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Adversarial examples explained
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Early work on adversarial attacks

Globerson et al. (ICML, 2006)
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Early work on adversarial attacks

Biggio et al. (ECML, 2013)
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FGSM (2015)

Goodfellow et al. (ICLR, 2015)

The modification is imperceptible!

Benjamin Negrevergne, Alexandre Vérine 5



Modern attacks

∼ 3% accuracy under attack

▶ Almost every input image can be attacked!
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Pig vs. Airliner
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Real life adversarial examples

Synthesizing Robust Adversarial Examples, Athalye et al. 2017

Evading Real-Time Person Detectors by Adversarial T-shirt, Xu et al. 2019
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Goal of this assignment

• Understand the weaknesses of machine learning models

Learn attack mechanisms
Learn defence mechanisms

• Learn how to reason about the decision boundary
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Generating adversarial examples

Let f : Rn → Y a classifier
Given an example x ∈ Rn and its true label y ∈ Y
find a δ ∈ Rn such that:

Untargeted attacks
∥δ∥ ≤ ϵ
f (x + δ) ̸= y

Targeted attacks
∥δ∥ ≤ ϵ
f (x + δ) = t, t ̸= y

Most damaging perturbation:
δ∗ = argmax

∥δ∥≤ϵ

ℓf (x + δ, y)
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Measuring the magnitude of perturbations

■ Using ℓ2 norm

∥δ∥2 ≤ ϵ =

√∑
i

δ2i ≤ ϵ

▶ Natural norm used in most loss functions.

■ Using ℓ∞ norm

∥δ∥∞ ≤ ϵ = max
i

δi ≤ ϵ

▶ Fits the human perception better when dealing with images.
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ℓ∞ Adversarial training

∀δ s.t. δ < ∥ϵ∥∞ f (x + δ) = f (x)
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ℓ∞ Adversarial training

Linf adversarial examples

∀δ s.t. δ < ∥ϵ∥∞ f (x + δ) = f (x)
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Accuracy under attacks

Model Natural examples ℓ∞ Attack

normal training
95% 0.8%

ℓ∞ adv. training
high 40%
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FGSM attack

Target function for ϵ-bounded attack:

max
||δ||≤ϵ

ℓf (x + δ, y)

If ϵ is small, the optimization problem can be approximated using one gradient step:

max
||δ||≤ϵ

δT∇xℓf (x , y)

If ||.|| = ||.||∞, then:
δ∗ = ϵsign(∇xℓf (xt , y))

is a solution to the problem.
(FGSM attack (Goodfellow, 2015))
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PGD attack

PGD attack (Madry, 2017) is an iterative version of FGSM:

x0 = x

xt+1 = ΠB(x0,ϵ)(xt + δsign(∇xℓf (xt , y)))

With

• Π: projection operator

• B(x0, ϵ): hyperball centered in x0 with radius ϵ

▶ Simple and very efficient bounded attack. Can be adapted to ℓ1 and ℓ2 constraints.
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Carlini and Wagner attack

Norm bounded attack:

min
ℓf (x+δ,y)≥κ

∥δ∥

Carlini & Wagner solves the Lagrangian relaxation:

min
δ

∥δ∥2 + λ× g(x + δ)

Where g(x + δ) < 0 iff ℓf (x + δ, y) ≥ κ

E.g.

g(x) = max

(
fc(x)−max

i ̸=c
(fi (x)),−κ

)
• fi (x): i

th component of vector f (x)

• c : index of the actual class y of x
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Black box attacks

Goal: craft an attack without accessing the network weights.
▶ In most case, the goal is to estimate gradients.

• Finite difference (Chen, 2017): Not very efficient, because it requires a huge number of
queries.

• NES (Ilyas, 2018): Uses random directions instead of coordinate directions: simple and
efficient

• Other methods bases on combinatorial optimization (Moon, 2019) and evolutionary
strategies (Meunier, 2019).
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Adversarial training

Train the network with the adversarial risk (Goodfellow, 2015):

min
θ

E(x,y)

(
max
∥δ∥≤ϵ

ℓfθ (x + δ, y)

)

▶ Inner maximization problem is approximated with PGD or FGSM attack.

• Efficient in practice

• No theoretical guarantees
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Smoothing

• Use randomized smoothing

f (x) = argmax
y∈Y

Ez∼N (0,σ2I )hc(x + z)

→ Limited robustness

• Train neural network with a bounded Lipschitz constant (e.g. See Regularisation of neural
networks by enforcing Lipschitz continuity
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Randomized networks

• Noise injection (Lecuyer, 2018; Cohen, 2019; Pinot et al., 2019)
Inject noise at inference time (and training time).

• Random Mixtures of Classifiers
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2-stage project

• Stage-1: (2 weeks)
Train a basic classifier

Dataset: CIFAR-10
Basic Architecture: (Conv+MaxPool+Conv+FC+FC+FC)

Implement attack mechanisms

FGSM
PGD

Implement Adversarial Training

• Stage-2: innovate

consider new defense mechanisms (e.g. randomized networks, lipschitz regularization,
models robust against multiple defense mechanisms, etc. see refs)
consider new attack mechanisms
test and experiment
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Testing platform

https://www.lamsade.dauphine.fr/~testplatform/prds-a3/

Benjamin Negrevergne, Alexandre Vérine 27
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Typical errors to avoid.

• Don’t focus the presentation on FGSM and PGD.

• Presenting results, make the difference between clean accuracy, attack accuracy and
robust accuracy.

• Don’t plot the loss AND the accuracy.
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