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Abstract. Monte Carlo Tree Search and Monte Carlo Search have good
results for many combinatorial problems. In this paper we propose to use
Monte Carlo Search to design mathematical expressions that are used as
exploration terms for Monte Carlo Tree Search algorithms. The Monte
Carlo Tree Search algorithm we aim to optimize is SHUSS (Sequential
Halving Using Scores). We automatically design the SHUSS root explo-
ration term. For small search budgets of 32 evaluations the discovered
root exploration term makes SHUSS competitive with usual PUCT (Pre-
dictor Upper Confidence bounds for Trees).

1 Introduction

Monte Carlo Tree Search [13, 23] is a well known family of algorithms that were
designed for the game of Go and then applied to many different combinatorial
problems [2, 42].

Our goal in this paper is to use Monte Carlo Search to improve Monte Carlo
Tree Search. This is part of a longstanding goal of using Artificial Intelligence
to improve Artificial Intelligence [33].

The usual way to design an exploration term is to make a theoretical anal-
ysis [1]. We take another empirical approach. We randomly generate many ex-
ploration terms and keep the ones that work well in practice. This is a simpler
approach, yet it can find exploration terms that work well in practice and that
surpass the ones found with a theoretical analysis.

Another approach to the automatic improvement of Monte Carlo Tree Search
exploration terms is to use Genetic Programming. It could evolve Monte Carlo
Tree Search algorithms, improving on UCT and RAVE for the game of Go [5].
However this approach relies on making the exploration terms play against each
other which is time consuming. It is also more complicated than the method we
propose in this paper.

Monte Carlo Tree Search combined with Deep Reinforcement Learning has
been used to improve algorithms. AlphaTensor discovered new fast matrix multi-
plications algorithms playing the tensor game [16]. AlphaTensor as well as other
Monte Carlo Tree Search algorithms have also been used for quantum circuit
optimization [20, 43, 34, 35]. New fast sorting algorithms were discovered thanks
to Monte Carlo Tree Search with the AlphaDev system [27].
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Monte Carlo Search has been used for discovering mathematical expressions
that maximize a given score function [6, 7]. This was applied to different domains
including physics [41], finance [10], and the automated design of functions [21].

Refinements of the Monte Carlo Search approach to mathematical expres-
sions discovery include incorporating actor-critic in Monte Carlo Tree Search
for symbolic regression [25], using a grammar of Monte Carlo Search algorithms
[26], controlling the size [29], and using GPT as a prior [24].

The automated discovery of optimization algorithms with symbolic program
search recently enabled to discover a simple and effective optimization algorithm,
Lion (evoLved sIgn mOmeNtum). Lion is more memory-efficient than Adam as
it only keeps track of the momentum [12].

Our work is in line with these uses of Artificial Intelligence to discover new
Artificial Intelligence algorithms. Our goal is to use Monte Carlo Search to dis-
cover a new root exploration term for the SHUSS algorithm [15].

Our contributions are:

– An efficient method to empirically design exploration terms.
– The AMAF prior for non uniform playouts in Monte Carlo Search applied

to the discovery of mathematical expressions.
– The design of a curriculum learning dataset for discovering exploration terms.
– A better way of selecting moves for SHUSS according to their priors given

by the policy network.

The second section presents various Monte Carlo Tree Search algorithms.
The third section explains how we generate mathematical expressions for the
exploration terms. The fourth section details experimental results.

2 Monte Carlo Tree Search

In this section we present various Monte Carlo Tree Search algorithms, starting
with PUCT the most popular one which is used in Alpha Zero and that is stan-
dard in computer games. We then define the AMAF prior that can be used to
play non uniform playouts biased toward the actions that give better playouts
scores. It uses statistics on the playouts that contain an action to calculate its
probability of being played as explained in the following subsection on sampling.
We then present the Sequential Halving algorithm as well as the related Sequen-
tial Halving Using Scores (SHUSS) algorithm. We end this section explaining
how generated exploration terms can be used for SHUSS.

2.1 PUCT

Monte Carlo Tree Search was designed for computer Go and made a revolution
in computer Go [13, 23] and then in computer game playing [17, 28]. The current
standard algorithm for Monte Carlo Tree Search is PUCT. This is the search
algorithm used in AlphaGo [38], AlphaGo Zero [39], AlphaZero [40] and MuZero
[37].
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Fig. 1: The three steps of MCTS. The first step is the tree descent using the
exploration term to choose among the children. The second step is adding a new
leaf associated to an evaluation of the state by the value network. The third step
is updating the statistics in the tree with the evaluation.

Figure 1 gives the three steps of MCTS. The principle of the algorithm is to
memorize the already explored states as well as the associated statistics for the
possible actions in these states. When the algorithm encounters a state he has
already explored, it uses an exploration term to choose the next action to play.
The average of the previous evaluations associated to an action a in state s is
Q(s, a). The number of descents that have passed by state s is N(s) and the
number of descent in s that have played action a is N(s, a).

A neural network is used at the leaves of the tree to evaluate the leaf and
calculate probabilities for the possible actions. The probability, as estimated by
the neural network, that action a is the best in state s is P (s, a).

The exploration term which is added to Q(s, a) in PUCT is:

cp × P (s, a)×
√
N(s)

1 +N(s, a)

The constant cp is an hyper parameter that has to be tuned for each problem.
In the following we use pr for P (s, a) the probability for action a in state s

given by the neural network policy head.

2.2 The AMAF prior

The All Moves As First (AMAF) heuristic comes from computer Go [4]. It
calculates statistics on moves independently of when the moves were played in
a playout. It is used in General Game Playing [32] in the MAST algorithm [18].
It was also used in computer Go in the RAVE [19] algorithm. The principle of
RAVE is to bias the tree policy with the AMAF statistics of the node. RAVE
is much better than UCT for the game of Go. RAVE was later generalized to
GRAVE [8] by using AMAF statistics of an ancestor node of the tree instead of
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the AMAF statistics of the node. GRAVE has much better results than RAVE
for many games. It has good results in General Game Playing. It is the standard
Monte Carlo Tree Search algorithm used in the Ludii system [3].

We now define a more elaborate version of AMAF. If P is the set of the
playouts and s(p) is the score of playout p ∈ P, we define:

µ =

∑
p∈P s(p)

|P|

Pa = {p ∈ P | a ∈ p}

µa =

∑
p∈Pa

s(p)

|Pa|
− µ

maxi = max
a

(|µa|)

z =
∑
a

e
µa

maxi

AMAF (a) =
e

µa
maxi

z

2.3 Sampling

The basic algorithm in Monte Carlo Search is sampling. It performs playouts by
randomly choosing actions until it reaches a terminal state.

It usually improves the results of the playout to adopt a non uniform strategy
for sampling. A policy can attribute different probabilities to the possible actions
in a state. The sampling algorithm can then choose the next action to play
according to these probabilities.

It is also possible to use a temperature τ to make the policy more or less
exploratory. In the case of AMAF, if A is the set of the possible actions in state
s, sampling with a temperature τ consists in choosing the next action a with
probability pa:

pa =
e

log(AMAF (a))
τ

z

z =
∑
a∈A

e
log(AMAF (a))

τ
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2.4 Sequential Halving

Sequential Halving [22] is an algorithm that minimizes the simple regret. It has
successfully been used as an alternative to UCB in Monte Carlo Tree Search, in
particular as a replacement in the root node with UCB used in the rest of the
tree [31], or even in the whole tree with SHOT [9]. It was applied to games as
well as to partially observable games [30]. Sequential Halving was also used as a
root policy with Gumbel MuZero [14]. The outputs of the Sequential Halving at
the root were used for reinforcement learning in the MuZero algorithm. Gumbel
MuZero was successfully applied to Go, Chess and Atari games.

Algorithm 1 gives the Sequential Halving algorithm used in SHUSS [15]. This
is the one we use in this paper with λ = 1

2 . The principle of the algorithm is
to allocate the same number of playouts to all the actions in the set of actions
Sr. It then selects half of the actions in Sr that have the best empirical average.
This best half constitutes Sr+1. The algorithm continues to allocate playouts
to remaining actions and to select the best half until there is only one action
remaining in SR.

Algorithm 1 Sequential Halving

Parameter: cutting ratio λ
Input: total budget T , set of arms S
S0 ← S, T0 ← T
R← number of rounds before |SR| = 1
for r = 0 to R− 1 do

tr ← ⌊ Tr
|Sr|·(R−r)

⌋
Tr+1 ← Tr − tr|Sr|
sample tr times each arm in Sr

Sr+1 ← Sr deprived of the fraction 1− λ of the worst arms
end for
Output: arm in SR

2.5 Sequential Halving Using Scores

SHUSS [15] is an improvement of Sequential Halving that uses a prior to improve
the move selection at the root. The prior can be used either to eliminate moves
or to bias the selection of the actions.

When the prior is standard AMAF it selects the moves to keep using:

Q̃a = Qa + C × StandardAMAF (a)

N(root, a)

StandardAMAF (a) =

∑
p∈Pa

s(p)

|Pa|
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In case of a prior given by a neural network, it uses the classic Sequential
Halving algorithm restricted to a fixed number of moves that have the best
priors.

2.6 Using an exploration term for the selection of moves in SHUSS

In the same spirit as SHUSS it is possible to use various exploration terms
for choosing the moves to keep at the end of a round of Sequential Halving.
Algorithm 2 gives the move selection process with an exploration term. The
principle is to take the best half of the moves that maximize the expression.
If the expression is the usual empirical average then the algorithm is the usual
Sequential Halving algorithm.

Algorithm 2 Selection of the moves to keep for the next round

Parameter: cutting ratio λ
Input: set of moves Sr

Sr+1 ← ∅
for i = 0 to λ× |Sr| do

bestScore← −∞
for j = 0 to |Sr| do

if Sr[j] ̸∈ Sr+1 then
if expression(Sr[j]) > bestScore then

bestMove← Sr[j]
bestScore← expression(Sr[j])

end if
end if

end for
Sr+1 ← Sr+1 ∪ {bestMove}

end for
return Sr+1

3 Generating Mathematical Expressions

In this section we detail the algorithms we use to discover mathematical expres-
sions. We first define the expression discovery game, and then explain how to
sample expressions for this game.

3.1 The expression discovery game

The expression discovery game is used to generate and evaluate expressions that
are used as the SHUSS exploration term. Expression trees are represented as
stacks in reverse polish notation. For example the generated expression [+, pr,
*, *, 2, sc, sc] corresponds to the exploration term pr+2×sc×sc where sc is the
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sum of the scores of the playouts starting with the move to evaluate and pr the
prior for that move. The evaluation of an expression in reverse polish notation
is algorithmically simple as it uses a straightforward depth first search.

In order to limit the size of the generated expressions, we maintain the num-
ber of open leaves of an incomplete expression. This is the total number of
children of the atoms of the expression that are not yet associated to an atom.
In the root node the number of open leaves of the empty expression is 1. If for
example a ’+’ atom is assigned to the root, then there is one open leaf less due
to the assignment and two open leaves more due to the ’+’ having two chil-
dren not yet assigned. In order to generate expressions that are smaller than
the maximum length, the legal moves function does not return atoms that make
the number of already assigned atoms plus the number of open leaves plus the
number of children of the atom greater than the maximum length.

The atoms we used to generate expressions are:

– 1, 2, 3 and 100 numbers.
– sc: the sum of the scores of the playouts starting with the move.
– pr: the prior for the move given by the policy head.
– nbp: the number of playouts starting with the move.
– nb: the total number of playouts.
– +, -, *, /, log, exp, =, max and min operators.

3.2 Sampling

The default sampling procedure is uniform sampling. It is possible to replace it
with non uniform sampling using the AMAF prior.

In our code for sampling mathematical expressions, the possible atoms are
defined in a list and the number of children of each atom is defined in the corre-
sponding children list. A state is a possibly incomplete mathematical expression
in reverse polish notation. It is associated to a number of open leaves which is
the minimum number of atoms that have to be added to the expression in order
to have a complete expression.

The usual functions to define a problem for Monte Carlo Search are defined
as follows for the mathematical expression discovery game:

– The legal moves function takes as parameters an incomplete expression and
the number of associated open leaves. It returns the list of atoms that can
be added to the incomplete expression. It verifies that adding an atom does
not exceed the maximal number of atoms for the final complete expression.

– The play function just adds the selected atom to the expression and also
returns the updated number of open leaves.

– The terminal function returns True when the expression is complete.
– The playout function is the usual uniformly random playout function that

randomly adds authorized atoms to the expression until the expression is
complete.
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4 Experimental Results

In this section we experiment the discovery of Monte Carlo Tree Search root
exploration terms in the game of Go. We present the computer Go dataset that
was used to train a transformer network for the game of Go. The transformer
network is used to generate the SHUSS dataset that is in turn used to evalu-
ate generated root exploration terms. We compare uniform sampling to AMAF
sampling for the discovery of root exploration terms. We apply the framework
to the discovery of root exploration terms for SHUSS. We then test the discov-
ered exploration terms in a Go program, making the new algorithm play against
standard PUCT.

4.1 The computer Go dataset

The computer Go dataset is composed of games played by Katago [44] against
itself in 2022. There are 1,000,000 different games in total in the training set.
The input data is composed of 31 19x19 planes (color to play, ladders, current
state on two planes, two previous states on four planes). The output targets are
the policy (a vector of size 361 with 1.0 for the move played, 0.0 for the other
moves), and the value (close to 1.0 if White wins, close to 0.0 if Black wins). The
test set is composed of 50,000 states taken randomly from 50,000 games that are
not used in the training set.

4.2 The neural network

We trained a computer Go vision transformer network [36] using 2,000 epochs
with 100,000 states per epoch. The loss for the policy head is a categorical cross
entropy and the loss for the value head is a binary cross entropy. The optimizer
is Adam and the learning rate decreases according to a cosine annealing [11].
The network reached an accuracy of 57.75% on Katago moves, a Mean Squared
Error (MSE) of 0.0334 and a Mean Absolute Error (MAE) of 0.117.

4.3 The SHUSS dataset

The time required to precisely evaluate a generated expression in a real Go play-
ing program can be huge. For example making a Sequential Halving algorithm
with a generated expression play against a standard PUCT for 500 games with
1024 playouts per move takes days.

In order to have a fast evaluation of a given exploration term we built a
dataset of states associated to their cached search. The policy learned by the
neural network is of high quality. Out of the 2,000 states taken from the test set
only 77 of them have a prior less than 0.01. In the remaining of the experiments,
we only use moves that have a prior greater or equal to 0.01 for Sequential
Halving. For each of the moves that have a prior greater or equal to 0.01, we
call PUCT starting with the move a fixed number of times (e.g. 32) and store
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the sequence of evaluations returned by the successive calls to PUCT after the
fixed first move. Therefore for all moves we have an associated sequence of 32
evaluations that can be used to simulate the calls made by Sequential Halving
while not using the inference by the neural network. This enables a very fast
evaluation of a given Sequential Halving exploration term as the neural network
is not used anymore to calculate the accuracy of the exploration term. The label
of a state is the move found by Sequential Halving with 128 evaluations. The
accuracy of an exploration term is defined as the percentage of labeled moves
found by the Sequential Halving algorithm with 32 evaluations on the 2,000
cached states.

In order to speed up the evaluation of the exploration terms we stop eval-
uating the accuracy of an exploration term if it scores less than a threshold of
80 after 200 states. We also use memoization of the scores of the exploration
terms in a dictionary as well as the memoization of the sums of scores for a
given number of playouts and a given first move.

In the experiments we run 100 processes generating exploration terms in
parallel for 512 seconds. It results in 354,400 exploration terms being evaluated.

4.4 AMAF sampling

The evolution of the best accuracy on the Sequential Halving moves with 128
evaluations is given in Figure 2 both for uniform sampling and for AMAF sam-
pling. AMAF sampling is much better.

4.5 Discovering a SHUSS exploration term

Table 1 gives the accuracy of different exploration terms for the Sequential Halv-
ing moves. The prior pr is much worse than the standard Sequential Halving al-
gorithm sc on this dataset. The sampling algorithm finds the sc× (pr+ sc× sc)
exploration term that is better than both.

Exploration Term Accuracy on the SHUSS dataset

pr 44.85%
sc 71.45%
pr + 2× sc× sc 72.85%

Table 1: Accuracy of SHUSS with 32 evaluations on the SHUSS dataset. The
SHUSS label moves are found using Sequential Halving with 128 evaluations. The
accuracy is calculated on the moves found by SHUSS with 32 evaluations and
the depicted exploration term for halving. The sc exploration term corresponds
to standard SHUSS. The pr + 2× sc× sc has a slightly better accuracy on the
SHUSS dataset.
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4.6 Testing the SHUSS exploration term in a Go program

We evaluate the different exploration terms by using them in a computer Go
program. The SHUSS algorithm using an exploration term plays 400 games
against PUCT. Both algorithms use 32 evaluations for choosing their move.
PUCT chooses the most simulated move and SHUSS chooses the only remaining
move in SR. The results for standard SHUSS with the usual exploration term sc
are given in Table 2. We can observe that the standard SHUSS is weaker than
PUCT. The exploration term pr + 2× sc× sc is also tested against PUCT. For
all the PUCT constants we tested, SHUSS with the discovered exploration term
is better than PUCT. The best result for PUCT is that SHUSS wins 51.00%
of its games. So we can say that the discovered exploration term made SHUSS
competitive with PUCT.

If we analyze the discovered exploration term pr + 2 × sc × sc, we see that
when there are only a few playouts it takes into account the prior so as not to
eliminate moves that have a great prior. When the number of playouts is greater,
the 2 × sc × sc value becomes much greater than the prior and the moves are
sorted according to the square of the sum of their scores and not much according
to their prior anymore.

Fig. 2: Evolution of the best expression accuracy with the logarithm of the sam-
pling search time with doubling search times. Each measure is the average of 100
runs of the sampling algorithms. Using the AMAF prior improves the results.
It finds the same accuracy more than 8 times faster than the uniform sampling
algorithm. The temperature of the AMAF sampling is set to 1

5 . The dataset
used is the Sequential Halving moves with 128 evaluations dataset and the ex-
ploration terms are scored using 32 evaluations on each state out of the 2,000
states.
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Exploration Term Winrate against PUCT

sc 42.50%
pr + 2× sc× sc 51.00%

Table 2: Winrates of standard SHUSS (the exploration term is sc) and SHUSS
with the pr + 2 × sc × sc exploration term against PUCT. The two SHUSS
algorithms use 32 evaluations and the 5 best prior moves. PUCT also uses 32
evaluations. We see that the discovered exploration term is an improvement on
standard SHUSS. The 400 starting states are taken from the Katago dataset test
set games by playing 20 moves by Katago from the beginning of the games. The
resulting states are balanced according to Katago.

5 Conclusion

We presented a simple yet efficient method to find new exploration terms for
Monte Carlo Tree Search. It uses sampling of mathematical expressions and a
fast evaluation of the generated expressions. The generated exploration terms are
simple. For search with a small number of evaluations, the method discovered an
exploration term that works better than the usual exploration term for Sequen-
tial Halving. The discovered exploration term also beats the canonical PUCT
algorithm for small equivalent search times. We also proposed the AMAF prior
for sampling mathematical expressions. It reaches a score approximately 8 times
faster than uniform sampling.

Our method to discover new exploration terms is simple, fast, general and
empirically adapts the generated mathematical expressions to the problem at
hand.

Future work involves accelerating the discovery of the expressions and apply-
ing the algorithm to other problems. It would also be interesting investigating
the generation of more general expressions by evaluating them on more varied
data, for example with different numbers of playouts or even for different games
or problems.

From a more general point of view, Artificial Intelligence is becoming powerful
enough to help discover new Artificial Intelligence algorithms. There are many
further developments along the line of using Artificial Intelligence to improve
Artificial Intelligence.
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