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Abstract 

Generating a new piano sonata in the 

style of Ludwig van Beethoven poses a 

significant challenge, particularly when 

attempting to emulate the distinct 

characteristics of his late compositional 

period. Beethoven's music, which 

evolved significantly over his lifetime, is 

renowned for its complexity, emotional 

depth, and innovative structures, 

especially in his later works. The task of 

creating a 33rd sonata that Beethoven 

might have composed had he lived 

longer involves not only capturing his 

unique style but also understanding the 

broader historical and stylistic contexts of 

classical music. 

This research delves into the intricacies 

of Beethoven's musical evolution and 

explores how artificial intelligence can be 

employed to generate a composition that 

reflects the distinct qualities of his late 

period. The project addresses the 

challenge of limited data by carefully 

considering the influence of different 

composers and periods on Beethoven’s 

style, aiming to produce a work that 

resonates with the profound 

expressiveness and complexity of his 

final compositions. By pushing the 

boundaries of AI in music, this study 

contributes to the ongoing dialogue 

between technology and creativity, 

offering new insights into the possibilities 

of machine-generated art in the classical 

music tradition. It also raises important 

questions about the role of human 

interpretation and intuition in the creative 

process, especially when replicating a 

style as nuanced and historically 

significant as Beethoven's. This 

intersection of AI and classical music 

serves as a thought-provoking 
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exploration of how technology can both 

mimic and enhance the creative practices 

of the past, suggesting new directions for 

the future of music composition. 

 

A Question of Context 

In classical music, as we define it today, 

there are several distinct periods. The 

most well-known, in chronological order, 

are: the Baroque period (1600-1750), the 

Classical period (1750-1820), the 

Romantic period (1820-1900), the 

Modern period (1900-1975), and finally 

the Contemporary period (1975 to the 

present). These periods differ, among 

other things, in their style, techniques, 

and forms of composition. 

Within these periods, each composer 

develops their own musical universe. 

Beethoven's style is therefore unique, 

and it is essential to choose a model 

capable of learning to generate music in 

this style. However, we knew that training 

a deep learning model would require a 

large amount of data, and limiting 

ourselves to Beethoven's 32 sonatas 

would not be sufficient. Therefore, we 

chose to start with a more extensive and 

diverse dataset containing pieces from 

various periods, while also incorporating 

the sonatas later in the process. 

Moreover, Beethoven’s style evolved 

throughout his lifetime. His piano sonatas 

illustrate this evolution well. Musicologists 

have classified them into three parts, 

corresponding to the three periods of 

Beethoven’s life. Therefore, to generate 

the 33rd sonata, not all the sonatas 

should be given the same importance. 

The sonatas from his late period should 

have a greater impact on the generation 

of the 33rd sonata than the earlier ones. 

We therefore considered implementing a 

weighting system to represent the 

importance of each sonata in the 

generation process. These weights will 

subsequently be used in the loss function 

calculation that the model aims to 

minimize. We also realized that this 

system could be applied to all pieces in 

the dataset. The idea was to assign a low 

weight to composers stylistically distant 

from Beethoven (e.g., Debussy, 

Rachmaninoff) and a high weight to his 

contemporaries (e.g., Mozart, Haydn). 

A model like Museformer [1] already uses 

a weighting system, but this concerns 

how the model learns rather than what it 

learns. Museformer is based on the 

principle that some musical passages are 

more important than others, containing 

information about the structure of the 

work, such as the main theme. 

Ultimately, after an unsuccessful attempt 

to make this model work, we decided to 

switch to another model based on the 

same architecture, namely Music 

Transformer [2]. 

 

When AI Judges Music 

To objectively evaluate the model, we 

chose to use perplexity as a metric, in 

addition to the calculation of accuracy 

and the loss function implemented in the 

base code. 

Here is the definition of perplexity from 

the article Decoding Perplexity and its 

Significance in LLMs [7]: 
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"In brief, perplexity measures the model's 

confidence in its predictions. The concept 

of perplexity evaluates how confused the 

model is when predicting the next word in 

a sequence. Lower perplexity indicates 

that the model is more certain of its 

predictions. In contrast, higher perplexity 

suggests that the model is more 

uncertain. Perplexity is a crucial metric 

for assessing the performance of 

language models in tasks such as 

machine translation, speech recognition, 

and text generation. 

The perplexity of a language model can 

be calculated using the average negative 

log-likelihood. The formula for perplexity 

is given by:  

 

where the average negative log-

likelihood (Average NLL) is defined as: 

 

Here, N is the number of words in the 

sequence, and  is the 

predicted probability of the word  

given the previous words  .The 

exponential function is used to convert 

the average negative log-likelihood into 

perplexity, thus providing a measure of 

the model's confusion regarding the word 

sequence.” 

In the previous definition, we talk about 

predicting words. However, it can be 

adapted to the prediction of notes or 

other elements of musical vocabulary 

since our dataset consists of MIDI 

(Musical Instrument Digital Interface) 

files. 

A MIDI sequence is a digital file that 

contains control information for music, 

such as the notes played, velocity, tempo 

changes, and channel control 

commands. 

 

Figure 1 : excerpt from a MIDI file  

(turned into readable ascii) 

 

Figure 2 : Score corresponding to the 

MIDI excerpt 

 

In figures 1 and 2, extracted from [3], we 

can visualize how a MIDI file works. In 

figure 1, the first line "2, 96, Note_on, 0, 

60, 90" means "at 96 ticks (the moment 

the event occurs) on track 2, on channel 

1, a middle C (C4) note is played with a 

velocity of 90." Below, we can clearly see 

the middle C on the sheet music. 

This information is then tokenized during 

the preprocessing phase, and the model 

aims to predict the next token based on 

the previous tokens. 
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Training is a Sport 

As mentioned earlier, training a model 

like Music Transformer requires a 

significant amount of data. Training the 

model directly on Beethoven's 32 

sonatas would not have guaranteed a 

good result. Therefore, we split the 

training into two phases: a pre-training 

phase on a general classical music 

dataset of around 700 MIDI files, followed 

by a fine-tuning phase on Beethoven's 32 

sonatas. During the first phase, the 

model adjusts its parameters to minimize 

a loss function, calculated based on the 

difference between the model's 

predictions and the actual data. In the 

second phase, the model builds on the 

parameters adjusted during the previous 

phase and fine-tunes them to capture the 

particular nuances of Beethoven's style, 

thereby improving the quality of the 

generated compositions. 

We implemented a weighting system in 

the pre-training dataset by assigning 

each composer a weight relative to their 

similarity to Beethoven. The choice of 

weights is subjective, and we based them 

on our own musical knowledge. The 

following figures (3-6) show the different 

metric behaviors between training without 

weights and training with weights. 

We can see that the accuracy decreased 

and the perplexity increased with the 

application of the weights. This did not 

positively influence the results, contrary 

to our expectations. As we will see later, 

the issue does not stem from the strategy 

implemented but rather from the dataset. 

 

Figure 3 : Accuracy without weights 

 

Figure 4 : Accuracy with weights 

 

Figure 5 : Perplexity without weights 

 

Figure 6 : Perplexity with weights 
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The Musical Parrot Syndrome 

While observing the behavior of the loss 

function, we noticed signs of overfitting, 

indicating that the model does not 

generalize well to data it hasn’t seen 

during training. In other words, it 

memorizes the pieces in the dataset and 

fails to generate a new piece effectively. 

To address this, we first considered 

adjusting the dropout rate. Depending on 

the severity of the overfitting, the dropout 

rate can be increased to mitigate the 

issue. Initially set at 20% in the base 

code, we increased it to 40%, which 

reduced the overfitting but did not 

eliminate it completely. 

In truth, 700 pieces are not enough for a 

model as complex as Transformers. For 

instance, Museformer was trained on a 

dataset of nearly 30,000 pieces. 

Additionally, our dataset was not very 

homogeneous, with a majority of works 

by Bach and Chopin. We, therefore, 

sought a more extensive dataset, namely 

the Maestro dataset [4] developed by 

Google Magenta. With this dataset, the 

overfitting issue was resolved, even 

when keeping the dropout rate at its 

initial value. Moreover, the accuracy 

doubled, rising from 3.5% to 7%, and the 

perplexity decreased significantly from 

178 to 61. However, a perplexity value of 

61 is still too high; it means that during 

generation, the model has 61 possible 

tokens to choose from. To further expand 

the Maestro dataset, we transposed the 

pieces into all possible keys, like in [9], 

multiplying the number of pieces by 24 

and resulting in a dataset of over 30,000 

MIDI files. The following graphs (figures 

7-8) show that the results improved 

dramatically with the transposition: 

accuracy reached 23%, and perplexity 

dropped to 14. 

 

Figure 7 : Accuracy after transposition 

 

Figure 8 : Perplexity after transposition 

 

The Cool New Tricks of AI 

Let's start with the definition of a learning 

rate schedule from the site Towards Data 

Science [8]: 

"A learning rate schedule is a crucial 

technique in training machine learning 

models because it allows for the 

adjustment of the learning rate 

throughout the training process. The 

primary utility of a learning rate schedule 

lies in the following aspects: 

Improved Convergence: A well-

adjusted learning rate can help converge 

more quickly to a minimum of the loss 
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function. By gradually reducing the 

learning rate, the model’s weights can be 

refined with greater precision as the 

minimum is approached. 

Prevention of Oscillations: Using a 

schedule prevents a too-high learning 

rate from causing oscillations around the 

local minimum. A rate that is too high 

may result in excessive jumps in the loss 

function values, hindering convergence. 

Avoidance of Local Minima: Strategies 

such as gradually reducing the learning 

rate allow the model to overcome local 

minima by dynamically adjusting the rate. 

This helps in more effectively exploring 

the solution space. 

Resource Optimization: By regulating 

the learning rate, computational 

resources can be optimized, ensuring 

that learning is neither too fast (which 

could lead to premature convergence) 

nor too slow (which might require more 

computation time). 

In summary, the learning rate schedule 

plays a key role in improving the 

performance and efficiency of model 

training by allowing better management 

of the learning speed throughout the 

training process." 

Let's now return to our code. The model's 

basic strategy combined several 

techniques: an inverse square root 

schedule to dynamically adjust the 

learning rate, a linear warmup to 

gradually increase the learning rate at the 

beginning of training, and a minimum 

schedule to ensure a minimum threshold 

for the learning rate. See figure 9 for the 

formula of the learning rate. 

 

Figure 9 : Initial learning rate formula 

This technique is quite commonly used, 

which led us to try another, more recent 

strategy: Cosine Annealing. This method 

first appeared in the paper "SGDR: 

Stochastic Gradient Descent with Warm 

Restarts," written by Ilya Loshchilov and 

Frank Hutter [5]. This paper, published in 

2017, introduces a method for 

dynamically adjusting the learning rate by 

using a cosine function to periodically 

reduce the learning rate. See figure 10 

for the formula. 

 

Figure 10 : Learning rate in the Cosine 

Annealing strategy 

During the testing phase, we compared 

the results of training with the baseline 

strategy to those of training with the 

Cosine Annealing strategy. As shown in 

the following figures (11-12), Cosine 

Annealing improves the metric values, 

particularly the perplexity. Indeed, we 
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achieve a perplexity of 61 by the end of 

the fifth epoch compared to only 140 with 

the baseline strategy. Precision, on the 

other hand, increases by only 1.5 points, 

which is not a significant improvement. 

Here is the perplexity curve for both 

strategies: 

 

Figure 11 : Perplexity without Cosine 

Annealing strategy 

 

Figure 12 : Perplexity with Cosine 

Annealing strategy 

With the Cosine Annealing strategy and 

the transposition of the Maestro dataset 

into all possible keys, we achieved very 

good results (for reference, 23% 

precision and a perplexity of 14). 

However, so far we have only discussed 

the pre-training phase. Let's see how this 

performs specifically on Beethoven's 

sonatas: 

 

Figure 13 : Accuracy during fine-tune 

 

Figure 14 : Perplexity during fine-tune 

The precision converges to 48% after 3 

epochs, and the perplexity drops to 7! 

The model now has only 7 possible 

choices at each generation step. 

 

When Numbers Lie 

Finally, our last focus was to understand 

and improve the generation phase, i.e., 

the one that produces the final result. To 

generate a piece of music, the model 

takes as input a sequence containing the 

first x tokens from a MIDI file and uses 

what it learned during training to 

generate the following tokens, in other 

words, the continuation of the sequence. 

We tested with several input sequences, 

particularly the beginning of Beethoven's 

32nd sonata, and the result was rather 
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surprising. There are many musical 

elements that do not contribute much to 

the structure of the piece, such as trills or 

notes repeated for a long time, which 

results in a somewhat incoherent output. 

Additionally, there is a noticeable lack of 

creativity as the same elements are 

frequently repeated. However, one might 

argue that the model has learned to use 

recurring motifs, treating them like a 

recurring theme. The beginning of the 

32nd sonata contains few structural 

elements (very few harmonies or 

"melodies") and includes a trill, which 

helps explain why the result lacks 

creativity. Testing with other melodically 

more varied sonata openings shows 

better generation performance. 

In generative models, different 

generation policies can be used, the 

main ones being argmax and softmax. 

Using argmax, the model systematically 

chooses the token with the highest 

probability at each generation step. With 

softmax, the model uses a probability 

distribution, allowing for more diversity in 

the choice of the token to be generated. 

In our code, the softmax policy was 

chosen. Therefore, the lack of creativity 

cannot really be justified by the policy 

used. 

We think that the complexity of classical 

music explains why our model did not 

perform well. In classical music, there is 

a hierarchy of musical elements. 

Ornaments like trills, mordents, and 

appogiaturas enrich and express the 

music but remain secondary to the main 

melody. Similarly, passing notes, escape 

notes, appogiaturas, and suspensions 

add richness and harmonic tension but 

are generally less important than 

structural notes. However, our model 

treats all elements equally. In our 

opinion, learning should be decomposed 

into several tasks, such as one for the 

harmony of the piece, another for 

melody, rhythm, etc. Once these steps 

are completed, a basic structure of the 

piece can be filled with less important 

elements as mentioned previously. Such 

models already exist in the literature; for 

example, WuYun [6] proposes a two-step 

hierarchical architecture for melody 

generation guided by a skeleton. This 

paper focuses only on melody. In our 

case, a method to separate different 

musical layers (melody, harmony, etc.) 

would be needed, which is far from 

straightforward. 

 

Conclusions 

Artificial intelligence offers a wide range 

of applications, and in this context, we 

chose a field that is close to our heart: 

music. After considering several options, 

we ultimately decided to generate 

Beethoven's 33rd piano sonata. Our first 

task was to devise a method to generate 

a work in Beethoven’s style, consistent 

with his final creative period. This led to 

the idea of a weighting system in the 

dataset to give more importance to works 

from Beethoven’s later period. After 

selecting a suitable deep learning model 

for music generation, the next question 

was how to evaluate the results. 

Although subjective criteria are important, 

we needed objective criteria to assess 

the quality of the compositions generated 

by the AI. 
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The model training was carried out in two 

phases. This approach allowed the 

model to learn from a broad dataset 

before specializing in Beethoven. 

However, we encountered an overfitting 

issue, where the model memorized the 

specifics of the pieces, a phenomenon 

we tried to mitigate through various 

machine learning techniques, including 

our weighting system. As AI evolves 

rapidly, we tested a recent learning 

strategy, which significantly improved the 

results of both the pre-training and final 

phases compared to the baseline 

strategy. Despite good objective results, 

the generated sequences were not 

always pleasant to listen to. We then 

examined the model’s generation policy, 

which provided some answers. 

Ultimately, this study helped us better 

understand the limitations of our model 

and consider future improvements. 

From a technical perspective, the work 

accomplished reached a good level of 

completion while leaving room for 

improvements. The decision to use deep 

learning models, particularly 

Transformers, proved effective for 

handling the complexity of musical 

sequences. The two-phase approach 

provided a solid learning foundation, 

facilitating specialization. 

However, the initial occurrence of 

overfitting highlighted a potential 

weakness in the model. While 

regularization techniques such as 

dropout and the weighting system helped 

mitigate this issue, it was the use of a 

larger and more diverse dataset that 

ultimately resolved the problem. This 

improvement allowed the model to 

produce more innovative and stylistically 

coherent works, suggesting that the 

quality and diversity of training data are 

crucial for enhancing the model’s 

generative capabilities. 

Integrating a weighting system to 

prioritize Beethoven’s later sonatas was 

a creative and promising step. It 

influenced the musical generation by 

respecting the chronological and stylistic 

specifics of the composer. This concept 

could be expanded to other composers 

and styles, enriching research 

perspectives. 

On the other hand, the project revealed 

some limitations. While effective, 

Transformers might not be the best tools 

for all musical generation tasks. The fine-

tuning methodology on a limited number 

of sonatas may also not fully capture 

Beethoven’s stylistic complexity. A more 

nuanced approach, combining machine 

learning techniques with elements of 

music theory, could offer more refined 

results. 
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