Assignment 3

Training robust neural networks

Benjamin Negrevergne, Alexandre Vérine

PSL University - Paris Dauphine - Équipes MILES

Outline

Principle of adversarial attacks

3 Black box attacks

Approaches to defend against adversarial attacks Adversarial training Randomized networks

5 Projects

Adversarial examples explained

Adversarial examples explained

Adversarial examples explained

Early work on adversarial attacks

Globerson et al. (ICML, 2006)

confuse with "three"

FDROP Adversary

confuse with "five"

confuse with "seven"

Early work on adversarial attacks

Biggio et al. (ECML, 2013)

FGSM (2015)

 $+.007 \times$

x "panda" 57.7% confidence $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence $\begin{array}{c} \boldsymbol{x} + \\ \epsilon \mathrm{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y)) \\ \text{``gibbon''} \\ 99.3 \% \text{ confidence} \end{array}$

Goodfellow et al. (ICLR, 2015)

The modification is imperceptible!

Modern attacks

Natural	ℓ_1 – EAD 60	ℓ_2 – C&W 60	ℓ_∞ – PGD 20
0.958	0.035	0.034	0.384

- \sim 3% accuracy under attack
- ► Almost every input image can be attacked!

Pig vs. Airliner

"airliner"

Real life adversarial examples

Synthesizing Robust Adversarial Examples, Athalye et al. 2017

Evading Real-Time Person Detectors by Adversarial T-shirt, Xu et al. 2019 Benjamin Negrevergne, Alexandre Vérine

Goal of this assignment

- Understand the weaknesses of machine learning models
 - Learn attack mechanisms
 - Learn defence mechanisms

• Learn how to reason about the decision boundary

Generating adversarial examples

Let $f : \mathbb{R}^n \to Y$ a classifier Given an example $x \in \mathbb{R}^n$ and its true label $y \in Y$ find a $\delta \in \mathbb{R}^n$ such that:

Untargeted attacks

 $\begin{aligned} \|\delta\| &\leq \epsilon \\ f(x+\delta) \neq y \end{aligned}$

Targeted attacks $\|\delta\| \le \epsilon$ $f(x + \delta) = t, t \ne y$

Generating adversarial examples

Let $f : \mathbb{R}^n \to Y$ a classifier Given an example $x \in \mathbb{R}^n$ and its true label $y \in Y$ find a $\delta \in \mathbb{R}^n$ such that:

Untargeted attacks $\|\delta\| \le \epsilon$ $f(x + \delta) \ne y$

Targeted attacks $\|\delta\| \le \epsilon$ $f(x + \delta) = t, t \ne y$

Most damaging perturbation:

$$\delta^* = rg\max_{\|\delta\| \le \epsilon} \ell_f(x + \delta, y)$$

Measuring the magnitude of perturbations

 $\blacksquare Using \ \ell_2 \ norm$

$$\|\delta\|_2 \leq \epsilon \quad = \quad \sqrt{\sum_i \delta_i^2} \leq \epsilon$$

▶ Natural norm used in most loss functions.

 $\blacksquare \ Using \ \ell_{\infty} \ norm$

$$\|\delta\|_{\infty} \le \epsilon \quad = \quad \max_{i} \delta_{i} \le \epsilon$$

▶ Fits the human perception better when dealing with images.

ℓ_∞ Adversarial training

ℓ_∞ Adversarial training

+ Linf adversarial examples

ℓ_∞ Adversarial training

+ Linf adversarial examples

Accuracy under attacks

Model	Natural examples	ℓ_∞ Attack
normal training	95%	0.8%
ℓ_∞ adv. training	high	40%

Outline

Principle of adversarial attacks

3 Black box attacks

Approaches to defend against adversarial attacks Adversarial training Randomized networks

5 Projects

FGSM attack

Target function for ϵ -bounded attack:

$$\max_{||\delta|| \le \epsilon} \ell_f(x + \delta, y)$$

FGSM attack

Target function for ϵ -bounded attack:

$$\max_{|\delta|| \le \epsilon} \ell_f(x + \delta, y)$$

If ϵ is small, the optimization problem can be approximated using one gradient step:

 $\max_{||\delta|| \le \epsilon} \delta^T \nabla_x \ell_f(x, y)$

FGSM attack

Target function for ϵ -bounded attack:

$$\max_{|\delta|| \le \epsilon} \ell_f(x + \delta, y)$$

If ϵ is small, the optimization problem can be approximated using one gradient step:

 $\max_{||\delta|| \le \epsilon} \delta^T \nabla_x \ell_f(x, y)$

If $||.|| = ||.||_{\infty}$, then:

$$\delta^* = \epsilon \operatorname{sign}(\nabla_x \ell_f(x_t, y))$$

is a solution to the problem. (FGSM attack (Goodfellow, 2015))

PGD attack

PGD attack (Madry, 2017) is an iterative version of FGSM:

 $x_0 = x$

$$x_{t+1} = \prod_{B(x_0,\epsilon)} (x_t + \delta sign(\nabla_x \ell_f(x_t, y)))$$

With

- Π: projection operator
- $B(x_0, \epsilon)$: hyperball centered in x_0 with radius ϵ

PGD attack

PGD attack (Madry, 2017) is an iterative version of FGSM:

 $x_0 = x$

$$x_{t+1} = \prod_{B(x_0,\epsilon)} (x_t + \delta sign(\nabla_x \ell_f(x_t, y)))$$

With

- Π: projection operator
- $B(x_0, \epsilon)$: hyperball centered in x_0 with radius ϵ

▶ Simple and very efficient bounded attack. Can be adapted to ℓ_1 and ℓ_2 constraints.

Carlini and Wagner attack

Norm bounded attack:

 $\min_{\ell_f(x+\delta,y)\geq\kappa} \|\delta\|$

Carlini & Wagner solves the Lagrangian relaxation:

$$\min_{\delta} \|\delta\|_2 + \lambda \times g(x+\delta)$$

Where $g(x + \delta) < 0$ iff $\ell_f(x + \delta, y) \ge \kappa$

Carlini and Wagner attack

Norm bounded attack:

 $\min_{\ell_f(x+\delta,y)\geq\kappa}\|\delta\|$

Carlini & Wagner solves the Lagrangian relaxation:

$$\min_{\delta} \|\delta\|_2 + \lambda \times g(x+\delta)$$

Where $g(x + \delta) < 0$ iff $\ell_f(x + \delta, y) \ge \kappa$

E.g.

$$g(x) = \max\left(f_c(x) - \max_{i \neq c}(f_i(x)), -\kappa\right)$$

- $f_i(x)$: *i*th component of vector f(x)
- c: index of the actual class y of x

Outline

Principle of adversarial attacks

Black box attacks

Approaches to defend against adversarial attacks Adversarial training Randomized networks

5 Projects

Black box attacks

Goal: craft an attack without accessing the network weights.

▶ In most case, the goal is to estimate gradients.

- Finite difference (Chen, 2017): Not very efficient, because it requires a huge number of queries.
- NES (Ilyas, 2018): Uses random directions instead of coordinate directions: simple and efficient
- Other methods bases on combinatorial optimization (Moon, 2019) and evolutionary strategies (Meunier, 2019).

Outline

Principle of adversarial attacks

Black box attacks

Approaches to defend against adversarial attacks Adversarial training Randomized networks

5 Projects

Adversarial training

Train the network with the adversarial risk (Goodfellow, 2015):

$$\min_{\theta} \mathbb{E}_{(x,y)} \left(\max_{\|\delta\| \leq \epsilon} \ell_{f_{\theta}}(x+\delta,y) \right)$$

▶ Inner maximization problem is approximated with PGD or FGSM attack.

Adversarial training

Train the network with the adversarial risk (Goodfellow, 2015):

$$\min_{\theta} \mathbb{E}_{(x,y)} \left(\max_{\|\delta\| \leq \epsilon} \ell_{f_{\theta}}(x+\delta,y) \right)$$

▶ Inner maximization problem is approximated with PGD or FGSM attack.

- Efficient in practice
- No theoretical guarantees

Smoothing

• Use randomized smoothing

$$f(x) = \underset{y \in Y}{\arg \max} \mathbb{E}_{z \sim \mathcal{N}(0,\sigma^2 I)} h_c(x+z)$$

 \rightarrow Limited robustness

Smoothing

• Use randomized smoothing

$$f(x) = \operatorname*{arg\,max}_{y \in Y} \mathbb{E}_{z \sim \mathcal{N}(0, \sigma^2 I)} h_c(x+z)$$

 \rightarrow Limited robustness

• Train neural network with a bounded Lipschitz constant (e.g. See Regularisation of neural networks by enforcing Lipschitz continuity

Randomized networks

• Noise injection (Lecuyer, 2018; Cohen, 2019; Pinot et al., 2019) Inject noise at inference time (and training time).

• Random Mixtures of Classifiers

Outline

Principle of adversarial attacks

Black box attacks

Approaches to defend against adversarial attacks Adversarial training Randomized networks

5 Projects

2-stage project

- Stage-1: (2 weeks)
 - Train a basic classifier
 - Dataset: CIFAR-10
 - Basic Architecture: (Conv+MaxPool+Conv+FC+FC+FC)
 - Implement attack mechanisms
 - FGSM
 - PGD
 - Implement Adversarial Training
- Stage-2: innovate
 - consider new defense mechanisms (e.g. randomized networks, lipschitz regularization, models robust against multiple defense mechanisms, etc. see refs)
 - consider new attack mechanisms
 - test and experiment

References

- Goodfellow,2015 (FGSM +Adverarial Training)
- Madry 2017 (PGD+Adversarial Training)
- Carlini & Wagner, 2017: Towards Evaluating the Robustnessof Neural Networks
- Athalye et al.: Obfuscated Gradients Give a False Sense of Security:Circumventing Defenses to Adversarial Examples
- Ilyas, 2018 (NES attack): Black-box Adversarial Attacks with Limited Queries and Information
- Randomized networks: Cohen, 2019: Certified Adversarial Robustness via Randomized Smoothing, Pinot, 2019: Theoretical evidence for adversarial robustness through randomization
- Araujo et al.: Advocating for Multiple Defense Strategies against Adversarial Examples

Testing platform

https://www.lamsade.dauphine.fr/~testplatform/prds-a3/

Typical errors to avoid.

- Don't focus the presentation on FGSM and PGD.
- Presenting results, make the difference between clean accuracy, attack accuracy and robust accuracy.
- Don't plot the loss AND the accuracy.