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PROBLEM SETTING: STANDARD CLASSIFICATION

▶ Classification task: input space X ⊂ Rd equipped with a distance d, typically ℓ2 or ℓ∞, and
labels Y = {1, . . . ,K}

▶ True data distribution ρ ∈ P(X × Y)

▶ Error function, or 0-1 loss of a classifier h : X → Y defined as

ℓ0-1((x, y), h) = 1{h(x) ̸= y}

▶ Goal Find h : X → Y within some family H with the lowest risk (highest accuracy).

R(h) = E(x,y)∼ρ

[
ℓ0-1((x, y), h)

]
(risk)
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PROBLEM SETTING: STANDARD CLASSIFICATION

−→
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PROBLEM SETTING: ADVERSARIAL CLASSIFICATION

▶ Data perturbing adversary with budget ϵ can transport any x to
x′ ∈ Bϵ(x) = {x′ ∈ X | d(x, x′) ≤ ϵ} to induce an error.

Goal Find h : X → Y within some family H with
the lowest adversarial risk (highest robust accu-
racy)

Rϵ(h) = E(x,y)∼ρ

[
sup

x′∈Bϵ(x)
ℓ0-1((x′, y), h)

]
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VISUALIZATION (ADVERSARIAL CLASSIFICATION)

CNRS, LAMSADE, PSL 6 / 32



RANDOMIZED CLASSIFIERS IN THE LITERATURE

Many previous works have proposed stochastic or randomized models as a way to improve
robustness to adversarial attacks.
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RANDOMIZED CLASSIFIERS IN THEORY

Intuitively, the output of a randomized classifier is not a label, but a probability distribution over
labels.

▶ Randomized: h : X → ∆K.
▶ Deterministic: h : X → {1, . . . ,K} ∼= {e1, . . . , eK} ⊂ ∆K.
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RANDOMIZED CLASSIFIERS IN PRACTICE

In practice, randomized classifiers involve randomized transformations of the input or model.

▶ Input noise injection [HRF19; Pin+19; Yu+21]

x → sample noise η ∼ µ → h(x + η)

▶ Weight noise injection or model sampling [HRF19; Pin+20; DS22; Wic+21; Dhi+18]

x → sample model h ∼ µ → h(x)

Most methods can be though as a distribution over some family of models...
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RANDOM SELF ENSEMBLE [ECCV 2018] [LIU+18]

Basically Noise layers + Avg prediction

CNRS, LAMSADE, PSL 10 / 32



PARAMETRIC NOISE INJECTION [CVPR 2019] [HRF19]

Weight or input noise injection + Adv training.
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ACTIVATION PRUNING [ICLR 2018] [DHI+18]
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STOCHASTIC LOCAL-WINNER-TAKES-ALL [PCT21; PAN+21]
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OTHER APPROACHES

▶ Random resize and padding [Xie+17]
▶ Simple and Effective Stochastic Neural Networks [Yu+21]
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OBFUSCATED GRADIENTS

Many (if not all) of the methods do not provide real robustness. They just make it harder to find an
attack with the usual gradient methods [ACW18].
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EVALUATION OF RANDOMIZED MODELS

See also this issue.
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https://github.com/fra31/auto-attack/issues/58


ON ADAPTIVE ATTACKS TO ADVERSARIAL EXAMPLE DEFENSES [TRA+20]
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EXPECTED RISK

Suppose that the randomness of the model can be described by some distribution µ over a family of
classifiers H.

x → sample model h ∼ µ → h(x)
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EXPECTED RISK

Deterministic Randomized

R(h) = Ex,y[ℓ(h, x, y)] R(hµ) = Ex,y[Eh∼µ[ℓ(h, x, y)]]

CNRS, LAMSADE, PSL 19 / 32



MATCHING PENNIES OF CLASSIFIERS

Mixing classifiers that are vulnerable but not simultaneously vulnerable creates a situation
reminiscent of the game of matching pennies.
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RANDOMIZATION CAN IMPROVE ROBUSTNESS:
THE MATCHING PENNY GAP

Definition 3.1 (Matching penny gap)

The matching penny gap of hµ at (x, y) is:

πhµ
(x, y) = µ(Hvb(x, y))︸ ︷︷ ︸

ind. vul

−µmax(x, y)︸ ︷︷ ︸
simult. vul

where

Hvb(x, y) = {h ∈ Hb : ∃x′h ∈ Bϵ(x) such that h(x′h) ̸= y}, individually vulnerable
Hsvb(x, y) = {H′ ⊆ Hb : ∃x′ ∈ Bϵ(x) such that ∀h ∈ H′, h(x′) ̸= y}, families of sim. vulnerable
µmax(x, y) = supH′∈Hsvb(x,y) µ(H

′). max simultaneously vulnerable

If πhµ
(x, y) > 0, we say that hµ is in matching penny configuration at (x, y).

CNRS, LAMSADE, PSL 21 / 32



EXAMPLE

Figure. Let us πhµ
at the point (x0, y) for

this toy example. Both f1, f2 correctly
predict the class y for x0 in the white area,
but they are fooled in the orange and blue
areas, respectively.

Hb = {f1, f2}, µ =
(1

2 ,
1
2

)
Hvb(x0, y) = {f1, f2} =⇒ µ(Hvb(x0, y)) = 1

Hsvb(x0, y) = {{f1}, {f2}} =⇒ µmax(x0, y) = 1
2

∴ πhµ
(x0, y) = 1 − 1

2 = 1
2

Two vulnerable classifiers can be mixed to obtain
1
2 expected adversarial risk !

CNRS, LAMSADE, PSL 22 / 32



MAIN RESULT

Theorem 1

For a mixture hµ : X → P(Y) constructed from Hb using distribution µ, we have that,

Rϵ(hµ) = Eh∼µ [Rϵ(h)]− E(x,y)∼ρ[πhµ
(x, y)]. (1)

This theorem shows the link between the risk of a mixture hµ and the average risk. The gap is
exactly the expected matching penny gap.
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WHEN DOES RANDOMIZATION IMPROVE ROBUSTNESS

Corollary 1

Rϵ(hµ) < infh∈Hb Rϵ(h) if and only if the following condition holds.

E(x,y)∼ρ[πhµ
(x, y)] > Eh∼µ[Rϵ(h)]− inf

h∈Hb
Rϵ(h)

▶ Randomized classifiers are better if their expected matching penny gap is high.

▶ RHS tells us that the individual h ∈ Hb should have similar robustness.
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ATTACKING A MIXTURE

We have seen the importance of using adaptive attacks to evaluate robustness.

Dbouk & Shanbhag [DS22] show that attacking a mixture of classifiers is not as trivial as it was
believed!

.

Figure. Figure taken from [DS22]
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TRAINING A MIXTURE IN PRACTICE

Only one method has been proposed in the literature. It trains classifiers sequentially in a boosting
fashion, while adapting the weights of the mixture. Inside, AT is applied inside using their attack
named ARC.

Training a mixture to leverage the idea of non-simultaneously vulnerable classifiers is still an open
problem, and the limits of this approach are still unknown!

How can we train models that behave nicely together and increase the matching penny gap?
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DIVERSE ENSEMBLES

The intuition of using different models that can compensate their vulnerabilities to produce a better
model is closely related to ensembles!
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BAYESIAN NEURAL NETWORKS

Let fθ be a deep neural network with parameters θ and D be a training data set. Instead of learning θ
with empirical risk minimization, BNNs consider:

▶ A prior p(θ) over the parameters of the model (often uniform or Gaussian)
▶ A likelihood p(y|fθ(x)).

Using Bayes’ rule, the postetior distribution p(θ|D) is proportional to p(θ)p(D|θ).

Predictions are now made using the posterior predictive:

p(y|x,D) = Ep(θ|D)[p(y|fθ(x))]
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BAYESIAN NEURAL NETWORKS IN PRACTICE

In practice, exact inference is intractable, so approximate inference is needed (Hamiltonian Monte
Carlo, Stochastic Gradient Langevin Dynamics or Variational Inference).

In practice, an ensemble is approximately sampled from p(θ|D:

m∑
i=1

fθi(x), θi ∼ p(θ|D).
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THEORETICAL PROPERTIES OF BNNS

Carbone et al. (2020) [Car+20; Wic+21] provide a theoretical guarantee for over parametrized BNNs
on the infinite data limit:
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