
Learning a Prior for Monte Carlo Search by
Replaying Solutions to Combinatorial Problems

Tristan Cazenave ID

LAMSADE, Université Paris Dauphine - PSL, CNRS, Paris, France

Abstract. Monte Carlo Search gives excellent results in multiple difficult com-
binatorial problems. Using a prior to perform non uniform playouts during the
search improves a lot the results compared to uniform playouts. Handmade heuris-
tics tailored to the combinatorial problem are often used as priors. We propose a
method to automatically compute a prior. It uses statistics on solved problems.
It is a simple and general method that incurs no computational cost at playout
time and that brings large performance gains. The method is applied to three
difficult combinatorial problems: Latin Square Completion, Kakuro, and Inverse
RNA Folding.

Keywords: Monte Carlo Tree Search · Combinatorial Problems · Learning Search
Heuristics · Latin Square Completion · Kakuro · Inverse RNA Folding.

1 Introduction

Monte Carlo Tree Search (MCTS) has been successfully applied to many games and
problems [4]. Combined with Deep Reinforcement Learning it has superhuman perfor-
mances in two player complete information games such as Go and Chess [32].

Nested Monte Carlo Search (NMCS) [6] is an algorithm that works well for puzzles
and combinatorial problems. It biases its playouts using lower level playouts. At level
zero NMCS adopts a uniform random playout policy. Learning of playout strategies
combined with NMCS has given good results on combinatorial problems [28]. Other
applications of NMCS include Single Player General Game Playing [24], Coopera-
tive Pathfinding [2], Software testing [26], heuristic Model-Checking [27], the Pancake
problem [3], Games [10], the Inverse RNA Folding problem [25] and retrosynthesis
[30].

Online learning of a playout policy in the context of nested searches has been further
developed for puzzles and combinatorial problems with Nested Rollout Policy Adapta-
tion (NRPA) [29]. NRPA has found new world records in Morpion Solitaire and cross-
words puzzles. NRPA has been applied to multiple problems: the Traveling Salesman
Problem with Time Windows (TSPTW) [11,13], 3D Packing with Object Orientation
[15], the physical traveling salesman problem [16], the Multiple Sequence Alignment
problem [17] or Logistics [14]. The principle of NRPA is to adapt the playout policy so
as to reinforce the best sequence of moves found so far at each level.

The use of Gibbs sampling in Monte Carlo Tree Search dates back to the general
game player Cadia Player and its MAST playout policy [19].

https://orcid.org/0000-0003-4669-9374


2 Tristan Cazenave

Monte Carlo Search for combinatorial problems can be much improved using a
prior. A prior is a heuristic that is used in playouts to sample in a non uniform way. It
favors some moves in the playout according to the heuristic. The use of a bias or the
initialization of the weights to produce an initial non uniform policy have been used
for multiple difficult problems: the Traveling Salesman Problem with Time Windows
[28,13] with a distance based heuristic, the Vehicle Routing Problems [14,9] with again
a distance based heuristic, the Inverse RNA Folding problem [25] with manually en-
coded heuristics on pairs of bases, the Pancake problem [3] with manually encoded
heuristics, the Virtual Network Embedding problem [18] with a distance based heuris-
tic again. In all these problems the manual prior improves much the performances of
Monte Carlo Search.

We propose a method to automatically compute a prior. It uses statistics on solved
problems. The method is simple, moreover it does not use computation time during
sampling and it is general. It improves much on Monte Carlo Search without a prior for
the problems that we tried. It also improves over manually defined priors.

We now give the outline of the paper. The second section describes Monte Carlo
Search. The third section explains how to compute the prior. The fourth section gives
experimental results for Latin Square Completion (LSC), Kakuro and Inverse RNA
Folding.

2 Monte Carlo Search

This section presents the Generalized NRPA (GNRPA) [7] algorithm which is a gener-
alization of the NRPA algorithm to the use of a prior.

The Nested Rollout Policy Adaptation (NRPA) [29] algorithm is an effective combi-
nation of NMCS and the online learning of a playout policy. NRPA holds world records
for Morpion Solitaire and crosswords puzzles. It is different from learning a prior as
GNRPA reinforces the policy for the instance whereas learning a prior is done once for
all and is used for all instances.

In NRPA/GNRPA each move is associated to a weight stored in an array called
the policy. The goal of these two algorithms is to learn these weights using the best se-
quences of moves found during the search. The weights are used in the softmax function
to produce a playout policy that generates good sequences of moves.

NRPA/GNRPA use nested search. In NRPA/GNRPA, each level takes a policy as
input and returns a sequence and its associated score. At any level > 0, the algorithm
makes numerous recursive calls to the lower level, adapting the policy each time with
the best sequence of moves to date. The changes made to the policy do not affect the
policy in higher levels. At level 0, NRPA/GNRPA return the sequence obtained by the
playout function as well as its associated score.

The playout function sequentially constructs a random solution biased by the weights
of the moves until it reaches a terminal state. At each step, the function performs Gibbs
sampling, choosing the actions with a probability given by the softmax function.

Let wm be the weight associated to a move m in the policy. In NRPA, the probability
of choosing move m is defined by:



Learning a Prior for Monte Carlo Search 3

pm =
ewm∑
k e

wk

where k goes through the set of possible moves, including m.
GNRPA [7] generalizes the way the probability is calculated using a bias βm. The

probability of choosing move m becomes:

pm =
ewm+βm∑
k e

wk+βk

By taking βm = βk = 0, we find the formula for NRPA again wich corresponds to
sampling without a prior.

In NRPA it is possible to initialize the weights according to a heuristic relevant to
the problem to solve. In GNRPA, the policy initialization is replaced by the bias. It is
sometimes more practical to use βk biases than to initialize the weights as the codes
for the moves can be different from the codes of the biases. The method we propose
could also be applied without modification to NRPA with initialization of the weights
by initializing the weight of move m with βm the first time the weight is used.

The algorithm to perform playouts in GNRPA is given in algorithm 1. The main
GNRPA algorithm is given in algorithm 3. GNRPA calls the adapt algorithm to modify
the policy weights so as to reinforce the best sequence of the current level. The policy
is passed by reference to the adapt algorithm which is given in algorithm 2.

The principle of the adapt function is to increase the weights of the moves of the best
sequence of the level and to decrease the weights of all possible moves by an amount
proportional to their probabilities of being played. δbm = 0 when b ̸= m and δbm = 1
when b = m.

1: playout (policy)
2: state← root
3: while true do
4: if terminal(state) then
5: # sequence(state) contains the moves played from the root to the state
6: return (score (state), sequence(state))
7: end if
8: z← 0
9: for m ∈ possible moves for state do

10: o[m]← epolicy[code(m)]+βm # code(m) is an integer representing move m
11: z ← z + o[m]
12: end for
13: choose a move with probability o[move]

z

14: play (state, move)
15: end while

Algorithm 1: The playout algorithm



4 Tristan Cazenave

1: adapt (policy, sequence)
2: polp← policy
3: state← root
4: for b ∈ sequence do
5: z ← 0
6: for m ∈ possible moves for state do
7: o[m]← epolicy[code(m)]+βm

8: z ← z + o[m]
9: end for

10: for m ∈ possible moves for state do
11: pm ← o[m]

z

12: polp[code(m)]← polp[code(m)]− α(pm − δbm)
13: end for
14: play (state, b)
15: end for
16: policy ← polp

Algorithm 2: The adapt algorithm

1: GNRPA (level, policy)
2: if level == 0 then
3: return playout (policy)
4: else
5: bestScore←−∞
6: for N iterations do
7: (score,new)← GNRPA(level − 1, policy)
8: if score ≥ bestScore then
9: bestScore← score

10: seq← new
11: end if
12: adapt (policy, seq)
13: end for
14: return (bestScore, seq)
15: end if

Algorithm 3: The GNRPA algorithm.



Learning a Prior for Monte Carlo Search 5

3 Learning a Prior

This section presents the computation of the prior. The principle underlying the prior
is to compute the frequency each move has been the move solving a problem. In order
to compute it we generate many solved problems associated to their solutions, e.g. the
sequence of moves that solves the problem from the starting state. It is usually hard for
combinatorial problems to find a solution. However in some problems it is easy to gen-
erate problems associated to their solutions. The three problems we experimented with
have this property that it is easy to generate problems and their associated solutions.

The principle for learning the prior is to replay the solution and to update the count
for each possible move of each possible state of the solution. We also update the count
of the moves that are part of the solution. We can then calculate for each move the
frequency it has been the solution move, this is the number of times it has been in a
solution divided by the number of times it has been a possible move.

1: Replay (state, sequence)
2: for b ∈ sequence do
3: count[code(b)]← count[code(b)] + 1
4: for m ∈ possible moves for state do
5: nb[code(m)]← nb[code(m)] + 1
6: end for
7: play (state, b)
8: end for

Algorithm 4: The Replay algorithm

Algorithm 4 details how to compute the count and nb arrays given an initial state
and the solution to the problem given as a sequence of moves. The nb array memorizes
the number of times a move has been possible and the count array memorizes how
many times it was part of a solution. The Replay function is called for each solved
problem of the training dataset.

We then define the bias βm as:

βm = τ ∗ log(count[code(m)]

nb[code(m)]
)

where τ is called the temperature of the bias.
The default sampling policy with a prior plays a move m with probability:

pm =
eβm

Σkeβk

4 Experimental Results

This section details the computation of the prior for three difficult combinatorial prob-
lems: Latin Square Completion, Kakuro and Inverse RNA Folding. It also compares



6 Tristan Cazenave

sampling with the computed prior to sampling without a prior. It also compares NRPA
to GNRPA with the computed prior.

Table 1: Number of LSC problems of size 20 in the transition phase solved by different algorithms
out of 100 problems. The number of playouts ranges from 1,024 playouts to 131,072 playouts.
The temperature of the Dual prior is set to τ = 4 which is the temperature that gave the best
results. Sampling with the Dual prior solves more problems than uniform sampling. GNRPA
with the Dual prior is better than NRPA and sampling.
Algorithm 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072

Sampling 2 5 10 16 26 36 49 61
Sampling Dual prior 12 24 34 48 70 80 89 95
NRPA 8 16 25 35 48 61 70 80
GNRPA Dual prior 26 39 54 67 83 91 95 98

Fig. 1: The distribution of the priors for LSC. The priors associated to codes that have never been
seen during replay (e.g. nb [code] = 0) have been removed.

4.1 Latin Square Completion

A Latin Square of order n is a n× n grid filled with numbers from 1 to n such that the
same number does not appear more than once in each row and each column. A partial
Latin Square is a Latin Square with some empty cells. The Latin Square Completion
problem (LSC) consists in completing a partial Latin Square so as to form a complete
Latin Square. Latin Square Completion is a NP-complete problem [12].



Learning a Prior for Monte Carlo Search 7

The LSC problem has a phase transition. When a grid has a lot of empty cells or
only few empty cells, the completion is very easy. When the percentage of empty cells
is close to 42% the problem becomes hard. Figure 2 gives the median number of random
playouts required to solve LSC problems according to their percentage of empty cells.
We can observe the peak in number of random playouts at 42% of empty cells.

It can also be observed in Figure 2 that generating Latin Squares from the empty
grid is extremely easy. The first three random playouts usually generate a valid Latin
Square. Therefore generating difficult LSC problems and their associated solution is
also extremely easy. First generate a valid Latin Square, memorize it as a solution and
then randomly remove 42% of the cells so as to have a difficult LSC problem associated
to its solution.

Here is an example of a difficult LSC problem of size 20 generated with this method:

3 11 15 4 8 13 17 14 2 12 10 6
13 18 17 14 16 8 19 7 1 11 20 12
20 8 17 12 1 19 10 3 6 16 15 14 4

3 4 9 14 15 11 5 7 19 1
15 18 9 3 4 1 5 2 13 12 8 10
17 19 14 3 7 4 16 6 20

16 13 4 11 10 9 17 7 14 3 15 5
2 1 15 18 6 16 5 12 17 20 19 14 13 11

9 20 4 3 11 12 8 17 6 18 19
11 10 20 6 13 5 3 1 9 4 14 18 12 7

8 19 14 10 7 13 18 5 3 17 15
12 11 5 6 13 19 4 14 10 20 9 1 18

19 15 9 20 10 5 3 18 4 17 11 2 13
18 14 9 16 5 6 11 13 17 2 3 4

14 6 15 3 4 18 16 2 11 9 7 17 19
4 7 5 3 12 19 9 16 20 18 17

3 10 1 16 12 7 17 20 5 18
6 12 15 2 7 13 5 19 3 9 11 8

7 14 17 1 20 15 13 16 12
18 12 8 5 16 3 11 19 6 17

LSC and related problems appear in a variety of practical applications such as
scheduling, optical routing, error correcting codes as well as combinatorial design [20].

We model the LSC problem as a Constraint Satisfaction Problem. We use Forward
Checking associated to channeling constraints. If a value appears only once in a column
or in a row it is directly assigned. If it is not the case, the variable with the smallest num-
ber of possible values is chosen and a possible value is randomly assigned according to
the policy. A state is terminal if the Latin Square is complete or if one of the variables is
not assigned and has an empty domain. In this case the score of a playout is the opposite
of the number of remaining variables.

The code associated to a move contains the number of times the value is present
in the same column and the number of times it is present in the same row. We call the
prior associated to this code the Dual prior. Note that it is a very simple code and that it
could probably be refined. The bias for GNRPA using this code is:



8 Tristan Cazenave

βm = τ ∗ log(count[code(m)]

nb[code(m)]
)

Figure 1 gives the distribution of the priors for this code and LSC problems of size
20. The priors were computed using 10,000 solved problems generated randomly in the
transition phase. We can observe that the priors have varied values.

Table 1 gives the evolution of the number of problems solved by different algorithms
with doubling numbers of playouts. Sampling with the Dual prior is much better than
sampling without the prior. GNRPA with the Dual prior is much better than NRPA. The
computation time of the Dual prior during the playouts is negligible.

Fig. 2: The median number of random playouts required to solve LSC instances of size 20 with
x% of empty cells. The phase transition happens at 42% of empty cells. All further experiments
will use Latin Squares of size 20 with 42% of empty cells. The median for each percentage was
calculated solving 1,000 problems.

4.2 Kakuro

A Kakuro puzzle is played on a rectangular grid. The objective is to fill numbers into
the blank cells, according to the following rules:

– A sum is associated with every horizontal or vertical sequence of blank cells.
– Each horizontal (respectively vertical) sequence has a cell left of (respectively

above) its first cell, and that cell contains the sum that is associated with the se-
quence.

– In each horizontal/vertical sequence of cells, every number may occur at most once.
– The sum of the numbers of a sequence must equal the number that is denoted in the

corresponding hint.



Learning a Prior for Monte Carlo Search 9

Fig. 3: The distribution of the priors for Kakuro. The y-axis gives the number of priors in each
range of values. For example there are 15,410 priors that have the value 1.0 and 20,353 priors that
have a value between 0.0 and 0.1. The priors associated to codes that have never been seen during
replay (e.g. nb [code] = 0) have been removed. We can observe the peak at 0.0 which mainly
corresponds to the numbers that are impossible given the row and the column sums. We can also
observe the smaller peak at 1.0 which corresponds to the numbers that are forced. Note that apart
from these two cases there are many cases where the prior is between 0.0 and 1.0 which does not
correspond to a hard constraint.

Table 2: Number of Kakuro problems of size 10, with 11 possible values, solved by different
algorithms out of 100 problems and for various numbers of playouts. The temperature of the
prior is set to τ = 4. Using the prior usually solves the problem in 1 playout.
Algorithm 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072

Sampling 0 0 0 0 0 0 0 0
Sampling Prior 100 100 100 100 100 100 100 100
NRPA 0 0 0 23 35 65 86 98
GNRPA Prior 100 100 100 100 100 100 100 100



10 Tristan Cazenave

Kakuro is hard [31]. The most difficult Kakuro problems are the empty problems
with only the sum of the columns and of the rows already given [5].

The generation of a Kakuro problem and its solution is almost as easy as the gener-
ation of a LSC problem. First generate a valid square with sampling. A single playout
is usually enough. Then calculate the sums for each row and for each column. Then re-
move all the values and keep the generated valid square as the solution to the problem.

Here is an example of a solved Kakuro problem of size 10 with values ranging from
1 to 11 generated with our method:

65 60 58 62 59 59 62 60 56 55
55 3 5 4 1 10 8 2 9 6 7
62 9 11 10 5 3 6 7 1 8 2
60 8 2 5 10 9 4 11 3 7 1
56 2 4 9 8 1 5 3 7 11 6
58 4 7 3 6 2 10 1 11 5 9
60 7 1 2 3 8 11 5 10 9 4
59 5 3 6 11 4 1 9 8 2 10
62 11 9 7 2 6 3 10 5 1 8
65 6 10 11 7 5 9 8 2 4 3
59 10 8 1 9 11 2 6 4 3 5

We model Kakuro as a Constraint Satisfaction Problem. We use Forward Checking
but we do not use channeling constraints. In a playout we choose the variable with the
least number of possible values and we assign a value according to the policy (which
is uniform in the case of sampling and which uses the softmax of the biases in the case
of the prior policy). When a variable has an empty domain the playout is stopped and
the score is returned. The score is the opposite of the number of remaining unassigned
variables when the Kakuro is not complete and the number of rows and columns that
sum to the hint when all variables are assigned.

The code for a move contains the number of times the value appears in the same
row, the number of times it appears in the same column, the remaining sum to reach in
the row and the remaining sum to reach in the column.

Figure 3 gives the numbers of appearance of the Kakuro priors. It was calculated
using 10,000 solved problems randomly generated. With the priors equal to 0.0 or 1.0,
it rediscovers the hard constraints manually programmed in specialized Kakuro solvers
[33] that compute the impossible values for a given sum. However our prior is more
precise than that since it takes into account the remaining row/column sums as well as
the number of appearances of the value in the same row/column. There are many priors
different from 0.0 and 1.0 that model something different from the hard constraints and
that capture some probabilistic properties of the values to assign.

Table 2 gives the results for Monte Carlo Search with and without the prior. Using
the prior both sampling and GNRPA usually find the solution at the first playout whereas
without the prior both sampling and NRPA take much more time.



Learning a Prior for Monte Carlo Search 11

4.3 Inverse RNA Folding

The design of RNA molecules with specific properties is an important topic for health
related research. For example, many viruses rely on RNAs to infect and replicate inside
a host: this is the case for coronaviruses [23] and Dengue viruses. Understanding viral
RNAs is essential for the scientific community to develop novel drugs in response to
pandemics like COVID-19 [21].

RNA molecules are long molecules composed of four possible nucleotides. Molecules
can be represented as strings composed of the four characters ’A’, ’C’, ’G’, ’U’. For
RNA molecules of length N, the size of the state space of possible strings is expo-
nential in N. It can be very large for long molecules. The molecules of the Eterna100
benchmark we use can have hundreds of nucleotides. The sequence of nucleotides folds
back on itself to form its secondary structure. It is possible to find in a polynomial time
the folded structure of a given sequence. However, the opposite which is to find a se-
quence that folds into a predefined structure, that is the Inverse RNA Folding problem,
is hard [1].

The state space is the set of all sequences that are consistent with the secondary
structure given as input. The secondary structure is a sequence of characters. The pos-
sible characters are ’.’, ’(’ and ’)’. For each ’.’ in the input sequence there are four
possible characters in the nucleotide sequence: ’A’, ’C’, ’G’ and ’U’. Each ’(’ character
is associated to the ’)’ character that closes the expression it has opened (e.g. when the
same number of ’(’ and ’)’ are in between the two). Six pairs of characters are possible
to replace the ’(’ and the corresponding ’)’: ’CG’, ’GC’, ’GU’, ’UG’, ’AU’ and ’UA’.
When a nucleotide sequence is complete, the ViennaRNA package [22] is used to fold
the sequence and verify if it folds into the target structure.

We evaluate different Monte Carlo Search algorithms on the Eterna100 benchmark
which contains 100 RNA secondary structure puzzles of varying degrees of difficulty. A
puzzle consists of a given structure under the dot-bracket notation. This notation defines
a structure as a sequence of brackets and dots each representing a base. The matching
brackets symbolize the paired bases and the dots the unpaired ones. The puzzle is solved
when a sequence of the four nucleotides ’A’, ’C’, ’G’ and ’U’, folds according to the
target structure. In some puzzles, the value of certain bases is imposed.

Human experts have solved the 100 problems of the benchmark. No program has
solved all problems. The best score so far for a program is 95/100 by NEMO, NEsted
MOnte Carlo RNA Puzzle Solver [25] and by GNRPA using the NEMO prior [8].

To compute the prior we use the Rfam database [21]. Rfam is the database of non-
coding RNA families. We use the 85,232 RNA sequences from Rfam associated to
their target folding. The NGRAM prior consists in statistics on the occurrence of two
following moves.

On the contrary of the hand crafted heuristics of NEMO, the NGRAM prior has
been learned on the Rfam database which is separated from the Eterna100 benchmark.
The computation of the NGRAM prior on the Rfam database is a more general and
simple way to create priors and it is not specific to the Eterna100 benchmark.

Algorithm 5 gives the function used to compute the NGRAM prior, t is the set of
target structures and s is the set of RNA sequences that fold in the target structures. The



12 Tristan Cazenave

Fig. 4: The distribution of the priors for Inverse RNA Folding. The y-axis gives the number of
priors in each range of values. There are 6 possible moves for a ’(’ and 4 possible moves for
a ’.’ in the target structure. This makes 10 possibilities for the previous move in the NGRAM
and again 10 possibilities for the current move. Therefore there are 100 different priors. On the
contrary of LSC and Kakuro the distribution of the priors is mainly on small values. The smallest
prior is equal to 0.010083 and the greatest prior is equal to 0.437825.

Table 3: Number of Eterna100 problems solved by different algorithms and various search time
limits in seconds. GNRPA is much better than NRPA. The NGRAM prior is better than the
NEMO prior. The temperature for the NGRAM prior is τ = 6. Sampling with the NGRAM prior
is better than sampling with the NEMO prior. Sampling with a prior is much better than uniform
sampling.
Algorithm 32s 64s 128s 256s 512s 1,024s 2,048s 4,096s

Sampling 11 11 11 12 14 16 16 17
Sampling NEMO prior 51 55 57 60 61 61 62 64
Sampling NGRAM prior 57 65 68 69 69 69 69 69
NRPA 28 33 41 48 57 59 61 65
GNRPA NEMO prior 68 69 74 77 78 79 81 81
GNRPA NGRAM prior 70 75 78 79 80 81 82 85



Learning a Prior for Monte Carlo Search 13

Fig. 5: The evolution with the logarithm of the search time of the number of Eterna100 problems
solved by NRPA and GNRPA NGRAM prior.

1: Replay (t, s)
2: for i ∈ [0..len(s)] do
3: for j ∈ [0..len(s[i])− 1] do
4: n← code(t[i][j], s[i][j], t[i][j + 1], s[i][j + 1])
5: count[n]← count[n] + 1
6: for m ∈ moves(t[i][j + 1]) do
7: n← code(t[i][j], s[i][j], t[i][j + 1],m)
8: nb[n]← nb[n] + 1
9: end for

10: end for
11: end for

Algorithm 5: The algorithm to count the NGRAMs. It takes as arguments the tar-
get structures t and the corresponding solutions s as sequences of moves. It counts
the number of times two following characters in the target structure and the cor-
responding two moves happen in the Rfam database. It also counts the number of
appearance for all possible moves.



14 Tristan Cazenave

output of the algorithm are the count and nb arrays that are used to calculate the prior
of a move.

The code to calculate the statistics computes count[code(tp,mp, t, k)] the number
of times an NGRAM coded as code(tp,mp, t, k) appears in the solution sequences of
the Rfam database. We only compute the NGRAMs of size one, containing m the move
to play, mp the previous move, t the target folding character and tp the previous target
folding character. Figure 4 gives the distribution of the priors.

We define the bias βm as:

βm = τ ∗ log(count[code(tp,mp, t,m)]

nb[code(tp,mp, t,m)]
)

The score of a sequence of nucleotide is computed the same way as NEMO [25]
using the ViennaRNA package [22].

Table 3 gives the evolution of the number of problems solved with time for different
Monte Carlo Search algorithms. GNRPA with the NGRAM prior gives the best results.
Note that the NEMO prior we used is a subset of the priors used in NEMO. It uses
the heuristic functions on the pairs of bases. The pairs of bases heuristics are the main
components of the NEMO prior. The same subset of heuristics were already used with
GNRPA [8], equaling the 95/100 score of NEMO. This score was reached using various
optimizations of GNRPA when we use a standard GNRPA in our paper. It explains why
we only reach 85 solved problems and why the NEMO prior only reaches 81 solved
problems.

Figure 5 gives a graphical comparison of NRPA and GNRPA NGRAM prior for the
Eterna100 problems. The values for the numbers of solved problems are the same as in
the Table 3. The time scale is logarithmic.

5 Conclusion

Calculating statistics about moves in solved combinatorial problems enables to create a
prior for Monte Carlo Search. This prior is easy to compute and has a negligible compu-
tation time during sampling. It is a large improvement of Monte Carlo search for three
difficult combinatorial problems: Latin Square Completion, Kakuro and Inverse RNA
Folding. The method is general and can easily be applied to other difficult combinatorial
problems.

As future works, the method could be improved for the combinatorial problems
we tried simply using more elaborate codes for the moves. We could bias the policy
according to other properties of the moves and of the states than the simple ones we
used. The method should also be tried on other difficult combinatorial problems in
order to evaluate the gains of using it. The problems we tried are decision problems,
it would be interesting to also try optimization problems. The generation of the solved
problems would be more time consuming for optimization problems but it would only
be done once before the use of the prior in Monte Carlo Search. The sampling time with
the prior would be similar to the sampling time without the prior but the scores obtained
sampling with the prior could be much better than without the prior.



Learning a Prior for Monte Carlo Search 15

References

1. Edouard Bonnet, Paweł Rzążewski, and Florian Sikora. Designing RNA secondary structures
is hard. Journal of Computational Biology, 27(3), 2020.

2. Bruno Bouzy. Monte-carlo fork search for cooperative path-finding. In Computer Games
Workshop at IJCAI, pages 1–15, 2013.

3. Bruno Bouzy. Burnt pancake problem: New lower bounds on the diameter and new experi-
mental optimality ratios. In SOCS, pages 119–120, 2016.

4. Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A
survey of Monte Carlo tree search methods. IEEE Transactions on Computational Intelli-
gence and AI in Games, 4(1):1–43, March 2012.

5. Tristan Cazenave. Monte-Carlo Kakuro. In H. Jaap van den Herik and Pieter Spronck, ed-
itors, Advances in Computer Games, 12th International Conference, ACG 2009, Pamplona,
Spain, May 11-13, 2009. Revised Papers, volume 6048 of Lecture Notes in Computer Sci-
ence, pages 45–54. Springer, 2009.

6. Tristan Cazenave. Nested Monte-Carlo Search. In Craig Boutilier, editor, IJCAI, pages
456–461, 2009.

7. Tristan Cazenave. Generalized nested rollout policy adaptation. In Monte Carlo Search at
IJCAI, 2020.

8. Tristan Cazenave and Thomas Fournier. Monte Carlo inverse folding. In Monte Carlo Search
at IJCAI, 2020.

9. Tristan Cazenave, Jean-Yves Lucas, Thomas Triboulet, and Hyoseok Kim. Policy adaptation
for vehicle routing. Ai Communications, 34(1):21–35, 2021.

10. Tristan Cazenave, Abdallah Saffidine, Michael John Schofield, and Michael Thielscher.
Nested monte carlo search for two-player games. In AAAI, pages 687–693, 2016.

11. Tristan Cazenave and Fabien Teytaud. Application of the nested rollout policy adaptation
algorithm to the traveling salesman problem with time windows. In Learning and Intelligent
Optimization - 6th International Conference, LION 6, pages 42–54, 2012.

12. Charles J. Colbourn. The complexity of completing partial latin squares. Discrete Applied
Mathematics, 8(1):25–30, 1984.

13. Stefan Edelkamp, Max Gath, Tristan Cazenave, and Fabien Teytaud. Algorithm and knowl-
edge engineering for the tsptw problem. In Computational Intelligence in Scheduling (SCIS),
2013 IEEE Symposium on, pages 44–51. IEEE, 2013.

14. Stefan Edelkamp, Max Gath, Christoph Greulich, Malte Humann, Otthein Herzog, and
Michael Lawo. Monte-Carlo tree search for logistics. In Commercial Transport, pages
427–440. Springer International Publishing, 2016.

15. Stefan Edelkamp, Max Gath, and Moritz Rohde. Monte-Carlo tree search for 3d packing
with object orientation. In KI 2014: Advances in Artificial Intelligence, pages 285–296.
Springer International Publishing, 2014.

16. Stefan Edelkamp and Christoph Greulich. Solving physical traveling salesman problems
with policy adaptation. In Computational Intelligence and Games (CIG), 2014 IEEE Con-
ference on, pages 1–8. IEEE, 2014.

17. Stefan Edelkamp and Zhihao Tang. Monte-Carlo tree search for the multiple sequence align-
ment problem. In Proceedings of the Eighth Annual Symposium on Combinatorial Search,
SOCS 2015, pages 9–17. AAAI Press, 2015.

18. Maxime Elkael, Massinissa Ait Aba, Andrea Araldo, Hind Castel-Taleb, and Badii Jouaber.
Monkey business: Reinforcement learning meets neighborhood search for virtual network
embedding. Computer Networks, 216:109204, 2022.



16 Tristan Cazenave

19. Hilmar Finnsson and Yngvi Björnsson. Simulation-based approach to general game playing.
In AAAI, volume 8, pages 259–264, 2008.

20. Yan Jin and Jin-Kao Hao. Solving the latin square completion problem by memetic graph
coloring. IEEE Transactions on Evolutionary Computation, 23(6):1015–1028, 2019.

21. Ioanna Kalvari, Eric P Nawrocki, Nancy Ontiveros-Palacios, Joanna Argasinska, Kevin
Lamkiewicz, Manja Marz, Sam Griffiths-Jones, Claire Toffano-Nioche, Daniel Gautheret,
Zasha Weinberg, et al. Rfam 14: expanded coverage of metagenomic, viral and microrna
families. Nucleic Acids Research, 49(D1):D192–D200, 2021.

22. Ronny Lorenz, Stephan H Bernhart, Christian Höner zu Siederdissen, Hakim Tafer,
Christoph Flamm, Peter F Stadler, and Ivo L Hofacker. Viennarna package 2.0. Algorithms
for molecular biology, 6:1–14, 2011.

23. Ramakanth Madhugiri, Nadja Karl, Daniel Petersen, Kevin Lamkiewicz, Markus Fricke, Ul-
rike Wend, Robina Scheuer, Manja Marz, and John Ziebuhr. Structural and functional con-
servation of cis-acting rna elements in coronavirus 5’-terminal genome regions. Virology,
517:44–55, 2018.

24. Jean Méhat and Tristan Cazenave. Combining UCT and Nested Monte Carlo Search for
single-player general game playing. IEEE Transactions on Computational Intelligence and
AI in Games, 2(4):271–277, 2010.

25. Fernando Portela. An unexpectedly effective Monte Carlo technique for the RNA inverse
folding problem. BioRxiv, page 345587, 2018.

26. Simon M. Poulding and Robert Feldt. Generating structured test data with specific properties
using nested Monte-Carlo search. In GECCO, pages 1279–1286, 2014.

27. Simon M. Poulding and Robert Feldt. Heuristic model checking using a Monte-Carlo tree
search algorithm. In GECCO, pages 1359–1366, 2015.

28. Arpad Rimmel, Fabien Teytaud, and Tristan Cazenave. Optimization of the Nested Monte-
Carlo algorithm on the traveling salesman problem with time windows. In EvoApplications,
volume 6625 of LNCS, pages 501–510. Springer, 2011.

29. Christopher D. Rosin. Nested rollout policy adaptation for Monte Carlo Tree Search. In IJ-
CAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence,
pages 649–654, 2011.

30. Milo Roucairol and Tristan Cazenave. Comparing search algorithms on the retrosynthesis
problem. In AI to Accelerate Science and Engineering at AAAI 2023. 2023.

31. Oliver Ruepp and Markus Holzer. The computational complexity of the kakuro puzzle,
revisited. In International Conference on Fun with Algorithms, pages 319–330. Springer,
2010.

32. David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy P.
Lillicrap, Karen Simonyan, and Demis Hassabis. Mastering chess and shogi by self-play
with a general reinforcement learning algorithm. CoRR, abs/1712.01815, 2017.

33. Helmut Simonis. Kakuro as a constraint problem. Proc. seventh Int. Works. on Constraint
Modelling and Reformulation, 2008.


	Learning a Prior for Monte Carlo Search by Replaying Solutions to Combinatorial Problems

