Searching Efficient Deep Architectures for Radar
Target Detection using Monte-Carlo Tree Search

Noé Lallouet
LAMSADE, Université Paris-Dauphine
Thales DMS
Paris, France
noe.lallouet@thalesgroup.com

Cyrille Enderli
Thales DMS
Elancourt, France
cyrille-jean.enderli @fr.thalesgroup.com

Abstract—Recent research works establish deep neural net-
works as high performing tools for radar target detection,
especially on challenging environments (presence of clutter or
interferences, multi-target scenarii...). However, the usually large
computational complexity of these networks is one of the factors
preventing them from being widely implemented in embedded
radar systems. We propose to investigate novel neural architecture
search (NAS) methods, based on Monte-Carlo Tree Search
(MCTS), for finding neural networks achieving the required
detection performance and striving towards a lower computational
complexity. We evaluate the searched architectures on endoclutter
radar signals, in order to compare their respective performance
metrics and generalization properties. A novel network satisfying
the required detection probability while being significantly lighter
than the expert-designed baseline is proposed.

Index Terms—radar, deep learning, CNN, NAS, MCTS

I. INTRODUCTION

In recent years, artificial neural networks (ANN) applied to
the problem of radar target detection have been the subject of
keen interest from the research community. The representative
power of neural networks as well as their generalization
properties establish them as viable candidates to achieve
superior performance compared to classical detection tools such
as CFAR (Constant False Alarm Rate) detectors, especially on
endoclutter environments.

The amount of computational resources available in radar
systems is typically limited (e.g. only a CPU) and the need
for real-time processing is an significant constraint. However,
modern deep convolutional neural network (CNN) architectures
are often large and prohibitionally computationally expensive,
such as in the work of [[1]. One can thus understand that

designing efficient neural networks is of the utmost importance.

This paper focuses on the problem of air-air radar target
detection. The radar, mounted on an airborne platform, is
subject to unwanted signals, such as ground clutter. Targets
of interest are typically aerial platforms with a small radar
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cross-section (RCS). The problem of radar target detection
reduces to the following decision problem :

{HO :y(t) = v(t): absence of target 0

Hy :y(t) = x(t) + v(t): presence of target

where:

o y(t) is the received signal
o x(t) is the signal of the target
o v(t) is noise (thermal noise, ground clutter, ...)

The matched filter is an optimal solution under the as-
sumption that the target is unique and v(t) corresponds to
thermal noise only. Space-Time Adaptive Processing further
takes into account ground clutter through a correlated noise
model, however its performance is limited when the target
has low radial velocity, and the single target assumption is
still required. An alternative way to treat this problem without
using somewhat restrictive signal models is to follow a data-
based approach. Here an a priori statistical model with many
parameters, in the form of a neural network, is trained to detect
multiple targets in various situations. The statistical model can
then find an approximate solution to problem |1| by expressing
it as a binary image segmentation problem, i.e. predict 1 for a
pixel associated to a target signal, and O for a pixel associated
to thermal noise or clutter.

In recent years, Neural Architecture Search (NAS) has been a
popular approach for automatically finding neural architectures
with good performance. We propose to investigate NAS for the
design of radar target detector architectures, while introducing
novel search methods.

Most recent NAS algorithms favour weight-sharing ap-
proaches, at the expense of traditional search algorithms such
as MCTS (Monte-Carlo Tree Search). However, we motivate
our use of Monte-Carlo methods by their remarkable search
efficiency when the search space is large. The initial drawback
of such approaches, namely the necessity to train an architecture
from scratch at each random playout, is mitigated with the rise
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of novel training-free metrics, on which we shall expand in
Section [
The contributions of this paper are the following :

o The efficiency of MCTS-based neural architecture search
for the problem of radar target detection under network
complexity constraints is investigated.

e The GRAVE algorithm and Nested Monte-Carlo Search
are evaluated for the first time for NAS.

« Training-free metrics are used for the first time for Monte-
Carlo NAS, and their adequacy is validated.

o A neural network that is more frugal than the original base-
line while achieving the expected detection performance
on endoclutter environments is proposed.

II. RELATED WORKS

Deep learning has, for the past few years, been the subject
of interest from the radar signal processing community. The
research work of [2] introduces a radar detector inspired from
the Faster R-CNN architecture. The work of [3]] introduces a
neural network based on a Fully Convolutional Network (FCN)
to train a radar detector constrained by the Neyman-Pearson
criterion, while [4] proposes a radar detector implementing the
U-Net architecture. CNN architectures are also proposed by
[5] and [6]. The vast majority of the radar detectors introduced
in the literature posseses a very large (e.g. millions) number of
parameters. Indeed, it has been shown that deep architectures
(with a large number of convolutional layers), while tricky
to train, exhibit very good segmentation performances and
generalization capacity. However, in a bid to develop hardware-
friendly radar detectors, we must try to identify light networks
with a smaller number of parameters and detection performance
on par, or superior, to their heavier counterparts.

Since the work of [[7], NAS has sparked great interest
in the research community. NAS aims to find the neural
network architecture that minimizes the evaluation loss. This
optimization problem can be expressed by Equation [2}

a® = argmin L,q(X,Y, W,) 2)
a€s

where:

e a” is the optimal neural network architecture

e S is the search space of all architectures

o W, are the weights associated to architecture a

o Lya(X,Y, W) is the loss function computed on an
validation dataset.

Even though early approaches often use reinforcement learning
to train a controller which generates the architecture, later
works, inspired by [8]], primarily focus on supernet-based
approaches. A supernet is an overparametrized network which
contains all possible architectures. It is trained once and
candidate architectures are sampled from it. An example of
a recent supernet-based approach, [9]], presents a one-shot
approach for finding architectures using a supernet.

A subfield of NAS that is of particular interest is training-free
NAS. Indeed, most NAS methods typically exhibit long training
times for candidate architectures. Supernet techniques mitigate
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Fig. 1. Monte-Carlo tree search

those long training times by training a very large network only
once, but they also suffer from some drawbacks (e.g. deep
coupling between architecture parameters and supernetwork
weights). Recently, drawing from the neural network pruning
literature [[10] [[11], NAS research efforts investigate training-
free metrics in order to score architecture at initialization,
without training the candidate architecture. Notable research
works tackling this problem include [[12f], [[13]] and [14].

Neural architecture search has been leveraged for the
development of neural radar target detectors. Evolutionary
algorithms have been investigated for automotive radar object
classification [15] and for SAR image segmentation [16].
Supernet approaches have also been proposed for 3D object
detection [[17] and for SAR ship classification [[18]. These
research works demonstrate the interest of NAS for designing
deep radar detectors.

Monte-Carlo Tree Search (MCTS) is a popular set of tree
exploration techniques. It uses random playouts to estimate
the value of a node in the search tree and implements a
node selection algorithm for and efficient search. The four
steps of the search procedure (selection, expansion, playout,
backpropagation) are illustrated in Figure [1| [19]. MCTS
has proved to be a reliable method for game playing [20]
and numerous other applications [21] [22]. In recent years,
some research works have focused on implementing MCTS
techniques for neural architecture search. The seminal work
of [23] introduces a MCTS agent coupled with a search
space definition language for efficient tree traversal. [24]
builds on this by proposing a search policy based on RAVE
[25]. More recently, [26]] introduces a value network, dubbed
Meta-DNN, that aims to predict the value of a state without
training the associated network architecture. Building on these
works, we propose to evaluate more search algorithms based
on Monte-Carlo Tree Search. To the best of our knowledge,
MCTS methods have not been investigated for designing radar
detection model architectures.

III. METHODOLOGY

A. Search space

One of the key components of NAS is the definition of
an adequate architecture search space. In line with numerous
research works, we decide to use the NASNet search space
[27]. The NASNet search space reduces the search of an



Scenario Aircraft speed (m/s) | Elevation (ft)
1 250 5000
2 250 1000

3 250 10 000
4 500 5000

5 500 1000
6 500 10 000
7 1000 5000

8 1000 1000
9 1000 10 000
10 (thermal noise) | N/A N/A

TABLE 1

RADAR SIGNAL GENERATION PARAMETERS

Range-Doppler map Label

Fig. 2. A training dataset range-Doppler map

architecture to the search of cells, which are then stacked
to produce the final architecture. Each cell is composed of
N blocks, which have searchable inputs and operations. Even
though [27] recommends N = 5, we choose to search a single
block, for search efficiency purposes. The NASNet search
space has been designed for the search of image classification
networks, and thus only search Normal Cells, which preserve
the input dimension, and Reduction Cells, which halve the
input dimension. We propose the extension of NASNet to a
third type of cell, that we name Upsample Cell, doubling the
input dimension. This enables us to create U-Net-like [28]]
architectures and perform image segmentation. Furthermore,
the searched architectures can be directly compared to the
network proposed by [4]], which reaches state-of-the-art target
detection probability on thermal noise.

B. Data

The data consists of 80 000 range-Doppler maps. A range-
Doppler map is simulated by a realistic radar signal generator,
and includes ground clutter drawn from 10 different scenarios,
which are explicited in Table [I Each map has a number of
targets drawn uniformly between 0 and 6. An example of a
training range-Doppler map with its associated label is given in
Figure[2] As the dimensions of a training example are dependent
on the range resolution and the number of FFT points, we
decide to resize all images to 128x128 dimension using zero
padding. The data is separated into a training and a validation
set using a 80%-20% split. The test set is composed of 2000
novel range-Doppler maps that have not been encountered

during training. This allows one to evaluate a neural network’s
generalization capabilities.
C. Algorithms

The most popular MCTS algorithm, UCT (Upper Confidence
bound applied to Trees) [29]], uses the reward statistics of a node
s to select a child node according to the following formula:

In(ns)

i

node = arg max u; + k
i€C

where:

o C are the children nodes of node s

o = ;—1 is the average reward after child ¢ is selected

e 1, is the number of visits of node s

e n; is the number of visits of the child node <.

e k is a tunable exploration constant.

UCT has been successfully used in neural architecture search
[23], [24]. It is thus a good baseline to which we can compare
the following algorithms. A node in the search tree represents
an architecture, and a move allows the agent to select an
operation, input, combination or network hyperparameter in
the NASNet action space. A node is terminal when there are
no more available moves, i.e. the architecture is complete and
can be trained.

A straightforward improvement of UCT is RAVE (Rapid
Action Value Estimation) [20]. RAVE leverages the statistics
of a node as well as its AMAF (All Moves As First heuristic)
value. The AMAF value corresponds to the reward statistics
of a move, regardless of when it has been played during the
game. This allows one to gather a larger amount of data for
the same number of random playouts. However, RAVE makes
the assumptions that the order of played moves doesn’t matter,
i.e. moves are interchangeable between one another. In the
MC-RAVE algorithm, a child node is selected in the following
manner:

In(n
node = arg max(1 — 8)u; + Bt + k (n)
icC i
where:
o p; = ;- is the average reward after child 7 is selected
e [i; = Z s the average reward after the move associated

with cnlfild 1 is played anytime during the game

o 5= m, where b is a bias constant.

In the case of neural architecture search, the moves
represent the choice of an operation, input, combination or
other hyperparameter. It follows that selecting one move
before or after another is of no consequence. As such, the
RAVE hypothesis holds, and the implementation of this search

algorithm becomes possible.

It is possible to bring some improvements to RAVE. One of
such improvements, called GRAVE (Generalized Rapid Action
Value Estimation) [30]], uses the AMAF statistics of a node s’s
ancestor if the number of visits of s is inferior to a value tref.
GRAVE has shown to be an improvement over RAVE in several



board games ; this motivates the evaluation of the algorithm on
the task of NAS. One of the interesting advantages that GRAVE
possesses over RAVE is that GRAVE draws information from
a node s’s ancestor nodes when the current state s does not
have enough playouts to provide reliable estimates. This brings
stability to the tree search. In our experiments, the value tref
is set to 30 node visits.

Nested Monte-Carlo Search (NMCS) [31] is a different way
of exploring a search tree using random playouts. The algorithm
selects a move by recursively applying a nested search on lower
node levels. Nested Monte-Carlo Search has also shown good
performance on various games. To the best of our knowledge,
GRAVE and Nested Monte-Carlo Search have not been applied
to neural architecture search.

It is important to set an upper bound on the complexity of
the network, to avoid the possibility that the search algorithm
finds solutions with high performance but unable to ensure
real-time detection. A good and relatively hardware-agnostic
proxy for network latency is the number of parameters of
the neural network. During a MCTS playout, if the search
algorithm samples a network with a number of parameters
that is superior to a fixed value «, the reward 0 is returned.
This enables the algorithm to discount solutions which
violate the network complexity bound. In our experiments,
« is chosen as the number of parameters of the baseline U-Net.

MCTS needs a way to evaluate the value of a terminal
state when performing a random playout. It is common, in
NAS applications, to train the sampled network on the training
dataset and assign the validation loss to the value of the leaf
node corresponding to the architecture. However, training a
neural network from scratch is computationally expensive, and
quickly becomes intractable when evaluating a large number
of states, especially when constrained by hardware or time.
Furthermore, the random nature of MCTS entails that the
algorithm must perform a large number of playouts before
reaching a solution. It is thus clear that MCTS is not the
most viable approach if one needs to train every candidate
architecture. Motivated by the recent success of training-free
approaches, we decide to use the metric proposed by [[13] for
scoring candidate architectures at initialization. When the tree
search reaches a terminal node, the reward obtained by the
associated architecture is computed in the following manner:

score = log | K| 3)
NAde(Cl,Cl) NAde(Cl,Cn)
Ky =
Nao —dg(cn,cr) Ny —dg(en,ey)
where N 4 is the number of ReLLU activations in the network,
and dp(cq, cp) is the Hamming distance between the binary
codes of training examples a and b computed in the ReLU
activations. In short, this metric captures the correlations
between two inputs in a minibatch of data, and scores highly
a network that, at initialization, is able to differentiate the
two inputs. We shall refer the reader to [[13]] for a detailed
explanation of the metric.

Search algorithm | Nparam | Testloss | Ppa(x 10~4)
Baseline (U-Net) 120441 0.57 0.30

Random search 100041 0.88 2.01

UCT 71336 0.67 0.4

RAVE 63916 0.70 1.02

GRAVE 87016 0.67 0.70

NMCS 48209 0.54 0.29

TABLE 11

ARCHITECTURE COMPARISON

Our MCTS methods implement leaf parallelization, as
introduced by [32]. Here, instead of performing a single random
playout after the expansion phase, we run 8 parallel playouts
starting from the same node. This does not accelerate the search
but provides improved stability as the value estimates for a
node are much more reliable.

Finally, we implement a basic random search policy, which
randomly samples architectures for a number of iterations &k and
returns the one with the highest score. We allow 25 minutes
for all MCTS algorithms to search for a move and set the
number of random search iterations k as the number of move
explorations during this time. At the end of the procedure, the
best performing architecture for all algorithms is returned and
trained for 3 hours on a NVIDIA A4000 GPU.

IV. RESULTS

We shall compare the neural networks returned by each
algorithm with the two following metrics : detection probability
Pp at a fixed false alarm probability Pr,4, and network
complexity, through the number of parameters Npqrqm of the
architecture. We use the following proxies for Pp and Pry :

N ~
ﬁD _ ZiNyzyz
Zi Yi
po. va i (1 — y;)
A= TSN, N
Zi (1 - yz)

where ¢; are the predicted pixels and y; are ground truth pixels.
Table |lI displays the network complexity of the architectures
returned by each search algorithm.

The detection probabilities associated with these architec-
tures, evaluated on the test set described in Section [III} can be
appreciated in Figure [3| Table [lI| shows that the architecture
chosen by Nested Monte-Carlo search slightly outperforms
the baseline U-Net, both in detection probability and false
alarm probability, while having 60% fewer parameters than
the U-Net. We can see from Table @ that, with the exception
of the architecture returned by the Nested Monte-Carlo Search
algorithms, all models have a false alarm probability Pr4
higher than the baseline U-Net. This indicates that the scoring
metric used during the search is possibly ill-suited to evaluating
the false alarm probability at initialization. It can be noticed
that random search failed to propose a competitive architecture
for the detection problem, but we believe that, with a longer



search time, a reasonably well-performing architecture could
be found, as [27]] shows that random search on NASNet is
a good baseline. The superiority of GRAVE over RAVE is
consistent with the conclusions of [30], and indicates that
GRAVE provides better node value estimates during the search,
especially when the search time is short.

1.0
UNet
UCT
08 Random
’ GRAVE
RAVE
Nested
0.6
el
[ay
0.4
0.2

0.0 [ \\\

Distance (km)

Fig. 3. Detection probability Pp

The normal, reduction and upsample cells returned by the
most effective search algorithm, Nested Monte-Carlo Search,
are shown in Figure [4]

V. DISCUSSION

Among all models produced by the different search algo-
rithms, we find that the model yielded by Nested Monte-Carlo
Search performs the best on the test set. Interestingly, this model
is not the one with the largest number of parameters. Intuitively,
it may be claimed that there exists a trade-off between network
complexity and performance ; however, we show that, on the
task of radar target detection, light architectures are able to
perform as well as more complex ones, such as the baseline
U-Net, provided that the cell design be sound.

In addition to cell design, we also attempted to add more
broad architecture hyperparameters, such as the number of
convolutional blocks or the initial number of channels, in
a bid to search a more expressive space. The algorithms
proved efficient for finding good architectures with these
added hyperparameters in an unconstrained space, but failed

Normal Cell

conw1x3+3xt

Reduction Cell Upsample Cell

conv1x3+3xt

con-x7+7x1 depthwise-conv-5x5

Fig. 4. Best performing architecture cells

to produce high-performing networks with the severe network
complexity constraint introduced in Section Indeed, the
MCTS-based algorithms fell in local minima, represented by
hyperparameters choices associated to overly shallow networks,
because of the negative reward obtained when exceeding
the parameter constraint. More generally, this tendency to
undershoot the number of parameters is encountered with most
search algorithms, with the exception of random search, which
is a notoriously hard baseline to beat on the NASNet search
space. Avoiding these pitfalls is the object of current research,
as we believe that Monte-Carlo based methods are able, with
proper problem design, to assimilate the constraint as to return
strong networks in the extended search space.

The limitations of our findings are the following :

« In order to validate the generalization performances of the
searched network, evaluating them on additional scenarios
with various differing clutter profiles is necessary.

o Additionally, the training time of the networks can be
extended for optimal convergence. However, the scope of
this work is not necessarily achieving the best possible
performance via training hyperparameter tuning, but rather
identifying efficient architectures that can be considered
instead of the handmade baseline neural network.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel architecture for radar
target detection using deep learning. We present innovative
training-free Neural Architecture Search (NAS) methods, based
on Monte-Carlo Tree Search algorithms. The best architec-
ture found by these methods exhibits comparable detection
performance to the current state of the art on endoclutter
environments, while possessing fewer parameters (40% of the
parameters of the baseline model).

Our findings validate the interest of Monte-Carlo methods
for the design of neural radar detectors, but they also open the
way for a large number of improvements. Future research
will include investigations on higher-level Nested Monte-
Carlo search, additional training-free metrics (including metrics
adapted to Pr 4 estimation) and improvement through self-play
for finding the best fitting architectures. We will also focus our
attention on ways to satisfy a network complexity constraint
without falling into local minima.
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