
XXVII Generative Art Conference - GA2024

An Attempt at Generating Beethoven’s 33rd
Piano Sonata with Music Transformer

Rafael Tamim

LAMSADE, Université Paris Dauphine - PSL, Paris, France.

Tristan Cazenave

LAMSADE, Université Paris Dauphine - PSL, Paris, France.

__

Abstract

Generating a new piano sonata in the

style of Ludwig van Beethoven poses a

significant challenge, particularly when

attempting to emulate the distinct

characteristics of his late compositional

period. Beethoven's music, which

evolved significantly over his lifetime, is

renowned for its complexity, emotional

depth, and innovative structures,

especially in his later works. The task of

creating a 33rd sonata that Beethoven

might have composed had he lived

longer involves not only capturing his

unique style but also understanding the

broader historical and stylistic contexts of

classical music.

This research delves into the intricacies

of Beethoven's musical evolution and

explores how artificial intelligence can be

employed to generate a composition that

reflects the distinct qualities of his late

period. The project addresses the

challenge of limited data by carefully

considering the influence of different

composers and periods on Beethoven’s

style, aiming to produce a work that

resonates with the profound

expressiveness and complexity of his

final compositions. By pushing the

boundaries of AI in music, this study

contributes to the ongoing dialogue

between technology and creativity,

offering new insights into the possibilities

of machine-generated art in the classical

music tradition. It also raises important

questions about the role of human

interpretation and intuition in the creative

process, especially when replicating a

style as nuanced and historically

significant as Beethoven's. This

intersection of AI and classical music

serves as a thought-provoking

XXVII Generative Art Conference - GA2024

exploration of how technology can both

mimic and enhance the creative practices

of the past, suggesting new directions for

the future of music composition.

A Question of Context

In classical music, as we define it today,

there are several distinct periods. The

most well-known, in chronological order,

are: the Baroque period (1600-1750), the

Classical period (1750-1820), the

Romantic period (1820-1900), the

Modern period (1900-1975), and finally

the Contemporary period (1975 to the

present). These periods differ, among

other things, in their style, techniques,

and forms of composition.

Within these periods, each composer

develops their own musical universe.

Beethoven's style is therefore unique,

and it is essential to choose a model

capable of learning to generate music in

this style. However, we knew that training

a deep learning model would require a

large amount of data, and limiting

ourselves to Beethoven's 32 sonatas

would not be sufficient. Therefore, we

chose to start with a more extensive and

diverse dataset containing pieces from

various periods, while also incorporating

the sonatas later in the process.

Moreover, Beethoven’s style evolved

throughout his lifetime. His piano sonatas

illustrate this evolution well. Musicologists

have classified them into three parts,

corresponding to the three periods of

Beethoven’s life. Therefore, to generate

the 33rd sonata, not all the sonatas

should be given the same importance.

The sonatas from his late period should

have a greater impact on the generation

of the 33rd sonata than the earlier ones.

We therefore considered implementing a

weighting system to represent the

importance of each sonata in the

generation process. These weights will

subsequently be used in the loss function

calculation that the model aims to

minimize. We also realized that this

system could be applied to all pieces in

the dataset. The idea was to assign a low

weight to composers stylistically distant

from Beethoven (e.g., Debussy,

Rachmaninoff) and a high weight to his

contemporaries (e.g., Mozart, Haydn).

A model like Museformer [1] already uses

a weighting system, but this concerns

how the model learns rather than what it

learns. Museformer is based on the

principle that some musical passages are

more important than others, containing

information about the structure of the

work, such as the main theme.

Ultimately, after an unsuccessful attempt

to make this model work, we decided to

switch to another model based on the

same architecture, namely Music

Transformer [2].

When AI Judges Music

To objectively evaluate the model, we

chose to use perplexity as a metric, in

addition to the calculation of accuracy

and the loss function implemented in the

base code.

Here is the definition of perplexity from

the article Decoding Perplexity and its

Significance in LLMs [7]:

XXVII Generative Art Conference - GA2024

"In brief, perplexity measures the model's

confidence in its predictions. The concept

of perplexity evaluates how confused the

model is when predicting the next word in

a sequence. Lower perplexity indicates

that the model is more certain of its

predictions. In contrast, higher perplexity

suggests that the model is more

uncertain. Perplexity is a crucial metric

for assessing the performance of

language models in tasks such as

machine translation, speech recognition,

and text generation.

The perplexity of a language model can

be calculated using the average negative

log-likelihood. The formula for perplexity

is given by:

where the average negative log-

likelihood (Average NLL) is defined as:

Here, N is the number of words in the

sequence, and is the

predicted probability of the word

given the previous words .The

exponential function is used to convert

the average negative log-likelihood into

perplexity, thus providing a measure of

the model's confusion regarding the word

sequence.”

In the previous definition, we talk about

predicting words. However, it can be

adapted to the prediction of notes or

other elements of musical vocabulary

since our dataset consists of MIDI

(Musical Instrument Digital Interface)

files.

A MIDI sequence is a digital file that

contains control information for music,

such as the notes played, velocity, tempo

changes, and channel control

commands.

Figure 1 : excerpt from a MIDI file

(turned into readable ascii)

Figure 2 : Score corresponding to the

MIDI excerpt

In figures 1 and 2, extracted from [3], we

can visualize how a MIDI file works. In

figure 1, the first line "2, 96, Note_on, 0,

60, 90" means "at 96 ticks (the moment

the event occurs) on track 2, on channel

1, a middle C (C4) note is played with a

velocity of 90." Below, we can clearly see

the middle C on the sheet music.

This information is then tokenized during

the preprocessing phase, and the model

aims to predict the next token based on

the previous tokens.

XXVII Generative Art Conference - GA2024

Training is a Sport

As mentioned earlier, training a model

like Music Transformer requires a

significant amount of data. Training the

model directly on Beethoven's 32

sonatas would not have guaranteed a

good result. Therefore, we split the

training into two phases: a pre-training

phase on a general classical music

dataset of around 700 MIDI files, followed

by a fine-tuning phase on Beethoven's 32

sonatas. During the first phase, the

model adjusts its parameters to minimize

a loss function, calculated based on the

difference between the model's

predictions and the actual data. In the

second phase, the model builds on the

parameters adjusted during the previous

phase and fine-tunes them to capture the

particular nuances of Beethoven's style,

thereby improving the quality of the

generated compositions.

We implemented a weighting system in

the pre-training dataset by assigning

each composer a weight relative to their

similarity to Beethoven. The choice of

weights is subjective, and we based them

on our own musical knowledge. The

following figures (3-6) show the different

metric behaviors between training without

weights and training with weights.

We can see that the accuracy decreased

and the perplexity increased with the

application of the weights. This did not

positively influence the results, contrary

to our expectations. As we will see later,

the issue does not stem from the strategy

implemented but rather from the dataset.

Figure 3 : Accuracy without weights

Figure 4 : Accuracy with weights

Figure 5 : Perplexity without weights

Figure 6 : Perplexity with weights

XXVII Generative Art Conference - GA2024

The Musical Parrot Syndrome

While observing the behavior of the loss

function, we noticed signs of overfitting,

indicating that the model does not

generalize well to data it hasn’t seen

during training. In other words, it

memorizes the pieces in the dataset and

fails to generate a new piece effectively.

To address this, we first considered

adjusting the dropout rate. Depending on

the severity of the overfitting, the dropout

rate can be increased to mitigate the

issue. Initially set at 20% in the base

code, we increased it to 40%, which

reduced the overfitting but did not

eliminate it completely.

In truth, 700 pieces are not enough for a

model as complex as Transformers. For

instance, Museformer was trained on a

dataset of nearly 30,000 pieces.

Additionally, our dataset was not very

homogeneous, with a majority of works

by Bach and Chopin. We, therefore,

sought a more extensive dataset, namely

the Maestro dataset [4] developed by

Google Magenta. With this dataset, the

overfitting issue was resolved, even

when keeping the dropout rate at its

initial value. Moreover, the accuracy

doubled, rising from 3.5% to 7%, and the

perplexity decreased significantly from

178 to 61. However, a perplexity value of

61 is still too high; it means that during

generation, the model has 61 possible

tokens to choose from. To further expand

the Maestro dataset, we transposed the

pieces into all possible keys, like in [9],

multiplying the number of pieces by 24

and resulting in a dataset of over 30,000

MIDI files. The following graphs (figures

7-8) show that the results improved

dramatically with the transposition:

accuracy reached 23%, and perplexity

dropped to 14.

Figure 7 : Accuracy after transposition

Figure 8 : Perplexity after transposition

The Cool New Tricks of AI

Let's start with the definition of a learning

rate schedule from the site Towards Data

Science [8]:

"A learning rate schedule is a crucial

technique in training machine learning

models because it allows for the

adjustment of the learning rate

throughout the training process. The

primary utility of a learning rate schedule

lies in the following aspects:

Improved Convergence: A well-

adjusted learning rate can help converge

more quickly to a minimum of the loss

XXVII Generative Art Conference - GA2024

function. By gradually reducing the

learning rate, the model’s weights can be

refined with greater precision as the

minimum is approached.

Prevention of Oscillations: Using a

schedule prevents a too-high learning

rate from causing oscillations around the

local minimum. A rate that is too high

may result in excessive jumps in the loss

function values, hindering convergence.

Avoidance of Local Minima: Strategies

such as gradually reducing the learning

rate allow the model to overcome local

minima by dynamically adjusting the rate.

This helps in more effectively exploring

the solution space.

Resource Optimization: By regulating

the learning rate, computational

resources can be optimized, ensuring

that learning is neither too fast (which

could lead to premature convergence)

nor too slow (which might require more

computation time).

In summary, the learning rate schedule

plays a key role in improving the

performance and efficiency of model

training by allowing better management

of the learning speed throughout the

training process."

Let's now return to our code. The model's

basic strategy combined several

techniques: an inverse square root

schedule to dynamically adjust the

learning rate, a linear warmup to

gradually increase the learning rate at the

beginning of training, and a minimum

schedule to ensure a minimum threshold

for the learning rate. See figure 9 for the

formula of the learning rate.

Figure 9 : Initial learning rate formula

This technique is quite commonly used,

which led us to try another, more recent

strategy: Cosine Annealing. This method

first appeared in the paper "SGDR:

Stochastic Gradient Descent with Warm

Restarts," written by Ilya Loshchilov and

Frank Hutter [5]. This paper, published in

2017, introduces a method for

dynamically adjusting the learning rate by

using a cosine function to periodically

reduce the learning rate. See figure 10

for the formula.

Figure 10 : Learning rate in the Cosine

Annealing strategy

During the testing phase, we compared

the results of training with the baseline

strategy to those of training with the

Cosine Annealing strategy. As shown in

the following figures (11-12), Cosine

Annealing improves the metric values,

particularly the perplexity. Indeed, we

XXVII Generative Art Conference - GA2024

achieve a perplexity of 61 by the end of

the fifth epoch compared to only 140 with

the baseline strategy. Precision, on the

other hand, increases by only 1.5 points,

which is not a significant improvement.

Here is the perplexity curve for both

strategies:

Figure 11 : Perplexity without Cosine

Annealing strategy

Figure 12 : Perplexity with Cosine

Annealing strategy

With the Cosine Annealing strategy and

the transposition of the Maestro dataset

into all possible keys, we achieved very

good results (for reference, 23%

precision and a perplexity of 14).

However, so far we have only discussed

the pre-training phase. Let's see how this

performs specifically on Beethoven's

sonatas:

Figure 13 : Accuracy during fine-tune

Figure 14 : Perplexity during fine-tune

The precision converges to 48% after 3

epochs, and the perplexity drops to 7!

The model now has only 7 possible

choices at each generation step.

When Numbers Lie

Finally, our last focus was to understand

and improve the generation phase, i.e.,

the one that produces the final result. To

generate a piece of music, the model

takes as input a sequence containing the

first x tokens from a MIDI file and uses

what it learned during training to

generate the following tokens, in other

words, the continuation of the sequence.

We tested with several input sequences,

particularly the beginning of Beethoven's

32nd sonata, and the result was rather

XXVII Generative Art Conference - GA2024

surprising. There are many musical

elements that do not contribute much to

the structure of the piece, such as trills or

notes repeated for a long time, which

results in a somewhat incoherent output.

Additionally, there is a noticeable lack of

creativity as the same elements are

frequently repeated. However, one might

argue that the model has learned to use

recurring motifs, treating them like a

recurring theme. The beginning of the

32nd sonata contains few structural

elements (very few harmonies or

"melodies") and includes a trill, which

helps explain why the result lacks

creativity. Testing with other melodically

more varied sonata openings shows

better generation performance.

In generative models, different

generation policies can be used, the

main ones being argmax and softmax.

Using argmax, the model systematically

chooses the token with the highest

probability at each generation step. With

softmax, the model uses a probability

distribution, allowing for more diversity in

the choice of the token to be generated.

In our code, the softmax policy was

chosen. Therefore, the lack of creativity

cannot really be justified by the policy

used.

We think that the complexity of classical

music explains why our model did not

perform well. In classical music, there is

a hierarchy of musical elements.

Ornaments like trills, mordents, and

appogiaturas enrich and express the

music but remain secondary to the main

melody. Similarly, passing notes, escape

notes, appogiaturas, and suspensions

add richness and harmonic tension but

are generally less important than

structural notes. However, our model

treats all elements equally. In our

opinion, learning should be decomposed

into several tasks, such as one for the

harmony of the piece, another for

melody, rhythm, etc. Once these steps

are completed, a basic structure of the

piece can be filled with less important

elements as mentioned previously. Such

models already exist in the literature; for

example, WuYun [6] proposes a two-step

hierarchical architecture for melody

generation guided by a skeleton. This

paper focuses only on melody. In our

case, a method to separate different

musical layers (melody, harmony, etc.)

would be needed, which is far from

straightforward.

Conclusions

Artificial intelligence offers a wide range

of applications, and in this context, we

chose a field that is close to our heart:

music. After considering several options,

we ultimately decided to generate

Beethoven's 33rd piano sonata. Our first

task was to devise a method to generate

a work in Beethoven’s style, consistent

with his final creative period. This led to

the idea of a weighting system in the

dataset to give more importance to works

from Beethoven’s later period. After

selecting a suitable deep learning model

for music generation, the next question

was how to evaluate the results.

Although subjective criteria are important,

we needed objective criteria to assess

the quality of the compositions generated

by the AI.

XXVII Generative Art Conference - GA2024

The model training was carried out in two

phases. This approach allowed the

model to learn from a broad dataset

before specializing in Beethoven.

However, we encountered an overfitting

issue, where the model memorized the

specifics of the pieces, a phenomenon

we tried to mitigate through various

machine learning techniques, including

our weighting system. As AI evolves

rapidly, we tested a recent learning

strategy, which significantly improved the

results of both the pre-training and final

phases compared to the baseline

strategy. Despite good objective results,

the generated sequences were not

always pleasant to listen to. We then

examined the model’s generation policy,

which provided some answers.

Ultimately, this study helped us better

understand the limitations of our model

and consider future improvements.

From a technical perspective, the work

accomplished reached a good level of

completion while leaving room for

improvements. The decision to use deep

learning models, particularly

Transformers, proved effective for

handling the complexity of musical

sequences. The two-phase approach

provided a solid learning foundation,

facilitating specialization.

However, the initial occurrence of

overfitting highlighted a potential

weakness in the model. While

regularization techniques such as

dropout and the weighting system helped

mitigate this issue, it was the use of a

larger and more diverse dataset that

ultimately resolved the problem. This

improvement allowed the model to

produce more innovative and stylistically

coherent works, suggesting that the

quality and diversity of training data are

crucial for enhancing the model’s

generative capabilities.

Integrating a weighting system to

prioritize Beethoven’s later sonatas was

a creative and promising step. It

influenced the musical generation by

respecting the chronological and stylistic

specifics of the composer. This concept

could be expanded to other composers

and styles, enriching research

perspectives.

On the other hand, the project revealed

some limitations. While effective,

Transformers might not be the best tools

for all musical generation tasks. The fine-

tuning methodology on a limited number

of sonatas may also not fully capture

Beethoven’s stylistic complexity. A more

nuanced approach, combining machine

learning techniques with elements of

music theory, could offer more refined

results.

References

[1] B. Yu, P. Lu, R. Wang, W. Hu, X. Tan,

W. Ye, S. Zhang, T. Qin, and T. Liu.

Museformer : Transformer with fine-and

coarse-grained attention for music

generation. In Advances in Neural

Information Processing Systems

(NeurIPS). NeurIPS, 2022.

[2] Cheng-Zhi Anna Huang, Ashish

Vaswani, Jakob Uszkoreit, Ian Simon,

Curtis Hawthorne, Noam Shazeer,

Andrew M. Dai, Matthew D. Hoffman,

Monica Dinculescu, and Douglas Eck.

XXVII Generative Art Conference - GA2024

Music transformer: Generating music

with long-term structure. In Proceedings

of the 7th International Conference on

Learning Representations (ICLR). ICLR,

2018.

[3] Jean-Pierre Briot, Gaetan Hadjeres,

and Francois-David Pachet. Deep

Learning Techniques for Music

Generation. Computational Synthesis

and Creative Systems. Springer, 2019.

ISBN 978-3-319-70162-2. Hardcover.

[4] Curtis Hawthorne, Andriy Stasyuk,

Adam Roberts, Ian Simon, Cheng-Zhi

Anna Huang, Sander Dieleman, Erich

Elsen, Jesse Engel, and Douglas Eck.

Enabling factorized piano music

modeling and generation with the

MAESTRO dataset. In International

Conference on Learning

Representations,2019.

https://openreview.net/forum?id=r1lYRjC

9F7.

[5] Ilya Loshchilov and Frank Hutter.

Sgdr: Stochastic gradient descent with

warm restarts. arXiv preprint

arXiv:1608.03983, 2017.

[6] K. Zhang et al. Wuyun: Exploring

hierarchical skeleton-guided melody

generation using knowledge-enhanced

deep learning. arXiv preprint

arXiv:2301.04488, 2023.

[7]https://blog.uptrain.ai/decoding-

perplexity-and-its-significance-in-llms/

[8]

https://towardsdatascience.com/a-visual-

guide-to-learning-rate-schedulers-in-

pytorch-24bbb262c863

[9] Huang, A., Wu, R. (2016). A

Transformer Based Pitch Sequence

Autoencoder with MIDI Augmentation.

arXiv preprint arXiv:1611.03477.

https://openreview.net/forum?id=r1lYRjC9F7
https://openreview.net/forum?id=r1lYRjC9F7
https://blog.uptrain.ai/decoding-perplexity-and-its-significance-in-llms/
https://blog.uptrain.ai/decoding-perplexity-and-its-significance-in-llms/
https://towardsdatascience.com/a-visual-guide-to-learning-rate-schedulers-in-pytorch-24bbb262c863
https://towardsdatascience.com/a-visual-guide-to-learning-rate-schedulers-in-pytorch-24bbb262c863
https://towardsdatascience.com/a-visual-guide-to-learning-rate-schedulers-in-pytorch-24bbb262c863

