
Enhancing Reinforcement Learning Through Guided
Search

Jérôme Arjonillaa,*, Abdallah Saffidineb and Tristan Cazenavea

aPSL University - Dauphine, Paris, France
bPotassco Solutions, Potsdam, Germany

ORCID (Jérôme Arjonilla): https://orcid.org/0000-0002-0082-1939, ORCID (Abdallah Saffidine):
https://orcid.org/0000-0001-9805-8291, ORCID (Tristan Cazenave): https://orcid.org/0000-0003-4669-9374

Abstract. With the aim of improving performance in Markov Deci-
sion Problem in an Off-Policy setting, we suggest taking inspiration
from what is done in Offline Reinforcement Learning (RL). In Of-
fline RL, it is a common practice during policy learning to maintain
proximity to a reference policy to mitigate uncertainty, reduce poten-
tial policy errors, and help improve performance. We find ourselves
in a different setting, yet it raises questions about whether a simi-
lar concept can be applied to enhance performance i.e., whether it is
possible to find a guiding policy capable of contributing to perfor-
mance improvement, and how to incorporate it into our RL agent.
Our attention is particularly focused on algorithms based on Monte
Carlo Tree Search (MCTS) as a guide. MCTS renowned for its state-
of-the-art capabilities across various domains, catches our interest
due to its ability to converge to equilibrium in single-player and two-
player contexts. By harnessing the power of MCTS as a guide for our
RL agent, we observed a significant performance improvement, sur-
passing the outcomes achieved by utilizing each method in isolation.
Our experiments were carried out on the Atari 100k benchmark.

1 Introduction

Reinforcement Learning (RL) is a leading field in artificial intelli-
gence, advancing our grasp of intelligent decision-making in com-
plex environments [3, 44]. Despite the remarkable progress, the pur-
suit of optimizing RL algorithms remains a central focus. In this pur-
suit, we turn our attention to a foundational concept within the realm
of RL. In Offline RL [32, 36], the primary objective is to derive the
best possible policy solely from a dataset originating from an auxil-
iary policy, without interacting with the environment. The prevalent
idea is to align the new policy closely with the auxiliary policy to
enhance performance. This strategy derives from the principle that
deviating from the limits of the auxiliary policy often leads to uncer-
tainty which leads to erroneous judgments about the policy’s efficacy.

Our scenario diverges from this framework and pivots back to a
more classical approach where the constraints of an auxiliary policy
fade away and we once again interact with the environment. Despite
this paradigm shift, we question whether it is possible to preserve the
concept of Offline RL i.e., staying as close as possible to an auxil-
iary policy to enhance performance. Considering our lack of auxil-
iary policy, we inquire whether it is plausible to use an online algo-

∗ Corresponding Author. Email: jerome.arjonilla@hotmail.fr

rithm proficient enough to act as our guiding reference, and how to
integrate such a guiding agent into our RL agent.

In our investigation, we initially explore various online algorithms
that can potentially serve as a guide. The existing literature presents
algorithms that already exploit guide knowledge to improve perfor-
mance. For instance, algorithms such as Soft Actor-Critic (SAC) and
Asynchronous Advantage Actor Critic (A3C) [17, 18, 34] integrate
an entropy term into the reinforcement learning (RL) agent. This en-
tropy, in another formulation, is a measure of the distance between
the current policy and the policy of a guide, of which this guide hap-
pens to be a random agent.

In our research, we turn our attention to search algorithms, specif-
ically focusing on Monte Carlo Tree Search (MCTS) as a guid-
ing policy for reinforcement learning (RL) agents. MCTS-based ap-
proaches, well-established in game theory literature [7, 45], obtain
state-of-the-art performance across a spectrum of games, converging
towards equilibrium even in complex scenarios involving one or two
players.

Integrating MCTS as a guide yields significant performance im-
provements. Our analysis reveals that, in the majority of cases, this
integration leads to enhanced performance. Even in instances where
performance does not improve, the algorithms achieve optimal out-
comes when compared individually. By combining an RL algorithm
with MCTS as a guide, we harness the generalization and learning
capabilities inherent to RL, while also capitalizing on MCTS’s op-
timal online decision-making prowess. Furthermore, we extend our
investigation by exploring various hyperparameters, with a keen fo-
cus on the degree of integration of the guide’s policy. Through ex-
perimentation, we are demonstrating that it is possible to reduce the
frequency of use of the guide, thereby mitigating associated overhead
while retaining performance enhancements.

In Section 2, we establish the formalism and notation employed
throughout the paper. Section 3 presents multiple online guides, dis-
cussing their respective strengths and weaknesses, and elucidates the
process of integrating a guide into the RL agent. Particularly incor-
porating MCTS-based algorithms as a guide offers valuable guidance
to the RL agent in several key points: the actor and the critic compo-
nents. In Section 4, we conduct experiments using various guides on
the Atari100k benchmark. Section 5 provides an overview of related
work in the field. Lastly, Section 6 offers a summary of our findings
and outlines avenues for future research.

2 Formalism and Notation

2.1 Markov Decision Process

A dynamic system is typically characterized by a Markov Decision
Process (MDP), which is represented as M = (S,A, T , r, γ). Here,
S denotes the state space where s ∈ S, A represents the action
space with a ∈ A, T (st+1|st, at) signifies the transition probability
distribution governing the system dynamics, r(s, a) stands for the
reward function, and γ ∈ (0, 1] serves as a discount factor.

Dealing with an exact MDP can impose considerable computa-
tional burdens. Utilizing an approximation of M, known as a world
model [20, 38, 21, 22], can offer significant advantages. Employing
the world model for information retrieval not only expedites compu-
tations compared to exact methods but also facilitates parallel pro-
cessing of state batches, particularly when computing complex tools
such as N-step bootstrapped λ-returns or employing MCTS. This
parallel processing is often performed on GPUs rather than CPUs,
further enhancing computational efficiency.

2.2 Reinforcement Learning

Reinforcement learning confronts the problem of learning to control
the MDP, where the agent tries to acquire a policy π, which is de-
fined as a distribution over actions conditioned on state π(a|s) that
maximizes the long-term discounted cumulative reward defined as
follow:

π∗ = max
π

E
τ∼π

[
T∑

t=0

γtrt
]

(1)

where τ = (s0, a0, r0, . . .) is a sequence of states, actions, and re-
wards generated from the current policy. To maximize the policy π ,
one of the primary methods utilized is the actor-critic approach in-
volves learning a critic and an actor-network. The learning can be
conducted online by generating new trajectories or by leveraging a
data buffer D, which comprises past trajectories τ0, τ1, . . . , τk−1.

2.2.1 Critic

The critic aims to estimate the value functions, i.e. the expected cu-
mulative rewards an agent can obtain at a state:

Vπ (s
t) = E

at∼π(·|st)

[
rt + γ E

st+1∼T (·|st,at)

[
Vπ (s

t+1)
]]

(2)

The loss function of the critic LC
θ is formulated to minimize the

disparity between the value target V̄θ(s) and the predicted value
Vθ(s) over a batch of state.

LC
θ = E

s∼D

[
LC,Sub

θ (s)
]

(3)

Previous studies have emphasized the benefits of employing cross-
entropy over a discrete representation in reinforcement learning [5,
38, 22, 6, 15]. This method involves the critic to learn a discrete
weight distribution pθ = {p1, ..., pB} ∈ RB instead of learning the
mean of the distribution/ A function y() is used to convert a target
value into a corresponding weight distribution of size B. This leads
to the following sub-loss for the critic:

LC,Sub
θ (s) = y(V̄θ(s))

T log pθ (4)

The value target often corresponds to the Q-Value, yet, to en-
hance stability, an alternative approach involves using the N-step
bootstrapped λ-returns [44, 22]. These returns incorporate predicted
rewards and values [39, 44] over a depth of N:

{
Vθ(s

t) if N = 0

rt+γ
(
(1− λ)Vθ(s

t+1) + λV λ,N−1
θ (st+1)

)
if N > 0

(5)

2.2.2 Actor

The actor’s loss function, denoted as LA
θ , is designed to maximize

the expected reward by optimizing the actions that lead to states with
the highest predicted values from the critic.

LA
θ = E

s∼D

[
LA,Sub

θ (s)
]

(6)

In the context of Atari Benchmarks, as observed in [21], authors
have found it more advantageous to employ the Reinforce [47] al-
gorithm, which is the approach adopted in our work as well. Rein-
force maximizes the actor’s probability of its own sampled actions
weighted by the values of those actions. One can reduce the variance
of this estimator by subtracting the state value as a baseline. There-
fore, we obtain the following loss for the actor:

LA,Sub
θ (s) = E

a∼πθ(·|s)

[
− lnπθ(a|s)

(
V̄θ(s)− Vθ(s)

Sθ

)]
(7)

where the term Sθ refers to the normalization factor used to stabilize
the scale of returns. The normalization is carried out using an expo-
nentially decaying average, is robust to outliers by taking the returns
from the 5th to the 95th batch percentile, and reduces large returns
without increasing small returns.

Sθ = max
(
1, Per95

(
V̄θ(·)

)
− Per5

(
V̄θ(·)

))
(8)

2.3 Behavior Cloning

Behavior Cloning (BC) [24] is a method employed in RL where the
objective is to develop an agent capable of executing tasks closely
resembling those of the demonstrator. In this approach, the agent’s
policy, denoted as πBC , undergoes a supervised learning process to
closely replicate the actions present in the dataset.

πBC = max
π

E
(a,s)∼D

[log π(a|s)] (9)

2.4 Search Algorithm

Search algorithms are algorithms that aim to explore the game tree
efficiently to make informed decisions that maximize the chances of
winning. To do this, search algorithms are given a larger budget in
the given state that they wish to solve, and during the budget they ef-
ficiently explore the different possible paths of action, thus obtaining
a better estimate of the value function and a better policy in the given
state.

Search algorithms encompass a diverse range of techniques tai-
lored to handle various game scenarios, from single-player to multi-
player, and from perfect to imperfect information settings. In per-
fect information games like Chess or Go, where players have com-
plete knowledge of the game state, algorithms like Minimax with
Alpha-Beta Pruning [28, 13] or MCTS [7, 45] are widely employed.
Conversely, imperfect information games like Poker or Skat pose ad-
ditional challenges due to hidden information. In such cases, tech-
niques like Perfect Information Monte Carlo [33], Information Set
Monte Carlo Tree Search [14], or Counterfactual Regret Minimiza-
tion based method [35] are utilized.

2.4.1 Monte Carlo Tree Search

MCTS is a tree search algorithm, for perfect information game that
converges towards equilibrium with one and two players. At each
time step of the budget, MCTS (i) selects the best path of node, (ii)
expands the tree by adding a child node, (iii) estimates the child node,
(iv) backpropagates the result obtained through the nodes chosen. At
the end of the budget, the algorithms return the distribution of actions
πMCTS that has been visited, and the value VMCTS obtained when
running MCTS.

Starting from AlphaGo/AlphaZero (AZ) series [41, 43, 42], MCTS
has been combined with neural networks to enhance performance
where an actor-network is used to help the search and a critic network
is used to give a better estimate of the new state. We denote πAZ /VAZ

the information returned when running MCTS with AlphaZero. This
information is then utilized to compute the sub-actor loss LA,Sub

θ (s)

and the sub-critic loss LC,Sub
θ (s).

LC,Sub
θ (s) = y(V̄AZ(s))

T log pθ (10)

LA,Sub
θ (s) = πAZ(·|s)T log πθ(·|s) (11)

3 Guide

As mentioned in the introduction, we aim to find an online algo-
rithm that can guide our RL agent to improve its performance. In this
objective, we will first investigate the advantages and disadvantages
of different guides, and then we will explain how to integrate the
guide into the RL agent.

3.1 Analysis of the various guides

To thoroughly assess the efficacy of different guides and determine
their suitability for guiding the reinforcement learning algorithm,
we conducted a comprehensive evaluation based on multiple crite-
ria. The gathered information is summarized in Table 1. The guides
discussed are detailed below and are identified as follows ‘Human’,
‘Random’, ‘BC’, and ‘MCTS’.

The criteria take into account their capacity to be available in each
state-action, if they are relevant for exploring/performance, their on-
line and offline cost, if they can reduce the extrapolation error, and
if they are time dependent. Time-dependent algorithms are those that
require learning before they are operational, for example, learning a
neural network. Extrapolation error [16] is an error present in Off-
Policy and Offline problems that arise when the target selects actions
rarely present in the dataset, affecting the accuracy of the value esti-
mate.

3.1.1 Human

The use of guides is often associated with the use of human guides,
whether for learning to drive [23, 48], for conversing with other hu-
mans [25] or even for trying to play as much as a human [4]. It is a
necessity in scenarios where real-time interaction is either infeasible
or the risk is too significant. The initial stages of a game present a
valuable opportunity for the incorporation of human policies. During
this phase, RL policies may prove ineffective, whereas human poli-
cies are directly applicable and advantageous. Unfortunately, the data
are available in a restricted subset of all state-action, are expensive
and complex to obtain.

3.1.2 Random

In algorithms like SAC [17] and several state-of-the-art counter-
parts [22], the RL agent is coupled with an entropy term to enhance
exploration. In an alternative perspective, this entropy is a measure of
the distance between the current policy π and the policy of a guide,
of which this guide happens to be a random agent. The choice of a
random agent as a guide holds distinct advantages, particularly when
exploration of the state space is desired, its minimal computational
cost and immediate availability make it an ideal choice in many sce-
narios. However, reservations emerged when considering the utility
of such a guide in enhancing overall performance.

3.1.3 Behavior Cloning

In Offline RL, a common strategy involves approximating closeness
to the behavioral policy that underlies the D dataset. Achieving this
requires an initial step of estimating the behavioral policy by be-
havioral cloning. This estimate of the behavior policy is then used
as a guide for RL agents. This method yields a significant advan-
tage by minimizing extrapolation errors. By aligning the new policy
closely with the behavior policy, the algorithm performs actions for
which accurate approximations exist, reducing uncertainties of the
new policy. However, several considerations come into play. Firstly,
the guide is not inherently well-suited for exploration or enhancing
performance. Secondly, the data is confined to a subspace of the state
space and depends on the amount of interaction.

3.1.4 Search Algorithm

Leveraging a search algorithm as a guide stands as a reasonable
choice given its constant availability in each state and its relatively
low cost compared to human guidance. Particularly, in contrast to
employing either a random guide or a guide relying solely on past
data, search-based algorithms hold greater potential for performance
enhancement due to their abilities to explore and converge toward
the optimal solution. It is noteworthy, however, that while search
algorithms are less expensive than human guidance, they may in-
cur higher costs than alternative methods. Additionally, under con-
strained resource budgets or insufficient training of neural networks,
search algorithms may encounter challenges in converging toward
the optimal solution.

3.2 How to integrate a guide into the RL agent

Offline RL [32, 36] domain offers diverse methods for aligning one
policy with another, contingent on the degree of closeness desired
between them. Possible methods include value penalty where the

Table 1: Advantage and Inconvenient of using each guide. Yes∗ implies that the algorithm is relevant to improve exploration, but only if the
action produced is also relevant to improve performance.

Criteria
Guide

πRandom πBC πθ
BC πMCTS πAlphaZero πHuman

Available at each (s,a) Yes No Yes Yes Yes No
Relevant for exploration Yes No No Yes∗ Yes∗ Yes∗

Relevant for performance No No No Yes Yes Yes
Reduce extrapolation error No Yes Yes No No No
Performance is not time-dependent Yes No No Yes No Yes
Online Cost Low Low Low Medium Medium High
Offline Cost Low Low Medium Low Medium High

penalty term is incorporated into the reward function or policy regu-
larization where the penalty term is incorporated after the calculation
of the loss. In our work, we have chosen to implement regularization
techniques.

Our approach to incorporating the guide is largely inspired by
the work of Shi et al. [40], which, to our knowledge, stands as the
sole study employing both policy and critic information. This choice
is based on our ability to leverage the information provided by the
search algorithms, especially πAZ help to influence the actor policy
and VAZ help to shape the critic.

In the subsequent discussion, we adopt general notations that con-
sider the possibility of multiple guides. E = {Ei}i∈N denotes the
set of guide algorithms, each exerting varying degrees of influence
on the decision-making process.

3.2.1 Critic Incorporation

By integrating the guide into the critic, our objective is to refine the
estimation of the value function by considering the insights provided
by the guide. Incorporating a penalty into the critic using value reg-
ularization amounts to change from Equation (3) to equation the fol-
lowing new loss function LC

θ :

E
s∼D

LC,Sub
θ (s)+

∑
Ei∈E

λC
Ei

(s)FC
Ei

(Vθ(s), V̄Ei(s))

 (12)

where FC
Ei
(,) is the penalty term between the guide target V̄Ei(s)

and the predicted value, and λC
Ei
(s) is the function weight used for

regularizing the penalty term. The penalty term can be any function
that evaluates the disparity, and in particular, the same function as the
critic’s sub-loss. Similarly, to enhance stability, one can compute the
N-step bootstrapped λ-returns on the target value.

3.2.2 Actor Incorporation

To incorporate the guide on the actor, we used information from the
guide on the actor and the critic. The use of the critic allows us to
increase guidance when states are promising or have high potential.
Incorporating a penalty into the actor using regularization amounts to
change from Equation (6) to the following loss function of the actor
LA

θ :

E
s∼D

 LA,Sub
θ (s)

E
[
|LA,Sub

θ (·)|
]+ ∑

Ei∈E

αA
Ei

(s)FA
Ei

(πθ(·|s), πEi
(·|s))

(13)

where FA
Ei
(,) represents the penalty term between the actor-network

and the target policy, and αA
Ei
(s) is a function determining the

penalty weight based on the current state. The penalty term can
be any function that evaluates the disparity, yet, in Offline RL, the
penalty term is often the KL divergence [49].

The loss of the actor-network significantly depends on the scale
of the internal loss values. To address this, we normalize LA,Sub

θ (s)

by the average absolute value of LA,Sub
θ (·). This mean term is esti-

mated over mini-batches and is solely used for scaling purposes. The
weight αA

Ei
(s) ∈ [λA

Ei
(s), λA

Ei
(s) · λMax

Ei
] is a function that serves

to emphasize the increased penalty on high-quality state i.e., more
weight is given to states that perform better than the target, which
results in more attention toward the policy given by the guide.

λA
Ei
(s) · Clip

[
exp

(
τEi

V̄Ei(s)− V̄θ(s)

SEi

)
, (1, λMax

Ei
)

]
(14)

In this equation, the state’s quality is assessed through the term
VEi(s)−Vθ(s) normalized by SEi . The normalization is carried out
using an exponentially decaying average, robust to outliers by taking
the returns from the 5th to the 95th batch percentile, and reduces
large returns without increasing small returns.

SEi = max (1, Per95 (VEi(·))− Per5 (VEi(·))) (15)

4 Experimentation

4.1 Experimental Information

4.1.1 Benchmarks

Atari 100k [26] serves as a comprehensive benchmark comprising
26 Atari games, providing a diverse range of challenges to assess
various algorithms’ performance. In this benchmark, agents train for
100k steps, equivalent to 400k frames (considering a frameskip of
4). Each block of 100k steps approximately aligns with 2 hours of
real-time gameplay per environment.

4.1.2 Algorithms

The algorithms used are namely (i) AlphaZero (AZ) [42]; (ii) A2C
(Advantage Actor-Critic) [34]; (iii) A2C with random agent as a
guide, noted as A2C-Rand (similar to SAC); (iv) A2C with behav-
ior cloning as an guide, noted as A2C-BC; (v) A2C agent with Alp-
haZero as an guide, noted as A2C-AZ or A2C-AZ* where A2C-AZ
uses a fixed hyperparameter λA for all games and A2C-AZ* uses a
fine-tuned λA for each game.

Given the novelty of our approach, we conducted experiments with
a single guide (|E| = 1) and uniform weights assigned across all
states (∀s, λC

Ei
(s) = λC

Ei
and ∀λA

Ei
(s) = λA

Ei
). Furthermore, in

our study, we used A2C as the reinforcement learning algorithm and
AlphaZero as the guide. However, our implementation is not limited
to these specific algorithms. Various other RL and search algorithms
could have been explored as alternative options for experimentation.

4.1.3 Actor/Critic

All the algorithms use a critic and an actor network, composed of
a two-layered MLP network of 512 hidden units. As defined in the
introduction, the critic loss sub LC,Sub

θ () uses a cross-entropy based
on a discrete representation [38, 22] and the actor loss sub LA,Sub

θ ()
uses reinforce with an advantage baseline to reduce the variance.

The distance function FA(,) used for the actor is a KL-divergence
function and the distance function FC(,) used for the critic is a
cross-entropy. The weight of the guide penalty λA is fixed at 0.08
for behavior cloning and at 0.03 for random (both where chosen be-
tween [0.03, 0.08, 0.3]), and unless otherwise stated, set at 0.7 for
MCTS. For A2C-AZ, the weight for the critic is fixed at 0.05. For
enhancing stability, the guide value target V̄Ei() and the value target
V̄θ() use the N-step bootstrapped λ-returns.

4.1.4 Monte Carlo Tree Search

A2C-AZ utilizes the actor and critic networks of the A2C agent, en-
suring that it does not deviate significantly from it. Our implementa-
tion of MCTS in A2C-AZ and AlphaZero is built on previous famous
MCTS implementations [41, 42, 38, 50]. It uses a search budget of
50, PUCT in the selection and Dirichlet noise distribution to help ex-
plore. However, three differences should be noted (i) we do not use
Re-Analyse; (ii) we do not use prioritized experience replay [37];
(iii) we do not use the search algorithm in the test phase. These dif-
ferences were made to effectively compare the different algorithms.

4.1.5 Metrics

We report the raw performance on each game, the human normal-
ized score, as well as the Interquartile Mean (IQM) and Optimality
Gap. The IQM and the Optimality Gap are metrics recommended
for Atari100K benchmarks [1] where the authors recommend using
IQM instead of the Median, and Optimality Gap instead of Mean, as
both methods are more robust. IQM calculates the average over the
data, removing the top and bottom 25%. Optimality Gap computes
the amount by which the algorithm fails to meet a minimum score. A
higher score is better for the IQM and a lower score is better for the
optimality gap.

4.1.6 Other

Each agent uses a single environment instance with a single NVIDIA
V100 GPU. Each algorithm is run using 5 seeds, we evaluated per-
formance every 10k training step with 10 independent run of the
game. To mitigate training expenses, we conducted our experiments
by using a world model. We employed the fixed-trained weights from
the Dreamer algorithm [22], a state-of-the-art model-based technique
trained over 50, 000k steps. The world model is used to compute the
N-step bootstrapped λ-returns for A2C algorithms and facilitating
MCTS in A2C-AZ and AlphaZero. Additionally, to enhance cost-
effectiveness and stability, we restricted our experimentation to 21

out of 26 games, excluding those where the world model demon-
strated poorer performance in terms of mean human-normalized
scores. Additionally information and experiments are available in the
supplementary material [2].

4.2 Experiments

Initially, we will examine the overall impact of the various algorithms
and guides. Subsequently, we narrow our focus on MCTS as a guide,
analyzing the experiments in greater detail. Finally, we analyze the
impact of the guide’s weight, by testing several weights and trying to
observe the impact when the guide is called less often.

4.2.1 Overall analysis

(a) IQM

(b) Optimality Gap
Figure 1: Aggregate performance. Shaded area shows 95% stratified

bootstrap confidence interval. The x-axis represents the human
normalized score.

Figure 1 analyzes the overall performance using the IQM and Op-
timality Gap metrics for all the different guides considered. We no-
tice a significant enhancement in performance when utilizing AZ as a
guide across both metrics. Specifically, A2C-AZ with a fixed weight
surpasses A2C by over 0.4 on the IQM and 0.1 on the Optimal-
ity Gap. Fine-tuning the weight further improves performance, with
IQM increasing from 1.3 to 1.5 and the Optimality Gap decreasing
from 0.28 to 0.24.

4.2.2 MCTS as a guide

In Figure 3, we observe the percentage improvement of A2C-
AZ*/A2C-AZ/AlphaZero over A2C. Furthermore, Figure 2 displays
a series of learning curves for A2C-AZ, A2C, and AlphaZero, form-
ing the foundation for our subsequent analysis.

We begin our analysis by comparing the performance of AZ and
A2C agents independently. Each figure represents distinct scenarios:
one where AZ outperforms A2C (Figure 2.a) and another where A2C
outperforms AZ (Figure 2.b). These figures provide an initial glimpse
into the broader performance trends.

0 50 100 150 200 250 300 350 400

·105

0

1,000

2,000

3,000

Time Step

Pe
rf

or
m

an
ce

A2C
A2C-AZ
AZ

(a) Asterix

0 50 100 150 200 250 300 350 400

·105

0

1,000

2,000

Time Step

Pe
rf

or
m

an
ce

A2C
A2C-AZ
AZ

(b) Assault
Figure 2: Learning curves on 2 different game of Atari100k

benchmarks with 3 algorithms presented. The shaded area shows
95% confidence interval.

Overall, A2C demonstrates superior performance in 12 games,
while AZ surpasses A2C in 8 games, with 1 game showing equiv-
alent performance. Despite the general advantage of A2C, it is es-
sential to highlight instances where A2C falls short, indicating the
potential benefits of integrating AZ as a guide.

When considering the incorporation of AZ as a guide, several crit-
ical questions arise: can this integration elevate the agent’s perfor-
mance to at least match the best of the two individual agents? Is it
possible to create an agent superior to the best individual performer,
or might utilizing the guide lead to a weakened agent?

Our analysis across games shows that, compared to A2C, 12/17
games exhibit performance improvements, 4/2 show equivalent per-
formance, and 5/2 show lower performance when using the com-
bined approaches A2C-AZ and A2C-AZ*. Interestingly, in the subset
of 8 games where AZ outperformed A2C in isolation, integrating AZ
as a guide resulted in superior performance in 6/7 of those instances.

Although not visible in the figure, but observable in supplemen-
tary material. Our observations indicate that the combined algorithm
outperforms both individual algorithms in 9/11 instances, achieves
the performance of the better of the two methods in 7/9 instances,
is lower than the best but bounded by the two algorithms in 4/1 in-
stances, and shows lower performance than both in only 1/0 instance.

4.2.3 Weight of the guide

In Figure 4, we explore the impact of the weight parameter, λA, on
performance. We compare several fixed values of λA ranging from
0.1 to 0.7, alongside the optimal weight selected for each game. Each
variant of A2C-AZ is denoted by A2C-AZ-X, where X represents
the specific weight used. For instance, A2C-AZ-0.3 employs AZ as
a guide with a weight of 0.3.

Upon examination, we find that the optimal fixed weight is 0.7,
resulting in an IQM of 1.29 and an Optimality Gap of 0.28. No-
tably, reducing the weight significantly leads to performance out-
comes closely resembling those of A2C alone.

4.2.4 Cost of using a guide

Throughout our previous experiments, we have observed a signif-
icant advantage in using AZ as a guide. However, as indicated in
Table 1, there is an overhead cost associated with employing AZ.

In practice, several MCTS methods can significantly reduce this
cost, such as batch MCTS [8] and various parallelization techniques
(leaf [9], root [11], and tree [10]). Additionally, many implementa-
tions utilize extensive computational resources to better distribute the
workload. For instance, the basic version of AlphaGo uses 40 search
threads, 48 CPUs, and 8 GPUs.

In the following experiment, we demonstrate another way to re-
duce the cost of incorporating a guide, which is quite natural in our
context. Currently, the guide is executed at every iteration. However,
our goal is to avoid deploying the guide in every situation. We aim
to activate the guide only when necessary—specifically, in scenarios
where our RL agent faces challenges or when the guide is known to
excel.

Figure 5 shows the impact of using the guide less frequently. In-
stead of employing the guide at each iteration, we use it at every N
iterations. We introduce the notation A2C-AZ-X, where X indicates
how often the guide is called. For example, A2C-AZ-3 uses MCTS
every three steps. Additionally, Table 2 presents the overhead cost of
using AZ as a guide according to different values of N.

Table 2: Runtime on Atari100k Benchmarks.

Algorithm A2C A2C-AZ-1 A2C-AZ-2 A2C-AZ-3

Time 4:00 18:00 11:00 8:30

As observed, when running AZ at every iteration, the algorithm
will achieve the best performance but take 18 hours to complete in-
stead of the 4 hours required by A2C alone. However, by reducing
the frequency to every two iterations, the runtime is reduced by half
while still achieving a performance close to the best.

5 Related Work

5.1 Offline Reinforcement Learning

Our work is strongly linked to the field of Offline RL as inspired by
one of the key methods in the field. In our case, we have chosen to use
regularization methods to align the policy and the value function with
the guide. Yet, within the realm of regularization methods, there ex-
ist many methods, these include penalties applied within the reward
function [49] or regularization penalties applied after its computation
of the loss [30, 29]. Additionally, the calculation of the penalty can be
accomplished by using various functions including KL divergence,
Maximum Mean Discrepancy [49], or even Fisher information [29].

5.2 Monte Carlo Tree Search

MCTS [7, 45] stands as a state-of-the-art algorithm that has signifi-
cantly enhanced performance and tackled complex problems. In re-
cent years, MCTS has been integrated with neural networks to boost

(a) X is A2C-AZ*, Y is A2C agent (b) X is A2C-AZ, Y is A2C agent (c) X is AlphaZero, Y is A2C agent
Figure 3: Percentage improvement of algorithm X compared to algorithm Y on Atari100k Benchmarks. Improvement is measured as a

percentage of mean human-normalized return.

(a) IQM

(b) Optimality Gap
Figure 4: Aggregate performance metrics according to the weight.

The shaded area shows 95% stratified bootstrap confidence interval.
The x-axis represents the human normalized score.

(a) IQM

(b) Optimality Gap
Figure 5: Aggregate performance according to the number of calls
made to the guide. The shaded area shows 95% stratified bootstrap
confidence interval. The x-axis represents the human normalised

score.

its performance [41, 43, 42], however, in most scenarios, neural net-
works are employed to predict the outcomes generated by MCTS.

To our knowledge, no prior work has attempted to utilize MCTS
as a guide while retaining the RL module. The most closely related
study we encountered is [27], where the authors incorporated A3C
with K workers, among which MCTS was one, resulting in notable
performance enhancements. However, unlike their method, our ap-
proach utilizes MCTS as a guide in every state. Furthermore, we
consider not only the policy distribution but also the value returned
by MCTS to enrich learning. Additionally, we introduce an adaptive
weight for actor learning and conduct a more comprehensive set of
experiments.

6 Conclusion

In this paper, we investigate the influence of leveraging online
algorithms as a guide to enhance the learning process of RL algo-
rithms. Inspired by techniques in Offline RL, we adapt these method-
ologies to the context of using an online algorithm, as a guide. Our
approach involves regularizing the loss functions for both the actor
and the critic to incorporate the information provided by the guide
effectively.

Among the array of online algorithms explored from existing liter-
ature, our focus lies on Monte Carlo Tree Search (MCTS), a cutting-
edge planning algorithm renowned for its convergence capabilities
in both single-player and two-player scenarios. Notably, employing
MCTS as a guide yields superior results compared to employing ei-
ther of the two methods in isolation. Furthermore, fine-tuning just
one hyperparameter can extend performance gains. Additionally, re-
ducing the frequency of the guide calls can mitigate the cost associ-
ated with it while still resulting in enhanced performance.

In the future, there exist promising avenues for further exploration.
Experimenting with diverse hyperparameters, such as alternative dis-
tance functions, different search algorithms or different reinforce-
ment learning algorithms, could illuminate nuanced insights. Addi-
tionally, exploring the integration of multiple guides could broaden
the range of possibilities, incorporating different perspectives from
various guides. Finally, investigating the utilization of an automatic
weight, potentially based on neural networks, could provide a more
adaptive, efficient, and general approach.

References
[1] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Belle-

mare. Deep reinforcement learning at the edge of the statistical
precipice. Advances in Neural Information Processing Systems, 34,
2021.

[2] J. Arjonilla, A. Saffidine, and T. Cazenave. Enhancing reinforcement
learning through guided search, 2024. URL https://arxiv.org/abs/2408.
10113.

[3] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath.
A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866, 2017.

[4] A. Bakhtin, D. J. Wu, A. Lerer, J. Gray, A. P. Jacob, G. Farina, A. H.
Miller, and N. Brown. Mastering the game of no-press diplomacy via
human-regularized reinforcement learning and planning. arXiv preprint
arXiv:2210.05492, 2022.

[5] M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspec-
tive on reinforcement learning. In International conference on machine
learning, pages 449–458. PMLR, 2017.

[6] M. G. Bellemare, W. Dabney, and M. Rowland. Distributional rein-
forcement learning. MIT Press, 2023.

[7] C. Browne, E. J. Powley, D. Whitehouse, S. M. M. Lucas, P. I. Cowl-
ing, P. Rohlfshagen, S. Tavener, D. P. Liebana, S. Samothrakis, and
S. Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Trans-
actions on Computational Intelligence and AI in Games, 4:1–43, 2012.

[8] T. Cazenave. Batch Monte Carlo Tree Search. ArXiv, abs/2104.04278,
2021.

[9] T. Cazenave and N. Jouandeau. On the parallelization of uct. In Com-
puter games workshop, 2007.

[10] T. Cazenave and N. Jouandeau. A parallel monte-carlo tree search al-
gorithm. In Computers and Games: 6th International Conference, CG
2008, Beijing, China, September 29-October 1, 2008. Proceedings 6,
pages 72–80. Springer, 2008.

[11] G. M. B. Chaslot, M. H. Winands, and H. J. van Den Herik. Parallel
monte-carlo tree search. In Computers and Games: 6th International
Conference, CG 2008, Beijing, China, September 29-October 1, 2008.
Proceedings 6, pages 60–71. Springer, 2008.

[12] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[13] Q. Cohen-Solal and T. Cazenave. Minimax strikes back. arXiv preprint
arXiv:2012.10700, 2020.

[14] P. I. Cowling, E. J. Powley, and D. Whitehouse. Information Set Monte
Carlo Tree Search. IEEE Transactions on Computational Intelligence
and AI in Games, 4:120–143, 2012.

[15] J. Farebrother, J. Orbay, Q. Vuong, A. A. Taïga, Y. Chebotar, T. Xiao,
A. Irpan, S. Levine, P. S. Castro, A. Faust, et al. Stop regressing: Train-
ing value functions via classification for scalable deep rl. arXiv preprint
arXiv:2403.03950, 2024.

[16] S. Fujimoto, D. Meger, and D. Precup. Off-policy deep reinforcement
learning without exploration. In International conference on machine
learning, pages 2052–2062. PMLR, 2019.

[17] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor. In International conference on machine learning, pages 1861–
1870. PMLR, 2018.

[18] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-
mar, H. Zhu, A. Gupta, P. Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

[19] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson. Learning latent dynamics for planning from pixels. In In-
ternational conference on machine learning, pages 2555–2565. PMLR,
2019.

[20] D. Hafner, T. P. Lillicrap, J. Ba, and M. Norouzi. Dream to con-
trol: Learning behaviors by latent imagination. CoRR, abs/1912.01603,
2019. URL http://arxiv.org/abs/1912.01603.

[21] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba. Mastering atari with
discrete world models. arXiv preprint arXiv:2010.02193, 2020.

[22] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap. Mastering diverse do-
mains through world models. arXiv preprint arXiv:2301.04104, 2023.

[23] Z. Huang, J. Wu, and C. Lv. Efficient deep reinforcement learning with
imitative expert priors for autonomous driving. IEEE Transactions on
Neural Networks and Learning Systems, 2022.

[24] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):
1–35, 2017.

[25] N. Jaques, A. Ghandeharioun, J. H. Shen, C. Ferguson, A. Lapedriza,
N. Jones, S. Gu, and R. Picard. Way off-policy batch deep reinforce-

ment learning of implicit human preferences in dialog. arXiv preprint
arXiv:1907.00456, 2019.

[26] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Camp-
bell, K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine,
et al. Model-based reinforcement learning for atari. arXiv preprint
arXiv:1903.00374, 2019.

[27] B. Kartal, P. Hernandez-Leal, and M. E. Taylor. Action guidance with
mcts for deep reinforcement learning. In Proceedings of the AAAI con-
ference on artificial intelligence and interactive digital entertainment,
volume 15, pages 153–159, 2019.

[28] D. E. Knuth and R. W. Moore. An analysis of alpha-beta prun-
ing. Artificial Intelligence, 6(4):293–326, 1975. ISSN 0004-3702.
doi: https://doi.org/10.1016/0004-3702(75)90019-3. URL https://www.
sciencedirect.com/science/article/pii/0004370275900193.

[29] I. Kostrikov, R. Fergus, J. Tompson, and O. Nachum. Offline rein-
forcement learning with fisher divergence critic regularization. In Inter-
national Conference on Machine Learning, pages 5774–5783. PMLR,
2021.

[30] A. Kumar, A. Zhou, G. Tucker, and S. Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Pro-
cessing Systems, 33:1179–1191, 2020.

[31] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4):541–551, 1989.

[32] S. Levine, A. Kumar, G. Tucker, and J. Fu. Offline reinforcement learn-
ing: Tutorial, review, and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020.

[33] J. R. Long, N. R. Sturtevant, M. Buro, and T. Furtak. Understanding the
Success of Perfect Information Monte Carlo Sampling in Game Tree
Search. In AAAI, 2010.

[34] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep re-
inforcement learning. In International conference on machine learning,
pages 1928–1937. PMLR, 2016.

[35] T. W. Neller and M. Lanctot. An introduction to counterfactual regret
minimization. In Proceedings of model AI assignments, the fourth sym-
posium on educational advances in artificial intelligence (EAAI-2013),
volume 11, 2013.

[36] R. F. Prudencio, M. R. Maximo, and E. L. Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems.
IEEE Transactions on Neural Networks and Learning Systems, 2023.

[37] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience
replay. arXiv preprint arXiv:1511.05952, 2015.

[38] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al. Master-
ing atari, go, chess and shogi by planning with a learned model. Nature,
588(7839):604–609, 2020.

[39] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-
dimensional continuous control using generalized advantage estima-
tion. arXiv preprint arXiv:1506.02438, 2015.

[40] L. Shi, R. Dadashi, Y. Chi, P. S. Castro, and M. Geist. Offline rein-
forcement learning with on-policy q-function regularization. In Joint
European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 455–471. Springer, 2023.

[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of go with deep neural networks and
tree search. Nature, 529:484–489, 2016.

[42] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Si-
monyan, and D. Hassabis. Mastering Chess and Shogi by Self-Play with
a General Reinforcement Learning Algorithm. ArXiv, abs/1712.01815,
2017.

[43] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Si-
monyan, and D. Hassabis. A general reinforcement learning algorithm
that masters chess, shogi, and Go through self-play. Science, 362:1140
– 1144, 2018.

[44] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction.
MIT press, Cambridge, MA, USA, 2018. ISBN 0262039249.

[45] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk. Monte
carlo tree search: A review of recent modifications and applications.
Artificial Intelligence Review, 56(3):2497–2562, 2023.

[46] Y. Tian, J. Ma, Q. Gong, S. Sengupta, Z. Chen, J. Pinkerton, and L. Zit-
nick. Elf opengo: An analysis and open reimplementation of alphazero.
In International conference on machine learning, pages 6244–6253.

PMLR, 2019.
[47] R. J. Williams. Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning. Machine learning, 8:229–256, 1992.
[48] J. Wu, Z. Huang, Z. Hu, and C. Lv. Toward human-in-the-loop ai: En-

hancing deep reinforcement learning via real-time human guidance for
autonomous driving. Engineering, 21:75–91, 2023.

[49] Y. Wu, G. Tucker, and O. Nachum. Behavior regularized offline rein-
forcement learning. arXiv preprint arXiv:1911.11361, abs/1911.11361,
2019. URL https://api.semanticscholar.org/CorpusID:208291277.

[50] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao. Mastering atari
games with limited data. Advances in Neural Information Processing
Systems, 34:25476–25488, 2021.

A Implementation Details
A.1 Discrete representation for the critic

The critic’s loss function, denoted as LC,Sub
θ (s), is formulated to

minimize the disparity between the value target V̄θ(s) and the pre-
dicted value Vθ(s) at a specific state s. Commonly, the disparity is
computed with the mean squared error or the cross-entropy over a
discrete representation.

Previous studies have emphasized the benefits of employing cross-
entropy over a discrete representation in reinforcement learning [5,
38, 22, 6, 15]. This method involves the critic to learn a discrete
weight distribution pθ = {p1, ..., pB} ∈ RB instead of learning the
mean of the distribution. A function y() that converts a target value
into a corresponding weight distribution of size B. This leads to the
following sub-loss for the critic:

LC,Sub
θ (s) = y(V̄θ(s))

T log pθ (16)

More specifically, transforming (function y) the reward/target into
a discrete representation is done function by a method called two-hot
encoding. The two-hot encoding is a generalization of the one-hot
encoding where all elements are 0 except for the two entries closest
to y at positions m and m + 1. These two entries sum up to 1, with
more weight given to the entry that is closer to y:

y(x) = twohot(x)i =

|bm+1 − x|/|bm+1 − bm| if i = m

|bm − x|/|bm+1 − bm| if i = m+ 1

0 else

Importantly, two-hot encoding can predict any continuous value in
the interval because its expected bucket value can fall between the
buckets.

B Monte Carlo Tree Search-Detailed
Below, we provide a comprehensive overview of the Monte Carlo
Tree Search (MCTS) algorithm, drawing from previous research on
MCTS [43, 38, 50]. Notably, in Schrittwieser et al. [38], it was
demonstrated that a budget of 50 is adequate for resolving the
Atari100K benchmark, hence informing our decision in this regard.

Monte Carlo Tree Search (MCTS) [7] is the state-of-the-art in the
perfect information game. MCTS converges asymptotically to the
optimal policy in single-agent domains and to the minimax value
function in zero-sum games. Starting from the AlphaGo [41, 43, 42],
MCTS has been combined with an offline neural network to enhance
performance.

MCTS(s, budget) is an online tree search algorithm that runs at
s for a budget of budget and works as follows (i) selection — se-
lects a path of nodes until a leaf node; (ii) expansion — expands
the tree by adding a new child node; (iii) backpropagation — back-
propagates the result obtained through the nodes chosen during the
selection phase; (iv) repeats step (i) to (iii) until the budget budget is
finished; (v) returns the distribution of actions πMCTS that has been
visited, and the value VMCTS obtained when running MCTS.

Every node of the search tree is associated with a state s and each
node stores the statistics estimating the value of the node V(s). For
every action a at s, there exists an associated edge represented as
(s, a). These edges stores a set of statistics { Nt(s, a), Qt(s, a),
π(a|s), r(s, a), T (·|s, a) }, respectively representing visit counts
N, mean Q-Value observed, policy π , reward r , and state transition
T .

B.1 Selection

In the selection, a simulation begins at the internal root state, denoted
as s0, and progresses until it reaches a leaf node represented as sl.
Throughout this selection, actions ak for k = 1, · · · , l are selected
using the PUCT formula. This formula strikes a balance between
exploration and exploitation, guiding the choice of actions during
the simulation.

Q(s, a) + π(a|s)
√

N(s)

1 + N(s, a)

(
c1 + log(

N(s) + c2 + 1

c2
)

)
The best action is the one that maximizes where N(s) represents
the number of times that the state s has been visited, c1 and c2 are
variables that help to control the exploration.

B.2 Expansion

Following the selection phase, at step l of the simulation, the
environment dynamics function f(sl−1, al) computes the reward
r(sl−1, al) and the ensuing state sl. The policy network gener-
ates πθ(·|sl) and the value network estimates Vθ(s

l). For every ac-
tion a within sl, a corresponding edge (sl, a) is established. This
edge is initialized with values: N(sl, a) = 0, Q(sl, a) = 0, and
π(a|sl) = πθ(a|sl).

Initially, the default Q for unvisited nodes is set to 0, indicat-
ing the worst possible state. To enhance the Q estimation for un-
visited nodes, a mean Q mechanism is implemented during each
simulation for tree nodes. This approach, similar to the one em-
ployed in Elf OpenGo [46, 50], provides a more accurate estimation
of Q for unvisited nodes. This evaluation is performed iteratively for
k = 0, · · · , l.

Q̂s0() = 0

Q̂s() =
̂Qsparent(+)

∑
b 1N(s,a)>0Q(s, b)

1 + 1N(s,a)>0

Q(s, a) =

{
Q(s, a) N(s, a) > 0

Q̂s() N(s, a) = 0

where Q̂s() is the estimated Q value for unvisited nodes.
In addition, when the root node is expanded, a Dirichlet noise to

the policy prior is added. This technique is used for improving the
exploration. ND(ϵ) is the Dirichlet noise distribution, ρ, ϵ is set to
0.25 and 0.3 respectively.

π(a|s) = (1− ρ)π(a|s) +ND(ϵ)

B.3 Backup

For every step from k = {l − 1, . . . , 0}, we update the statistics
associated with each edge (sk, ak) in the simulation path by using
the boostrapped λ-returns.

Q(sk−1, ak) =
N(sk−1, ak)Q(sk−1, ak) + V λ,l−k(sk)

N(sk−1, ak) + 1

N(sk−1, ak) = N(sk−1, ak) + 1

Ensuring the Q-Value falls within the range of [0,1] is crucial for
employing the PUCT formula, to achieve this, we normalize the Q

value by referencing the minimum and maximum values observed in
the search tree up to that particular point.

Q̄(sk, ak) =

Q(sk, ak)− min
s,a∈Tree

Q(s, a)

max(max
s,a∈Tree

Q(s, a)− min
s,a∈Tree

Q(s, a), ϵ)

, where ϵ, the threshold to give a smooth range of the min-max bound.

B.4 Additional Information

After the budget budget is finished, we obtain the average value VAZ

and visit count distributions of the root node. To obtain the policy
distribution πAZ , we use a temperature parameter of the visit count;
i.e.

πAZ(s, a) =
N(s, a)

1
T∑

b N(s, b)
1
T

During the training process, we decay the temperature twice, at 50%
of training progress to 0.5, and at the 75% of training progress to
0.25.

C Model-Based
To reduce the cost of training, our experiments were carried out using
a world model trained. This means that the game (dynamics, reward,
graphical representation, etc.) is approximated by a representation of
the world and to obtain one of the game’s pieces of information, a call
is made to this representation. Using a world model that has already
been trained allows us to reduce calculation time. Thanks to this, we
already have an abstraction of the worlds and the dynamics, allowing
us to concentrate our learning on the critic and the actor-network.

In our case, we used the world model of the Dreamer V3 algo-
rithm [22]. Dreamer is a state-of-the-art algorithm in a model-based
setting and constitutes the first agent that achieves human-level per-
formance on the Atari benchmark tasks by learning behaviors inside
a separately trained world model. Dreamer takes a world state st

as an input and returns an abstracted world state ŝt ∼ st, an ex-
pected reward r̂t ∼ rt and a continue flag ct, which indicate if the
game if finished or not. The world model uses a Recurrent State-
Space Model (RSSM) which predicts future information (ŝt+1, r̂t+1

and ct+1) when given at to the current abstract world ŝt. The world
model is used to compute the N-step bootstrapped λ-returns for A2C
algorithms and facilitating MCTS in A2C-AZ and AlphaZero.

In our implementation, we use the weight of an already trained
Dreamer algorithm during 50, 000k training steps. To be precise, the
world model is never modified (fixed), so our work is not related
to MuZero/EfficientZero/Dreamer algorithms, which train the world
model and at the same time learn the policy/critic, but much closer to
algorithms such as AlphaZero/A2C that use a fixed world and learn
the policy/critic.

D Neural Network
The neural networks of the world model are the same as used in the
paper in DreamerV3 [22] in which we used the Model size S. The en-
coder begins with stride 2 convolutions neural networks (CNN) [31]
that progressively increase the depth of the representation until reach-
ing a resolution of 4 × 4. Subsequently, the data is flattened for fur-
ther processing. Conversely, the decoder initiates with a dense layer,

which is followed by reshaping the data into a 4 × 4 × 32 format.
It then effectively reverses the architecture employed in the encoder
to reconstruct the original data. The dynamics component is realized
through a Recurrent State Space Model (RSSM) [19] utilizing vec-
tors of categorical representations. This implementation comprises a
Gated Recurrent Unit (GRU) [12] combined with MLP layers. The
reward, critic, actor and continue predictors are also MLPs. Each
MLP network is composed of 2 linear network of 512 hidden units.

As clarified in the preceding section, our approach does not in-
volve training the world model as in Dreamer. Instead, we utilize
a pre-trained and fixed world model. Consequently, the only neural
networks trained in our setup are the critic and actor networks which
each are a MLP with 2 linear layers of 512 hidden units.

E Notation and Hyper-parameters
All notations and hyperparameters utilized throughout the paper
are summarized in Table 3. The hyperparameters in the World-
Model/Actor-Critic section are derived from DreamerV3 [22], while
those in the Search section are adapted from EfficientZero [50].

F Additional Experiment
In Tables 4, 5 and 6, we observe the score obtained at the end of the
training for the different algorithms tested on the Atari100k bench-
marks. In Figure 6, we observe all the learning curves of all the al-
gorithms on the Atari100k benchmarks. In Figure 8, we observe the
percentage improvement of the different algorithms. In Figure 7, we
observe the score distribution of the different algorithms, following
methodology from [1].

G Questions and Answers
A few questions were asked during the review process, which could
also be of interest to the reader.

• Q1: Links with Offline RL?
• A1: There is no direct link with offline RL in our work, but it

inspired our approach. Therefore, we discussed it in the Related
Work section to highlight alternative methods of penalization for
deviations from the expert.

• Q2: Extending the Proposed Method to Value-Based Approaches
like DQN?

• A2: For value-based approaches like DQN, which lack an actor
loss function, two solutions are: (i) remove the actor loss function
entirely and retain only the critic loss, which still benefits from
the expert’s guidance, or (ii) retain the actor loss function so that it
can still be used by AlphaZero, but only LA,Sub

θ (s) of equation 10
would remain.

• Q3: Useful/Useless Information from Expert:?
• A3: Utilizing a search algorithm as an expert generally avoids

harmful guidance. However, as noted, lower performance was ob-
served in one game, though this issue was resolved in A2C_AZ*.
In our case, the hyperparameters in Equations 12 and 13 were
determined through experimentation with various values. Mov-
ing forward, it would be valuable to explore neural network-based
weighting methods, which could dynamically adjust the weights
based on both the expert’s input and the current state. This ap-
proach could potentially minimize costs while maximizing the
beneficial impact of expert guidance.

Table 3: Hyper parameters used.

Name Notation Value

General
Training Step _ 100, 000

World Model
Batch size _ 16
Batch length _ 16
Imagination horizon _ 15
Number of latents _ 32
Classes per latent _ 32
Model Size _ S

Actor Critic
Discount λ 0.95
Critic EMA decay _ 0.98
Critic EMA regularizer _ 1.0
Normalization Ter S Per(R, 95)− Per(R, 5)
Learning rate _ 3 · 10−5

Adam epsilon _ 10−5

Gradient clipping _ 100
Guide Actor penalty λA [0.1, 0.3, 0.5, 0.7],
Max Guide Penalty λMax 10.0
Tau τ 5.0
Guide Critic penalty λC 0.05
Distance function Actor FA(,) KL-divergence
Distance function Critic FC(,) Cross-Entropy
Loss function Actor LA,Sub

θ () Reinforce/Cross-Entropy for RL/MCTS
Loss function Critic LC,Sub

θ () Cross-Entropy

Search
Exploration constant c1 1.25
Exploration constant 2 c2 19652
Search budget budget 50
Dirichlet Noise ϵ 0.3
Dirichlet Noise Proba ρ 0.25
Temperature T [1.0, 0.5, 0.25]

Table 4: Performance obtained on Atari100K benchmarks.

Game Random Human A2C AZ A2C-Rand A2C-_BC A2C-AZ A2C-AZ∗

Assault 222.4 742.0 1113.6 1559.7 2138.62 1766.1 2249.6 2249.6
Asterix 210.0 8503.3 2294.5 1222.8 2225.0 1924.0 2819.2 2819.2
Bank Heist 14.2 753.1 1328.0 595.1 1285.0 1132.6 1324.4 1346.0
BattleZone 2360.0 37187.5 14300.0 16985.7 19660.0 22660.0 15642.8 15642.8
Boxing 0.1 12.1 99.6 63.4 99.6 99.2 98.6 99.2
Breakout 1.7 30.5 5.8 94.4 6.16 8.7 162.4 162.4
Crazy Climber 10780.5 35829.4 52137.0 62392.8 38264.0 26816.0 43157.1 75465.7
Demon Attack 152.1 1971.0 5168.4 3197.7 11517.5 5822.4 6967.2 75465.7
Freeway 0.0 29.6 33.3 28.7 33.6 33.6 33.1 33.1
Frostbite 65.2 4334.7 2420.7 89.4 920.2 2225.2 3588.1 3588.1
Gopher 257.6 2412.5 289.6 242.8 356.4 287.6 398.5 434.5
Hero 1027.0 30826.4 12598.4 5669.0 11093.9 14549.4 11531.3 12343.7
Jamesbond 29.0 302.8 671.0 557.8 816.0 947.0 981.4 981.4
Kangaroo 52.0 3035.0 4084.0 7288.5 792.0 4084.0 6117.1 6117.1
Krull 1598.0 2665.5 10150.2 5593.5 9906.6 7699.4 9366.8 10257.7
Kung Fu Master 258.5 22736.3 35207.0 20454.2 34592.0 20590.0 31430.0 37002.8
Ms Pacman 307.3 6951.6 1656.5 784.4 2904.0 2208.6 1985.8 2402.5
Pong -20.7 14.6 20.1 19.8 20.6 18.5 20.4 20.9
Qbert 163.9 13455.0 3780.2 4610.0 6569.5 5056.5 6268.9 6844.6
Road Runner 11.5 7845.0 7827.0 9341.4 9836.0 8016.0 8521.4 12178.5
Up N Down 533.4 11693.2 8622.3 18857.8 3922.8 4156.6 4688.7 7570.2

Mean (↗) 0.0 1.0 1.7 1.46 1.89 1.62 2.14 2.31
Median (↗) 0.0 1.0 1.63 1.48 1.87 1.45 2.18 2.23
IQM (↗) 0.0 1.0 0.92 0.81 0.93 0.82 1.29 1.47
Optimality Gap (↘) 1.0 0.0 0.36 0.40 0.36 0.35 0.28 0.25

Table 5: Performance obtained on Atari100K benchmarks. We denote A2C-AZ-X where x refers to the weight of the guide’s penalty.

Game Random Human A2C-AZ_0.1 A2C-AZ_0.3 A2C-AZ_0.5 A2C-AZ_0.7

Assault 222.4 742.0 1753.5 1786.4 2154.8 2249.6
Asterix 210.0 8503.3 2319.2 2275.0 2500.7 2819.2
Bank Heist 14.2 753.1 1342.2 1346.0 1303.7 1324.4
BattleZone 2360.0 37187.5 7457.1 10885.7 10328.5 15642.8
Boxing 0.1 12.1 98.2 99.2 97.6 98.6
Breakout 1.7 30.5 6.9 86.3 84.3 162.4
Crazy Climber 10780.5 35829.4 75465.7 29448.5 60411.4 43157.1
Demon Attack 152.1 1971.0 5578.0 7361.7 6947.2 6967.2
Freeway 0.0 29.6 33.1 33.0 33.1 33.1
Frostbite 65.2 4334.7 2364.4 1639.8 3113.1 3588.1
Gopher 257.6 2412.5 371.7 336.0 434.5 398.5
Hero 1027.0 30826.4 9145.7 10719.2 12343.7 11531.3
Jamesbond 29.0 302.8 546.4 855.7 793.5 981.4
Kangaroo 52.0 3035.0 3248.0 3611.4 3945.7 6117.1
Krull 1598.0 2665.5 9711.8 10257.7 8366.7 9366.8
Kung Fu Master 258.5 22736.3 25264.0 30807.1 37002.8 31430.0
Ms Pacman 307.3 6951.6 2402.5 2261.4 2143.7 1985.8
Pong -20.7 14.6 20.3 20.9 20.3 20.4
Qbert 163.9 13455.0 5411.7 6021.7 6844.6 6268.9
Road Runner 11.5 7845.0 10070.0 11460.0 12178.5 8521.4
Up N Down 533.4 11693.2 7205.0 4708.7 7178.7 4688.7

Mean (↗) 0.0 1.0 1.78 1.95 1.95 2.14
Median (↗) 0.0 1.0 1.74 1.91 1.90 2.18
IQM (↗) 0.0 1.0 0.93 1.08 1.21 1.29
Optimality Gap (↘) 1.0 0.0 0.36 0.31 0.28 0.28

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

500

1,000

1,500

2,000

2,500

Time Step

Pe
rf

or
m

an
ce

A2C-AZ*
A2C
A2C-AZ
AZ

(a) Assault

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

1,000

2,000

3,000

Time Step

Pe
rf

or
m

an
ce

(b) Asterix

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

500

1,000

1,500

Time Step

Pe
rf

or
m

an
ce

(c) Bank Heist

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

0.5

1

1.5

2

·104

Time Step

Pe
rf

or
m

an
ce

(d) Battle Zone

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

20

40

60

80

100

Time Step

Pe
rf

or
m

an
ce

(e) Boxing

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

50

100

150

200

Time Step
Pe

rf
or

m
an

ce

(f) Breakout

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

0.2

0.4

0.6

0.8

1
·105

Time Step

Pe
rf

or
m

an
ce

(g) Crazy Climber

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

2,000

4,000

6,000

8,000

Time Step

Pe
rf

or
m

an
ce

(h) Demon Attack

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

10

20

30

Time Step

Pe
rf

or
m

an
ce

(i) Freeway

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

1,000

2,000

3,000

4,000

Time Step

Pe
rf

or
m

an
ce

(j) Frostbite

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

100

200

300

400

500

Time Step

Pe
rf

or
m

an
ce

(k) Gopher

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

0.5

1

·104

Time Step

Pe
rf

or
m

an
ce

(l) Hero

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

200

400

600

800

1,000

Time Step

Pe
rf

or
m

an
ce

(m) James Bond

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

−0.2

0

0.2

0.4

0.6

0.8

1

·104

Time Step

Pe
rf

or
m

an
ce

(n) Kangaroo

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

0.2

0.4

0.6

0.8

1

·104

Time Step

Pe
rf

or
m

an
ce

(o) Krull

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

1

2

3

4

·104

Time Step

Pe
rf

or
m

an
ce

(p) Kung Fu Master

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

500

1,000

1,500

2,000

2,500

Time Step

Pe
rf

or
m

an
ce

(q) Ms Pacman

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

−20

−10

0

10

20

Time Step

Pe
rf

or
m

an
ce

(r) Pong

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

2,000

4,000

6,000

Time Step

Pe
rf

or
m

an
ce

(s) Qbert

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

2

4

6

·104

Time Step

Pe
rf

or
m

an
ce

(t) Road Runner

0k 50k 100k 150k 200k 250k 300k 350k 400k

·105

0

1

2

3

·104

Time Step

Pe
rf

or
m

an
ce

(u) Up N Down
Figure 6: Learning curves on the 26 game of Atari100k benchmarks with 5 algorithms presented. The shaded area shows 95% confidence

interval (CI) over 5 seeds.

Table 6: Performance obtained on Atari100K benchmarks. We denote A2C-AZ-X where X indicates how often the guide is called.

Game Random Human A2C-AZ_1 A2C-AZ_2 A2C-AZ_3

Assault 222.4 742.0 2249.6 1737.0 1819.3
Asterix 210.0 8503.3 2819.3 2431.4 2587.9
Bank Heist 14.2 753.1 1324.4 1271.4 1264.7
BattleZone 2360.0 37187.5 15642.9 13585.7 12814.3
Boxing 0.1 12.1 99.2 99.2 98.8
Breakout 1.7 30.5 162.4 74.3 47.3
Crazy Climber 10780.5 35829.4 43157.1 40022.9 32127.1
Demon Attack 152.1 1971.0 6967.2 7476.4 6697.2
Freeway 0.0 29.6 33.0 33.2 33.1
Frostbite 65.2 4334.7 3588.1 2722.0 3221.3
Gopher 257.6 2412.5 398.5 398.3 351.1
Hero 1027.0 30826.4 11531.3 9462.1 11860.3
Jamesbond 29.0 302.8 981.4 653.2 720.7
Kangaroo 52.0 3035.0 6117.1 2787.1 4262.9
Krull 1598.0 2665.5 9366.8 8392.0 9847.1
Kung Fu Master 258.5 31430.0 26915.7 31235.4 32202.9
Ms Pacman 307.3 6951.6 1985.8 2312.6 2176.1
Pong -20.7 14.6 20.4 21.0 20.0
Qbert 163.9 13455.0 6268.9 5517.5 6202.1
Road Runner 11.5 7845.0 8521.4 10144.3 9850.0
Up N Down 533.4 11693.2 4688.7 4895.3 6031.6
Mean (↗) 0.0 1.0 2.14 1.80 1.83
Median (↗) 0.0 1.0 2.18 1.74 1.68
IQM (↗) 0.0 1.0 1.29 1.03 0.99
Optimality Gap (↘) 1.0 0.0 0.28 0.32 0.34

Figure 7: Human Normalised Score distribution on Atari100k Benchmarks. The shaded area shows 95% stratified bootstrap confidence
interval (CI) over 5 seeds, following methodology. A higher score is better.

(a) X is A2C-AZ*, Y is A2C agent (b) X is A2C-AZ, Y is A2C agent (c) X is AlphaZero, Y is A2C agent

(d) X is A2C-AZ*, Y is AlphaZero (e) X is A2C-AZ, Y is AlphaZero
Figure 8: Percentage improvement of algorithm X compared to algorithm Y on Atari100k Benchmarks. Improvement is measured as a percent-
age of mean human-normalized return.

