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Reptile classification challenge

Task: classify pictures of crocodiles and alligators

■ Representation 1: features[
beast color = Light
beast size = Large

] → f1 → crocodile

■ Representation 2: Use raw pixel data

→ f2 →

crocodile

Which representation of the input is easier to work with ? Why ?
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Reptile classification challenge

Task: classify pictures of crocodiles and alligators

■ Representation 1: features[
beast color = Dark
beast size = Small

] → f1 → alligator

■ Representation 2: Use raw pixel data

→ f2 →

crocodile

Which representation of the input is easier to work with ? Why ?
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What’s the difference?

f1 : R2 → R
Input space 1: R2

f2 : Rw×h×3 → R
Input space 2: Rw×h×3
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What’s the difference?

f1 : R2 → R
Input space 1: R2

f2 : Rw×h×3 → R
Input space 2: Rw×h×3
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What’s the difference?

f1 : R2 → R
Input space 1: R2

f2 : Rw×h×3 → R
Input space 2: Rw×h×3

pixel(1,1)

p
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e
l(
1
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)

Data points are not linearly separable in Rw×h×3, Why?
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Pro/cons

■ Representation 1: hand-crafted features

+ Can be processed with simple (linear) models

Individual features are highly discriminant
Input data points are (almost) linearly separable

− Requires expertise and manual labor to be built

− No extra information in case of ties

■ Representation 2: raw pixel data

+ Contains all the information available

− Input data points are not (nearly) linearly separable
Features are individually non-discriminant

− Difficult to process with simple models

Can we build high level features automatically ?
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Deep neural nets

f = f1 ◦ f2 ◦ . . . ◦ fn−1 ◦ fn

• f1 : X → Z1

• fi : Zi−1 → Zi

• fn : Zn−1 → Y
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Deep neural nets

f = f1 ◦ f2 ◦ . . . ◦ fn−1︸ ︷︷ ︸
g

◦ fn︸︷︷︸
h

Remarks

• h is a linear classifier: Zn−1 → Y
▶ Data points must be linearly separable in Zn−1

• Data points x are not linearly separable in the input space X

What is g?

• a function g : X → Zn−1

• such that data points are linearly separable in Zn−1

▶ a representation of the point in X that is adequate for the task at hand
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Learning deep representations

Note: the decision boundary is a complex high dimensional hypersurface in X
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Learning deep representations

Note: the decision boundary is a complex high dimensional hypersurface in X
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Deep representations: first lessons

• DNN learn how to projet inputs into a latent space

• The structure of the latent space is useful for the task at hand.

• Given an input x ∈ X we say that g(x) is an embedding of x , i.e. continuous vector
representations of input data (image, text, graph . . . )

Benjamin Negrevergne, Alexandre Vérine 9



Outline

1 What is a good representation

2 Learning representations with Deep Learning

3 Intriguing properties of learned representations

4 Synthetic data generation
GANS
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Image embeddings

• D: a database with 80 000 pictures.
• f = g ◦ h: a classifier trained on object recognition
g non-linear function, h linear classifier

• x a random picture from the internet

x1 = argmin
x ′∈D

||g(x)− g(x ′)||

x2 = argmin
x ′∈D\{x1}

||g(x)− g(x ′)||

x x1 x2
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Query by image (2)

x

x1 x2
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Query by image (2)

x x1 x2
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Query by image (2)

x x1 x2

Result: The distance in the latent space seems to be meaningful!
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Query by image (2)
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Word embeddings

We can train (monolingual) word embeddings,
i.e. representations trained to predict well words that appear in its context (ref here)

Image generated using pretrained embeddings available here. En avant guiGuan team, 2021.

▶ The structure between word embeddings is preserved across languages

Benjamin Negrevergne, Alexandre Vérine 15
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https://github.com/facebookresearch/MUSE#ground-truth-bilingual-dictionaries
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Word to word translation using word embeddings

Exploit linear transformations and rotations to translate a word.

Y = WX

Learn W

• with a parallel corpus (e.g. supervised dataset FR-EN)

• without a parallel corpus using a GAN
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Text manipulation with word embeddings

The embedding space is geometric!

The embeddings space is geometric:
v(king)− v(man) + v(woman) = ?
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Text manipulation with word embeddings

The embedding space is geometric!

The embeddings space is geometric:
v(king)− v(man) + v(woman) = queen
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Visualising the data manifold

Dimensionality reduction by learning an invariant mapping.

Hadsell, R., Chopra, S., LeCun, Y. CVPR (2006)

Learns a mapping g that maps inputs with few controlled variations to a low dimensional
space

• all pictures are pictures of planes with different poses

• 9 different elevations and 18 different azimuth (orientation).

• input pictures are projected into a low 3-dimensional space

Result:

• Most input data lies on a well defined subspace of the output space

• There is a clear relation between spacial coordinates and features (elevation, azimuth)
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Data generation with autoencoders

AE, image from https://lilianweng.github.io

■ First Idea:
• train an autoencoder with the reconstruction error loss
• sample a vector z in the latent space Z
• decode z into an image x = d(z)

■ Problem?

How can we sample z so that d(z) is mapped to a point in the data manifold?
■ Solution

• regularize the latent space so that the encoded training data in normally distributed in Z
• sample z from a normal distribution
• decode z into an image x = d(z)
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Data generation with VAE

VAE, image from https://lilianweng.github.io

■ Main differences with AE

• Use a probabilistic encoder

• Regularize the latent space during training

■ Training procedure

1 take a training data point x , obtain µx and σx from the encoder

2 sample z ∼ N (µx , σx)

3 decode z into x̃

4 compute the loss and update parameters

loss(x , x̃) = ∥x − x̃∥+ KL(N (µx , σx),N (0, I ))
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AE vs. VAE
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Generative Adversarial Networks

GAN, image from https://lilianweng.github.io

■ Main difference with VAE

• Minimize an estimate of the divergence D(P∥P̂G ), instead of the reconstruction error

P is the true data distribution
P̂G is the model distribution induced by a generator function G : Z → X (i.e. a decoder)
Since P is unavailable, we use a discriminator D : X → [0, 1] to estimate D(P∥P̂G )
D is trained to distinguish samples from P and samples from P̂G

■ Training procedure
G and D are trained simultaneously to solve the following min-max problem:

min
G

max
D

Exr∼P [logD(x)] + Exg∼P̂G
[log 1− D(x)]
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Generative Adversarial Networks

GAN, image from https://lilianweng.github.io

References:

• Generative Adversarial Nets
https://arxiv.org/pdf/1406.2661

• Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
Networks https://arxiv.org/abs/1511.06434
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Goal of Assignment 2

1 Train a GAN on MNIST.

2 The structure of the Generator is fixed.

3 Use different one or two possible improvements to improve the data generation.

representation_learning/img/mnist.jpeg

Benjamin Negrevergne, Alexandre Vérine 25



Possible improvements

• f-GANs
1 f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization

• WGAN
1 Wasserstein GAN

• Rejection Sampling
1 Discriminator Rejection Sampling

2 Metropolis-Hastings Generative Adversarial Networks

• Latent Rejection sampling
1 Latent reweighting, an almost free improvement for GANs

• Gradient ascent
1 Discriminator optimal transport

2 Refining Deep Generative Models via Discriminator Gradient Flow

3 Your GAN is Secretly an Energy-based Model and You Should use Discriminator Driven Latent

Sampling

• Classifier guidance generation
1 MMGAN: Generative Adversarial Networks for Multi-Modal Distributions

2 Gaussian Mixture Generative Adversarial Networks for Diverse Datasets, and the Unsupervised

Clustering of Images
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Requirements Assignment 2

1 Train a vanilla GAN

2 Write a script generate.py that generate 10000 samples in the folder samples (use mine).

3 Based on these 10k samples, you will be evaluated on FID, Precision and Recall.
Precision/Recall
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