Correction: Examen

Exercice 2 1) L'algorithme de Strassen calcule d'abord récursivement 7 sous-produits de matrices $n/2 \times n/2$ puis le produit AB avec un nombre constant d'additions en temps $\Theta(n^2)$. Puisque $2 < \log_2 7$, $\exists \varepsilon > 0$ tel que $n^2 = O(n^{\log_2 7 - \varepsilon})$, donc le terme $\Theta(n^{\log_2 7})$ s'impose.

2) AD + BC = (A + B)(C + D) - AC - BD donc à partir des 3 produits matriciels (A + B)(C + D), AC, et BD on peut recomposer avec un nombre constant d'additions le terme (AC - BD, AD + BC). Toutefois cela n'a ici aucun impact sur la complexité puisque l'on effectuerait 3 appels à l'algorithme de Strassen au lieu de 4 et $\Theta(3 \times n^{\log_2 7}) = \Theta(4 \times n^{\log_2 7})$.

```
Exercice 3 1. algo(8) = 64.
```

```
2. algo(2^k) = 4^k = 2^{2k}.
```

3.
$$T(n) = 4T(n/2) + f(n)$$

(a)
$$T(n) = \Theta(n^2)$$
.

(b)
$$T(n) = \Theta(n^2 \log n)$$
.

(c)
$$T(n) = \Theta(n^4)$$
.

4. L'implémentation suivante a un temps T(n) = T(n/2) + O(1), soit $\Theta(\log n)$.

```
\operatorname{\mathsf{Igo}}(n) Si n=1 retourner 1
```

Retourner $4 \times \mathsf{algo}(n/2)$

5. Vrai pour k = 0; $algo(2^{k+1}) = 4 \times algo(2^k) = 4 \times 4^k = 4^{k+1}$.

Exercice 4 1. Supposons que ce soit faux et choisissons un contre-exemple avec n minimum. On a alors $n \ge 2$ et $\left| \frac{n}{2} \right| \notin \{1, \dots, n-1\}$; c'est impossible.

2. Pour tout x, il existe un unique entier k tel que $x \in \{2^k, \dots, 2^{k+1} - 1\}$. Il suffit de montrer que $p^k(x) = 1$. Par induction sur k: C'est vrai pour k = 1 et, pour tout $x \in \{2^{k+1}, \dots, 2^{k+2} - 1\}$, on a $p(x) = \lfloor x/2 \rfloor = 2^k$, donc $p^{k+1}(x) = 1$.

2013-2014

3.
$$p(x) = x - 1$$
.

Exercice 5 1. salade2fruit(12568,1000) = 12568000.

- 2. salade2fruit(x,y)=xy.
- 3. Soient a et b les valeurs de poire et mangue données en paramètre d'entrée. On a $a = \sum_{i=0}^{i=n} a_i 2^i$ avec $a_i \in \{0,1\}$ pour tout $i = 0, \dots, n$. Après un nombre k de passages dans la boucle while, on a les trois invariants suivants:
 - (a) poire $=\sum_{i=k}^{i=n}a_i2^{i-k}$
 - (b) mangue $= b2^k$
 - (c) pomme = $\sum_{i=0}^{i=k-1} a_i b 2^i$

En effet, pour k=0 c'est clairement vrai puisque poire =a, mangue =b, et pomme =0. Puis l'invariant 1 se conserve car faire poire/=2 revient à faire $2^{i-k} \leftarrow 2^{i-k-1}$ et $a_k \leftarrow 0$ dans l'égalité (a). L'invariant 2 se conserve clairement par mangue*=2. L'invariant 3 se conserve car poire% $=a_k$.

Donc l'algorithme retourne $\sum_{i=0}^{i=n} a_i b 2^i = ab$.

2013-2014