
DOI: 10.1002/minf.202300259

RE S EARCH ART I C L E

Comparing search algorithms on the retrosynthesis
problem

Milo Roucairol | Tristan Cazenave

LAMSADE, Université Paris Dauphine -
PSL, Paris, France

Correspondence
Milo Roucairol, LAMSADE, Université
Paris Dauphine - PSL, Paris, France.
Email: milo.roucairol@dauphine.eu

Funding information
French government under the
management of Agence Nationale de la
Recherche, Grant/Award Number:
ANR19-P3IA-0001

Abstract
In this article we try different algorithms, namely Nested Monte Carlo Search
and Greedy Best First Search, on AstraZeneca’s open source retrosynthetic
tool : AiZynthFinder. We compare these algorithms to AiZynthFinder’s base
Monte Carlo Tree Search on a benchmark selected from the PubChem data-
base and by Bayer’s chemists. We show that both Nested Monte Carlo Search
and Greedy Best First Search outperform AstraZeneca’s Monte Carlo Tree
Search, with a slight advantage for Nested Monte Carlo Search while ex-
perimenting on a playout heuristic. We also show how the search algorithms
are bounded by the quality of the policy network, in order to improve our
results the next step is to improve the policy network.
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1 | INTRODUCTION

Retrosynthesis is a domain of organic chemistry that
consists of finding a synthetic route (a sequence of re-
actions) for a given molecule in order to synthesize it
from a given set of available precursor molecules [1]. It
is an important part of organic chemistry molecule syn-
thesis, and can be used to produce newfound drugs.
What we aim for in this paper is to evaluate the
strengths and weaknesses of two search algorithms by
comparing them to AiZynthFinder’s Monte Carlo Tree
Search (MCTS) on a small benchmark consisting of cu-
rated and complex molecules, covering many reactions
encountered by chemists.

The second section presents the retrosynthesis prob-
lem, the third section presents the AiZynthFinder retro-
synthesis tool, the fourth section describes the search al-
gorithms we compare, the fifth section details the
benchmark used to compare the search algorithms, and
the sixth section gives experimental results.

2 | THE RETROSYNTHESIS
PROBLEM

Before diving into the details, let’s broadly present the
retrosynthesis problem.

* precursors: molecules that form one or multiple prod-
uct molecules when they react together. ZINC [2] is a
database of precursors that are available on the mar-
ket.

* reaction template: a patent predicting the product of
the reaction of one or multiple molecules. USPTO is a
database of reaction template patents.

* One step retrosynthesis: an important part of retrosyn-
thesis is selecting a few promising reaction templates
before applying them as MCTS moves, this step uses a
neural network.

As said before: the retrosynthetic analysis of a mole-
cule is trying to find a sequence of reactions from a
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given molecule that leads to available precursors. It is a
decision problem.

We start from the one molecule we want to find a
synthetic route for and decompose it into precursors,
available in the market or not. Then we recursively de-
compose the precursors according to a reaction template.
Each time a reaction is applied, this gives us another
state of the search, composed of different molecules (as
many or more). The goal is to find a sequence of reaction
templates (a retrosynthetic route) that leads to a state of
the search uniquely composed of molecules/precursors
available on the market.

Figure 1 represents a retrosynthetic route for mole-
cule A0 (on the right) as displayed in AiZynthFinder’s
UI, each green framed molecule is a precursor available
in ZINC, each orange framed one is a molecule that isn’t
available, and each black dot is a reaction. The mole-
cules on each column represent a state of the search
space that was explored, but it does not display all states
explored, only the ones in the route.

3 | AIZYNTHFINDER

AiZynthFinder [3] is a retrosynthesis tool made by As-
traZeneca’s research and development. It has the advant-
age of being open source, understandable, and well de-
scribed.

AiZynthFinder uses a neural network trained on
USPTO, a set containing about 18 million reaction
templates from organic chemistry patents. That neural
network’s role is to select the best reactions given a
molecule we want to synthesize, it also gives a value to
each move (the prior). Due to how the program works,
it’s hard to do without that neural network and the
priors because it would require finding another meth-
od to evaluate the reactions available for a molecule.
Thus, every algorithm presented here get their possi-
ble moves/reactions from the policy neural network.
In this article we use AstraZeneca’s open source pre-
trained network. Training a network to predict more
accurately the reactions for molecule retrosynthesis is

another domain called “one step retrosynthesis”, see
Ref. [1], it is not what we aim to explore here.

AiZynthFinder takes the SMILES: a string repre-
sentation of a molecule, as an input which makes the
first state (which is made of only one molecule). A
state is a set of molecules, from each state the neural
network proposes some reactions producing a mole-
cule from the state from precursors. If a reaction is
played the molecule is removed from the state, and the
precursors are added (a reaction can also be a mod-
ification of the molecule’s shape only, not removing
any atom, we call these “structural moves”). Retrosyn-
thesis often uses and/or trees, here the “and” are com-
bined into a single state as it makes the search more
simple.

We use the ZINC [2] molecule database, a curated
collection of commercially available (in stock) chem-
ical compounds prepared especially for virtual screen-
ing. Any state is evaluated by AiZynthFinder’s base
evaluation function which is 0.95*(fraction_of_mole-
cules_making_the_state_in_stock) + 0.05*(squash _
depth_of_the_reaction_tree). This function tries to
maximize the fraction of molecules in stock among the
ones composing the state. It decides between those
that have the same proportion by adding the squashed
(applying 1 – sigmoid of) depth of the search tree to
favor shorter routes.

We don’t modify it directly in this study but explor-
ing different score functions could be interesting in fu-
ture works.

4 | ALGORITHMS

Our algorithms use common primitives:

* Mstate represents the moves available from state state.
* play(state, m) executes the move m on the state state
and returns a children state of state.

* score(state) evaluates a state with a float value.
* visits(state) returns the number of time the state state
has been visited.

F I G U R E 1 Retrosynthetic route for molecule A0.
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* sumEvals(state) returns the sum of all scores returned
by state and its child states.

* prior(state,m) returns the value of move m when ap-
plied to state according to the neural network (here m
is a chemical reaction patent, and state a set of mole-
cules)

* terminal(state) returns true if no move can be applied:
a certain depth is reached, or we know no reaction for
molecules of the state

4.1 | AizynthFinder’s MCTS

AiZynthFinder uses a MCTS algorithm with priors very
similar to PUCT. PUCT stands for “Prior Upper Con-
fidence bounds applied to Trees”, it is a generalisation of
the UCT algorithm [4] using priors for each state of the
problem (the prior is the policy at the output of the neu-
ral network here), see Ref. [5] for the original version of
PUCT. PUCT has been used in AlphaGo [6] and Alpha
Zero [7]. Just like PUCT, this MCTS algorithm explores
the tree using playouts: it selects the next moves to try
according to their evaluations. It plays the selected
moves until it reaches a state not explored yet or until it
reaches a terminal state. That state is memorized in an
entry that contains the number of visits for that state,

the number of visits for each child state, and the
evaluations for each child state. Then the score of that
newly explored state is retro-propagated to update the
evaluations of the parent states.

AiZynthFinder’s MCTS in Algorithm 1 differs from
standard PUCT in how the bandit value, the value used
in the selection phase of a MCTS, is determined. In all
our experiments the c hyper-parameter is AstraZeneca’s
base one of 1.4. Algorithm 1 is iteratively called until it
reaches the maximum number of iterations, the trans-
position table is conserved between iterations.

When AiZynthFinder’s creators compared it to ASK-
COS, the MIT and DARPA’s retrosynthetic solver [8], it
showed similar performances [3].

4.2 | Nested Monte Carlo Search

Monte Carlo Tree Search (MCTS) has been successfully
applied to many games and problems [9].

Nested Monte Carlo Search (NMCS) [10] is an algo-
rithm that works well for puzzles and optimization prob-
lems. It biases its playouts using lower level playouts.
Online learning of playout strategies combined with
NMCS has given good results on optimization problems
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[11]. Other applications of NMCS include Single Player
General Game Playing [12], Cooperative Pathfinding
[13], Software testing [14], heuristic Model-Checking
[15], the Pancake problem [16], Games [17] and the
RNA inverse folding problem [18].

Online learning of a playout policy in the context of
nested searches has been further developed for puzzles
and optimization with Nested Rollout Policy Adaptation
(NRPA) [19]. NRPA has found new world records in
Morpion Solitaire and crossword puzzles. NRPA has
been applied to multiple problems: the Traveling Sales-
man with Time Windows problem [20,21], 3D Packing
with Object Orientation [22], the physical traveling sales-
man problem [23], the Multiple Sequence Alignment
problem [24] or Logistics [25]. The principle of NRPA is
to adapt the playout policy so as to learn the best se-
quence of moves found so far at each level.

The use of Gibbs sampling in Monte Carlo Tree
Search dates back to the general game player Cadia Play-
er and its MAST playout policy [26].

NMCS [10] recursively calls lower level NMCS on
children states of the current state in order to decide
which move to play next, the lowest level of NMCS be-
ing a random playout, selecting uniformly the move to
execute among the possible moves. A heuristic can be
added to the playout choices.

We detail the NMCS in Algorithm 2.
Here we used a heuristic to penalize the structural

moves (when nothing is added or removed from the
molecule, it only changes shape) because these moves
often occupied most of the limited depth of search, even
looping to a previous state sometimes. We use the score
of the children (between 0 and 1), to which we add 1 if
the largest molecule weight in the state is smaller than
its parent largest molecule weight. That value is then
used as the chance to select that move over the sum of
every other move’s values. The modified score function
for the heuristic and the heuristic are described in Algo-
rithm 3.

While we did not use softmax to harden the heuristic,
nor tuned the parameters, that simple heuristic allowed
us to diminish the structural moves problem, giving
them less than half the chance of being selected in play-
outs than before, and led to better results.

4.3 | Greedy Best First Search

GBFS stands for Greedy Best-First Search. It is a simple
algorithm that consists of opening (and removing) the
best node from a list of nodes sorted by their scores,
evaluating all its children and inserting them in the sort-
ed list of nodes, and then repeating the operation by

opening the new best node [27]. The evaluation function
can use playouts to make the algorithm closer to a
Monte Carlo Search algorithm. Like MCTS, that algo-
rithm can lock itself in a local minimum, but is faster
(and less accurate) as it skips the playout and the asso-
ciated calculations between each node discovery. Both
lack forced progress in depth of NMCS. We describe
GBFS in Algorithm 4.

The function insert(open-states, score, new-state) in-
serts new-state in the sorted list open-states given the
score value.

We modified the evaluation function similarly to the
NMCS playout function: if the children’s biggest mole-
cule is smaller than the parent’s then add 1 to the score.
That modification allows to avoid structural moves, mul-
tiplying states with high scores, but also prevents struc-
tural moves that are sometimes necessary to the reso-
lution of a molecule, finding an alternative solution
would greatly help this algorithm.

5 | BENCHMARK

To compare our algorithms to AstraZeneca’s MCTS, we
use a small subset containing 40 SMILES representation
of drugs from the PubChem database (see Table 3) se-
lected by Ref. [28] (molecules ID starting with C) and 20
SMILES representation of molecules selected by Bayer’s
chemists [29] (molecules ID starting with A). The Bay-
er’s chemists molecules contains molecules ranging from
easy ones to hard ones. The 40 molecules selected ran-
domly from PubChem by the authors of the benchmark
were obtained in such a way to cover small to large mol-
ecules [28]. The original goal of this benchmark was to
test the prediction of difficulty of retrosynthesis of these
molecules, thus these 40 molecules feature some of the
hardest to synthesize according to some chemists.

Generally, one step retrosynthesis uses USPTO-50 K
[30] as a benchmark. However here we are not trying to
benchmark the reaction propositions of the neural net-
work used here, but how our algorithm solves the retro-
synthesis problem. Thus our benchmark provides a few
advantages: proposing harder molecules to synthesize,
reducing the benchmark size allowing us to focus more
on each molecule, and giving a fixed benchmark to com-
pare with others.

You can find the SMILES representation of this
benchmark in Table 3 of the appendix.
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6 | RESULTS

These experiments were made on a 3.50GHz intel core
i5-6600 K on Windows 10 with 32 Gb of RAM. We used
the same common parameters for every algorithm:

* Max step for substrates (how many reactions we can
make from a substrate to the target molecule): 15

* Policy cutoff cumulative: 0.995
* Policy cutoff number (maximum number of possible
moves returned on a molecule): 50

* Filter cutoff: 0.05

6.1 | AiZynthFinder’s MCTS

To compare our algorithms, we ran AiZynthFinder
MCTS at least 2 times on each of the 60 molecules of the
benchmark with the base settings, C=1.4 for the ex-
ploration/exploitation constant. Running it a few times

only is not problematic because the MCTS results were
observed to be very stable on the few molecules we ran it
multiple times on. Our goal is not to measure the exact
solving times as they heavily depend on the im-
plementation, the language, and the hardware, but to see
how many molecules of the benchmark a given algo-
rithm can find a synthetic route for. The times specified
are here only to give an idea of the differences in per-
formance between the algorithms.

First, we ran the MCTS (Table 1) with a timeout of 2
minutes and a maximum number of iterations of 100
(“MCTS 2 min 100it”). The molecules identified with a C
in Table 3 were either solved instantly (<200 ms) or not
solved in 2 minutes. On the contrary, the molecules se-
lected by Bayer’s chemists (starting with “A”) took gen-
erally more time to be solved if they were. In addition, a
bigger proportion of molecules from A were solved than
from C, which can be explained by their sizes and the
presence of distinctive atoms (like fluor). We then
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launched the MCTS with a time limit of 20 minutes,
solving a few more molecules, and finally, we launched
a MCTS of 2 h on some of the remaining ones: C2, C35,
C37, C38. Only C37 (*) got solved in 5236.093 seconds, it
was not included in Figure 2.

As you can see on Table 1, increasing the MCTS
search time doesn’t help much, the molecules are either
solved instantaneously (<200 ms) or very quickly. The

instantaneous solving is due to the neural network (one-
step retrosynthesis) which immediately proposes the
right solution in 1 or 2 reactions for small molecules.
This means that the quality of the search algorithm
doesn’t matter on these molecules, and is solved almost
equally as fast with the MCTS, the NMCS, the GBFS,
and even a NMCS without playout. These molecules are
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not useful to our research so we remove them from the
set for further experiments.

6.2 | Other algorithms

Every molecule solved by the MCTS was also solved by
NMCS and all but one by GBFS. Even if they may be
slower than MCTS for easy states (the GBFS has to in-
stance 50 children per opened state even if it uses only
one or two). Thus, we are going to focus on molecules
not solved by AizynthFinder base MCTS and those that
took at least 2 minutes to solve.

For the NMCS, we first perform a level 1 NMCS us-
ing only the 5 best moves from each state, instead of the
50 best given by the Policy cutoff number. If that NMCS
(usually shorter than 1 minute) fails we perform a much
longer level 1 NMCS using all the 50 moves. If even that
fails, we launch the level 2 NMCS. The level 2 NMCS is
very slow but is able to solve molecules unsolved by both
MCTS and GBFS.

The GBFS was only launched once on each molecule
because the algorithm is deterministic, it was launched
with a time limit of 20 minutes, and molecules not
solved by then are considered unsolved. Given enough
time, the GBFS explores the entire tree.

First, we can notice in Figure 2 that NMCS and GBFS
outperform Astrazeneca’s MCTS in the long run, but as
the y-axis starts at 15, they slightly underperform on
molecules solved by 1 or 2 steps, in less than 1 s. These
molecules take about 0.6 s with GBFS and NMCS com-
pared to about 0.1 s for MCTS. This is because they don’t
open first the most promising node according to the neu-
ral network. It is observed that GBFS is better than both
NMCS and MCTS for search times between 2 and 480
seconds. It stops improving after 120 seconds while the
others continue to improve. NMCS finds retrosynthesis
routes slower but can find more of them. MCTS (or any
algorithm opening the reaction greedily according to the
neural network) is better for very short experiments (<
1 s), GBFS is better for medium length experiments (<
60s) and NMCS appears to be better for longer experi-
ments and more complex molecules.

T A B L E 1 AiZynthFinder’s MCTS results.

ID Time (s) ID Time (s) ID Time (s) ID Time (s)

C14 0.060 C13 0.061 C21 0.061 C31 0.063

C34 0.063 C25 0.064 C40 0.066 C26 0.071

C5 0.080 A11 0.120 C8 0.125 C3 0.130

C23 0.149 C1 0.167 A19 0.343 A9 0.743

A14 0.792 A4 0.821 A17 2.564 A1 5.225

A16 12.490 A2 12.948 A18 15.447 C20 22.088

C36 41.294 A7 84.585 C19 310.966 C22 425.647

A15 587.830 A5 1086.547 C2 >7200 C4 >7200

C6 >7200 C7 >7200 C9 >7200 C10 >7200

C11 >7200 C12 >7200 C15 >7200 C16 >7200

C17 >7200 C18 >7200 C24 >7200 C27 >7200

C28 >7200 C29 >7200 C30 >7200 C32 >7200

C33 >7200 C35 >7200 C37* >7200 C38 >7200

C39 >7200 A0 >7200 A3 >7200 A6 >7200

A8 >7200 A10 >7200 A12 >7200 A13 >7200

F I G U R E 2 Distribution of the numbers of molecules solved
with times in seconds.
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On Table 2 we focus our attention on the molecules
that took more than 2 minutes to solve or were not
solved by at least one of the algorithms:

C19, C20, C22, C37, A0, A3, A5, A6, A8, A12, A13
and A15

The results on A8 (*) were obtained by opening the
200 best nodes given by the neural network and not the
50 best, in addition to only searching up to a depth of 5
instead of 15. NMCS and MCTS were unable to solve the
molecule with the same parameters. The reactions re-
quired to solve A8 were not present in the 50 best pro-
posals from the neural network, but in the 200 best. On
the other hand, a top 5 level 1 NMCS was enough to
solve 30 of the 60 molecules, meaning the NN was very
accurate in these cases. It emphasizes how much results
depend on the accuracy of the NN. Again, the one we
used was trained by AiZynthFinder’s team on the public
USPTO reaction dataset, which does not feature many
reactions present in licensed datasets such as Reaxys or
Pistachio [31].

Our GBFS was unable to solve C20, despite being
solved by the MCTS and the NMCS, we think it was be-
cause our search heuristic favors the non structural
moves when a structural move is required here to cut
the carbon cycle. Overall, molecules with long carbon
cycles posed problems to be solved to all the algorithms
and C20 was the smallest and most simple of them from
the benchmark. It is what AstraZeneca is focusing on in
the latest updates for AiZynthFinder (we used an earlier
version from 2022 to conduct these experiments).

Like with MCTS, running the other algorithms lon-
ger did not yield much improvement. This is because the
neural network does not always propose the best re-
actions. Obtaining a better network, possibly trained on

a more complete dataset could improve our results
greatly.

To put our results in perspective, out of the 60 mole-
cules of our benchmark we managed to solve 35 mole-
cules with GBFS, and 36 with NMCS [29], while man-
aged to solve 38 molecules with a MCTS and 41 with a
DFPN (Depth-First Proof Number search, Aizynth-
Finder’s DFPN does not yield such results). We hope we
will be able to try with a more complete dataset and the
according NN in the future. Bigger molecules would still
be a challenge given all the reactions and subtrees they
offer, but we think it could help with the few unsolved
small molecules: C4, C6, C7, C10, C12, C35, C38, and
A10.

7 | CONCLUSION

While MCTS solves 31 molecules out of 60 from this
benchmark, GBFS solves 35 in a reasonable time and
NMCS solves 36. We showed that GBFS and NMCS
could provide satisfying performance improvements, es-
pecially since GBFS and NMCS are much simpler and
don’t use the neural network as a search policy beyond
the reaction proposition, unlike MCTS. We believe that a
more accurate neural network trained on a bigger data-
set, and a more complete template set would improve
the performances.

8 | FUTURE WORKS

Retrosynthesis is a vast topic, and much remains to be
done, we only scratched the surface of AiZynthFinder
here. It would be interesting to experiment on more al-
gorithms, including the canonical PUCT and apply the
prior to the algorithms we used here, use other score
functions or train and use another neural network. This
research would require a lot of time, and we can only
encourage other computer scientists to try their algo-
rithms and score functions on AiZynthFinder.

9 | APPENDIX

The appendix can be found in Table 3 below.
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T A B L E 2 Comparison of algorithms.

Molecule MCTS GBFS NMCS

C19 310.966 3.765 81.267

C20 119.230 X 46.166

C22 425.647 50.800 4.255

C37 5236.093 2.836 8.919

A0 X 4.569 84.582

A3 X 2.075 176.445

A5 1086.547 2.145 60.000

A6 X 29.604 1075.222

A8 X 95.365* X

A12 X 47.78 431.095

A13 X X 518.727

A15 587.830 3.587 37.178
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T A B L E 3 Benchmark

Mol SMILES

C1 COc4ccc3nc(NC(=O)CSc2nnc(c1ccccc1C)[nH]2)sc3c4

C2 OC8Cc7c(O)c(C2C(O)C(c1ccc(O)c(O)c1)Oc3cc(O)ccc23)c(O) c(C5C(O)C(c4ccc(O)c(O)c4)Oc6cc(O)ccc56)c7OC8c9ccc(O)c(O)c9

C3 NC(=O)Nc1nsnc1C(=O)Nc2ccccc2

C4 C=CCn5c(=O)[nH]c(=O)c(=C4CC(c2ccc1OCOc1c2)N(c3ccccc3)N4)c5=O

C5 Oc1c(Cl)cc(Cl)cc1CNc2cccc3cn[nH]c23

C6 CC(C)C(C)C=CC(C)C1CCC3C1(C)CCC4C2(C)CCC(O)CC25CCC34OO5

C7 CC45CC(O)C1C(CC=C2CC3(CCC12)OCCO3)C4CCC56OCCO6

C8 CCc2ccc(c1ccccc1)cc2

C9 CC5C4C(CC3C2CC=C1CC(OC(C)=O)C(O)C(O)C1(C)C2CC(O)C34C)OC56CCC(=C)CO6

C10 CSc2ncnc3cn(C1OC(CO)C(O)C1O)nc23

C11 CCc1c(C)c2cc5nc(nc4[nH]c(cc3nc(cc1[nH]2)C(=O)C3(C)CC)c(CCC(=O)OC)c4C)C(C)(O)C5(O)CCC(=O)OC

C12 CN(COC(C)=O)c1nc(N(C)COC(C)=O)nc(N(C)COC(C)=O)n1

C13 CSc2ccc(OCC(=O)Nc1ccc(C(C)C)cc1)cc2

C14 Cc2ccc(C(=O)Nc1ccccc1)cc2

C15 CC5CC(C)C(O)(CC4CC3OC2(CCC1(OC(C=CCCC(O)=O)CC=C1)O2)C(C)CC3O4)OC5C(Br)=C

C16 COc8ccc(C27C(CC1C5C(CC=C1C2c3cc(OC)ccc3O)C(=O) N(c4cccc(C(O)=O)c4)C5=O)C(=O)N(Nc6ccc(Cl)cc6Cl)C7=O)cc8

C17 CC=CC(O)CC=CCC(C)C(O)CC(=O)NCC(O)C(C)C(=O)NCCCC2OC1(CCCC(CCC(CC=C(C)C(C)O)O1)CCC2C

C18 CCC(C)=CC(=O)OC1C(C)CC3OC1(O)C(O)C2(C)CCC(O2)C(C)(C)C=CC(C)C3=O

C19 CCC(CO)NC(=O)c2cccc(S(=O)(=O)N1CCCCCC1)c2

C20 CCCCCC1OC(=O)CCCCCCCCC=CC1=O

C21 COc1ccc(Cl)cc1

C22 CC(C)(C)C(Br)C(=O)NC(C)(C)C1CCC(C)(NC(=O)C(Br)C(C)(C)C)CC1

C23 COc2cc(CNc1ccccc1)ccc2OCC(=O)Nc3ccc(Cl)cc3

C24 COC4C=C(C)CC(C=CC=CC#CC1CC1Cl)OC(=O)CC3(O)CC(OC2OC(C)C(O)C(C)(O)C2OC)C(C)C(O3)C4C

C25 CCc2ccc(OC(=O)c1ccccc1Cl)cc2

C26 COc1ccccc1c2ccccc2

C27 CCCC(NC(=O)C1CC2CN1C(=O)C(C(C)(C)C)NC(=O)Cc3cccc (OCCCO2)c3)C(=O)C(=O)NCC(=O)NC(C(O)=O)c4ccc(NS-
(N)(=O)=O)cc4

C28 COC4C(O)C(C)OC(OCC3C=CC=CC(=O)C(C)CC(C) C(OC2OC(C)CC1(OC(=O)OC1C)C2O)C(C)C=CC(=O)OC3C)C4OC

C29 CC(C)(C)c4ccc(C(=O)Nc3nc2C(CC(=O)NCC#C)C1(C)CCC(O)C(C)(CO)C1Cc2s3)cc4

C30 CCC7(C4OC(C3OC2(COC(c1ccc(OC)cc1)O2)C(C)CC3C)CC4C) CCC(C6(C)CCC5(CC(OCC=C)C(C)C(C(C)C(OC)C(C)C(O)=O)-
O5)O6)O7

C31 O=C(OCc1ccccc1)c2ccccc2

C32 CC(C)CC(NC(=O)C(CC(=O)NC2OC(CO)C(OC1OC(CO)C(O)C(O)
C1NC(C)=O)C(O)C2NC(C)=O)NC(=O)c3ccccc3)C(=O)NC(C(C)O)C(N)=O

C33 CCCC5OC(=O)C(C)C(=O)C(C)C(OC1OC(C)CC(N(C)C)C1O)C(C) (OCC=Cc3cnc2ccc(OC)cc2c3)CC(C)C4=NCCN6C(C4C)-
C5(C)OC6=O

C34 COC(=O)c1ccccc1NC(=O)CC(c2ccccc2)c3ccccc3

C35 Cc4onc5c1ncc(Cl)cc1n(C3CCCC(CNC(=O)OCc2ccccc2)C3)c(=O)c45

C36 CC(C)OCCCNC(=O)c3cc2c(=O)n(C)c1ccccc1c2n3C

C37 COC(=O)N4CCCC(N3CCC(n1c(=O)n(S(C)(=O)=O)c2ccccc12)CC3)C4

C38 Cc5c(C=NN3C(=O)C2C1CC(C=C1)C2C3=O)c4ccccc4n5Cc6ccc(N(=O)=O)cc6

C39 CCC5OC(=O)C(C)C(=O)C(C)C(OC1OC(C)CC(N(C)C)C1O)C(C) (OCC#Cc4cc(c3ccc2ccccc2n3)no4)CC(C)C(=O)C(C)C6NC-
(=O)OC56C

C40 CC(=O)Nc1ccccc1NC(=O)COc2ccccc2

A0 COC(=O)c1cccc2c(C(=O)OC(C)C)c(nn12)c3cccc(Cl)c3
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