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Abstract

In the current NISQ era, it has become difficult to
schedule increasingly complex quantum tasks with lim-
ited connectivity of the QPU (Quantum Processing
Unit). This is partially attributed to the fact that we
require qubits that share a task to be physically con-
nected in the hardware topology. To satisfy this con-
nectivity constraint, quantum circuits must make use of
SWAP gates or reversing existing CNOT gates. Adding
these gates comes with added computational cost and
errors which creates a need for efficient routing agents
which can optimize this problem of qubit routing. We
present a Nested Monte Carlo Search (NMCS) based
agent (NesQ router) which aims to solve this problem
by efficiently sampling the state space. In our experi-
ments, NesQ was able to outperform other routing al-
gorithms while offering a much lower runtime.

Introduction
The advent of Noisy Intermediate-Scale Quantum
(NISQ) technology in the recent years has witnessed an
array of quantum computers with unique hardware ar-
chitectures (Arute et al. (2019), Karalekas et al. (2020),
IBM (2023), etc). Such quantum devices support in-
structions which may be realized as a series of one and
two-qubit operations (or gates), which may be assem-
bled into a quantum circuit. One such circuit is shown
in Fig. 2(a).

To execute these instructions and perform quantum
computation, a circuit must be first compiled on the
hardware architecture of the quantum device. Every
quantum architecture has an associated device topol-
ogy, also known as a connectivity graph, consisting
of physical qubits (nodes) and connections (edges) be-
tween them. To compile the circuit, a routine must
transform it to satisfy the connectivity constraints
(Pozzi et al. 2022). This is done by strategically placing
SWAP gates such that any gate operation in the mod-
ified circuit only occurs between two physically linked
qubits. This problem of “routing” the circuit to sat-
isfy target device topology is known as Qubit routing
(Cowtan et al. 2019).
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The qubit routing problem is specifically of interest
due to the resource-constraint nature of quantum de-
vices, with low fidelities, limited connectivity and poor
quality of qubits (Pozzi et al. 2022). It is also crucial
to optimize the placement of SWAP gates to minimize
the resulting circuit’s overhead depth. This is essential
to ensure effective computation before decoherence of
qubits (Sinha, Azad, and Singh 2022). Lastly, minimiz-
ing output circuit depth also helps maximize Quantum
Volume (QV), which quantifies the upper bound of cir-
cuit size that can be reliably executed on a quantum
device (Pozzi et al. 2022).

Therefore, we aim to minimize the output circuit
depth rather than choosing alternative objectives such
as minimizing added gate count. We found this metric
to be more significant as one may be readily convinced
that long-running sparse circuits possessing a low total
gate count may not be favorable. Further, minimiz-
ing gate count is a much easier problem which may be
formulated in a simple action space, rather than a com-
binatorial one which we consider (Pozzi et al. 2022).

A few off-the-shelf transpilers to route quantum
circuits exist, such as Cirq by Google (Developers
2024), Qiskit (basic, SABRE, stochastic) by IBM (Alek-
sandrowicz et al. 2019), t|ket developed at Cambridge
Quantum Computing (CQC) (Sivarajah et al. 2020).
t|ket also employs BRIDGE gates which has shown to
improve performance by (Itoko et al. 2020). In the
past, IBM organized a competition to find the best
routing algorithm, won by Zulehner for his solution
based on A* search (Zulehner, Paler, and Wille 2019).
Following this, people have approached the qubit rout-
ing problem in various ways. Some authors like Paler,
Zulehner, and Wille (2021) showed equivalence to trav-
eling salesman problem on a torus, others such as Cow-
tan et al. (2019) developed architecture-agnostic meth-
ods using graphs. Pozzi et al. (2022) approached the
problem using Double DQNs with simulated annealing.
Sinha, Azad, and Singh (2022) employed Monte Carlo
Tree Search (MCTS) aided by Graph Neural Networks
(GNN) and presented Qroute. More recently, Tang
et al. (2024) presented AlphaRouter, a solution which
integrates MCTS with Reinforcement Learning (RL).
Many heuristic-based approaches have also been imple-



Figure 1: A playout of level one. In the left tree the
best playout scores 20 and is associated to the third
move. So the third move is played at level 1, leading
to the middle tree. Playouts are played for the three
possible moves in the state of the middle tree and the
middle move is associated to the best playout, leading
to the tree on the left. The level one playout continues
like this until a terminal state.

mented by Wagner et al. (2023), Chand et al. (2019),
Cheng et al. (2024).

Nested Monte Carlo Search (NMCS) (Cazenave 2009)
is a search algorithm that performs playouts at differ-
ent recursive levels. A playout of level one chooses its
move to play until a terminal state by playing a stan-
dard playout for each possible move at each step (see
Figure 1). A playout of level two does the same ex-
cept that it plays playouts of level one for each possible
move at each step of the level two playout. NMCS has
been applied with success to various domains, starting
from puzzles such as Morpion Solitaire and Kakuro to
more recently retrosynthesis in Chemistry (Roucairol
and Cazenave 2024) improving the search of AIZyn-
thFinder (Genheden et al. 2020), Refutation of Spectral
Graph Theory Conjectures (Roucairol and Cazenave
2022) and generation of molecules (Roucairol et al.
2024).

We employ NMCS for our modified state and combi-
natorial action space in the qubit routing paradigm and
name the framework NesQ. We also implemented opti-
mization passes to further optimize the routed circuit,
naming the resulting algorithm NesQ+.

We compiled our routing algorithm as an off-the-shelf
Python module named NesQ. We acknowledge the au-
thors of Qroute (Sinha, Azad, and Singh 2022) for their
module documentation upon which we built our pack-
age. The framework will be made public on Github
as an all-inclusive Python module upon acceptance at
AISTATS 2025. The same ready-to-route module is at-
tached in the supplementary material for the reviewer’s
reference.

We will now list the major contributions of our work:

• We present a novel framework employing nested ver-
sion of Monte Carlo search to solve the qubit routing
problem.

• We added further optimization passes to optimize
the routed circuit and noticed a 13% lower average
circuit depth in our realistic circuit benchmark.

• We ran benchmarks based on various aspects: i)
Scalability on random circuits, ii) Realistic circuits,
and iii) Generalizability across device topologies. We
found our algorithm to exhibit an average of 10.55%
lower circuit depth than the existing state-of-the-art
framework in each of the benchmark while exhibiting
a 37.17% lower average runtime.

The remainder of this paper is organized as follows:
We begin by presenting a brief summary of preliminary
topics in Section . This is followed by a formulation of
our algorithm in Section . We benchmark our proposed
algorithm in Section and draw a conclusion in Section
.

Preliminaries and related works
Qubit routing
The problem of qubit routing consists of transforming a
given initial quantum circuit C by inserting SWAP gates
such that the routed circuit C′ satisfies the node connec-
tions of device topology D. Any quantum circuit can
be decomposed into layers such that each layer contains
non-overlapping qubits, i.e., the qubit gates involved in
a layer can be executed upon in parallel. The depth
of a quantum circuit is defined as the number of such
layers the circuit can be divided into, i.e., the number
of distinct time steps required to schedule all the gates.
The goal is then to minimize these overhead layers (the
added depth) after adding the SWAP gates. For a given
routing method R, the process of qubit routing can be
formulated as:

R(C,D)→ C′ (1)

Let us take a look at the elementary qubit routing
example presented in Fig 2. We are given a quantum
circuit (Fig 2(a)) to be compiled on a device with con-
nectivity graph as in Fig 2(b). One may either come
up with the idea of swapping q[1] and q[3] which adds a
circuit depth of 2, or swapping q[2] and q[3] which adds
no overhead depth. This example highlights the impor-
tance of strategically placing SWAP gates to minimize
overhead depth, especially as the number of operations
in the input circuit increase.

Nested Monte Carlo Search
Nested Monte Carlo Search (NMCS) is a search al-
gorithm that combines nested calls with randomness
in playouts and memorization of the best sequence
(Cazenave 2009). When the search is guided by ran-
dom playouts instead of a heuristic, it becomes impor-
tant to memorize the best sequence in the case when
nested search gives worse results than a previous search
or a search at lower levels. This is the key idea behind
NMCS. A step at each level plays each possible move
and tries to search for the best sequence (sequence asso-
ciated with the best score) using nested search at lower
level. If the best sequence is updated, we play the best
move from updated sequence, else we play the move
from the previously saved best sequence. The proce-
dure is presented in Algorithm 1.
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Figure 2: Elementary example to demonstrate qubit
routing. (a) depicts the input circuit, (b) is the con-
nectivity graph of the device on which the circuit is
compiled. (c) and (d) are two possible routing strate-
gies that satisfy the device topology constraints. The
parallelizable operations which constitute a layer are
highlighted in yellow.

Algorithm 1 The NMCS algorithm.

1: NMCS (state, level)
2: if level == 0 then
3: return playout (state)
4: end if
5: while state is not terminal do
6: for m in possible moves for state do
7: s← play (state, m)
8: s← NMCS (s, level − 1)
9: update best sequence using score (s)

10: end for
11: state← play (state, move of the best sequence)
12: end while
13: return state

MCTS for Quantum Circuit
Transformation

Previous works have used either plain MCTS for quan-
tum circuit transformation (Zhou, Feng, and Li 2020,
2022) or MCTS guided by Graph Neural Networks
(GNN) (Sinha, Azad, and Singh 2022).

The GNN was used in combination with MCTS in
a similar fashion to AlphaGo (Silver et al. 2016). The
GNN policy was used as a prior in the MCTS bandit
to explore more the moves with a high probability. The
GNN evaluation was used to evaluate the long term
reward of the newly created leaf of each MCTS descent.
Our proposed algorithm is different since we use NMCS
not MCTS.

Framework
Environment dynamics

The algorithm is fed the input circuit design and an
initial injective mapping, M : L → P where L and P
represent the set of logical and physical qubits, respec-
tively. The aim of the algorithm is to iteratively sched-
ule valid gate operations onto the target device topol-
ogy by placing some SWAP gates at each time step.
At each time step, the algorithm tries to convert cur-
rent operations (which are the set of first unscheduled
operations for each qubit involved) to local operations,
which are the set of free qubit operations which satisfy
the hardware constraints. The algorithm first schedules
all current operations which are inherently local. Then
to evolveMt, it leverages NMCS to find an optimal set
of SWAP gates such that no involved qubit is overlap-
ping or locked from a previous operation and all gates
are valid according to the device connectivity graph.
This process is repeated at each time step until the all
gates in the input circuit are compiled. It is impor-
tant to note that as the number of possible states while
building a tree varies exponentially with the depth of
the tree, we terminate the search at an intermediate
state where we choose to commit the set of SWAPs to
the current state. Lastly, we keep track of the set Yt
by employing mutex locks to freeze nodes that are cur-
rently being operated upon (Sinha, Azad, and Singh



2022). This helps us to naturally address the different
execution times required by different types of gates.

We now formulate the notion of state, move and ac-
tion for applying the Monte Carlo based method. Here,
move refers to a step in the tree search and action is
the step taken in the environment after building it up
move-by-move in a nested fashion according to Algo-
rithm 1.

State: The state space at each time step t tries to
encapsulate the device topology D and current compi-
lation progress, and is defined as:

st = {Mt,Ut,Yt,D} where Mt is the current map-
ping to the device, Ut is the set of unscheduled gates
and Yt stores the nodes locked at time step t due to a
previous unfinished operation.

Move: Since the set of SWAP gates to be scheduled
at any time step, i.e., the action has an exponential
relation with number of device edges, the action space
is combinatorial and thus we are forced to build up the
SWAP set move-by-move. Let us first define the set
of conditions C required to perform any valid action or
move:

• The involved nodes must not belong to Yt, i.e., not
being operated upon in the current time step.

• The added operation along with the set of all sched-
uled operations at the current time step must form
a parallelizable set.

• The added operation must contain local gates (must
be executable on the target device).

We are now in a position to define the two types of
moves:

• SWAP(n1,n2): This adds a SWAP gate between
nodes n1 and n2 such that C is satisfied. This move
is appended to the move-set (action) being built up.

• COMMIT: This is a terminal move which indicates
the completion of the formation of the move-set for
current time step. It also schedules the current ac-
tion (set of SWAPs) to the circuit and updates the
state. Finally, it resets the move-set to an empty list
for the next time step.

Action: Here, action is defined as the set of SWAP
gates to be scheduled at a time step t, such that all its
elements follow the condition set C. The action space is
combinatorial in nature as there are 2n possible actions
for n device edges.

Method

We use Nested Monte Carlo Search (NMCS) to guide
the search of optimal SWAP sets to execute at any given
time step t (see Algorithm 1). Given a state st, our
algorithm aims to return a set of device edge indices
where SWAP gates are to be scheduled. For this, we
perform a level one NMCS at st. A playout of level
one chooses its best move to play by searching until
a terminal state is encountered by playing a random
playout for each possible move and then finally choosing
either the move from the new or previously saved best

sequence. It plays this chosen move and transitions
to a new state. This process is repeated for each new
state until the best move chosen is COMMIT. These
best moves are a series of suggested SWAPs stored in
a bestSequence array which is finally returned to guide
the circuit compilation at time step t.

To keep track of possible legal moves while doing
playouts, we devise an action mask A corresponding
to any given state s, with cardinality of N + 1, where
N are the number of edges in the target device. The
elements of A are either true (if the move satisfies con-
dition set C) or false (if not). Further, the last element
of the mask points to the possibility of performing a
COMMIT action. We name this complete framework
NesQ and exhibit its efficacy in Section .

Optimization passes
The circuit depth of a routed circuit can be further
optimized by performing an additional step of transpiler
pass which has proven to improve the final circuit depth
in Qiskit (Aleksandrowicz et al. 2019). We extend the
NesQ algorithm to include the following passes:

• Optimize1qGates: Optimize chains of single-qubit
u1, u2, u3 gates by combining them into a single
gate.

• CommutativeCancellation: Cancel the redun-
dant (self-adjoint) gates through commutation rela-
tions.

With the transpiler pass on, we noticed a 13% lower
average circuit depth in the realistic circuit benchmark
discussed in Section . This encouraged us to include
optimization passes in our algorithm and name the final
procedure NesQ+.

Experiments and results
In this section, we will delineate the performance of our
algorithm on various circuit benchmarks by assessing
the output circuit depth, circuit depth ratio (CDR) (see
equation 2) and runtime. We choose these benchmarks
to realize three expected outcomes:

• The router is able to scale well with respect to num-
ber of gates in the circuit

• The router is able to perform well on realistic circuits

• The router is able to generalize well across various
hardware topologies

We compare our NMCS based agent to various routing
algorithms based on state-of-the-art frameworks: Qiskit
(basic, SABRE, stochastic) by IBM (Aleksandrowicz
et al. 2019), Cirq by Google (Developers 2024), t|ket
developed at Cambridge Quantum Computing (CQC)
(Sivarajah et al. 2020) and Qroute (Sinha, Azad, and
Singh 2022). We ran Qroute for a search depth of 250
in sections , and 300 in sections , . The results are
compiled on IBM’s QX20 Tokyo device.

CDR =
1

#circuits

∑
circuits

Output Circuit Depth

Input Circuit Depth
(2)



Scalability on random circuits

To demonstrate the scalability of our router on quan-
tum circuits, we design circuits on the fly with a same
number of qubits as nodes on the hardware topology.
We then insert two-qubit gates randomly between any
two logical qubits to build the final circuit (Sinha, Azad,
and Singh 2022). For our experiment, we simulate cir-
cuits with number of gates varying from 30 to 180 with
a step size of 5, giving us a total of 30 randomly simu-
lated circuits. We run all algorithms 10 times at each
step and plot the average output circuit depth with re-
spect to number of gates in the input circuit. These
results are presented in Fig 3(a). The average runtimes
are presented as a table in the supplementary material.
Note that we do only compare the runtime of NesQ and
NesQ+ with other MCTS based routers to have a fair
comparison. Circuit depth ratios are presented in Table
1.

(a)

(b)

Figure 3: Average output circuit depth (a) and cumu-
lative runtime (for 10 runs) in seconds (b) plotted with
respect to increasing number of gates in randomly sim-
ulated circuits.

We observed NesQ to have a lower output circuit
depth than other state-of-the-art routing algorithms,
to scale well with number of input gates (lower slope
in Fig 3(a)) and retain an average runtime faster by
35.26x than the Qroute algorithm presented by (Sinha,
Azad, and Singh 2022). This runtime advantage can be
attributed to the sample efficient way of doing rollouts
in a nested fashion by NMCS. On average, we found the
output circuit depth to be lower by 48.75% than Cirq,

51.60% than Qiskit basic, 14.83% than Qiskit stochas-
tic, 32.57% than Qiskit sabre, 30.42% than t—ket, and
40.02% than Qroute.

Realistic circuit benchmarks

Apart from simulated circuits, it is important to exam-
ine how well a qubit routing agent can perform on a
real-world circuit. We take the 158 circuit IBM-Q re-
alistic quantum circuit dataset provided by (Zulehner,
Paler, and Wille 2018). We divide the dataset into two
parts: i) Small circuits with 100 or fewer quantum gates
and ii) Large realistic circuits with up to 5960 gates.
The circuit depths and ratios along with runtimes are
discussed in the following subsections.

Small circuits We ran NesQ and NesQ+ along with
all state-of-the-art routers on the filtered small cir-
cuit dataset and plotted the cumulative output circuit
depths in Fig 4. While NesQ had a slightly higher cu-
mulative circuit depth than Qroute (2690 and 2583 re-
spectively), NesQ+ was able to beat all routers by a
minimum of 5.27% with a circuit depth of 2447. In the
cumulative runtime analysis, we found NesQ+ to have
a runtime of 1.864 minutes which was faster by a factor
64.91x than Qroute which took 121 minutes for rout-
ing the dataset. The runtime results are presented in
the supplementary material as a table. Lastly, Circuit
depth ratios are presented in Table 1.

Figure 4: Cumulative output circuit depth for different
routing algorithms (upto one standard deviation con-
sidered in error bars).

Large circuits Lastly, we ran all algorithms on 11
large realistic circuits in the dataset with gates vary-
ing from 154 to 5960. We present the output circuit
depths in Fig 5(a). NesQ+ was able to outperform all
other routers with a circuit depth ratio of 1.1512 next to
Qroute with a CDR of 1.307 and Qiskit stochastic with
1.517. All circuit depth ratios are presented in Table
1. On average, NesQ+ found an 11.54% lower depth
than Qroute and 24.26% than Qiskit stochastic. Run-
time analysis table is presented in the supplementary
material. Comparing runtimes, we found NesQ+ to be
11.35x faster than Qroute on average while Cirq took
66.44 hours for 5960 gates and 24.586 hours for 4459
gates. Also note that Qroute took 1944.404 minutes to



route “sym6 145” circuit with 1701 gates. We do not
report these values in Fig. 5(b) due to potential scaling
issues.

(a)

(b)

Figure 5: Output circuit depth (a) and runtime (in min-
utes) (b) for different routing algorithms on different
large circuits.

Generalizability across quantum devices

In this era of increasing quantum processors, each hav-
ing its unique network of physical qubits, it becomes
pertinent for a qubit routing agent to be able to gener-
alize across these devices without the need of training
models from scratch. For our experiment, we consider
IBM QX20 Tokyo (20 qubits), IBM-QX5 (16 qubits)
and Rigetti 19Q-Acorn (19 qubits). For these devices,
we test the best-performing algorithms (NesQ+ and
Qroute) across various large circuits and present the
ratio of routed circuit depth by NesQ+ and Qroute.
These results are presented as a heatmap in Fig (6).
The runtimes are presented in the supplementary ma-
terial. On average, NesQ+ is 94.86% faster than Qroute
on IBM-QX5, 83.16% faster on IBM QX20 Tokyo and
94.36% faster on Rigetti 19Q-Acorn. We observe that
NesQ+ outperforms Qroute on all configurations except
one. The lowest average ratio of CDRs is observed on
Rigetti 19Q-Acorn which is impressive as it is an archi-
tecture with sparse connectivity, containing nodes with
either a degree of 2 or at most 3 (Pozzi et al. 2022).

Conclusion
We presented NesQ+, a Nested Monte Carlo Search
algorithm which optimizes Qubit Routing for quantum
circuits. NesQ+ achieves lower circuit depths than all
the other routing algorithms we could test by an average
of 10.55%. It is also faster than other Monte Carlo
based methods by an average of 37.17%. It particularly
shines in large circuit benchmarks which displays its
robustness with respect to increasing number of gates
and layers.

There are many possible future works. For other
combinatorial problems, using a prior improved nested
search algorithms a lot. NesQ+ could benefit from us-
ing a heuristic as a prior for routing. Another possi-
ble improvement would be to try Deep Reinforcement
Learning algorithms for learning either an evaluation
function or a policy. The policy could be used associ-
ated to the evaluation function in an MCTS algorithm,
or it could serve as a prior for policy learning.
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Appendix

In this section, we present the runtime tables for dif-
ferent benchmarks shown in the main text. The results
for GNRPA are also included in this section. The small
circuit benchmark runtime table is attached as a csv
file along with the code.

Random circuit benchmark

The runtimes are presented in Table 2. Note that these
results are averaged over 10 runs for any given number
of gates.

Large circuit benchmark

The runtimes for different large scale circuits are shown
in Table 3.

Device benchmark

The time taken by NesQ+ and Qroute to route the
chosen circuits on different devices is given in Table 4.

Generalised Nested Rollout Policy
Adaptation (GNRPA)

Nested Rollout Policy Adaptation (NRPA) (Rosin
2011) combines nested search, memorizing the best se-
quence of moves found at each level, and the online
learning of a playout policy using this sequence. NRPA
has world records in Morpion Solitaire and crossword
puzzles and has also been applied to many other combi-
natorial problems such as the Traveling Salesman Prob-
lem with Time Windows (Edelkamp et al. 2013), 3D
Packing with Object Orientation (Edelkamp, Gath, and
Rohde 2014), the physical traveling salesman problem
(Edelkamp and Greulich 2014), the Multiple Sequence
Alignment problem (Edelkamp and Tang 2015), Logis-
tics, Graph Coloring, Vehicle Routing Problems, Net-
work Traffic Engineering, Virtual Network Embedding
(Elkael et al. 2022) or the Snake in the Box.

Generalized Nested Rollout Policy Adaptation (GN-
RPA) generalizes the way the probability is calculated
using a bias. The bias is a heuristic that performs non
uniform playouts and using it usually gives much bet-
ter results than uniform playouts. The use of a bias
has been theoretically demonstrated more general than
the initialization of the weights. The GNRPA paper
also provides a theoretical derivation of the learning
of the policy, using a cross entropy loss associated to
a softmax. GNRPA has been applied to some diffi-
cult problems such as Inverse RNA Folding and Vehicle
Routing Problems (Sentuc, Cazenave, and Lucas 2022)
with better results than NRPA.

While surveying different MCTS-based algorithms
for solving the qubit routing problem, we experimented
with Generalised Nested Rollout Policy Adaptation and
observed results at-par with most of the routers (see
Section ), except when circuit size increases (i.e. large
circuit experiment).

Algorithm

The idea behind GNRPA is to learn a rollout policy
by adapting the weights on each action. These weights
of choosing an action are modelled by first, hashing a
move m using a code function which gives each action
a unique address and then mapping this to the weights
using policy function. The GNRPA algorithm (see Al-
gorithm 4) performs fixed number of calls (N iterations)
to the lower level search and adapt function. At its base
level, the algorithm performs playout (see Algorithm 2)
with a probability equal to the softmax function ap-
plied to the weights plus the bias of the possible moves.
The idea of finding a new sequence of moves from lower
level searches and updating it based on score (reward)
holds as in NMCS. In each iteration, the policy is also
adapted (via Algorithm 3) by pushing the weights ac-
cording to moves in the best sequence found yet.

Algorithm 2 The playout algorithm

1: playout (policy)
2: state← root
3: while true do
4: if terminal(state) then
5: return (score (state), sequence(state))
6: end if
7: z ← 0
8: for m ∈ possible moves for state do
9: o[m]← epolicy[code(m)]+βm

10: z ← z + o[m]
11: end for
12: choose a move with probability o[move]

z
13: play (state, move)
14: end while

Algorithm 3 The adapt algorithm

1: adapt (policy, sequence)
2: polp← policy
3: state← root
4: for b ∈ sequence do
5: z ← 0
6: for m ∈ possible moves for state do
7: o[m]← epolicy[code(m)]+βm

8: z ← z + o[m]
9: end for

10: for m ∈ possible moves for state do

11: pm ← o[m]
z

12: polp[code(m)]← polp[code(m)]−α(pm−δbm)
13: end for
14: play (state, b)
15: end for
16: policy ← polp

Results

We ran level 1 GNRPA router for 250 iterations on
random and small quantum ciruit benchmarks. The
reason we leave out it for large scale quantum circuits



Gates NesQ Cirq Qroute GNRPA NesQ+
30 1.741882 0.095985 57.910772 80.375707 1.875454
40 2.321188 0.137800 91.984908 116.2286 2.524887
50 3.224417 0.185684 114.231547 158.796500 3.862081
60 4.343773 0.329320 182.626015 233.352610 5.248788
70 4.880676 0.414190 203.357469 233.359562 5.783488
80 5.690395 0.515367 248.183977 255.631882 6.534142
90 8.582040 0.704814 242.724301 312.194811 7.850141
100 7.485916 0.923527 263.054020 377.962436 8.297419
110 8.045412 1.279350 399.084266 400.819585 9.705672
120 9.823262 1.537304 363.455770 450.026435 9.970981
130 10.797684 2.012254 393.310650 503.998836 11.788189
140 12.106278 2.219034 443.379280 581.633442 10.778473
150 12.924456 3.202757 528.393336 650.770277 13.553065

Table 2: Average Runtimes (of 10 runs) for random circuit benchmark (in seconds)

Circuit Name Gates NesQ Cirq Qroute NesQ+
rd84 142 154 0.202823 0.037918 12.207869 0.270372
adr4 197 1498 11.086658 54.814014 99.807621 14.060009
radd 250 1405 9.683338 46.239436 86.420729 13.461079
z4 268 1343 7.301565 35.613734 131.339545 9.568750

sym6 145 1701 10.237229 58.775746 1944.404549 11.602539
misex1 241 2100 18.023073 142.878779 132.625253 23.869278
rd73 252 2319 19.430781 198.861971 175.083901 30.877758

cycle10 2 110 2648 27.617641 321.146342 195.689001 38.172365
square root 7 3089 35.293369 356.253962 214.469363 45.133008

sqn 258 4459 66.416509 1491.360893 330.1394166 85.826042
rd84 253 5960 120.109507 3986.860282 489.3008025 154.411345

Table 3: Runtimes for large realistic circuit benchmark in minutes.



Circuit Name Device NesQ+ Qroute

radd 250
qx5 11.30 133.39
qx20 12.05 89.18
acorn 13.30 245.71

z4 268
qx5 8.61 1238.17
qx20 9.64 119.50
acorn 10.96 1652.84

rd73 252
qx5 25.34 1396.74
qx20 25.80 165.37
acorn 29.18 2009.93

cycle10 2 110
qx5 34.80 356.34
qx20 36.07 188.15
acorn 43.84 460.99

sqn 258
qx5 91.05 1833.69
qx20 87.89 315.64
acorn 113.56 1015.75

Table 4: Time taken (in minutes) for NesQ+ and
Qroute to route selected large circuits over across dif-
ferent devices topologies.

Algorithm 4 The GNRPA algorithm

1: GNRPA (level, policy)
2: if level == 0 then
3: return playout (policy)
4: else
5: bestScore ← −∞
6: for N iterations do
7: (score,new) ← GNRPA(level − 1, policy)
8: if score ≥ bestScore then
9: bestScore ← score

10: seq ← new
11: end if
12: policy ← adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15: end if

is that we found it to take atleast 25 hours for circuits
with gate count of 1498 (adr4 197) or more.

Random circuit benchmark The runtimes are pre-
sented in Table 2. GNRPA maintains a slightly higher
runtime than Qroute for all circuits (25.29% on aver-
age) but successfully retains a lower circuit depth than
Qroute (by 20.23%), Cirq (by 31.86%), Qiskit basic
(by 35.69%), Qiskit sabre (by 34.38%) and Pytket (by
7.42%). NesQ was able to beat GNRPA by 24.6% lower
output circuit depth, reinforcing the superiority of our
algorithm.

Small realistic circuits benchmark GNRPA ex-
hibited a cumulative circuit depth of 3324 in this bench-
mark, next to Qiskit stochastic (3016) and lower than
the worst performing router, Cirq (3616). GNRPA took
234 minutes to route the dataset which was almost twice
compared to Qroute (121 minutes).


