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Abstract. Monte-Carlo Tree Search (MCTS) is largely responsible for
the improvement not only of many computer games, including Go and
General Game Playing (GPP), but also of real-world continuous Markov
decision process problems. MCTS initially uses the Upper Confidence
bounds applied to Trees (UCT), but the Rapid Action Value Estimation
(RAVE) heuristic has rapidly taken over in the discrete and continu-
ous domains. Recently, generalized RAVE (GRAVE) outperformed such
heuristics in the discrete domain. This paper is concerned with extending
the GRAVE heuristic to continuous action and state spaces (cGRAVE).
To enhance its performance, we suggest an action decomposition strategy
to break down multidimensional actions into multiple unidimensional ac-
tions, and we propose a selective policy based on constraints that bias the
playouts and select promising actions in the search tree. The approach is
experimentally validated on a real-world biological problem: the goal is to
identify the continuous parameters of gene regulatory networks (GRNs).

Keywords: MCTS - continuous GRAVE - constraints-based selective
policy - action decomposition - chronotherapy - hybrid GRN.

1 Introduction

MCTS is a general decision-time planning algorithm that was initially designed
for the improvement of computer Go [13]. The MCTS core idea is to incremen-
tally build a search tree whose nodes represent the states of the environment
and edges represent the actions taken from one state to a successor state. MCTS
has proved to be effective in a wide variety of settings, including General Game
Playing (GGP) [15,23] but is not limited to games [5,26]: it can be effective
for single-agent sequential decision problems if there is an environment model
simple enough for fast multistep simulation. The most popular MCTS algorithm
is Upper Confidence bounds applied to Trees (UCT) [19], which addresses the
exploration versus exploitation trade-off in each state of the tree search using
the Upper Confidence Bound [1]. The Rapid Action Value Estimate [16,17] is a
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simple yet powerful improvement. The RAVE algorithm combines UCT and the
all-moves-as-first (AMAF) heuristic [4,6] to provide knowledge sharing between
related nodes, resulting in a rapid but biased estimate of the action values. A
generalization of the RAVE heuristic [8] has been proposed to gather more accu-
rate estimates near the leaves: the resulting algorithm outperformed RAVE on
multiple games such as Go, Atarigo, Knightthrough, and Domineering, without
any specific knowledge.

Since the striking success of decision-time planning by MCTS in discrete ac-
tion spaces, existing methods try to mitigate the requirement of enumerating all
actions to deal with large-scale and continuous domains. Progressive Widening
(PW) [11,14], also known as progressive unpruning [10], increases the number of
child actions of a tree node based on its visitation count. cRAVE [12] adopts the
RAVE heuristic using Gaussian convolution-based smoothing, reinforcing infor-
mation sharing between similar states and actions in each node’s sub-tree. Other
variants of MCTS in the continuous domain abound. Kernel Regression-UCT [25]
generalizes the value estimation between similar actions in a node through kernel
regression. Thus, new action generation is guided by kernel density estimation.
An alternative to UCT is to replace UCB action selection rule [1] by Hierarchi-
cal optimistic optimization (HOO) [7,22| to deal with continuous actions. HOO
partitions the action space and builds a binary tree to gradually split it into sub-
spaces. Examples of successful continuous MCTS applications have been: control
tasks in OpenAl Gym environment [20], robotic planning [18], and action selec-
tion in an Olympic Curling simulator [25].

GRAVE outperformed RAVE in the discrete domain. As far as we know,
this paper is the first adaptation of GRAVE to the continuous domain. In ad-
dition, we add two generic contributions that improve the MCTS performances
in the continuous setting. First, the action decomposition strategy introduced
proposes to split a multidimensional action into multiple unidimensional actions.
This results in a tree policy reinforcing promising action components instead of
the wrong ones and leading to better action selection, specifically when the tree
search is shallow. Second, the core idea of a constraints-based selective policy
suggests the development of a module that automatically extracts constraints
and rules from the domain knowledge to reduce the action space before and
during the execution of the procedure.

The paper is organized into three remaining sections: Section 2 presents re-
lated works for discrete and continuous MCTS from which we add some contri-
butions detailed in Section 3, and Section 4 provides an experimental study on
a real-world biological problem.

2 Monte Carlo Tree Search

2.1 Discrete MCTS

MCTS is a simulation-based tree search in which states of an environment are
nodes and actions are edges. The basic version of MCTS uses Monte Carlo
simulations for evaluating the nodes of a search tree in order to direct future
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simulations towards better-rewarded trajectories. Given an initial computation
resource (time, memory or number of iterations) and starting at the root node,
MCTS executes four steps iteratively:

— selection: a tree policy decides which successor node to visit based on a
selection function and each successor node statistics,

— expansion: when the selection step ends on a leaf node, the tree is expanded
by adding a new node,

— simulation: from the expanded node, a simulation follows a rollout policy
until a terminal node is reached,

— backpropagation: the reward value of the simulation is assigned to the ex-
panded node and all of its ancestors.

The standard selection function for MCTS is UCB. It follows the principle
of optimism in the face of uncertainty, which favors the actions with the highest
potential value between exploitation (actions with a high mean reward value)
and exploration (actions less selected). During the selection step, the action a
is chosen (among the set of legal actions A(s) of state s) by applying the UCB
formula:
log(n(s))

argmaz,ea(s)(meang + ¢ X
n(s, a)

where mean, is the mean reward of a, n(s) is the number of times the state s
is selected, n(s,a) is the number of times a is chosen after s is selected, and ¢
is the exploration parameter that must be tuned for each problem: a low value
favors exploitation while a high value encourages exploration.

The AMAF heuristic consists of updating the statistics of all actions both
selected during the selection and simulation steps. Each of these actions is treated
as if it was played on a previous selection step. The reward estimate for an action
a from a state s is updated when a is chosen in any playout (even if a is not
chosen from s).

RAVE is a popular UCT enhancement that blends the standard UCT score
for each node with the AMAF score. Therefore, each node must hold a separate
count of rewards and visits for each type. The UCB formula is replaced by:

argmazaea(s)((1.0 = B,) X mean, + B, x AMAF,) (1)

where AM AF, is the AMAF score of the action a, and 3, is the dynamic weight
calculated using p, the number of rollouts starting with a:

_ pAMAF, 2)
" pAMAF, + p, + bias X pAMAF,, X p,

Ba

in which pAM AF, is the number of rollouts containing a.

The GRAVE algorithm uses AMAF statistics of an ancestor state if it has
more associated rollouts than a given constant called ref, which must be tuned
for each problem. The idea behind GRAVE is that a state upper in the tree has
better accuracy since it has more associated playouts. GRAVE is a generalization
of RAVE since GRAVE with ref equals zero is RAVE.
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2.2 Continuous MCTS

In continuous Markov Decision Processes, standard UCT or RAVE cannot be
used since the standard selection step requires the trial of every action at least
once, which is impossible in a continuous domain. The progressive widening
(PW) heuristic has been proposed to deal with this issue by maintaining a limited
number of actions to consider in each state s depending on the number of times
s has been visited. Specifically and heuristically, a new child state is sampled
from s every time the visitation count of s (n(s)) to the power of pw is greater
than or equal to its number of children (n(s)’" > |s.children|). pw is a problem-
dependent parameter that controls the number of actions allowed in s. In a
nutshell, while UCT ensures that the tree grows deeper in the promising regions
of the search space by balancing exploration and exploitation, the PW strategy
guarantees that it grows wider in those regions.

cRAVE is an extension of RAVE to the case of continuous action and state
spaces. It considers a smooth estimate of action and state values using a Gaussian
convolution. Formally, it states that the AMAF score of choosing an action a
from a state s is weighted by the contribution related to the state-action pairs
(s;,a;) encountered in every tree-walk z, starting from s:

—logN. {d(s,si)2 + dla,a;)? }
AMAFS,a = 2 e @5t agtate  ®action’ X R(;I,'é) (3)

Ts,A,€ET ¢

where R(z;) is the cumulative reward obtained after following x5, N, , denotes
the number of state-action pairs involved in every z, (the sub-tree of s), and
Qqetion (T€SP. Qgpqre) 18 & problem-dependent parameter tuning the importance of
d(a,a;) (resp. d(s, s;)) representing the distance between the action a (resp. state
s) and the considered action a; (resp. state s;) from the sub-tree. The Euclidean
distance is commonly chosen, but the choice of such a measure also depends
on the problem. pAMAF} , is the number of tree-walks containing the state s
followed by the action a and is also computed using Gaussian convolutions:

d(a,ai]2

_ d(s,sl)2
pAMAFSﬂ = z e togNa,s{ astate | Gaction } (4)

Ts,a;€T,

3 Contributions

Algorithm 1 encompasses the different contributions presented in this section.

3.1 Continuous GRAVE

GRAVE uses AMAF values of a state higher up in the tree than the current
state to gather more accurate estimates near the leaves. Its reliability decreases
as the number of actions increases: in a continuous action space, the number of
times a given action is tried is zero in expectation. An estimation of action and
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Algorithm 1 Continuous GRAVE and enhancements

Input: N tree-walks, initial state sq, PW parameter pw, reference state constant ref
Output: A search tree

1: Initialize constraints from the CSP module

2: fori=1to N do

3: s = 89, S ={s}

4: while s is not a leaf state and is not simulatable do > Tree-walk step
5: if n(s)”™ < |s.children| then > PW test, section 2.2
6: sref =s
7 if n(sref) > ref then > GRAVE reference state test
8: sref =s
9: end if
10: for all a € s.children d(,)4 N > Compute GRAV E(s, a)
1L B= sref.pAMAFf;;ﬁliaxsrff.pANIAFxs4p > Eq. 2
12: grave = (1. — B) X s.mean + 8 X sref.AM AF > Eq. 1
13: end for
14: Select a = argmaz{GRAV E(s,a) | a € s.children}
15: else
16: Sample a new action a from Aggp(s)
17: Add P(s,a) as a child node of s > P(s,a) is the transition function
18: end if
19: s=P(s,a), S=SuUs
20: end while
21: while s is not a terminal state do > Simulation step
22: Sample a € Acgp(s) based on default policy
23: s=P(s,a), S=SuUs
24: end while
25: score = evaluate(s)
26: for all s€ S do > Backpropagation step
27: Update s with score > Eq.3&4
28: end for
29: end for

state values must be considered, such as Gaussian convolution smoothing. We
propose to adapt the GRAVE algorithm to the continuous domain called con-
tinuous GRAVE (cGRAVE). The only difference is that the AMAF statistics
are updated using Gaussian convolution smoothing (line 27 of Algorithm 1 fol-
lows Equation (4)). For computing cGRAVE (lines 10 to 13), the closest ancestor
state having more rollouts than a given ref constant is kept as a reference state
(called sref and involved in lines 6-9), and its AMAF statistics are calculated
(to calculate lines 11-12).

3.2 Action decomposition

Many real-world problems involve continuous action spaces, a € Rd,d e N,
where the set of possible actions is not finite. In addition, the dimension d of the
action space can also be high, making continuous MCTS methods less effective.
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To leverage this issue, we propose an action decomposition (AD) strategy, which
consists of breaking down each action of d components (a = (z1, ..., z4)) into d
unidimensional actions (a; = z1, ..., aq = x4). Therefore, the choice of each action
component is left to the tree policy. In the expansion step, starting from a state
node s, a first action component is sampled. Then, from this action node, a new
action component is expanded. By iterating d times, the final component choice
leads to a new state node from which the simulation step takes place.

While using this AD strategy, the search tree contains actions from which no
simulation can be done. Line 4 of Algorithm 1 ("not simulatable") checks whether
or not s is a simulatable state. If s is not simulatable, a new action component
must be sampled. Finally, if the AD strategy is not chosen, s is always simulatable
since its parent action already comprises d components.

The advantage of such a strategy would be that each action node is considered
as a traditional tree node in the selection step, leading to a tree policy that
gradually reinforces the best action components at the expense of the wrong
ones. Figure 1 illustrates such strategy: instead of considering the actions a; =
(@in;-aiaq), @ € [1,n] and n € N*, as a whole (and the actions resulted by
the combination of different components), they are decomposed such that the
resulting tree search is composed of the distinct action components.

The effectiveness of this strategy is dependent on the order in which the ac-
tion components are expanded. In a general framework, it is often impossible to
obtain an optimal order of actions, either because the components are depen-
dent or the order function of the components is unknown. If no information is
available, a random order of components can be chosen. Otherwise, a heuristic,
or even a dynamic calculation of the order of the components, through iterative
deepening search, for instance, may reduce the convergence speed and lead to a
case of more favorable complexity.

a14 ./®\. iy

12 @ -+ '@ Un,2 12 @ -+ '@ Un,2

al,d—\l/.\ ® n,d-1
a1,d @ ** @ On,d Q1,d @ ** @ And
B A
1
\

N
\ ! \
1 \

~N_7 ~N_7

Fig. 1: Action decomposition strategy illustrated (in a deterministic case). The
multidimensional actions are decomposed component by component following a
particular ordering and forming a tree structure.
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3.3 Constraints-based selective policy

The next suggestion we make is a constraints-based selective policy (CSP), which
takes its roots from selective policies [9], successfully introduced in MCTS vari-
ants. The underlying principle is to keep more selectivity in the rollouts. This
idea can be applied to any problem by modifying the legal moves set of a node
so that moves that are unlikely to be good are pruned during the rollouts. The
idea underlying CSP is to automatically extract constraints from the environ-
ment definition, some input data, or expert knowledge. The goal is to reduce
the action space so that action values that are unlikely to be good or infeasible
concerning an extracted constraint are pruned before and during the execution.
A module is built to extract constraints that can be used during the expansion
step to choose only legal actions and remove ones that will lead to an impossible
state (a state in which there is an empty set of legal actions). This module is
helpful in the tree to select promising actions, but it can also be during the
simulation step, where information sharing (such as kernel regression or AMAF
statistics) does not take place: it can be used in playouts to bias the policy.

In real-world applications, the action space A(s) of a state s is bounded, such
that each action a; is defined inside a specified domain D;. Each domain D; con-
sists of a set of possible values. The CSP allows extracting a set of constraints
C;, which reduces its corresponding D;. Such action space is denoted Aggp(s)
(lines 16 and 22 in Algorithm 1). These constraints can be implicit or explicit
and depend on the application domain. Extracting these constraints helps to
reduce the dimension of D; not only to legal actions but also to actions having
a higher probability of being part of a solution. It can be done a priori and dur-
ing the execution of the search. It alleviates the non-locality problem in which
some actions may never be reached due to a previously performed action, even
if that action belongs to the legal set. The construction of such an extraction
module can be viewed as a generalized framework to apply to multiple distinct
applications at the price of designing the module. A use case is provided in the
next section.

4 Application

We empirically validate our method on the real-world problem of identifying
continuous parameters of hybrid gene regulatory networks (hGRNs). First, we
describe the problem. Then, the experimental design and setup are detailed.
Finally, the results are highlighted and analyzed.

4.1 Parameters identification of hGRNs

Gene regulatory networks (GRNs) modeling is a functional framework for study-
ing and understanding the effect of regulations inside a biological system. Usu-
ally, a GRN is represented as a directed graph in which vertices abstract one
or multiple biological genes (vy,vy in Figure 2a) and edges express either the
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Fig.2: Example of a hGRN depicted as a directed graph (a), and a possible
hybrid state graph (b). The hGRN dynamic parameters are depicted as black
arrows.

+n
activation (i)) or the inhibition () of one vertex by another only if the con-

centration of the source vertex is above its n”" threshold. An unlabeled arrow
means that n = 1. Since each of these regulations may or may not occur, each
gene abstraction has a maximum discrete level of concentration corresponding
to the maximum number of targets it can regulate. In the context of Figure 2a,
the maximum discrete level of both genes is 1, leading to discrete levels of genes
(ny, and n,,) in {0,1}. This graph is a static representation and is of limited
interest because it does not help the modeler to predict any evolution of the
system. Although a discrete dynamical framework has been developed, we con-
sider here a hybrid modeling framework that adds chronometric aspects to the
discrete framework, because it is fundamental to observe and reason not only
about the discrete dynamics of a complex system but also about its chronometric
evolution. This is particularly important in biology to optimize medical treat-
ments by taking into account biological rhythms (chronotherapy). The hGRN
dynamics of Figure 2b is then built in two steps: (i) First, each grey box, repre-
senting a discrete state 1 = (n,,,7,,), defines the discrete concentration level of
each gene. (ii) the hGRN dynamics are then defined as piecewise linear contin-
uous trajectories (red lines). The trajectory starts from an initial hybrid state
h;, which is represented by both a discrete state n and a vector determining
the precise position 7 inside the discrete state n. The initial state is defined
by h; = ((77v1777v2)t7(7Tv1a7Tv2)t) = ((0,0)t,(0.25,0.25)t). Then, the evolution in-
side each discrete state is given by a so-called celerity vector (black arrows),
which defines the direction and celerity of each gene, e.g., the celerity of v; in
n = (0,0) is denoted C,, (9,0)- More generally, the celerity of v in 7 is denoted
Cy,n- Such models could help biologists make new interpretations of the possi-
ble system dynamics. Nevertheless, the bottleneck of the modeling framework
is the identification of celerity vectors. We are interested in valid hGRN models
of the biological system under study, that is, into hGRN models consistent with
knowledge and observations.
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Fig. 3: Interaction graph of the 5-genes hGRN (a) and its corresponding biolog-
ical knowledge (b).

Our approach takes into consideration already-formalized information ana-
lyzed by biologists derived from biological data and expertise instead of raw data,
which are known to be subject to noisiness and scarcity. The approach abstracts
the knowledge extracted from biological experiments under the form of con-
straints on the global trajectory: it must (i) start from an initial hybrid state h; =
(n;, m;), (ii) verify a triplet of properties in each successive discrete state (At, b, €)
where At expresses the time spent; b delineates the observed continuous behavior
inside the discrete state (T means the absence of observed behaviors); e specifies
the next discrete state transition, and (iii) reach a final hybrid state hy = (s, 7¢).
Figure 3b shows the biological knowledge (BK) associated with the interaction
graph Figure 3a of the cell cycle GRN [2] from which we want to extract solutions
(valid models) in the next section. Note that the combination of arcs leading from
En and EP to B represent a logical conjunction of the two control conditions.

(nSK» NA>TB; NEn, nEP)t = (07 0,0,1, O)t
(Tsks A, T8, T, Tap) = (0.5,0.,0.,1.,1.)
must spend 3.33 hours in the discrete state n = (0,0,0,1,0). Within this state,
the celerity should move towards the next discrete state of SK (SK+) to increase
the concentration level of gene SK. In the meantime, the trajectory must also
reach the minimum admissible concentration of EP (slide (EP)). When SK hits
its threshold value, the trajectory jumps into the neighbor state = (1,0, 0, 1,0).
This process continues discrete state after discrete state until the trajectory
reaches hy (= h;, forming a cycle). Any valuation of dynamic variables, i.e.,
celerities, leading to a trajectory satisfying this BK, is considered a solution to
the hGRN identification problem.

Starting from h; = ¢ |, the trajectory

4.2 Decision-making problem specifications

The dimension of the decision-making problem is not the number of genes but a
double exponential product: the number of celerities to identify in each discrete
state is equal to d (5, here), the number of possible states is [] (b, + 1) with
b, the maximum discrete level of concentration of gene v (48, here), the total
number of celerities is d X [], (b, + 1) (240, here).
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To treat this problem with an MCTS approach, we consider each discrete
state as an MCTS state and the choice of celerity vectors as an action. In each
timestep, an action (the celerity vector choice) is composed of d continuous vari-
ables where d is the number of genes. When considering the use case of Figure 3,
there are five continuous variables, and, because of biological reasons, the action
space domain can be bounded to [-7; 7.]5. As the BK is based on observations
of 12 states, there are 12 continuous multidimensional actions to find a solution
leading to a shallow-depth MCTS tree. However, due to the equality constraints
on the time criterion in BK, the solution space forms a measure zero set, which
complicates the learning process because an action component must find an ex-
act floating-point value. Furthermore, some celerities in one discrete state may
be identical in one or more other discrete states, leading to a hard-constrained
problem. For this reason, a continuous constraint satisfaction problem solver ap-
proach failed to extract even one particular solution when considering these five
genes GRN [3]. Finally, the reward for a rollout is the length of the trajectory
before it ends in a final state: the maximum is 12 if the trajectory successfully
passes between all discrete states (see Figure 3b).

4.3 Design of experiment and experimental setting

The goal of the experiments is to assess the efficiency of the different contribu-
tions added to the baseline cRAVE. The design of experiments is cumulative.
First, cRAVE is compared to itself combined with the constraints-based selective
policy (cRAVEcgp). In the next step, we add to the previous algorithm the ac-
tion decomposition strategy (cCRAVEqcgp.ap). Similarly, we replace the cRAVE
heuristic in cCRAVEqgp with its improvement GRAVE in the continuous domain
(cGRAVEggp). Finally, we aggregate the different contributions leading to a
final version (cGRAVEcgp.ap)-

To avoid the disadvantages of the ad-hoc and manual parameter tuning
of the algorithms, we decided to use an iterated racing procedure for auto-
matic algorithm configuration. Using the irace package [21], we kept the best
elite configuration obtained after 1000 iterations to determine the values of the
problem-dependent parameters. For the cRAVE heuristics, the parameter space
is bias € {le—15,1e — 14, ..., 1le = 2,0.1}, astase € [1, 100], aaction € [1,100], and
pw € {0.1,0.11, ...,0.89, 0.9}. The resulted tuned values are bias = 0.1, agqte = 47,
Qaetion = 87, and pw = 0.61. For the cGRAVE heuristic, ref is found among the
values [1,100] and equals 29. The Euclidean distance is chosen for both action
and state spaces. Each experiment is run 30 times to obtain statistically signif-
icant results. The different policy values obtained are compared for the same
computational budget, i.e., 200.000 tree-walks.

4.4 Experiments

Domain knowledge. To develop the CSP module, we used some knowledge about
the hybrid framework. Indeed, some celerities, i.e., action components, are con-
strained to be the same in the different discrete states that will be encountered
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Fig. 4: Comparative performances (cumulative reward) of the different variants
on the 5 genes hGRN, versus the computational budget (number of iterations).
The upper the better: a reward of 12 means that a solution is found.

by the trajectory. Therefore, before the erecution, the module propagated some
information of BK between the states that share at least one common celerity
component. For example, the module automatically extracted that Cgx in the
third discrete state is constrained by slide” (SK). But it also extracted that the
next discrete state shares the same celerity SK. Thus, the module helped to de-
termine that (i) the celerity of SK in the third state is positive due to the slide”
knowledge (reducing the search space for this action to only positive values) and
(ii) that when the value is known, it is kept to the next discrete state. During
the execution, the module also helped to evict some action values. In the same
example of slide’ (SK) in the third discrete state, every positive value for Cgx is
considered a legal move. However, C's i value is impacted by its entry point, i.e.,
the hybrid state when entering the third discrete state. As a result, depending
on the coordinates of the entry point, C'sx values are adjusted online.

There is no domain knowledge about the order function of the moves in the AD,
so we have defined an arbitrary order among the genes (first SK, second A, then
B, En, and finally EP) and kept the same for every decomposition.

Analysis. Figure 4 comparatively displays the monotonic evolution of the re-
sults obtained by the different tested algorithms. It can be observed that (i) the
CSP is largely but non-surprisingly beneficial for the convergence of the differ-
ent MCTS variants: it helps escape an early blockage, (ii) cCRAVEqgp.ap and
¢cGRAVEcgp both help to improve the findings of better cumulative rewards
and (iii) when combining the three contributions, cGRAVEggp.ap ensures to
always find a solution of the problem, i.e., an admissible valuation of celerity
vectors allowing the trajectory to satisfy BK (it hits the maximum threshold
near 180,000 simulations).

Cumulative Distribution Function (CDF) curves are built in Figure 5. Each
CDF curve describes the probability of finding a solution at, or below, a given



12 R. Michelucci et al.
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Fig.5: CDF curves showing the best results for the different variants.

Alg meantstd max min % of solutions
cRAVE 0.97£0.18 1 0 0
cRAVEggp 87+272 12 6 20
CRAVECSP—AD 11.2 + 1.54 12 6 70
¢cGRAVEqcsp  116+13 12 6 93.33
¢cGRAVEqgp.ap 12.0 £ 0.0 12 12 100

Table 1: Statistics of cumulative rewards gathered by the different algorithms
tested. Bold values denote the best results column by column.

cumulative reward score. For instance, with cRAVEqgp, there is 100% probabil-
ity that at the end of a run, a user would obtain a cumulative reward less than
or equal to 6, and 50 % probability that the cumulative reward would be less
or equal than 11. Table 1 summaries statistics of the best cumulative reward
obtained for each run. The mean average and standard deviation of the results
are reported, as well as the overall maximum and minimum cumulative reward
(the best results column by column are shown in bold). For the maximum, the
reader can refer to the x-axis of the rightmost point of each corresponding CDF
curve that has more than 0% probability (in the y-axis).

Figure 5 and Table 1 quantitatively illustrate the interest of the different
contributions. Without CSP, no solution can be found. And, on top of CSP,
the AD strategy and ¢cGRAVE enhance the probability of (i) obtaining a bet-
ter cumulative reward and (ii) the percentage (%) of problem solutions found.
The combination of our proposals (cGRAVEcgp.ap) allows us to obtain a so-
lution with a probability of 100%. Overall, the merits of the contributions are
empirically demonstrated in this real-world biological problem.

4.5 Statistical analysis

A statistical validation campaign was conducted to evaluate the observed differ-
ences in the reported performance values of all algorithm pairs in order to exhibit



Improving continuous MCTS for hGRNs 13

M Fail to reject HO [ Reject HO (p < 0.05)

cRAVE 1.17¢-6 6.94e-7 1.45e-7 6.79¢-8
cRAVEcsp 9.84e-5 5.98e-5 8.89¢-6
cRAVEGsp.AD 0.176 6.460-3
cGRAVEcsp 0.179

cRAVE 1.17e-5 6.94c-6 1.45e-6 6.8e-7

cRAVEcgsp 9.84c-4 5.98¢-4 8.9e-5

cRAVEcsp.aD 1.0 6.46e-2
c¢GRAVEcsp 1.0

¢RAVEcgp ¢cRAVECgp.AD ¢cGRAVEqgp ¢GRAVEGSP.AD
Table 2: Pairwise Wilcoxon statistical tests (top) with Bonferroni post-hoc anal-
ysis (bottom) for Hy.

the best algorithm variant. We consider the null hypothesis H stating that the
observed performance scores are equal. First of all, the choice between para-
metric and non-parametric tests is made according to the independence of the
samples (seeds are different), whether or not the data samples are normally dis-
tributed (Kolmogorov-Smirnov test), and the homoscedasticity of the variances
(Levene’s test). As neither normality nor homoscedasticity conditions required
for the application of the parametric tests hold (at a = 5% confidence level),
the non-parametric Friedman rank-sum test is employed to assess whether at
least two algorithms exhibit significant differences in the observed performance
values. The obtained p-value equals 7e — 21 showing that the differences among
the algorithms are significant. However, we still don’t know which pairs of al-
gorithms are different. Therefore, the non-parametric Wilcoxon signed-rank test
was performed. In a complementary way, to reduce the issue of Type I errors
in multiple comparisons, the Bonferroni correction method was applied. Table 2
shows, on top, the p-values obtained with the pairwise Wilcoxon test and, on
the bottom, the ones computed with the Bonferroni correction.

If we analyze the conclusions supported by the tests, based on the acceptance
or rejection of the above hypotheses, we arrive at the following insights: cRAVE
is largely outperformed by the other tested variants. In addition, cRAVEcgp
underperforms compared to cRAVEcgp.ap, CGRAVEgp, and cGRAVEcgp_ap.
The results achieved by cGRAVEqggp are not statistically different compared to
cRAVEcgp.ap and cGRAVEqgp.ap (dark boxes in Table 2). However, it can
be emphasized that cRAVEcgp lags behind cGRAVEgp and similarly between
CRAVECSP_AD and CGRAVECSP_AD.

4.6 Visualisation

Figure 6 shows the best solution obtained by cGRAVEgp.ap for each run. It
illustrates the evolution of gene product concentration versus the time spent.
The graph type is modeled differently than Figure 2b because of the number of
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Fig.6: Visualisation of the 30 solutions (one for each run) obtained by
c¢GRAVEcgp.ap on the 5 genes hGRN identification problem. Black vertical
lines illustrate the 12 different discrete states.

dimensions, but both of them emphasize the same phenomenon: the evolution
of concentration (in the y-axis) as a function of the time spent (in x-axis) for
the different genes (different curves). This visual confirmation shows that the
contributions proposed helped to exhibit solutions, each consistent with BK.

5 Conclusion

The contributions proposed in this work concern first a continuous version of
the GRAVE heuristic. GRAVE uses the AMAF statistics of an ancestor node
when the number of playouts is too low to have meaningful AMAF statistics on
the considered node. The AMAF statistics considered are estimated thanks to a
smoothing technique (Gaussian convolutions in our study case) as in the cRAVE
approach. In addition, we have presented two additional generic improvements:
(i) the action decomposition strategy, which allows having a finer-grained ac-
tion selection step, and (ii) the constraints-based selective policy implying the
construction of a module that automatically extracts constraints to reduce the
action space by pruning actions before and during the search process. By ana-
lyzing the cumulative experiments on the problem of identifying celerity vectors
in a hybrid GRN, the results show that cGRAVE combined with the presented
contributions largely outperforms cRAVE. It also emerged that cGRAVE, the
action decomposition strategy, and the constraints-based selective policy can
independently be generic improvements of MCTS in the continuous domain.

The question of hGRN modeling addressed in this paper actually requires
a set of solutions to help the biologist develop new hypotheses and design ex-
periments. This multimodal issue has already been addressed in an alternative
approach [24]. We plan to develop a new version of cGRAVEcgp_ap that can find
diverse plans to the same problem in a single run. We believe that such a mod-
ification could be useful in other problems, both in the discrete and continuous
settings.
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