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Abstract. The Inverse RNA Folding problem deals with designing a sequence
of nucleotides that will fold into a desired target structure. Generalized Nested
Rollout Policy Adaptation (GNRPA) is a Monte Carlo search algorithm for op-
timizing a sequence of choices. It learns a playout policy to intensify the search
of the state space near the current best sequence. The algorithm uses a prior on
the possible actions so as to perform non uniform playouts when learning the
instance of problem at hand. We trained a Transformer neural network on the
Inverse RNA Folding problem using the Rfam database. This network is used
to generate a prior for every Eterna100 puzzle. GNRPA is used with this prior to
solve some of the instances of the Eterna100 dataset. The Transformer prior gives
better result than handcrafted heuristics.
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1 Introduction

The Inverse RNA Folding problem is essentially the inverse of the folding problem.
Instead of finding the secondary structure of a given RNA sequence, the inverse fold-
ing problem deals with designing an RNA sequence that will fold into a desired target
secondary structure. RNA design has applications in RNA-based therapeutics and diag-
nostics.

Monte Carlo Tree Search (MCTS) [1, 2] has been successfully applied to many
games and problems [3]. It originates from the computer game of Go [4] with a method
initially based on simulated annealing [5]. The principles underlying MCTS then evolved
into a method using statistics on random games to find the best move [6]. It was further
refined to use a tree at the beginning of the playouts [1, 2]. It was a revolution in com-
puter Go and then in computer game playing. It is used in modern approaches to game
playing such as Alpha Zero [7].

Nested Monte Carlo Search (NMCS) [8] is a recursive algorithm which uses lower
level playouts to bias its playouts, memorizing the best sequence at each level. At each
stage of the search, the move with the highest score at the lower level is played by the
current level. At each step, a lower-level search is launched for all possible moves and
the move with the best score is memorized. At level 0, a random playout is performed,
playing randomly until a terminal state is reached. At the end, the score for the position
is returned. NMCS has given good results on many problems like puzzle solving, single
player games [9], retrosynthesis [10] or the Inverse RNA Folding problem with the
NEMO program [11].
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Based on NMCS, the Nested Rollout Policy Adaptation (NRPA) algorithm was in-
troduced [12]. NRPA combines nested search, memorizing the best sequence of moves
found, and the online learning of a playout policy using this sequence. NRPA achieved
world records in Morpion Solitaire and crossword puzzles and has been applied to many
problems such as object wrapping [13], traveling salesman with time window [14, 15],
vehicle routing problems [16, 17] or network traffic engineering [18].

GNRPA (Generalized Nested Rollout Policy Adaptation) [19] generalizes the way
the probability is calculated using a temperature and a bias. It has been applied to some
problems like Inverse RNA Folding [20] and Vehicle Routing Problem (VRP) [21].

This paper is organized as follows. The second section presents the Inverse RNA
Folding problem. The third section presents Monte Carlo Search. The fourth section
deals with Monte Carlo Search for Inverse RNA Folding. The fifth section describes
experimental results.

2 Inverse RNA Folding

The design of molecules with specific properties is an important topic for health related
research. RNA molecules are long molecules composed of four possible nucleotides.
Molecules can be represented as strings composed of the four characters A, C, G, U.
For RNA molecules of length N, the size of the state space of possible strings is expo-
nential in N. It can be very large for long molecules. The sequence of nucleotides folds
back on itself to form what is called its secondary structure. It is possible to find in a
polynomial time the folded structure of a given sequence. However, the opposite, which
is the Inverse RNA Folding problem, is hard [22].

We compare Monte Carlo Search algorithms on the Eterna100 benchmark which
contains 100 RNA secondary structure puzzles of varying degrees of difficulty. A puz-
zle consists of a given structure under the dot-bracket notation. This notation defines a
structure as a sequence of parentheses and points each representing a base. The match-
ing parentheses symbolize the paired bases and the dots the unpaired ones. The puzzle
is solved when a sequence of the four nucleotides A,U,G and C, folding according to
the target structure, is found. In some puzzles, the value of certain bases is imposed.
Figure 1 gives an example of an Eterna100 problem.

Where human experts have managed to solve the 100 problems of the benchmark,
no program has so far achieved such a score. The best score so far is 95/100 by NEMO,
NEsted MOnte Carlo RNA Puzzle Solver [11] and by GNRPA [20].

3 Monte Carlo Search

This section presents the GNRPA algorithm which is a generalization of the NRPA
algorithm to the use of a prior.

The Nested Rollout Policy Adaptation (NRPA) [12] algorithm is an effective combi-
nation of NMCS and the online learning of a playout policy. NRPA holds world records
for Morpion Solitaire and crosswords puzzles.
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Fig. 1. Example of a RNA design puzzle from Eterna100: the Shooting Star. The as-
sociated target structure is: (((((((((((((((((...(.(..((.(((.(((.((....).))).)))).).)..))..))))))).(((((..(
.(..((.(((.(((((.(((.((((.((....).)))).))))).))).)))).).)..))..)(....)..))))((( ((((((...))))).(((((...)))))(.(....).).)))).))))
.((((.((((...(((((((...))))))).(((((...)))))))))(((((((...))))))).(((((...)))))))))((((..(....)(..(..(..(.(.(((.((((.((....).))
)).)))).)..)..).)..))))).)))))).

In NRPA/GNRPA each move is associated to a weight stored in an array called
the policy. The goal of these two algorithms is to learn these weights using the best se-
quences of moves found during the search. The weights are used in the softmax function
to produce a playout policy that generates good sequences of moves.

NRPA/GNRPA use nested search. In NRPA/GNRPA, each level takes a policy as
input and returns a sequence and its associated score. At any level > 0, the algorithm
makes numerous recursive calls to the lower level, adapting the policy each time with
the best sequence of moves to date. The changes made to the policy do not affect the
policy in higher levels. At level 0, NRPA/GNRPA return the sequence obtained by the
playout function as well as its associated score.

The playout function sequentially constructs a random solution biased by the weight
of the moves until it reaches a terminal state. At each step, the function performs Gibbs
sampling, choosing the actions with a probability given by the softmax function.

Let wm be the weight associated to a move m in the policy. In NRPA, the probability
of choosing move m is defined by:

pm =
ewm∑
k e

wk

where k is an element of the set of possible moves, including m.
GNRPA [19] generalizes the way the probability is calculated using a temperature τ

and a bias βm. The temperature makes it possible to address the exploration/exploitation
trade-off. The probability of choosing move m becomes:

pm =
ewm+βm∑
k e

wk+βk

By taking βk = 0, we find again the formula for NRPA.
In NRPA it is possible to initialize the weights according to a heuristic relevant to

the problem to solve. In GNRPA, the policy initialization is replaced by the bias. It is
sometimes more practical to use βk biases than to initialize the weights as the codes for
the moves can be different from the codes of the biases.
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The algorithm to perform playouts in GNRPA is given in algorithm 1. The main
GNRPA algorithm is given in algorithm 3. Is calls the adapt algorithm to modify the
policy weights so as to reinforce the best sequence of the current level. The policy is
passed by reference to the adapt algorithm which is given in algorithm 2.

The principle of the adapt function is to increase the weights of the moves of the best
sequence of the level and to decrease the weights of all possible moves by an amount
proportional to their probabilities of being played. δbm = 0 when b ̸= m and δbm = 1
when b = m.

Algorithm 1 The playout algorithm
1: playout (policy)
2: state← root
3: while true do
4: if terminal(state) then
5: return (score (state), sequence(state))
6: end if
7: z← 0
8: for m ∈ possible moves for state do
9: o[m]← epolicy[code(m)]+βm

10: z ← z + o[m]
11: end for
12: choose a move with probability o[move]

z

13: play (state, move)
14: end while

Algorithm 2 The adapt algorithm
1: adapt (policy, sequence)
2: polp← policy
3: state← root
4: for b ∈ sequence do
5: z ← 0
6: for m ∈ possible moves for state do
7: o[m]← epolicy[code(m)]+βm

8: z ← z + o[m]
9: end for

10: for m ∈ possible moves for state do
11: pm ← o[m]

z

12: polp[code(m)]← polp[code(m)]− α(pm − δbm)
13: end for
14: play (state, b)
15: end for
16: policy ← polp
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Algorithm 3 The GNRPA algorithm.
1: GNRPA (level, policy)
2: if level == 0 then
3: return playout (policy)
4: else
5: bestScore←−∞
6: for N iterations do
7: (score,new)← GNRPA(level − 1, policy)
8: if score ≥ bestScore then
9: bestScore← score

10: seq← new
11: end if
12: policy← adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15: end if

Algorithm 4 The GNRPALR algorithm.
1: GNRPALR (level, policy)
2: if level == 0 then
3: return playout (policy)
4: else
5: bestScore←−∞
6: repetitions← 0
7: while repetitions < R do
8: (score,new)← GNRPALR(level − 1, policy)
9: if score = bestScore then

10: repetitions← repetitions+ 1
11: end if
12: if score > bestScore then
13: repetitions← 0
14: bestScore← score
15: seq← new
16: end if
17: policy← adapt (policy, seq)
18: end while
19: return (bestScore, seq)
20: end if
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The GNRPA with Limited Repetitions (GNRPALR) algorithm has been recently
proposed in [23]. It stops searching at a level if the best score repeats a given number
of times. the GNRPALR algorithm is described in algorithm 4.

4 Monte Carlo Search for Inverse RNA Folding

This section presents our contributions to Monte Carlo Inverse RNA Folding. It starts
with defining the state space of the problem. It then recalls previous work. The training
of a transformer to learn a policy is then presented, followed by the use of the most
probable sequence to build a prior and of the use of the Transformer policy to sample
the state space.

4.1 The State Space

The state space is the set of all sequences that are consistent with the secondary struc-
ture given as input. The secondary structure is a sequence of characters. The possible
characters are ’.’, ’(’ and ’)’. For each ’.’ in the input sequence there are four possi-
ble characters in the nucleotide sequence: ’A’, ’C’, ’G’ and ’U’. Each ’(’ character is
associated to the ’)’ character that closes the expression it has opened (e.g. when the
same number of ’(’ and ’)’ are in between the two). Six pairs of characters are possible
to replace the ’(’ and the corresponding ’)’: ’CG’, ’GC’, ’GU’, ’UG’, ’AU’ and ’UA’.
When a nucleotide sequence is complete, the ViennaRNA package [24] is used to fold
the sequence and verify if it folds into the target structure.

The score of a sequence of nucleotide is computed the same way as NEMO [11]
using the ViennaRNA package [24]. Refinements on the scoring function are possible
such as the ones presented in [25].

4.2 Previous Work

NEMO, the NEsted MOnte Carlo RNA Puzzle Solver [11] uses NMCS [8] with a
handcrafted heuristic playout policy to solve the Inverse RNA Folding problem. It was
tested on the Eterna100 dataset. NEMO solved 95 problems out of the 100 problems of
Eterna100. This is the best score achieved so far.

The NEMO heuristic mainly consists in probabilities for pairs of bases.
Refinements of GNRPA achieved the same score as NEMO using the pairs of bases

heuristics of NEMO as a prior [20]. The refinements that improved the results were
Stabilized GNRPA [26], Beam GNRPA [27, 28], delayed learning [20, 29], and root
and leaf parallelization [30].

In this paper, we will only present experimental results for standard GNRPA and
GNRPALR. There is no doubt that the previously cited enhancements presented in [20]
would improve the results.

Self-play reinforcement learning was also used for the Inverse RNA Folding prob-
lem [31].
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4.3 Training a Transformer on RFAM

We trained a Transformer to find the nucleotides that fold into a predefined structure.
During training, by taking for each position the most likely character as predicted by
the model, the accuracy on the validation set reaches 90%. On the test set, we com-
pute again the true accuracy and observe a respectable 60% achieved by the model for
sequence comparison. When comparing structure accuracy, we also achieved decent re-
sults with 56% accuracy. Outputting a sequence from the model at once (using all likely
characters from initial distributions) led to noticeably worse results (42%) compared to
sequentially decoding each character.

4.4 The Transformer Prior

The transformer prior consists in sampling the most probable sequence according to the
Transformer. At each step of the sequence the most probable move is played and the
probabilities for all the moves are memorized. In the hand we have for each index of
the sequence, and for each possible move at this index, an associated probability. The
bias is then computed using a value of 3.0 if the move is the most probable one and
βm = log(proba[m]) if the move is not the most probable one. The principle is to use
the Transformer policy for moves that are not the most probable one since βm is used
in a softmax function, and to give a stronger bias to the most probable move since this
is the one used to assess the probabilities for the end of the most probable sequence.

4.5 Sampling Sequences

Given a target secondary structure, instead of constructing the sequence with the most
likely characters as per the model output probabilities, we sample a character from those
same distributions and sequentially construct a candidate solution.

We thus propose to generate batch of candidate sequences sampled from our model’s
distributions for a given target secondary structure and observe if any sequence comes
close to a solution.

5 Experimental Results

We present results about sampling with the Transformer policy and about different GN-
RPA algorithms with the Transformer and the NEMO priors.

5.1 Sampling Sequences

Sampling one whole sequence could take up to 20 seconds for the longest structures
on the Eterna100 benchmark. To test this approach, we only focus on 11 Eterna100
puzzles: Structure no. 78 and the last 11 ones (90 to 100). This allows us to confront
our approach to the hardest structures (78, 97, 99, 100) that were not solved by neither
NEMO nor GNRPA. The 7 other ones are also some of the harder ones in the benchmark
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(90 was only solved in 2 hours by GNRPA, 91 is not solved by GNRPA but by NEMO,
94 is solved by GNRPA but not by NEMO).

For each structure, we sample 5000 sequences (that are not necessarily distinct).
Each run of 5000 sequence generation lasted around 20 hours.

The results we obtained were quite interesting. First, we observe that problems 92
and 98 are solved in most cases (i.e structure accuracy of 1). More than 3000 sequences
for problem 92 and more than 2000 sequences for problem 98 fold into the exact target
secondary structure. To a lesser extent, many sequences generated for problem 93 and
95 also folded into the desired structure (respectively around 700 and 150). Using the
model’s distributions allows for solving quite difficult RNA structures.

However, we did not observe the same success for the harder structures. Problems
78, 90, 91, 94, 96, 97, 99 were never quite solved. No sequences sampled ever folded
into the exact target structure. Perhaps the most interesting result of our experiments
was our results on problem 100. Of the 5000 sampled sequences, 8 folded into the
target secondary structure. While with this method we did not solve problems 90, 91,
94 and 96 although they were solved by either NEMO, GNRPA or both, we managed
to solve problem 100 that was solved by neither.

Sampling from the model’s distributions proven to be a promising approach, we aim
to combine these distributions with more sophisticated algorithms such as NMCS and
GNRPA to improve upon previous results.

5.2 GNRPA

We experimented with NRPA, GNRPA and GNRPALR with the NEMO and the Trans-
former priors. The NEMO prior is only a subset of the priors used in NEMO. It uses
the heuristic functions on the pairs of bases. The pairs of bases heuristics are the main
components of the NEMO prior. The same subset of heuristics were already used with
GNRPA [20], equaling the 95/100 score of NEMO.

For the GNRPALR algorithm the best results were obtained with R = 1. The com-
parison of the algorithms is given in Table 1. GNRPALR with the Transformer prior
gives the best results.

Table 1. Number of Eterna100 problems solved by different algorithms and various search time
limits in seconds. The best algorithm is GNRPALR Transformer prior with 0 repetitions. GNRPA
is much better than NRPA. The Transformer prior is slightly better than the NEMO prior when
combined with GNRPA. The Transformer prior is much better than the NEMO prior when com-
bined with GNRPALR.

Algorithm 32s 64s 128s 256s 512s 1,024s 2,048s 4,096s

NRPA 28 33 41 48 57 59 61 65
GNRPA NEMO prior 68 69 74 77 78 79 81 81
GNRPA Transformer prior 71 72 75 78 79 80 81 82
GNRPALR NEMO prior 70 72 76 79 79 81 81 82
GNRPALR Transformer prior 72 73 76 81 82 82 84 88



Monte Carlo Inverse RNA Folding 9

6 Conclusion

We described Monte Carlo Search algorithms that can be used to address the Inverse
RNA Folding problem. These algorithms make use of a prior to perform non uniforms
playouts. The prior can be learned training a Transformer neural network on the Rfam
database of folded RNA sequences. Sampling sequences with the Transformer policy
enables to solve difficult problems from the Eterna100 dataset which was not used for
training. The most probable sequence played with the Transformer network can also
be used as a prior for Monte Carlo Search algorithms. This prior improves on previous
work when used in combination with the GNRPALR Monte Carlo Search algorithm.
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