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GENERATIVE MODELS
CONTEXT

In the past few years, generative models have made significant progress in various domains of application.
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THE VARIOUS PERFORMANCES OF GENERATIVE MODELS
MOTIVATION

As the generation becomes better, the evaluation becomes more challenging.

DALL-E 2 (2023) Midjourney v5 (2023)
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Prompt: A dog playing with a child.
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THE VARIOUS PERFORMANCES OF GENERATIVE MODELS
TRADITIONAL METRICS

Traditional metrics such as the Fréchet Inception Distance (FID) encapsulate both quality and diversity in an unclear

way:

4 =N

(@) Set A - FID= 91.7 (b) Set B - FID= 16.9 (c) Set C - FID= 4.5 (d) Set D - FID= 16.7

Figure. Source: Kynkddnniemi et al. [15]
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OUTLINE

In this presentation, we discuss on evaluating, optimizing and improving quality and diversity of generative models:

1. Evaluating: How can we assess quality and diversity independently in Generative Models?
2. Tuning: Can we optimize a specific trade-off between quality and diversity?

3. Improving: How can we improve the quality and diversity of a pre-trained generative model?

PR FOR GENERATIVE MODELS 4/62



CONTEXT AND MOTIVATION
CONTEXT

Evaluating:
How can we assess quality and
diversity independently
in Generative Models?
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GENERATIVE MODELS
FRAMEWORK

Target
Distribution
P

X CR?

> Assumption: There is an unknown farget distribution Pin X C R%.
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1. Consider a distribution Q in a latent space X C R™, usually N (0, I;).
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> Assumption: There is an unknown farget distribution Pin X C R%.

» Goal: Learn a parameterized distribution Pg that approximate P:
1. Consider a distribution Q in a latent space X C R™, usually N (0, I;)).
2. Take a generator model G represented by a neural network. Take Pc = G#Q.

6/ 62

PR FOR GENERATIVE MODELS



GENERATIVE MODELS
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> Assumption: There is an unknown target distribution Pin X C R4,

» Goal: Learn a parameterized distribution Pg that approximate P:
1. Consider a distribution Q in a latent space X C R™, usually N (0, I;).
2. Take a generator model G represented by a neural network. Take P = G#Q.
3. Compute G°P! that minimize a dissimilarity measure D between P and Pg:

GOPt = argmin D(P, Pg)
G

6/ 62
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> Assumption: There is an unknown target distribution Pin X C R4,

» Goal: Learn a parameterized distribution P that approximate P:
1. Consider a distribution Q in a latent space X C R™, usually N (0, I;)).
2. Take a generator model G represented by a neural network. Take P = G#Q.
3. Compute G°P! that minimize a dissimilarity measure D between P and P:

GOPt = argmin D(P, P)
G
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GENERATIVE MODELS
IN PRACTICE
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GENERATIVE MODELS
IN PRACTICE
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PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity
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PRECISION AND RECALL FOR GENERATIVE MODELS
METRICS TO EVALUATE QUALITY AND DIVERSITY

To assess models, we use the notion of Precision and Recall, inspired from Information Retrieval:

Quality Diversity
¥ ¥

Precision Recall

What proportion of generated samples are realistic?  What proportion of real samples can be generated?
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT
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PRECISION AND RECALL FOR GENERATIVE MODELS

FOR FINITE SUPPORT

Definition 1.1 (Support-Based Precision and Recall - [15].)
For any distributions P € P(X) and P € P(X), we say that the distribution P has precision & at recall 3 with respect to P if

&= P(Supp(P)) and j = P(Supp(P)). 1)
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Precision for finite support is the proportion of generated data that lies on the support of the real data:

o = P(Supp(P)).

D 5
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PRECISION AND RECALL FOR GENERATIVE MODELS
FOR FINITE SUPPORT

Recall for finite support is the proportion of the support of the real data that is covered by the generated data:

B = P(Supp(P)).
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PRECISION AND RECALL FOR GENERATIVE MODELS

IN PRACTICE

MNIST Dataset [26]
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PRECISION AND RECALL FOR GENERATIVE MODELS

IN PRACTICE

Low Recall

High Precision

MNIST Dataset [26]

High Recall

Low Precision
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Precision: 0.80 Recall: 0.70

Precision: 0.54 Recall: 0.91
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PRECISION AND RECALL FOR GENERATIVE MODELS
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PRECISION AND RECALL FOR GENERATIVE MODELS

FOR INIFINITE SUPPORT
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PRECISION AND RECALL FOR GENERATIVE MODELS

FOR INIFINITE SUPPORT

5
Target P Y —— Target P
Model P

Model P

Both distributions have perfect Precision and Recall.
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PR-CURVE FOR GENERATIVE MODELS
DEFINITION

Definition 1.2 (PR-Curve for Generative Models - Sajjadi et al. [19], Simon et al. [20])
Let P,P € P(X) be two distributions such that P, P < p. The PR-Curve is the set PRD(P, IA’) defined as:

PRD(P, P) = {(ax, Bx) | A € [0, 0]} )

with:

o = / N T e - / st () B ) 3)
X X
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PR-CURVE FOR GENERATIVE MODELS

DEFINITION

For the Precision, \p is compared to p for different threshold A € [0, +o0]:

oy = /X min (p(x), B(x)) du(x)

—— Target P
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PR-CURVE FOR GENERATIVE MODELS

DEFINITION

For the Recall, p is compared to p/\ for different threshold \ € [0, +o0]:

ir= [ ity

—— Target P
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PR-CURVE FOR GENERATIVE MODELS
EXAMPLES
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Figure. Learning distribution with low recall and high precision.
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Figure. Learning distribution with high recall and low precision.
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PR-CURVE FOR GENERATIVE MODELS
EXAMPLES
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Figure. Learning distribution with high recall and high precision.

PR FOR GENERATIVE MODELS 19 / 62



PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL

RELATION

The PR-Curve is a generalization of the Precision and Recall for finite support:
Theorem 1.3 (Support-based and PR-Curves - Siry et al. [21])

Let P,P € P(X) be two distributions. Then, the support-based Precision and Recall (&, B) are related to the PR-Curve values
PRD(P, P) for A = 0 and \ = oo

d:mgxaA:aoo and Bzm}z\xx@\zﬁo. (6)
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RELATION

PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL

Target P
------- Model P
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PR-CURVE AND SUPPORT-BASED PRECISION AND RECALL

RELATION
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PR-CURVE FOR GENERATIVE MODELS

IN PRACTICE

Low Recall

High Precision

PR-Curves
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PR-CURVE FOR GENERATIVE MODELS
IN NLP

N
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Figure. PR-Curve for distributions journal articles: AG News.
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ON THE PLATFORM

Metrics used to evaluate your models are:
> FID
» Precision (for finite support)
» Recall (for finite support)
» (Obviously) the visual inspection of the generated samples.

PR FOR GENERATIVE MODELS



TUNING PRECISION AND RECALL IN GENERATIVE MODELS

Tuning;:
How can we tune a model to
a specific trade-otf between
Precision and Recall?
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GENERATIVE ADVERSARIAL NETWORKS
ORIGINAL FRAMEWORK

» Let G: Z — X be a generator model parameterized by a neural network.
» LetD: X — [0, 1] be a discriminator model parameterized by a neural network.

The original GAN framework [8] is defined by the following optimization problem:

min max Exp[logD(x)] + E_5_[log(1 —D(x))]. (6)
S 5
= Latent = Target
Distribution Distribution
’ //G_\ g
Learned
Distribution
P !
Z /N e :I;
X CR?

ZCR™
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
TRUNCATION

= Latent % Target
Distribution Distribution
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= B
= Latent = Target
Distribution Distribution
G
Soft Trunctation 7
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
HARD TRUNCATION
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igure. From left toright: ¢ v v v Figure. Source: [15]
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
SOFT TRUNCATION

Figure. Soft-Truncation on BigGAN. Source:[5].
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TRAINING A GENERATIVE MODEL
IN GENERAL

Traditionally, the goal is to minimize a dissimilarity mea-
sure between the target distribution P and the learned
distribution P:

min D(P, Pg) )

PR FOR GENERATIVE MODELS
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TRAINING A GENERATIVE MODEL
WITH f-DIVERGENCES

Traditionally, the goal is to minimize an f-divergence
between the target distribution P and the learned
distribution P: R

min Dy (P|Pc) @)

PR FOR GENERATIVE MODELS
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f-DIVERGENCES
DEFINITION

Definition 2.1 (f-divergences)

For any two probability distributions P and P in P(X) such that P,P < yu. Let p and p be the Radon-Nikodym densities of P and p
with respect to p, respectively. Let f be any convex lower semi-continuous function f : [0, co] —] — 0o, +00| such that f(1) = 0,
the f-divergence between P and P is

D(PIP) = [ Py (ggﬁ;) i) ®)
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f-DIVERGENCES
DEFINITION

Definition 2.1 (f-divergences)

For any two probability distributions P and P in P(X) such that P,P < . Let p and p be the Radon-Nikodym densities of P and p
with respect to p, respectively. Let f be any convex lower semi-continuous function f : [0, co] —] — 0o, +00| such that f(1) = 0,
the f-divergence between P and P is

D(PIP) = [ Py (58) i) ®)

Usual divergences are f-divergences:
» Kullback-Leibler (KL),
» Reverse Kullback-Leibler (rKL),
» Jensen-Shannon (JS),
» Total Variation (TV),
» a—divergences.
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ESTIMATING f-DIVERGENCES
DUAL VARIATIONAL FORM

f-divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
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ESTIMATING f-DIVERGENCES
DUAL VARIATIONAL FORM

f-divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
> f*(t) = sup,er {tu — f(u)} be the Fenchel conjugate of f.
» T be the set of all measurable functions X — R.
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ESTIMATING f-DIVERGENCES

DUAL VARIATIONAL FORM

f-divergences are hardly tractable in practice. However, they can be approximated by a dual approximation.
> f*(t) = sup,er {tu — f(u)} be the Fenchel conjugate of f.
» T be the set of all measurable functions X — R.

Theorem 2.2 (Dual variational form of an f-divergence- Nguyen et al. [16])

Let P,P € P(X) two distributions such that P is absolutely continuous with respect to P and f a suitable generator function. The
f-divergence between P and P admits a dual variational form:

Ds(P||P) = sup (Exep [T()] = E,.p[f*(T())]). )

We use T°P* € T to denote the function that achieves the supremum.
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TRAINING A GENERATIVE MODEL WITH f-DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

mGin max Exp[T(x)] — ExNﬁG If*(T(x))]

/

dual e
Df,T
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TRAINING A GENERATIVE MODEL WITH f-DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

mGin max Exp[T(x)] — ExNﬁG If*(T(x))]

/

dual e
Df,T

» The discriminator T is trained to estimate the divergence.

» The generator G is trained to minimize the divergence.
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TRAINING A GENERATIVE MODEL WITH f-DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

mGin max Exp[T(x)] — ExNﬁG If*(T(x))]

/

dual e
Df,T

» The discriminator T is trained to estimate the divergence.

» The generator G is trained to minimize the divergence.

1arget
Distribution
pation A

F
Latent M
Distribution

T T

)

— [\ —

>
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TRAINING A GENERATIVE MODEL WITH f-DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

m()in max Ey~p [log (D(x))] — ExNﬁG [f* (log(D(x)))]

» The discriminator T is trained to estimate the divergence.

» The generator G is trained to minimize the divergence.

» With T(x) = log(D(x)) with D(x) € [0, 1].
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TRAINING A GENERATIVE MODEL WITH f-DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

m()in max Exp[log (D(x))] + E,_5_[log (1 — D(x)))]

» The discriminator T is trained to estimate the divergence.

» The generator G is trained to minimize the divergence.
» With T(x) = log(D(x)) with D(x) € [0, 1].
> f*(t) = £;5(t) = —log(1 — exp(t)) for the Jensen-Shannon divergence.

We recover the original GAN framework.

PR FOR GENERATIVE MODELS
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TRAINING A GENERATIVE MODEL WITH f-DIVERGENCES
USING THE DUAL VARIATIONAL FORM

By doing so, we can rewrite the optimization problem as:

rrgn max Exp[T(x)] — ExNﬁG If*(T(x))]

/

dual e
Df,T

» The discriminator T is trained to estimate the divergence.

» The generator G is trained to minimize the divergence.
» Generative Adversarial Networks [8] for the Jensen-Shannon divergence.

» Extended to other f-divergences by Nowozin et al. [17].

» Extend to other generative models such as Normalizing Flows by Grover et al. [9].
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EFFECT OF THEf—DIVERGENCE ON THE LEARNED DISTRIBUTION

All f-divergences are not equal:

p(x)
— 4
3 -
= L fKL
erL
2_
1_
0_
71_
0 1 2 3 4

u = p(x)/plx)
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EFFECT OF THEf—DIVERGENCE ON THE LEARNED DISTRIBUTION

All f-divergences are not equal:
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EFFECT OF THEf—DIVERGENCE ON THE LEARNED DISTRIBUTION

All f-divergences are not equal:
Dy(P|IP) =E, 5 [ f (@H Penalizing high values of %

Favors high recall

/

2 — Jfx
— fikL

u=p(@)/ple)
Penalizing low values of %

Favors high precision
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EXAMPLES OFf—DIVERGENCE MINIMIZATION

D1 (P[P
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EXAMPLES OFf—DIVERGENCE MINIMIZATION

Dy, (P||P)
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
CONTRIBUTIONS

Can we optimize a specific trade-off between Precision and Recall?
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TUNING PRECISION AND RECALL IN GENERATIVE MODELS
CONTRIBUTIONS

Can we optimize a specific trade-off between Precision and Recall?

» What is the relation between the Precision-Recall curve and f-divergences?
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PRECISION-RECALL DIVERGENCE
DEFINITION

Definition 2.3 (PR-Divergence generator function f,)

Given a trade-off parameter X € [0, +o00], we define the generator function fy : [0, +o00] —] — 0o, +00| given by

max(Au, 1) — max(A, 1) for A € [0, +00],
) = {mOw 1) —max(01) for A€ [0, oo -
Lg=oy for A = +oo0.
— 4
Z a — A=1/2
—_— A=
o [
14
0
! T).O 0.5 1.0 2.0 3.0 4.0

u = p(z)/plz)
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PRECISION-RECALL DIVERGENCE

PROPERTIES

Proposition 2.4 (PR-Divergence)

For any distributions P, P € P(X) such that P,P < y, then for any X € [0, +o00] the PR-Divergence defined as

Drn(PIP) = [ P15 (ﬁ) du(x) 12)

belongs to the class of f-divergences.

W
S
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PRECISION-RECALL DIVERGENCE
LINKING THE PR-DIVERGENCE TO THE PR-CURVE

Theorem 2.5 (PR-Curves as a function of D, _.;) 1

Given P,P € P(X) such that P,P < yand X € [0, +0c], the with A = 5.

PR-Curve 0PRD is related to the PR-Divergence D e (P||P) as follows. R
- ~ Di—pr(P|P)
a)(P||P) = min(1, \) — Dy (P||P). with A = 1.

BA(P||P) = min(1, A) — Dy (P|P). o

Dy _pr(P||P)

with A =0.2.
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PRECISION-RECALL DIVERGENCE
LINKING THE PR-DIVERGENCE TO THE PR-CURVE

Theorem 2.5 (PR-Curves as a function of D, _.;) 1

Given P,P € P(X) such that P,P < yand X € [0, +0c], the with A = 5.

PR-Curve 0PRD is related to the PR-Divergence D e (P||P) as follows. R
Dy—pr(P[|P)

o (P||P) = min(1, \) — Dy (P|P). with A = 1.

BA(P||P) = min(1, A) — Dy (P|P). o

Dy _pr(P||P)
with A = 0.2.

A direct consequence of Theorem 2.5:

argmin Dy (P||P) = argmax a (P||P).
PeP(X) Fep() 0
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EXPLAINING QUALITY/DIVERSITY
CONNECTION BETWEEN PR-DIVERGENCE AND f-DIVERGENCES

Theorem 2.6 (f-divergences as a weighted average of
PR-Divergences)

For any P,P € P(X) supported on all X and any X € [0, 400, then:

D(PIP) = [ 5" () Pam(@IPI

PR FOR GENERATIVE MODELS
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OPTIMIZING THE PR-DIVERGENCE
EXAMPLES

Diy_pr(P|P)

Dy.i_pr(P||P) Dy_pr(P||P)

10

= = =
=Y =Y <
10 5 0 5 10 & -0 50 5 10+ -0 5 0 5 10 &
—— Target P argmin Dy.1_pr(P||P) argmin D;_pg(P||P) argmin Dyg_pg(P||P)
40 / 62
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OPTIMIZING THE PR-DIVERGENCE
EXAMPLES

S S

0
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH
IN PRACTICE

HEIEANE BIRARHEBEE AN
| ¢ Ll z|sls[/ 0] 2]7]/]al/
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH

TRAINING GANS

Model CIFAR-1032 x 32 CelebA 64 x 64
FID P R FID P R
Baseline Big- 13.37 86.51 65.66 9.16 7841 5142
GAN
A=0.05 13.29 81.10 70.63 - - -
A=0.1 11.62 81.78 74.58 - - -
A=02 13.36 84.85 65.13 8.79 8337 44.07
A=05 14.50 83.27 68.23 6.03 77.60 55.98
A=1.0 14.03 83.04 69.35 13.07 81.70 36.85
A=20 16.94 8493 59.79 14.23 8298 32.87
A=5.0 32.54 83.39 56.94 22.45 8396 25.81
A =100 39.69 84.11 39.29 - - -
A =200 67.03 90.03 21.81 - - -

When ) increases,

Recall |

Precision 1

PR FOR GENERATIVE MODELS
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OPTIMIZING THE PR-DIVERGENCE WITH OUR APPROACH

FINE-TUNING GANS

Model ImageNet 128 x 128 FFHQ 256 x 256
FID P R FID P R
Baseline BigGAN 9.83 28.04 41.21 41.41 65.57 1017
Soft ¢ = 0.7 11.39 23.04 31.13 56.43 76.59 4.87
Soft ¥ = 0.5 1549 20.20 19.83 82.05 84.48 1.58
Hard ¢ = 2.0 9.69 2583 39.89 4332 68.84 8.66
Hard ¢ = 1.0 12.12 21.86 35.42 56.19 76.44 4.76
Hard ¢ = 0.5 15.21 21.13 29.55 71.32 80.99 4.84
A=02 9.92 26.69 42.04 35.66 78.70 9.45
A=05 10.82 26.83 42.38 35.24 78.41 9.66
A=1.0 2042 29.72 28.21 3591 7895 8.32
A=20 20.21 30.27 30.49 36.33 81.10 8.69
A=5.0 20.76 30.87 28.38 38.16 84.31 8.52

When ) increases,

Precision 1
Recall |

PR FOR GENERATIVE MODELS

with better performances than truncation.
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IMPROVING PRECISION AND RECALL IN GENERATIVE MODELS

Improving:
How can we improve the
quality and diversity of a
pre-trained generative models?

PR FOR GENERATIVE MODELS 44 / 62



SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P:
» Sample z ~ Q.
» Compute x = G(z).
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P:
» Sample z ~ Q.
» Compute x = G(z).

P+D
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SAMPLING FROM A GENERATIVE MODEL
GENERAL SETTING

To sample a point from the learned distribution P:
» Sample z ~ Q.
» Compute x = G(z).

We have an estimation of g% using Vf*(T(x)).

PR FOR GENERATIVE MODELS
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

—~14
To sample a point from the refined distribution P: %
» Sample z ~ Q. %
» Compute x = G(z). ?
» Accept x with probability a(x). j;
=
% 0 - : : : -
*) £00 02 04 06 08 L0

Using % in a(x) allows sampling from P.
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P: =
» Sample z ~ Q.
» Compute x = G(z).
» Accept x with probability a(x).

The acceptance rate is :

Ep [a(x)] -
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING

To sample a point from the refined distribution P: E A
=Y
» Sample z ~ Q.
» Compute x = G(z).
» Accept x with probability a(x).
It defines a new distribution P. A
0.0
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SAMPLING FROM A GENERATIVE MODEL
REJECTION SAMPLING IN HIGH DIMENSION

—~ /_\1
= =
Q 3

— P
LN /YN N e P
0.0 0.0 0.5

X
Acceptance rate: 45.20%
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BUDGETED REJECTION SAMPLING

TUNING THE ACCEPTANCE RATE

Definition 3.1 (Discriminator Rejection Sampling (DRS) - Azadi et al. [2])

Let vy € R, the acceptance probability is:
aprs(x) = r(x)
PRV ™ ) (1 — e7) + Mev

If v < 0, then the acceptance rate increases.
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BUDGETED REJECTION SAMPLING

TUNING THE ACCEPTANCE RATE

Definition 3.1 (Discriminator Rejection Sampling (DRS) - Azadi et al. [2])
Let vy € R, the acceptance probability is:

_ r(x)
aDRs(¥) = r(x) (1— ) + Me?”

If v < 0, then the acceptance rate increases.

— P
""""" P
0 N < S ¥ N S NNy T Papes
0.0 0.0 0.5
T T T

Acceptance rate: 100.00%
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Traditionally, the goal is:

in  Dy(P||P
min Dy (P||Pg)

PR FOR GENERATIVE MODELS
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Traditionally, the goal is:
in  Dy(P||P
min Dy (P|[Po)
An acceptance function a(x) such that the acceptance

rate is greater than 1/K defines a refined distribution
P, in a convex set that contains Pg.

PR FOR GENERATIVE MODELS
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

With a given 1/5(;, our goal is:
min Df(PHT’a)
a

¢ JEpla(x)] = 1/K, (13)
- VxeX,0<a(x)<1

PR FOR GENERATIVE MODELS

Distribution Space



OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Theorem 3.2 (Optimal Acceptance Function)

For a sampling budget K > 1 and finite X, the solution is,
LH 1), a9

aoprs(x) = min (E]\_/I

where cx > 1is such that E, slaosrs(x)] = 1/K.
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OPTIMAL BUDGETED REJECTION SAMPLING
DEFINITION

Theorem 3.2 (Optimal Acceptance Function)

For a sampling budget K > 1 and finite X, the solution is,

nones (x) = min (B9 1), 9

where cx > 11s such that E,_slaoprs(x)] = 1/K.

Z 5
[75) ~—
SH
g — P
A ~
.......... P
Pags
\\ — Fuaops
0.0 .0 0.5 1.0 0.0 0.5 1.0
T Xz

Acceptance rate: 7.91%
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IMPROVING PRECISION AND RECALL
EFFECT OF THE OBRS

Proposition 3.3 (Precision and Recall Improvement)

Let K < M be the budget for the OBRS. For any («, 8) € PRD(P, P) we have (<, B) € PRD(P, T)ﬂOBRs) with o/ = min {1, Ka}.
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IMPROVING PRECISION AND RECALL
EFFECT OF THE OBRS

Proposition 3.3 (Precision and Recall Improvement)

Let K < M be the budget for the OBRS. For any (., 8) € PRD(P, P) we have (o, ) € PRD(P, Paoses) With o/ = min {1, Ka'}.

a}\

— — —— 1.0
= = B
IS IS =

Flosns 081

0.6 1

0.4 1

\ / 0.2 1
. > 7 r : 0.0
0 0.2 0.4 0.6 0.8 1.0
x

0.0 0 0.0 0.2 0.4 0.6 0.8 1.0 5

Acceptance rate: 100.00%
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IMPROVING PRECISION AND RECALL
EFFECT OF THE OBRS

Proposition 3.3 (Precision and Recall Improvement)

Let K < M be the budget for the OBRS. For any (., 8) € PRD(P, P) we have (o, ) € PRD(P, Paoses) With o/ = min {1, Ka'}.

— P
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IMPROVING PRECISION AND RECALL
EFFECT OF THE OBRS

Proposition 3.3 (Precision and Recall Improvement)

Let K < M be the budget for the OBRS. For any (., 8) € PRD(P, P) we have (o, ) € PRD(P, Paoses) With o/ = min {1, Ka'}.

(0%
— — p 104

>

= — P

AOBRS 0.8
0.6 1
0.4

0.2 1

T T T T T 0.0 T T y T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 5
T xr

Acceptance rate: 100.00%
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IMPROVING PRECISION AND RECALL
IN PRACTICE

E =
7
£ 0820 0
[}
—
A
.
0.815 w5
7.0
0.810
6.5
0.805 6.0
5.5
0.800
0570 0575 0580 0585 0590 000 02 050 075 100
Recall Acceptance Rate

GAN on CelebA
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1/K FID P R

0.25 1.57 78.48 86.73
0.50 1.58 78.23 86.05
0.75 1.77 7794 86.54
1 1.97 7791 86.62

Diffusion Model on
CIFAR-10
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OTHER METHODS TO IMPROVE PRECISION AND RECALL

BOOSTING

Boosting Generative models:

b 4
7 0
4 1
«
b «
L2

Figure. Left: Samples from the dataset given high weights by the discriminator. Right: Samples from the dataset given low weights
by the discriminator. The next model will focus on the sample on the right. Source: Tolstikhin et al. [23]

» Tolstikhin et al. [23]
» Grover and Ermon [10]



OTHER METHODS TO IMPROVE PRECISION AND RECALL
GRADIENT ASCENT

Using the discriminator as a classifier and perform a gradient descent:

Ps

Fi(p)

» Ansari et al. [1]
» Tanaka [22]
» Cheetal. [7]

Zig1 =2 =V, f' (e )) 4\ 2ng,

Figure. Source: Ansari et al. [1]
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OTHER METHODS TO IMPROVE PRECISION AND RECALL
GAUSSIAN MIXTURES

Training a Gaussian Mixture N (u, o) in the latent space:

|

0506070809 1 111213141516171819 2
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(d) Precision and Recall

—~

b) o =

Figure. Source: Ben-Yosef and Weinshall [3]

» Ben-Yosef and Weinshall [3]
» Pandeva and Schubert [18]
» Alternative idea: Use Expectation-Maximization Bishop [4]
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RECAP

References to evaluate generative models:
» FID: Heusel et al. [11]
» PR-Curves: Sajjadi et al. [19]
» Support based metrics: Kynkdanniemi et al. [15]

Methods to tune precision and recall:
» Truncation: Karras et al. [13], Kingma and Dhariwal [14]
» f-GAN: Nowozin et al. [17]
» PR-GAN: Verine et al. [25]
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RECAP

Methods to improve precision and recall:
> Rejecting samples: Azadi et al. [2], Verine et al. [25], Turner et al. [24], Tanaka [22]
Boosting: Tolstikhin et al. [23], Grover and Ermon [10]
Gradient Ascent: Ansari et al. [1], Tanaka [22], Che et al. [7]
Latent Space Reshaping: Ben-Yosef and Weinshall [3], Pandeva and Schubert [18], Issenhuth et al. [12]

>
>
>
» EM in the latent space: Bishop [4]
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CONCLUSION

Thanks !
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