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1 Introduction and Motivation

In the area of decision-making under uncertainty, the use of fuzzy integrals, most
notably the Choquet integral and its variants, has attracted much attention in recent
years. It is a powerful and elegant way to extend the traditional model of (subjective)
expected utility (on this model, see Fishburn, 1970, 1982). Indeed, integrating with
respect to a non-necessarily additive measure allows to weaken the independence
hypotheses embodied in the additive representation of preferences underlying the
expected utility model that have often been shown to be violated in experiments
(see the pioneering experimental findings of Allais, 1953; Ellsberg, 1961). Models
based on Choquet integrals have been axiomatized in a variety of ways (see Gilboa,
1987; Schmeidler, 1989; or Wakker, 1989, Chap. 6. For related works in the area of
decision-making under risk, see Quiggin, 1982; and Yaari, 1987). Recent reviews of
this research trend can be found in Chateauneuf and Cohen (2000), Schmidt (2004),
Starmer (2000) and Sugden (2004).

More recently, still in the area of decision-making under uncertainty, Dubois,
Prade, and Sabbadin (2000b) have suggested to replace the Choquet integral by a
Sugeno integral (see Sugeno, 1974, 1977), the latter being a kind of “ordinal coun-
terpart” of the former, and provided an axiomatic analysis of this model (special
cases of the Sugeno integral are analyzed in Dubois, Prade, & Sabbadin 2001b.
For a related analysis in the area of decision-making under risk, see Hougaard &
Keiding, 1996). Dubois, Marichal, Prade, Roubens, and Sabbadin (2001a) offer a
lucid survey of these developments.

Unsurprisingly, people working in the area of multiple criteria decision mak-
ing (henceforth, MCDM) have considered following a similar path to build models
weakening the independence hypotheses embodied in the additive value function

M. Pirlot (�)
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model that underlies most of existing MCDM techniques. This offers an alterna-
tive to the decomposable and polynomial models studied in Krantz, Luce, Suppes,
and Tversky (1971, Chap. 7). The work of Grabisch (1995, 1996) has widely pop-
ularized the use of Choquet and Sugeno integrals in MCDM. Since then, there has
been many developments in this area. They are surveyed in Grabisch and Roubens
(2000) and Grabisch and Labreuche (2004) (an alternative approach to weaken the
independence hypotheses of the traditional model that does not use fuzzy integrals
is suggested in Gonzales & Perny, 2005).

It is well known that decision-making under uncertainty and MCDM are related
areas. When there is only a finite number of states of nature, acts may indeed be
viewed as elements of a homogeneous Cartesian product in which the underlying
set is the set of all consequences (this is the approach advocated and developped
in Wakker, 1989, Chap. 4). In the area of MCDM, a Cartesian product structure is
also used to model alternatives. However, in MCDM the product set is generally not
homogeneous: alternatives are evaluated on several attributes that do not have to be
expressed on the same scale.

The recent development of the use of fuzzy integrals in the area of MCDM should
not obscure the fact that there is a major difficulty involved in the transposition of
techniques coming from decision-making under uncertainty to the area of MCDM.
In the former area, any two consequences can easily be compared: considering con-
stant acts gives a straightforward way to transfer a preference relation on the set
of acts to the set of consequences. The situation is vastly different in the area of
MCDM. The fact that the underlying product set is not homogeneous invalidates
the idea to consider “constant acts”. Therefore, there is no obvious way to compare
consequences on different attributes. Yet, such comparisons seem to be prerequisite
for the application of models based on fuzzy integrals.

Traditional conjoint measurement models (see, e.g., Krantz et al., 1971, Chap. 6;
or Wakker, 1989, Chap. 3) lead to compare preference differences between conse-
quences. It is indeed easy to give a meaning to a statement like “the preference
difference between consequences xi and yi on attribute i is equal to the preference
difference between consequences x j and y j on attribute j” (e.g., because they exactly
compensate the same preference difference expressed on a third attribute). These
models do not lead to comparing in terms of preference consequences expressed on
distinct attributes. Indeed, in the additive value function model a statement like “xi is
better than x j” is easily seen to be meaningless (this is reflected in the fact that, in
this model, the origin of the value function on each attribute may be changed inde-
pendently on each attribute).

In order to bypass this difficulty, most studies involving fuzzy integrals in the
area of MCDM postulate that the attributes are somehow “commensurate”, while the
precise content of this hypothesis is difficult to analyze and test (see, e.g., Dubois,
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Grabisch, Modave, & Prade, 2000a). Less frequently, researchers have tried to build
attributes so that this commensurability hypothesis is adequate. This is the path
followed in Grabisch, Labreuche, and Vansnick (2003) who use the MACBETH
technique (see Bana e Costa & Vansnick, 1994, 1997, 1999) to build such scales.
Such an analysis requires the assessment of a neutral level on each attribute that is
supposed to be “equally attractive”. In practice, the assessment of such levels does
not seem to be an easy task. On a more theoretical level, the precise properties of
these commensurate neutral levels are not easy to devise.

A major breakthrough for the application of fuzzy integrals in MCDM has re-
cently been done in Greco, Matarazzo, and Słowiński (2004) who give conditions
characterizing binary relations on non-homogeneous product sets that can be repre-
sented using a discrete Sugeno integral, using this binary relation as the only prim-
itive. This is an important result that paves the way to a measurement-theoretic
analysis of fuzzy integrals in the area of MCDM (Greco et al., 2004, also relate the
discrete Sugeno integral model to models based on decision rules that they have
advocated in Greco, Matarazzo, & Slowinski, 1999, 2001). It allows to analyze the
discrete Sugeno integral model without any commensurateness hypothesis, which is
of direct interest to MCDM.

In the present paper, we will present a new model for the representation of
preferences, inspired from the work of Bouyssou and Marchant (2007). This non-
numerical model, called non-compensatory model, is slightly more general than the
discrete Sugeno integral but, when the preference relation is a weak order that has a
numerical representation, we will show that both models are equivalent. The analy-
sis of this new model will thus help us to better understand the discrete Sugeno
integral and, eventually, to answer some open questions. In particular, we will ad-
dress the following issues:

• Besides the standard completeness, transitivity and order density conditions,
Greco et al. (2004) used only one condition. We will show that it is possible
to factorize this condition into two more elementary ones. This helps us to better
understand the behavioural content of the conditions. It can also be useful for
empirically testing the conditions. Finally, this will permit us to show that the
discrete Sugeno integral model can be viewed as a particular case of a general
decomposable representation, investigated in Bouyssou and Pirlot (2004) and
Greco et al. (2004).

• The correspondence established between weak orders that are representable in
the noncompensatory model and those representable by the discrete Sugeno inte-
gral model has an interesting byproduct. Starting from any (bounded) numerical
representation of a weak order in the noncompensatory model, we provide for-
mulae that allow to build a representation of the weak order by a Sugeno integral.

• Greco et al. (2004) used four conditions in their characterization of the discrete
Sugeno integral. We will prove that they are independent.

• In the standard characterizations of the additive model for multi-attributed pref-
erences (e.g., Wakker, 1989), no commensurateness hypothesis is made. Yet, it is
well-known that the difference between two levels on attribute i can be compared
to the difference between two levels on attribute j. So, in this model, differences
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are commensurate and this can be derived from the axioms. This plays an impor-
tant role in most elicitation techniques.

In their characterization, Greco et al. (2004) did not make any commensurate-
ness hypothesis either. Yet, when we compute a discrete Sugeno integral, we com-
pare levels on different attributes. So, just as with the additive model, it seems that
commensurateness must be implied by the axioms and that this could be used in the
elicitation. Unfortunately, we will show that the picture is more complex with the
discrete Sugeno integral than with the additive model.

• Greco et al. (2004) have shown that, under some conditions, there exists utility
functions (one per attribute) that can be used to represent the preferences by
means of a discrete Sugeno integral. These utility functions are of course not
unique; but to what extent? We will provide a partial answer to this question.

By the way, since the non-compensatory model and the discrete Sugeno inte-
gral are equivalent under some conditions, our proof of the characterization of the
non-compensatory model can be used as a proof of the characterization of the dis-
crete Sugeno integral. This can prove useful since no proof of it has been published
so far.1

This paper is organized as follows. The result of Greco et al. (2004) is pre-
sented in Sect. 2. We there show how to factorize their main condition into two
simpler conditions. Section 3 introduces and characterizes what we will call the
noncompensatory model for weak orders. Section 4 analyzes the links between
the noncompensatory model for weak orders and the discrete Sugeno integral model.
Section 5 presents examples showing that the conditions used in the main result are
independent. Section 6 discusses the uniqueness of the representation in the dis-
crete Sugeno integral model and further investigates the commensurateness issue.
Section 7 briefly concludes with the mention of some directions for future research.

2 The Discrete Sugeno Integral

2.1 Background on the Discrete Sugeno Integral

Let β = (β1,β2, . . . ,βp) ∈ [0,1]p. Let (·)β be a permutation on P = {1,2, . . . , p}
such that β(1)β ≤ β(2)β ≤ ·· · ≤ β(p)β .

A capacity (see Choquet, 1953) on P is a function ν : 2P → [0,1] such that:

1 It should be mentioned that a related result for the case of ordered categories is presented without
proof in Słowiński, Greco, and Matarazzo (2002). This result is a particular case of the one pre-
sented in Greco et al. (2004) for weak orders with a finite number of distinct equivalence classes.
A complete and quite simple proof for this particular case was proposed in Bouyssou and Marchant
(2007), using comments made on an early version of the latter paper by Greco, Matarazzo, and
Słowiński.
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• ν(∅) = 0.
• [A,B ∈ 2P and A⊆ B]⇒ ν(A)≤ ν(B).

The capacity ν is said to be normalized if, furthermore, ν(P) = 1.
The discrete Sugeno integral of the vector (β1,β2, . . . ,βp) ∈ [0,1]p w.r.t. the nor-

malized capacity ν is defined by

Sν [β ] =
p∨

i=1

[
β(i)β ∧ν(A(i)β )

]
,

where A(i)β is the element of 2P equal to {(i)β ,(i+1)β , . . . ,(p)β}.
We refer the reader to Dubois, et al. (2001a) and Marichal (2000a, 2000b) for

excellent surveys of the properties of the discrete Sugeno integral and its several
possible equivalent definitions. Let us simply mention here that the reordering of
the components of β in order to compute its Sugeno integral can be avoided noting
that we may equivalently write

Sν [β ] =
∨

T⊆P

[
ν(T )∧

(∧
i∈T

βi

)]
. (1)

We will mainly use this presentation of the discrete Sugeno integral below.

2.2 The Model

Let � be a binary relation on a set X = ∏n
i=1 Xi with n ≥ 2. Elements of X will

be interpreted as alternatives evaluated on a set N = {1,2, . . . ,n} of attributes. The
relations � and ∼ are defined as usual. We denote by X−i the set ∏ j∈N\{i}Xj. We
abbreviate Not[x � y ] as x � y.

We say that � has a representation in the discrete Sugeno integral model if there
are a normalized capacity μ on N and functions ui : Xi → [0,1] such that, for all
x,y ∈ X ,

x � y⇔ S〈μ,u〉(x)≥ S〈μ,u〉(y),

where S〈μ,u〉(x) = Sμ [(u1(x1),u2(x2), . . . ,un(xn))].

2.3 Axioms and Result

A weak order is a complete and transitive binary relation. The set Y ⊆ X is said to
be dense in X for the weak order � if for all x,y ∈ X , x� y implies x � z and z � y,
for some z ∈ Y . We say that the weak order � on X satisfies the order-denseness
condition (condition OD) if there is a finite or countably infinite set Y ⊆ X that is
dense in X for �. It is well-known (see Fishburn, 1970, p. 27; or Krantz et al., 1971,
p. 40) that there is a real-valued function v on X such that, for all x,y ∈ X ,
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x � y⇔ v(x)≥ v(y),

if and only if � is a weak order on X satisfying the order-denseness condition.

Remark 1. Let � be a weak order on X . It is clear that ∼ is an equivalence and that
the elements of X/∼ are linearly ordered. We often abuse terminology and speak
of equivalence classes of � to mean the elements of X/∼. When X/∼ is finite, we
speak of the first equivalence class of � to mean the elements of X/∼ that precede
all others in the induced linear order.

The following condition was introduced in Greco et al. (2004). The relation � on
X is said to be strongly 2-graded on attribute i ∈ N (condition 2∗-gradedi) if, for all
x,y,z,w ∈ X and all ai ∈ Xi,

x � z
and

y � w
and

z � w

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
⇒

⎧⎨
⎩

(ai,x−i) � z
or

(xi,y−i) � w,

where (ai,x−i) denotes the element of X obtained from x ∈ X by replacing its ith
coordinate by ai ∈ Xi. The binary relation will be said to be strongly 2-graded (con-
dition 2∗-graded) if it is strongly 2-graded on all attributes i ∈ N.

Although the above condition may look complex, it has a simple interpretation.
Consider the particular case of condition 2∗-gradedi in which z = w. Suppose that
(xi,y−i) � w. Since (yi,y−i) � w and (xi,y−i) � w, this suggests that the level xi is
worse than yi with respect to the alternative w. In this case, (xi,x−i) � w implies that
(ai,x−i) � w, for all ai ∈ Xi. This means that, once we know that some level yi is
better than xi w.r.t. to w∈X , there does not exist an element in Xi that could be worse
than xi, so that, if (xi,x−i) � w, the same will be true replacing xi by any element
in Xi. This roughly implies that, for each w ∈ X , we can partition the elements of Xi
into at most two categories of levels: the “satisfactory” ones and the “unsatisfactory”
ones with respect to w. Condition 2∗-gradedi implies these twofold partitions are not
unrelated when considering distinct elements z and w in X .

Greco et al. (2004) state the following:

Theorem 1 (Greco et al. (2004, Theorem 3, p. 284)). Let � be a binary relation
on X. This relation has a representation in the discrete Sugeno integral model if and
only if (iff) it is a weak order satisfying the order-denseness condition and being
strongly 2-graded.

The necessity of the conditions in this theorem is easy to establish. It is indeed
clear that if � has a representation in the discrete Sugeno integral model, then it
must be a weak order satisfying OD. It is not difficult to show that it must also
satisfy 2∗-graded. Indeed, suppose that condition 2∗-gradedi is violated, so that, for
some x,y,z,w ∈ X and some ai ∈ Xi, we have x � z, y � w, z � w, (ai,x−i) � z and
(xi,y−i) � w. Using y � w and (xi,y−i) � w, we obtain ui(xi) < S〈μ,u〉(w). Because
z � w, we know that S〈μ,u〉(z) ≥ S〈μ,u〉(w), so that S〈μ,u〉(z) > ui(xi). Since x � z
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and S〈μ,u〉(z) > ui(xi), there is some I ∈ 2N such that i /∈ I, μ(I) ≥ S〈μ,u〉(z) and
u j(x j) ≥ S〈μ,u〉(z), for all j ∈ I. This implies S〈μ,u〉((ai,x−i)) ≥ S〈μ,u〉(z), so that
(ai,x−i) � z, a contradiction.

In Sect. 4, we give a proof of the sufficiency of the conditions, which links the
discrete Sugeno integral model with the noncompensatory model studied in Sect. 3.

2.4 Factorization of 2∗-Gradedi

We say that the relation � satisfies condition AC1i if, for all x,y,z,w ∈ X ,

x � y
and

z � w

⎫⎬
⎭⇒

⎧⎨
⎩

(zi,x−i) � y,
or

(xi,z−i) � w.

We say that � satisfies AC1 if it satisfies AC1i for all i ∈ N.
Condition AC1 was proposed and studied in Bouyssou and Pirlot (2004). It plays

a central role in the characterization of binary relations (that may be incomplete or
intransitive) admitting a decomposable representation of the type:

x � y⇔ G[u1(x1), . . . ,un(xn),u1(y1), . . . ,un(yn)]≥ 0,

with G being nondecreasing (resp. nonincreasing) in its first (resp. last) n arguments
(see Bouyssou & Pirlot, 2004, Theorem 2). We refer to Bouyssou and Pirlot (2004)
for a detailed interpretation of this condition. Let us simply mention here that condi-
tion AC1i, independently of any transitivity or completeness properties of �, allows
to order the elements of Xi in such a way that this ordering is compatible with �
(see Lemma 3 below).

We say that � is 2-graded on attribute i ∈ N (condition 2-gradedi) if, for all
x,y,z,w ∈ X and all ai ∈ Xi,

x � z
and

(yi,x−i) � z
and

y � w
and

z � w

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⇒

⎧⎨
⎩

(ai,x−i) � z
or

(xi,y−i) � w.

We say that � is 2-graded (condition 2-graded) if it is 2-graded on all attributes
i ∈ N. Condition 2-graded weakens condition 2∗-graded adjoining it the additional
premise (yi,x−i) � z. It has a similar interpretation. We have:

Lemma 1. Let � be a weak order on the set X. Then � satisfies AC1i and 2-gradedi
iff it satisfies 2∗-gradedi.
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Proof. [AC1i & 2-gradedi ⇒ 2∗-gradedi]. Suppose that x � z, y � w z � w. Using
AC1i, x � z and y � w implies either (yi,x−i) � z or (xi,y−i) � w. In the latter case,
one of the two conclusions of 2∗-gradedi holds. In the former case, we have x � z,
(yi,x−i) � z, y � w and z � w, so that 2-gradedi implies either (ai,x−i) � z, for all
ai ∈ Xi or (xi,y−i) � w, which is the desired conclusion.

[2∗-gradedi ⇒ AC1i & 2-gradedi]. It is clear that 2∗-gradedi implies 2-gradedi
since 2-gradedi is obtained from 2∗-gradedi by adding to it an additional premise.
Suppose that x � y and z � w. Since � is complete, we have either y � w or w � y.
If y � w, we have x � y, z � w and y � w, so that 2∗-gradedi implies (xi,z−i) � w or
(ai,x−i) � y, for all ai ∈ Xi. Taking ai = zi shows that AC1i holds in this case. The
proof is similar if it is supposed that w � y. ��

Why is this factorization interesting? First, it makes clear that the condition used
by Greco et al. (2004) combines two distinct properties: (1) the elements of Xi can
be ordered and (2) for each w ∈ X , we can partition the elements of Xi into at most
two categories with respect to w. This helps us better understand the behavioural
content of the conditions. It can also be useful for empirically testing the validity
of the discrete Sugeno integral model. Indeed, if we run an experiment for testing
whether a complex condition (like 2∗-graded) is satisfied by subjects, it is likely that
it will be rejected. This does not mean that the condition is completely wrong. It can
happen that only part of it is wrong. Therefore, testing more elementary conditions
can help identify what is wrong with a model. Finally, this factorization permit us to
show that the discrete Sugeno integral model can be viewed as a particular case of
a general decomposable representation, investigated and characterized in Bouyssou
and Pirlot (2004) and Greco et al. (2004). Furthermore, thanks to the factorization,
we know exactly what has to be imposed on the decomposable model in order to
obtain the discrete Sugeno integral model.

3 The Noncompensatory Model for Weak Orders

This section presents and characterizes the noncompensatory model for weak or-
ders. It will turn out to have intimate connections with the discrete Sugeno integral
model.

The following non-numerical model is inspired from the work of Słowiński et al.
(2002) and Bouyssou and Marchant (2007) who analyze ordered partitions of a
Cartesian product using similar models. A similar model was first suggested in
Fishburn (1978).

Definition 1. A weak order � on X has a representation in the noncompensatory
model if for all x ∈ X , there are sets:

1. Ax
i ⊆ Xi, for all i ∈ N.

2. Fx ⊆ 2N such that
[I ∈ Fx and I ⊆ J ∈ 2N ]⇒ J ∈ Fx, (2)
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that are such that, for all x,y ∈ X ,

x � y⇒

⎧⎨
⎩

Ax
i ⊆ Ay

i
and

Fx ⊆ Fy
(3)

and
x � y⇔{i ∈ N : xi ∈ Ay

i } ∈ Fy. (4)

We often write A(x,y) instead of {i ∈ N : xi ∈ Ay
i }.

The noncompensatory model2 can be interpreted as follows. For each x ∈ X we
isolate on each attribute a subset Ax

i ⊆ Xi containing the levels on attribute i that
are satisfactory for x. In order for an alternative to be at least as good as x, it must
have evaluations that are satisfactory for x on a subset of attributes belonging to
Fx. The subsets of attributes belonging to Fx are interpreted as subsets that are
“sufficiently important” to warrant preference on x.

With this interpretation in mind, the constraint (3) means that if x is at least as
good as y then every level that is satisfactory for x must be satisfactory for y. Further-
more, subsets of attributes that are “sufficiently important” to warrant preference on
x must also be “sufficiently important” to warrant preference on y. Given the above
interpretation of Fx, the constraint (2) simply says that any superset of a set that is
“sufficiently important” to warrant preference on x must have the same property.

Suppose that x � y and that xi ∈ Ay
i , for some i ∈ N. In the noncompensatory

model, we have (zi,x−i) � y, for all zi ∈Xi. It is therefore impossible, starting from x,
to obtain an alternative that would be at least as good as y by modifying the eval-
uation of x on the ith attribute. In other terms, the fact that A(x,y) /∈ Fy cannot be
compensated by improving the evaluation of x on an attribute in A(x,y). Hence, our
name for this model.

We first observe that a weak order having a representation in the noncompensa-
tory model must satisfy AC1 and 2-graded.

Lemma 2. If weak order � on X has a representation in the noncompensatory
model, then it satisfies AC1 and 2-graded.

Proof. [AC1i]. Suppose that x � y, z � w, (zi,x−i) � y and (xi,z−i) � w. It is easy
to see that x � y and (zi,x−i) � y imply xi ∈ Ay

i and zi /∈ Ay
i . Similarly, z � w and

(xi,z−i) � w imply zi ∈Aw
i and xi /∈Aw

i . Because � is complete, we have either y � w
or w � y. Hence, we have either Ay

i ⊆ Aw
i or Aw

i ⊆ Ay
i , a contradiction.

[2-gradedi]. Suppose that 2-gradedi is violated, so that, for some x,y,z,w ∈ X
and some ai ∈ Xi, (xi,x−i) � z, (yi,x−i) � z, (yi,y−i) � w, z � w, (ai,x−i) � z and

2 The noncompensatory model for weak orders must not be confused with “noncompensatory pref-
erences” as introduced in Fishburn (1976). Noncompensatory preferences in the sense of Fishburn
(1976) are preferences that result from an “ordinal aggregation” in the context of MCDM that is
quite close from the type of aggregation studied in social choice theory in the vein of Arrow (1963)
(for a recent analysis of such preferences, see Bouyssou and Pirlot (2005)). As first shown in Fish-
burn (1975), noncompensatory preferences that are weak orders are, except in degenerate cases,
lexicographic.
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(xi,y−i) � w. Using the definition of the noncompensatory model, (yi,y−i) � w and
(xi,y−i) � w imply yi ∈ Aw

i and xi /∈ Aw
i . Similarly, (xi,x−i) � z and (ai,x−i) � z

imply xi ∈ Az
i and ai /∈ Az

i . Since z � w, we have Az
i ⊆ Aw

i , a contradiction. ��

The main result of this section says that, for weak orders, the noncompensatory
model is fully characterized by condition 2∗-graded or, equivalently, by the con-
junction of AC1 and 2-graded.

Proposition 1. If a weak order on X satisfies AC1 and 2-graded then it has a repre-
sentation in the noncompensatory model.

Before proving Proposition 1, we will have to go through a few definitions and
lemmas.

Consider an attribute i ∈ N. We define the left marginal trace on attribute i ∈ N
letting, for all xi,yi ∈ Xi, all a−i ∈ X−i and all z ∈ X ,

xi �+
i yi ⇔ [(yi,a−i) � z⇒ (xi,a−i) � z].

Similarly, given a ∈ X , we define the left marginal trace on attribute i ∈ N with
respect to a ∈ X , letting, for all xi,yi ∈ Xi and all z−i ∈ X−i,

xi �+(a)
i yi ⇔ [(yi,z−i) � a⇒ (xi,z−i) � a].

The symmetric and asymmetric parts of �+
i (resp. �+(a)

i ) are denoted ∼+
i and �+

i

(resp. ∼+(a)
i and �+(a)

i ). It is clear that �+
i and �+(a)

i are always reflexive and
transitive. They may be incomplete however.

We note a few useful obvious connections between �+(a)
i , �+

i and � in the fol-
lowing lemma.

Lemma 3. We have, for all i ∈ N, all z,w ∈ X and all xi,yi ∈ Xi:

1. xi �+
i yi ⇔ [xi �+(a)

i yi, for all a ∈ X ].
2. [z � w,xi �+

i zi]⇒ (xi,z−i) � w.
3. Furthermore, if � is reflexive then, [z j ∼+

j w j, for all j ∈ N]⇒ z∼ w.
4. The relation �+

i is complete iff AC1i holds.

Proof. Parts 1 and 2 easily follow from the definitions. Part 3 follows from Part 2
and the fact that w � w. It is obvious that negating the completeness of �+

i is equiv-
alent to negating AC1i. ��

Remark 2. When � is a weak order, condition AC1i is equivalent to supposing that,
for all xi,yi ∈ Xi and all z−i,w−i ∈ X−i (xi,z−i) � (yi,z−i)⇒ (xi,w−i) � (yi,w−i),
i.e., that attribute i is weakly separable, using the terminology of Bouyssou and
Pirlot (2004).

Indeed suppose that � satisfies AC1i and is such that attribute i is not weakly
separable. Therefore there are xi,yi ∈ Xi and z−i,w−i ∈ X−i such that (xi,z−i) �
(yi,z−i) and (yi,w−i) � (xi,w−i). Since � is reflexive, we have (xi,z−i) � (xi,z−i)
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and (yi,w−i) � (yi,w−i). Using AC1i, we have either yi �+
i xi or xi �+

i yi, so that
either (yi,z−i) � (xi,z−i) or (xi,w−i) � (yi,w−i), a contradiction.

Conversely, suppose that � is complete and transitive and that attribute i is
weakly separable. Suppose that AC1i is violated so that, since � is complete,
(xi,x−i) � y, (zi,z−i) � w, y � (zi,x−i) and w � (xi,z−i), for some x,y,z,w ∈ X .
Since � is a weak order, we obtain (xi,x−i)� (zi,x−i) and (zi,z−i)� (xi,z−i), which
violates the weak separability of attribute i.

We say that a weak order � is weakly separable if, for all i ∈ N, it is weakly
separable for attribute i.

Hence, combining Lemma 1 with Theorem 1 shows that a relation has a repre-
sentation in the discrete Sugeno integral model iff it is a weakly separable weak
order satisfying OD and 2-graded.

Bouyssou and Pirlot (2004, Propositions 8 and B.3) have shown that, for weak
orders satisfying OD, weak separability is a necessary and sufficient condition to
obtain a general decomposable representation in which, for all x,y ∈ X ,

x � y⇔ F [u1(x1), . . . ,un(xn)]≥ F [u1(y1), . . . ,un(yn)],

with F being nondecreasing in all its arguments (see also Greco et al., 2004,
Theorem 1). Hence, condition 2-graded is exactly what must be added to go from
this general decomposable representation to a representation in the discrete Sugeno
integral model.

The following lemma makes precise the structure of the relations �+(a)
i when � is

a weak order satisfying AC1i and 2-gradedi.

Lemma 4. Let � be a weak order on X satisfying AC1i and 2-gradedi. Then:

1. �+(a)
i is complete for all a ∈ X.

2. xi �+(a)
i yi ⇒ [xi �+(b)

i yi for all b ∈ X ].
3. �+(a)

i has at most two distinct equivalence classes, for all a ∈ X.
4. [xi ∼+(a)

i zi and xi �+(a)
i yi]⇒ xi ∼+(b)

i zi, for all b ∈ X such that a � b.
5. If a � b and both �+(a)

i and �+(b)
i are nontrivial then the first equivalence class

of �+(a)
i is included in the first equivalence class of �+(b)

i .

Proof. Parts 1 and 2 follow from Lemma 3 since AC1i implies that �+
i is complete.

Part 3. Suppose that �+(a)
i has at least three distinct equivalence classes. This im-

plies that (xi,c−i) � a, (yi,c−i) � a, (yi,d−i)� a and (zi,d−i) � a, for some xi,yi,zi ∈
Xi, some c−i,d−i ∈ X−i and some a ∈ X . Using AC1i, (xi,c−i) � a, (yi,d−i) � a
and (yi,c−i) � a imply (xi,d−i) � a. Using 2-gradedi, (yi,d−i) � a, (xi,d−i) � a,
(xi,c−i) � a and a � a imply (yi,c−i) � a or (zi,d−i) � a, a contradiction.

Part 4. Suppose that xi ∼+(a)
i zi, xi �+(a)

i yi, a � b and xi �+(b)
i zi (the proof

for the case zi �+(b)
i xi being similar). By construction, we have (xi,w−i) � b,

(zi,w−i) � b, (xi, t−i) � a and (yi, t−i) � a. Since xi∼+(a)
i zi, we must have (zi, t−i) �

a. Using AC1i, (xi,w−i) � b, (zi, t−i) � a and (zi,w−i) � b imply (xi, t−i) � a. Using
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2-gradedi, (zi, t−i) � a, (xi, t−i) � a, (xi,w−i) � b and a � b imply (zi,w−i) � b or
(yi, t−i) � a, a contradiction.

Part 5. Suppose that a � b, xi �+(a)
i yi and zi �+(b)

i xi. Using Part 2, we know that
zi �+(a)

i xi. Because we know from Part 3 that �+(a)
i has at most two equivalence

classes, we must have zi ∼+(a)
i xi. Using Part 4, a � b, zi ∼+(a)

i xi and xi �+(a)
i yi

imply zi ∼+(b)
i xi, a contradiction. ��

Let � be a weak order on X satisfying AC1i and 2-gradedi. Let i ∈ N. For all a ∈ X ,
we know that either �+(a)

i is trivial or �+(a)
i has two distinct equivalence classes.

Define Ba
i ⊂ Xi as the empty set in the first case and as the elements in the first

equivalence class in the second case. Define Ca
i letting:

Ca
i =

⋃
{x∈X :x�a}

Bx
i .

The following lemma studies the properties of the sets Ca
i .

Lemma 5. Let � be a weak order on X satisfying AC1 and 2-graded. For all
x,y,z,w ∈ X and all i ∈ N:

1. z � w⇒Cz
i ⊆Cw

i .
2. { j ∈ N : y j ∈Cz

j} ⊆ { j ∈ N : x j ∈Cz
j}⇒ [xi �+(z)

i yi for all i ∈ N].
3. Cx

i � Xi.

Proof. Part 1. We have xi ∈Cz
i iff xi ∈ Ba

i , for some a � z. Because z � w and � is
a weak order, we have a � z. Hence, xi ∈ Ba

i , for some a � w, so that xi ∈Cw
i .

Part 2. If �+(z)
i is trivial, we have by definition xi ∼+(z)

i yi. If �+(z)
i is not trivial,

it follows from Part 5 of Lemma 4 that Cz
i is equal to the first equivalence class

of �+(z)
i . If yi ∈ Cz

i , we have xi ∈ Cz
i , so that xi ∼+(z)

i yi. If yi /∈ Cz
i , then we have

zi �+(z)
i yi.

Part 3. By construction, By
i is strictly included in Xi. As the set Cx

i is obtained by
taking the union of sets By

i , the conclusion follows. ��

Lemma 6. Let � be a weak order on X satisfying AC1i and 2-gradedi. Define, for
all x ∈ X, the set Gx ⊆ 2N letting I ∈Gx whenever we have {i ∈ N : zi ∈Cx

i } ⊆ I, for
some z ∈ X such that z � x. We have, for all x,y ∈ X:

1. x � y⇔ {i ∈ N : xi ∈Cy
i } ∈ Gy.

2. [I ∈ Gx and I ⊆ J]⇒ J ∈ Gx.
3. x � y⇒ Gx ⊆ Gy.

Proof. Part 1. By construction, if x � y then {i∈N : xi ∈Cy
i } ∈Gy. Let us show that

the reverse implication is true. Suppose that {i∈N : xi ∈Cy
i } ∈Gy. This implies that

{i ∈ N : zi ∈Cy
i } ⊆ {i ∈ N : xi ∈Cy

i }, for some z ∈ X such that z � y. Using Part 2
of Lemma 5, {i ∈ N : zi ∈Cy

i } ⊆ {i ∈ N : xi ∈Cy
i } implies xi �+(y)

i zi, for all i ∈ N.
Hence, z � y implies x � y.
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Part 2 follows from the definition of the sets Gx.
Part 3. Suppose that x � y and let I ∈ Gx. Let us show that we must have I ∈ Gy.

By construction, I ∈ Gx implies that {i ∈ N : zi ∈Cx
i } ⊆ I, for some z ∈ X such that

z � x. Consider the alternative w ∈ X defined in the following way:

• If zi ∈Cx
i , let wi = zi. We have wi ∈Cx

i . Using Part 1 of Lemma 5, we know that
this implies wi ∈Cy

i .
• If zi /∈Cx

i . Using Part 3 of Lemma 5, we know that Cy
i � Xi. We take wi to be any

element in Xi \Cy
i . Because, we know that Cx

i ⊆Cy
i , we have wi /∈Cx

i .

By construction we have, for all i ∈ N, zi ∈ Cx
i ⇔ wi ∈ Cx

i ⇔ wi ∈ Cy
i . Hence, we

have {i ∈ N : zi ∈ Cx
i } = {i ∈ N : wi ∈ Cx

i } = {i ∈ N : wi ∈ Cy
i }. The first equality

implies w � x. Using the fact that � is a weak order, we obtain w � y. Hence, we
have {i ∈ N : wi ∈Cy

i } ⊆ I and w � y. This implies I ∈ Gy. ��

Defining Ax
i = Cx

i and Fx = Gx, the sufficiency proof of Proposition 1 follows from
combining Lemmas 5 and 6.

4 The Noncompensatory Model and the Discrete Sugeno
Integral Model

The main result in this section says that if a weak order has a representation in the
noncompensatory model and has a numerical representation, then it has a represen-
tation in the discrete Sugeno integral model. This will help to complete the proof of
Theorem 1.

Proposition 2. Let � be a weak order on X. Suppose that � can be represented in
the noncompensatory model and that there is a real function v on X such that, for
all x,y ∈ X,

x � y⇔ v(x)≥ v(y). (5)

Then � has a representation in the discrete Sugeno integral model.

Proof. Let � be a weak order representable in the noncompensatory model and such
that there is a real-valued function v satisfying (5). We may assume w.l.o.g. that, for
all x ∈ X , v(x) ∈ [0,1]. Furthermore, if there are minimal elements in X for �, we
may assume w.l.o.g. that v gives the value 0 to these elements. We consider now any
such function v. For all i ∈ N, define ui letting, for all xi ∈ Xi,

ui(xi) =
{

sup{w∈X :xi∈Aw
i } v(w) if ∃w : xi ∈ Aw

i ,

0 otherwise.
(6)

Define μ on 2N letting, for all I ∈ 2N ,

μ(I) =
{

sup{w∈X :I∈Fw} v(w) if ∃w : I ∈ Fw,

0 otherwise.
(7)
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Since I ∈ Fw and J ⊇ I entails J ∈ Fw, we have that μ(J) ≥ μ(I). Hence, μ is a
nondecreasing set function.

Let us show that μ(∅) = 0. If there is no w ∈ X such that ∅ ∈ Fw, then we
have, by construction, μ(∅) = 0. Suppose that X∅ = {w ∈ X : ∅ ∈ Fw} = ∅. From
the definition of the noncompensatory model, it follows that, for all x ∈ X and all
w ∈ X∅, we have x � w. Hence, for all w ∈ X∅, w is minimal for �. We therefore
have v(w) = 0, for all w ∈ X∅ and, hence, μ(∅) = 0. This shows that μ defined by
(7) is a capacity on 2N . It is not necessarily normalized, i.e., we may not have that
μ(N) = 1.

Independently of the normalization of μ , we can compute, for all x ∈ X , Sμ,u(x)
letting:

S〈μ,u〉(x) =
∨

I⊆N

[
μ(I)∧

(∧
i∈I

ui(xi)

)]
. (8)

It is clear that, for all y ∈ X , S〈μ,u〉(y) ∈ [0,1]. Let us show that, for all y ∈ X ,
S〈μ,u〉(y) = v(y), which will complete the proof if μ happens to be normalized.

Let x,y ∈ X be such that x � y. This implies A(x,y) = {i ∈ N : xi ∈ Ay
i } ∈ Fy.

Hence, for all i ∈ A(x,y), y ∈ {w ∈ X : xi ∈ Aw
i }, so that ui(xi) ≥ v(y). Similarly,

y∈ {w∈X : A(x,y)∈Fw}, so that μ(A(x,y))≥ v(y). Hence, for I = A(x,y), we have

μ(I)∧
(∧

i∈I

ui(xi)

)
≥ v(y).

In view of (8), this implies S〈μ,u〉(x) ≥ v(y). Since � is reflexive, this shows that,
for all y ∈ X , S〈μ,u〉(y)≥ v(y).

We now prove that, for all y ∈ X , S〈μ,u〉(y) ≤ v(y). If y is maximal for � (i.e.,
y � x, for all x ∈ X), we have v(y) ≥ v(x), for all x ∈ X . The definition of ui and μ
obviously implies that they cannot exceed the maximal value of v on X . Hence, in
this case, we have S〈μ,u〉(y)≤ v(y).

Suppose henceforth that y ∈ X is not maximal for �, so that x � y, for some
x ∈ X . This implies that A(y,x) = {i ∈ N : yi ∈ Ax

i } /∈ Fx. Define Ay =
⋃

z�y A(y,z).
Because A(y,z) ⊆ N, N is a finite set, and z′ � z implies A(y,z′) ⊆ A(y,z), there is
an element z0 ∈ X with z0 � y that is such that A(y,z0) = Ay and A(y,z) = Ay, for all
z ∈ X such that z0 � z� y.

We claim the following:

Claim 1: for all j /∈ Ay, u j(y j)≤ v(y).
Claim 2: for all I ⊆ Ay, μ(I)≤ v(y).

Proof of Claim 1. Let j /∈ Ay, so that y j /∈ Az0
j . If the set {w ∈ X : y j ∈ Aw

j } is empty,
we have u j(y j) = 0 and the claim trivially holds. Otherwise, let w ∈ X such that
y j ∈ Aw

j . If w � z0, we have Aw
j ⊆ Az0

j , so that y j ∈ Aw
j implies y j ∈ Az0

j , a contra-
diction. If z0 � w � y, we know that A(y,w) = A(y,z0). This is contradictory since
y j ∈ Aw

j and y j /∈ Az0
j . Hence, when j /∈ Ay, we must have y � w, for all w ∈ X such

that y j ∈ Aw
j . This implies that u j(y j) = sup{w∈X :y j∈Aw

j } v(w)≤ v(y), for all j /∈ Ay.
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Proof of Claim 2. Let I ⊆ Ay. If the set {w ∈ X : I ∈ Fw} is empty, we have μ(I) = 0
and the claim follows. Otherwise, let w ∈ X such that I ∈ Fw. Suppose that w� z0.
This implies Fw ⊆ Fz0 , so that I ∈ Fz0 . Because I ⊆ Ay, we obtain Ay ∈ Fz0 . This
is contradictory since z0 � y implies that Ay = A(y,z0) /∈ Fz0 . Suppose now that
z0 � w � y. We have A(y,w) = Ay /∈ Fw. But, since I ∈ Fw and I ⊆ Ay, we obtain
Ay ∈ Fw, a contradiction. Hence, for all w ∈ X such that I ∈ Fw, we have y � w.
This implies μ(I) = sup{w∈X :I∈Fw} v(w)≤ v(y).

Using Claims 1 and 2, we establish that S〈μ,u〉(y)≤ v(y) for any y ∈ X that is not
maximal. Let I ⊆ N. We distinguish two cases in order to compute

μ(I)∧
(∧

i∈I

ui(xi)

)
.

1. If I is not included in Ay, we know that there is j ∈ I such that j /∈ Ay. Hence,
using Claim 1, u j(y j)≤ v(y) so that μ(I)∧ (

∧
i∈I ui(yi))≤ v(y).

2. If I is included in Ay, using Claim 2, we have μ(I)≤ v(y). Hence, we know that
μ(I)∧ (

∧
i∈I ui(yi))≤ v(y).

Hence, for all I ⊆ N, we have μ(I)∧ (
∧

i∈I ui(yi)) ≤ v(y), so that S〈μ,u〉(y) ≤ v(y).
This proves that, for all y ∈ X , S〈μ,u〉(y) = v(y).

It remains to show that we may always build a representation in the discrete
Sugeno integral model using a normalized capacity, i.e., a capacity ν such that
ν(N) = 1.

Using the above construction, the value of μ(N) is obtained using (7). We have
μ(N) = supw∈X v(w), since for all w ∈ X , N ∈ Fw. If the weak order � is not trivial,
we have μ(N) > 0. In order to obtain a representation leading to a normalized
capacity, it suffices to apply the above construction to the function u obtained by
dividing v by μ(N). If the weak order � is trivial, it is easy to see that it has a
representation in the noncompensatory model such that, for all x ∈ X and all i ∈ N,
Ax

i = Xi and Fx = {N}. Defining, for all i ∈ N and all xi ∈ Xi, ui(xi) = 1, μ(N) = 1
and μ(A) = 0, for all A � N, leads to a representation of this trivial weak order in
the discrete Sugeno integral model. ��

The sufficiency proof of Theorem 1 follows from combining Lemma 1 with
Propositions 1 and 2. This amounts to characterizing the discrete Sugeno inte-
gral model by the conjunction of any of the following three equivalent sets of
conditions:

• Completeness, transitivity, OD, AC1 and 2-graded
• Completeness, transitivity, OD, weak separability and 2-graded
• Completeness, transitivity, OD and 2∗-graded

The examples in the following section show no condition in the first set is redundant.

Remark 3. Consider a nontrivial weak order � on X that satisfies the hypotheses of
Proposition 2. The proof of this proposition establishes that any function v : X →
[0,1] satisfying (5) and giving a value 0 to the minimal elements in X for � (if any)
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can be used to define a representation in the Sugeno integral model. The functions
ui and the (non-necessarily normalized) capacity μ used in this representation can
be defined on the basis of v using (6) and (7).

In other words, any (bounded) numerical representation v of a weak order repre-
sentable in the noncompensatory model is essentially a Sugeno integral. By “essen-
tially”, we mean that a positive affine transformation may have to be applied first
to the numerical representation v in order that the minimal elements in X (if any)
receive the value 0 and that the supremum of v is 1. This transformation is only
needed to ensure that μ(∅) = 0 and μ is a normalized capacity. Note that applying
(6) and (7) to any bounded numerical representation of the preference would yield
ui’s and μ such that formula (8) would restate the value of v(x), even if μ does not
satisfy μ(∅) = 0 or is not normalized.

Furthermore, as shown in this proof, (6) and (7) can be viewed as inversion for-
mulas for the discrete Sugeno integral model in the following sense. If we know the
value of S〈μ,u〉(x), for all x ∈ X , without knowing the functions μ and ui, it is possi-
ble to use (6) and (7) to build functions u j and a capacity μ that allow to reconstruct
all these values using the discrete Sugeno integral formula (8).

5 Independence of Conditions

When strong 2-gradedness is factorized using AC1 and 2-gradedness, Theorem 1
uses five conditions: completeness, transitivity, AC1, 2-gradedness and order-dense-
ness. The five examples below show that none of these conditions can be dispensed
with.

Example 1. Let X = {x1,y1}×{x2,y2}. Let � be identical to the weak order

(y1,y2)� [(x1,y2),(y1,x2)]� (x1,x2),

except that we have removed two arcs from �, so as to have (x1,y2) � (y1,x2) and
(y1,x2) � (x1,y2). It is clear that � is transitive but is not complete. Since X1 and
X2 have only two elements, condition 2-graded trivially holds. It is not difficult to
check that we have y1 �+

1 x1 and y2 �+
2 x2, so that AC1 holds.

Example 2. Let X = {x1,y1}×{x2,y2}. Let � be identical to the trivial weak order
except that we have removed one arc from �, so as to have (x1,x2) � (y1,y2). It is
not difficult to see that the resulting relation is complete but not transitive (it is a
semi-order). Since X1 and X2 have only two elements, condition 2-graded trivially
holds. It is not difficult to check that we have y1 �+

1 x1 and y2 �+
2 x2, so that AC1

holds.

Example 3. Let X = {x1,y1,z1}×{x2,y2}×{x3,y3}. Let � be the weak order such
that:

[(x1,x2,x3),(y1,x2,x3)]
�
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[(x1,x2,y3),(x1,y2,x3),(y1,x2,y3),(y1,y2,x3),
(y1,y2,y3),(z1,x2,x3),(z1,x2,y3),(z1,y2,x3)]

�
[(z1,y2,y3),(x1,y2,y3)] .

We have y1 �+
1 x1 �+

1 z1, x2 �+
2 y2 and x3 �+

3 y3, which shows that AC1 holds.
Conditions 2-graded2 and 2-graded3 are trivially satisfied. Condition 2-graded1

is violated since (x1,x2,x3) � (y1,x2,x3), (y1,x2,x3) � (y1,x2,x3), (y1,y2,y3) �
(x1,x2,y3) and (y1,x2,x3) � (x1,x2,y3) but (z1,x2,x3) � (y1,x2,x3) and (x1,y2,y3) �
(x1,x2,y3).

Example 4. Let X = {x1,y1}× {x2,y2}× {x3,y3}. Let � be the weak order such
that:

[(x1,x2,x3),(x1,y2,x3),(y1,y2,x3)]
�

[(y1,y2,y3),(y1,x2,x3)]
�

[(x1,x2,y3),(x1,y2,y3),(y1,x2,y3)] .

Condition 2-graded trivially holds. We have y2 �+
2 x2 and x3 �+

3 y3, so that con-
ditions AC12 and AC13 hold. Since (x1,x2,x3) � (y1,y2,x3) and (y1,y2,y3) �
(y1,x2,x3) but (y1,x2,x3) � (y1,y2,x3) and (x1,y2,y3) � (y1,x2, x3), condition
AC11 is violated.

Remark 4. It is easy to check that the weak order in Example 4 satisfies the following
condition

x � y
and
z � y

⎫⎬
⎭⇒

⎧⎨
⎩

(zi,x−i) � y,
or

(xi,z−i) � y,

for all x,y,z ∈ X . This condition is a weakening of AC1i obtained by requiring that
y = w in the expression of AC1i (it is equivalent to requiring that all relations �+(a)

i
are complete). It is therefore not possible to weaken AC1i in this way.

Similarly, it is easy to check that the weak order in Example 3 satisfies the weak-
ening of 2-gradedi obtained by requiring that z = w in the expression of 2-gradedi
(and, hence, removing the last redundant premise), i.e., for all x,y,z ∈ X and all
ai ∈ Xi,

x � z
and

(yi,x−i) � z
and

y � z

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
⇒

⎧⎨
⎩

(ai,x−i) � z
or

(xi,y−i) � z,

Hence, condition 2-gradedi cannot be weakened in this way.

Example 5. Let X = 2R × {0,1}. We consider the weak order on X such that
(x1,x2) � (y1,y2) if [x2 = 1] or [x2 = 0, y2 = 0 and x1 ≥∗ y1], where ≥∗ is any
linear order on 2R. It is easy to see that � is a weak order. It violates OD since
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the restriction of � to 2R×{0} is isomorphic to ≥∗ on 2R and ≥∗ violates OD.
The relation � has a representation in the noncompensatory model. Indeed, for all
x = (x1,1), take Ax

1 = ∅, Ax
2 = {1} and Fx = {{2},{1,2}}. For all x = (x1,0), take

Ax
1 = {y1 ∈ 2R : y1 ≥∗ x1}, Ax

2 = {1} and Fx = {{1},{2},{1,2}}. It is easy to check
that this defines a representation of the weak order � in the noncompensatory model.
Using Lemma 2, this implies that � satisfies AC1 and 2-graded.

6 Uniqueness

This section briefly discusses the uniqueness of the representation in the noncom-
pensatory model and the discrete Sugeno integral model. The “ordinal” character
of these models makes them especially attractive to deal with finite sets of alter-
natives. We therefore restrict our attention to this case in what follows. When X is
finite, combining Propositions 1 and 2 with Theorem 1, shows that a binary relation
has a representation in the noncompensatory model iff it has a representation in the
discrete Sugeno integral model.

6.1 Links Between Representations in the Noncompensatory
Model and the Discrete Sugeno Integral Model

Let � be a non-degenerate weak order on a finite set X with r > 1 distinct equiv-
alence classes. Suppose that � has a representation in the noncompensatory model
using sets Ax

i and Fx. It is easy to deduce from this representation a representation
of � in the discrete Sugeno integral model.

It follows from the definition of the noncompensatory model that, if x and y
belong to the same equivalence class, we have Ax

i = Ay
i , for all i ∈ N, and Fx = Fy.

Let A(k)
i = Ax

i and F(k) = Fx, for some x ∈ X belonging to the kth equivalence class
of �.

Take any numbers λk such that

λ1 = 1 > λ2 > · · ·> λr−1 > λr = 0. (9)

For all i ∈ N, define ui letting, for all xi ∈ Xi,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui(xi) = λ1 if xi ∈ A(1)
i ,

ui(xi) = λ2 if xi ∈ A(2)
i \A(1)

i ,

ui(xi) = λ3 if xi ∈ A(3)
i \A(2)

i ,
...

ui(xi) = λr−1 if xi ∈ A(r−1)
i \A(r−2)

i ,
ui(xi) = λr otherwise,

(10)
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and μ on 2N letting, for all A ∈ 2N ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ(A) = λ1 if A ∈ F(1),

μ(A) = λ2 if A ∈ F(2) \F(1),

μ(A) = λ3 if A ∈ F(3) \F(2),
...

μ(A) = λr−1 if A ∈ F(r−1) \F(r−2),
μ(A) = λr otherwise.

(11)

With such definitions, for all x ∈ X , the value S〈μ,u〉(x) belongs to {λ1,λ2, . . . , λr}.
It is easy to see that x ∈ X belongs to the kth equivalence class of � iff {i ∈ N : xi ∈
A(k)

i } ∈ F(k) iff S〈μ,u〉(x) = λk.
The above formulas therefore give a systematic way to build a representation in

the discrete Sugeno integral model on the basis of a representation in the noncom-
pensatory model.

Clearly, the real numbers λk may be chosen arbitrarily, provided that they satisfy
(9). Given a particular choice of λk, the representation built above is “minimal” in
the sense that it uses as few real numbers as possible in order to build the represen-
tation in the Sugeno integral model.

The minimal representation, given a particular choice of λk compatible with (9),
envisaged above is not the only possible one. Given the numbers λk, we can, for
instance, use them to define the values of μ through (11). When this is done, it is
clear that for each distinct xi ∈ A(k)

i \A(k−1)
i we can define ui(xi) to take an arbitrary

value in the interval [λk,λk−1). Other choices are clearly possible.

6.2 Uniqueness of Representations

It is easy to deduce from the results in Bouyssou and Marchant (2007) the unique-
ness of the representation in the noncompensatory model. Consider the kth equiva-
lence class of �. We say that attribute i ∈ N is influent for this equivalence class if
there are xi,yi ∈ Xi and a−i ∈ Xi such that (xi,a−i) belongs at least to the kth equiv-
alence class of � and (yi,a−i) belongs to a strictly lower equivalence class. Using
the results in Bouyssou and Marchant (2007), it is easy to show that, when each
attribute i ∈ N is influent for the kth equivalence class of �, the sets A(k)

i and F(k)

are uniquely determined. This condition is not necessary for such a uniqueness how-
ever. This is illustrated in the example below adapted from Bouyssou and Marchant
(2007).

Example 6. Let n = 3, X = {x1,y1}×{x2,y2}×{x3,y3}. Let � be such that:

(x1,x2,x3)� (y1,x2,x3)� [(x1,x2,y3),(x1,y2,x3)]

� [(x1,y2,y3),(y1,x2,y3),(y1,y2,x3),(y1,y2,y3)] .
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It is easy to check that all attributes are influent for the first equivalence class of
�. We must have A(1)

1 = {x1}, A(1)
2 = {x2}, A(1)

3 = {x3} and F(1) = {{1,2,3}}.
Similarly, all attributes are influent for the third equivalence class. We must have
A(3)

1 = {x1}, A(3)
2 = {x2}, A(3)

3 = {x3} and F(3) = {{1,2},{1,3},{2,3},{1,2,3}}.
Attributes 2 and 3 are influent for the second equivalence class of � while at-

tribute 1 is not. In order to satisfy the constraints of the noncompensatory model,
we must take A(2)

1 = {x1}, A(2)
2 = {x2}, A(2)

3 = {x3} and F(2) = {{2,3},{1,2,3}}.
The conditions ensuring the uniqueness of the representation in the noncompensa-
tory model are investigated in Bouyssou and Marchant (2007). Whenever this rep-
resentation is not unique, we may use each of these representations as a basis for the
analysis in Sect. 6.1.

In order to analyze the uniqueness of the representation in the discrete Sugeno
integral model, two points should therefore be kept in mind. First, given a repre-
sentation in the noncompensatory model, it is possible to deduce several distinct
representations in the discrete Sugeno integral model. Second, the representation in
the noncompensatory model may not be unique. Combining these two effects, it is
clear that the uniqueness of the representation in the discrete Sugeno integral model
is quite weak. Since its precise analysis does not seem to be informative, we do not
develop this point.

6.3 Commensurateness

When we compute a Sugeno integral, we compare levels on different attributes.
This seems to indicate that the axioms of the discrete Sugeno integral model imply
the existence of a relation �c defined on

⋃
i∈N Xi, with the following interpretation:

xi �c x j iff xi is better than x j. Given a preference relation �, there can exist several
representations in the discrete Sugeno integral model and it can happen that ui(xi) >
u j(x j) in one representation while u′i(xi) < u′j(x j) in another one. Hence, stating
xi �c x j (or the converse) does not make sense for such a pair. So, let us define �c

by xi �c x j iff ui(xi) > u j(x j) in all representations. In the following proposition,
we characterize this relation in terms of the primitive relation �.

Proposition 3. Let � be a weak order representable by means of a Sugeno integral.
We have zi �c z j if and only if, for some c,d ∈ X, wi ∈ Xi, w j ∈ Xj, a−i ∈ X−i and
b− j ∈ X− j, we have

⎧⎨
⎩

c � d,
(zi,a−i) � c, (wi,a−i) � c,
(w j,b− j) � d, (z j,b− j) � d.

(12)

Proof. If (12) holds, then, in any representation, ui(zi) ≥ S〈μ,u〉(c) ≥ S〈μ,u〉(d) >
u j(z j). So, in any representation, ui(zi) > u j(z j) and, therefore, zi �c z j.
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Suppose now zi �c z j and let (u∗i )i∈N be one of the representations constructed
by means of (9), (10) and (11). We therefore know that u∗i (zi) > u∗j(z j). There is thus
k and l with k < l such that u∗j(z j) = λ l and u∗i (zi) = λ k (this follows from (10)).

Hence, zi ∈ A(k)
i and z j /∈ A(k)

j . So, (12) holds for some c = d belonging to the kth
equivalence class of �. ��

From the definition of �c, it is clear that this relation is transitive and asymmetric,
i.e., zi �c z j implies z j �c zi. We now show that it is also negatively transitive, i.e.,
xi �c y j and y j �c zl implies xi �c zl . Hence, �c is the asymmetric part of a weak
order on the set

⋃
i∈N Xi. This is in line with the intuitive notion of commensurate-

ness.

Proposition 4. Let � be a weak order representable by means of a Sugeno integral.
Then �c is negatively transitive.

Proof. Let (u∗i )i∈N be one of the representations constructed by means of (9), (10)
and (11). Suppose xi �c y j and y j �c zl . If u∗i (xi) > u∗j(y j), then, as shown in the
proof of Proposition 3, (12) holds and, by Proposition 3, xi �c y j. This contradiction
implies u∗i (xi)≤ u∗j(y j). The same reasoning yields u∗j(y j)≤ u∗j(zl). By transitivity,
u∗j(xi) ≤ u∗j(zl). Suppose now, contrary to negative transitivity, that xi �c zl . This
implies u∗i (xi) > u∗l (zl), a contradiction. ��

To conclude this section, note that the “derived commensurateness”, i.e., the relation
�c, is not easy to interpret and analyze however. Indeed, the way the above relation
combines with � remains complex. As shown in the example below, it is quite
possible to have (xi,x j,x−i j) � y, z j �c xi and zi �c x j, while (zi,z j,x−i j) � y. This
calls for further analysis.

Example 7. Let n = 4 and X1 = X2 = X3 = X4 = {0,0.01,0.02, . . . ,0.99,1}. For all
i ∈ N, let ui(xi) = xi. Define a normalized capacity μ on N such that: μ(∅) = 0,
μ(A) = 0.1, for all A ⊆ N such that |A| = 1, μ({1,2}) = 0.1, μ({1,3}) =
0.2, μ({1,4}) = 0.301, μ({2,3}) = 0.31, μ({2,4}) = 0.2, μ({3,4}) = 0.3,
μ({1,2,3}) = 0.55, μ({1,2,4}) = 0.39, μ({1,3,4}) = 1, μ({2,3,4}) = 0.31,
μ(N) = 1. Define � on X as the relation obtained through the comparison of the
values S〈μ,u〉(x) = Sμ [x] using the utility functions and the capacity defined above.

We have
Sμ [(0.2,0,0.5,0)] = 0.2 > Sμ [(0.1,0,0.5,0)] = 0.1,

Sμ [(0,0.2,0,0.5)] = 0.2 > Sμ [(0,0.15,0,0.5)] = 0.15.

Since it is clear that Sμ [(0.2,0.2,0.2,0.2)] = 0.2 we thus have

(0.2,0,0.5,0) � (0.2,0.2,0.2,0.2) = c,
(0.1,0,0.5,0) � (0.2,0.2,0.2,0.2) = c,
(0,0.2,0,0.5) � (0.2,0.2,0.2,0.2) = d,

(0,0.15,0,0.5) � (0.2,0.2,0.2,0.2) = d,
c = (0.2,0.2,0.2,0.2) � (0.2,0.2,0.2,0.2) = d,

so that the level 0.2 on X1 is better than the level 0.15 on X2
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Similarly, we have

Sμ [(0,0.46,0.5,0)] = 0.31 > Sμ [(0,0.3,0.5,0)] = 0.3,
Sμ [(0.5,0,0,0.5)] = 0.301 > Sμ [(0.3,0,0,0.5)] = 0.3.

Since we have Sμ [(0.31,0.31,0.31,0.31)] = 0.31 and Sμ [(0.301,0.301,0.301,
0.301)] = 0.301, we obtain

(0,0.46,0.5,0) � (0.31,0.31,0.31,0.31) = c′,
(0,0.3,0.5,0) � (0.31,0.31,0.31,0.31) = c′,
(0.5,0,0,0.5) � (0.301,0.301,0.301,0.301) = d′,
(0.3,0,0,0.5) � (0.301,0.301,0.301,0.301) = d′,

c′ � d′,

so that the level 0.46 on X2 is better than the level 0.3 on X1.
We have Sμ [(0.3,0.15,0.29,0.4)] = 0.3. Since the level 0.2 on X1 is better than

the level 0.15 on X2 and 0.46 on X2 is better than the level 0.3 on X1, we should
obtain that Sμ [(0.2,0.46,0.29,0.4)]≥ 0.3, whereas it is equal to 0.29.

7 Discussion

In this paper, we have analyzed the relations between the discrete Sugeno integral
model and the noncompensatory model as well as proposed a factorization of the
main condition used in Greco et al. (2004, Theorem 3). By the same token, we have
presented a proof of Greco et al. (2004, Theorem 3). We have also discussed the
uniqueness of the representation in the discrete Sugeno integral model and shown
that the conditions used in Greco et al. (2004, Theorem 3) are independent. Besides,
we have analyzed the commensurateness that is implied by the discrete Sugeno
integral model and shown that it is more complex than what is usually thought in
the literature. Many questions are nevertheless left open. Let us briefly mention here
what seems to us the most important ones.

The result in Greco et al. (2004) is a first step in the systematic study of models
using fuzzy integrals in MCDM. A first and major open problem is to derive a
similar result for the discrete Choquet integral. This appears very difficult and we
have no satisfactory answer at this time.

A second open problem is to use the above result as a building block to study
particular cases of the discrete Sugeno integral. This was started in Greco et al.
(2004) who showed how to characterize ordered weighted minimum and maximum.
There are nevertheless many other particular cases of the discrete Sugeno integral
that would be worth investigating.

A third problem is to investigate assessment protocols of the various parameters
of the discrete Sugeno integral model using the above result and conditions. This
will clearly require a deeper investigation of the commensurateness at work in our
models.
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Finally, it should be mentioned that we have mainly used here the noncompen-
satory model for weak orders as a tool for analyzing the discrete Sugeno integral
model. The noncompensatory model that we introduced can be extended in many
possible directions. This will be the subject of a subsequent paper.

Acknowledgments This work was presented at the 27th Linz Seminar on Fuzzy Sets (7–11
February 2006) and at the DIMACS / LAMSADE Workshop on “Voting Theory and Preference
Modelling” (25–28 October 2006). We are grateful to the participants of these meetings for their
helpful comments on our results.

References

Allais, M. (1953). Le comportement de l’homme rationnel devant le risque : critique des postulats
et axiomes de l’école américaine. Econometrica 21, 503–546.

Arrow, K. J. (1963). Social choice and individual values (2nd ed.). Wiley, New York.
Bana e Costa, C. A. & Vansnick, J.-C. (1994). MACBETH: An interactive path towards the con-

struction of cardinal value functions. International Transactions in Operational Research, 1,
489–500.

Bana e Costa, C. A. & Vansnick, J.-C. (1997). Applications of the MACBETH approach in the
framework of an additive aggregation model. Journal of Multi-Criteria Decision Analysis, 6,
107–114.

Bana e Costa, C. A. & Vansnick, J.-C. (1999). The MACBETH approach: Basic ideas, software
and an application. In N. Meskens & M. Roubens (Eds.), Advances in decision analysis (pp.
131–157). Dordrecht: Kluwer.

Bouyssou, D. & Marchant, Th. (2007). An axiomatic approach to noncompensatory sorting meth-
ods in MCDM, II: More than two categories. European Journal of Operational Research
178(1), 246–276.

Bouyssou, D. & M. Pirlot (2004). Preferences for multiattributed alternatives: Traces, dominance,
and numerical representations. Journal of Mathematical Psychology 48(3), 167–185.

Bouyssou, D. & Pirlot, M. (2005). A characterization of concordance relations. European Journal
of Operational Research 167(2), 427–443.

Chateauneuf, A. & Cohen, M. (2000). Choquet expected utility model: A new approach to indi-
vidual behavior under uncertainty and to social welfare. In M. Grabisch, T. Murofushi, and
M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and Applications, (pp. 289–313).
Heidelberg: Physica.

Choquet, G. 1953. Theory of capacities. Annales de l’Institut Fourier, 5, 131–295.
Dubois, D., Grabisch, M., Modave, F., & Prade, H. (2000a). Relating decision under uncertainty

and multicriteria decision making models. International Journal of Intelligent Systems, 15,
967–979.

Dubois, D., Marichal, J.-L., Prade, H., Roubens, M., & Sabbadin, R. (2001a). The use of the
discrete Sugeno integral in decision making: A survey. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 9, 539–561.

Dubois, D., Prade, H., & Sabbadin, R. (2000b). Qualitative decision theory with Sugeno integrals.
In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.), Fuzzy measures and integrals: Theory and
applications (pp. 314–332). Heidelberg: Physica.

Dubois, D., Prade, H., & Sabbadin, R. (2000b). Qualitative decision theory with Sugeno integrals.
In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.), Fuzzy Measures and Integrals: Theory and
Applications, (pp. 314–332). Heidelberg: Physica.

Dubois, D., Prade, H., & Sabbadin, R. (2001b). Decision-theoretic foundations of qualitative pos-
sibility theory. European Journal of Operational Research 128, 459–478.



108 D. Bouyssou et al.

Ellsberg, D. (1961). Risk, ambiguity and the Savage axioms. Quarterly Journal of Economics 75,
643–669.

Fishburn, P.C. (1970). Utility theory for decision-making. New-York: Wiley.
Fishburn, P.C. (1975). Axioms for lexicographic preferences. Review of Economic Studies, 42,

415–419.
Fishburn, P.C. (1976). Noncompensatory preferences. Synthese, 33, 393–403.
Fishburn, P.C. (1978). A survey of multiattribute/multicriteria evaluation theories. In S. Zionts

(Ed.), Multicriteria problem solving, (pp. 181–224). Berlin: Springer Verlag.
Fishburn, P.C. (1982). The Foundations of Expected Utility. Dordrecht: D. Reidel.
Gilboa, I. (1987). Expected utility with purely subjective non-additive probabilities. Journal of

Mathematical Economics, 16, 65–68.
Gonzales, Ch. & Perny, P. (2005). GAI networks for decision making under cetainty. In R. Brafman

& U. Junker (Eds.), Proceedings of the 19th International Joint Conference on Artificial Intel-
ligence – Workshop on advances in preference handling, (pp. 100–105).

Grabisch, M. (1995). Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems,
69(3), 279–298.

Grabisch, M. (1996). The application of fuzzy integrals to multicriteria decision making. European
Journal of Operational Research, 89, 445–456.

Grabisch, M. & Labreuche, C. (2004). Fuzzy measures and integrals in MCDA. In J. Figueira,
S. Greco, & M. Ehrgott (Eds.), Multiple Criteria Decision Analysis, (pp. 563–608). Kluwer
Academic Publishers.

Grabisch, M., Labreuche, C., & Vansnick, J.-C. (2003). On the extension of pseudo-boolean
functions for the aggregation of interacting criteria. European Journal of Operational Re-
search, 148(1), 28–47.

Grabisch, M. & Roubens, M. (2000). Application of the Choquet integral in multicriteria decision
making. In M. Grabisch, T. Murofushi, & M. Sugeno (Eds.), Fuzzy Measures and Integrals:
Theory and Applications, (pp. 348–374). Heidelberg: Physica.
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