
Chapter 1

Introduction

1.1. Introduction

Combinatorial optimization searches for an optimum object in a finite collec-
tion of objects. Typically, the collection has a concise representation (like a
graph), while the number of objects is huge — more precisely, grows exponen-
tially in the size of the representation (like all matchings or all Hamiltonian
circuits). So scanning all objects one by one and selecting the best one is not
an option. More efficient methods should be found.

In the 1960s, Edmonds advocated the idea to call a method efficient if its
running time is bounded by a polynomial in the size of the representation.
Since then, this criterion has won broad acceptance, also because Edmonds
found polynomial-time algorithms for several important combinatorial opti-
mization problems (like the matching problem). The class of polynomial-time
solvable problems is denoted by P.

Further relief in the landscape of combinatorial optimization was discov-
ered around 1970 when Cook and Karp found out that several other promi-
nent combinatorial optimization problems (including the traveling salesman
problem) are the hardest in a large natural class of problems, the class NP.
The class NP includes most combinatorial optimization problems. Any prob-
lem in NP can be reduced to such ‘NP-complete’ problems. All NP-complete
problems are equivalent in the sense that the polynomial-time solvability of
one of them implies the same for all of them.

Almost every combinatorial optimization problem has since been either
proved to be polynomial-time solvable or NP-complete — and none of the
problems have been proved to be both. This spotlights the big mystery:
are the two properties disjoint (equivalently, P�=NP), or do they coincide
(P=NP)?

This book focuses on those combinatorial optimization problems that have
been proved to be solvable in polynomial time, that is, those that have been
proved to belong to P. Next to polynomial-time solvability, we focus on the
related polyhedra and min-max relations.

These three aspects have turned out to be closely related, as was shown
also by Edmonds. Often a polynomial-time algorithm yields, as a by-product,

2 Chapter 1. Introduction

a description (in terms of inequalities) of an associated polyhedron. Con-
versely, an appropriate description of the polyhedron often implies the
polynomial-time solvability of the associated optimization problem, by ap-
plying linear programming techniques. With the duality theorem of linear
programming, polyhedral characterizations yield min-max relations, and vice
versa.

So the span of this book can be portrayed alternatively by those combi-
natorial optimization problems that yield well-described polyhedra and min-
max relations. This field of discrete mathematics is called polyhedral combi-
natorics. In the following sections we give some basic, illustrative examples.1

1.2. Matchings

Let G = (V, E) be an undirected graph and let w : E → R+. For any subset
F of E, denote

(1.1) w(F) :=
∑

e∈F

w(e).

We will call w(F) the weight of F .
Suppose that we want to find a matching (= set of disjoint edges) M in

G with weight w(M) as large as possible. In notation, we want to ‘solve’

(1.2) max{w(M) | M matching in G}.

We can formulate this problem equivalently as follows. For any matching M ,
denote the incidence vector of M in R

E by χM ; that is,

(1.3) χM (e) :=
{

1 if e ∈ M ,
0 if e �∈ M ,

for e ∈ E. Considering w as a vector in R
E , we have w(M) = wTχM . Hence

problem (1.2) can be rewritten as

(1.4) max{wTχM | M matching in G}.

This amounts to maximizing the linear function wTx over a finite set of
vectors. Therefore, the optimum value does not change if we maximize over
the convex hull of these vectors:

(1.5) max{wTx | x ∈ conv.hull{χM | M matching in G}}.

The set

(1.6) conv.hull{χM | M matching in G}
is a polytope in R

E , called the matching polytope of G. As it is a polytope,
there exist a matrix A and a vector b such that
1 Terms used but not introduced yet can be found later in this book — consult the Subject

Index.

Section 1.2. Matchings 3

(1.7) conv.hull{χM | M matching in G} = {x ∈ R
E | x ≥ 0, Ax ≤ b}.

Then problem (1.5) is equivalent to

(1.8) max{wTx | x ≥ 0, Ax ≤ b}.

In this way we have formulated the original combinatorial problem (1.2) as
a linear programming problem. This enables us to apply linear programming
methods to study the original problem.

The question at this point is, however, how to find the matrix A and the
vector b. We know that A and b do exist, but we must know them in order
to apply linear programming methods.

If G is bipartite, it turns out that the matching polytope of G is equal to
the set of all vectors x ∈ R

E satisfying

(1.9) x(e) ≥ 0 for e ∈ E,∑

e�v

x(e) ≤ 1 for v ∈ V .

(The sum ranges over all edges e containing v.) That is, for A we can take
the V × E incidence matrix of G and for b the all-one vector 1 in R

V .
It is not difficult to show that the matching polytope for bipartite graphs is

indeed completely determined by (1.9). First note that the matching polytope
is contained in the polytope determined by (1.9), since χM satisfies (1.9)
for each matching M . To see the reverse inclusion, we note that, if G is
bipartite, then the matrix A is totally unimodular, i.e., each square submatrix
has determinant belonging to {0, +1,−1}. (This easy fact will be proved in
Section 18.2.) The total unimodularity of A implies that the vertices of the
polytope determined by (1.9) are integer vectors, i.e., belong to Z

E . Now
each integer vector satisfying (1.9) must trivially be equal to χM for some
matching M . Hence, if G is bipartite, the matching polytope is determined
by (1.9).

We therefore can apply linear programming techniques to handle problem
(1.2). Thus we can find a maximum-weight matching in a bipartite graph in
polynomial time, with any polynomial-time linear programming algorithm.
Moreover, the duality theorem of linear programming gives

(1.10) max{w(M) | M matching in G} = max{wTx | x ≥ 0, Ax ≤ 1}
= min{yT1 | y ≥ 0, yTA ≥ wT}.

If we take for w the all-one vector 1 in R
E , we can derive from this Kőnig’s

matching theorem (Kőnig [1931]):

(1.11) the maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover,

where a vertex cover is a set of vertices intersecting each edge. Indeed, the
left-most expression in (1.10) is equal to the maximum size of a matching.
The minimum can be seen to be attained by an integer vector y, again by

4 Chapter 1. Introduction

the total unimodularity of A. This vector y is a 0, 1 vector in R
V , and hence

is the incidence vector χU of some subset U of V . Then yTA ≥ 1T implies
that U is a vertex cover. Therefore, the right-most expression is equal to the
minimum size of a vertex cover.

Kőnig’s matching theorem (1.11) is an example of a min-max formula
that can be derived from a polyhedral characterization. Conversely, min-max
formulas (in particular in a weighted form) often give polyhedral characteri-
zations.

The polyhedral description together with linear programming duality also
gives a certificate of optimality of a matching M : to convince your ‘boss’ that a
certain matching M has maximum size, it is possible and sufficient to display
a vertex cover of size |M |. In other words, it yields a good characterization
for the maximum-size matching problem in bipartite graphs.

1.3. But what about nonbipartite graphs?

If G is nonbipartite, the matching polytope is not determined by (1.9): if C is
an odd circuit in G, then the vector x ∈ R

E defined by x(e) := 1
2 if e ∈ EC

and x(e) := 0 if e �∈ EC, satisfies (1.9) but does not belong to the matching
polytope of G.

A pioneering and central theorem in polyhedral combinatorics of Edmonds
[1965b] gives a complete description of the inequalities needed to describe
the matching polytope for arbitrary graphs: one should add to (1.9) the
inequalities

(1.12)
∑

e⊆U

x(e) ≤ � 1
2 |U |� for each odd-size subset U of V .

Trivially, the incidence vector χM of any matching M satisfies (1.12). So the
matching polytope of G is contained in the polytope determined by (1.9) and
(1.12). The content of Edmonds’ theorem is the converse inclusion. This will
be proved in Chapter 25.

In fact, Edmonds designed a polynomial-time algorithm to find a maxi-
mum-weight matching in a graph, which gave this polyhedral characterization
as a by-product. Conversely, from the characterization one may derive the
polynomial-time solvability of the weighted matching problem, with the el-
lipsoid method. In applying linear programming methods for this, one will be
faced with the fact that the system Ax ≤ b consists of exponentially many
inequalities, since there exist exponentially many odd-size subsets U of V .
So in order to solve the problem with linear programming methods, we can-
not just list all inequalities. However, the ellipsoid method does not require
that all inequalities are listed a priori. It suffices to have a polynomial-time
algorithm answering the question:

(1.13) given x ∈ R
E , does x belong to the matching polytope of G?

Section 1.4. Hamiltonian circuits and the traveling salesman problem 5

Such an algorithm indeed exists, as it has been shown that the inequalities
(1.9) and (1.12) can be checked in time bounded by a polynomial in |V |, |E|,
and the size of x. This method obviously should avoid testing all inequalities
(1.12) one by one.

Combining the description of the matching polytope with the duality
theorem of linear programming gives a min-max formula for the maximum
weight of a matching. It again yields a certificate of optimality: if we have a
matching M , we can convince our ‘boss’ that M has maximum weight, by
supplying a dual solution y of objective value w(M). So the maximum-weight
matching problem has a good characterization — i.e., belongs to NP∩co-NP.

This gives one motivation for studying polyhedral methods. The ellip-
soid method proves polynomial-time solvability, it however does not yield a
practical method, but rather an incentive to search for a practically efficient
algorithm. The polyhedral method can be helpful also in this, e.g., by imi-
tating the simplex method with a constraint generation technique, or by a
primal-dual approach.

1.4. Hamiltonian circuits and the traveling salesman
problem

As we discussed above, matching is an area where the search for an inequal-
ity system determining the corresponding polytope has been successful. This
is in contrast with, for instance, Hamiltonian circuits. No full description in
terms of inequalities of the convex hull of the incidence vectors of Hamiltonian
circuits — the traveling salesman polytope — is known. The corresponding
optimization problem is the traveling salesman problem: ‘find a Hamiltonian
circuit of minimum weight’, which problem is NP-complete. This implies
that, unless NP=co-NP, there exist facet-inducing inequalities for the trav-
eling salesman polytope that have no polynomial-time certificate of validity.
Otherwise, linear programming duality would yield a good characterization.
So unless NP=co-NP there is no hope for an appropriate characterization of
the traveling salesman polytope.

Moreover, unless NP=P, there is no polynomial-time algorithm answering
the question

(1.14) given x ∈ R
E , does x belong to the traveling salesman polytope?

Otherwise, the ellipsoid method would give the polynomial-time solvability
of the traveling salesman problem.

Nevertheless, polyhedral combinatorics can be applied to the traveling
salesman problem in a positive way. If we include the traveling salesman
polytope in a larger polytope (a relaxation) over which we can optimize in
polynomial time, we obtain a polynomial-time computable bound for the
traveling salesman problem. The closer the relaxation is to the traveling
salesman polytope, the better the bound is. This can be very useful in a

6 Chapter 1. Introduction

branch-and-bound algorithm. This idea originates from Dantzig, Fulkerson,
and Johnson [1954b].

1.5. Historical and further notes

1.5a. Historical sketch on polyhedral combinatorics

The first min-max relations in combinatorial optimization were proved by Dénes
Kőnig [1916,1931], on edge-colouring and matchings in bipartite graphs, and by
Karl Menger [1927], on disjoint paths in graphs. The matching theorem of Kőnig
was extended to the weighted case by Egerváry [1931]. The proofs by Kőnig and
Egerváry were in principal algorithmic, and also for Menger’s theorem an algo-
rithmic proof was given in the 1930s. The theorem of Egerváry may be seen as
polyhedral.

Applying linear programming techniques to combinatorial optimization prob-
lems came along with the introduction of linear programming in the 1940s and
1950s. In fact, linear programming forms the hinge in the history of combinatorial
optimization. Its initial conception by Kantorovich and Koopmans was motivated
by combinatorial applications, in particular in transportation and transshipment.

After the formulation of linear programming as generic problem, and the devel-
opment in 1947 by Dantzig of the simplex method as a tool, one has tried to
attack about all combinatorial optimization problems with linear programming
techniques, quite often very successfully. In the 1950s, Dantzig, Ford, Fulkerson,
Hoffman, Kuhn, and others studied problems like the transportation, maximum
flow, and assignment problems. These problems can be reduced to linear program-
ming by the total unimodularity of the underlying matrix, thus yielding exten-
sions and polyhedral and algorithmic interpretations of the earlier results of Kőnig,
Egerváry, and Menger. Kuhn realized that the polyhedral methods of Egerváry for
weighted bipartite matching are in fact algorithmic, and yield the efficient ‘Hungar-
ian’ method for the assignment problem. Dantzig, Fulkerson, and Johnson gave a
solution method for the traveling salesman problem, based on linear programming
with a rudimentary, combinatorial version of a cutting plane technique.

A considerable extension and deepening, and a major justification, of the field
of polyhedral combinatorics was obtained in the 1960s and 1970s by the work and
pioneering vision of Jack Edmonds. He characterized basic polytopes like the match-
ing polytope, the arborescence polytope, and the matroid intersection polytope; he
introduced (with Giles) the important concept of total dual integrality; and he
advocated the interconnections between polyhedra, min-max relations, good char-
acterizations, and efficient algorithms. We give a few quotes in which Edmonds
enters into these issues.

In his paper presenting a maximum-size matching algorithm, Edmonds [1965d]
gave a polyhedral argument why an algorithm can lead to a min-max theorem:

It is reasonable to hope for a theorem of this kind because any problem which
involves maximizing a linear form by one of a discrete set of non-negative vectors
has associated with it a dual problem in the following sense. The discrete set
of vectors has a convex hull which is the intersection of a discrete set of half-
spaces. The value of the linear form is as large for some vector of the discrete set

Section 1.5a. Historical sketch on polyhedral combinatorics 7

as it is for any other vector in the convex hull. Therefore, the discrete problem
is equivalent to an ordinary linear programme whose constraints, together with
non-negativity, are given by the half-spaces. The dual (more precisely, a dual) of
the discrete problem is the dual of this ordinary linear programme.
For a class of discrete problems, formulated in a natural way, one may hope then
that equivalent linear constraints are pleasant enough though they are not explicit
in the discrete formulation.

In another paper (characterizing the matching polytope), Edmonds [1965b] stressed
that the number of inequalities is not relevant:

The results of this paper suggest that, in applying linear programming to a com-
binatorial problem, the number of relevant inequalities is not important but their
combinatorial structure is.

Also in a discussion at the IBM Scientific Computing Symposium on Combinatorial
Problems (March 1964 in Yorktown Heights, New York), Edmonds emphasized that
the number of facets of a polyhedron is not a measure of the complexity of the
associated optimization problem (see Gomory [1966]):

I do not believe there is any reason for taking as a measure of the algorithmic
difficulty of a class of combinatorial extremum problems the number of faces in the
associated polyhedra. For example, consider the generalization of the assignment
problem from bipartite graphs to arbitrary graphs. Unlike the case of bipartite
graphs, the number of faces in the associated polyhedron increases exponentially
with the size of the graph. On the other hand, there is an algorithm for this
generalized assignment problem which has an upper bound on the work involved
just as good as the upper bound for the bipartite assignment problem.

After having received support from H.W. Kuhn and referring to Kuhn’s maximum-
weight bipartite matching algorithm, Edmonds continued:

This algorithm depends crucially on what amounts to knowing all the bounding
inequalities of the associated convex polyhedron—and, as I said, there are many
of them. The point is that the inequalities are known by an easily verifiable
characterization rather than by an exhaustive listing—so their number is not
important.
This sort of thing should be expected for a class of extremum problems with a
combinatorially special structure. For the traveling salesman problem, the ver-
tices of the associated polyhedron have a simple characterization despite their
number—so might the bounding inequalities have a simple characterization de-
spite their number. At least we should hope they have, because finding a really
good traveling salesman algorithm is undoubtedly equivalent to finding such a
characterization.

So Edmonds was aware of the correlation of good algorithms and polyhedral char-
acterizations, which later got further support by the ellipsoid method.

Also during the 1960s and 1970s, Fulkerson designed the clarifying framework of
blocking and antiblocking polyhedra, throwing new light by the classical polarity of
vertices and facets of polyhedra on combinatorial min-max relations and enabling,
with a theorem of Lehman, the deduction of one polyhedral characterization from
another. It stood at the basis of the solution of Berge’s perfect graph conjecture in
1972 by Lovász, and it also inspired Seymour to obtain several other basic results
in polyhedral combinatorics.

8 Chapter 1. Introduction

1.5b. Further notes

Raghavan and Thompson [1987] showed that randomized rounding of an optimum
fractional solution to a combinatorial optimization problem yields, with high prob-
ability, an integer solution with objective value close to the value of the fractional
solution (hence at least as close to the optimum value of the combinatorial prob-
lem). Related results were presented by Raghavan [1988], Plotkin, Shmoys, and
Tardos [1991,1995], and Srinivasan [1995,1999].

Introductions to combinatorial optimization (and more than that) can be found
in the books by Lawler [1976b], Papadimitriou and Steiglitz [1982], Sys�lo, Deo,
and Kowalik [1983], Nemhauser and Wolsey [1988], Parker and Rardin [1988],
Cook, Cunningham, Pulleyblank, and Schrijver [1998], Mehlhorn and Näher [1999],
and Korte and Vygen [2000]. Focusing on applying geometric algorithms in com-
binatorial optimization are Lovász [1986] and Grötschel, Lovász, and Schrijver
[1988]. Bibliographies on combinatorial optimization were given by Kastning [1976],
Golden and Magnanti [1977], Hausmann [1978b], von Randow [1982,1985,1990], and
O’hEigeartaigh, Lenstra, and Rinnooy Kan [1985].

Survey papers on polyhedral combinatorics and min-max relations were pre-
sented by Hoffman [1979], Pulleyblank [1983,1989], Schrijver [1983a,1986a,1987,
1995], and Grötschel [1985], on geometric methods in combinatorial optimization
by Grötschel, Lovász, and Schrijver [1984b], and on polytopes and complexity by
Papadimitriou [1984].

Chapter 2

General preliminaries

We give general preliminaries on sets, numbers, orders, vectors, matrices,
and functions, we discuss how to interpret maxima, minima, and infinity,
and we formulate and prove Fekete’s lemma.

2.1. Sets

A large part of the sets considered in this book are finite. We often
neglect mentioning this when introducing a set. For instance, graphs
in this book are finite graphs, except if we explicitly mention otherwise. Sim-
ilarly for other structures like hypergraphs, matroids, families of sets, etc.
Obvious exceptions are the sets of reals, integers, etc.

We call a subset Y of a set X proper if Y �= X. Similarly, any other
substructure like subgraph, minor, etc. is called proper if it is not equal to
the structure of which it is a substructure.

A family is a set in which elements may occur more than once. More
precisely, each element has a multiplicity associated. Sometimes, we indicate
a family by (A1, . . . , An) or (Ai | i ∈ I).

A collection is synonymous with set, but is usually used for a set whose
elements are sets. Also class and system are synonyms of set, and are usually
used for sets of structures, like a set of graphs, inequalities, or curves.

A set is called odd (even) if its size is odd (even). We denote for any set
X:

(2.1) P(X) := collection of all subsets of X,
Podd(X) := collection of all odd subsets Y of X,
Peven(X) := collection of all even subsets Y of X.

Odd and even are called parities.
We sometimes say that if s ∈ U , then U covers s and s covers U . A set

U is said to separate s and t if s �= t and |U ∩ {s, t}| = 1. Similarly, a set U
is said to separate sets S and T if S ∩ T = ∅ and U ∩ (S ∪ T) ∈ {S, T}.

We denote the symmetric difference of two sets S and T by S�T :

(2.2) S�T = (S \ T) ∪ (T \ S).

10 Chapter 2. General preliminaries

We sometimes use the following shorthand notation, where X is a set and y
an ‘element’:

(2.3) X + y := X ∪ {y} and X − y := X \ {y}.

We say that sets S1, S2, . . . , Sk are disjoint if they are pairwise disjoint:

(2.4) Si ∩ Sj = ∅ for distinct i, j ∈ {1, . . . , k}.

A partition of a set X is a collection of disjoint subsets of X with union X.
The elements of the partition are called its classes.

As usual:

(2.5) X ⊆ Y means that X is a subset of Y ,
X ⊂ Y means that X is a proper subset of Y , that is: X ⊆ Y
and X �= Y .

Two sets X, Y are comparable if X ⊆ Y or Y ⊆ X. A collection of pairwise
comparable sets is called a chain.

Occasionally, we need the following inequality:

Theorem 2.1. If T and U are subsets of a set S with T �⊆ U and U �⊆ T ,
then

(2.6) |T ||T | + |U ||U | > |T ∩ U ||T ∩ U | + |T ∪ U ||T ∪ U |,
where X := S \ X for any X ⊆ S.

Proof. Define α := |T ∩ U |, β := |T \ U |, γ := |U \ T |, and δ := |T ∪ U |.
Then:

(2.7) |T ||T | + |U ||U | = (α + β)(γ + δ) + (α + γ)(β + δ)
= 2αδ + 2βγ + αγ + βδ + αβ + γδ

and

(2.8) |T ∩ U ||T ∩ U | + |T ∪ U ||T ∪ U | = α(β + γ + δ) + (α + β + γ)δ
= 2αδ + αγ + βδ + αβ + γδ.

Since βγ > 0, (2.6) follows.

A set U is called an inclusionwise minimal set in a collection C of sets
if U ∈ C and there is no T ∈ C with T ⊂ U . Similarly, U is called an
inclusionwise maximal set in C if U ∈ C and there is no T ∈ C with T ⊃ U .

We sometimes use the term minimal for inclusionwise minimal, and min-
imum for minimum-size. Similarly, we sometimes use maximal for inclu-
sionwise maximal, and maximum for maximum-size (or maximum-value for
flows).

A metric on a set V is a function µ : V × V → R+ such that µ(v, v) = 0,
µ(u, v) = µ(v, u), and µ(u, w) ≤ µ(u, v) + µ(v, w) for all u, v, w ∈ V .

Section 2.4. Vectors, matrices, and functions 11

2.2. Orders

A relation ≤ on a set X is called a pre-order if it is reflexive (x ≤ x for all
x ∈ X) and transitive (x ≤ y and y ≤ z implies x ≤ z). It is a partial order
if it is moreover anti-symmetric (x ≤ y and y ≤ x implies x = y). The pair
(X, ≤) is called a partially ordered set if ≤ is a partial order.

A partial order ≤ is a linear order or total order if x ≤ y or y ≤ x for
all x, y ∈ X. If X = {x1, . . . , xn} and x1 < x2 < · · · < xn, we occasionally
refer to the linear order ≤ by x1, . . . , xn or x1 < · · · < xn. A linear order �
is called a linear extension of a partial order ≤ if x ≤ y implies x � y.

In a partially ordered set (X, ≤), a lower ideal is a subset Y of X such
that if y ∈ Y and z ≤ y, then z ∈ Y . Similarly, an upper ideal is a subset Y
of X such that if y ∈ Y and z ≥ y, then z ∈ Y . Alternatively, Y is called
down-monotone if Y is a lower ideal, and up-monotone if Y is an upper ideal.

If (X, ≤) is a linearly ordered set, then the lexicographic order � on⋃
k≥0 Xk is defined by:

(2.9) (v1, . . . , vt) ≺ (u1, . . . , us) ⇐⇒ the smallest i with vi �= ui

satisfies vi < ui,

where we set vi :=void if i > t, ui :=void if i > s, and void< x for all x ∈ X.

2.3. Numbers

Z, Q, and R denote the sets of integers, rational numbers, and real numbers,
respectively. The subscript + restricts the sets to the nonnegative numbers:

(2.10) Z+ := {x ∈ Z | x ≥ 0}, Q+ := {x ∈ Q | x ≥ 0},
R+ := {x ∈ R | x ≥ 0}.

Further we denote for any x ∈ R:

(2.11) �x� := largest integer y satisfying y ≤ x,
�x� := smallest integer y satisfying y ≥ x.

2.4. Vectors, matrices, and functions

All vectors are assumed to be column vectors. The components or entries of a
vector x = (x1, . . . , xn)T are x1, . . . , xn. The support of x is the set of indices
i with xi �= 0. The size of a vector x is the sum of its components.

A 0, 1 vector, or a {0, 1}-valued vector, or a simple vector, is a vector with
all entries in {0, 1}. An integer vector is a vector with all entries integer.

We identify the concept of a function x : V → R with that of a vector
x in R

V . Its components are denoted equivalently by x(v) or xv. An integer
function is an integer-valued function.

For any U ⊆ V , the incidence vector of U (in R
V) is the vector χU defined

by:

12 Chapter 2. General preliminaries

(2.12) χU (s) :=
{

1 if s ∈ U ,
0 if s �∈ U .

For any u ∈ V we set

(2.13) χu := χ{u}.

This is the uth unit base vector. Given a vector space R
V for some set V , the

all-one vector is denoted by 1V or just by 1, and the all-zero vector by 0V

or just by 0. Similarly, 2V or 2 is the all-two vector. We use ∞ for the all-∞
vector.

If a = (a1, . . . , an)T and b = (b1, . . . , bn)T are vectors, we write a ≤ b if
ai ≤ bi for i = 1, . . . , n, and a < b if ai < bi for i = 1, . . . , n.

If A is a matrix and x, b, y, and c are vectors, then when using notation
like

(2.14) Ax = b, Ax ≤ b, yTA = cT, cTx,

we often implicitly assume compatibility of dimensions.
For any vector x = (x1, . . . , xn)T:

(2.15) ‖x‖1 := |x1| + · · · + |xn| and ‖x‖∞ := max{|x1|, . . . , |xn|}.

A hyperplane in R
n is a set H with H = {x ∈ R

n | cTx = δ} for some
c ∈ R

n with c �= 0 and some δ ∈ R.
If U and V are sets, then a U×V matrix is a matrix whose rows are indexed

by the elements of U and whose columns are indexed by the elements of V .
Generally, when using this terminology, the order of the rows or columns is
irrelevant. For a U × V matrix M and u ∈ U , v ∈ V , the entry in position
u, v is denoted by Mu,v. The all-one U × V matrix is denoted by JU×V , or
just by J .

The tensor product of vectors x ∈ R
U and y ∈ R

V is the vector x ◦ y in
R

U×V defined by:

(2.16) (x ◦ y)(u,v) := xuyv

for u ∈ U and v ∈ V .
The tensor product of a W × X matrix M and a Y × Z matrix N (where

W, X, Y, Z are sets), is the (W × Y) × (X × Z) matrix M ◦ N defined by

(2.17) (M ◦ N)(w,y),(x,z) := Mw,xNy,z

for w ∈ W , x ∈ X, y ∈ Y , z ∈ Z.
The C × V incidence matrix of a collection or family C of subsets of a set

V is the C × V matrix M with MC,v := 1 if v ∈ C and MC,v := 0 if v �∈ C
(for C ∈ C, v ∈ V). Similarly, the V × C incidence matrix is the transpose of
this matrix.

For any function w : V → R and any U ⊆ V , we denote

(2.18) w(U) :=
∑

v∈U

w(v).

Section 2.4. Vectors, matrices, and functions 13

If U is a family, we take multiplicities into account (so if v occurs k times in
U , w(v) occurs k times in sum (2.18)).

If w is introduced as a ‘weight function’, then w(v) is called the weight
of v, and for any U ⊆ V , w(U) is called the weight of U . Moreover, for any
x : V → R, we call wTx the weight of x. If confusion may arise, we call w(U)
and wTx the w-weight of U and x, respectively.

The adjective ‘weight’ to ‘function’ has no mathematical meaning, and im-
plies no restriction, but is just introduced to enable referring to w(v) or w(U)
as the weight of v or U . Similarly, for ‘length function’, ‘cost function’, ‘profit
function’, ‘capacity function’, ‘demand function’, etc., leading to the length,
cost, profit, capacity, demand, etc. of elements or of subsets. Obviously, short-
est and longest are synonyms for ‘minimum-length’ and ‘maximum-length’.

A permutation matrix is a square {0, 1} matrix, with exactly one 1 in each
row and in each column.

Vectors x1, . . . , xk are called affinely independent if there do not exist
λ1, . . . , λk ∈ R such that λ1x1 + · · · + λkxk = 0 and λ1 + · · · + λk = 0 and
such that the λi are not all equal to 0.

Vectors x1, . . . , xk are called linearly independent if there do not exist
λ1, . . . , λk ∈ R such that λ1x1 + · · · + λkxk = 0 and such that the λi are not
all equal to 0. The linear hull of a set X is denoted by lin.hullX or lin.hull(X).

If X and Y are subsets of a linear space L over a field F, z ∈ L, and
λ ∈ F, then

(2.19) z + X := {z + x | x ∈ X}, X + Y := {x + y | x ∈ X, y ∈ Y }, and
λX = {λx | x ∈ X}.

If X and Y are subspaces of L, then

(2.20) X/Y := {x + Y | x ∈ X}
is a quotient space, which is again a linear space, with addition and scalar
multiplication given by (2.19). The dimension of X/Y is equal to dim(X) −
dim(X ∩ Y).

A function f : X → Y is called an injection or an injective function if it
is one-to-one: if x, x′ ∈ X and x �= x′, then f(x) �= f(x′). The function f is
a surjection if it is onto: for each y ∈ Y there is an x ∈ X with f(x) = y. It
is a bijection if it is both an injection and a surjection.

For a vector x = (x1, . . . , xn)T ∈ R
n, we denote

(2.21) �x� := (�x1�, . . . , �xn�)T and �x� := (�x1�, . . . , �xn�)T.

If f, g : X → R are functions, we say that f(x) is O(g(x)), in notation

(2.22) f(x) = O(g(x)) or O(f(x)) = O(g(x)),

if there exists a constant c ≥ 0 with f(x) ≤ cg(x) + c for all x ∈ X. Hence
the relation = given in (2.22) is transitive, but not symmetric. We put

(2.23) g(x) = Ω(f(x))

if f(x) = O(g(x)).

14 Chapter 2. General preliminaries

2.5. Maxima, minima, and infinity

In this book, when speaking of a maximum or minimum, we often implicitly
assume that the optimum is finite. If the optimum is not finite, consistency
in min-max relations usually can be obtained by setting a minimum over
the empty set to +∞, a maximum over a set without upper bound to +∞, a
maximum over the empty set to 0 or −∞ (depending on what is the universe),
and a minimum over a set without lower bound to −∞. This usually leads
to trivial, or earlier proved, statements.

When we speak of making a value infinite, usually large enough will suffice.
If we consider maximizing a function f(x) over x ∈ X, we call any x ∈ X

a feasible solution, and any x ∈ X maximizing f(x) an optimum solution.
Similarly for minimizing.

2.6. Fekete’s lemma

We will need the following result called Fekete’s lemma, due to Pólya and
Szegő [1925] (motivated by a special case proved by Fekete [1923]):

Theorem 2.2 (Fekete’s lemma). Let a1, a2, . . . be a sequence of reals such
that an+m ≥ an + am for all positive n, m ∈ Z. Then

(2.24) lim
n→∞

an

n
= sup

n

an

n
.

Proof. For all i, j, k ≥ 1 we have ajk+i ≥ jak+ai, by the inequality prescribed
in the theorem. Hence for all fixed i, k ≥ 1 we have

(2.25) lim inf
j→∞

ajk+i

jk + i
≥ lim inf

j→∞
jak + ai

jk + i
= lim inf

j→∞
(
ak

k

jk

jk + i
+

ai

jk + i
)

=
ak

k
.

As this is true for each i, we have for each fixed k ≥ 1:

(2.26) lim inf
n→∞

an

n
= inf

i=1,...,k
lim inf
j→∞

ajk+i

jk + i
≥ ak

k
.

So

(2.27) lim inf
n→∞

an

n
≥ sup

k

ak

k
,

implying (2.24).

We sometimes use the multiplicative version of Fekete’s lemma:

Corollary 2.2a. Let a1, a2, . . . be a sequence of positive reals such that
an+m ≥ anam for all positive n, m ∈ Z. Then

Section 2.6. Fekete’s lemma 15

(2.28) lim
n→∞

n
√

an = sup
n

n
√

an.

Proof. Directly from Theorem 2.2 applied to the sequence log a1, log a2,

Chapter 3

Preliminaries on graphs

This chapter is not meant as a rush course in graph theory, but rather as
a reference guide and to settle notation and terminology.
To promote readability of the book, nonstandard notation and terminology
will be, besides below in this chapter, also explained on the spot in later
chapters.

3.1. Undirected graphs

A graph or undirected graph is a pair G = (V, E), where V is a finite set
and E is a family of unordered pairs from V . The elements of V are called
the vertices, sometimes the nodes or the points. The elements of E are called
the edges, sometimes the lines. We use the following shorthand notation for
edges:

(3.1) uv := {u, v}.

We denote

(3.2) V G := set of vertices of G,
EG := family of edges of G.

In running time estimates of algorithms, we denote:

(3.3) n := |V G| and m := |EG|.
In the definition of graph we use the term ‘family’ rather than ‘set’, to

indicate that the same pair of vertices may occur several times in E. A pair
occurring more than once in E is called a multiple edge, and the number of
times it occurs is called its multiplicity. Two edges are called parallel if they
are represented by the same pair of vertices. A parallel class is a maximal set
of pairwise parallel edges.

So distinct edges may be represented in E by the same pair of vertices.
Nevertheless, we will often speak of ‘an edge uv’ or even of ‘the edge uv’,
where ‘an edge of type uv’ would be more correct.

Also loops are allowed: edges that are families of the form {v, v}. Graphs
without loops and multiple edges are called simple, and graphs without loops
are called loopless. A vertex v is called a loopless vertex if {v, v} is not a loop.

Section 3.1. Undirected graphs 17

An edge uv is said to connect u and v. The vertices u and v are called the
ends of the edge uv. If there exists an edge connecting vertices u and v, then
u and v are called adjacent or connected, and v is called a neighbour of u.
The edge uv is said to be incident with, or to meet, or to cover, the vertices u
and v, and conversely. The edges e and f are said to be incident, or to meet,
or to intersect, if they have a vertex in common. Otherwise, they are called
disjoint.

If U ⊆ V and both ends of an edge e belong to U , then we say that U
spans e. If at least one end of e belongs to U , then U is said to be incident
with e. An edge connecting a vertex in a set S and a vertex in a set T is said
to connect S and T . A set F of edges is said to cover a vertex v if v is covered
by at least one edge in F , and to miss v otherwise.

For a vertex v, we denote:

(3.4) δG(v) := δE(v) := δ(v) := family of edges incident with v,
NG(v) := NE(v) := N(v) := set of neighbours of v.

Here and below, notation with the subscript deleted is used if the graph is
clear from the context. We speak in the definition of δ(v) of the family of
edges incident with v, since any loop at v occurs twice in δ(v).

The degree degG(v) of a vertex v is the number of edges incident with v.
In notation,

(3.5) degG(v) := degE(v) := deg(v) := |δG(v)|.
A vertex of degree 0 is called isolated, and a vertex of degree 1 an end vertex.
A vertex of degree k is called k-valent. So isolated vertices are loopless.

We denote

(3.6) ∆(G) := maximum degree of the vertices of G,
δ(G) := minimum degree of the vertices of G.

∆(G) and δ(G) are called the maximum degree and minimum degree of G,
respectively.

If ∆(G) = δ(G), that is, if all degrees are equal, G is called regular. If all
degrees are equal to k, the graph is called k-regular. A 3-regular graph is also
called a cubic graph.

If G = (V, E) and G′ = (V ′, E′) are graphs, we denote by G + G′ the
graph

(3.7) G + G′ := (V ∪ V ′, E ∪ E′)

where E ∪ E′ is the union of E and E′ as families (taking multiplicities into
account).

18 Chapter 3. Preliminaries on graphs

Complementary, complete, and line graph

The complementary graph or complement of a graph G = (V, E) is the simple
graph with vertex set V and edges all pairs of distinct vertices that are
nonadjacent in G. In notation,

(3.8) G := the complementary graph of G.

So if G is simple, then G = G.
A graph G is called complete if G is simple and any two distinct vertices

are adjacent. In notation,

(3.9) Kn := complete graph with n vertices.

As Kn is unique up to isomorphism, we often speak of the complete graph
on n vertices.

The line graph of a graph G = (V, E) is the simple graph with vertex set
E, where two elements of E are adjacent if and only if they meet. In notation,

(3.10) L(G) := the line graph of G.

Subgraphs

A graph G′ = (V ′, E′) is called a subgraph of a graph G = (V, E) if V ′ ⊆ V
and E′ ⊆ E. If H is a subgraph of G, we say that G contains H. If G′ �= G,
then G′ is called a proper subgraph of G. If V ′ = V , then G′ is called a
spanning subgraph of G. If E′ consists of all edges of G spanned by V ′, G′ is
called an induced subgraph, or the subgraph induced by V ′. In notation,

(3.11) G[V ′] := subgraph of G induced by V ′,
E[V ′] := family of edges spanned by V ′.

So G[V ′] = (V ′, E[V ′]). We further denote for any graph G = (V, E) and for
any vertex v, any subset U of V , any edge e, and any subset F of E,

(3.12) G − v := G[V \ {v}], G − U := G[V \ U], G − e := (V, E \ {e}),
G − F := (V, E \ F).

We say that these graphs arise from G by deleting v, U , e, or F . (We realize
that, since an edge e is a set of two vertices, the notation G − e might be
ambiguous (if we would consider U := e). We expect, however, that the
appropriate interpretation will be clear from the context.)

Two subgraphs of G are called edge-disjoint if they have no edge in com-
mon, and vertex-disjoint or disjoint, if they have no vertex in common.

In many cases we deal with graphs up to isomorphism. For instance, if G
and H are graphs, we say that a subgraph G′ of G is an H subgraph if G′ is
isomorphic to H.

Section 3.1. Undirected graphs 19

Paths and circuits

A walk in an undirected graph G = (V, E) is a sequence

(3.13) P = (v0, e1, v1, . . . , ek, vk),

where k ≥ 0, v0, v1, . . . , vk are vertices, and ei is an edge connecting vi−1 and
vi (for i = 1, . . . , k). If v0, v1, . . . , vk are all distinct, the walk is called a path.
(Hence e1, . . . , ek are distinct.)

The vertex v0 is called the starting vertex or first vertex of P and the
vertex vk the end vertex or last vertex of P . Sometimes, both v0 and vk are
called the end vertices, or just the ends of P . Similarly, edge e1 is called the
starting edge or first edge of P , and edge ek the end edge or last edge of P .
Sometimes, both e1 and ek are called the end edges.

The walk P is said to connect v0 and vk, to run from v0 to vk (or between
v0 and vk), and to traverse v0, e1, v1, . . . , ek, vk. The vertices v1, . . . , vk−1 are
called the internal vertices of P . For s, t ∈ V , the walk P is called an s − t
walk if it runs from s to t, and for S, T ⊆ V , it is called an S − T walk if it
runs from a vertex in S to a vertex in T . Similarly, s − T walks and S − t
walks run form s to a vertex in T and from a vertex in S to t, respectively.

The number k is called the length of P . (We deviate from this in case a
function l : E → R has been introduced as a length function. Then the length
of P is equal to l(e1) + · · · + l(ek).) A walk is called odd (even, respectively)
if its length is odd (even, respectively).

The minimum length of a path connecting u and v is called the distance
of u and v. The maximum distance over all vertices u, v of G is called the
diameter of G.

The reverse walk P−1 of P is the walk obtained from (3.13) by reversing
the order of the elements:

(3.14) P−1 := (vk, ek, vk−1, . . . , e1, v0).

If P = (v0, e1, v1, . . . , ek, vk) and Q = (u0, f1, u1, . . . , fl, ul) are walks satisfy-
ing u0 = vk, the concatenation PQ of P and Q is the walk

(3.15) PQ := (v0, e1, v1, . . . , ek, vk, f1, u1, . . . , fl, ul).

For any walk P , we denote by V P and EP the families of vertices and edges,
respectively, occurring in P :

(3.16) V P := {v0, v1, . . . , vk} and EP := {e1, . . . , ek}.

A chord of P is an edge of G that is not in EP and that connects two
vertices of P . The path P is called chordless if P has no chords.

If no confusion may arise, we sometimes identify the walk P with the
subgraph (V P, EP) of G, or with the set V P of vertices in P , or with the
family EP of edges in P . If the graph is simple or if the edges traversed are
irrelevant, we indicate the walk just by the sequence of vertices traversed:

(3.17) P = (v0, v1, . . . , vk) or P = v0, v1, . . . , vk.

20 Chapter 3. Preliminaries on graphs

A simple path may be identified by the sequence of edges:

(3.18) P = (e1, . . . , ek) or P = e1, . . . , ek.

We denote

(3.19) Pn := a path with n vertices,

usually considered as the graph (V Pn, EPn). This graph is unique up to
isomorphism.

Two walks P and Q are called vertex-disjoint or disjoint if V P and V Q are
disjoint, internally vertex-disjoint or internally disjoint if the set of internal
vertices of P is disjoint from the set of internal vertices of Q, and edge-disjoint
if EP and EQ are disjoint.

The walk P in (3.13) is called closed if vk = v0. It is called a circuit if
vk = v0, k ≥ 1, v1, . . . , vk are all distinct, and e1, . . . , ek are all distinct.

The circuit is also called a k-circuit. If k = 1, then e1 must be a loop,
and if k = 2, e1 and e2 are (distinct) parallel edges. If k = 3, the circuit is
sometimes called a triangle.

The above definition of chord of a walk implies that an edge e of G is a
chord of a circuit C if e connects two vertices in V C but does not belong to
EC. A chordless circuit is a circuit without chords.

We denote

(3.20) Cn := a circuit with n edges,

usually considered as the graph (V Cn, ECn). Again, this graph is unique up
to isomorphism.

For any graph G = (V, E), a subset F of E is called a cycle if each degree
of the subgraph (V, F) is even. One may check that for any F ⊆ E:

(3.21) F is a cycle ⇐⇒ F is the symmetric difference of the edge sets
of a number of circuits.

Connectivity and components

A graph G = (V, E) is connected if for any two vertices u and v there is a path
connecting u and v. A maximal connected nonempty subgraph of G is called
a connected component, or just a component, of G. Here ‘maximal’ is taken
with respect to taking subgraphs. Each component is an induced subgraph,
and each vertex and each edge of G belong to exactly one component.

We often identify a component K with the set V K of its vertices. Then the
components are precisely the equivalence classes of the equivalence relation
∼ on V defined by: u ∼ v ⇐⇒ there exists a path connecting u and v.

A component is called odd (even) if it has an odd (even) number of ver-
tices.

Section 3.1. Undirected graphs 21

Cuts

Let G = (V, E) be a graph. For any U ⊆ V , we denote

(3.22) δG(U) := δE(U) := δ(U) := set of edges of G connecting U and
V \ U .

A subset F of E is called a cut, if F = δ(U) for some U ⊆ V . In particular,
∅ is a cut. If ∅ �= U �= V , then δ(U) is called a nontrivial cut. (So ∅ is a
nontrivial cut if and only if G is disconnected.) It is important to observe
that for any two sets T, U ⊆ V :

(3.23) δ(T)�δ(U) = δ(T�U).

Hence the collection of cuts is closed under taking symmetric differences.
If s ∈ U and t �∈ U , then δ(U) is called an s − t cut. If S ⊆ U and

T ⊆ V \U , δ(U) is called an S −T cut. An edge-cut of size k is called a k-cut.
A subset F of E is called a disconnecting edge set if G−F is disconnected.

For s, t ∈ V , if F intersects each s− t path, then F is said to disconnect or to
separate s and t, or to be s−t disconnecting or s−t separating. For S, T ⊆ V ,
if F intersects each S − T path, then F is said to disconnect or to separate S
and T , or to be S − T disconnecting or S − T separating.

One may easily check that for all s, t ∈ V :

(3.24) each s − t cut is s − t disconnecting; each inclusionwise minimal
s − t disconnecting edge set is an s − t cut.

An edge e of G is called a bridge if {e} is a cut. A graph having no bridges
is called bridgeless.

For any subset U of V we denote

(3.25) dG(U) := dE(U) := d(U) := |δ(U)|.
Moreover, for subsets U, W of V :

(3.26) E[U, W] := {e ∈ E | ∃u ∈ U, w ∈ W : e = uw}.

The following is straightforward and very useful:

Theorem 3.1. For all U, W ⊆ V :

(3.27) d(U) + d(W) = d(U ∩ W) + d(U ∪ W) + 2|E[U \ W, W \ U]|.
Proof. Directly by counting edges.

This in particular gives:

Corollary 3.1a. For all U, W ⊆ V :

(3.28) d(U) + d(W) ≥ d(U ∩ W) + d(U ∪ W).

Proof. Directly from Theorem 3.1.

A cut of the form δ(v) for some vertex v is called a star.

22 Chapter 3. Preliminaries on graphs

Neighbours and vertex-cuts

Let G = (V, E) be a graph. For any U ⊆ V , we call a vertex v a neighbour of
U if v �∈ U and v has a neighbour in U . We denote

(3.29) NG(U) := NE(U) := N(U) := set of neighbours of U .

We further denote

(3.30) N2(v) := N(N(v)) \ {v}.

A subset U of V is called a disconnecting vertex set, or a vertex-cut, if
G − U is disconnected. A vertex-cut of size k is called a k-vertex-cut. A cut
vertex is a vertex v of G for which G − v has more components than G has.

For s, t ∈ V , if U intersects each s − t path, then U is said to disconnect
s and t, or called s − t disconnecting. If moreover s, t �∈ U , then U is said to
separate s and t, or called s − t separating, or an s − t vertex-cut. It can be
shown that if U is an inclusionwise minimal s− t vertex-cut, then U = N(K)
for the component K of G − U that contains s.

For S, T ⊆ V , if U intersects each S−T path, then U is said to disconnect
S and T , or called S −T disconnecting. If moreover U is disjoint from S ∪T ,
then U is said to separate S and T , or called S − T separating or an S − T
vertex-cut.

A pair of subgraphs (V1, E1), (V2, E2) of a graph G = (V, E) is called a
separation if V1 ∪ V2 = V and E1 ∪ E2 = E. So G has no edge connecting
V1\V2 and V2\V1. Therefore, if these sets are nonempty, V1∩V2 is a vertex-cut
of G.

Trees and forests

A graph is called a forest if it has no circuits. For any forest (V, E),

(3.31) |E| = |V | − κ,

where κ is the number of components of (V, F). A tree is a connected forest.
So for any tree (V, E),

(3.32) |E| = |V | − 1.

Any forest with at least one edge has an end vertex. A connected subgraph
of a tree T is called a subtree of T .

The notions of forest and tree extend to subsets of edges of a graph
G = (V, E) as follows. A subset F of E is called a forest if (V, F) is a forest,
and a spanning tree if (V, F) is a tree. Then for any graph G = (V, E):

(3.33) G has a spanning tree ⇐⇒ G is connected.

For any connected graph G = (V, E) and any F ⊆ E:

(3.34) F is a spanning tree ⇐⇒ F is an inclusionwise maximal for-
est ⇐⇒ F is an inclusionwise minimal edge set with (V, F)
connected.

Section 3.1. Undirected graphs 23

Cliques, stable sets, matchings, vertex covers, edge covers

Let G = (V, E) be a graph. A subset C of V is called a clique if any two
vertices in V are adjacent, a stable set if any two vertices in C are nonadjacent,
and a vertex cover if C intersects each edge of G.

A subset M of E is called a matching if any two edges in M are disjoint,
an edge cover if each vertex of G is covered by at least one edge in M , and
a perfect matching if it is both a matching and an edge cover. So a perfect
matching M satisfies |M | = 1

2 |V |.
We denote and define:

(3.35) ω(G) := clique number of G := maximum size of a clique in G,
α(G) := stable set number of G := maximum size of a stable set
in G,
τ(G) := vertex cover number of G := minimum size of a vertex
cover in G,
ν(G) := matching number of G := maximum size of a matching
in G,
ρ(G) := edge cover number of G := minimum size of an edge
cover in G.

(We will recall this notation where used.)
Given a matching M in a graph G = (V, E), we will say that a vertex u

is matched to a vertex v, or u is the mate of v, if uv ∈ M . A subset U of
V is called matchable if the subgraph G[U] of G induced by U has a perfect
matching.

Colouring

A vertex-colouring, or just a colouring, is a partition of V into stable sets. We
sometimes consider a colouring as a function φ : V → {1, . . . , k} such that
φ−1(i) is a stable set for each i = 1, . . . , k.

Each of the stable sets in a colouring is called a colour of the colouring.
The vertex-colouring number, or just the colouring number, is the minimum
number of colours in a vertex-colouring. In notation,

(3.36) χ(G) := vertex-colouring number of G.

A graph G is called k-colourable, or k-vertex-colourable, if χ(G) ≤ k, and
k-chromatic if χ(G) = k. A vertex-colouring is called a minimum vertex-
colouring, or a minimum colouring, if it uses the minimum number of colours.

Similar terminology holds for edge-colouring. An edge-colouring is a par-
tition of E into matchings. Each of these matchings is called a colour of
the edge-colouring. An edge-colouring can also be described by a function
φ : E → {1, . . . , k} such that φ−1(i) is a matching for each i = 1, . . . , k.

The edge-colouring number is the minimum number of colours in an edge-
colouring. In notation,

24 Chapter 3. Preliminaries on graphs

(3.37) χ′(G) := edge-colouring number of G.

So χ′(G) = χ(L(G)).
A graph G is called k-edge-colourable if χ′(G) ≤ k, and k-edge-chromatic

if χ′(G) = k. An edge-colouring is called a minimum edge-colouring if it uses
the minimum number of colours.

Bipartite graphs

A graph G = (V, E) is called bipartite if χ(G) ≤ 2. Equivalently, G is bipartite
if V can be partitioned into two sets U and W such that each edge of G
connects U and W . We call the sets U and W the colour classes of G (although
they generally need not be unique).

Bipartite graphs are characterized by:

(3.38) G is bipartite ⇐⇒ each circuit of G has even length.

A graph G = (V, E) is called a complete bipartite graph if G is simple and V
can be partitioned into sets U and W such that E consists of all pairs {u, w}
with u ∈ U and w ∈ W . If |U | = m and |W | = n, the graph is denoted by
Km,n:

(3.39) Km,n := the complete bipartite graph with colour classes of size
m and n.

The graphs K1,n are called stars or (when n ≥ 3) claws.

Hamiltonian and Eulerian graphs

A Hamiltonian circuit in a graph G is a circuit C satisfying V C = V G. A
graph is Hamiltonian if it has a Hamiltonian circuit. A Hamiltonian path is
a path P with V P = V G.

A walk P is called Eulerian if each edge of G is traversed exactly once by
P . A graph G is called Eulerian if it has a closed Eulerian walk. The following
is usually attributed to Euler [1736] (although he only proved the ‘only if’
part):

(3.40) a graph G = (V, E) without isolated vertices is Eulerian if and
only if G is connected and all degrees of G are even.

Sometimes, we call a graph Eulerian if all degrees are even, ignoring connec-
tivity. This will be clear from the context.

Section 3.1. Undirected graphs 25

Contraction and minors

Let G = (V, E) be a graph and let e = uv ∈ E. Contracting e means deleting
e and identifying u and v. We denote (for F ⊆ E):

(3.41) G/e := graph obtained from G by contracting e,
G/F := graph obtained from G by contracting all edges in F .

The image of a vertex v of G in G/F is the vertex of G/F to which v is
contracted.

A graph H is called a minor of a graph G if H arises from G by a series
of deletions and contractions of edges and deletions of vertices. A minor H
of G is called a proper minor if H �= G. If G and H are graphs, we say that
a minor G′ of G is an H minor of G if G′ is isomorphic to H.

Related is the following contraction. Let G = (V, E) be a graph and let
S ⊆ V . The graph G/S (obtained by contracting S) is obtained by identifying
all vertices in S to one new vertex, called S, deleting all edges contained in
S, and redefining any edge uv with u ∈ S and v �∈ S to Sv.

Homeomorphic graphs

A graph G is called a subdivision of a graph H if G arises from H by replacing
edges by paths of length at least 1. So it arises from H by iteratively choosing
an edge uv, introducing a new vertex w, deleting edge uv, and adding edges
uw and wv. If G is a subdivision of H, we call G an H-subdivision.

Two graphs G and G′ are called homeomorphic if there exists a graph
H such that both G and G′ are subdivisions of H. The graph G is called a
homeomorph of G′ if G and G′ are homeomorphic.

Homeomorphism can be described topologically. For any graph G =
(V, E), the topological graph |G| associated with G is the topological space
consisting of V and for each edge e of G a curve |e| connecting the ends of e,
such that for any two edges e, f one has |e| ∩ |f | = e ∩ f . Then

(3.42) G and H are homeomorphic graphs ⇐⇒ |G| and |H| are home-
omorphic topological spaces.

Planarity

An embedding of a graph G in a topological space S is an embedding (contin-
uous injection) of the topological graph |G| in S. A graph G is called planar
if it has an embedding in the plane R

2.
Often, when dealing with a planar graph G, we assume that it is embedded

in the plane R
2. The topological components of R

2 \ |G| are called the faces
of G. A vertex or edge is said to be incident with a face F if it is contained

26 Chapter 3. Preliminaries on graphs

in the boundary of F . Two faces are called adjacent if they are incident with
some common edge.

There is a unique unbounded face, all other faces are bounded. The bound-
ary of the unbounded face is part of |G|, and is called the outer boundary of
G.

Euler’s formula states that any connected planar graph G = (V, E), with
face collection F , satisfies:

(3.43) |V | + |F| = |E| + 2.

Kuratowski [1930] found the following characterization of planar graphs:

Theorem 3.2 (Kuratowski’s theorem). A graph G is planar ⇐⇒ no sub-
graph of G is homeomorphic to K5 or to K3,3.

(See Thomassen [1981b] for three short proofs, and for history and references
to other proofs.)

As Wagner [1937a] noticed, the following is an immediate consequence
of Kuratowski’s theorem (since planarity is maintained under taking minors,
and since any graph without K5 minor has no subgraph homeomorphic to
K5):

(3.44) A graph G is planar ⇐⇒ G has no K5 or K3,3 minor.

(In turn, with a little more work, this equivalence can be shown to imply
Kuratowski’s theorem.)

The four-colour theorem of Appel and Haken [1977] and Appel, Haken,
and Koch [1977] states that each loopless planar graph is 4-colourable.
(Robertson, Sanders, Seymour, and Thomas [1997] gave a shorter proof.)

Tait [1878b] showed that the four-colour theorem is equivalent to: each
cubic bridgeless planar graph is 3-edge-colourable. Petersen [1898] gave the
example of the now-called Petersen graph (Figure 3.1), to show that not
every bridgeless cubic graph is 3-edge-colourable. (This graph was also given
by Kempe [1886], for a different purpose.)

Wagner’s theorem

We will use occasionally an extension of Kuratowski’s theorem, proved by
Wagner [1937a]. For this we need the notion of a k-sum of graphs.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs and let k := |V1 ∩ V2|.
Suppose that (V1 ∩V2, E1 ∩E2) is a (simple) complete graph. Then the graph

(3.45) (V1 ∪ V2, E1�E2)

is called a k-sum of G1 and G2. We allow multiple edges, so the k-sum might
keep edges spanned by V1 ∩ V2.

To formulate Wagner’s theorem, we also need the graph denoted by V8,
given in Figure 3.2.

Section 3.1. Undirected graphs 27

Figure 3.1
The Petersen graph

Figure 3.2
V8

Theorem 3.3 (Wagner’s theorem). A graph G has no K5 minor ⇐⇒ G
can be obtained from planar graphs and from copies of V8 by taking 1-, 2-,
and 3-sums.

As Wagner [1937a] pointed out, this theorem implies that the four-colour
theorem is equivalent to: each graph without K5 minor is 4-colourable. This
follows from the fact that k-colourability is maintained under taking k′-sums
for all k′ ≤ k.

The dual graph

The dual G∗ of an embedded planar graph G = (V, E) is the graph having
as vertex set the set of faces of G and having, for each e ∈ E, an edge e∗

connecting the two faces incident with e. Then G∗ again is planar, and (G∗)∗

is isomorphic to G, if G is connected. For any C ⊆ E, C is a circuit in G if
and only if C∗ := {e∗ | e ∈ C} is an inclusionwise minimal nonempty cut in

28 Chapter 3. Preliminaries on graphs

G∗. Moreover, C is a spanning tree in G if and only if {e∗ | e ∈ E \ C} is a
spanning tree in G∗.

Series-parallel and outerplanar graphs

A graph is called a series-parallel graph if it arises from a forest by repeated
replacing edges by parallel edges or by edges in series. It was proved by Duffin
[1965] that a graph is series-parallel if and only if it has no K4 minor.

A graph is called outerplanar if it can be embedded in the plane such
that each vertex is on the outer boundary. It can be easily derived from
Kuratowski’s theorem that a graph is outerplanar if and only if it has no K4
or K2,3 minor.

Adjacency and incidence matrix

The adjacency matrix of a graph G = (V, E) is the V × V matrix A with

(3.46) Au,v := number of edges connecting u and v

for u, v ∈ V .
The incidence matrix, or V ×E incidence matrix, of G is the V ×E matrix

B with

(3.47) Bv,e :=

1 if v ∈ e and e is not a loop,
2 if v ∈ e and e is a loop,
0 if v �∈ e,

for v ∈ V and e ∈ E. The transpose of B is called the E ×V incidence matrix
of G, or just the incidence matrix, if no confusion is expected.

The concepts from graph theory invite to a less formal, and more expres-
sive language, which appeals to the intuition, and whose formalization will
be often tedious rather than problematic. Thus we say ‘replace the edge uv
by two edges in series’, which means deleting uv and introducing a new ver-
tex, w say, and new edges uw and wv. Similarly, ‘replacing the edge uv by
a path’ means deleting uv, and introducing new vertices w1, . . . , wk say, and
new edges uw1, w1w2, . . . , wk−1wk, wkv.

3.2. Directed graphs

A directed graph or digraph is a pair D = (V, A) where V is a finite set and A
is a family of ordered pairs from V . The elements of V are called the vertices,
sometimes the nodes or the points. The elements of A are called the arcs
(sometimes directed edges). We denote:

Section 3.2. Directed graphs 29

(3.48) V D := set of vertices of D and AD := family of arcs of D.

In running time estimates of algorithms we denote:

(3.49) n := |V D| and m := |AD|.
Again, the term ‘family’ is used to indicate that the same pair of vertices
may occur several times in A. A pair occurring more than once in A is called
a multiple arc, and the number of times it occurs is called its multiplicity.
Two arcs are called parallel if they are represented by the same ordered pair
of vertices.

Also loops are allowed, that is, arcs of the form (v, v). In our discussions,
loops in directed graphs will be almost always irrelevant, and it will be clear
from the context if they may occur. Directed graphs without loops and mul-
tiple arcs are called simple, and directed graphs without loops are called
loopless.

Each directed graph D = (V, A) gives rise to an underlying undirected
graph, which is the graph G = (V, E) obtained by ignoring the orientation of
the arcs:

(3.50) E := {{u, v} | (u, v) ∈ A}.

We often will transfer undirected terminology to the directed case. Where
appropriate, the adjective ‘undirected’ is added to a term if it refers to the
underlying undirected graph.

If G is the underlying undirected graph of a directed graph D, we call D
an orientation of G.

An arc (u, v) is said to connect u and v, and to run from u to v. For an
arc a = (u, v), u and v are called the ends of a, and u is called the tail of a,
and v the head of a. We say that a = (u, v) leaves u and enters v. For U ⊆ V ,
an arc a = (u, v) is said to leave U if u ∈ U and v �∈ U . It is said to enter U
if u �∈ U and v ∈ U .

If there exists an arc connecting vertices u and v, then u and v are called
adjacent or connected. If there exists an arc (u, v), then v is called an out-
neighbour of u, and u is called an inneighbour of v.

The arc (u, v) is said to be incident with, or to meet, or to cover, the
vertices u and v, and conversely. The arcs a and b are said to be incident,
or to meet, or to intersect, if they have a vertex in common. Otherwise, they
are called disjoint. If U ⊆ V and both ends of an arc a belong to U , then we
say that U spans a.

For any vertex v, we denote:

(3.51) δin
D(v) := δin

A (v) := δin(v) := set of arcs entering v,
δout
D (v) := δout

A (v) := δout(v) := set of arcs leaving v,
N in

D (v) := N in
A (v) := N in(v) := set of inneighbours of v,

Nout
D (v) := Nout

A (v) := Nout(v) := set of outneighbours of v.

The indegree degin
D(v) of a vertex v is the number of arcs entering v. The

outdegree degout
D (v) of a vertex v is the number of arcs leaving v. In notation,

30 Chapter 3. Preliminaries on graphs

(3.52) degin
D(v) := degin

A (v) := degin(v) := |δin
D(v)|,

degout
D (v) := degout

A (v) := degout(v) := |δout
D (v)|.

A vertex of indegree 0 is called a source and a vertex of outdegree 0 a sink.
For any arc a = (u, v) we denote

(3.53) a−1 := (v, u).

For any digraph D = (V, A) the reverse digraph D−1 is defined by

(3.54) D−1 = (V, A−1), where A−1 := {a−1 | a ∈ A}.

A mixed graph is a triple (V, E, A) where (V, E) is an undirected graph
and (V, A) is a directed graph.

The complete directed graph and the line digraph

The complete directed graph on a set V is the simple directed graph with
vertex set V and arcs all pairs (u, v) with u, v ∈ V and u �= v. A tournament
is any simple directed graph (V, A) such that for all distinct u, v ∈ V precisely
one of (u, v) and (v, u) belongs to A.

The line digraph of a directed graph D = (V, A) is the digraph with vertex
set A and arc set

(3.55) {((u, v), (x, y)) | (u, v), (x, y) ∈ A, v = x}.

Subgraphs of directed graphs

A digraph D′ = (V ′, A′) is called a subgraph of a digraph D = (V, A) if
V ′ ⊆ V and A′ ⊆ A. If D′ �= D, then D′ is called a proper subgraph of D.
If V ′ = V , then D′ is called a spanning subgraph of D. If A′ consists of all
arcs of D spanned by V ′, D′ is called an induced subgraph, or the subgraph
induced by V ′. In notation,

(3.56) D[V ′] := subgraph of D induced by V ′,
A[V ′] := family of arcs spanned by V ′.

So D[V ′] = (V ′, A[V ′]). We further denote for any vertex v, any subset U of
V , any arc a, and any subset B of A,

(3.57) D − v := D[V \ {v}], D − U := D[V \ U], D − a := (V, A \ {a}),
D − B := (V, A \ B).

We say that these graphs arise from D by deleting v, U , a, or B.
Two subgraphs of D are called arc-disjoint if they have no arc in common,

and vertex-disjoint or disjoint, if they have no vertex in common.

Section 3.2. Directed graphs 31

Directed paths and circuits

A directed walk, or just a walk, in a directed graph D = (V, A) is a sequence

(3.58) P = (v0, a1, v1, . . . , ak, vk),

where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, and ai = (vi−1, vi) for
i = 1, . . . , k. The path is called a directed path, or just a path, if v0, . . . , vk are
distinct. (Hence a1, . . . , ak are all distinct.)

The vertex v0 is called the starting vertex or the first vertex of P , and the
vertex vk the end vertex or the last vertex of P . Sometimes, both v0 and vk

are called the end vertices, or just the ends of P . Similarly, arc a1 is called
the starting arc or first arc of P and arc ak the end arc or last arc of P .
Sometimes, both a1 and ak are called the end arcs.

The walk P is said to connect the vertices v0 and vk, to run from v0 to
vk (or between v0 and vk), and to traverse v0, a1, v1, . . . , ak, vk. The vertices
v1, . . . , vk−1 are called the internal vertices of P . For s, t ∈ V , a walk P is
called an s − t walk if it runs from s to t, and for S, T ⊆ V , P is called an
S − T walk if it runs from a vertex in S to a vertex in T . If P is a path, we
obviously speak of an s − t path and an S − T path, respectively.

A vertex t is called reachable from a vertex s (or from a set S) if there
exists a directed s − t path (or directed S − t path). Similarly, a vertex s is
said to reach, or to be reachable to, a vertex t (or to a set T) if there exists
a directed s − t path (or directed s − T path).

The number k in (3.58) is called the length of P . (We deviate from this
in case a function l : A → R has been introduced as a length function. Then
the length of P is equal to l(a1) + · · · + l(ak).)

The minimum length of a path from u to v is called the distance from u
to v.

An undirected walk in a directed graph D = (V, A) is a walk in the un-
derlying undirected graph; more precisely, it is a sequence

(3.59) P = (v0, a1, v1, . . . , ak, vk)

where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, and ai = (vi−1, vi) or
ai = (vi, vi−1) for i = 1, . . . , k. The arcs ai with ai = (vi−1, vi) are called the
forward arcs of P , and the arcs ai with ai = (vi, vi−1) the backward arcs of
P .

If P = (v0, a1, v1, . . . , ak, vk) and Q = (u0, b1, u1, . . . , bl, ul) are walks
satisfying u0 = vk, the concatenation PQ of P and Q is the walk

(3.60) PQ := (v0, a1, v1, . . . , ak, vk, b1, u1, . . . , bl, ul).

For any walk P , we denote by V P and AP the families of vertices and arcs,
respectively, occurring in P :

(3.61) V P := {v0, v1, . . . , vk} and AP := {a1, . . . , ak}.

32 Chapter 3. Preliminaries on graphs

If no confusion may arise, we sometimes identify the walk P with the subgraph
(V P, AP) of D, or with the set V P of vertices in P , or with the family AP
of arcs in P .

If the digraph is simple or (more generally) if the arcs traversed are irrel-
evant, we indicate the walk just by the sequence of vertices traversed:

(3.62) P = (v0, v1, . . . , vk) or P = v0, v1, . . . , vk.

A path may be identified by the sequence of arcs:

(3.63) P = (a1, . . . , ak) or P = a1, . . . , ak.

Two walks P and Q are called vertex-disjoint or disjoint if V P and V Q are
disjoint, internally vertex-disjoint or internally disjoint if the set of internal
vertices of P is disjoint from the set of internal vertices of Q, and arc-disjoint
if AP and AQ are disjoint.

The directed walk P in (3.13) is called a closed directed walk or directed
cycle if vk = v0. It is called a directed circuit, or just a circuit, if vk = v0,
k ≥ 1, v1, . . . , vk are all distinct, and a1, . . . , ak are all distinct. An undirected
circuit is a circuit in the underlying undirected graph.

Connectivity and components of digraphs

A digraph D = (V, A) is called strongly connected if for each two vertices u
and v there is a directed path from u to v. The digraph D is called weakly
connected if the underlying undirected graph is connected; that is, for each
two vertices u and v there is an undirected path connecting u and v.

A maximal strongly connected nonempty subgraph of a digraph D =
(V, A) is called a strongly connected component, or a strong component, of
D. Again, ‘maximal’ is taken with respect to taking subgraphs. A weakly
connected component, or a weak component, of D is a component of the un-
derlying undirected graph.

Each strong component is an induced subgraph. Each vertex belongs to
exactly one strong component, but there may be arcs that belong to no strong
component. One has:

(3.64) arc (u, v) belongs to a strong component ⇐⇒ there exists a
directed path in D from v to u.

We sometimes identify a strong component K with the set V K of its
vertices. Then the strong components are precisely the equivalence classes of
the equivalence relation ∼ defined on V by: u ∼ v ⇐⇒ there exist a directed
path from u to v and a directed path from v to u.

Cuts

Let D = (V, A) be a directed graph. For any U ⊆ V , we denote:

Section 3.2. Directed graphs 33

(3.65) δin
D(U) := δin

A (U) := δin(U) := set of arcs of D entering U ,
δout
D (U) := δout

A (U) := δout(U) := set of arcs of D leaving U .

A subset B of A is called a cut if B = δout(U) for some U ⊆ V . In particular,
∅ is a cut. If ∅ �= U �= V , then δout(U) is called a nontrivial cut.

If s ∈ U and t �∈ U , then δout(U) is called an s − t cut. If S ⊆ U and
T ⊆ V \ U , δout(U) is called an S − T cut. A cut of size k is called a k-cut.

A subset B of A is called a disconnecting arc set if D − B is not strongly
connected. For s, t ∈ V , it is said to be s − t disconnecting, if B intersects
each directed s − t path. For S, T ⊆ V , B is said to be S − T disconnecting,
if B intersects each directed S − T path.

One may easily check that for all s, t ∈ V :

(3.66) each s − t cut is s − t disconnecting; each inclusionwise minimal
s − t disconnecting arc set is an s − t cut.

For any subset U of V we denote

(3.67) din
D(U) := din

A (U) := din(U) := |δin(U)|,
dout

D (U) := dout
A (U) := dout(U) := |δout(U)|.

The following inequalities will be often used:

Theorem 3.4. For any digraph D = (V, A) and X, Y ⊆ V :

(3.68) din(X) + din(Y) ≥ din(X ∩ Y) + din(X ∪ Y) and
dout(X) + dout(Y) ≥ dout(X ∩ Y) + dout(X ∪ Y),

Proof. The first inequality follows directly from the equation

(3.69) din(X) + din(Y) =
din(X ∩ Y) + din(X ∪ Y) + |A[X \ Y, Y \ X]| + |A[Y \ X, X \ Y]|,

where A[S, T] denotes the set of arcs with tail in S and head in T . The second
inequality follows similarly.

A cut C is called a directed cut if C = δin(U) for some U ⊆ V with
δout(U) = ∅ and ∅ �= U �= V . An arc is called a cut arc if {a} is a directed
cut; equivalently, if a is a bridge in the underlying undirected graph.

Vertex-cuts

Let D = (V, A) be a digraph. A subset U of V is called a disconnecting vertex
set, or a vertex-cut, if D − U is disconnected. A vertex-cut of size k is called
a k-vertex-cut.

For s, t ∈ V , if U intersects each directed s − t path in D, then U is said
to disconnect s and t, or called s− t disconnecting. If moreover s, t �∈ U , then
U is said to separate s and t, or called s− t separating, or an s− t vertex-cut.

34 Chapter 3. Preliminaries on graphs

For S, T ⊆ V , if U intersects each directed S − T path, then U is said to
disconnect S and T , or called S − T disconnecting. If moreover U is disjoint
from S ∪ T , then U is said to separate S and T , or called S − T separating
or an S − T vertex-cut.

Acyclic digraphs and directed trees

A directed graph D = (V, A) is called acyclic if it has no directed circuits. It
is easy to show that

(3.70) an acyclic digraph has at least one source and at least one sink,

provided that it has at least one vertex.
A directed graph is called a directed tree if the underlying undirected graph

is a tree; that is, if D is weakly connected and has no undirected circuits. It
is called a rooted tree if moreover D has precisely one source, called the root.
If r is the root, we say that the rooted tree is rooted at r. If a rooted tree
D = (V, A) has root r, then each vertex v �= r has indegree 1, and for each
vertex v there is a unique directed r − v path. An arborescence in a digraph
D = (V, A) is a set B of arcs such that (V, B) is a rooted tree. If the rooted
tree has root r, it is called an r-arborescence.

A directed graph is called a directed forest if the underlying undirected
graph is a forest; that is, if D has no undirected circuits. It is called a rooted
forest if moreover each weak component is a rooted tree. The roots of the
weak components are called the roots of the rooted forest. A branching in a
digraph D = (V, A) is a set B of arcs such that (V, B) is a rooted forest.

Hamiltonian and Eulerian digraphs

A Hamiltonian circuit in a directed graph D = (V, A) is a directed circuit C
with V C = V D. A digraph is Hamiltonian if it has a Hamiltonian circuit. A
Hamiltonian path is a directed path P with V P = V D.

A directed walk P is called Eulerian if each arc of D is traversed exactly
once by P . A digraph D is called Eulerian if it has a closed Eulerian directed
walk. Then a digraph D = (V, A) is Eulerian if and only if D is weakly
connected and degin(v) = degout(v) for each vertex v. Sometimes, we call a
digraph Eulerian if each weak component is Eulerian. This will be clear from
the context.

An Eulerian orientation of an undirected graph G = (V, E) is an ori-
entation (V, A) of G with degin

A (v) = degout
A (v) for each v ∈ V . A classical

theorem in graph theory states that an undirected graph G has an Eulerian
orientation if and only if all degrees of G are even.

Section 3.2. Directed graphs 35

Contraction

Contraction of directed graphs is similar to contraction of undirected graphs.
Let D = (V, A) be a digraph and let a = (u, v) ∈ A. Contracting a means
deleting a and identifying u and v. We denote:

(3.71) D/a := digraph obtained from D by contracting a.

Related is the following contraction. Let D = (V, A) be a digraph and let S ⊆
V . The digraph D/S (obtained by contracting S) is obtained by identifying
all vertices in S to one new vertex, called S, deleting all arcs contained in S,
and redefining any arc (u, v) to (S, v) if u ∈ S and to (u, S) if v ∈ S.

Planar digraphs and their duals

A digraph D is called planar if its underlying undirected graph G is planar.
There is a natural way of making the dual graph G∗ of G into a directed
graph D∗, the dual: if arc a = (u, v) of D separates faces F and F ′, such
that, when following a from u to v, F is at the left and F ′ is at the right of
a, then the dual edge is oriented from F to F ′, giving the arc a∗ of D∗. Then
D∗∗ is isomorphic to D−1, if D is weakly connected. One may check that a
subset C of D is a directed circuit in D if and only if the set {a∗ | a ∈ C} is
an inclusionwise minimal directed cut in D∗.

Adjacency and incidence matrix

The adjacency matrix of a digraph D = (V, A) is the V × V matrix M with

(3.72) Mu,v := number of arcs from u to v

for u, v ∈ V .
The incidence matrix, or V ×A incidence matrix, of D is the V ×A matrix

B with

(3.73) Bv,a :=

−1 if v is tail of a,
+1 if v is head of a,

0 otherwise,

for any v ∈ V and any nonloop a ∈ A. If a is a loop, we set Bv,a := 0 for
each vertex v.

The transpose of B is called the A × V incidence matrix of D, or just the
incidence matrix, if no confusion is expected.

36 Chapter 3. Preliminaries on graphs

3.3. Hypergraphs

Part VIII is devoted to hypergraphs, but we occasionally need the terminol-
ogy of hypergraphs in earlier parts. A hypergraph is a pair H = (V, E) where
V is a finite set and E is a family of subsets of V . The elements of V and E
are called the vertices and the edges respectively. If |F | = k for each F ∈ E ,
the hypergraph is called k-uniform.

A hypergraph H = (V, E) is called connected if there is no U ⊆ V such
that ∅ �= U �= V and such that F ⊆ U or F ⊆ V \ U for each edge F . A
(connected) component of H is a hypergraph K = (V ′, E ′) with V ′ ⊆ V and
E ′ ⊆ E , such that V ′ and E ′ are inclusionwise maximal with the property that
K is connected. A component is uniquely identified by its set of vertices.

Packing and covering

A family F of sets is called a packing if the sets in F are pairwise disjoint.
For k ∈ Z+, F is called a k-packing if each element of

⋃ F is in at most k sets
in F (counting multiplicities). In other words, any k +1 sets from F have an
empty intersection. If each set in F is a subset of some set S, and c : S → R,
then F is called a c-packing if each element s ∈ S is in at most c(s) sets in
F (counting multiplicities).

A fractional packing is a function λ : F → R+ such that, for each s ∈ S,

(3.74)
∑

U ∈ F
s ∈ U

λU ≤ 1.

For c : S → R, the function λ : F → R+ is called a fractional c-packing if

(3.75)
∑

U∈F
λUχU ≤ c.

The size of λ : F → R is, by definition,

(3.76)
∑

U∈F
λU .

Similarly, a family F of sets is called a covering of a set S if S is contained
in the union of the sets in F . For k ∈ Z+, F is called a k-covering of S if each
element of S is in at least k sets in F (counting multiplicities). For c : S → R,
F is called a c-covering if each element s ∈ S is in at least c(s) sets in F
(counting multiplicities).

A fractional covering of S is a function λ : F → R+ such that, for each
s ∈ S,

(3.77)
∑

U ∈ F
s ∈ U

λU ≥ 1.

Section 3.3a. Background references on graph theory 37

For c : S → R, the function λ : F → R+ is called a fractional c-covering if

(3.78)
∑

U∈F
λUχU ≥ c.

Again, the size of λ : F → R is, by definition,

(3.79)
∑

U∈F
λU .

Cross-free and laminar families

A collection C of subsets of a set V is called cross-free if for all T, U ∈ C:

(3.80) T ⊆ U or U ⊆ T or T ∩ U = ∅ or T ∪ U = V .

C is called laminar if for all T, U ∈ C:

(3.81) T ⊆ U or U ⊆ T or T ∩ U = ∅.

There is the following upper bound on the size of a laminar family:

Theorem 3.5. If C is laminar and V �= ∅, then |C| ≤ 2|V |.
Proof. By induction on |V |. We can assume that |V | ≥ 2 and that V ∈ C.
Let U be an inclusionwise minimal set in C with |U | ≥ 2. Resetting C to
C \ {{v} | v ∈ U}, and identifying all elements in U , |C| decreases by at most
|U |, and |V | by |U | − 1. Since |U | ≤ 2(|U | − 1) (as |U | ≥ 2), induction gives
the required inequality.

3.3a. Background references on graph theory

For background on graph theory we mention the books by Kőnig [1936] (historical),
Harary [1969] (classical reference book), Wilson [1972b] (introductory), Bondy and
Murty [1976], and Diestel [1997].

Chapter 4

Preliminaries on algorithms and
complexity

This chapter gives an introduction to algorithms and complexity, in par-
ticular to polynomial-time solvability and NP-completeness. We restrict
ourselves to a largely informal outline and keep formalisms at a low level.
Most of the formalisms described in this chapter are not needed in the re-
maining of this book. A rough understanding of algorithms and complexity
suffices.

4.1. Introduction

An informal, intuitive idea of what is an algorithm will suffice to understand
the greater part of this book. An algorithm can be seen as a finite set of
instructions that perform operations on certain data. The input of the algo-
rithm will give the initial data. When the algorithm stops, the output will be
found in prescribed locations of the data set. The instructions need not be
performed in a linear order: an instruction determines which of the instruc-
tions should be followed next. Also, it can prescribe to stop the algorithm.

While the set of instructions constituting the algorithm is finite and fixed,
the size of the data set may vary, and will depend on the input. Usually, the
data are stored in arrays, that is, finite sequences. The lengths of these arrays
may depend on the input, but the number of arrays is fixed and depends only
on the algorithm. (A more-dimensional array like a matrix is stored in a linear
fashion, in accordance with the linear order in which computer memory is
organized.)

The data may consist of numbers, letters, or other symbols. In a computer
model they are usually stored as finite strings of 0’s and 1’s (bits). The size
of the data is the total length of these strings. In this context, the size of a
rational number p/q with p, q ∈ Z, q ≥ 1, and g.c.d.(p.q) = 1, is equal to
1 + �log(|p| + 1)� + �log q�.

Section 4.3. Polynomial-time solvability 39

4.2. The random access machine

We use the algorithmic model of the random access machine, sometimes ab-
breviated to RAM. It operates on entries that are 0, 1 strings, representing
abstract objects (like vertices of a graph) or rational numbers. An instruc-
tion can read several (but a fixed number of) entries simultaneously, perform
arithmetic operations on them, and store the answers in array positions pre-
scribed by the instruction2. The array positions that should be read and
written, are given in locations prescribed by the instruction.

We give a more precise description. The random access machine has a
finite set of variables z0, . . . , zk and one array, f say, of length depending
on the input. Each array entry is a 0, 1 string. They can be interpreted as
rationals, in some binary encoding, but can also have a different meaning.
Initially, z0, . . . , zk are set to 0, and f contains the input.

Each instruction is a finite sequence of resettings of one the following
types, for i, j, h ∈ {1, . . . , k}:

(4.1) zi := f(zj); f(zj) := zi; zi := zj + zh; zi := zj − zh; zi := zjzh;
zi := zj/zh; zi := zi + 1; zi := 1 if zj > 0 and zi := 0 otherwise.

These include the elementary arithmetic operations: addition, subtraction,
multiplication, division, comparison. (One may derive other arithmetic op-
erations from this like rounding and taking logarithm or square root, by
performing O(σ + | log ε|) elementary arithmetic operations, where σ is the
size of the rational number and ε is the required precision.)

The instructions are numbered 0, 1, . . . , t, and z1 is the number of the
instruction to be executed. If z1 > t we stop and return the contents of the
array f as output.

4.3. Polynomial-time solvability

A polynomial-time algorithm is an algorithm that terminates after a number
of steps bounded by a polynomial in the input size. Here a step consists of
performing one instruction. Such an algorithm is also called a good algorithm
or an efficient algorithm.

In this definition, the input size is the size of the input, that is, the number
of bits that describe the input. We say that a problem is polynomial-time
solvable, or is solvable in polynomial time, if it can be solved by a polynomial-
time algorithm.

This definition may depend on the chosen algorithmic model, but it has
turned out that for most models the set of problems solvable by a polynomial-
time algorithm is the same. However, in giving order estimates of running
2 This property has caused the term ‘random’ in random access machine: the machine

has access, in constant time, to the data in any (however, well-determined) position.
This is in contrast with the Turing machine, which can only move to adjacent positions.

40 Chapter 4. Preliminaries on algorithms and complexity

times and in considering the concept of ‘strongly polynomial-time’ algorithm
(cf. Section 4.12), we fix the above algorithmic model of the random access
machine.

4.4. P

P, NP, and co-NP are collections of decision problems: problems that can be
answered by ‘yes’ or ‘no’, like whether a given graph has a perfect matching
or a Hamiltonian circuit. An optimization problem is no decision problem,
but often can be reduced to it in a certain sense — see Section 4.7 below.

A decision problem is completely described by the inputs for which the
answer is ‘yes’. To formalize this, fix some finite set Σ, called the alphabet,
of size at least 2 — for instance {0, 1} or the ASCII-set of symbols. Let Σ∗

denote the set of all finite strings (words) of letters from Σ. The size of a word
is the number of letters (counting multiplicities) in the word. We denote the
size of a word w by size(w).

As an example, an undirected graph can be represented by the word

(4.2) ({a, b, c, d}, {{a, b}, {b, c}, {a, d}, {b, d}, {a, c}})

(assuming that Σ contains each of these symbols). Its size is 43.
A problem is any subset Π of Σ∗. The corresponding ‘informal’ problem

is:

(4.3) given a word x ∈ Σ∗, does x belong to Π?

As an example, the problem if a given graph is Hamiltonian is formalized by
the collection of all strings representing a Hamiltonian graph.

The string x is called the input of the problem. One speaks of an instance
of a problem Π if one asks for one concrete input x whether x belongs to Π.

A problem Π is called polynomial-time solvable if there exists a polynomi-
al-time algorithm that decides whether or not a given word x ∈ Σ∗ belongs
to Π. The collection of all polynomial-time solvable problems Π ⊆ Σ∗ is
denoted by P.

4.5. NP

An easy way to characterize the class NP is: NP is the collection of decision
problems that can be reduced in polynomial time to the satisfiability problem
— that is, to checking if a Boolean expression can be satisfied. For instance, it
is not difficult to describe the conditions for a perfect matching in a graph by
a Boolean expression, and hence reduce the existence of a perfect matching to
the satisfiability of this expression. Also the problem of finding a Hamiltonian
circuit, or a clique of given size, can be treated this way.

Section 4.5. NP 41

However, this is not the definition of NP, but a theorem of Cook. Roughly
speaking, NP is defined as the collection of all decision problems for which
each input with positive answer, has a polynomial-time checkable ‘certificate’
of correctness of the answer. Consider, for instance, the question:

(4.4) Is a given graph Hamiltonian?

A positive answer can be ‘certified’ by giving a Hamiltonian circuit in the
graph. The correctness of it can be checked in polynomial time. No such
certificate is known for the opposite question:

(4.5) Is a given graph non-Hamiltonian?

Checking the certificate in polynomial time means: checking it in time
bounded by a polynomial in the original input size. In particular, it implies
that the certificate itself has size bounded by a polynomial in the original
input size.

This can be formalized as follows. NP is the collection of problems Π ⊆ Σ∗

for which there is a problem Π ′ ∈P and a polynomial p such that for each
w ∈ Σ∗ one has:

(4.6) w ∈ Π ⇐⇒ there exists a word x of size at most p(size(w)) with
wx ∈ Π ′.

The word x is called a certificate for w. (NP stands for nondeterministi-
cally polynomial-time, since the string x could be chosen by the algorithm by
guessing. So guessing well leads to a polynomial-time algorithm.)

For instance, the collection of Hamiltonian graphs belongs to NP since
the collection Π ′ of strings GC, consisting of a graph G and a Hamiltonian
circuit C in G, belongs to P. (Here we take graphs and circuits as strings like
(4.2).)

Trivially, we have P⊆NP, since if Π ∈P, we can take Π ′ = Π and p ≡ 0
in (4.6).

About all problems that ask for the existence of a structure of a prescribed
type (like a Hamiltonian circuit) belong to NP. The class NP is apparently
much larger than the class P, and there might be not much reason to believe
that the two classes are the same. But, as yet, nobody has been able to prove
that they really are different. This is an intriguing mathematical question,
but besides, answering the question might also have practical significance. If
P=NP can be shown, the proof might contain a revolutionary new algorithm,
or alternatively, it might imply that the concept of ‘polynomial-time’ is com-
pletely meaningless. If P�=NP can be shown, the proof might give us more
insight in the reasons why certain problems are more difficult than other, and
might guide us to detect and attack the kernel of the difficulties.

42 Chapter 4. Preliminaries on algorithms and complexity

4.6. co-NP and good characterizations

The collection co-NP consists of all problems Π for which the complementary
problem Σ∗ \ Π belongs to NP. Since for any problem Π ∈P, also Σ∗ \ Π
belongs to P, we have

(4.7) P⊆NP∩co-NP.

The problems in NP∩co-NP are those for which both a positive answer
and a negative answer have a polynomial-time checkable certificate. In other
words, any problem Π in NP∩co-NP has a good characterization: there exist
Π ′, Π ′′ ∈P and a polynomial p such that for each w ∈ Σ∗:

(4.8) there is an x ∈ Σ∗ with wx ∈ Π ′ and size(x) ≤ p(size(w)) ⇐⇒
there is no y ∈ Σ∗ with wy ∈ Π ′′ and size(y) ≤ p(size(w)).

Therefore, the problems in NP∩co-NP are called well-characterized.
A typical example is Tutte’s 1-factor theorem:

(4.9) a graph G = (V, E) has a perfect matching if and only if there is
no U ⊆ V such that G − U has more than |U | odd components.

So in this case Π consists of all graphs having a perfect matching, Π ′ of all
strings GM where G is a graph and M a perfect matching in G, and Π ′′ of
all strings GU where G is a graph and U is a subset of the vertex set of G
such that G − U has more than |U | odd components. (To be more precise,
since Σ∗ is the universe, we must add all strings w{} to Π ′′ where w is a
word in Σ∗ that does not represent a graph.) This is why Tutte’s theorem is
said to be a good characterization.

In fact, there are very few problems known that have been proved to
belong to NP∩co-NP, but that are not known to belong to P. Most problems
having a good characterization, have been proved to be solvable in polynomial
time. So one may ask: is P=NP∩co-NP?

4.7. Optimization problems

Optimization problems can be transformed to decision problems as follows.
Consider a minimization problem: minimize f(x) over x ∈ X, where X is
a collection of elements derived from the input of the problem, and where
f is a rational-valued function on X. (For instance, minimize the length of
a Hamiltonian circuit in a given graph, for a given length function on the
edges.) This can be transformed to the following decision problem:

(4.10) given a rational number r, is there an x ∈ X with f(x) ≤ r ?

If we have an upper bound β on the size of the minimum value (being propor-
tional to the sum of the logarithms of the numerator and the denominator),
then by asking question (4.10) for O(β) choices of r, we can find the optimum

Section 4.8. NP-complete problems 43

value (by binary search). In this way we usually can derive a polynomial-time
algorithm for the minimization problem from a polynomial-time algorithm
for the decision problem. Similarly, for maximization problems.

About all combinatorial optimization problems, when framed as a decision
problem like (4.10), belong to NP, since a positive answer to question (4.10)
can often be certified by just specifying an x ∈ X satisfying f(x) ≤ r.

If a combinatorial optimization problem is characterized by a min-max
relation like

(4.11) min
x∈X

f(x) = max
y∈Y

g(y),

this often leads to a good characterization of the corresponding decision prob-
lem. Indeed, if minx∈X f(x) ≤ r holds, it can be certified by an x ∈ X sat-
isfying f(x) ≤ r. On the other hand, if minx∈X f(x) > r holds, it can be
certified by a y ∈ Y satisfying g(y) > r. If these certificates can be checked in
polynomial time, we say that the min-max relation is a good characterization,
and that the optimization problem is well-characterized.

4.8. NP-complete problems

The NP-complete problems are the problems that are the hardest in NP:
every problem in NP can be reduced to them. We make this more precise.

Problem Π ⊆ Σ∗ is said to be reducible to problem Λ ⊆ Σ∗ if there exists
a polynomial-time algorithm that returns, for any input w ∈ Σ∗, an output
x ∈ Σ∗ with the property:

(4.12) w ∈ Π ⇐⇒ x ∈ Λ.

This implies that if Π is reducible to Λ and Λ belongs to P, then also Π
belongs to P. Similarly, one may show that if Π is reducible to Λ and Λ
belongs to NP, then also Π belongs to NP.

A problem Π is said to be NP-complete if each problem in NP is reducible
to Π. Hence

(4.13) if some NP-complete problem belongs to P, then P=NP.

Surprisingly, there exist NP-complete problems (Cook [1971]). Even more
surprisingly, several prominent combinatorial optimization problems, like the
traveling salesman problem, the maximum clique problem, and the maximum
cut problem, are NP-complete (Karp [1972b]).

Since then one generally distinguishes between the polynomial-time solv-
able problems and the NP-complete problems, although there is no proof
that these two concepts really are distinct. For almost every combinatorial
optimization problem (and many other problems) one has been able to prove
either that it is solvable in polynomial time, or that it is NP-complete — and
no problem has been proved to be both. But it still has not been excluded
that these two concepts are just the same!

44 Chapter 4. Preliminaries on algorithms and complexity

The usual approach to prove NP-completeness of problems is to derive
it from the NP-completeness of one basic problem, often the satisfiability
problem. To this end, we prove NP-completeness of the satisfiability problem
in the coming sections.

4.9. The satisfiability problem

To formulate the satisfiability problem, we need the notion of a Boolean
expression. Examples are:

(4.14) ((x2 ∧x3)∨¬(x3 ∨x5)∧x2), ((¬x47 ∧x2)∧x47), and ¬(x7 ∧¬x7).

Boolean expressions can be defined inductively. We work with an alphabet Σ
containing the ‘special’ symbols ‘(’, ‘)’, ‘∧’, ‘∨’, ‘¬’, and ‘,’, and not contain-
ing the symbols 0 and 1. Then any word not containing any special symbol
is a Boolean expression, called a variable. Next, if v and w are Boolean ex-
pressions, then also (v ∧ w), (v ∨ w), and ¬v are Boolean expressions. These
rules give us all Boolean expressions. We denote a Boolean expression f by
f(x1, . . . , xk) if x1, . . . , xk are the variables occurring in f .

A Boolean expression f(x1, . . . , xk) is called satisfiable if there exist
α1, . . . , αk ∈ {0, 1} such that f(α1, . . . , αk) = 1, using the well-known identi-
ties

(4.15) 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∧ 1 = 1,
0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1,
¬0 = 1,¬1 = 0, (0) = 0, (1) = 1.

Now let SAT⊆ Σ∗ be the collection of satisfiable Boolean expressions. SAT
is called the satisfiability problem.

The satisfiability problem SAT trivially belongs to NP: to certify that
f(x1, . . . , xk) belongs to SAT, we can take the equations xi = αi that give f
the value 1.

4.10. NP-completeness of the satisfiability problem

Let an algorithm be represented by the random access machine (we use no-
tation as in Section 4.2). Consider the performance of the algorithm for some
input w of size s (in the alphabet {0, 1}). We may assume that all entries in
the random access machine are stored with the same number of bits, α say,
only depending on s. Let q be the length of the array f . We may assume
that q is invariant throughout the algorithm, and that q only depends on s.
(So the initial input w is extended to an array f of length q.) Let r be the
number of iterations performed by the algorithm. We may assume that r only
depends on s.

Let mi be the following word in {0, 1}∗:

Section 4.10. NP-completeness of the satisfiability problem 45

(4.16) z0z1 . . . zkf(0)f(1) . . . f(q)

after performing i iterations (where each zj and each f(j) is a word in {0, 1}∗

of size α). So it is the content of the machine memory after i iterations. We
call the word

(4.17) h = m0m1 . . . mr

the history. The size of h is equal to

(4.18) T := (r + 1)(k + q + 2)α.

We call a word h correct if there is an input w of size s that leads to history
h.

The following observation is basic:

(4.19) given the list of instructions describing the random access ma-
chine and given s, we can construct, in time bounded by a pol-
ynomial in T , a Boolean expression g(x1, . . . , xT) such that any
0,1 word h = α1 . . . αT is correct if and only if g(α1, . . . , αT) = 1.

To see this, we must observe that each of the instructions (4.1) can be de-
scribed by Boolean expressions in the 0,1 variables describing the correspond-
ing entries.

We can permute the positions in g such that the first s variables corre-
spond to the s input bits, and that the last variable gives the output bit (0
or 1). Let it give the Boolean expression g̃(y1, . . . , yT). Then input β1 . . . βs

leads to output 1 if and only if

(4.20) g̃(β1, . . . , βs, ys+1, . . . , yT−1, 1) = 1

has a solution in the variables ys+1, . . . , yT−1.
Consider now a problem Π in NP. Let Π ′ be a problem in P and p a pol-

ynomial satisfying (4.6). We can assume that x has size precisely p(size(w)).
So if input w of Π has size u, then wx has size s := u + p(u). Let A be a
polynomial-time algorithm as described above solving Π ′ and let g̃ be the cor-
responding Boolean expression as above. Let w = β1 . . . βu. Then w belongs
to Π if and only if

(4.21) g̃(β1, . . . , βu, yu+1, . . . , ys, ys+1, . . . , yT−1, 1) = 1

is solvable. This reduces Π to the satisfiability problem. Hence we have the
main result of Cook [1971] (also Levin [1973]):

Theorem 4.1. The satisfiability problem is NP-complete.

Proof. See above.

46 Chapter 4. Preliminaries on algorithms and complexity

4.11. NP-completeness of some other problems

For later reference, we derive from Cook’s theorem the NP-completeness of
some other problems. First we show that the 3-satisfiability problem 3-SAT
is NP-complete (Cook [1971], cf. Karp [1972b]). Let B1 be the set of all
words x1,¬x1, x2,¬x2, . . ., where the xi are words not containing the symbols
‘¬’, ‘∧’, ‘∨’, ‘(’, ‘)’. Let B2 be the set of all words (w1 ∨ · · · ∨ wk), where
w1, · · · , wk are words in B1 and 1 ≤ k ≤ 3. Let B3 be the set of all words
w1 ∧ . . . ∧ wk, where w1, . . . , wk are words in B2. Again, we say that a word
f(x1, x2, . . .) ∈ B3 is satisfiable if there exists an assignment xi := αi ∈ {0, 1}
(i = 1, 2, . . .) such that f(α1, α2, . . .) = 1 (using the identities (4.15)).

Now the 3-satisfiability problem 3-SAT is: given a word f ∈ B3, decide if
it is satisfiable. More formally, 3-SAT is the set of all satisfiable words in B3.

Corollary 4.1a. The 3-satisfiability problem 3-SAT is NP-complete.

Proof. We give a polynomial-time reduction of SAT to 3-SAT. Let f(x1, x2,
. . .) be a Boolean expression. Introduce a variable yg for each subword g of
f that is a Boolean expression (not splitting variables).

Now f is satisfiable if and only if the following system is satisfiable:

(4.22) yg = yg′ ∨ yg′′ (if g = (g′ ∨ g′′)),
yg = yg′ ∧ yg′′ (if g = (g′ ∧ g′′)),
yg = ¬yg′ (if g = ¬g′),
yf = 1.

Now yg = yg′ ∨yg′′ can be equivalently expressed by: yg∨¬yg′ = 1, yg∨¬yg′′ =
1,¬yg ∨ yg′ ∨ yg′′ = 1. Similarly, yg = yg′ ∧ yg′′ can be equivalently expressed
by: ¬yg∨yg′ = 1,¬yg∨yg′′ = 1, yg∨¬yg′ ∨¬yg′′ = 1. The expression yg = ¬yg′

is equivalent to: yg ∨ yg′ = 1,¬yg ∨ ¬yg′ = 1.
By renaming variables, we thus obtain words w1, . . . , wk in B2, such that

f is satisfiable if and only if the word w1 ∧ . . . ∧ wk is satisfiable.

(As Cook [1971] mentioned, a method of Davis and Putnam [1960] solves the
2-satisfiability problem in polynomial time.)

We next derive that the partition problem is NP-complete (Karp [1972b]).
This is the problem:

(4.23) Given a collection of subsets of a finite set X, does it contain a
subcollection that is a partition of X?

Corollary 4.1b. The partition problem is NP-complete.

Proof. We give a polynomial-time reduction of 3-SAT to the partition prob-
lem. Let f = w1 ∧ . . . ∧ wk be a word in B3, where w1, . . . , wk are words in
B2. Let x1, . . . , xm be the variables occurring in f . Make a bipartite graph G
with colour classes {w1, . . . , wk} and {x1, . . . , xm}, by joining wi and xj by

Section 4.12. Strongly polynomial-time 47

an edge if and only if xj or ¬xj occurs in wi. Let X be the set of all vertices
and edges of G.

Let C′ be the collection of all sets {wi} ∪ E′, where E′ is a nonempty
subset of the edge set incident with wi. Let C′′ be the collection of all sets
{xj} ∪ E′

j and {xj} ∪ E′′
j , where E′

j is the set of all edges {wi, xj} such that
xj occurs in wi and where E′′

j is the set of all edges {wi, xj} such that ¬xj

occurs in wi.
Now f is satisfiable if and only if the collection C′ ∪ C′′ contains a subcol-

lection that partitions X. Thus we have a reduction of 3-SAT to the partition
problem.

In later chapters we derive from these results the NP-completeness of
several other combinatorial optimization problems.

4.12. Strongly polynomial-time

Roughly speaking, an algorithm is strongly polynomial-time if the number of
elementary arithmetic and other operations is bounded by a polynomial in
the size of the input, where any number in the input is counted only for 1.
Strong polynomial-timeness of an algorithm is of relevance only for problems
that have numbers among its input data. (Otherwise, strongly polynomial-
time coincides with polynomial-time.)

Consider a problem that has a number k of input parts, like a vertex set,
an edge set, a length function. Let f : Z

2k
+ → R. We say that an algorithm

takes O(f) time if the algorithm terminates after

(4.24) O(f(n1, s1, . . . , nk, sk))

operations (including elementary arithmetic operations), where the ith input
part consists of ni numbers of maximum size si (i = 1, . . . , k), and if the
numbers occurring during the execution of the algorithm have size

(4.25) O(max{s1, . . . , sk}).

The algorithm is called a strongly polynomial-time algorithm if the algorithm
takes O(f) time for some polynomial f in the array lengths n1, . . . , nk, where
f is independent of s1, . . . , sk. If a problem can be solved by a strongly
polynomial-time algorithm, we say that it is solvable in strongly polynomial
time or strongly polynomial-time solvable.

An algorithm is called linear-time if f can be taken linear in n1, . . . , nk,
and independent of s1, . . . , sk. If a problem can be solved by a linear-time
algorithm, we say that it is solvable in linear time or linear-time solvable.

Rounding a rational x to �x� can be done in polynomial-time, by O(size(x))
elementary arithmetic operations. It however cannot be done in strongly pol-
ynomial time. In fact, even checking if an integer k is odd or even cannot

48 Chapter 4. Preliminaries on algorithms and complexity

be done in strongly polynomial time: for any strongly polynomial-time al-
gorithm with one integer k as input, there is a number L and a rational
function q : Z → Q such that if k > L, then the output equals q(k). (This
can be proved by induction on the number of steps of the algorithm.) How-
ever, there do not exist a rational function q and number L such that for
k > L, q(k) = 0 if k is even, and q(k) = 1 if k is odd.

We say that an algorithm is semi-strongly polynomial-time if we count
rounding a rational as one step (one time-unit). We sometimes say weakly
polynomial-time for polynomial-time, to distinguish from strongly polynomial-
time.

4.13. Lists and pointers

Algorithmically, sets (of vertices, edges, etc.) are often introduced and han-
dled as ordered sets, called lists. Their elements can be indicated just by their
positions (addresses) in the order: 1, 2, Then attributes (like the capacity,
or the ends, of an edge) can be specified in arrays.

Arrays represent functions, and such functions are also called pointers
if their value is taken as an address. Such functions also allow the value
void, where the function is undefined. Pointers can be helpful to shorten the
running time of an algorithm.

One way to store a list is just in an array. But then updating may take
(relatively) much time, for instance, if we would like to perform operations
on lists, such as removing or inserting elements or concatenating two lists.

A better way to store a list S = {s1, . . . , sk} is as a linked list. This is
given by a pointer f : S \ {sk} → S where f(si) = si+1 for i = 1, . . . , k − 1,
together with the first element s1 given by the variable b say (a fixed array
of length 1). It makes that S can be scanned in time O(|S|).

If we need to update the list after removing an element from S, it is
convenient to store S as a doubly linked list. Then we keep, next to f and b, a
pointer g : S \ {s1} → S where g(si) = si−1 for i = 2, . . . , k, and a variable l
say, with l := sk. The virtue of this data structure is that it can be restored in
constant time if we remove some element sj from S. Also concatenating two
doubly linked lists can be done in constant time. It is usually easy to build
up the doubly linked list along with reading the input, taking time O(|S|).

A convenient (but usually too abundant) way to store a directed graph
D = (V, A) using these data structures is as follows. For each v ∈ V , order
the sets δin(v) and δout(v). Store V as a doubly linked list. Give pointers
t, h : A → V , where t(a) and h(a) are the tail and head of a. Give four
pointers V → A, indicating the first and last (respectively) arc in the lists
δin(v) and δout(v) (respectively). Give four pointers A → A, indicating for
each a ∈ A, the previous and next (respectively) arc in the lists δin(h(a)) and
δout(t(a)) (respectively). (Values may be ‘void’. One can avoid the value ‘void’

Section 4.14b. Efficiency and complexity historically 49

by merging the latter eight pointers described into four pointers V ∪ A →
V ∪ A.)

If, in the input of a problem, a directed graph is given as a string (or file),
like

(4.26) ({a, b, c, d}, {(a, c), (a, d), (b, d), (c, d)}),

we can build up the above data structure in time linear in the length of
the string. Often, when implementing a graph algorithm, a subset of this
structure will be sufficient. Undirected graphs can be handled similarly by
choosing an arbitrary orientation of the edges. (So each edge becomes a list.)

4.14. Further notes

4.14a. Background literature on algorithms and complexity

Background literature on algorithms and complexity includes Knuth [1968] (data
structures), Garey and Johnson [1979] (complexity, NP-completeness), Papadi-
mitriou and Steiglitz [1982] (combinatorial optimization and complexity), Aho,
Hopcroft, and Ullman [1983] (data structures and complexity), Tarjan [1983]
(data structures), Cormen, Leiserson, and Rivest [1990] (algorithms), Papadimi-
triou [1994] (complexity), Sipser [1997] (algorithms, complexity), and Mehlhorn
and Näher [1999] (data structures, algorithms and algorithms).

In this book we restrict algorithms and complexity to deterministic, sequential,
and exact. For other types of algorithms and complexity we refer to the books by
Motwani and Raghavan [1995] (randomized algorithms and complexity), Leighton
[1992,2001] (parallel algorithms and complexity), and Vazirani [2001] (approxima-
tion algorithms and complexity). A survey on practical problem solving with cutting
planes was given by Jünger, Reinelt, and Thienel [1995].

4.14b. Efficiency and complexity historically

In the history of complexity, more precisely, in the conception of the notions
‘polynomial-time’ and ‘NP-complete’, two lines loom up: one motivated by questions
in logic, recursion, computability, and theorem proving, the other more down-to-
earth focusing on the complexity of some concrete problems, with background in
discrete mathematics and operations research.

Until the mid-1960s, the notions of efficiency and complexity were not formal-
ized. The notion of algorithm was often used for a method that was better than
brute-force enumerating. We focus on how the ideas of polynomial-time and NP-
complete got shape. We will not go into the history of data structures, abstract
computational complexity, or the subtleties inside and beyond NP (for which we
refer to Papadimitriou [1994]).

We quote references in chronological order. This order is quite arbitrary, since
the papers mostly seem to be written isolated from each other and they react very
seldom to each other.

50 Chapter 4. Preliminaries on algorithms and complexity

Maybe the first paper that was concerned with the complexity of computation
is an article by Lamé [1844], who showed that the number of iterations in the
Euclidean g.c.d. algorithm is linear in the logarithm of the smallest of the two
(natural) numbers:

Dans les traités d’Arithmétique, on se contente de dire que le nombre des divisions
à effectuer, dans la recherche du plus grand commun diviseur entre deux entiers,
ne pourra pas surpasser la moitié du plus petit. Cette limite, qui peut être dépassée
si les nombres sont petits, s’éloigne outre mesure quand ils ont plusieurs chiffres.
L’exagération est alors semblable à celle qui assignerait la moitié d’un nombre
comme la limite de son logarithme; l’analogie devient évidente quand on connâıt
le théorème suivant:

Théorème. Le nombre des divisions à effectuer, pour trouver le plus grand com-
mun diviseur entre deux entiers A, et B<A, est toujours moindre que cinq fois
le nombre des chiffres de B.3

The first major combinatorial optimization problem for which a polynomial-time
algorithm was given is the shortest spanning tree problem, by Bor̊uvka [1926a,
1926b] and Jarńık [1930], but these papers do not discuss the complexity issue —
the efficiency of the method might have been too obvious. Choquet [1938] mentioned
explicitly an estimate for the number of iterations in finding a shortest spanning
tree:

Le réseau cherché sera tracé après 2n opérations élémentaires au plus, en appelant
opération élémentaire la recherche du continu le plus voisin d’un continu donné.4

The traveling salesman and the assignment problem

The traveling salesman problem and the assignment problem have been long-term
bench-marks that gave shape to the ideas on efficiency and complexity.

Menger might have been the first to ask attention for the complexity of the
traveling salesman problem. In the session of 5 February 1930 of his mathematische
Kolloquium in Vienna (as reported in Menger [1932a]), he introduced das Boten-
problem, later called the traveling salesman problem and raised the question for a
better-than-finite algorithm:

Dieses Problem ist natürlich stets durch endlichviele Versuche lösbar. Regeln,
welche die Anzahl der Versuche unter die Anzahl der Permutationen der gegebe-
nen Punkte herunterdrücken würden, sind nicht bekannt.5

3 In the handbooks of Arithmetics, one contents oneself with saying that, in the search
for the greatest common divisor of two integers, the number of divisions to execute
could not surpass half of the smallest [integer]. This bound, that can be exceeded if
the numbers are small, goes away beyond measure when they have several digits. The
exaggeration then is similar to that which would assign half of a number as bound of
its logarithm; the analogy becomes clear when one knows the following theorem:

Theorem. The number of divisions to execute, to find the greatest common divisor of
two integers A, and B<A, is always smaller than five times the number of digits of B.

4 The network looked for will be traced after at most 2n elementary operations, calling
the search for the continuum closest to a given continuum an elementary operation.

5 Of course, this problem is solvable by finitely many trials. Rules which would push the
number of trials below the number of permutations of the given points, are not known.

Section 4.14b. Efficiency and complexity historically 51

Ghosh [1949] observed that the problem of finding a shortest tour along n
random points in the plane (which is the traveling salesman problem) is hard:

After locating the n random points in a map of the region, it is very difficult to
find out actually the shortest path connecting the points, unless the number n is
very small, which is seldom the case for a large-scale survey.

We should realize however that at that time also the (now known to be polynomial-
time solvable) assignment problem was considered to be hard. In an Address deliv-
ered on 9 September 1949 at a meeting of the American Psychological Association
at Denver, Colorado, Thorndike [1950] studied the problem of the ‘classification’ of
personnel:

There are, as has been indicated, a finite number of permutations in the assign-
ment of men to jobs. When the classification problem as formulated above was
presented to a mathematician, he pointed to this fact and said that from the
point of view of the mathematician there was no problem. Since the number of
permutations was finite, one had only to try them all and choose the best. He
dismissed the problem at that point. This is rather cold comfort to the psychol-
ogist, however, when one considers that only ten men and ten jobs mean over
three and a half million permutations. Trying out all the permutations may be a
mathematical solution to the problem, it is not a practical solution.

But, in a RAND Report dated 5 December 1949, Robinson [1949] reported
that an ‘unsuccessful attempt’ to solve the traveling salesman problem, led her
to a ‘cycle-cancelling’ method for the optimum assignment problem, which in fact
stands at the basis of efficient algorithms for network problems. She gave an op-
timality criterion for the assignment problem (absence of negative-length cycles in
the residual graph). As for the traveling salesman problem she mentions:

Since there are only a finite number of paths to consider, the problem consists in
finding a method for picking out the optimal path when n is moderately large,
say n = 50. In this case, there are more than 1062 possible paths, so we can not
simply try them all. Even for as few as 10 points, some short cuts are desirable.

She also observed that the number of feasible solutions is not a measure for the
complexity (where ‘it’ refers to the assignment problem):

However at first glance, it looks more difficult than the traveling salesman
probl[e]m, for there are obviously many more systems of circuits than circuits.

The development of the simplex method for linear programming, and its, in
practice successful, application to combinatorial optimization problems like assign-
ment and transportation, led to much speculation on the theoretical efficiency of
the simplex method. In his paper describing the application of the simplex method
to the transportation problem, Dantzig [1951a] mentioned (after giving a variable
selection criterion that he speculates to lead to favourable computational experience
for large-scale practical problems):

This does not mean that theoretical problems could not be “cooked up” where
this criterion is weak, but that in practical problems the number of steps has not
been far from m+ n− 1.

(Here n and m are the numbers of vertices and arcs, respectively.)
At the Symposium on Linear Inequalities and Programming in Washington,

D.C. in 1951, Votaw and Orden [1952] reported on early computational results
with the simplex method (on the SEAC), and claimed (without proof) that the
simplex method is polynomial-time for the transportation problem (a statement
refuted by Zadeh [1973a]):

52 Chapter 4. Preliminaries on algorithms and complexity

As to computation time, it should be noted that for moderate size problems, say
m × n up to 500, the time of computation is of the same order of magnitude as
the time required to type the initial data. The computation time on a sample
computation in which m and n were both 10 was 3 minutes. The time of com-
putation can be shown by study of the computing method and the code to be
proportional to (m+ n)3.

Another early mention of polynomial-time as efficiency criterion is by von Neu-
mann, who considered the complexity of the assignment problem. In a talk in the
Princeton University Game Seminar on 26 October 1951, he described a method
which is equivalent to finding a best strategy in a certain zero-sum two-person
game. According to a transcript of the talk (cf. von Neumann [1951,1953]), von
Neumann noted the following on the number of steps:

It turns out that this number is a moderate power of n, i.e., considerably smaller
than the ”obvious” estimate n! mentioned earlier.

However, no further argumentation is given.
In a Cowles Commission Discussion Paper of 2 April 1953, also Beckmann and

Koopmans [1953] asked for better-than-finite methods for the assignment problem,
but no explicit complexity measure was proposed, except that the work should be
reduced to ‘manageable proportions’:

It should be added that in all the assignment problems discussed, there is, of
course, the obvious brute force method of enumerating all assignments, evaluating
the maximand at each of these, and selecting the assignment giving the highest
value. This is too costly in most cases of practical importance, and by a method
of solution we have meant a procedure that reduces the computational work to
manageable proportions in a wider class of cases.

During the further 1950s, better-than-finite methods were developed for the as-
signment and several other problems like shortest path and maximum flow. These
methods turned out to give polynomial-time algorithms (possibly after modifica-
tion), and several speedups were found — but polynomial-time was, as yet, seldom
marked as efficiency criterion. The term ‘algorithm’ was often used just to distin-
guish from complete enumeration, but no mathematical characterization was given.

Kuhn [1955b,1956] introduced the ‘Hungarian method’ for the assignment prob-
lem (inspired by the proof method of Egerváry [1931]). Kuhn contented himself with
showing finiteness of the method, but Munkres [1957] showed that it is strongly
polynomial-time:

The final maximum on the number of operations needed is

(11n3 + 12n2 + 31n)/6.

This maximum is of theoretical interest, since it is much smaller than the n!
operations necessary in the most straightforward attack on the problem.

As for the maximum flow problem, Ford and Fulkerson [1955,1957b] showed that
their augmenting path method is finite, but only Dinits [1970] and Edmonds and
Karp [1970,1972] showed that it can be adapted to be (strongly) polynomial-time.

Several algorithms were given for finding shortest paths (Shimbel [1955], Ley-
zorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957], Bellman [1958],
Dantzig [1958,1960], Dijkstra [1959], Moore [1959]), and most of them are obvi-
ously strongly polynomial-time. (Ford [1956] gave a liberal shortest path algorithm
that may require exponential time (Johnson [1973a,1973b,1977a]).)

Section 4.14b. Efficiency and complexity historically 53

Similarly, the interest in the shortest spanning tree problem revived, leading to
old and new strongly polynomial-time algorithms (Kruskal [1956], Loberman and
Weinberger [1957], Prim [1957], and Dijkstra [1959]).

The traveling salesman problem resisted these efforts. In the words of Dantzig,
Fulkerson, and Johnson [1954a,1954b]:

Although algorithms have been devised for problems of similar nature, e.g., the
optimal assignment problem,3,7,8 little is known about the traveling-salesman
problem. We do not claim that this note alters the situation very much;

The papers 3,7,8 referred to, are the papers Dantzig [1951a], Votaw and Orden
[1952], and von Neumann [1953], quoted above.

The use of the word ‘Although’ in the above quote makes it unclear what
Dantzig, Fulkerson, and Johnson considered to be an algorithm. Their algorithm
uses polyhedral methods to solve the traveling salesman problem, while Dantzig
[1951a] and Votaw and Orden [1952] apply the simplex method to solve the assign-
ment and transportation problems. In a follow-up paper, Dantzig, Fulkerson, and
Johnson [1959] seem to have come to the conclusion that both methods are of a
comparable level:

Neither does the example, as we have solved it, indicate how one could make
the combinatorial analysis a routine procedure. This can certainly be done (by
enumeration, if nothing else)—but the fundamental question is: does the use of
a few linear inequalities in general reduce the combinatorial magnitude of such
problems significantly?
We do not know the answer to this question in any theoretical sense, but it is
our feeling, based on our experience in using the method, that it does afford a
practical means of computing optimal tours in problems that are not too huge.
It should be noted that a similar question, for example, arises when one uses the
simplex method to find optimal solutions to linear programs, since no one has yet
proved that the simplex method cuts down the computational task significantly
from the crude method of examining all basic solutions, say. Nonetheless, people
do use the simplex method because of successful experience with many hundreds
of practical problems.

The feeling that the traveling salesman problem is more complex than the as-
signment problem was stated by Tompkins [1956]:

A traveling-salesman problem is in some respects similar to the assignment prob-
lem. It seems definitely more difficult, however.

Tompkins described a branch-and-bound scheme to the permutation problem (in-
cluding assignment and traveling salesman), but said:

It must be noted, however, that this is not a completely satisfactory scheme
for solution of such problems. In a few important cases (such as the assignment
problem) more efficient machine methods have been devised.

The available algorithms for the traveling salesman problem were also not accept-
able to Flood [1956]:

There are as yet no acceptable computational methods, and surprisingly few
mathematical results relative to the problem.

He mentioned that the problem might be ‘fundamentally complex’:
Very recent mathematical work on the traveling-salesman problem by I. Heller,
H.W. Kuhn, and others indicates that the problem is fundamentally complex.
It seems very likely that quite a different approach from any yet used may be
required for succesful treatment of the problem. In fact, there may well be no
general method for treating the problem and impossibility results would also be
valuable.

54 Chapter 4. Preliminaries on algorithms and complexity

Logic and computability

Parallel to those motivated by concrete combinatorial problems, interest in com-
plexity arose in the circles of logicians and recursion theorists.

A first quote is from a letter of K. Gödel to J. von Neumann of 20 March 1956.
(The letter was reviewed by Hartmanis [1989], to whose attention it was brought
by G. Heise. A reproduction and full translation was given by Sipser [1992].)

Turing [1937] proved that there is no algorithm that decides if a given state-
ment in full first-order predicate logic has a proof (the unsolvability of Hilbert’s
Entscheidungsproblem of the engere Funktionskalkül (which is the term originally
used by Hilbert for full first-order predicate calculus; Turing [1937] translated it
into restricted functional calculus)). It implies the result of Gödel [1931] that there
exist propositions A such that neither A nor ¬A is provable (in the formalism of
the Principia Mathematica).

But a given proof can algorithmically be checked, hence there is a finite al-
gorithm to check if there exists a proof of any prescribed length n (simply by
enumeration). Nowadays it is known that this is in fact an NP-complete problem
(the satisfiability problem is a special case). Gödel asked for the opinion of von
Neumann on whether a proof could be found algorithmically in time linear (or else
quadratic) in the length of the proof — quite a bold statement, which Gödel yet
seemed to consider plausible:

Man kann offenbar leicht eine Turingmaschine konstruieren, welche von jeder
Formel F des engeren Funktionenkalküls u. jeder natürl. Zahl n zu entschei-
den gestattet ob F einen Beweis der Länge n hat [Länge = Anzahl der Sym-
bole]. Sei ψ(F, n) die Anzahl der Schritte die die Maschine dazu benötigt u.
sei ϕ(n) = max

F
ψ(F, n). Die Frage ist, wie rasch ϕ(n) für eine optimale Mas-

chine wächst. Man kann zeigen ϕ(n) ≥ Kn. Wenn es wirklich eine Maschine mit
ϕ(n) ∼ K.n (oder auch nur ∼ Kn2) gäbe, hätte das Folgerungen von der grössten
Tragweite. Es würde nämlich offenbar bedeuten, dass man trotz der Unlösbarkeit
des Entscheidungsproblems die Denkarbeit des Mathematikers bei ja-oder-nein
Fragen vollständig∗ durch Maschinen ersetzen könnte. Man müsste ja bloss das
n so gross wählen, dass, wenn die Maschine kein Resultat liefert es auch keinen
Sinn hat über das Problem nachzudenken. Nun scheint es mir aber durchaus
im Bereich der Möglichkeit zu liegen, dass ϕ(n) so langsam wächst. Denn 1.)
scheint ϕ(n) ≥ Kn die einzige Abschätzung zu sein, die man durch eine Verallge-
meinerung des Beweises für die Unlösbarkeit des Entscheidungsproblems erhalten
kann; 2. bedeutet ja ϕ(n) ∼ K.n (oder ∼ Kn2) bloss, dass die Anzahl der Schritte
gegenüber dem blossen Probieren von N auf logN (oder (logN)2) verringert wer-
den kann. So starke Verringerungen kommen aber bei andern finiten Problemen
durchaus vor, z.B. bei der Berechnung eines quadratischen Restsymbols durch
wiederholte Anwendung des Reziprozitätsgesetzes. Es wäre interessant zu wissen,
wie es damit z.B. bei der Feststellung, ob eine Zahl Primzahl ist, steht u. wie stark
im allgemeinen bei finiten kombinatorischen Problemen die Anzahl der Schritte
gegenüber dem blossen Probieren verringert werden kann.

* abgesehen von der Aufstellung der Axiome6

6 Clearly, one can easily construct a Turing machine, which makes it possible to decide,
for each formula F of the restricted functional calculus and each natural number n,
whether F has a proof of length n [length = number of symbols]. Let ψ(F, n) be the
number of steps that the machine needs for that and let ϕ(n) = max

F
ψ(F, n). The

question is, how fast ϕ(n) grows for an optimal machine. One can show ϕ(n) ≥ Kn.

Section 4.14b. Efficiency and complexity historically 55

(For integers a, p with p prime, the Legendre symbol (a
p

) indicates if a is a quadratic
residue mod p (that is, if x2 = a (mod p) has an integer solution x), and can be
calculated by log a + log p arithmetic operations (using the Jacobi symbol and the
reciprocity law) — so Gödel took the logarithms of the numbers as size.)

The unavoidability of brute-force search for finding the smallest Boolean repre-
sentation for a function was claimed by Yablonskĭı [1959] (cf. Trakhtenbrot [1984]).

Davis and Putnam [1960] gave a method for the satisfiability problem (in reac-
tion to earlier, exponential-time methods of Gilmore [1960] and Wang [1960] based
on elimination of variables), which they claimed to have some (not exactly formu-
lated) efficiency:

In the present paper, a uniform proof procedure for quantification theory is given
which is feasible for use with some rather complicated formulas and which does
not ordinarily lead to exponentiation.

(It was noticed later by Cook [1971] that Davis and Putnam’s method gives a
polynomial-time method for the 2-satisfiability problem.)

A mathematical framework for computational complexity of algorithms was set
up by Hartmanis and Stearns [1965]. They counted the number of steps made by
a multitape Turing machine to solve a decision problem. They showed that for
all ‘real-time countable’ functions f, g (which include all functions nk, kn, n!, and
sums, products, and compositions of them) the following holds: if each problem
solvable in time O(f) is also solvable in time O(g), then f = O(g2). This implies,
for instance, that there exist problems solvable in time O(n5) but not in time
O(n2), and problems solvable in time O(2n) but not in time O(2n/3) (hence not in
polynomial time).

Polynomial-time

In the summer of 1963, at a Workshop at the RAND Corporation, Edmonds discov-
ered that shrinking leads to a polynomial-time algorithm to find a maximum-size
matching in any graph — a basic result in graph algorithmics. It was described in
the paper Edmonds [1965d] (received November 22, 1963), in which he also gave
his views on algorithms and complexity:

When really there were a machine with ϕ(n) ∼ K.n (or even just ∼ Kn2), that would
have consequences of the largest impact. In particular, it would obviously mean that,
despite the unsolvability of the Entscheidungsproblem, one could replace the brainwork
of the mathematician in case of yes-or-no questions fully∗ by machines. One should
indeed only choose n so large that if the machine yields no result, there is also no
sense in thinking about the problem. Now it seems to me, however, to lie completely
within the range of possibility that ϕ(n) grows that slowly. Because 1.) ϕ(n) ≥ Kn
seems to be the only estimate that one can obtain by a generalization of the proof
for the unsolvability of the Entscheidungsproblem; 2. ϕ(n) ∼ K.n (or ∼ Kn2) means
indeed only that the number of steps can be reduced compared to mere trying from N

to logN (or (logN)2). Such strong reductions occur however definitely at other finite
problems, e.g. at the calculation of a quadratic residue symbol by repeated application
of the reciprocity law. It would be interesting to know how this is e.g. for the decision
if a number is prime, and how strong in general, for finite combinatorial problems, the
number of steps can be reduced compared to mere trying.

* apart from the set-up of the axioms

56 Chapter 4. Preliminaries on algorithms and complexity

For practical purposes computational details are vital. However, my purpose is
only to show as attractively as I can that there is an efficient algorithm. According
to the dictionary, “efficient” means “adequate in operation or performance.” This
is roughly the meaning I want—in the sense that it is conceivable for maximum
matching to have no efficient algorithm. Perhaps a better word is “good.”
I am claiming, as a mathematical result, the existence of a good algorithm for
finding a maximum size matching in a graph.
There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether or
not there exists an algorithm whose difficulty increases only algebraically with
the size of the graph.

Moreover:

For practical purposes the difference between algebraic and exponential order is
often more crucial than the difference between finite and non-finite.

In another paper, Edmonds [1965c] introduced the term good characterization:

We seek a good characterization of the minimum number of independent sets
into which the columns of a matrix of MF can be partitioned. As the criterion
of “good” for the characterization we apply the “principle of the absolute su-
pervisor.” The good characterization will describe certain information about the
matrix which the supervisor can require his assistant to search out along with
a minimum partition and which the supervisor can then use with ease to verify
with mathematical certainty that the partition is indeed minimum. Having a good
characterization does not mean necessarily that there is a good algorithm. The
assistant might have to kill himself with work to find the information and the
partition.

Further motivation for polynomial-time solvability was given by Edmonds [1967b]:

An algorithm which is good in the sense used here is not necessarily very good
from a practical viewpoint. However, the good-versus-not-good dichotomy is use-
ful. It is easily formalized (say, relative to a Turing machine, or relative to a
typical digital computer with an unlimited supply of tape), and usually it is eas-
ily recognized informally. Within limitations it does have practical value, and it
does admit refinements to “how good” and “how bad”. The classes of problems
which are respectively known and not known to have good algorithms are very
interesting theoretically.

Edmonds [1967a] conjectured that there is no polynomial-time algorithm for the
traveling salesman problem — in language developed later, this is equivalent to
NP�=P:

I conjecture that there is no good algorithm for the traveling salesman problem.
My reasons are the same as for any mathematical conjecture: (1) It is a legitimate
mathematical possibility, and (2) I do not know.

Also Cobham [1965] singled out polynomial-time as a complexity criterion, in a
paper on Turing machines and computability, presented at the 1964 International
Congress on Logic, Methodology and Philosophy of Science in Jerusalem (denoting
the size of n by l(n)):

To obtain some idea as to how we might go about the further classification of
relatively simple functions, we might take a look at how we ordinarily set about
computing some of the more common of them. Suppose, for example, that m and
n are two numbers given in decimal notation with one written above the other
and their right ends aligned. Then to add m and n we start at the right and

Section 4.14b. Efficiency and complexity historically 57

proceed digit-by-digit to the left writing down the sum. No matter how large m
and n, this process terminates with the answer after a number of steps equal at
most to one greater than the larger of l(m) and l(n). Thus the process of adding
m and n can be carried out in a number of steps which is bounded by a linear
polynomial in l(m) and l(n). Similarly, we can multiply m and n in a number of
steps bounded by a quadratic polynomial in l(m) and l(n). So, too, the number of
steps involved in the extraction of square roots, calculation of quotients, etc., can
be bounded by polynomials in the lengths of the numbers involved, and this seems
to be a property of simple functions in general. This suggests that we consider
the class, which I will call L, of all functions having this property.

At a symposium in New York in 1966, also Rabin [1967] noted the importance
of polynomial-time solvability:

In the following we shall consider an algorithm to be practical if, for automata
with n states, it requires at most cnk (k is a fixed integer and c a fixed constant)
computational steps. This stipulation is, admittedly, both vague and arbitrary. We
do not, in fact cannot, define what is meant by a computational step, thus have no
precise and general measure for the complexity of algorithms. Furthermore, there
is no compelling reason to classify algorithms requiring cnk steps as practical.
Several points may be raised in defense of the above stipulation. In every given
algorithm the notion of a computational step is quite obvious. Hence there is not
much vagueness about the measure of complexity of existing algorithms. Another
significant pragmatic fact is that all existing algorithms either require up to about
n4 steps or else require 2n or worse steps. Thus drawing the line of practicality
between algorithms requiring nk steps and algorithms for which no such bound
exists seems to be reasonable.

NP-completeness

Cook [1971] proved the NP-completeness of the satisfiability problem (‘Theorem
1’) and of the 3-satisfiability problem and the subgraph problem (‘Theorem 2’)
and mentioned (the class of polynomial-time solvable problems is denoted by L∗; {
tautologies } is the satisfiability problem):

Theorem 1 and its corollary give strong evidence that it is not easy to determine
whether a given proposition formula is a tautology, even if the formula is in
normal disjunctive form. Theorems 1 and 2 together suggest that it is fruitless
to search for a polynomial decision procedure for the subgraph problem, since
success would bring polynomial decision procedures to many other apparently
intractable problems. Of course, the same remark applies to any combinatorial
problem to which { tautologies } is P-reducible.
Furthermore, the theorems suggest that { tautologies } is a good candidate for
an interesting set not in L∗, and I feel it is worth spending considerable effort
trying to prove this conjecture. Such a proof would be a major breakthrough in
complexity theory.

So Cook conjectured that NP�=P.
Also Levin [1973] considered the distinction between NP and P:

After the concept of the algorithm had been fully refined, the algorithmic unsolv-
ability of a number of classical large-scale problems was proved (including the
problems of the identity of elements of groups, the homeomorphism of varieties,
the solvability of the Diophantine equations, etc.). These findings dispensed with
the question of finding a practical technique for solving the indicated problems.
However, the existence of algorithms for the solution of other problems does not

58 Chapter 4. Preliminaries on algorithms and complexity

eliminate the analogous question, because the volume of work mandated by those
algorithms is fantastically large. This is the situation with so-called sequential
(or exhaustive) search problems, including: the minimization of Boolean func-
tions, the search for proofs of finite length, the determination of the isomorphism
of graphs, etc. All of these problems are solved by trivial algorithms entailing
the sequential scanning of all possibilities. The operating time of the algorithms,
however, is exponential, and mathematicians nurture the conviction that it is
impossible to find simpler algorithms.

Levin next announced that any problem in NP (in his terminology, any ‘sequential
search problem’) can be reduced to the satisfiability problem, and to a few other
problems.

The wide extent of NP-completeness was disclosed by Karp [1972b], by showing
that a host of prominent combinatorial problems is NP-complete, therewith reveal-
ing the fissure in the combinatorial optimization landscape. According to Karp, his
theorems

strongly suggest, but do not imply, that these problems, as well as many others,
will remain intractable perpetually.

Karp also introduced the notation P and NP, and in a subsequent paper, Karp
[1975] introduced the term NP-complete.

Sipser [1992] gave an extensive account on the history of the P=NP question.
Hartmanis [1989] reviewed the historic setting of ‘Gödel, von Neumann and the
P=?NP Problem’. Other papers on the history of complexity are Hartmanis [1981],
Trakhtenbrot [1984] (Russian approaches), Karp [1986], and Iri [1987] (the Japanese
view).

Chapter 5

Preliminaries on polyhedra and
linear and integer programming

This chapter surveys what we need on polyhedra and linear and integer
programming. Most background can be found in Chapters 7–10, 14, 16, 19,
22, and 23 of Schrijver [1986b]. We give proofs of a few easy further results
that we need in later parts of the present book.
The results of this chapter are mostly formulated for real space,
but are maintained when restricted to rational space. So the symbol
R can be replaced by the symbol Q. In applying these results, we add the
adjective rational when we restrict ourselves to rational numbers.

5.1. Convexity and halfspaces

A subset C of R
n is convex if λx + (1 − λ)y belongs to C for all x, y ∈ C and

each λ with 0 ≤ λ ≤ 1. A convex body is a compact convex set.
The convex hull of a set X ⊆ R

n, denoted by conv.hullX, is the smallest
convex set containing X. Then:

(5.1) conv.hullX = {λ1x1 + · · · + λkxk | k ≥ 1, x1, . . . , xk ∈ X, λ1, . . . ,
λk∈ R+, λ1 + · · · + λk = 1}.

A useful fundamental result was proved by Carathéodory [1911]:

Theorem 5.1 (Carathéodory’s theorem). For any X ⊆ R
n and x ∈

conv.hullX, there exist affinely independent vectors x1, . . . , xk in X with
x ∈ conv.hull{x1, . . . , xk}.
(Corollary 7.1f in Schrijver [1986b].)

A subset H of R
n is called an affine halfspace if H = {x | cTx ≤ δ}, for

some c ∈ R
n with c �= 0 and some δ ∈ R. If δ = 0, then H is called a linear

halfspace.
Let X ⊆ R

n. The set conv.hullX + R
n
+ is called the up hull of X, and the

set conv.hullX − R
n
+ the down hull of X.

60 Chapter 5. Preliminaries on polyhedra and linear and integer programming

5.2. Cones

A subset C of R
n is called a (convex) cone if C �= ∅ and λx + µy ∈ C

whenever x, y ∈ C and λ, µ ∈ R+. The cone generated by a set X of vectors
is the smallest cone containing X:

(5.2) coneX = {λ1x1 + · · · + λkxk | k ≥ 0, λ1, . . . , λk ≥ 0, x1, . . . , xk∈
X}.

There is a variant of Carathéodory’s theorem:

Theorem 5.2. For any X ⊆ R
n and x ∈ coneX, there exist linearly inde-

pendent vectors x1, . . . , xk in X with x ∈ cone{x1, . . . , xk}.
A cone C is polyhedral if there is a matrix A such that

(5.3) C = {x | Ax ≤ 0}.

Equivalently, C is polyhedral if it is the intersection of finitely many linear
halfspaces.

Results of Farkas [1898,1902], Minkowski [1896], and Weyl [1935] imply
that

(5.4) a convex cone is polyhedral if and only if it is finitely generated,

where a cone C is finitely generated if C = coneX for some finite set X.
(Corollary 7.1a in Schrijver [1986b].)

5.3. Polyhedra and polytopes

A subset P of R
n is called a polyhedron if there exists an m × n matrix A

and a vector b ∈ R
m (for some m ≥ 0) such that

(5.5) P = {x | Ax ≤ b}.

So P is a polyhedron of and only if it is the intersection of finitely many affine
halfspaces. If (5.5) holds, we say that Ax ≤ b determines P . Any inequality
cTx ≤ δ is called valid for P if cTx ≤ δ holds for each x ∈ P .

A subset P of R
n is called a polytope if it is the convex hull of finitely

many vectors in R
n. Motzkin [1936] showed:

(5.6) a set P is a polyhedron if and only if P = Q+C for some polytope
Q and some cone C.

(Corollary 7.1b in Schrijver [1986b].) If P �= ∅, then C is unique and is called
the characteristic cone char.cone(P) of P . Then:

(5.7) char.cone(P) = {y ∈ R
n | ∀x ∈ P∀λ ≥ 0 : x + λy ∈ P}.

Section 5.5. Linear programming 61

If P = ∅, then by definition its characteristic cone is char.cone(P) := {0}.
(5.6) implies the following fundamental result (Minkowski [1896], Steinitz

[1916], Weyl [1935]):

(5.8) a set P is a polytope if and only if P is a bounded polyhedron.

(Corollary 7.1c in Schrijver [1986b].)
A polyhedron P is called rational if it is determined by a rational system

of linear inequalities. Then a rational polytope is the convex hull of a finite
number of rational vectors.

5.4. Farkas’ lemma

A system Ax ≤ b is called feasible (or solvable) if it has a solution x. Feasibility
of a system Ax ≤ b of linear inequalities is characterized by Farkas’ lemma
(Farkas [1894,1898], Minkowski [1896]):

Theorem 5.3 (Farkas’ lemma). Ax ≤ b is feasible ⇐⇒ yTb ≥ 0 for each
y ≥ 0 with yTA = 0T.

(Corollary 7.1e in Schrijver [1986b].) Theorem 5.3 is equivalent to:

Corollary 5.3a (Farkas’ lemma — variant). Ax = b has a solution x ≥ 0
⇐⇒ yTb ≥ 0 for each y with yTA ≥ 0T.

(Corollary 7.1d in Schrijver [1986b].) A second equivalent variant is:

Corollary 5.3b (Farkas’ lemma — variant). Ax ≤ b has a solution x ≥ 0
⇐⇒ yTb ≥ 0 for each y ≥ 0 with yTA ≥ 0T.

(Corollary 7.1f in Schrijver [1986b].) A third equivalent, affine variant of
Farkas’ lemma is:

Corollary 5.3c (Farkas’ lemma — affine variant). Let Ax ≤ b be a feasible
system of inequalities and let cTx ≤ δ be an inequality satisfied by each x
with Ax ≤ b. Then for some δ′ ≤ δ, the inequality cTx ≤ δ′ is a nonnegative
linear combination of the inequalities in Ax ≤ b.

(Corollary 7.1h in Schrijver [1986b].)

5.5. Linear programming

Linear programming, abbreviated to LP, concerns the problem of maximizing
or minimizing a linear function over a polyhedron. Examples are

(5.9) max{cTx | Ax ≤ b} and min{cTx | x ≥ 0, Ax ≥ b}.

62 Chapter 5. Preliminaries on polyhedra and linear and integer programming

If a supremum of a linear function over a polyhedron is finite, then it is
attained as a maximum. So a maximum is finite if the value set is nonempty
and has an upper bound. Similarly for infimum and minimum.

The duality theorem of linear programming says (von Neumann [1947],
Gale, Kuhn, and Tucker [1951]):

Theorem 5.4 (duality theorem of linear programming). Let A be a matrix
and b and c be vectors. Then

(5.10) max{cTx | Ax ≤ b} = min{yTb | y ≥ 0, yTA = cT},

if at least one of these two optima is finite.

(Corollary 7.1g in Schrijver [1986b].) So, in particular, if at least one of the
optima is finite, then both are finite.

Note that the inequality ≤ in (5.10) is easy, since cTx = yTAx ≤ yTb.
This is called weak duality.

There are several equivalent forms of the duality theorem of linear pro-
gramming, like

(5.11) max{cTx | x ≥ 0, Ax ≤ b} = min{yTb | y ≥ 0, yTA ≥ cT},
max{cTx | x ≥ 0, Ax = b} = min{yTb | yTA ≥ cT},
min{cTx | x ≥ 0, Ax ≥ b} = max{yTb | y ≥ 0, yTA ≤ cT},
min{cTx | Ax ≥ b} = max{yTb | y ≥ 0, yTA = cT}.

Any of these equalities holds if at least one of the two optima is finite (im-
plying that both are finite).

A most general formulation is: let A, B, C, D, E, F, G, H, K be matrices
and let a, b, c, d, e, f be vectors; then

(5.12) max{dTx + eTy + fTz | x ≥ 0, z ≤ 0,
Ax + By + Cz ≤ a,
Dx + Ey + Fz = b,
Gx + Hy + Kz ≥ c}
= min{uTa + vTb + wTc | u ≥ 0, w ≤ 0,
uTA + vTD + wTG ≥ dT,
uTB + vTE + wTH = eT,
uTC + vTF + wTK ≤ fT},

provided that at least one of the two optima is finite (cf. Section 7.4 in
Schrijver [1986b]).

So there is a one-to-one relation between constraints in a problem and
variables in its dual problem. The objective function in one problem becomes
the right-hand side in the dual problem. We survey these relations in the
following table:

Section 5.6. Faces, facets, and vertices 63

maximize minimize
≤ constraint variable ≥ 0
≥ constraint variable ≤ 0
= constraint unconstrained variable
variable ≥ 0 ≥ constraint
variable ≤ 0 ≤ constraint

unconstrained variable = constraint
right-hand side objective function

objective function right-hand side

Some LP terminology. Linear programming concerns maximizing or mini-
mizing a linear function cTx over a polyhedron P . The polyhedron P is called
the feasible region, and any vector in P a feasible solution. If the feasible re-
gion is nonempty, the problem is called feasible, and infeasible otherwise. The
function x → cTx is called the objective function or the cost function. Any
feasible solution attaining the optimum value is called an optimum solution.
An inequality cTx ≤ δ is called tight or active for some x∗ if cTx∗ = δ.

Equations like (5.10), (5.11), and (5.12) are called linear programming
duality equations. The minimization problem is called the dual problem of the
maximization problem (which problem then is called the primal problem), and
conversely. A feasible solution of the dual problem is called a dual solution.

Complementary slackness. The following complementary slackness con-
ditions characterize optimality of a pair of feasible solutions x, y of the linear
programs (5.10):

(5.13) x and y are optimum solutions if and only if (Ax)i = bi for each
i with yi > 0.

Similar conditions can be formulated for other pairs of dual linear programs
(cf. Section 7.9 in Schrijver [1986b]).

Carathéodory’s theorem. A consequence of Carathéodory’s theorem (The-
orem 5.1 above) is:

Theorem 5.5. If the optimum value in the LP problems (5.10) is finite,
then the minimum is attained by a vector y ≥ 0 such that the rows of A
corresponding to positive components of y are linearly independent.

(Corollary 7.1l in Schrijver [1986b].)

5.6. Faces, facets, and vertices

Let P = {x | Ax ≤ b} be a polyhedron in R
n. If c is a nonzero vector and

δ = max{cTx | Ax ≤ b}, the affine hyperplane {x | cTx = δ} is called a
supporting hyperplane of P . A subset F of P is called a face if F = P or if
F = P ∩ H for some supporting hyperplane H of P . So

64 Chapter 5. Preliminaries on polyhedra and linear and integer programming

(5.14) F is a face of P ⇐⇒ F is the set of optimum solutions of
max{cTx | Ax ≤ b} for some c ∈ R

n.

An inequality cTx ≤ δ is said to determine or to induce face F of P if

(5.15) F = {x ∈ P | cTx = δ}.

Alternatively, F is a face of P if and only if

(5.16) F = {x ∈ P | A′x = b′}
for some subsystem A′x ≤ b′ of Ax ≤ b (cf. Section 8.3 in Schrijver [1986b]).
So any face of a nonempty polyhedron is a nonempty polyhedron. We say
that a constraint aTx ≤ β from Ax ≤ b is tight or active in a face F if aTx = β
holds for each x ∈ F .

An inequality aTx ≤ β from Ax ≤ b is called an implicit equality if Ax ≤ b
implies aTx = β. Then:

Theorem 5.6. Let P = {x | Ax ≤ b} be a polyhedron in R
n. Let A′x ≤ b′ be

the subsystem of implicit inequalities in Ax ≤ b. Then dim P = n − rankA′.

(Cf. Section 8.2 in Schrijver [1986b].)
A facet of P is an inclusionwise maximal face F of P with F �= P . An

inequality determining a facet is called facet-determining or facet-inducing.
Any facet has dimension one less than the dimension of P .

A system Ax ≤ b is called minimal or irredundant if each proper subsys-
tem A′x ≤ b′ has a solution x not satisfying Ax ≤ b. If Ax ≤ b is irredundant
and P is full-dimensional, then Ax ≤ b is the unique minimal system deter-
mining P , up to multiplying inequalities by positive scalars.

If Ax ≤ b is irredundant, then there is a one-to-one relation between the
facets F of P and those inequalities aTx ≤ β in Ax ≤ b that are not implicit
equalities, given by:

(5.17) F = {x ∈ P | aTx = β}
(cf. Theorem 8.1 in Schrijver [1986b]). This implies that each face F �= P is
the intersection of facets.

A face of P = {x | Ax ≤ b} is called a minimal face if it is an inclusionwise
minimal face. Any minimal face is an affine subspace of R

n, and all minimal
faces of P are translates of each other. They all have dimension n − rankA.

If each minimal face has dimension 0, P is called pointed. A vertex of P is
an element z such that {z} is a minimal face. A polytope is the convex hull
of its vertices.

For any element z of P = {x | Ax ≤ b}, let Azx ≤ bz be the system
consisting of those inequalities from Ax ≤ b that are satisfied by z with
equality. Then:

Theorem 5.7. Let P = {x | Ax ≤ b} be a polyhedron in R
n and let z ∈ P .

Then z is a vertex of P if and only if rank(Az) = n.

Section 5.8. Blocking polyhedra 65

An edge of P is a bounded face of dimension 1. It necessarily connects
two vertices of P . Two vertices connected by an edge are called adjacent. An
extremal ray is a face of dimension 1 that forms a halfline.

The 1-skeleton of a pointed polyhedron P is the union of the vertices,
edges, and extremal rays of P . If P is a polytope, the 1-skeleton is a topologi-
cal graph. The diameter of P is the diameter of the associated (combinatorial)
graph.

The Hirsch conjecture states that a d-dimensional polytope with m facets
has diameter at most m − d. Naddef [1989] proved this for polytopes with
0, 1 vertices. We refer to Kalai [1997] for a survey of bounds on the diameter
and on the number of pivot steps in linear programming.

5.7. Polarity

(For the results of this section, see Section 9.1 in Schrijver [1986b].) For any
subset C of R

n, the polar of C is

(5.18) C∗ := {z ∈ R
n | xTz ≤ 1 for all x ∈ C}.

If C is a cone, then C∗ is again a cone, the polar cone of C, and satisfies

(5.19) C∗ := {z ∈ R
n | xTz ≤ 0 for all x ∈ C}.

Let C be a polyhedral cone; so C = {x | Ax ≤ 0} for some matrix A.
Trivially, if C is generated by the vectors x1, . . . , xk, then C∗ is equal to the
cone determined by the inequalities xT

i z ≤ 0 for i = 1, . . . , k. It is less trivial,
and can be derived from Farkas’ lemma, that:

(5.20) the polar cone C∗ is equal to the cone generated by the transposes
of the rows of A.

This implies

(5.21) C∗∗ = C for each polyhedral cone C.

So there is a symmetric duality relation between finite sets of vectors gener-
ating a cone and finite sets of vectors generating its polar cone.

5.8. Blocking polyhedra

(For the results of this section, see Section 9.2 in Schrijver [1986b].) A dual-
ity relation similar to polarity holds between convex sets ‘of blocking type’,
and also between convex sets ‘of antiblocking type’. This was shown by Fulk-
erson [1970b,1971a,1972a], who found several applications in combinatorial
optimization.

We say that a subset P of R
n is up-monotone if x ∈ P and y ≥ x imply

y ∈ P . Similarly, P is down-monotone if x ∈ P and y ≤ x imply y ∈ P .

66 Chapter 5. Preliminaries on polyhedra and linear and integer programming

Moreover, P is down-monotone in R
n
+ if x ∈ P and 0 ≤ y ≤ x imply y ∈ P .

For any P ⊆ R
n we define

(5.22) P ↑ := {y ∈ R
n | ∃x ∈ P : y ≥ x} = P + R

n
+ and

P ↓ := {y ∈ R
n | ∃x ∈ P : y ≤ x} = P − R

n
+.

P ↑ is called the dominant of P . So P is up-monotone if and only if P = P ↑,
and P is down-monotone if and only if P = P ↓.

We say that a convex set P ⊆ R
n is of blocking type if P is a closed convex

up-monotone subset of R
n
+. Each polyhedron P of blocking type is pointed.

Moreover, P is a polyhedron of blocking type if and only if there exist vectors
x1, . . . , xk ∈ R

n
+ such that

(5.23) P = conv.hull{x1, . . . , xk}↑;

and also, if and only if

(5.24) P = {x ∈ R
n
+ | Ax ≥ 1}

for some nonnegative matrix A.
For any polyhedron P in R

n, the blocking polyhedron B(P) of P is defined
by

(5.25) B(P) := {z ∈ R
n
+ | xTz ≥ 1 for each x ∈ P}.

Fulkerson [1970b,1971a] showed:

Theorem 5.8. Let P ⊆ R
n
+ be a polyhedron of blocking type. Then B(P)

is again a polyhedron of blocking type and B(B(P)) = P . Moreover, for any
x1, . . . , xk ∈ R

n
+:

(5.26) (5.23) holds if and only if B(P) = {z ∈ R
n
+ | xT

i z ≥ 1 for i =
1, . . . , k}.

Here the only if part is trivial, while the if part requires Farkas’ lemma.
Theorem 5.8 implies that for vectors x1, . . . , xk ∈ R

n
+ and z1, . . . , zd ∈ R

n
+

one has:

(5.27) conv.hull{x1, . . . , xk}+R
n
+ = {x ∈ R

n
+ | zT

j x ≥ 1 for j = 1, . . . , d}
if and only if

(5.28) conv.hull{z1, . . . , zd}+R
n
+ = {z ∈ R

n
+ | xT

i z ≥ 1 for i = 1, . . . , k}.

Two polyhedra P, R are called a blocking pair (of polyhedra) if they are
of blocking type and satisfy R = B(P). So if P, R is a blocking pair, then so
is R, P .

Section 5.10. Methods for linear programming 67

5.9. Antiblocking polyhedra

(For the results of this section, see Section 9.3 in Schrijver [1986b].) The
theory of antiblocking polyhedra is almost fully analogous to the blocking
case and arises mostly by reversing inequality signs.

We say that a set P ⊆ R
n is of antiblocking type if P is a nonempty closed

convex subset of R
n
+ that is down-monotone in R

n
+. Then P is a polyhedron

of antiblocking type if and only if

(5.29) P = {x ∈ R
n
+ | Ax ≤ b}

for some nonnegative matrix A and nonnegative vector b.
For any subset P of R

n, the antiblocking set A(P) of P is defined by

(5.30) A(P) := {z ∈ R
n
+ | xTz ≤ 1 for each x ∈ P}.

If A(P) is a polyhedron we speak of the antiblocking polyhedron, and if A(P)
is a convex body, of the antiblocking body.

Fulkerson [1971a,1972a] showed:

Theorem 5.9. Let P ⊆ R
n
+ be of antiblocking type. Then A(P) is again of

antiblocking type and A(A(P)) = P .

The antiblocking analogue of (5.26) is a little more complicated to for-
mulate, but we need it only for full-dimensional polytopes. For any full-
dimensional polytope P ⊆ R

n of antiblocking type and x1, . . . , xk ∈ R
n
+

we have:

(5.31) P = conv.hull{x1, . . . , xk}↓ ∩ R
n
+ if and only if A(P) = {z ∈ R

n
+ |

xT
i z ≤ 1 for i = 1, . . . , k}.

Two convex sets P, R are called an antiblocking pair (of polyhedra) if they
are of antiblocking type and satisfy R = A(P). So if P, R is an antiblocking
pair, then so is R, P .

5.10. Methods for linear programming

The simplex method was designed by Dantzig [1951b] to solve linear pro-
gramming problems. It is in practice and on average quite efficient, but no
polynomial-time worst-case running time bound has been proved (most of
the pivot selection rules that have been proposed have been proved to take
exponential time in the worst case).

The simplex method consists of finding a path in the 1-skeleton of the
feasible region, ending at an optimum vertex (in preprocessing, the problem
first is transformed to one with a pointed feasible region). An important issue
when implementing this is that the LP problem is not given by vertices and

68 Chapter 5. Preliminaries on polyhedra and linear and integer programming

edges, but by linear inequalities, and that vertices are determined by a, not
necessarily unique, ‘basis’ among the inequalities.

The first polynomial-time method for linear programming was given by
Khachiyan [1979,1980], by adapting the ‘ellipsoid method’ for nonlinear pro-
gramming of Shor [1970a,1970b,1977] and Yudin and Nemirovskĭı [1976]. The
method consists of finding a sequence of shrinking ellipsoids each containing
at least one optimum solution, until we have an ellipsoid that is small enough
so as to derive an optimum solution. The method however is practically quite
infeasible.

Karmarkar [1984a,1984b] showed that ‘interior point’ methods can solve
linear programming in polynomial time, and moreover that they have efficient
implementations, competing with the simplex method. Interior point methods
make a tour not along vertices and edges, but across the feasible region.

5.11. The ellipsoid method

While the ellipsoid method is practically infeasible, it turned out to have
features that are useful for deriving complexity results in combinatorial op-
timization. Specifically, the ellipsoid method does not require listing all con-
straints of an LP problem a priori, but allows that they are generated when
needed. In this way, one can derive the polynomial-time solvability of a num-
ber of combinatorial optimization problems. This should be considered as
existence proofs of polynomial-time algorithms — the algorithms are not
practical.

This application of the ellipsoid method was described by Karp and Pa-
padimitriou [1980,1982], Padberg and Rao [1980], and Grötschel, Lovász, and
Schrijver [1981]. The book by Grötschel, Lovász, and Schrijver [1988] is de-
voted to it. We refer to Chapter 6 of this book or to Chapter 14 of Schrijver
[1986b] for proofs of the results that we survey below.

The ellipsoid method applies to classes of polyhedra (and more generally,
classes of convex sets) which are described as follows.

Let Σ be a finite alphabet and let Π be a subset of the set Σ∗ of words
over Σ. In applications, we take for Π very simple sets like the set of strings
representing a graph or the set of strings representing a digraph.

For each σ ∈ Π, let Eσ be a finite set and let Pσ be a rational polyhedron
in Q

Eσ . (When we apply this, Eσ is often the vertex set or the edge or arc
set of the (di)graph represented by σ.) We make the following assumptions:

(5.32) (i) there is a polynomial-time algorithm that, given σ ∈ Σ∗, tests
if σ belongs to Π and, if so, returns the set Eσ;

(ii) there is a polynomial p such that, for each σ ∈ Π, Pσ is deter-
mined by linear inequalities each of size at most p(size(σ)).

Here the size of a rational linear inequality is proportional to the sum of the
sizes of its components, where the size of a rational number p/q (for integers

Section 5.11. The ellipsoid method 69

p, q) is proportional to log(|p| + 1) + log q. Condition (5.32)(ii) is equivalent
to (cf. Theorem 10.2 in Schrijver [1986b]):

(5.33) there is a polynomial q such that, for each σ ∈ Π, we can write
Pσ = Q + C, where Q is a polytope with vertices each of input
size at most q(size(σ)) and where C is a cone generated by vectors
each of input size at most q(size(σ)).

(The input size7 of a vector is the sum of the sizes of its components.) In
most applications, the existence of the polynomial p in (5.32)(ii) or of the
polynomial q in (5.33) is obvious.

We did not specify how the polyhedra Pσ are given algorithmically. In
applications, they might have an exponential number of vertices or facets, so
listing them would not be an algorithmic option. To handle this, we formu-
late two, in a sense dual, problems. An algorithm for either of them would
determine the polyhedra Pσ.

First, the optimization problem for (Pσ | σ ∈ Π) is the problem:

(5.34) given: σ ∈ Π and c ∈ Q
Eσ ,

find: x ∈ Pσ maximizing cTx over Pσ or y ∈ char.cone(Pσ) with
cTy > 0, if either of them exists.

Second, the separation problem for (Pσ | σ ∈ Π) is the problem:

(5.35) given: σ ∈ Π and z ∈ Q
Eσ ,

find: c ∈ Q
Eσ such that cTx < cTz for all x ∈ Pσ (if such a c

exists).

So c gives a separating hyperplane if z �∈ Pσ.
Then the ellipsoid method implies that these two problems are ‘polyno-

mial-time equivalent’:

Theorem 5.10. Let Π ⊆ Σ∗ and let (Pσ | σ ∈ Π) satisfy (5.32). Then the
optimization problem for (Pσ | σ ∈ Π) is polynomial-time solvable if and only
if the separation problem for (Pσ | σ ∈ Π) is polynomial-time solvable.

(Cf. Theorem (6.4.9) in Grötschel, Lovász, and Schrijver [1988] or Corollary
14.1c in Schrijver [1986b].)

The equivalence in Theorem 5.10 makes that we call (Pσ | σ ∈ Π)
polynomial-time solvable if it satisfies (5.32) and the optimization problem
(equivalently, the separation problem) for it is polynomial-time solvable.

Using simultaneous diophantine approximation based on the basis reduc-
tion method given by Lenstra, Lenstra, and Lovász [1982], Frank and Tardos
[1985,1987] extended these results to strong polynomial-time solvability:
7 We will use the term size of a vector for the sum of its components.

70 Chapter 5. Preliminaries on polyhedra and linear and integer programming

Theorem 5.11. The optimization problem and the separation problem for
any polynomial-time solvable system of polyhedra are solvable in strongly pol-
ynomial time.

(Theorem (6.6.5) in Grötschel, Lovász, and Schrijver [1988].)
For polynomial-time solvable classes of polyhedra, the separation problem

can be strengthened so as to obtain a facet as separating hyperplane:

Theorem 5.12. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system of
polyhedra. Then the following problem is strongly polynomial-time solvable:

(5.36) given: σ ∈ Π and z ∈ Q
Eσ ,

find: c ∈ Q
Eσ and δ ∈ Q such that cTz > δ and such that cTx ≤ δ

is facet-inducing for Pσ (if it exists).

(Cf. Theorem (6.5.16) in Grötschel, Lovász, and Schrijver [1988].) Also a
weakening of the separation problem turns out to be equivalent, under certain
conditions. The membership problem for (Pσ | σ ∈ Π) is the problem:

(5.37) given σ ∈ Π and z ∈ Q
Eσ , does z belong to Pσ?

Theorem 5.13. Let (Pσ | σ ∈ Π) be a system of full-dimensional polytopes
satisfying (5.32), such that there is a polynomial-time algorithm that gives for
each σ ∈ Π a vector in the interior of Pσ. Then (Pσ | σ ∈ Π) is polynomial-
time solvable if and only if the membership problem for (Pσ | σ ∈ Π) is
polynomial-time solvable.

(This follows from Corollary (4.3.12) and Theorem (6.3.2) in Grötschel,
Lovász, and Schrijver [1988].)

The theorems above imply:

Theorem 5.14. Let (Pσ | σ ∈ Π) and (Qσ | σ ∈ Π) be polynomial-time
solvable classes of polyhedra, such that for each σ ∈ Π, the polyhedra Pσ

and Qσ are in the same space R
Eσ . Then also (Pσ ∩ Qσ | σ ∈ Π) and

(conv.hull(Pσ ∪ Qσ) | σ ∈ Π) are polynomial-time solvable.

(Corollary 14.1d in Schrijver [1986b].)

Corollary 5.14a. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, all of blocking type. Then also the system of blocking polyhedra
(B(Pσ) | σ ∈ Π) is polynomial-time solvable.

(Corollary 14.1e in Schrijver [1986b].) Similarly:

Corollary 5.14b. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, all of antiblocking type. Then also the system of antiblocking
polyhedra (A(Pσ) | σ ∈ Π) is polynomial-time solvable.

Section 5.12. Polyhedra and NP and co-NP 71

(Corollary 14.1e in Schrijver [1986b].)
Also the following holds:

Theorem 5.15. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, where each Pσ is a polytope. Then the following problems are
strongly polynomial-time solvable:

(5.38) (i) given σ ∈ Π, find an internal vector, a vertex, and a facet-
inducing inequality of Pσ;

(ii) given σ ∈ Π and x ∈ Pσ, find affinely independent ver-
tices x1, . . . , xk of Pσ and write x as a convex combination
of x1, . . . , xk;

(iii) given σ ∈ Π and c ∈ R
Eσ , find facet-inducing inequalities

cT
1 x ≤ δ1,. . . , cT

kx ≤ δk of Pσ with c1, . . . , ck linearly indepen-
dent, and find λ1, . . . , λk ≥ 0 such that λ1c1 + · · · + λkck = c
and λ1δ1 + · · · + λkδk = max{cTx | x ∈ Pσ} (i.e., find an
optimum dual solution).

(Corollary 14.1f in Schrijver [1986b].)
The ellipsoid method can be applied also to nonpolyhedral convex sets,

in which case only approximative versions of the optimization and separation
problems can be shown to be equivalent. We only need this in Chapter 67
on the convex body TH(G), where we refer to the appropriate theorem in
Grötschel, Lovász, and Schrijver [1988].

5.12. Polyhedra and NP and co-NP

An appropriate polyhedral description of a combinatorial optimization prob-
lem relates to the question NP �=co-NP. More precisely, unless NP=co-NP, the
polyhedra associated with an NP-complete problem cannot be described by
‘certifiable’ inequalities. (These insights go back to observations in the work
of Edmonds of the 1960s.)

Again, let (Pσ | σ ∈ Π) be a system of polyhedra satisfying (5.32). Con-
sider the decision version of the optimization problem:

(5.39) given σ ∈ Π, c ∈ Q
Eσ , and k ∈ Q, is there an x ∈ Pσ with

cTx > k?

Then:

Theorem 5.16. Problem (5.39) belongs to co-NP if and only if for each
σ ∈ Π, there exists a collection Iσ of inequalities determining Pσ such that
the problem:

(5.40) given σ ∈ Π, c ∈ Q
Eσ , and δ ∈ Q, does cTx ≤ δ belong to Iσ,

72 Chapter 5. Preliminaries on polyhedra and linear and integer programming

belongs to NP.

Proof. To see necessity, we can take for Iσ the collection of all valid in-
equalities for Pσ. Then co-NP-membership of (5.39) is equivalent of NP-
membership of (5.40).

To see sufficiency, a negative answer to question (5.39) can be certified
by giving inequalities cT

i x ≤ δi from Iσ and λi ∈ Q+ (i = 1, . . . , k) such that
c = λ1c1 + · · · + λkck and δ ≥ λ1δ1 + · · · + λkδk. As we can take k ≤ |Eσ|,
and as each inequality in Iσ has a polynomial-time checkable certificate (as
(5.40) belongs to NP), this gives a polynomial-time checkable certificate for
the negative answer. Hence (5.39) belongs to co-NP.

This implies for NP-complete problems:

Corollary 5.16a. Let (5.39) be NP-complete and suppose NP�=co-NP. For
each σ ∈ Π, let Iσ be a collection of inequalities determining Pσ. Then
problem (5.40) does not belong to NP.

Proof. If problem (5.40) would belong to NP, then by Theorem 5.16, problem
(5.39) belongs to co-NP. If (5.39) is NP-complete, this implies NP=co-NP.

Roughly speaking, this implies that if (5.39) is NP-complete and NP�=co-
NP, then Pσ has ‘difficult’ facets, that is, facets which have no polynomial-
time checkable certificate of validity for Pσ.

(Related work on the complexity of facets was reported in Karp and
Papadimitriou [1980,1982] and Papadimitriou and Yannakakis [1982,1984].)

5.13. Primal-dual methods

As a generalization of similar methods for network flow and transporta-
tion problems, Dantzig, Ford, and Fulkerson [1956] designed the ‘primal-dual
method’ for linear programming. The general idea is as follows. Starting with
a dual feasible solution y, the method searches for a primal feasible solution
x satisfying the complementary slackness condition with respect to y. If such
a primal feasible solution x is found, x and y form a pair of optimum solu-
tions (by (5.13)). If no such primal solution is found, the method prescribes
a modification of y, after which the method iterates.

The problem now is how to find a primal feasible solution x satisfying the
complementary slackness condition, and how to modify the dual solution y
if no such primal solution is found. For general linear programs this problem
can be seen to amount to another linear program, generally simpler than the
original linear program. To solve the simpler linear program we could use any
LP method. In many combinatorial applications, however, this simpler linear
program is a simpler combinatorial optimization problem, for which direct

Section 5.14. Integer linear programming 73

methods are available. Thus, if we can describe a combinatorial optimization
problem as a linear program, the primal-dual method gives us a scheme for
reducing one combinatorial problem to an easier combinatorial problem. The
efficiency of the method depends on the complexity of the easier problem and
on the number of primal-dual iterations.

We describe the primal-dual method more precisely. Suppose that we wish
to solve the LP problem

(5.41) min{cTx | x ≥ 0, Ax = b},

where A is an m×n matrix, with columns a1, . . . , an, and where b ∈ R
m and

c ∈ R
n. The dual problem is

(5.42) max{yTb | yTA ≤ cT}.

The primal-dual method consists of repeating the following primal-dual iter-
ation. Suppose that we have a feasible solution y0 for problem (5.42). Let A′

be the submatrix of A consisting of those columns aj of A for which yT
0 aj = cj

holds. To find a feasible primal solution satisfying the complementary slack-
ness, solve the restricted linear program

(5.43) x′ ≥ 0, A′x′ = b.

If such an x′ exists, by adding components 0, we obtain a vector x ≥ 0 such
that Ax = b and such that xj = 0 if yT

0 aj < cj . By complementary slackness
((5.13)), it follows that x and y0 are optimum solutions for problems (5.41)
and (5.42).

On the other hand, if no x′ satisfying (5.43) exists, by Farkas’ lemma
(Corollary 5.3a), there exists a y′ such that y′TA′ ≤ 0 and y′Tb > 0. Let α
be the largest real number satisfying

(5.44) (y0 + αy′)TA ≤ cT.

(Note that α > 0.) Reset y0 := y0 + αy′, and start the iteration anew. (If
α = ∞, (5.42) is unbounded, hence (5.41) is infeasible.)

This describes the primal-dual method. It reduces problem (5.41) to
(5.43), which often is an easier problem.

The primal-dual method can equally well be considered as a gradient
method. Suppose that we wish to solve problem (5.42), and we have a feasible
solution y0. This y0 is not optimum if and only if there exists a vector y′ such
that y′Tb > 0 and y′ is a feasible direction at y0 (that is, (y0 + αy′)TA ≤ cT

for some α > 0). If we let A′ consist of those columns of A in which yT
0 A ≤ cT

has equality, then y′ is a feasible direction if and only if y′TA′ ≤ 0. So y′ can
be found by solving (5.43).

5.14. Integer linear programming

A vector x ∈ R
n is called integer if each component is an integer, i.e., if x

belongs to Z
n. Many combinatorial optimization problems can be described as

74 Chapter 5. Preliminaries on polyhedra and linear and integer programming

maximizing a linear function cTx over the integer vectors in some polyhedron
P = {x | Ax ≤ b}.

So this type of problems can be described as:

(5.45) max{cTx | Ax ≤ b; x ∈ Z
n}.

Such problems are called integer linear programming, or ILP, problems. They
consist of maximizing a linear function over the intersection P ∩ Z

n of a
polyhedron P with the set Z

n of integer vectors.
Clearly, always the following inequality holds:

(5.46) max{cTx | Ax ≤ b; x integer} ≤ max{cTx | Ax ≤ b}.

It is easy to make an example where strict inequality holds. This implies,
that generally one will have strict inequality in the following duality relation:

(5.47) max{cTx | Ax ≤ b; x integer}
≤ min{yTb | y ≥ 0; yTA = cT; y integer}.

No polynomial-time algorithm is known to exist for solving an integer lin-
ear programming problem in general. In fact, the general integer linear pro-
gramming problem is NP-complete (since the satisfiability problem is easily
transformed to an integer linear programming problem). However, for special
classes of integer linear programming problems, polynomial-time algorithms
have been found. These classes often come from combinatorial problems.

5.15. Integer polyhedra

A polyhedron P is called an integer polyhedron if it is the convex hull of the
integer vectors contained in P . This is equivalent to: P is rational and each
face of P contains an integer vector. So a polytope P is integer if and only if
each vertex of P is integer. If a polyhedron P = {x | Ax ≤ b} is integer, then
the linear programming problem

(5.48) max{cTx | Ax ≤ b}
has an integer optimum solution if it is finite. Hence, in that case,

(5.49) max{cTx | Ax ≤ b; x integer} = max{cTx | Ax ≤ b}.

This in fact characterizes integer polyhedra, since:

Theorem 5.17. Let P be a rational polyhedron in Q
n. Then P is integer

if and only if for each c ∈ Q
n, the linear programming problem max{cTx |

Ax ≤ b} has an integer optimum solution if it is finite.

A stronger characterization is (Edmonds and Giles [1977]):

Theorem 5.18. A rational polyhedron P in Q
n is integer if and only if for

each c ∈ Z
n the value of max{cTx | x ∈ P} is an integer if it is finite.

Section 5.16. Totally unimodular matrices 75

(Corollary 22.1a in Schrijver [1986b].) We also will use the following obser-
vation:

Theorem 5.19. Let P be an integer polyhedron in R
n
+ with P +R

n
+ = P and

let c ∈ Z
n
+ be such that x ≤ c for each vertex x of P . Then P ∩ {x | x ≤ c}

is an integer polyhedron again.

Proof. Let Q := P ∩ {x | x ≤ c} and let R be the convex hull of the integer
vectors in Q. We must show that Q ⊆ R.

Let x ∈ Q. As P = R + R
n
+ there exists a y ∈ R with y ≤ x. Choose such

a y with y1 + · · · + yn maximal. Suppose that yi < xi for some component
i. Since y ∈ R, y is a convex combination of integer vectors in Q. Since
yi < xi ≤ ci, at least one of these integer vectors, z say, has zi < ci. But then
the vector z′ := z+χi belongs to R. Hence we could increase yi, contradicting
the maximality of y.

We call a polyhedron P box-integer if P ∩ {x | d ≤ x ≤ c} is an integer
polyhedron for each choice of integer vectors d, c. The set {x | d ≤ x ≤ c} is
called a box.

A 0, 1 polytope is a polytope with all vertices being 0,1 vectors.

5.16. Totally unimodular matrices

Total unimodularity of matrices is an important tool in integer programming.
A matrix A is called totally unimodular if each square submatrix of A has
determinant equal to 0, +1, or −1. In particular, each entry of a totally
unimodular matrix is 0, +1, or −1.

An alternative way of characterizing total unimodularity is by requiring
that the matrix is integer and that each nonsingular submatrix has an integer
inverse matrix. This implies the following easy, but fundamental result:

Theorem 5.20. Let A be a totally unimodular m×n matrix and let b ∈ Z
m.

Then the polyhedron

(5.50) P := {x | Ax ≤ b}
is integer.

(Cf. Theorem 19.1 in Schrijver [1986b].) It follows that each linear program-
ming problem with integer data and totally unimodular constraint matrix
has integer optimum primal and dual solutions:

Corollary 5.20a. Let A be a totally unimodular m × n matrix, let b ∈ Z
m,

and let c ∈ Z
n. Then both optima in the LP duality equation

(5.51) max{cTx | Ax ≤ b} = min{yTb | y ≥ 0, yTA = cT}

76 Chapter 5. Preliminaries on polyhedra and linear and integer programming

have integer optimum solutions (if the optima are finite).

(Corollary 19.1a in Schrijver [1986b].) Hoffman and Kruskal [1956] showed
that this property is close to a characterization of total unimodularity.

Corollary 5.20a implies:

Corollary 5.20b. Let A be an m × n matrix, let b ∈ Z
m, and let c ∈ R

n.
Suppose that

(5.52) max{cTx | x ≥ 0, Ax ≤ b}
has an optimum solution x∗ such that the columns of A corresponding to
positive components of x∗ form a totally unimodular matrix. Then (5.52) has
an integer optimum solution.

Proof. Since x∗ is an optimum solution, we have

(5.53) max{cTx | x ≥ 0, Ax ≤ b} = max{c′Tx′ | x′ ≥ 0, A′x′ ≤ b},

where A′ and c′ are the parts of A and c corresponding to the support of x∗.
As A′ is totally unimodular, the right-hand side maximum in (5.53) has an
integer optimum solution x′∗. Extending x′∗ by components 0, we obtain an
integer optimum solution of the left-hand side maximum in (5.53).

We will use the following characterization of Ghouila-Houri [1962b] (cf.
Theorem 19.3 in Schrijver [1986b]):

Theorem 5.21. A matrix M is totally unimodular if and only if each col-
lection R of rows of M can be partitioned into classes R1 and R2 such that
the sum of the rows in R1, minus the sum of the rows in R2, is a vector with
entries 0,±1 only.

5.17. Total dual integrality

Edmonds and Giles [1977] introduced the powerful notion of total dual in-
tegrality. It is not only useful as a tool to derive combinatorial min-max
relation, but also it gives an efficient way of expressing a whole bunch of
min-max relations simultaneously.

A system Ax ≤ b in n dimensions is called totally dual integral, or just
TDI, if A and b are rational and for each c ∈ Z

n, the dual of maximizing cTx
over Ax ≤ b:

(5.54) min{yTb | y ≥ 0, yTA = cT}
has an integer optimum solution y, if it is finite.

Section 5.17. Total dual integrality 77

By extension, a system A′x ≤ b′, A′′x = b′′ is defined to be TDI if the
system A′x ≤ b′, A′′x ≤ b′′,−A′′x ≤ −b′′ is TDI. This is equivalent to requir-
ing that A′, A′′, b′, b′′ are rational and for each c ∈ Z

n the dual of maximizing
cTx over A′x ≤ b′, A′′x = b′′ has an integer optimum solution, if finite.

Problem (5.54) is the problem dual to max{cTx | Ax ≤ b}, and Edmonds
and Giles showed that total dual integrality implies that also this primal
problem has an integer optimum solution, if b is integer. In fact, they showed
Theorem 5.18, which implies (since if (5.54) has an integer optimum solution,
the optimum value is an integer):

Theorem 5.22. If Ax ≤ b is TDI and b is integer, then Ax ≤ b determines
an integer polyhedron.

So total dual integrality implies ‘primal integrality’. For combinatorial
applications, the following observation is useful:

Theorem 5.23. Let A be a nonnegative integer m × n matrix such that the
system x ≥ 0, Ax ≥ 1 is TDI. Then also the system 0 ≤ x ≤ 1, Ax ≥ 1 is
TDI.

Proof. Choose c ∈ Z
n. Let c+ arise from c by setting negative components to

0. By the total dual integrality of x ≥ 0, Ax ≥ 1, there exist integer optimum
solutions x, y of

(5.55) min{cT
+x | x ≥ 0, Ax ≥ 1} = max{yT1 | y ≥ 0, yTA ≤ cT

+}.

As A is nonnegative and integer and as c+ ≥ 0, we may assume that x ≤ 1.
Moreover, we can assume that xi = 1 if (c+)i = 0, that is, if ci ≤ 0.

Let z := c − c+. So z ≤ 0. We show that x, y, z are optimum solutions of

(5.56) min{cTx | 0 ≤ x ≤ 1, Ax ≥ 1}
= max{yT1 + zT1 | y ≥ 0, z ≤ 0, yTA + zT ≤ cT}.

Indeed, x is feasible, as 0 ≤ x ≤ 1 and Ax ≥ 1. Moreover, y, z is feasible, as
yTA + zT ≤ cT

+ + zT = cT. Optimality of x, y, z follows from

(5.57) cTx = cT
+x + zTx = yT1 + zTx = yT1 + zT1.

In certain cases, to obtain total dual integrality one can restrict oneself
to nonnegative objective functions:

Theorem 5.24. Let A be a nonnegative m × n matrix and let b ∈ R
m
+ . Then

x ≥ 0, Ax ≤ b is TDI if and only if min{yTb | y ≥ 0, yTA ≥ cT} is attained
by an integer optimum solution (if finite), for each c ∈ Z

n
+.

Proof. Necessity is trivial. To see sufficiency, let c ∈ Z
n with min{yTb | y ≥

0, yTA ≥ cT} finite. Let it be attained by y. Let c+ arise from c by setting
negative components to 0. Then

78 Chapter 5. Preliminaries on polyhedra and linear and integer programming

(5.58) min{yTb | y ≥ 0, yTA ≥ cT
+} = min{yTb | y ≥ 0, yTA ≥ cT},

since yTA ≥ 0 if y ≥ 0. As the first minimum has an integer optimum
solution, also the second minimum has an integer optimum solution.

Total dual integrality is maintained under setting an inequality to an
equality (Theorem 22.2 in Schrijver [1986b]):

Theorem 5.25. Let Ax ≤ b be TDI and let A′x ≤ b′ arise from Ax ≤ b
by adding −aTx ≤ −β for some inequality aTx ≤ β in Ax ≤ b. Then also
A′x ≤ b′ is TDI.

Total dual integrality is also maintained under translation of the solution
set, as follows directly from the definition of total dual integrality:

Theorem 5.26. If Ax ≤ b is TDI and w ∈ R
n, then Ax ≤ b − Aw is TDI.

For future reference, we prove:

Theorem 5.27. Let A11, A12, A21, A22 be matrices and let b1, b2 be column
vectors, such that the system

(5.59) A1,1x1 + A1,2x2 = b1,
A2,1x1 + A2,2x2 ≤ b2

is TDI and such that A1,1 is nonsingular. Then also the system

(5.60) (A2,2 − A2,1A
−1
1,1A1,2)x2 ≤ b2 − A2,1A

−1
1,1b1

is TDI.

Proof. We may assume that b1 = 0, since by Theorem 5.26 total dual inte-
grality is invariant under replacing (5.59) by

(5.61) A1,1x1 + A1,2x2 = b1 − A1,1A
−1
1,1b1 = 0,

A2,1x1 + A2,2x2 ≤ b2 − A2,1A
−1
1,1b1.

Let x2 minimize cTx2 over (5.60), for some integer vector c of appropri-
ate dimension. Define x1 := −A−1

1,1A1,2x2. Then x1, x2 minimizes cTx2 over
(5.59), since any solution x′

1, x
′
2 of (5.59) satisfies x′

1 = −A−1
1,1A1,2x

′
2, and

therefore x′
2 satisfies (5.60); hence cTx′

2 ≥ cTx2.
Let y1, y2 be an integer optimum solution of the problem dual to maxi-

mizing cTx2 over (5.59). So y1, y2 satisfy

(5.62) yT
1 A1,1 + yT

2 A2,1 = 0, yT
1 A1,2 + yT

2 A2,2 = cT, yT
2 b2 = cTx2.

Hence

(5.63) yT
2 (A2,2 − A2,1A

−1
1,1A1,2) = yT

2 A2,2 + yT
1 A1,2 = cT

and

Section 5.17. Total dual integrality 79

(5.64) yT
2 b2 = cTx2.

So y2 is an integer optimum solution of the problem dual to maximizing cTx2
over (5.60).

This has as consequence (where a0 is a column vector):

Corollary 5.27a. If x0 = β, a0x0 + Ax ≤ b is TDI, then Ax ≤ b − βa0 is
TDI.

Proof. This is a special case of Theorem 5.27.

We also have:

Theorem 5.28. Let A = [a1 a2 A′′] be an integer m × n matrix and let
b ∈ R

m. Let A′ be the m × (n − 1) matrix [a1 + a2 A′′]. Then A′x′ ≤ b is
TDI if and only if Ax ≤ b, x1 − x2 = 0 is TDI.

Proof. To see necessity, choose c ∈ Z
n. Let c′ := (c1 + c2, c3, . . . , cn)T. Then

(5.65) µ := max{cTx | Ax ≤ b, x1 − x2 = 0} = max{c′Tx′ | A′x′ ≤ b}.

Let y ∈ Z
m
+ be an integer optimum dual solution of the second maximum.

So yTA′ = c′ and yTb = µ. Then yTa1 + yTa2 = c1 + c2. Hence yTA =
cT + λ(1,−1, 0, . . . , 0) for some λ ∈ Z. So y, λ form an integer optimum dual
solution of the first maximum.

To see sufficiency, choose c′ = (c2, . . . , cn)T ∈ Z
n−1. Define c := (0, c2, . . . ,

cn)T. Again we have (5.65). Let y ∈ Z
m
+ , λ ∈ Z constitute an integer optimum

dual solution of the first maximum, where λ corresponds to the constraint
x1 − x2 = 0. So yTA + λ(1,−1, 0, . . . , 0) = c and yTb = µ. Hence yTA′ = cT,
and therefore, y is an integer optimum dual solution of the second maximum.

Let A be a rational m × n matrix and let b ∈ Q
m, c ∈ Q

n. Consider
the following series of inequalities (where a vector z is half-integer if 2z is
integer):

(5.66) max{cTx | Ax ≤ b, x integer} ≤ max{cTx | Ax ≤ b}
= min{yTb | y ≥ 0, yTA = cT}
≤ min{yTb | y ≥ 0, yTA = cT, y half-integer}
≤ min{yTb | y ≥ 0, yTA = cT, y integer}.

Under certain circumstances, equality in the last inequality implies equality
throughout:

Theorem 5.29. Let Ax ≤ b be a system with A and b rational. Then Ax ≤ b
is TDI if and only if

(5.67) min{yTb | y ≥ 0, yTA = cT, y half-integer}

80 Chapter 5. Preliminaries on polyhedra and linear and integer programming

is finite and is attained by an integer optimum solution y, for each integer
vector c with max{cTx | Ax ≤ b} finite.

Proof. Necessity follows directly from (5.66). To see sufficiency, choose c ∈
Z

n with max{cTx | Ax ≤ b} finite. We must show that min{yTb | y ≥
0, yTA = cT} is attained by an integer optimum solution.

For each k ≥ 1, define

(5.68) αk = min{yTb | y ≥ 0, yTA = kcT, y integer}.

This is well-defined, as max{kcTx | Ax ≤ b} is finite.
The condition in the theorem gives that, for each t ≥ 0,

(5.69)
α2t

2t
= α1.

This can be shown by induction on t, the case t = 0 being trivial. If t ≥ 1,
then

(5.70) α2t = min{yTb | yTA = 2tcT, y ∈ Z
m
+}

= 2 min{yTb | yTA = 2t−1cT, y ∈ 1
2Z

m
+}

= 2 min{yTb | yTA = 2t−1cT, y ∈ Z
m
+} = 2α2t−1 ,

implying (5.69) by induction.
Now αk+l ≤ αk + αl for all k, l. Hence we can apply Fekete’s lemma, and

get:

(5.71) min{yTb | y ≥ 0, yTA = cT} = min
k

αk

k
= lim

k→∞
αk

k
= lim

t→∞
α2t

2t

= α1.

The following analogue of Carathéodory’s theorem holds (Cook, Fonlupt,
and Schrijver [1986]):

Theorem 5.30. Let Ax ≤ b be a totally dual integral system in n dimensions
and let c ∈ Z

n. Then min{yTb | y ≥ 0, yTA ≥ cT} has an integer optimum
solution y with at most 2n − 1 nonzero components.

(Theorem 22.12 in Schrijver [1986b].)
We also will need the following substitution property:

Theorem 5.31. Let A1x ≤ b1, A2x ≤ b2 be a TDI system with A1 integer,
and let A′

1 ≤ b′
1 be a TDI system with

(5.72) {x | A1x ≤ b1} = {x | A′
1x ≤ b′

1}.
Then the system A′

1x ≤ b′
1, A2x ≤ b2 is TDI.

Proof. Let c ∈ Z
n with

(5.73) max{cTx | A′
1x ≤ b′

1, A2x ≤ b2}
= min{yTb′

1 + zTb2 | y, z ≥ 0, yTA′
1 + zTA2 = cT}

Section 5.18. Hilbert bases and minimal TDI systems 81

finite. By (5.72), also

(5.74) max{cTx | A1x ≤ b1, A2x ≤ b2}
= min{yTb1 + zTb2 | y, z ≥ 0, yTA1 + zTA2 = cT}

is finite. Hence, since A1x ≤ b1, A2x ≤ b2 is TDI, the minimum in (5.74) has
an integer optimum solution y, z. Set d := yTA1. Then, as d is an integer
vector,

(5.75) yTb1 = min{uTb1 | u ≥ 0, uTA1 = dT}
= max{dTx | A1x ≤ b1} = max{dTx | A′

1x ≤ b′
1}

= min{vTb′
1 | v ≥ 0, vTA′

1 = dT}
is finite. Hence, since A′

1x ≤ b′
1 is TDI, the last minimum in (5.75) has an

integer optimum solution v. Then v, z is an integer optimum solution of the
minimum in (5.73).

A system Ax ≤ b is called totally dual half-integral if A and b are rational
and for each c ∈ Z

n, the dual of maximizing cTx over Ax ≤ b has a half-
integer optimum solution, if it is finite. Similarly, Ax ≤ b is called totally
dual quarter-integral if A and b are rational and for each c ∈ Z

n, the dual of
maximizing cTx over Ax ≤ b has a quarter-integer optimum solution y, if it
is finite.

5.18. Hilbert bases and minimal TDI systems

For any X ⊆ R
n we denote

(5.76) latticeX := {λ1x1 + · · · + λkxk | k ≥ 0, λ1, . . . , λk ∈ Z, x1, . . . , xk

∈X}.

A subset L of R
n is called a lattice if L = latticeX for some base X of R

n.
So for general X, latticeX need not be a lattice.

The dual lattice of X is, by definition:

(5.77) {x ∈ R
n | yTx ∈ Z for each y ∈ X}.

Again, this need not be a lattice in the proper sense.
A set X of vectors is called a Hilbert base if each vector in latticeX∩coneX

is a nonnegative integer combination of vectors in X. The Hilbert base is
called integer if it consists of integer vectors only.

One may show:

(5.78) Each rational polyhedral cone C is generated by an integer
Hilbert base. If C is pointed, there exists a unique inclusionwise
minimal integer Hilbert base generating C.

82 Chapter 5. Preliminaries on polyhedra and linear and integer programming

(Theorem 16.4 in Schrijver [1986b].)
There is a close relation between Hilbert bases and total dual integrality:

Theorem 5.32. A rational system Ax ≤ b is TDI if and only if for each face
F of P := {x | Ax ≤ b}, the rows of A which are active in F form a Hilbert
base.

(Theorem 22.5 in Schrijver [1986b].)
(5.78) and Theorem 5.32 imply (Giles and Pulleyblank [1979], Schrijver

[1981b]):

Theorem 5.33. Each rational polyhedron P is determined by a TDI system
Ax ≤ b with A integer. If moreover P is full-dimensional, there exists a
unique minimal such system.

(Theorem 22.6 in Schrijver [1986b].)

5.19. The integer rounding and decomposition
properties

A system Ax ≤ b is said to have the integer rounding property if Ax ≤ b is
rational and

(5.79) min{yTb | y ≥ 0, yTA = cT, y integer}
= �min{yTb | y ≥ 0, yTA = cT}�

for each integer vector c for which min{yTb | y ≥ 0, yTA = cT} is finite. So
any TDI system has the integer rounding property.

A polyhedron P is said to have the integer decomposition property if for
each natural number k, each integer vector in k · P is the sum of k integer
vectors in P .

Baum and Trotter [1978] showed that an integer matrix A is totally uni-
modular if and only if the polyhedron {x | x ≥ 0, Ax ≤ b} has the integer
decomposition property for each integer vector b. In another paper, Baum and
Trotter [1981] observed the following relation between the integer rounding
and the integer decomposition property:

(5.80) Let A be a nonnegative integer matrix. Then the system x ≥
0, Ax ≥ 1 has the integer rounding property if and only if the
blocking polyhedron B(P) of P := {x | x ≥ 0, Ax ≥ 1} has the
integer decomposition property and all minimal integer vectors
in B(P) are transposes of rows of A (minimal with respect to ≤).

Similarly,

(5.81) Let A be a nonnegative integer matrix. Then the system x ≥
0, Ax ≤ 1 has the integer rounding property if and only if the

Section 5.21. The integer hull and cutting planes 83

antiblocking polyhedron A(P) of P := {x | x ≥ 0, Ax ≤ 1}
has the integer decomposition property and all maximal integer
vectors in A(P) are transposes of rows of A (maximal with respect
to ≤).

(Theorem 22.19 in Schrijver [1986b].)

5.20. Box-total dual integrality

A system Ax ≤ b is called box-totally dual integral, or just box-TDI, if the
system d ≤ x ≤ c, Ax ≤ b is totally dual integral for each choice of vectors
d, c ∈ R

n. By Theorem 5.22,

(5.82) if Ax ≤ b is box-totally dual integral, then the polyhedron {x |
Ax ≤ b} is box-integer.

We will need the following two results.

Theorem 5.34. If Ax ≤ b is box-TDI in n dimensions and w ∈ R
n, then

Ax ≤ b − Aw is box-TDI.

Proof. Directly from the definition of box-total dual integrality.

Theorem 5.35. Let Ax ≤ b be a system of linear inequalities, with A an
m×n matrix. Suppose that for each c ∈ R

n, max{cTx | Ax ≤ b} has (if finite)
an optimum dual solution y ∈ R

m
+ such that the rows of A corresponding to

positive components of y form a totally unimodular submatrix of A. Then
Ax ≤ b is box-TDI.

Proof. Choose d, c ∈ R
n, with d ≤ c, and choose c ∈ Z

n. Consider the dual
of maximizing cTx over Ax ≤ b, d ≤ x ≤ c:

(5.83) min{yTb + zT
1 c − zT

2 d | y ∈ R
m
+ , z1, z2 ∈ R

n
+, yTA + zT

1 − zT
2 = cT}.

Let y, z1, z2 attain this optimum. Define c′ := c − z1 + z2. By assumption,
min{y′Tb | y′ ∈ R

m
+ , y′TA = c′T} has an optimum solution such that the rows

of A corresponding to positive components of y′ form a totally unimodular
matrix. Now y′, z1, z2 is an optimum solution of (5.83). Also, the rows in
Ax ≤ b, d ≤ x ≤ c corresponding to positive components of y′, z1, z2 form a
totally unimodular matrix. Hence by Corollary 5.20b, (5.83) has an integer
optimum solution.

5.21. The integer hull and cutting planes

Let P be a rational polyhedron. The integer hull PI of P is the convex hull
of the integer vectors in P :

84 Chapter 5. Preliminaries on polyhedra and linear and integer programming

(5.84) PI = conv.hull(P ∩ Z
n).

It can be shown that PI is a rational polyhedron again.
Consider any rational affine halfspace H = {x | cTx ≤ δ}, where c is a

nonzero integer vector such that the g.c.d. of its components is equal to 1
and where δ ∈ Q. Then it is easy to show that

(5.85) HI = {x | cTx ≤ �δ�}.

The inequality cTx ≤ �δ� (or, more correctly, the hyperplane {x | cTx = �δ�})
is called a cutting plane.

Define for any rational polyhedron P :

(5.86) P ′ :=
⋂

H⊇P

HI,

where H ranges over all rational affine halfspaces H containing P . Then P ′

is a rational polyhedron contained in P . Since P ⊆ H implies PI ⊆ HI, we
know

(5.87) PI ⊆ P ′ ⊆ P.

For k ∈ Z+, define P (k) inductively by:

(5.88) P (0) := P and P (k+1) := (P (k))′.

Then (Gomory [1958,1960], Chvátal [1973a], Schrijver [1980b]):

Theorem 5.36. For each rational polyhedron there exists a k ∈ Z+ with
PI = P (k).

(For a proof, see Theorem 23.2 in Schrijver [1986b].)

5.21a. Background literature

Most background on polyhedra and linear and integer programming needed for this
book can be found in Schrijver [1986b].

More background can be found in Dantzig [1963] (linear programming), Grün-
baum [1967] (polytopes), Hu [1969] (integer programming), Garfinkel and Nemhau-
ser [1972a] (integer programming), Brøndsted [1983] (polytopes), Chvátal [1983]
(linear programming), Lovász [1986] (ellipsoid method), Grötschel, Lovász, and
Schrijver [1988] (ellipsoid method), Nemhauser and Wolsey [1988] (integer pro-
gramming), Padberg [1995] (linear programming), Ziegler [1995] (polytopes), and
Wolsey [1998] (integer programming).

	Table of Contents
	Preface
	Volume A
	Introduction
	1 Introduction
	1.1 Introduction
	1.2 Matchings
	1.3 But what about nonbipartite graphs?
	1.4 Hamiltonian circuits and the traveling salesman problem
	1.5 Historical and further notes
	1.5a Historical sketch on polyhedral combinatorics
	1.5b Further notes

	2 General preliminaries
	2.1 Sets
	2.2 Orders
	2.3 Numbers
	2.4 Vectors, matrices, and functions
	2.5 Maxima, minima, and infinity
	2.6 Fekete’s lemma

	3 Preliminaries on graphs.
	3.1 Undirected graphs
	3.2 Directed graphs
	3.3 Hypergraphs
	3.3a Background references on graph theory

	4 Preliminaries on algorithms and complexity
	4.1 Introduction
	4.2 The random access machine
	4.3 Polynomial-time solvability
	4.4 P
	4.5 NP
	4.6 co-NP and good characterizations
	4.7 Optimization problems
	4.8 NP-complete problems
	4.9 The satisfiability problem
	4.10 NP-completeness of the satisfiability problem
	4.11 NP-completeness of some other problems
	4.12 Strongly polynomial-time
	4.13 Lists and pointers
	4.14 Further notes
	4.14a Background literature on algorithms and complexity
	4.14b Efficiency and complexity historically

	5 Preliminaries on polyhedra and linear and integer programming
	5.1 Convexity and halfspaces
	5.2 Cones
	5.3 Polyhedra and polytopes
	5.4 Farkas’ lemma
	5.5 Linear programming
	5.6 Faces, facets, and vertices
	5.7 Polarity
	5.8 Blocking polyhedra
	5.9 Antiblocking polyhedra
	5.10 Methods for linear programming
	5.11 The ellipsoid method
	5.12 Polyhedra and NP and co-NP
	5.13 Primal-dual methods
	5.14 Integer linear programming
	5.15 Integer polyhedra
	5.16 Totally unimodular matrices
	5.17 Total dual integrality
	5.18 Hilbert bases and minimal TDI systems
	5.19 The integer rounding and decomposition properties
	5.20 Box-total dual integrality
	5.21 The integer hull and cutting planes
	5.21a Background literature

	Part I: Paths and Flows
	Part II: Bipartite Matching and Covering
	Part III: Nonbipartite Matching and Covering

	Volume B
	Part IV: Matroids and Submodular Functions
	Part V: Trees, Branchings, and Connectors
	Part VI: Cliques, Stable Sets, and Colouring

	Volume C
	Part VII: Multiflows and Disjoint Paths
	Part VIII: Hypergraphs

	Survey of Problems, Questions, and Conjectures
	References
	Name Index
	Subject Index
	Greek graph and hypergraph functions

	Help
	Terms of license

