CNRS, LAMSADE, PSL

ADVERSARIAL ROBUSTNESS THROUGH RANDOMIZATION
AND SOME MORE...

Lucas GNECCO HEREDIA

CNRS, LAMSADE - Université Paris Dauphine - PSL

November 20, 2024

Bauphine | PSL*

UNIVERSITE PARIS

MILES

Machine Intelligence and Learning Systems

1/3



TABLE OF CONTENTS

1 Problemsetting . . . . . . . . . . e e e e 3
2 Examples from the literature . . . . . . ... ... ... ... oo oo oo, 10
3 Robustness of randomized classifiers . . . . . . ... ... ... 0 0 000 o oL, 18
4 Diverseensembles . . . . . . . L. e e e e 27
5 Bayesian Neural Networks . . . . . . . . . . . . i it e e e 28

CNRS, LAMSADE, PSL

N



TABLE OF CONTENTS

1 Problem setting

CNRS, LAMSADE, PSL

N

w
]



PROBLEM SETTING: STANDARD CLASSIFICATION

> Classification task: input space X C R? equipped with a distance d, typically ¢, or £+, and
labels Y = {1,...,K}
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PROBLEM SETTING: STANDARD CLASSIFICATION

> Classification task: input space X C R? equipped with a distance d, typically ¢, or £+, and
labels Y = {1,...,K}
» True data distribution p € P(X x Y)

» Error function, or 0-1 loss of a classifier h : X — ) defined as

OV ((x,y),h) = 1{h(x) #y}

» Goal Findh:X — Y within some family H with the lowest risk (highest accuracy).

R(1) = Egegpp |7 ((x,9),10) (risk)
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PROBLEM SETTING: STANDARD CLASSIFICATION
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PROBLEM SETTING: ADVERSARIAL CLASSIFICATION

» Data perturbing adversary with budget € can transport any x to
x" € Be(x) = {x' € X | d(x,x") < €} to induce an error.

Goal Findh: X — Y within some family H with
the lowest adversarial risk (highest robust accu-

racy)

Re(h) = Exyymp [ sup Eo_l((x’,y),h)]

x'E€Be(x)
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VISUALIZATION (ADVERSARIAL CLASSIFICATION)
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RANDOMIZED CLASSIFIERS IN THE LITERATURE

Many previous works have proposed stochastic or randomized models as a way to improve
robustness to adversarial attacks.

MITIGATING ADVERSARIAL EFFECTS THROUGH RAN-
DOMIZATION

Vit

Stochastic Local Winner-Takes-All Networks Enable
Profound Adversarial Robustness

STOCHASTIC ACTIVATION PRUNING FOR
ROBUST ADVERSARIAL DEFENSE

ResNets Ensemble via the Feynman-Kac Formalism
to Improve Natural and Robust Accuracies

CNRS, LAMSADE, PSL



RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a randomized classifier is not a label, but a probability distribution over
labels.
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RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a randomized classifier is not a label, but a probability distribution over
labels.

» Randomized: h:X — AK
» Deterministic: h:X — {1,...,K} = {ey,...,ex} C AK.
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RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the input or model.

» Input noise injection [HRF19; Pin+19; Yu+21]

X — ‘sample noise 7 ~ u‘ — h(x +n)

» Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

X — ‘sample model i ~ u‘ — h(x)
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RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the input or model.

» Input noise injection [HRF19; Pin+19; Yu+21]

X — ‘sample noise 7 ~ u‘ — h(x +n)

» Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

X — ‘sample model i ~ u‘ — h(x)

Most methods can be though as a distribution over some family of models...
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RANDOM SELF ENSEMBLE [ECCV 2018] [L1U+18]

Basically Noise layers + Avg prediction

RSE for Robust Neural Networks 5
noise layer
conv layer
Y Finq ﬁ Fout = Fip + €

batch norm €~ N(0,0%)
activation noise layer
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PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Weight or input noise injection + Adv training.

Clean Weight w, Noisy Weight w;
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ACTIVATION PRUNING [ICLR 2018] [DHI+18]




ACTIVATION PRUNING [ICLR 2018] [DHI+18]




STOCHASTIC LOCAL-WINNER-TAKES-ALL [PCT21; PAN+21]

Input layer SB-LWTA layer SB-LWTA layer Output layer
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OTHER APPROACHES

» Random resize and padding [Xie+17]
» Simple and Effective Stochastic Neural Networks [Yu+21]
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OBFUSCATED GRADIENTS

Many (if not all) of the methods do not provide real robustness. They just make it harder to find an
attack with the usual gradient methods [ACW18].

CNRS, LAMSADE, PSL

Defense Dataset Distance Accuracy
Buckman et al. (2018) CIFAR 0.031 (/=) 0%
Ma et al. (2018) CIFAR  0.031 () 5%
Guo et al. (2018) ImageNet  0.005 (£3) 0%
Dhillon et al. (2018) CIFAR 0.031 (Y) 0%
Xie et al. (2018) ImageNet 0.031 (/o) 0%
Song et al. (2018) CIFAR 0.031 (/) 9%
Samangouei et al. MNIST 0.005 (2)  55%*x*
(2018)

Madry et al. (2018) CIFAR  0.031 (s) 47%
Na et al. (2018) CIFAR  0.015 () 15%




EVALUATION OF RANDOMIZED MODELS

See also this issue.
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3 Description of RobustBench

‘We start by providing a detailed layout of our proposed leaderboards for /., £, and common
corruption threat models. Next, we present the Model Zoo, which provides unified access to most
networks from our leaderboards.

3.1 Leaderboard

Restrictions. We argue that accurate king adversarial r inas dized way
requires some restrictions on the type of considered models. The goal of these restrictions is to
prevent submissions of defenses that cause some standard attacks to fail without truly improving
robustness. Specifically, we consider only classifiers f : RY — R that

* have in general non-zero gradients with respect to the inputs. Models with zero gradients,
e.g., that rely on quantization of inputs [13, 53], make gradient-based methods ineffective
thus requiring zeroth-order attacks, which do not perform as well as gradient-based attacks.
Alternatively, specific adaptive evaluations, e.g. with Backward Pass Differentiable Approx-
imation [5], can be used which, however, can hardly be standardized. Moreover, we are not
aware of existing defenses solely based on having zero gradients for large parts of the input
space which would achieve competitive robustness.

have a fully deterministic forward pass. To evaluate defenses with stochastic components,
it is a common practice to combine standard gradient-based attacks with Expectation over
Transformations [5]. While often effective it might be not sufficient, as shown by Tramer
et al. [142]. Moreover, the classification decision of randomized models may vary over
different runs for the same input, hence even the definition of robust accuracy differs from
that of deterministic networks. We note that randomization can be useful for improving
robustness and deriving robustness certificates [82, 25], but it also introduces variance in the
gradient estimators (both white- and black-box) making standard attacks much less effective.
« do not have an optimization loop in the forward pass. This makes backpropagation through it
very difficult or extremely expensive. Usually, such defenses [118, 84] need to be evaluated
adaptively with attacks that rely on a combination of hand-crafted losses.

16 / 32


https://github.com/fra31/auto-attack/issues/58

ON ADAPTIVE ATTACKS TO ADVERSARIAL EXAMPLE DEFENSES [TRA+20]

On Adaptive Attacks
to Adversarial Example Defenses

Florian Tramer* Nicholas Carlini*
Stanford University Google
tramer@cs.stanford.edu nicholas@carlini.com
Wieland Brendel* Aleksander Madry
University of Tiibingen MIT
wieland.brendel@uni-tuebingen.de madry@mit.edu
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3 Robustness of randomized classifiers

CNRS, LAMSADE, PSL

oooooooooooooooooooooooooooooo



EXPECTED RISK

Suppose that the randomness of the model can be described by some distribution ;. over a family of
classifiers H.

x — |sample model i ~ ,u‘ — h(x)

CNRS, LAMSADE, PSL 18 / 32



EXPECTED RISK
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‘ Deterministic ‘ ‘ Randomized ‘

‘ R(h) = EX,y[E(hvx’y)] H R(hu) = Ex,y[Ehwu[E(h7x7y)H ‘




MATCHING PENNIES OF CLASSIFIERS

Mixing classifiers that are vulnerable but not simultaneously vulnerable creates a situation
reminiscent of the game of matching pennies.
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:
THE MATCHING PENNY GAP

Definition 3.1 (Matching penny gap)
The matching penny gap of h,, at (x,y) is:

Ty, (% Y) = p(Hop(x, ) — " (x,y)
ind. vul simu?? oul
where
MHop(x,y)  ={h € Hy : 3x}, € Be(x) such that h(x),) # y}, individually vulnerable
Dsop(x,y)  ={H' C Hp: 3x" € Be(x) such that Vh € H' h(x") # y}, families of sim. vulnerable
P, y) = SuPgpes, (vy) MR- max simultaneously vulnerable

If mn, (x,y) > 0, we say that h,, is in matching penny configuration at (x,y).

CNRS, LAMSADE, PSL
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EXAMPLE

Figure. Let us m,, at the point (xo,y) for
this toy example. Both fi, f> correctly
predict the class y for xg in the white area,
but they are fooled in the and blue
areas, respectively.
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My = {fifo}s p=(37)
Hvb(XO’y) = {f17f2} g N(Hvb(xmy)) =1
Hsop(%0,y) = {{Ai}, {1} = ™ (x,y) =}

Th, (X0, ) =1—3 =13

Two vulnerable classifiers can be mixed to obtain
1 expected adversarial risk !



MAIN RESULT

Theorem 1

For a mixture h,, : X — P () constructed from M}, using distribution 1, we have that,

Re(hy) = By [Re(M)] = Exy)plmn, ()]

This theorem shows the link between the risk of a mixture h,, and the average risk. The gap is
exactly the expected matching penny gap.

CNRS, LAMSADE, PSL
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WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1
Re(hy,) < infyeyy, Re(h) if and only if the following condition holds.

E(xy)mplmh, (6, 1)) > Eppu[Re(h)] — hieny_ftb Re(h)

CNRS, LAMSADE, PSL 24 /32



WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

Re(hy,) < infyeyy, Re(h) if and only if the following condition holds.

E(x y)~plmh, (X, )]

> Epp[Re(h)] =

inf R.(h
hl€n7'lb ( )

» Randomized classifiers are better if their expected matching penny gap is high.
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WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

Re(hy,) < infyeqy, Re(h) if and only if the following condition holds.

E(xy)~plmh,, (X, 1)] >

Epp[Re(h)] -

inf R.(h
wnf Re(h)

» Randomized classifiers are better if their expected matching penny gap is high.
» RHS tells us that the individual & € H;, should have similar robustness.
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ATTACKING A MIXTURE

We have seen the importance of using adaptive attacks to evaluate robustness.
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ATTACKING A MIXTURE

We have seen the importance of using adaptive attacks to evaluate robustness.

Dbouk & Shanbhag [DS22] show that attacking a mixture of classifiers is not as trivial as it was
believed!

CNRS, LAMSADE, PSL 25/ 32



TRAINING A MIXTURE IN PRACTICE

Only one method has been proposed in the literature. It trains classifiers sequentially in a boosting
fashion, while adapting the weights of the mixture. Inside, AT is applied inside using their attack

named ARC.

On the Robustness of Randomized Ensembles to Adversarial Perturbations

Hassan Dbouk ! Naresh R. Shanbhag'
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Only one method has been proposed in the literature. It trains classifiers sequentially in a boosting
fashion, while adapting the weights of the mixture. Inside, AT is applied inside using their attack

named ARC.

On the Robustness of Randomized Ensembles to Adversarial Perturbations

Hassan Dbouk ! Naresh R. Shanbhag'

Training a mixture to leverage the idea of non-simultaneously vulnerable classifiers is still an open
problem, and the limits of this approach are still unknown!
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TRAINING A MIXTURE IN PRACTICE

Only one method has been proposed in the literature. It trains classifiers sequentially in a boosting
fashion, while adapting the weights of the mixture. Inside, AT is applied inside using their attack

named ARC.

On the Robustness of Randomized Ensembles to Adversarial Perturbations

Hassan Dbouk ! Naresh R. Shanbhag'

Training a mixture to leverage the idea of non-simultaneously vulnerable classifiers is still an open
problem, and the limits of this approach are still unknown!

How can we train models that behave nicely together and increase the matching penny gap?

CNRS, LAMSADE, PSL



TABLE OF CONTENTS

4 Diverse ensembles

CNRS, LAMSADE, PSL

ooooooooooooooooooooooooooooooooooooooooo

26/ 3

]



DIVERSE ENSEMBLES

The intuition of using different models that can compensate their vulnerabilities to produce a better
model is closely related to ensembles!

Improving Adversarial Robustness via Promoting Ensemble Diversity

Prediction 1 (F') Prec 2(F?)  Prediction 3 (F%)

ADP

Figure 1. Illustration of the ensemble diversity. Baseline: Individually training each member of the ensemble. ADP: Simultaneously
training all the members of the ensemble with the ADP regularizer. The left part of each panel is the normalized non-maximal predictions.

Baseline

Improving Adversarial Robustness of Ensembles with Diversity Training

Model 0 Model 1 Model 0 Model 1

Aligned Gradients Large Shared Adversarial Subspace Misaligned Gradients Small Shared Adversarial Subspace
@ (High Coherence) > (Correlated Loss Functions) (b) (Low Coherence) > (Uncorrelated Loss Functions)
Set of Orthogonal perturbations Set of orthogonal adversarial - Adversarial Subspace of
spanning the space of the Input perturbations for a model the model/ensemble
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BAYESIAN NEURAL NETWORKS

Let fy be a deep neural network with parameters § and D be a training data set. Instead of learning
with empirical risk minimization, BNNs consider:

» A prior p(0) over the parameters of the model (often uniform or Gaussian)
> A likelihood p(y|fa(x)).
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» A prior p(0) over the parameters of the model (often uniform or Gaussian)
> A likelihood p(y|fa(x)).

Using Bayes’ rule, the postetior distribution p(6|D) is proportional to p(0)p(D|0).
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BAYESIAN NEURAL NETWORKS

Let fy be a deep neural network with parameters § and D be a training data set. Instead of learning
with empirical risk minimization, BNNs consider:

» A prior p(0) over the parameters of the model (often uniform or Gaussian)
> A likelihood p(y|fa(x)).

Using Bayes’ rule, the postetior distribution p(6|D) is proportional to p(0)p(D|0).
Predictions are now made using the posterior predictive:

p(ylx, D) = Eygip)[p(ylfo(x))]

CNRS, LAMSADE, PSL 28 /32



BAYESIAN NEURAL NETWORKS IN PRACTICE

In practice, exact inference is intractable, so approximate inference is needed (Hamiltonian Monte
Carlo, Stochastic Gradient Langevin Dynamics or Variational Inference).
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BAYESIAN NEURAL NETWORKS IN PRACTICE

In practice, exact inference is intractable, so approximate inference is needed (Hamiltonian Monte
Carlo, Stochastic Gradient Langevin Dynamics or Variational Inference).

In practice, an ensemble is approximately sampled from p(¢|D:

m

> fox), 6;~p(D).

i=1
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THEORETICAL PROPERTIES OF BN NS

Carbone et al. (2020) [Car+20; Wic+21] provide a theoretical guarantee for over parametrized BNNs
on the infinite data limit:

Theorem 1. Let f(x, w) be a fully trained overparametrized BNN on a prediction problem with
data manifold Mp C R? and posterior weight distribution p(w|D). Assuming Mp € C™ almost
everywhere, in the large data limit we have a.e. on Mp

((VxL(x,W))p(w|D)) = 0. 3)

CNRS, LAMSADE, PSL 30/3
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