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Abstract. We present the use of chess filters for the convolutional layers
used in computer chess. We compare different types of blocks with and
without chess filters. Our comparison uses the Leela Chess Zero (Lc0)
T60 dataset to train the networks with supervised learning.

1 Introduction

The game of chess has long been a benchmark for artificial intelligence (AI),
offering a well-defined yet highly complex environment where strategic decision-
making is paramount. The advent of computer chess programs marked significant
milestones in AI, with early achievements driven by brute-force search algorithms
and hand-crafted evaluation functions [8]. However, the limitations of these tra-
ditional approaches became evident as the depth of required computations grew
exponentially, prompting the exploration of more sophisticated techniques [1].

In recent years, the integration of neural networks into chess engines has
revolutionized the field. Notable among these advancements is the development
of deep reinforcement learning frameworks, such as AlphaZero, which combine
neural networks with Monte Carlo Tree Search (MCTS) to achieve superhu-
man performance in chess [10,11]. These approaches have demonstrated that
neural networks can learn intricate strategies and generalize across a vast ar-
ray of positions without relying on domain-specific knowledge [7]. The current
state-of-the-art in computer chess is to use Residual Networks (ResNets) [2],
enabling deep architectures, which have shown remarkable success in improving
the accuracy of move predictions and value estimations.

Despite these advances, there remains a need for a comprehensive analysis
that compares the performance of different neural network architectures within
the domain of computer chess. This study aims to fill this gap by systematically
evaluating the effectiveness of various convolutional neural network models, such
as ResNets, but also more recent architectures such as MobileNet [6] and Con-
vNeXt [5] inspired by recent breakthroughs in other AI domains. In this paper,
we utilize the T60 dataset, a robust collection of self-play games generated by
the Leela Chess Zero (Lc0) chess engine [12], to train and evaluate multiple neu-
ral network architectures. We focus on key performance metrics such as latency
of network, memory, accuracy and MSE loss to determine which architectures
offer the most promise for future developments in computer chess.
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The remainder of this paper is structured as follows: Section 2 describes the
different types of blocks for the trunk of the neural network that we compare,
including the specific chess filters that we use in the convolutional layers. Section
3 presents our experimental results, and Section 4 concludes the paper with a
summary of our contributions and suggestions for future research.

2 Neural network architectures

During training and evaluation, we use the classic encoding of Lc0. Each chess
position is converted into a tensor input for the neural network which consists
of 112 planes of size 8 x 8. As explain more in detail in [4], the first 6 planes
encode the position of the pieces of the player whose turn it is (one plane for
each type of piece). The next 6 planes encodes the positions of the pieces for the
opponent. Plane 12 is set to all 1 if one or more repetitions have taken place.
These 13 planes are repeated to encode not only the current position, but also
the seven previous chess positions of the game. The last 8 planes encode further
information, such as whether each color has the right to castle on queen’s or
king’s side.

After the encoding step, this tensor input for the neural network of size
(112, 8, 8) is then processed like an image with 112 color channels by a chain of
blocks using convolutional layers in the trunk of the neural network. After these
blocks, the output is fed into two heads, called the policy head and the value
head (see Section 3.2 below).

2.1 Different type of blocks for the trunk

In this subsection, we describe the three types of blocks for the neural network
trunk that we have compared in this work: residual block, MobileNet block and
ConvNeXt block.

Residual block Residual blocks [2] are a widely used architecture in computer
chess, due to their ability to train deep networks without suffering from the
vanishing gradient problem. Each residual block incorporates two standard con-
volutional layers for feature extraction, followed by a squeeze and excitation (SE)
layer [3]. The input is then added back to the output of this SE layer, forming
the residual connection.

MobileNet block MobileNet neural networks [6] were designed for efficient deep
learning models, particularly in resource-constrained environments. This block
begins with a pointwise convolutional layer, which increases the size of the num-
ber of channels by a factor called depthwise multiplier. The next stage is a depth-
wise convolutional layer, which processes each input channel independently. Each
of these two first steps are followed by a batch normalization (BN) layer and the
application of a ReLLU activation function. Finally, the last layer applies a second
pointwise convolution operation that restores the original dimensionality of the
output channels, followed by BN and SE layers. Lastly the input is added to the
output like in residual blocks.
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ConuNeXt block ConvNeXt neural networks [5] represent a modern evolution of
traditional convolutional neural networks, offering superior performance in cer-
tain scenarios. The ConvNeXt block begins with a depthwise convolution layer,
which is followed by a normalization layer to ensure stability during training.
Next, a pointwise convolutional layer with GELU activation function is applied.
It expands the number of channels by a factor of four. A second pointwise convo-
lutional layer (with linear activation) is used to retrieve the number of channels
of the input. Finally, the block includes a residual connection as in the other two
block types.

2.2 Chess filters for convolutional layers

In this work, we propose some variants of the three types of blocks described in
the previous section, using specific chess kernels in the standard and depthwise
convolutional layers. The underlying idea is to help the neural network extract
relevant patterns in chess positions related to the movement of different types
of pieces in the chess game. This idea has certain similarities with the concept
of local shape features used for the game of Go in [9], with the difference that
in our case, different predefined masks are used to guide the gradient descent
towards a better parameterization of the neural network (like a regularization
tool), rather than focusing on extracting features that can be directly used at
inference time.

Figures 1-3 represent three types of masks with 0 and 1 values that can be
applied to a convolutional filter of size (5,5) to retain only those filter parame-
ters corresponding to the most important types of movement in chess: vertical,
horizontal, diagonal and knight moves. Any (5,5) filter parameters that do not
correspond to a square with a piece symbol in these masks are set to 0.
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Fig.1: Mask for Fig.2: Mask for Fig.3: Mask for
knight kernel. rook kernel. bishop kernel.

These three types of chess filters can be combined together to build new
convolutional layers. An example of depthwise convolutional layer with chess
filters is depicted in Figure 4. We see on this figure that the first third of input
channels are processed using knight filters, the second third using rook filters
and the final third using bishop filters (version called knight-rook-bishop). We
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also introduce an other version with one half of the channels processed by rook
filters and the other half by bishop filters (version called rook-bishop). We have
experimentally observed that using different types of chess kernels combined
together instead of a single type of filter in the same convolutional layer yields
better results.

Depthwise convolution with
knigh-rook-bishop chess filters
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Fig. 4: Depthwise convolution with knight-rook-bishop chess filters applied to
input tensor of size (96,8, 8).

3 Experimental Results

The aim of this section is to answer two questions experimentally. The first
concerns the comparison of different block types on neural network performance.
The second question concerns the impact of chess filters in combination with each
type of block used in the neural network.

3.1 Training and validation test sets

In this paper, we use one million chess games from the T60 dataset® which is
a classical dataset used to train LcO neural networks. Collected over a period
from July 26, 2019, to January 8, 2022, the T60 dataset comprises millions of
self-play games generated by Lc0. These games encompass a wide range of board
states and movement sequences, providing a varied basis for training and testing
various neural network architectures.

From this data set of one million games, we retain 80% for a training dataset
and the remaining 20% for the validation dataset. Each game of this dataset is

3 nttps://storage.lczero.org/files/training_data/test60/
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composed of many chess positions, corresponding to the training inputs, that we
encode with the classic encoding of LcO (see Section 2).

The training target for each position is a vector of probability of size 1858
corresponding to all the possible moves (source square plus destination square),
as well as a vector of probability of size 3, corresponding to the probabilities of
losing, winning and drawing the game when in the current position. These prob-
abilities were evaluated with the MCTS during the self-played games performed
by LcO.

3.2 Experimental settings

The neural networks that we compare in this paper use different type of blocks
as described in Section 2: residual, MobileNet or ConvNeXt blocks. With each
type of block we build architectures with 6, 12 and 18 blocks, using Lc0’s open-
source training code* as a starting point. For each number of blocks, denoted
Nbpiocks, We use nbyriiers € {96,192} filters in the trunk. In the MobileNet blocks
the dephtwise multiplier parameter is set to 6. For all the standard and depth-
wise convolutional layers used in this work we use kernels of size (5,5) (with
the exception of the pointwise convolutional layers used in the mobile net and
ConvNeXt architectures) .

On the top of each network trunk, the same two heads are used for each
neural network configuration:

— the policy head is the classical policy head of Lc0. It consists in a pointwise
convolutional layer with 32 output channels, used to convert the output of
the trunk of size (nbfiiters, 8, 8) into a tensor of size (32, 8,8). This tensor is
then flattened and processed with a dense layer with a softmax activation
function to obtain a vector of size 1858 corresponding to the probabilities
for all the possible moves.

— the value head also consists in a pointwise convolutional layer with 32 output
channels, but followed by a first dense layer with 128 neurons and a second
dense layer with 3 neurons and softmax activation function. The three out-
puts model the probability of winning, drawing and losing.

Training of the networks For each configuration of the neural network, we
launch 5 independent training runs on a V100 Nvidia graphic card with 32 GiB
of memory during 100,000 steps of gradient descent with a default batch size
of 1,024. We use a reduced batch size of size 512 for the biggest architectures
(when nbpiiters = 192, with nbyocks = 12 or nbyjocks = 18), in order to reduce
the memory required on the GPU card during training.

At each training step, a gradient is calculated to minimize the cross-entropy
for the policy head in addition to the cross-entropy for the value head (calculated
over 3 outputs). In order to calculate the loss for the policy head, a legal mask

* https://github.com/LeelaChessZero/lczero-training
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is first applied to calculate only the cross-entropy for legal moves, as is usually
the case when training Lc0O networks.

We use a stepwise decreasing learning rate which is set at the value of 0.02
during the first 30,000 steps, then set at the value of 0.002 until step 60,000, and
finally set at the value of 0.0005 for the remaining steps.

Every 2,000 training steps, the neural network is evaluated on the validation
set. On all the position extracts from the 200,000 games in the validation set,
we calculate two metrics:

— the policy’s average precision, which consists in evaluating the percentage of
times when the movement associated with the highest probability calculated
with the policy head corresponds exactly to the movement with the highest
probability in the target (this is the move which was selected during the LcO
games after applying MCTS).

— the average MSE loss corresponding to the average mean square error loss
between the converted z; output of the value head and the scalar v; target
value for each position of the validation set. For a position 4, from the vector
of probability (pi", pdrew ploss) given by the value head, the scalar value z;
is computed as z; = pi™" — ploss.

i

3.3 Network features

Table 1 displays different characteristics of the networks we compare in this
paper: the number of trainable parameters in millions, the memory required to
process a batch of 1024 chess positions (each position is a tensor of size (112, 8, 8)
as seen in Section 2) and the latency, or time in seconds required to process this
batch of size 1024.

We can see from this table that, with the same number of blocks and the same
number of filters, the architectures with residual blocks have the highest number
of parameters. This high number of parameters comes mainly from the number
of weights in the convolutional kernels of size 5 by 5 used in the residual blocks.
We see that when applying the chess masks displayed in Figures 1-3, which are
broadcast according to the depth of each kernel, that the number of trainable
parameters is drastically reduced. Indeed, the application of chess filters reduces
the number of parameters in each convolutional kernel with a ratio of 9/25.

Secondly, we observe on this table, that the architectures using the MobileNet
blocks with the depthwise convolution operations have less parameters than the
architectures with the residual blocks, even when using a depthwise multiplier
of 6. This is due to the reduced size of the convolution kernels used in depthwise
convolution layers, which have a depth of just one.

Thirdly, we find that ConvNeXt architectures have the smallest number of
parameters. Its latency is high due to the rather slow normalization layer and
quadruple expansion of the number of channels with the pointwise convolution
used in each block.
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Table 1: Number of trainable parameters (in millions), memory (in GiB) and
inference time (in seconds) required to process a batch of 1024 chess positions
with different neural network architectures.

Residual net

Nb blocks|Nb filters

Nb params (M.) |Memory (GiB)|Latency (s)
Standard|Chess filters

6 96 7.195 5.426 2.357 0.0940

12 96 10.046 6.507 2.357 0.108

18 96 12.897 7.589 2.357 0.126

6 192 16.017 8.939 4.405 0.121

12 192 27.414 13.258 4.405 0.165

18 192 38.811 17.578 4.405 0.211
Mobile net

Nb params (M.) |Memory (GiB)|Latency (s)

Nb blocks Nb filters Standard|Chess filters

6 96 4.921 4.865 3.637 0.103

12 96 5.755 5.645 3.637 0.133

18 96 6.590 6.424 3.637 0.172

6 192 7.265 7.154 6.965 0.144

12 192 10.427 10.206 6.965 0.218

18 192 13.589 13.257 6.965 0.294
ConvNeXt

Nb params (M.) |Memory (GiB)|Latency (s)

Nb blocks Nb filters Standard|Chess filters

6 96 4.546 4.537 2.639 0.137
12 96 5.006 4.987 2.639 0.203
18 96 5.466 5.438 2.639 0.268
6 192 5.907 5.889 8.007 0.210
12 192 7.712 7.675 8.007 0.344
18 192 9.516 9.460 8.007 0.479

3.4 Results on the validation set

Figure 5 displays the average evolution (over 5 runs) of the policy accuracy and
the MSE loss computed on the validation set every 2,000 steps of training for
all the different architectures with 18 blocks and 96 filters in the trunk, with
chess filters and without chess filters (versions called ”standard”). For residual
network architectures, we use the rook-bishop version of the chess filters, while for
MobileNet and ConvNeXt architectures, we use the knight-rook-bishop version.
These are the versions that work best for each of these block types, as we will see
in more detail in the next subsection. The range of colors around each average
curve corresponds to a spread of plus one standard deviation and minus one
standard deviation from the average score.

We first see in these figures that for all the architectures there is a huge gap
for both metrics when we reach the step 30,000. It corresponds to the first change
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in learning rate. Next, we observe that the use of chess filters always improves
the results for each type of block. This is interesting, as it shows that better
results can be obtained with fewer trainable parameters in the various neural
networks. (cf. Table 1). It seems that these filters act as a kind of regularizer well
suited to chess positions, helping the neural network to extract relevant features
related to the movement of the pieces.

Policy accuracy
MSE loss

Number of steps Number of steps

Residual net Mobile net ConvNeXt
= Standard Standard Standard
Chess filters

Chess filters = Chess filters

Fig. 5: Policy accuracy and MSE loss on the validation set for architectures with
18 blocks and 96 filters in the trunk.

Table 2 displays a comparison of the average results obtain by the differ-
ent architectures on the validation set at the end of the training process (after
100,000 steps). From this table we draw the same conclusion regarding the im-
pact of the chess filters. We see that using chess filters almost always improve the
results in term of accuracy and MSE loss for each network configuration, but the
impact is actually really significant for the network using depthwise convolution
operations (MobileNet and ConvNext), or residual nets but with a high number
of blocks and high number of filters in the trunk.

3.5 Impact of different chess filters

In this section, we propose a more in-depth analysis of the impact of different
versions of chess filters, particularly in comparison with random filters.

Random filters correspond to masks of size (5,5) randomly constructed for
each convolutional layer by randomly selecting 8 squares that are not in the
center of the patch and are assigned the value 1, while the other squares remain
at value 0. The center of the patch is always set to 1, to be comparable with
other filter types. Each random filter has the same number of 1’s as the chess
filters display in Figures 1-3.

Figure 6 on the left displays the average evolution of the policy accuracy on
the validation set for the residual networks with always 18 blocks and 96 filters
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Table 2: Average accuracy scores and MSE loss on the validation set obtain
after 100,000 training steps for different neural network architectures. The best
results are in bold. Significantly better results for a version with chess filters
in comparison with the corresponding standard version are indicated with stars.

The stars indicate the results of t-tests with p-value 0.05 (*), 0.01 (**) and 0.001

Accuracy
Residual net Mobile net ConvNeXt
Nb blocks| Nb filters Standard|Chess filters|Standard|Chess filters|Standard |Chess filters
6 96 40.98 41.01 40.90 41.53** 36.28 37.48***
12 96 41.32 41.60" 41.73 42.16* 36.54 37.42%**
18 96 41.58 41.79 42.07 42.65*** 36.64 37.25%**
6 192 42.55 42.74 42.29 42 .87 37.86 39.38***
12 192 42.75 42.42 42.26 42.72%* 37.36 38.19***
18 192 41.97 42.54*** 42.39 43.11*** 37.54 38.26™**
MSE loss
Residual net Mobile net ConvNeXt
Nb blocks Nb filters Standard|Chess filters|Standard|Chess filters|Standard |Chess filters
6 96 0.00702 | 0.00705 0.00682 | 0.00673 0.00963 | 0.00912**
12 96 0.00670 0.00668 0.00657 | 0.00631 0.00952 | 0.00917***
18 96 0.00665 | 0.00654 0.00642 [ 0.00613*** | 0.00953 | 0.00927**
6 192 0.00616 | 0.00607 0.00609 | 0.00596" 0.00869 | 0.00812***
12 192 0.00591| 0.00620 0.00616 | 0.00608 0.00898 | 0.00865**
18 192 0.00625 | 0.00611* | 0.00607 | 0.00593* 0.00906 | 0.00857***

in the trunk, but using different types of filters in the convolutional layers used
in the blocks. We compare four different versions with kernels of size (5,5): the
red line corresponds to the standard residual net without filters, the blue line
corresponds to the application of random filters, the yellow line to rook-bishop
chess filters and the green line to knight-rook-bishop chess filters.

The graph on the left of Figure 6 shows that using a combination of rook
and bishop filters that take into account only vertical, horizontal and diagonal
moves gives better results than other filter types for residual networks. Using
the knight filter as a complement to the rook and bishop filters seems to be
more useful with the depthwise convolution layer used in MobileNets, as shown
in Figure 6 on the right. As the number of planes in the MobileNet blocks with
depthwise multiplier of 6 is really much higher than for residual blocks, and the
different planes are processed independently by the different chess filters, this
seems to allow a wider variety of filters to be used in combination to improve
results.
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Residual net with 18 blocks and 96 filters Mobile net with 18 blocks and 96 filters

Policy accuracy

3

Number of steps. Number of steps.

Fig.6: Evolution of the policy accuracy on the validation set for the residual
net (left) and MobileNet (right) with 18 blocks and 96 filters in the trunk and
different types of filters.

4 Conclusion

Our study first explores the impact of using different types of blocks for the
neural networks used in computer chess engines. We notice that using MobileNet
blocks instead of the classical residual blocks can help to improve the results in
term of policy accuracy and MSE loss but at the cost of more latency and more
memory required for the training and inference steps.

We also find that the use of specific chess filters reduces the number of train-
able parameters while improving results for almost all neural network config-
urations. These chess filters work better than random filters. This means that
imposing some kind of structure related the movement of pieces in convolutional
layers can be useful for computer chess.

Future work could involve a low-level CUDA or TensorRT implementation of
the depthwise convolution layer with chess kernels (without using a mask) that
could be optimized for processing 8 by 8 images to reduce the latency. Future
work will also involve assessing the impact of these new architectures in terms
of ELO, in particular compared to conventional architectures used in LcO.
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