ∼ v
and v ∼ w, then u ∼ w; otherwise, there is a u − w cut C of size less than k. Then
C is also a u − v cut or a v − w cut, contradicting the fact that u ∼ v and v ∼ w.
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The equivalence classes are called the k-edge-connected components of G. So
the 1-edge connected components of G coincide with the components of G, and can
be found in linear time by Corollary 6.6a. Also for k = 2, the k-edge-connected
components can be found in linear time (Karzanov [1970]; we follow the proof of
Tarjan [1972]):

Theorem 15.12. Given an undirected graph G = (V, E), its 2-edge-connected com-
ponents can be found in linear time.

Proof. We may assume that G is connected, since by Corollary 6.6a, the compo-
nents of G can be found in linear time.

Choose s ∈ V arbitrarily, and consider a depth-first search tree T starting at
s. Orient each edge in T away from s. For each remaining edge e = uv, there is
a directed path in T that connects u and v. Let the path run from u to v. Then
orient e from v to u. This gives the orientation D of G.

Then any edge not in T belongs to a directed circuit in D. Moreover, any edge
in T that is not a cut edge, belongs to a directed circuit in D. Then the 2-edge-
connected components of G coincide with the strong components of D. By Theorem
6.6, these components can be found in linear time.

More on finding 2-edge-connected components can be found in Gabow [2000a].

15.4. Gomory-Hu trees

In previous sections of this chapter we have considered the problem of deter-
mining a minimum cut in a graph, where the minimum is taken over all pairs
s, t. The all-pairs minimum-size cut problem asks for a minimum s − t cut
for all pairs of vertices s, t. Clearly, this can be solved in time O(n2τ), where
τ is the time needed for finding a minimum s− t cut for any given s, t.

Gomory and Hu [1961] showed that for undirected graphs it can be done
faster, and that there is a concise structure, the Gomory-Hu tree, to represent
all minimum cuts. Similarly for the capacitated case.

Fix an undirected graph G = (V, E) and a capacity function c : E → R+.
A Gomory-Hu tree (for G and c) is a tree T = (V, F ) such that for each edge
e = st of T , δ(U) is a minimum-capacity s− t cut of G, where U is any of the
two components of T − e. (Note that it is not required that T is a subgraph
of G.)

Gomory and Hu [1961] showed that for each G, c there indeed exists a
Gomory-Hu tree, and that it can be found by n− 1 minimum-cut computa-
tions.

For distinct s, t ∈ V , define r(s, t) as the minimum capacity of an s − t
cut. The following triangle inequality holds:

(15.13) r(u, w) ≥ min{r(u, v), r(v, w)}
for all distinct u, v, w ∈ G. Now a Gomory-Hu tree indeed describes concisely
minimum-capacity s− t cuts for all s, t:
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Theorem 15.13. Let T = (V, F ) be a Gomory-Hu tree. Consider any s, t ∈
V , the s−t path P in T , an edge e = uv on P with r(u, v) minimum, and any
component K of T−e. Then r(s, t) = r(u, v) and δ(K) is a minimum-capacity
s− t cut.

Proof. Inductively, (15.13) gives r(s, t) ≥ r(u, v). Moreover, δ(K) is an s− t
cut, and hence r(s, t) ≤ c(δ(K)) = r(u, v).

To show that a Gomory-Hu tree does exist, we first prove:

Lemma 15.14α. Let s, t ∈ V , let δ(U) be a minimum-capacity s − t cut in
G, and let u, v ∈ U with u �= v. Then there exists a minimum-capacity u− v
cut δ(W ) with W ⊆ U .

Proof. Consider a minimum-capacity u− v cut δ(X). By symmetry we may
assume that s ∈ U (otherwise interchange s and t), t �∈ U , s ∈ X (otherwise
replace X by V \X), u ∈ X (otherwise interchange u and v), and v �∈ X. So
one of the diagrams of Figure 15.2 applies.

uu vv
ss

t t

XX

UU

t �∈ X t ∈ X

Figure 15.2

In particular, δ(U∩X) and δ(U \X) are u−v cuts. If t �∈ X, then δ(U∪X)
is an s− t cut. As

(15.14) c(δ(U ∩X)) + c(δ(U ∪X)) ≤ c(δ(U)) + c(δ(X))

and

(15.15) c(δ(U ∪X)) ≥ c(δ(U)),

we have c(δ(U ∩X)) ≤ c(δ(X)). So δ(U ∩X) is a minimum-capacity u − v
cut.

If t ∈ X, then δ(X \ U) is an s− t cut. As

(15.16) c(δ(U \X)) + c(δ(X \ U)) ≤ c(δ(U)) + c(δ(X))



250 Chapter 15. Connectivity and Gomory-Hu trees

and

(15.17) c(δ(X \ U)) ≥ c(δ(U)),

we have c(δ(U \ X)) ≤ c(δ(X)). So δ(U \ X) is a minimum-capacity u − v
cut.

This lemma is used in proving the existence of Gomory-Hu trees:

Theorem 15.14. For each graph G = (V, E) and each capacity function
c : E → R+ there exists a Gomory-Hu tree.

Proof. Define a Gomory-Hu tree for a set R ⊆ V to be a pair of a tree (R, T )
and a partition (Cr | r ∈ R) of V such that:

(15.18) (i) r ∈ Cr for each r ∈ R,
(ii) δ(U) is a minimum-capacity s− t cut for each edge e = st ∈ T ,

where U :=
⋃

u∈K

Cu and K is a component of T − e.

We show by induction on |R| that for each nonempty R ⊆ V there exists a
Gomory-Hu tree for R. Then for R = V we have a Gomory-Hu tree.

If |R| = 1, (15.18) is trivial, so assume |R| ≥ 2. Let δ(W ) be a minimum-
capacity cut separating at least one pair of vertices in R. Contract V \W to
one vertex, v′ say, giving graph G′. Let R′ := R ∩W . By induction, G′ has
a Gomory-Hu tree (R′, T ′), (C ′

r | r ∈ R′) for R′.
Similarly, contract W to one vertex, v′′ say, giving graph G′′. Let R′′ :=

R \W . By induction, G′′ has a Gomory-Hu tree (R′′, T ′′), (C ′′
r | r ∈ R′′) for

R′′.
Now let r′ ∈ R′ be such that v′ ∈ C ′

r′ . Similarly, let r′′ ∈ R′′ be such that
v′′ ∈ C ′′

r′′ . Let T := T ′ ∪ T ′′ ∪ {r′r′′}, Let Cr′ := C ′
r′ \ {v′} and let Cr := C ′

r

for all other r ∈ R′. Similarly, let Cr′′ := C ′′
r′′ \ {v′′} and let Cr := C ′′

r for all
other r ∈ R′′.

Now (R, T ) and the Cr form a Gomory-Hu tree for R. Indeed, for any
e ∈ T with e �= r′r′′, (15.18) follows from Lemma 15.14α. If e = r′r′′, then
U = W and δ(W ) is a minimum-capacity r′ − r′′ cut (as it is minimum-
capacity over all cuts separating at least one pair of vertices in R).

The method can be sharpened to give the following algorithmic result:

Theorem 15.15. A Gomory-Hu tree can be found by n − 1 applications of
a minimum-capacity cut algorithm.

Proof. In the proof of Theorem 15.14, it suffices to take for δ(W ) just a
minimum-capacity s− t cut for at least one pair s, t ∈ R. Then δ(W ) is also
a minimum-capacity r′− r′′ cut. For suppose that there exists an r′− r′′ cut
δ(X) of smaller capacity. We may assume that s ∈W and t �∈W . As δ(W ) is
a minimum-capacity s− t cut, δ(X) is not an s− t cut. So it should separate
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s and r′ or t and r′′. By symmetry, we may assume that it separates s and r′.
Then it also as is a u−v cut for some edge uv on the s−r′ path in T ′. Let uv
determine cut δ(U). This cut is an s − t cut, and hence c(δ(U)) ≥ c(δ(W )).
On the other hand, c(δ(U)) ≤ c(δ(X)), as δ(U) is a minimum-capacity u− v
cut. This contradicts our assumption that c(δ(X)) < c(δ(W )).

This implies for the running time:

Corollary 15.15a. A Gomory-Hu tree can be found in time O(nτ) time, if
for any s, t ∈ V a minimum-capacity s− t cut can be found in time τ .

Proof. Directly from Theorem 15.15.

Notes. The method gives an O(m2) method to find a Gomory-Hu tree for the
capacity function c = 1, since O(m2) = O(

∑
v d(v)m), and for each new vertex v a

minimum cut can be found in time O(d(v)m). Hao and Orlin [1992,1994] gave an
O(n3)-time method to find, for given graph G = (V, E) and s ∈ V , all minimum-
size s − t cuts for all t �= s (with push-relabel). Shiloach [1979b] gave an O(n2m)
algorithm to find a maximum number of edge-disjoint paths between all pairs of
vertices in an undirected graph. Ahuja, Magnanti, and Orlin [1993] showed that the
best directed all-pairs cut algorithm takes Ω(n2) max-flow iterations.

For planar graphs, Hartvigsen and Mardon [1994] gave an (n2 log n + m) al-
gorithm to find a Gomory-Hu tree (they observed that this bound can be derived
also from Frederickson [1987b]). This improves a result of Shiloach [1980a], who
gave an O(n2(log n)2)-time algorithm to find minimum-size cuts between all pairs
of vertices in a planar graph.

Theorem 15.13 implies that a Gomory-Hu tree for a graph G = (V, E) is a
maximum-weight spanning tree in the complete graph on V , for weight function
r(u, v). However, not every maximum-weight spanning tree is a Gomory-Hu tree
(for G = K1,2, c = 1, only G itself is a Gomory-Hu tree, but all spanning trees on
V K1,2 have the same weight).

More on Gomory-Hu trees can be found in Elmaghraby [1964], Hu and Shing
[1983], Agarwal, Mittal, and Sharma [1984], Granot and Hassin [1986], Hassin
[1988], Chen [1990], Gusfield [1990], Hartvigsen and Margot [1995], Talluri [1996],
Goldberg and Tsioutsiouliklis [1999,2001], and Hartvigsen [2001b]. Generalizations
were given by Cheng and Hu [1990,1991,1992] and Hartvigsen [1995] (to matroids).

15.4a. Minimum-requirement spanning tree

Hu [1974] gave the following additional application of Gomory-Hu trees. Let G =
(V, E) be an undirected graph and let r : E → R+ be a ‘requirement’ function (say,
the number of telephone calls to be made between the end vertices of e).

We want to find a tree T on V minimizing

(15.19)
∑

e∈E

r(e)distT (e),
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where distT (e) denotes the distance in T between the end vertices of e.
Now any Gomory-Hu tree T for G and capacity function r indeed minimizes

(15.19). To see this, let for any edge f of T , RT (f) be equal to the requirement (=
capacity) of the cut determined by the two components of T − f . Then (15.19) is
equal to

(15.20)
∑

f∈T

RT (f).

Now T minimizes (15.20), as was shown by Adolphson and Hu [1973]. For let T ′

be any other spanning tree on V . Then for each f = st ∈ T and each edge f ′ on
the s − t path in T ′ one has

(15.21) RT ′(f ′) ≥ RT (f),

since the components of T − f determine a minimum-capacity s − t cut, and since
the components of T ′ − f ′ determine an s − t cut. Since T and T ′ are spanning
trees, there exists a one-to-one function φ : T → T ′ such that for each f = st ∈ T ,
φ(f) is an edge on the s − t path in T ′.

To see this, let u be an end vertex of T . Let f = uv be the edge of T incident
with u, and define φ(f) to be the first edge of the u − v path in T ′. Delete f and
contract φ(f). Then induction gives the required function.

So (15.21) implies that (15.20) is not decreased by replacing T by T ′. Hence T
minimizes (15.20), and therefore also (15.19).

15.5. Further results and notes

15.5a. Ear-decomposition of undirected graphs

In Section 6.5c we characterized the strongly connected digraphs as those digraphs
having an ear-decomposition. We now consider the undirected case, and we will see
a correspondence between ear-decompositions and 2-(edge-)connected graphs.

Let G = (V, E) be an undirected graph. An ear of G is a path or circuit P in
G, of length ≥ 1, such that all internal vertices of P have degree 2 in G. The path
may consist of a single edge — so any edge of G is an ear. A proper ear is an ear
that is a path, that is, has two different ends.

If I is the set of internal vertices of an ear P , we say that G arises from G−I by
adding ear. An ear-decomposition of G is a series of graphs G0, G1, . . . , Gk, where
G0 = K1, Gk = G, and Gi arises from Gi−1 by adding an ear (i = 1, . . . , k).
If G0 = K2 and Gi arises from Gi−1 by adding a proper ear, it is a proper ear-
decomposition.

Graphs with a proper ear-decomposition were characterized by Whitney [1932b]:

Theorem 15.16. A graph G = (V, E) with |V | ≥ 2 has a proper ear-decomposition
if and only if G is 2-vertex-connected.

Proof. Necessity follows from the facts that K2 is 2-vertex-connected and that
2-vertex-connectivity is maintained under adding proper ears. To see sufficiency,
let G be 2-vertex-connected, and let G′ = (V ′, E′) be a subgraph of G that has a
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proper ear-decomposition, with |E′| as large as possible. Suppose that E′ �= E, and
let e = uv be an edge in E \ E′ incident with V ′; say u ∈ V ′. By the 2-connectivity
of G, there is a path from v to V ′ avoiding u. Let P be a shortest such path. Then
path e, P is a proper ear that can be added to G′, contradicting the maximality of
|E′|.

Similarly, graphs having an ear-decomposition are characterized by being 2-
edge-connected (this is implicit in Robbins [1939]):

Theorem 15.17. A graph G = (V, E) has an ear-decomposition if and only if G is
2-edge-connected.

Proof. Necessity follows from the facts that K1 is 2-edge-connected and that 2-
edge-connectivity is maintained under adding ears. To see sufficiency, let G be
2-edge-connected, and let G′ = (V ′, E′) be a subgraph of G that has an ear-
decomposition, with |E′| as large as possible. Suppose that E′ �= E, and let e = uv
be an edge in E \E′ incident with V ′; say u ∈ V ′. Let C be a circuit in G traversing
e. Let C start with u, e, . . .. Let s be the first vertex in C, after e, that belongs to V ′.
Then subpath P = u, e . . . , w of C is an ear that can be added to G′, contradicting
the maximality of |E′|.

15.5b. Further notes

Dinits, Karzanov, and Lomonosov [1976] showed that the set of all minimum-
capacity cuts of an undirected graph (with positive capacities on the edges) has
the ”cactus structure”, as follows. A cactus is a connected graph such that each
edge belongs to at most one circuit. Let G = (V, E) be a graph with a capacity
function c : E → Z+ such that the minimum cut capacity λ is positive. Then there
exist a cactus K with O(|V |) vertices and a function φ : V → V K such that for
each inclusionwise minimal cut δK(U) of K, the set δG(φ−1(U)) is a cut of capac-
ity λ, and such that each minimum-capacity cut in G can be obtained this way.
Moreover, K is a tree when λ is odd. It follows that the number of minimum-
capacity cuts is at most

(
n
2

)
(and at most n − 1 when λ is odd), and that the

vertices of G can be ordered as v1, . . . , vn so that each minimum-capacity cut is of
the form δ({vi, vi+1, . . . , vj}) for some i ≤ j. Related results can be found in Picard
and Queyranne [1980], Karzanov and Timofeev [1986], Gabow [1991b,1993b,1995c],
Gusfield and Naor [1993], Karger and Stein [1993,1996], Nagamochi, Nishimura,
and Ibaraki [1994,1997], Benczúr [1995], Henzinger and Williamson [1996], Karger
[1996,2000], Fleischer [1998a,1999b], Dinitz and Vainshtein [2000], and Nagamochi,
Nakao, and Ibaraki [2000].

Gusfield and Naor [1990,1991] considered the analogue of the Gomory-Hu tree
for vertex-cuts.

A theorem of Mader [1971] implies that each k-connected graph G = (V, E)
contains a k-connected spanning subgraph with O(k|V |) edges — similarly for k-
edge-connected. This was extended by Nagamochi and Ibaraki [1992a], showing
that for each k, each graph G = (V, E) has a subgraph Gk = (V, Ek) such that
|Ek| = O(k|V |) and such that for all s, t ∈ V :

(15.22) (i) λGk (s, t) ≥ min{λG(s, t), k},
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(ii) κGk (s, t) ≥ min{κG(s, t), k} if st �∈ E.

Here λH(s, t) (κH(s, t), respectively) denotes the maximum number of edge-disjoint
(internally vertex-disjoint, respectively) s − t paths in H. They also gave a linear-
time algorithm finding Gk. A shorter proof and a generalization was given by Frank,
Ibaraki, and Nagamochi [1993].

Frank [1995] showed that the following is implied by the existence of a Gomory-
Hu tree. Let G = (V, E) be an undirected graph of minimum degree k. Then there
exist two distinct vertices s, t ∈ V connected by k edge-disjoint paths. This follows
by taking for s a vertex of degree 1 in the Gomory-Hu tree, and for t its neighbour
in this tree. Then δE(s) is a minimum-size cut separating s and t.

Tamir [1994] observed that the up hull P of the incidence vectors of the non-
trivial cuts of an undirected graph G = (V, E) can be described as follows. Let
D = (V, A) be the digraph with A being the set of all ordered pairs (u, v) for ad-
jacent u, v ∈ V . Choose r ∈ V arbitrarily. Then P is equal to the projection to
x-space of the polyhedron in the variables x ∈ R

E and y ∈ R
A determined by:

(15.23) (i) y(a) ≥ 0 for each a ∈ A,
(ii) y(B) ≥ 1 for each r-arborescence B,

(iii) x(e) = y(u, v) + y(v, u) for each edge e = uv of G.

(Here an r-arborescence is a subset B of A such that (V, B) is a rooted tree rooted
at r.) This can be shown with the help of the results to be discussed in Chapter
53. To see this, consider any c ∈ R

E
+. Then the minimum value of cTx over all

x, y satisfying (15.23), is equal to the minimum value of dTy over all x, y satisfying
(15.23), where d(u, v) := c(uv) for each (u, v) ∈ A. This is equal to the minimum
value of dTy over all y satisfying (i) and (ii) of (15.23). By Corollary 53.1f, below this
is equal to the minimum d-weight of an r-cut in D, which is equal to the minimum
c-weight of a nontrivial cut in G.

No explicit description in terms of linear inequalities is known for the up hull of
the incidence vectors of nontrivial cuts. Alevras [1999] gave descriptions for small
instances (up to seven vertices for undirected graphs and up to five vertices for
directed graphs).

The minimum k-cut problem: ‘find a partition of the vertex set of a graph into
k nonempty classes such that the number of edges connecting different classes is
minimized’, is NP-complete if k is part of the input (there is an easy reduction
from the maximum clique problem, as the problem is equivalent to maximizing the
number of edges spanned by the classes in the partition). For fixed k however, it was
shown to be polynomial-time solvable by Goldschmidt and Hochbaum [1988,1994].
If we prescribe certain vertices to belong to the classes, the problem is NP-complete
even for k = 3 (Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [1992,
1994]). More on this problem can be found in Hochbaum and Shmoys [1985], Lee,
Park, and Kim [1989], Chopra and Rao [1991], Cunningham [1991], He [1991],
Saran and Vazirani [1991,1995], Garg, Vazirani, and Yannakakis [1994], Kapoor
[1996], Burlet and Goldschmidt [1997], Kamidoi, Wakabayashi, and Yoshida [1997],
Călinescu, Karloff, and Rabani [1998,2000], Hartvigsen [1998b], Karzanov [1998c],
Cunningham and Tang [1999], Karger, Klein, Stein, Thorup, and Young [1999],
Nagamochi and Ibaraki [1999a,2000], Nagamochi, Katayama, and Ibaraki [1999,
2000], Goemans and Williamson [2001], Naor and Rabani [2001], Zhao, Nagamochi,
and Ibaraki [2001], and Ravi and Sinha [2002].
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Surveys on connectivity are given by Even [1979], Mader [1979], Frank [1995],
and Subramanian [1995] (edge-connectivity). For the decomposition of 3-connected
graphs into 4-connected graphs, see Coullard, Gardner, and Wagner [1993].
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