
SeqCondenser: Inductive Representation Learning of
Sequences by Sampling Characteristic Functions

Maixent Chenebaux1 and Tristan Cazenave2

1Vectors Group, Paris, France
2LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France

Abstract. In this work, we introduce SeqCondenser, a neural network layer that
compresses a variable-length input sequence into a fixed-size vector represen-
tation. The SeqCondenser layer samples the empirical characteristic function
and its derivatives for each input dimension, and uses an attention mechanism
to determine the associated probability distribution. We argue that the features
extracted through this process effectively represent the entire sequence and that
the SeqCondenser layer is particularly well-suited for inductive sequence classi-
fication tasks, such as text and time series classification. Our experiments show
that SCoMo, a SeqCondenser-based architecture, outperforms the state-of-the-art
inductive methods on nearly all examined text classification datasets and also
outperforms the current best transductive method on one dataset.

1 Introduction

Text classification is a crucial task in natural language processing (NLP). It can be used
for various purposes, such as opinion mining, sentiment analysis, fact checking and
detecting fake news. One challenge in classifying text is the variability in the length
of the sequences. There are several approaches to representing text for classification,
including representing it as a sequence of words or characters, as a fixed-size vector, or
as a graph [18].

Transductive learning techniques are currently the top performers in text classifi-
cation. These techniques generally use a network containing both the training set and
the testing set, without labels for the latter. Patterns observed in unlabeled data also
contribute to the classification process, leading to better performance. ROBERTaGNN
[12], a transductive document classification algorithm, is currently the state-of-the-art on
many reference datasets. It fine-tunes BERT [6] and uses the generated vectors as node
features, then builds a graph where nodes are text units and edges are based on semantic
similarity. While this method leverages both the transformer architecture and graph
neural networks, it has the same limitations as other transductive techniques, including
longer training time, limited generalization, and deployment challenges. Transductive
methods also require retraining when dealing with new data points, making them difficult
to use in a production environment where documents are classified individually or in
batches asynchronously.

Inductive learning is a powerful and versatile approach to machine learning, where
the model is trained on a labeled dataset and then makes predictions on unseen data.
Unlike transductive learning, inductive learning does not rely on access to the test set

2 Maixent Chenebaux, Tristan Cazenave

during training, making it more suitable for real-world applications where new data
continuously arrives. Inductive methods are diverse, with different algorithms achieving
better results on different datasets. In recent years, text classification has typically been
done by fine-tuning a pre-trained model, such as a transformer-based model, and using
aggregation methods, such as average pooling, max over time, or attentive pooling.
Alternatively, the BERT model can perform prediction directly through the special token
[CLS]. These methods have been successful, but their limitation lies in the ability of the
pooling techniques to retain essential information for classification while keeping the
dimensionality of the final representation as low as possible.

Present work: We propose SeqCondenser, a layer that transforms a varying-size
sequence of vectors into a compact, fixed-size vector representation that can be used
for sequence classification and regression. The benefits of SeqCondenser are as follows:
(1) it is fast to train; (2) it is inductive by design; (3) it can easily be added to any
TensorFlow model [1] with a single line of code, making all the results presented in this
work easily reproducible; (4) it does not need to transform the input data into a graph
or another datastructure, and can work on any sequence. The compact representation
of the sequence is efficient at classification tasks, and achieves new state-of-the-art
performances when compared to both inductive and transductive methods. On all the
datasets studied, the direct replacement of any pooling layer with SeqCondenser leads to
an immediate performance increase.

Main contributions: The main contributions of our work are as follows:

1. We introduce a new sequence-to-vector method that relies on a family of characteris-
tic functions and their two subsequent derivatives, where the affiliation probabilities
are predicted by a differentiable attention mechanism.

2. We show that dimensionality reduction through random projections can be applied
to the SeqCondenser’s aggregation vector to improve accuracy.

3. We experimentally demonstrate that this method can be successfully applied to text
classification tasks and improve the current state-of-the-art for both inductive and
transductive techniques.

4. Our model is implemented using TensorFlow, and an easy-to-use SeqCondenser
layer is made publicly available for Keras [4].

The paper is structured as follows: Section 2 reviews related literature. The Seq-
Condenser layer and its theoretical foundations are discussed in Section 3. The design
and experimental results of SCoMo, a sequence classification architecture utilizing the
SeqCondenser layer, are outlined in Sections 4 and 5 respectively. The paper concludes
in Section 6.

2 Related Work

Pooling strategies: In text classification, the input is typically a variable-length sequence
of words or characters. Summarizing its features through pooling strategies is an essential
step for the task. Pooling, in this context, aims at extracting features from the input and
creating a fixed-length representation of it. One approach is to use convolutional filters
to extract features from the input text, and apply average or max over time pooling to
summarize semantic features [3]. However, average and max pooling have the limitation

SeqCondenser 3

of not being able to efficiently select salient features that may be particularly useful for
the classification task.

To address this limitation, several approaches have been proposed. One technique
is to create document representations by summing word embeddings weighted by their
corresponding TF-IDF scores, as proposed in [11]. Another approach is to use attentive
pooling, which allows the neural network to learn to distinguish important features
and create a summary that focuses on relevant information, while ignoring irrelevant
information. One example of attentive pooling is the DeepMoji attention layer [8], which
creates a dense representation of a sequence of vectors by using attention scores as
weights for a weighted summation over all the time steps. These weights are calculated
by taking the scalar product of each input vector with a single trainable vector and
then applying the softmax function along the time dimension. Another example of an
attentive pooling technique is APLN [17], which uses a similar approach to DeepMoji
but interprets the weighted sum as an L1 norm. APLN allows the model to learn the
most appropriate Lp norm for the classification task.

Characteristic functions: Characteristic functions are mathematical functions that
describe the probability distribution of random variables. In the field of graph representa-
tion learning, characteristic functions have been used for summarizing information and
creating node embeddings. Two notable approaches that utilize characteristic functions
are GraphWave [7] and FEATHER [15].

GraphWave is a method for capturing structural roles in graphs using heat diffusion
wavelets. Nodes with the same structural role have similar heat diffusion patterns, and
the characteristic function is used to summarize the histogram of heat distribution across
the network. The node embeddings created through this method are independent of the
size of the network, and roles are predicted through the use of PCA and a clustering
algorithm applied to the embeddings.

FEATHER is an approach for creating node embeddings in a network that encodes the
distribution of features among the neighbors of a given node. It does this by evaluating
the characteristic function at differentiable evaluation points, where the probability
distribution of the features is deterministically defined in terms of random walks on the
graph. This allows FEATHER to capture the salient features in the neighborhood of a
given node and create a fixed-length representation of it.

Overall, characteristic functions have proven to be a powerful tool for summarizing
information and creating fixed-length representations of data in the context of graph
representation learning. In our work, we aim to leverage the power of characteristic
functions by incorporating them into an end-to-end trainable sequence classification
pipeline.

3 SeqCondenser

In this section, we present the mathematical foundations and rationale for the SeqCon-
denser layer. A visual representation of the method is provided in Figure 2.

3.1 Characteristic Functions on Sequences
The characteristic function is a widely-used concept in probability theory that provides a
comprehensive description of the probability distribution of any discrete or continuous

4 Maixent Chenebaux, Tristan Cazenave

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Re

Im

X = [−0.7, 1.2,−0.1]

X = [1.1, 0.6,−0.2, 0.9, 0.01]

Fig. 1. Graph of two characteristic functions computed from a variable-length list of numbers,
where each outcome is assigned an equal probability, showing a partial view of the complex plane
representation

random variable X [9]. The kth derivative of the characteristic function, ϕ, at zero is
proportional to the kth moment of X: ϕ(k)(0) = ikE

[
Xk

]
. The curve described by

the characteristic function lives in the complex plane and theoretically contains all the
information needed to describeX . In the discrete case, it can map a random variable with
any finite number of outcomes to a curve in the complex plane, as long as a probability is
assigned to each outcome. This concept is illustrated in Figure 1. One way to construct a
fixed-size representation of the curve of ϕ is to sample it at different points, however this
can result in a loss of important information about the curve’s shape. For example, the
GraphWave and FEATHER graph algorithms only consider ϕ(0). We argue that the use
of higher-order derivatives of the characteristic function provides crucial information for
the learning process.

input sequence

t

characteristic functions sampling dimensionality reduction

Fig. 2. Main steps of SeqCondenser

3.2 Sequence Feature Distribution Characterization

Let x be a sequence vector of length l where xt is the feature value at time step t. We
interpret x as the outcomes of a discrete random variable X . The characteristic function
of X is defined as:

ϕ(θ) = E[eiXθ] =
∑
t

pte
iθxt (1)

In Equation 1, the affiliation probability pt describes the probability of observ-
ing the outcome xt. The Euler identity applied to Equation 1 yields: Re (ϕ (θ)) =∑

t pt cos (θxt) and Im (ϕ (θ)) =
∑

t pt sin (θxt)

SeqCondenser 5

We are also interested in the first and second derivatives of the characteristic function,
as they provide the model with more information to fully characterize the sequence
feature distribution. In this way, the model not only uses the position of the characteristic
function in the complex plane at specific points, but also the direction, speed, and
curvature of its trajectory.

It is worth noting that the characteristic function and its derivatives are independent
of the length of the observed sequence, but can still uniquely describe it. This is the main
idea behind SeqCondenser’s ability to compactly represent variable-length sequences. It
is also important to note that the characteristic function does not consider the order of
the sequence. It is advisable to include a position-aware layer before SeqCondenser for
effective classification.

3.3 Characterization of Multiple Features

In the case of a sequence with multiple features, we require a set of independent char-
acteristic functions and affiliation probabilities for each feature k. This leads to the
following definitions:

– X ∈ R(l,d) is the observed sequence of vectors, where l is the length of the sequence
and d is the number of features.

– x(k) ∈ Rl is the observed sequence of values for the kth feature, i.e. the kth column
of X.

– p
(k)
t is the affiliation probability associated with the random variable X(k).

– x
(k)
t is the value of the kth feature at time step t.

– ϕ(k) is the complex-valued characteristic function associated with the random vari-
able X(k).

– ϕ′(k) and ϕ′′(k) its two derivatives.

3.4 Sampling of the Characteristic Functions and their Derivatives

The characteristic function is a complex-valued function that takes a real input, and there-
fore cannot be directly used in a neural model. In order to incorporate the characteristic
function into our model, we need to discretize it. Similar to the FEATHER approach, we
allow the model to choose the evaluation points of the characteristic functions that are
the most discriminative for the downstream classification task.

The evaluation points for the d characteristic functions are represented by a matrix
Θ ∈ R(d,nθ), where nθ is the number of sampling points.

3.5 Attention Mechanism to compute Probabilities

In order to compute the affiliation probabilities P for the input sequence, we employ an
attention mechanism using a two-layered perceptron. The perceptron takes the entire
sequence of vectors X as input and returns a matrix with the same shape, with the
softmax function applied column-wise. This results in a matrix with positive columns
that sum to 1, representing the probabilities of all observed features. P is calculated
using the following formula: P = softmax(t ⊙ ReLU(ReLU(XW1 + b)W2 + c))
where the softmax is applied column-wise,W1,W2 ∈ R(d,d) are two parameter matrices,

6 Maixent Chenebaux, Tristan Cazenave

b, c ∈ Rd are two bias vectors, and t ∈ Rd is a temperature vector that allows the
model to independently and quickly adjust the softmax discriminatory power for each
dimension. ⊙ denotes element-wise multiplication. In our notation, Ptk = p

(k)
t .

3.6 Aggregation of the Evaluations

We define ψ(k) as a weighted average of the kth characteristic function and its two
derivatives applied at its corresponding evaluation points:

ψ(k) = α1ϕ
(k)(Θ(k)) + α2ϕ

′(k)(Θ(k)) + α3ϕ
′′(k)(Θ(k))

where α is a softmaxed trainable 3-dimensional vector. Combining the results of the three
functions has two advantages: (1) it reduces the memory footprint of the method; (2) it
allows the model to balance between the various descriptions of the complex trajectory
depending on their discriminative power for the task.

This gives the following formulas for the real and imaginary parts of ψ(k):

Re(ψ(k)(θ)) =
∑
xt

p
(k)
t

[
(α1 − α3x

2
t) cos(xtθ)− α2xt sin(xtθ)

]
Im(ψ(k)(θ)) =

∑
xt

p
(k)
t

[
(α1 − α3x

2
t) sin(xtθ) + α2xt cos(xtθ)

]
The real and imaginary parts of the ψ(k) are then concatenated into a compact vector

h of size 2 · d · nθ: h =
⊕d

k=1

[
Re(ψ(k))⊕ Im(ψ(k))

]
with ⊕ the concatenation

operation.

3.7 Dimensionality Reduction using Random Projections

Using h as the final vector of the layer can be challenging due to its large size. For
example, with 10 evaluation points and a sequence of 500-dimensional embeddings,
h has a size of 10,000. One approach to addressing this dimensionality issue is to
use techniques such as Principal Component Analysis (PCA), as seen in GraphWave.
However, this approach is not suitable for use in an end-to-end training task. Our solution
is to multiply h with a fixed, non-trainable, randomly initialized, and column-orthogonal
matrix O ∈ R(2·d·nθ,r), where r is the desired reduced dimensionality. This approach
significantly improves the accuracy of the model (Table 3).

Choosing r to be equal to the input dimension d generally works well, although we
find that lower values do not significantly penalize the model (Figure 4). As a final step,
we apply the ReLU activation function after adding a scaler and a bias vector to the
aggregation, giving: h← ReLU

(
β(hTO) + γ

)
.

3.8 Mathematical properties

Considering the first derivative of the characteristic function has an interesting mathe-
matical property, summarized by the following proposition:

Proposition 1. Let x and x′ be two vectors representing two sequences. Assume that the
second sequence differs from the first at a single element at time step u, where x′u = −xu,
and that the associated probability is kept unchanged, i.e. p′u = pu. The modulus of the
difference between their two characteristic functions is bounded by 2pu.

SeqCondenser 7

Proof. We start by expressing the difference between the two characteristic functions as
follows:

∆mϕ =

∣∣∣∣∣∑
t

pte
ixtθ −

∑
t

p′te
ix′

tθ

∣∣∣∣∣ = ∣∣∣pueixuθ − p′uei(x
′
u)θ

∣∣∣
=

∣∣pueixuθ − pue−ixuθ
∣∣ = |pu(eixuθ − e−ixuθ) = |pu(2i · sin(xuθ))|

Using the fact that the absolute value of sin(x) is always less than or equal to 1, we
get:

∆mϕ ≤ 2pu

This implies that the maximum absolute difference between the two characteristic
functions does not depend on the magnitude of xu, leading to the inability of the model
to distinguish opposite features when their probability weights have similar values. To
address this issue, the first derivative of ϕ can be used. Carrying out a similar calculation
on the derivative of the characteristic function gives us:

max(∆mϕ′) = max |2puxucos(xuθ)| = 2pu|xu|

This result shows that the maximum absolute difference between the derivative of the
characteristic functions is dependent on the magnitude of xu. This property improves the
model’s expressivity by enabling it to better differentiate between positive and negative
values.

4 Text Classification Model Architecture

In this section, we describe the neural network models used for text classification. We
introduce two models: the SeqCondenser Model for Classification (referred to as SCoMo)
and a simplified model called SCoMo-Bare, which is mainly used for comparison. Before
discussing their architectures, we first introduce the units that make up these models.

4.1 Embeddings

As with most models that process text sequences, the input tokens are converted into
d-dimensional embeddings. To perform this conversion and learn the representations
automatically, the Keras Embedding layer is used as the first unit in the SeqCondenser
models.

4.2 Self Attention

SCoMo uses a simplified version of the popular Self Attention layer [16]. Instead of
using three different sets of projection matrices (Key, Query, and Value), we only use one.
For a sequence X with shape (l, d), we compute the attention score matrix of shape (l, l)
using the following formula: Scores(X) = softmax(t ·ReLU(XWXT + b)) where the
softmax function is applied along the rows, W ∈ R(d,d) is a trainable matrix, b is a bias
scalar, and t is a temperature scalar that controls the strength of the softmax.

The output of the simplified Self Attention layer is then given by: SA(X) =
Scores(X)X

8 Maixent Chenebaux, Tristan Cazenave

4.3 Positional Encoding

The characteristic function is insensitive to the order of the elements in the sequence. To
make the model position-aware, we let the model learn its own positional embeddings.
PE(X) = X + SWISH(W) where X is the input sequence of shape (l, d), W ∈ R(l,d)

is a trainable parameter matrix, and SWISH is an activation function used to avoid
vanishing gradients [14]. The SWISH function was chosen early on in our experiments
because it provided better classification performance.

4.4 Model Architecture

The SCoMo model consists of a Positional Encoding layer, Self Attention layers, a
SeqCondenser unit and a final dense layer for classificaton.

To buildS SCoMo-Bare, we follow the same structure as SCoMo, but remove the Self
Attention layers and the Positional Encoding unit. The output of the Embedding layer is
directly passed through the SeqCondenser layer, and the resulting fixed-size vector is
used for classification. Despite its simplicity and disregard for the order of the sequence,
SCoMo-Bare performs very well in comparison to other models, demonstrating the
effectiveness of the SeqCondenser layer in capturing relevant information from the input
sequence.

5 Experiments

In this section, we present experimental results to demonstrate the efficacy of our model.

5.1 Experiments Setups

For the text classification task, we run our experiments on five well-established text
classification datasets, namely 20 Newsgroups (20NG), R8, R52, Ohsumed and Movie
Review (MR). The 20 Newsgroups dataset consists of approximately 20,000 newsgroup
posts from 20 different categories, and is widely used for multi-label classification
tasks. The R8 and R52 datasets are collections of Reuters news articles, with 8 and 52
categories, respectively. The Ohsumed dataset is a collection of medical abstracts with
23 categories. The Movie Review dataset consists of movie reviews with binary labels
indicating positive or negative sentiment. We use the standard splits for all datasets.
Table 1 provides a numerical summary of the benchmarks.

Preprocessing was kept to a minimum. Documents were tokenized and truncated at
500 tokens if they exceeded that length. All tokens and punctuation were retained and
no stopwords were removed. No pretrained word embeddings or language models were
used.

We compare the performance of the proposed SeqCondenser architecture with two
state-of-the-art inductive models: GraphStar [13] and SparseTensorClassifier (referred to
as STC hereafter) [10]. As baselines, we used four popular algorithms implemented in
Scikit-Learn [2]: Support Vector Machine (SVM), Multinomial Naive Bayes (MNB),
Random Forest (RF), and K-Nearest Neighbors (KNN). Text vectorization for these
models was performed using TF-IDF, a widely used approach for representing text data.

SeqCondenser 9

To compare the effectiveness of the SeqCondenser unit to other pooling methods,
three models were built: SAt-avg, SAt-max, and SAt-weighted. The prefix ‘SAt‘ stands
for ‘Self-Attention‘. These models have identical architecture as SCoMo, with the only
difference being the method of aggregation they use:

– SAt-avg aggregates the sequence by taking its average over the temporal dimension.
– SAt-max uses max over time pooling.
– SAt-weighted computes a weighted summation of the sequence, where the weights

are predicted using an attention mechanism similar to DeepMoji.

Since no pretraining was utilized, both SCoMo and SAt models were kept small,
incorporating only two Self-Attention layers for the experiments.

Table 1. Summary of Text Classification Datasets.

DATASET Ntrain Ntest CLASSES

20NEWSGROUPS 11,314 7,532 20
R8 4,937 2,189 8
R52 5,879 2,568 52
OHSUMED 3,021 4,043 23
MR 7,108 3,554 2

5.2 Settings

We kept the SeqCondenser model’s architecture and parameter sizes consistent across all
datasets to showcase its ‘drop-in replacement‘ capabilities. Both the token embedding
dimension d and the reduction dimension r were set to 500. To maintain a low model
size, we used only 2 self-attention layers and 10 evaluation points. The matrix Θ was
initialized by linearly interpolating values between −10 and 100. While fine-tuning the
trainable weights or increasing the model size might have improved accuracies, this was
not explored in this paper.

All models were trained using the RMSProp optimizer [5] and minimizing cross-
entropy loss, with a learning rate of 0.001 and a batch size of 30 for 10 epochs.

5.3 Main Results

Table 2 shows that SCoMo outperforms all other inductive algorithms on all datasets
except one. SeqCondenser also performs significantly better than all other pooling strate-
gies, despite all models having otherwise the same architecture. This demonstrates that
replacing a traditional pooling layer with SeqCondenser can significantly improve model
performance. Additionally, using a SeqCondenser layer immediately after an embedding
layer without self-attention or positional embedding (SCoMo-Bare) still outperforms
more sophisticated models. At the time of writing, SCoMo achieves the highest reported
accuracy on the R8 dataset according to the Papers with Code leaderboard, outperforming
the transductive text classification algorithm RoBERTaGCN.

10 Maixent Chenebaux, Tristan Cazenave

Table 2. Mean accuracies over 10 runs for different models. The best accuracies for inductive
methods are in bold, and the best overall accuracies are in italic.

MODEL 20NG R8 R52 OH MR

SVM 77.7 94.6 88.9 48.6 75.5
MNB 73.6 83.6 71.2 29.8 77.8
RF 74.2 92.8 84.8 57.3 68.7
KNN 52.4 87.0 83.5 54.5 70.2
SAT-MAX 77.6 96.6 92.1 65.1 73.2
SAT-AVG 82.7 97.1 92.7 65.0 75.7
SAT-WEIGHTED 81.5 97.0 92.5 63.5 75.5
STC 86.3 95.1 90.9 67.4 75.7
GRAPHSTAR 86.9 97.4 95.0 64.2 76.6
SCOMO-BARE 85.6 97.6 94.8 68.7 76.9
SCOMO 87.4 98.5 95.5 70.1 76.6
ROBERTAGCN 89.5 98.2 96.1 72.8 89.7

Table 3. Mean accuracies over 10 runs for different dimensionality reduction schemes.

DIMENSIONALITY REDUCTION R8 R52 OH

NON-TRAINABLE REDUCTION 98.5 95.5 70.1
TRAINABLE REDUCTION 97.8 95.2 66.6
NO REDUCTION 97.9 95.0 67.3

5.4 Importance of Dimensionality Reduction

As explained earlier, we introduce an additional step after the computation of the em-
beddings of the characteristic functions in order to reduce the size of the output of the
aggregation step. This is achieved by multiplying the aggregation vector by a randomly
initialized column-orthogonal matrix O with r columns, where r is less than 2dnθ.

We used r = 500 in our experiments and evaluated testing accuracies according to
the following three modalities:

– non-trainable reduction: the agregation vector is multiplied by a randomly initial-
ized but fixed matrix O.

– trainable reduction: the agregation vector is multiplied by O, and O is trained
alongside the rest of the neural network.

– no reduction: the aggregation vector is used as the output of the layer without being
multiplied by O.

According to the results presented in Table 3, using a non-trainable O yields the best
performance on the three datasets. These results suggest that using a non-trainable matrix
is an effective approach for reducing the size of the output of the aggregation step and
improving the test accuracy of the neural network.

5.5 Parameters Sensitivity

In this section, we investigate the influence of the two main model parameters on the
quality of learning: the number of evaluation points and the size of the dimensionality
reduction. To do this, we conducted an analysis of the model’s accuracy by varying the
number of evaluation points from 1 to 14 on three datasets: Ohsumed, R8, and R52. The

SeqCondenser 11

numbers presented in Figure 3 are the average accuracy over 10 runs. It is worth noting
that error bars were not included in the graph as they are too small to be legible: the
standard deviation of the accuracies is never more than 0.1 and typically falls within the
range of 0.03 to 0.06.

1 2 4 6 8 10 12 14

80

100

Number of evaluation points

M
ea

n
ac

cu
ra

cy

Ohsumed
R8

R52

Fig. 3. Impact of the number of evalua-
tion points on accuracy

50 100 200 300 400 500

80

100

Dimensionality

M
ea

n
ac

cu
ra

cy

Ohsumed
R8

R52

Fig. 4. Impact of the dimensionality re-
duction on accuracy

Based on the calculations, increasing the number of sampling points significantly
improves accuracy from 1 to around 8 points. However, beyond 8 points, the improvement
becomes negligible, indicating that the model’s accuracy is stable across a range of
sampling point values. Thus, using more than 8 evaluation points is unnecessary.

It is important to note that using a sampling point is not the same as using a single
parameter. Instead, it represents a sampling point for each input feature, resulting in a
2d-dimensional vector before reduction, contributing to the robustness of the results in
this situation. Moreover, if the accuracies with a sampling point appear similar to larger
values on Figure 3, it is primarily a visual artifact of the compression of the y-axis.

In addition, an analysis of the impact of the size of the low-dimensional space that
the aggregation vector is projected onto reveals that the model is able to effectively
compress information across a range of dimensionality values from 50 to 500. The
observed high stability in accuracy across this range demonstrates the effectiveness of
the SeqCondenser layer in producing a rich representation for the classification task.

6 Conclusion and Future Work

In this work, we introduced SeqCondenser, a novel TensorFlow layer that transforms any
sequence into a fixed-size vector, serving as an alternative to traditional pooling layers.
We presented SCoMo, a neural model for classification that incorporates SeqCondenser
and achieved state-of-the-art results compared to both inductive and transductive models.
We also introduced SCoMo-Bare, a simple model that is unaware of sequence order, yet
still outperforms more sophisticated, position-aware models using standard architectures.

The SeqCondenser unit can be integrated into any Keras model for classification or
regression tasks. Our experiments demonstrate the effectiveness of the SeqCondenser
layer in providing a concise and accurate summary of a sequence. In addition, we found
that using a dimensionality reduction step, which involves multiplying the aggregation

12 Maixent Chenebaux, Tristan Cazenave

vector with a randomly initialized but fixed column-orthogonal matrix, significantly
improves the training accuracy. Overall, the use of this dimensionality reduction step was
a key factor in achieving the high accuracy and stability observed in our experiments.

Future work could explore the use of SeqCondenser to fine-tune language models
such as BERT for classification purposes. We also plan to test SCoMo on classification
tasks involving time series data, and preliminary results have been encouraging. We
believe that the layer may also be successful in regression tasks, although we have not
yet conducted any tests in this area.

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015)
2. Buitinck, L., et al.: API design for machine learning software: experiences from the scikit-

learn project. In: ECML PKDD Workshop: Languages for Data Mining and Machine Learning.
pp. 108–122 (2013)

3. Chen, Y.: Convolutional neural network for sentence classification. Master’s thesis, University
of Waterloo (2015)

4. Chollet, F., et al.: Keras. https://keras.io (2015)
5. Dauphin, Y.N., de Vries, H., Chung, J., Bengio, Y.: Rmsprop and equilibrated adaptive

learning rates for non-convex optimization. (2015)
6. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional

transformers for language understanding. CoRR abs/1810.04805 (2018)
7. Donnat, C., Zitnik, M., Hallac, D., Leskovec, J.: Spectral graph wavelets for structural role

similarity in networks. CoRR abs/1710.10321 (2017)
8. Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., Lehmann, S.: Using millions of emoji

occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm.
In: Empirical Methods in Natural Language Processing. pp. 1615–1625 (2017)

9. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley, New
York, third edn. (1968)

10. Guidotti, E., Ferrara, A.: An explainable probabilistic classifier for categorical data inspired
to quantum physics (2021), https://arxiv.org/abs/2105.13988

11. Huang, E., Socher, R., Manning, C., Ng, A.: Improving word representations via global
context and multiple word prototypes. In: Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics. pp. 873–882 (2012)

12. Lin, Y., Meng, Y., Sun, X., Han, Q., Kuang, K., Li, J., Wu, F.: Bertgcn: Transductive text
classification by combining gcn and bert. arXiv preprint arXiv:2105.05727 (2021)

13. Lu, H., Huang, S.H., Ye, T., Guo, X.: Graph star net for generalized multi-task learning. CoRR
abs/1906.12330 (2019)

14. Ramachandran, P., Zoph, B., Le, Q.V.: Swish: a self-gated activation function. arXiv: Neural
and Evolutionary Computing (2017)

15. Rozemberczki, B., Sarkar, R.: Characteristic Functions on Graphs: Birds of a Feather, from
Statistical Descriptors to Parametric Models. In: CIKM. p. 1325–1334. ACM (2020)

16. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing
Systems. vol. 30. Curran Associates, Inc. (2017)

17. Wu, C., Wu, F., Qi, T., Cui, X., Huang, Y.: Attentive pooling with learnable norms for text
representation. pp. 2961–2970 (01 2020). https://doi.org/10.18653/v1/2020.acl-main.267

18. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification. CoRR
abs/1809.05679 (2018), http://arxiv.org/abs/1809.05679

