
DEEP LEARNING 2
FROM THEORY TO PRACTICE

Alexandre Vérine,
Research Fellow, École Normale Supérieure Paris

Double Licence Intelligence Artificielle et Sciences des Organisations
3e année de Licence

Université Paris-Dauphine, PSL

October 15, 2024

SEMESTER SCHEDULE (TEMPORARY)

▶ 17/09: Fundamentals of Deep Learning
▶ 24/09: TP1 Classification - Introduction to PyTorch
▶ 01/10: In a Deep Learning Model + Techniques to Improve Deep Learning Training
▶ 08/10: TP2 Autoencoders - Hyperparameter Tuning
▶ 15/10: Advanced Deep Learning Techniques
▶ 22/10: TP3 Image Segmentation - From CPU to GPU and Parallelization
▶ 29/10: No Class

ALEXANDRE VÉRINE DEEP LEARNING 2 1 / 177

SEMESTER SCHEDULE (TEMPORARY)

▶ 05/11: Graded Individual Practical Work
▶ 12/11: TP4 Deep Reinforcement Learning - From Notebook to Script
▶ 19/11: TP5 Adversarial Attacks - Importance of Git
▶ 26/11: Project Presentation - Group Formation
▶ 03/12: Group Session - Help with Projects
▶ 10/12: Project Presentation

ALEXANDRE VÉRINE DEEP LEARNING 2 2 / 177

AI 101: FROM FUNDAMENTALS TO DEEP LEARNING

1 Introduction to Artificial Intelligence . 8

1.1 Deep Learning in the AI family . 8
1.2 Representation Learning . 13

2 Neural Networks Fundamentals . 18
2.1 Neurons . 19
2.2 Layers . 21
2.3 Activation Functions . 23

3 The Multi-layer Perceptron (MLP) . 32

3.1 The first Deep Learning Model . 33
3.2 Stochastic Gradient Descent . 34
3.3 Back-propagation . 37
3.4 Example : Image classification of handwritten digits from A to Z 59

ALEXANDRE VÉRINE DEEP LEARNING 2 3 / 177

IN A DEEP LEARNING MODEL : FROM NEURAL NETWORKS TO

TRANSFORMER MODELS

1 Convolutional Neural Networks . 67
1.1 The Two dimensional Convolution . 68
1.2 CNN : Convolutional in a network Networks . 76
1.3 CNN in practice: CIFAR 10 . 83

2 Recurrent Neural Networks . 103
2.1 Recurrent Block . 104
2.2 LSTM and GRU . 106

3 Transformer and Attention Mechanism . 116
3.1 Self-Attention Mechanism . 117
3.2 Transformers Model . 121

4 TP2: Build and use an autoencoder . 123
4.1 Formal introduction of an autoencoder . 123

ALEXANDRE VÉRINE DEEP LEARNING 2 4 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING

1 Techniques to Improve Deep Learning Training . 130

ALEXANDRE VÉRINE DEEP LEARNING 2 5 / 177

DEEP LEARNING AND APPLICATIONS

1 Learning to act with Deep Reinforcement Learning . 140

1.1 Deep Q-Learning . 140
1.2 The Cheese Game . 142

2 Synthetic Data Generation with Generative Adversarial Networks 147

2.1 GANS Models . 147
2.2 MNIST Generation . 149

3 Sentiment Analysis with Transformers and GRU . 152

3.1 Bert . 152
3.2 Sentiment Analysis . 155

4 Density Estimation with Normalizing Flows . 160

4.1 Estimating Density . 160
4.2 Normalizing Flows . 161

5 Image Segmentation with U-Net . 173

5.1 Image Segmentation . 173
5.2 U-Net Architecture . 176

ALEXANDRE VÉRINE DEEP LEARNING 2 6 / 177

Part I

AI 101: FROM FUNDAMENTALS TO DEEP LEARNING

ALEXANDRE VÉRINE DEEP LEARNING 2 7 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING IN THE AI FAMILY

In general, among all the class of AI
algorithms, we make the difference
between 3 sub-categories :
▶ Artificial Intelligence : human

designed program and...
▶ Machine Learning : human

designed features with learned
mapping such as Support Vector
Machine, Kernels methods,
Logistic Regression and ...

▶ Deep Learning: Learned features
with learned mapping such as
Multilayer Perceptron,
Convolutional Networks, ... Figure. Subsets of Artificial Intelligence

ALEXANDRE VÉRINE DEEP LEARNING 2 8 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING IN THE AI FAMILY

In the field of Artificial Intelligence, the fundamental objective is to
find a function f that can perform a desired task. This function can
either be set by a human or can be learned through training.

For example, in the context of a binary classification task, the goal is
to determine f (x) such that f (x) = 0 when the label of x is 0 and
f (x) = 1 when its label is 1. The choice of AI model impacts the
expressivity of the function f .

For example, a logistic regression model uses a linear function to
make decisions, where f (x) = sgn(Ax + b). The expressivity of the
model can be increased by using more complex functions, such as
polynomials or radial basis functions.

ALEXANDRE VÉRINE DEEP LEARNING 2 9 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
CLASSIFICATION TASK

Figure. 2D classification for different AI models.

ALEXANDRE VÉRINE DEEP LEARNING 2 10 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
THE UNIVERSAL APPROXIMATION THEOREM

The Universal Approximation Theorem is a fundamental result in the field of artificial neural
networks. It states that a deep learning model can approximate any function.

Theorem 1 (Universal Approximation Theorem)

Let X ⊂ Rd be compact, Y ⊂ Rm, f : X → Y be a continuous function and σ : R→ R be a continuous real
function.
Then σ is not polynomial if and only if for every ϵ > 0, there exist k ∈ N, A ∈ Rk×d, b ∈ Rk and C ∈ Rm×k

such that
sup
x∈X
∥f (x)− g(x)∥ ≤ ϵ

where g(x) = C× σ(Ax + b).

ALEXANDRE VÉRINE DEEP LEARNING 2 11 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
CLASSIFICATION TASK

Figure. 2D classification for small Neural Network.

ALEXANDRE VÉRINE DEEP LEARNING 2 12 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
REPRESENTATION LEARNING

How does deep learning work in practice ?

Deep learning is a subset of representation learning that uses deep neural networks to learn
meaningful representations of data. In deep learning, representations are learned through a
hierarchy of nonlinear transformations, where each layer of the network builds upon the previous
one to extract increasingly abstract and higher-level features from the input data.

ALEXANDRE VÉRINE DEEP LEARNING 2 13 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Consider the task of recognizing objects in images. A traditional
approach would be to hand-engineer features such as edge detectors
and color histograms that can be fed into a classifier.
However, with deep learning representation learning, the model
learns to automatically discover these features from the data. The
network might start by learning simple features such as edges and
color blobs in the first layer, then build upon these to learn more
complex features such as parts of objects in subsequent layers, until
finally, the final layer outputs a probability distribution over classes of
objects.
In this way, deep learning of representation enables the model to
automatically learn a rich and meaningful representation of the data,
without the need for manual feature engineering.

Figure. MNIST

ALEXANDRE VÉRINE DEEP LEARNING 2 14 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Figure. MNIST : Layer 0 Figure. MNIST : Layer 1

Figure. MNIST : Layer 2

ALEXANDRE VÉRINE DEEP LEARNING 2 15 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
EXAMPLE OF REPRESENTATION LEARNING

Figure. MNIST : Layer 0

Figure. MNIST : Layer 2

ALEXANDRE VÉRINE DEEP LEARNING 2 16 / 177

INTRODUCTION TO ARTIFICIAL INTELLIGENCE
DEEP LEARNING AND NEURAL NETWORKS

Ok, Deep Learning is a model that learns a good representation of the feature. But how?
▶ How does it work ?
▶ How can we build a model ?
▶ How does it learn ?

ALEXANDRE VÉRINE DEEP LEARNING 2 17 / 177

NEURAL NETWORKS FUNDAMENTALS

Typically, a neural network is defined as a computational model composed of interconnected nodes,
organised into layers, that perform transformations on input data.

..

.

Let’s see what the interconnected nodes, the layers and the transformations are.

ALEXANDRE VÉRINE DEEP LEARNING 2 18 / 177

NEURAL NETWORKS FUNDAMENTALS
NEURONS

If we consider that the Neural Network is a function f : Rd → Rm:

x0
0

x1
0

x2
0

x3
0

x4
0

xd−4
0

xd−3
0

xd−2
0

xd−1
0

xd0

x0
1

x1
1

x2
1

x3
1

x4
1

x5
1

x6
1

x7
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

x6
2

x7
2

x0
3

x1
3

x2
3

x3
3

..

.

A Neuron is a processing unit that receives input, performs a computation, and produces an output.
Here, the inputs are xi−1 and the output is xk

i .
ALEXANDRE VÉRINE DEEP LEARNING 2 19 / 177

NEURAL NETWORKS FUNDAMENTALS
NEURONS

For example, with an image dataset, the image can be flattened:

x0 = [0.00, 0.00, . . . , 0.00, 0.99, 0.07 . . . , 0.00, 0.00] ∈ [0, 1]d

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.91 0.02 0.00 0.00

0.00 0.00 0.00 0.00 0.99 0.45 0.18 0.66 0.00 0.00

0.00 0.00 0.00 0.99 0.07 0.00 0.00 0.99 0.00 0.00

0.00 0.00 0.30 0.44 0.00 0.00 0.00 0.99 0.00 0.00

0.00 0.00 0.33 0.00 0.00 0.00 0.99 0.00 0.00 0.00

0.00 0.00 0.33 0.99 0.99 0.77 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∈ [0, 1]d/2×d/2

ALEXANDRE VÉRINE DEEP LEARNING 2 20 / 177

NEURAL NETWORKS FUNDAMENTALS
LAYERS

A layer i is defined by a
matrix Ai ∈ Rki−1×ki , a vector
bi ∈ Rki and a nonlinear
function σi : R 7→ R. The
transformation made by a
layer is:

xi = σi (Aixi−1 + bi) .

The non-linear function σi the
activation function.

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 21 / 177

NEURAL NETWORKS FUNDAMENTALS
LAYERS

A layer i is defined as a
matrix Ai ∈ Rki−1×ki , a vector
bi ∈ Rki and a nonlinear
function σi : R 7→ R. The
transformation made by a
layer is:

xk
i = σi

 ki∑
l=1

[Ai]l,k xi−1 + [bi]k

 .

The non-linear function σi the
activation function.

x0
0

x1
0

x2
0

x3
0

x4
0

xd−4
0

xd−3
0

xd−2
0

xd−1
0

xd0

x0
1

x1
1

x2
1

x3
1

x4
1

x5
1

x6
1

x7
1

x0
2

x1
2

x2
2

x3
2

x4
2

x5
2

x6
2

x7
2

x0
3

x1
3

x2
3

x3
3

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 22 / 177

NEURAL NETWORKS FUNDAMENTALS
ACTIVATION FUNCTIONS

The activation functions play a crucial role in the implementation of deep neural networks, as they
allow them to approximate any continuous function, as stated by the Universal Approximation
Theorem. We can list some activation function that are commonly used :
▶ Linear
▶ Sigmoid
▶ Hyperbolic Tangent
▶ Rectified Linear Unit (ReLU)
▶ Leaky Rectified Linear Unit (Leaky ReLU)
▶ Exponential Linear Unit (ELU)
▶ Sigmoid-Weighted Linear Unit (Swish)
▶ Softmax

ALEXANDRE VÉRINE DEEP LEARNING 2 23 / 177

NEURAL NETWORKS FUNDAMENTALS
LINEAR

▶ Linear activation
Function:

σ(x) = x

▶ Final activation
▶ Use case : Regression

−2 −1 0 1 2
−2

−1

0

1

2

Linear

ALEXANDRE VÉRINE DEEP LEARNING 2 24 / 177

NEURAL NETWORKS FUNDAMENTALS
SIGMOID

▶ Sigmoid Function:

σ(x) =
1

1 + e−x

▶ Final activation
▶ Use case : Classification

−2 −1 0 1 2
−2

−1

0

1

2

Sigmoid

ALEXANDRE VÉRINE DEEP LEARNING 2 25 / 177

NEURAL NETWORKS FUNDAMENTALS
SOFTMAX

▶ Softmax Function:

σ(xk) =
exk∑ki
i=1 exi

▶ Final activation
▶ Use case : Multi-class

Classification

ALEXANDRE VÉRINE DEEP LEARNING 2 26 / 177

NEURAL NETWORKS FUNDAMENTALS
HYPERBOLIC TANGENT

▶ Hyperbolic Tangent

σ(x) =
ex − e−x

ex + e−x

▶ Final activation
▶ Use case : Generative

task

−2 −1 0 1 2
−2

−1

0

1

2

Tanh

ALEXANDRE VÉRINE DEEP LEARNING 2 27 / 177

NEURAL NETWORKS FUNDAMENTALS
RELU

▶ Rectified Linear Unit
(ReLU):

σ(x) = max{0, x}

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

ReLU

ALEXANDRE VÉRINE DEEP LEARNING 2 28 / 177

NEURAL NETWORKS FUNDAMENTALS
LEAKY RELU

▶ Leaky Rectified Linear
Unit (Leaky ReLU):

σ(x) = max{αx, x}

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

Leaky ReLU

ALEXANDRE VÉRINE DEEP LEARNING 2 29 / 177

NEURAL NETWORKS FUNDAMENTALS
ELU

▶ Exponential Linear Unit
(ELU):

σ(x) =

{
α(ex − 1) if x < 0,
x if x ≥ 0.

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

ELU

ALEXANDRE VÉRINE DEEP LEARNING 2 30 / 177

NEURAL NETWORKS FUNDAMENTALS
SWISH

▶ Sigmoid-Weighted
Linear Unit (Swish):

σ(x) =
x

1 + e−x

▶ Intermediate activation

−2 −1 0 1 2
−2

−1

0

1

2

Swish

ALEXANDRE VÉRINE DEEP LEARNING 2 31 / 177

THE MULTI-LAYER PERCEPTRON (MLP)

Having discussed the structure of a neural network, we will proceed to examine the process of
training a model for a specific task. As an illustration, we will consider the example of a Multilayer
Perceptron.The two intermediate activation functions are ReLUs and the final activation is a
softmax to perform multi-class classification on MNIST. We will consider only 4 classes.

..

.

ALEXANDRE VÉRINE DEEP LEARNING 2 32 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
THE FIRST DEEP LEARNING MODEL

To introduce the training process, we will consider a 3 layers MLP trained to minimise a loss L over
a given a dataset D. The model fθ is parameterised by a vector θ = {A1,A2,A3, b1, b2, b3}:

θ∗ = argmin
θ
L(θ,D)

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 33 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
STOCHASTIC GRADIENT DESCENT

Stochastic gradient descent (SGD) is widely used in deep learning instead of traditional gradient
descent due to its efficiency and faster convergence rate. SGD updates the model parameters after
computing the gradient of the loss function with respect to each parameter using only a single
randomly selected sample. This leads to a faster convergence rate and improved optimization
compared to traditional gradient descent, which uses the entire training dataset to compute the
gradient at each iteration.

θ∗ = argmin
θ
L(θ,D) = argmin

θ
Ex∼D [l(x, fθ(x))]

ALEXANDRE VÉRINE DEEP LEARNING 2 34 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
STOCHASTIC GRADIENT DESCENT

Theoretically the algorithm is the following:
Require: Given a loss function l, a dataset D = {x1, x2, . . . , xN} and a learning rate λ

1: Initialize parameters θ
2: while θ has not converged do
3: for i = 1 to N do
4: Randomly select xi from the dataset
5: Compute gradient of the loss with respect to θ: ∇θl(xi, fθ(xi))
6: Update parameters θ = θ − λ∇θl(xi, f (xi))
7: end for
8: end while
9: return θ

ALEXANDRE VÉRINE DEEP LEARNING 2 35 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
SGD IN MINI-BATCH

In practice the algorithm is modified to use mini-batches of data instead of single samples. This is
done to improve the stability of the optimization process and reduce the variance of the gradient
estimates. The algorithm is as follows:
Require: Given a loss function l, a dataset D = {x1, x2, . . . , xN}, a learning rate λ and a batch size b

1: Initialize parameters θ
2: Initialize the number of batches B =

⌊N
b

⌋
3: while θ has not converged do
4: for i = 1 to B do
5: Randomly select a mini-batch of b samples from the dataset
6: Compute gradient of the loss with respect to θ: 1

B
∑B

i=1∇θl(xi, fθ(xi))

7: Update parameters θ = θ − λ 1
B
∑B

i=1∇θl(xi, f (xi))
8: end for
9: end while

10: return θ

ALEXANDRE VÉRINE DEEP LEARNING 2 36 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

At every step t of the gradient descent, setting a learning rate λ, the parameter θ is updated as:

θt+1 = θt − λ∇θl(f (xi), yi)

But θ = {A1,A2,A3, b1, b2, b3} and the gradient is computed with respect to each parameter.

..

.

x0

A1, b1, σ1

x1

A2, b2, σ2

x2

A3, b3, σ3

x3

ALEXANDRE VÉRINE DEEP LEARNING 2 37 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

First we will consider a single data point x, the loss will depend on the output only: l(f (x)).

f is a layered composed function. Let us focus on the last layer:

f (x) = x3 = σ3(A3x2 + b3)

Therefore:

l(f (x)) = l (σ3 (A3x2 + b3))

To minimise the loss, we have to act on A3, b3 and x2.

ALEXANDRE VÉRINE DEEP LEARNING 2 38 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let us look at the gradients with respect to A3:

∂l
∂A3

=
∂l
∂x3

∂x3

∂A3
= l′(x3)

∂σ3 (A3x2 + b3)

∂A3
= l′(x3)σ

′
3 (A3x2 + b3)

∂ [A3x2 + b3]

∂A3

= l′(x3)︸ ︷︷ ︸
∈R

σ′
3 (A3x2 + b3)︸ ︷︷ ︸

∈Rki×1

xT
2︸︷︷︸

∈R1×ki−1

and therefore:

A3 ← A3 − λl′(x3)σ
′
3 (A3x2 + b3) xT

2 .

We need to keep in memory the latent values of x, i.e. x2.

ALEXANDRE VÉRINE DEEP LEARNING 2 39 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let us look at the gradients with respect to A2:

∂l
∂A2

=
∂l
∂x2

∂x2

∂A2

=
∂l
∂x2

∂σ2 (A2x1 + b2)

∂A2

=
∂l
∂x2

σ′
2 (A2x1 + b2)

∂ [A2x1 + b2]

∂A2

=
∂l
∂x2

σ′
2 (A2x1 + b2) xT

1

which depends on ∂l
∂x2

, we need to compute it.

ALEXANDRE VÉRINE DEEP LEARNING 2 40 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

We have to compute the gradient with respect to x2:

∂l
∂x2

=
∂l
∂x3

∂x3

∂x2
= l′(x3)

∂σ3 (A3x2 + b3)

∂x2
= l′(x3)

∂ [A3x2 + b3]

∂x2
σ′

3 (A3x2 + b3)

= l′(x3) AT
3σ

′
3 (A3x2 + b3)

Therefore:

A2 ← A2 − λ
[
l′(x3)AT

3σ
′
3 (A3x2 + b3)× σ′

2 (A2x1 + b2) xT
1

]
The update of A2 depends on l′(x3),

ALEXANDRE VÉRINE DEEP LEARNING 2 41 / 177

BACK-PROPAGATION

We have to compute the gradient with respect to A1:

∂l
∂A1

=
∂l
∂x1

∂x1

∂A1

=
∂l
∂x1

∂σ1 (A1x0 + b1)

∂A1

=
∂l
∂x1

σ′
1 (A1x0 + b0) xT

0 ,

which depends on ∂l
∂x1

, we need to compute it.

ALEXANDRE VÉRINE DEEP LEARNING 2 42 / 177

BACK-PROPAGATION

Let us compute the gradient with respect to x1:

∂l
∂x1

=
∂l
∂x2

∂x2

∂x1
=

∂l
∂x2

∂σ2 (A2x1 + b2)

∂x1
=

∂l
∂x2

∂ [A2x1 + b2]

∂x1
σ′

2 (A2x1 + b2)

=
∂l
∂x2

AT
2σ

′
2 (A2x1 + b2)

Therefore:

A1 ← A1 − λ
[
l′(x3) AT

3σ
′
3 (A3x2 + b3)AT

2σ
′
2 (A2x1 + b2)× σ′

1 (A1x0 + b1) xT
0

]

ALEXANDRE VÉRINE DEEP LEARNING 2 43 / 177

BACK-PROPAGATION

In other words, the update on the weights is:

A3 ← A3 − λl′(x3)σ
′
3 (A3x2 + b3) xT

2

A2 ← A2 − λ
[
l′(x3)AT

3σ
′
3 (A3x2 + b3)× σ′

2 (A2x1 + b2) xT
1

]
A1 ← A1 − λ

[
l′(x3) AT

3σ
′
3 (A3x2 + b3)AT

2σ
′
2 (A2x1 + b2)× σ′

1 (A1x0 + b1) xT
0

]

ALEXANDRE VÉRINE DEEP LEARNING 2 44 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

If we look at the update of the different biases, we can easily compute the different gradient and see
the updates. First, let us compute the gradient with respect to b3:

∂l
∂b3

=
∂l
∂x3

∂x3

∂b3

= l′(x3)
∂σ3 (A3x2 + b3)

∂b3

= l′(x3)σ
′
3 (A3x2 + b3)

∂ [A3x2 + b3]

∂b3

= l′(x3)︸ ︷︷ ︸
∈R

σ′
3 (A3x2 + b3)︸ ︷︷ ︸

∈Rki×1

And thus :
b3 ← b3 − λl′(x3)σ

′ (A3x2 + b3)

ALEXANDRE VÉRINE DEEP LEARNING 2 45 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Let’s move on the second layer:

∂l
∂b2

=
∂l
∂x2

∂x2

∂b2

=
∂l
∂x2

∂σ2 (A2x1 + b2)

∂b2

=
∂l
∂x2

σ′
2 (A2x1 + b2)

And thus :
b2 ← b2 − λ

∂l
∂x2

σ′ (A2x1 + b2)

We need to back-propagate the term ∂l
∂x2

computed for the first layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 46 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

For the first layer:

∂l
∂b1

=
∂l
∂x1

∂x1

∂b1

=
∂l
∂x1

∂σ1 (A1x0 + b1)

∂b1

=
∂l
∂x1

σ′
1 (A1x0 + b0)

And thus :
b1 ← b1 − λ

∂l
∂x1

σ′ (A1x0 + b1)

We need to back-propagate the term ∂l
∂x1

computed for the second layer which has been computed
with ∂l

∂x2
back-propagated from the first layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 47 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

To update the weights, we need to compute the gradient of the loss with respect to the output of the
network, and then back-propagate the gradient of the loss with respect to each activation, the ∂l

∂xi
,

through the network to compute the gradients with respect to the weights and biases of each layer.

ALEXANDRE VÉRINE DEEP LEARNING 2 48 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
LAST LAYER

We can plot the current state
of the network for a given
input.

The red lines show positive
values for Ai, the blue lines
represent negative values for
Ai. The level of transparency
is proportional to the
previous neurons.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 49 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 50 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 51 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 52 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x1
3 = σ3

(
A1,1

3 x1
2 + A1,2

3 x2
2 + · · ·+ A1,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 53 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
LAST LAYER

We can plot the current state
of the network for a given
input.

Red lines show positive
values of Ai, Blue lines
represent negative values of
Ai. The level of transparency
is proportional to the
previous neurons.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 54 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 55 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 56 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 57 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
BACK-PROPAGATION

Iteratively, the neural
networks improves its
performance.

x2
3 = σ3

(
A2,1

3 x1
2 + A2,2

3 x2
2 + · · ·+ A2,8

3 x8
2

)

ALEXANDRE VÉRINE DEEP LEARNING 2 58 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

Having discussed the theory behind Artificial Neural Networks and the training process, we will
now proceed to demonstrate a comprehensive end-to-end example of image classification on
MNIST.

ALEXANDRE VÉRINE DEEP LEARNING 2 59 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

▶ Input shape : 1× 28× 28.
▶ Number of Classes : 10.
▶ Number of training samples (x, y): 60000.
▶ Number of evaluating samples: 10000.
▶ Loss : cross-entropy

L(ŷ, y) = − 1
N

N∑
i=1

K∑
j=1

yij log(ŷij)

where :
• ŷ ∈ RN×K is the predicted probability distribution over K classes for N samples,
• y ∈ 0, 1N×K is the ground-truth one-hot encoded label matrix,

ALEXANDRE VÉRINE DEEP LEARNING 2 60 / 177

RECAP ON THE CROSS-ENTROPY LOSS

Class 1 Class 2 Class 3 Class 4 Class 5
0

0.2

0.4

0.6

0.8

1

0 0

1

0 0

One-Hot Distribution (yi)

Class 1 Class 2 Class 3 Class 4 Class 5
0

0.2

0.4

0.6

0.8

1

0.1 0.15

0.5

0.2

5 · 10−2

Model Predicted Distribution (ŷi)

The cross-entropy loss for one sample is:

l(ŷi, yi) = −
K∑

j=1

yij log(ŷij).

ALEXANDRE VÉRINE DEEP LEARNING 2 61 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

We build a 3 layers network.
▶ Batch size : 64
▶ Learning rate : 0.01
▶ Intermediate activation : ReLU
▶ Final activation : Softmax
▶ Number of epochs : 12
▶ Number of trained parameters: 52.6k

input-tensor
depth:0 (64, 784) view

depth:1

input: (64, 784)

output: (64, 784)

Linear
depth:1

input: (64, 784)

output: (64, 64)

relu
depth:1

input: (64, 64)

output: (64, 64)

Linear
depth:1

input: (64, 64)

output: (64, 32)

relu
depth:1

input: (64, 32)

output: (64, 32)

Linear
depth:1

input: (64, 32)

output: (64, 10)

LogSoftmax
depth:1

input: (64, 10)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 62 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

0 100000 200000 300000 400000 500000
Number of Examples Seen by the model

0.0

0.5

1.0

1.5

2.0

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 63 / 177

THE MULTI-LAYER PERCEPTRON (MLP)
EXAMPLE : IMAGE CLASSIFICATION OF HANDWRITTEN DIGITS FROM A TO Z

With a interpretation tool such as SHAP:

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
SHAP value

ALEXANDRE VÉRINE DEEP LEARNING 2 64 / 177

Part II

DEEP LEARNING IN ACTION: FROM NEURAL NETWORKS

TO TRANSFORMER MODELS

ALEXANDRE VÉRINE DEEP LEARNING 2 65 / 177

Now that we have an understanding of the training procedure for Artificial Neural Networks, we
shall examine several widely-utilized structures within the literature of Neural Networks, including
Convolutional Neural Networks (CNN),Resdiual Networks (ResNet), Recurrent Neural Networks
(RNN), and Transformers.

ALEXANDRE VÉRINE DEEP LEARNING 2 66 / 177

CONVOLUTIONAL NEURAL NETWORKS

In the field of image processing, the Convolution Operators are widely considered as the most
favoured approach. While it has been demonstrated that Dense blocks, or Linear blocks, are capable
of accurately classifying images in the case of the MNIST dataset, the need for convolutional
transformations arises when addressing wider and more intricate datasets.

ALEXANDRE VÉRINE DEEP LEARNING 2 67 / 177

CONVOLUTIONAL NEURAL NETWORKS
THE TWO DIMENSIONAL CONVOLUTION

A 2D convolution in a neural network context can be mathematically represented as a sliding
window operation where a filter (also called kernel) w of size k× k is applied to each k× k
sub-matrix of the input matrix x. The operation can be defined as the element-wise multiplication of
the filter w and the sub-matrix followed by summing the results, i.e.

yi,j =

k∑
m=1

k∑
n

wm,n · xi+m,j+n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.9 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 0.4 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.5 0.0 1.0 0.2 0.0

0.0 0.0 0.0 0.7 0.9 0.1 0.0 0.0 0.0 1.0 0.8 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.8 0.0

0.0 0.0 0.3 0.9 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.3 0.6 0.0 0.0 0.0 0.2 1.0 0.0 0.0 0.0

0.0 0.0 0.3 1.0 0.2 0.3 0.9 0.9 0.2 0.0 0.0 0.0

0.0 0.0 0.1 1.0 1.0 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kernel

1.0 1.0 1.0

0.0 0.0 0.0

-1.0 -1.0 -1.0

-0.3 -1.3 -1.5 -1.5 -1.4 -2.1 -2.0 -1.1 -0.2 0.0

-0.2 0.2 1.2 2.4 2.5 1.4 -0.6 -1.2 -1.0 0.0

0.0 0.1 0.3 0.6 1.4 2.1 1.9 0.1 -0.8 -1.0

0.3 -0.1 -0.1 -0.4 0.0 0.2 1.2 0.2 -0.8 -1.8

0.3 0.5 -0.4 -0.8 -1.0 -0.1 0.0 0.0 -0.7 -0.7

0.0 1.0 0.1 -0.9 -2.0 -1.5 -0.5 -0.5 0.6 0.6

0.0 0.7 1.6 0.7 -1.0 -2.9 -2.4 -1.4 0.4 0.8

0.0 0.0 0.9 1.9 1.1 -0.4 -2.3 -0.7 0.1 1.0

0.0 0.0 0.0 1.0 2.0 2.3 1.1 1.1 0.7 1.0

0.0 0.0 0.0 0.0 0.9 1.9 2.8 2.1 1.1 0.2

ALEXANDRE VÉRINE DEEP LEARNING 2 68 / 177

CONVOLUTIONAL NEURAL NETWORKS
THE TWO DIMENSIONAL CONVOLUTION

A 2D convolution in a neural network context can be mathematically represented as a sliding
window operation where a filter (also called kernel) w of size k× k is applied to each k× k submatrix
of the input matrix x. The operation can be defined as the element-wise multiplication of the filter w
and the submatrix followed by summing the results, i.e.

yi,j =

k∑
m=1

k∑
n

wm,n · xi+m,j+n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

0.0 1.0 -0.0 -3.7 -2.8 -0.1 0.0 0.0 0.0 0.0

0.0 2.9 3.7 -1.0 -3.3 -0.7 0.0 0.0 0.0 0.0

0.0 1.8 3.8 0.5 -3.7 -2.3 0.0 0.0 0.0 0.0

0.0 0.0 2.8 2.5 -1.8 -3.6 -1.2 0.0 0.0 0.0

0.0 0.0 1.9 3.8 1.1 -2.8 -2.7 -0.1 0.0 0.0

0.0 0.0 0.3 2.5 3.2 -0.7 -3.9 -1.9 0.0 0.0

0.0 0.0 0.0 0.8 3.4 1.8 -2.4 -3.3 -0.7 0.0

0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0 -2.6 -0.5

0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9 -3.2 -0.7

0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7 -0.2

ALEXANDRE VÉRINE DEEP LEARNING 2 69 / 177

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

In every Deep Learning library, the Conv2D block takes three parameters in argument:
▶ the Kernel’s size,
▶ the Stride,
▶ the Padding.

The size out the output is :

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 70 / 177

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 0, Stride: 1

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 10× 10

0.0 1.0 -0.0 -3.7 -2.8 -0.1 0.0 0.0 0.0 0.0

0.0 2.9 3.7 -1.0 -3.3 -0.7 0.0 0.0 0.0 0.0

0.0 1.8 3.8 0.5 -3.7 -2.3 0.0 0.0 0.0 0.0

0.0 0.0 2.8 2.5 -1.8 -3.6 -1.2 0.0 0.0 0.0

0.0 0.0 1.9 3.8 1.1 -2.8 -2.7 -0.1 0.0 0.0

0.0 0.0 0.3 2.5 3.2 -0.7 -3.9 -1.9 0.0 0.0

0.0 0.0 0.0 0.8 3.4 1.8 -2.4 -3.3 -0.7 0.0

0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0 -2.6 -0.5

0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9 -3.2 -0.7

0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7 -0.2

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 71 / 177

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 5, Padding: 0, Stride: 1

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 5× 5

kernel
-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

-2.0 -1.0 0.0 1.0 2.0

Size 8× 8

9.2 6.4 -0.5 -7.4 -8.7 -2.7 0.0 0.0

9.5 8.5 1.7 -6.9-10.0-5.3 -1.2 0.0

6.8 8.5 5.1 -3.0 -8.6 -7.1 -3.3 -0.1

4.0 7.4 7.9 2.6 -5.7 -8.1 -6.2 -2.0

2.0 5.8 8.1 5.8 -1.7 -7.2 -7.7 -4.3

0.3 2.9 7.1 7.6 3.5 -3.8 -7.9 -6.3

0.0 0.8 4.8 7.1 6.7 0.3 -6.4 -7.3

0.0 0.0 2.5 6.0 7.1 2.1 -4.4 -7.2

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 72 / 177

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 1. Padding mode can be ’zeros’, ’reflect’, ’replicate’ or ’circular’.

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 12× 12

0.0 0.0 0.0 -1.0-2.8-1.7 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 -0.0-3.7-2.8-0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 2.9 3.7 -1.0-3.3-0.7 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.8 3.8 0.5 -3.7-2.3 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 2.8 2.5 -1.8-3.6-1.2 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.9 3.8 1.1 -2.8-2.7-0.1 0.0 0.0 0.0

0.0 0.0 0.0 0.3 2.5 3.2 -0.7-3.9-1.9 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.8 3.4 1.8 -2.4-3.3-0.7 0.0 0.0

0.0 0.0 0.0 0.0 0.0 2.2 3.8 0.6 -3.0-2.6-0.5 0.0

0.0 0.0 0.0 0.0 0.0 0.5 2.7 2.7 -0.9-3.2-0.7 0.0

0.0 0.0 0.0 0.0 0.0 0.0 1.0 3.5 1.7 -0.7-0.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.5 0.2 0.0 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 73 / 177

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 2

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 6× 6

0.0 1.0 -3.7-0.1 0.0 0.0

0.0 1.8 0.5 -2.3 0.0 0.0

0.0 0.0 3.8 -2.8-0.1 0.0

0.0 0.0 0.8 1.8 -3.3 0.0

0.0 0.0 0.0 2.7 -0.9-0.7

0.0 0.0 0.0 0.0 1.5 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 74 / 177

CONVOLUTIONAL NEURAL NETWORKS
KERNEL SIZE, PADDING AND STRIDE

Kernel size: 3, Padding: 1, Stride: 3

Size 12× 12

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1.0 0.2 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 1.0 0.4 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.1 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 1.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Size 3× 3

kernel

0.0 1.0 2.0

-1.0 0.0 1.0

-2.0 -1.0 0.0

Size 4× 4

0.0 0.0 0.0 0.2

0.0 0.0 3.8 -2.6

0.0 1.9 -2.8 0.0

0.0 3.7 -0.7 0.0

dout =
din + 2× Padding− KernelSize

Stride
+ 1

ALEXANDRE VÉRINE DEEP LEARNING 2 75 / 177

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

We can represent a CNN as under this form:

ALEXANDRE VÉRINE DEEP LEARNING 2 76 / 177

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

Usually, the output of a convolutional block is linear combination of the Convolutional output of
every previous channels and a bias:

outi,j(cout) = bias(cout) +

|cin|−1∑
k=0

Conv(input(k),kernelk)i,j

ALEXANDRE VÉRINE DEEP LEARNING 2 77 / 177

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

In practice, we split the image into multiple channels : the three channels RGB to begin with. Then
we apply convolutional operation on different scales and then we use a fully connected tail. To
change the scale we can use different sub-sampling : Max pooling, Average pooling or Invertible
pooling.

ALEXANDRE VÉRINE DEEP LEARNING 2 78 / 177

CONVOLUTIONAL NEURAL NETWORKS
MAX POOLING

Max Pooling take the maximum within a given sized sub-matrix. In practice, the matrix is size 2× 2
in order to reduce the dimension by 4 and doubling the scale.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Max Pooling

Subsampling

1.0 0.8 0.8 0.9

0.8 0.9 0.9 0.9

0.9 0.9 0.8 0.9

0.9 0.7 0.6 0.9

ALEXANDRE VÉRINE DEEP LEARNING 2 79 / 177

CONVOLUTIONAL NEURAL NETWORKS
AVERAGE POOLING

The Average pooling takes the average value within the sub-matrix.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Average Pooling

Subsampling

0.5 0.5 0.4 0.6

0.6 0.5 0.5 0.5

0.4 0.5 0.5 0.6

0.7 0.3 0.2 0.5

ALEXANDRE VÉRINE DEEP LEARNING 2 80 / 177

CONVOLUTIONAL NEURAL NETWORKS
INVERTIBLE POOLING

For Invertible Networks, we can use Invertible Pooling, aka Squeeze. It preserves the information
contained in the channels and keeps the dimension constant.

0.2 1.0 0.3 0.8 0.1 0.8 0.6 0.9

0.7 0.3 0.3 0.5 0.4 0.3 0.3 0.4

0.2 0.6 0.7 0.9 0.9 0.1 0.3 0.5

0.8 0.7 0.1 0.3 0.3 0.6 0.9 0.5

0.7 0.1 0.1 0.2 0.8 0.4 0.9 0.7

0.9 0.1 0.8 0.9 0.6 0.3 0.1 0.9

0.8 0.7 0.2 0.7 0.0 0.6 0.9 0.5

0.9 0.5 0.1 0.2 0.0 0.1 0.1 0.4

Invertible Pooling

Subsampling

0.2 0.3 0.1 0.6

0.2 0.7 0.9 0.3

0.7 0.1 0.8 0.9

0.8 0.2 0.0 0.9

1.0 0.8 0.8 0.9

0.6 0.9 0.1 0.5

0.1 0.2 0.4 0.7

0.7 0.7 0.6 0.5

0.7 0.3 0.4 0.3

0.8 0.1 0.3 0.9

0.9 0.8 0.6 0.1

0.9 0.1 0.0 0.1

0.3 0.5 0.3 0.4

0.7 0.3 0.6 0.5

0.1 0.9 0.3 0.9

0.5 0.2 0.1 0.4

ALEXANDRE VÉRINE DEEP LEARNING 2 81 / 177

CONVOLUTIONAL NEURAL NETWORKS
CNN : CONVOLUTIONAL IN A NETWORK NETWORKS

Convolutional Neural Networks are more suitable for image processing compared to fully
connected networks due to their ability to efficiently handle the spatial relationships between pixels
in an image. This is achieved through the use of convolutional layers that apply filters to small
portions of an image, rather than fully connected layers that process the entire image as a single
vector. Additionally, the shared weights in convolutional layers allow for learning of hierarchical
features, reducing the number of parameters in the network and increasing its ability to generalize
to new images.

ALEXANDRE VÉRINE DEEP LEARNING 2 82 / 177

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

▶ Input shape : 3× 32× 32.
▶ Number of Classes : 10.
▶ Number of training samples (x, y): 50000.
▶ Number of evaluating samples: 10000.

Cat Ship Ship Airplane Frog Frog Automobile Frog Cat

Automobile Airplane Truck Dog Horse Truck Ship Dog Horse

Ship Frog Horse Airplane Deer Truck Dog Bird Deer

ALEXANDRE VÉRINE DEEP LEARNING 2 83 / 177

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

We will compare three different models:
▶ Model 1 : Fully Connected Neural Network with 3.4 million parameters.
▶ Model 2 : CNN with 62 thousand parameters.
▶ Model 3 : Wider and longer CNN with 5.8 million parameters.

ALEXANDRE VÉRINE DEEP LEARNING 2 84 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

The Net in composed of 4 linear layers with ReLU activations:
▶ Linear 3072 7→ 1024 + ReLU
▶ Linear 1024 7→ 256 + ReLU
▶ Linear 256 7→ 64 + ReLU
▶ Linear 64 7→ 10 + SoftMax

input-tensor
depth:0 (64, 3, 32, 32)

view
depth:1

input: (64, 3, 32, 32)

output: (64, 3072)

Linear
depth:1

input: (64, 3072)

output: (64, 1024)

relu
depth:1

input: (64, 1024)

output: (64, 1024)

Linear
depth:1

input: (64, 1024)

output: (64, 256)

relu
depth:1

input: (64, 256)

output: (64, 256)

Linear
depth:1

input: (64, 256)

output: (64, 64)

relu
depth:1

input: (64, 64)

output: (64, 64)

Linear
depth:1

input: (64, 64)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 85 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 86 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 1

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 87 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

The Net is composed 2 convolutional layers and 2 linear layers:
▶ Conv 3× 32× 32 7→ 6× 28× 28 + ReLU
▶ Max Pooling 6× 28× 28 7→ 6× 14× 14
▶ Conv 6× 14× 14 7→ 16× 10× 10 + ReLU
▶ Max Pooling 16× 10× 10 7→ 16× 5× 5
▶ Linear 400 7→ 120 + ReLU
▶ Linear 120 7→ 84 + ReLU
▶ Linear 84 7→ 10 + SoftMax

input-tensor
depth:0 (64, 3, 32, 32)

Conv2d
depth:1

input: (64, 3, 32, 32)

output: (64, 6, 28, 28)

relu
depth:1

input: (64, 6, 28, 28)

output: (64, 6, 28, 28)

MaxPool2d
depth:1

input: (64, 6, 28, 28)

output: (64, 6, 14, 14)

Conv2d
depth:1

input: (64, 6, 14, 14)

output: (64, 16, 10, 10)

relu
depth:1

input: (64, 16, 10, 10)

output: (64, 16, 10, 10)

MaxPool2d
depth:1

input: (64, 16, 10, 10)

output: (64, 16, 5, 5)

view
depth:1

input: (64, 16, 5, 5)

output: (64, 400)

Linear
depth:1

input: (64, 400)

output: (64, 120)

relu
depth:1

input: (64, 120)

output: (64, 120)

Linear
depth:1

input: (64, 120)

output: (64, 84)

relu
depth:1

input: (64, 84)

output: (64, 84)

Linear
depth:1

input: (64, 84)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 88 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 89 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 2

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 90 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

The Net is composed 6 convolutional layers and 3 linear layers:
▶ Conv 3× 32× 32 7→ 32× 32× 32 + BatchNorm2d + ReLU
▶ Conv 32× 32× 32 7→ 64× 32× 32 + ReLU
▶ Max Pooling 64× 32× 32 7→ 64× 16× 16
▶ Conv 64× 16× 16 7→ 128× 16× 16 + BatchNorm2d + ReLU
▶ Conv 128× 16× 16 7→ 128× 16× 16 + ReLU
▶ Max Pooling 128× 16× 16 7→ 128× 8× 8
▶ Conv 128× 8× 8 7→ 256× 8× 8 + BatchNorm2d + ReLU
▶ Conv 256× 8× 8 7→ 256× 8× 8 + ReLU
▶ Max Pooling 256× 8× 8 7→ 256× 4× 4 + DropOut p = 0.05
▶ Linear 4096 7→ 1024 + ReLU
▶ Linear 1024 7→ 512 + ReLU + DropOut p = 0.05
▶ Linear 512 7→ 10 + SoftMax

We have added Batch Normalization to improve the training stability and Drop
Out to reduce overfitting.

input-tensor
depth:0 (64, 3, 32, 32)

Conv2d
depth:2

input: (64, 3, 32, 32)

output: (64, 32, 32, 32)

BatchNorm2d
depth:2

input: (64, 32, 32, 32)

output: (64, 32, 32, 32)

ReLU
depth:2

input: (64, 32, 32, 32)

output: (64, 32, 32, 32)

Conv2d
depth:2

input: (64, 32, 32, 32)

output: (64, 64, 32, 32)

ReLU
depth:2

input: (64, 64, 32, 32)

output: (64, 64, 32, 32)

MaxPool2d
depth:2

input: (64, 64, 32, 32)

output: (64, 64, 16, 16)

Conv2d
depth:2

input: (64, 64, 16, 16)

output: (64, 128, 16, 16)

BatchNorm2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

ReLU
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

Conv2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

ReLU
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 16, 16)

MaxPool2d
depth:2

input: (64, 128, 16, 16)

output: (64, 128, 8, 8)

Dropout2d
depth:2

input: (64, 128, 8, 8)

output: (64, 128, 8, 8)

Conv2d
depth:2

input: (64, 128, 8, 8)

output: (64, 256, 8, 8)

BatchNorm2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

ReLU
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

Conv2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

ReLU
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 8, 8)

MaxPool2d
depth:2

input: (64, 256, 8, 8)

output: (64, 256, 4, 4)

view
depth:1

input: (64, 256, 4, 4)

output: (64, 4096)

Dropout
depth:2

input: (64, 4096)

output: (64, 4096)

Linear
depth:2

input: (64, 4096)

output: (64, 1024)

ReLU
depth:2

input: (64, 1024)

output: (64, 1024)

Linear
depth:2

input: (64, 1024)

output: (64, 512)

ReLU
depth:2

input: (64, 512)

output: (64, 512)

Dropout
depth:2

input: (64, 512)

output: (64, 512)

Linear
depth:2

input: (64, 512)

output: (64, 10)

output-tensor
depth:0 (64, 10)

ALEXANDRE VÉRINE DEEP LEARNING 2 91 / 177

CONVOLUTIONAL NEURAL NETWORKS
DROP OUT

Dropout is a regularization technique in neural networks where during training, a portion of the
nodes are randomly "dropped out" or ignored during each iteration. This helps prevent over-fitting
by preventing the model from relying too heavily on any one node. The result is a more robust and
generalizable model that can better handle unseen data.

ALEXANDRE VÉRINE DEEP LEARNING 2 92 / 177

CONVOLUTIONAL NEURAL NETWORKS
BATCH NORMALIZATION

Batch normalization is a technique in deep learning that is used to normalize the activations of a
layer within a batch of data. This helps to prevent the problem of vanishing or exploding gradients
and also speeds up the training process. By normalizing the activations, batch normalization helps
to stabilize the distribution of the inputs to each layer, reducing the covariate shift and allowing the
network to learn more effectively.

ALEXANDRE VÉRINE DEEP LEARNING 2 93 / 177

CONVOLUTIONAL NEURAL NETWORKS
BATCH NORMALIZATION

1: for each xi in a mini-batch B of size b do
2: Compute the mean µB and variance σ2

B of the features in the mini-batch B.

µB =
1
b

∑
i

xi and σ2
B =

1
m

∑
i

(xi − µB)
2

3: Normalize each feature xi in the mini-batch B using µB and σ2
B.

x̄i =
xi − µB√
σ2

B + ε

4: Scale and shift each normalized feature xi using two learnable parameters γ and β
respectively.

yi = γx̄i + β

5: end for
Algorithm 1: Batch Normalization

ALEXANDRE VÉRINE DEEP LEARNING 2 94 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

0.0 0.5 1.0 1.5 2.0
Number of Examples Seen by the model ×106

0.0

0.5

1.0

1.5

2.0

2.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 95 / 177

CONVOLUTIONAL NEURAL NETWORKS
MODEL 3

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

ALEXANDRE VÉRINE DEEP LEARNING 2 96 / 177

CONVOLUTIONAL NEURAL NETWORKS
CNN IN PRACTICE: CIFAR 10

0 10 20 30 40
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)
CNN : 5.8M

FC : 3.4M

CNN: 62k

ALEXANDRE VÉRINE DEEP LEARNING 2 97 / 177

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

To examine the information captured by different channels in a Neural Network, we can compare
their output on a dataset. For a given input x, we can compute the similarity between the output of
a specific channel and the same channel for other images in the dataset.

ALEXANDRE VÉRINE DEEP LEARNING 2 98 / 177

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image
C

h
an

n
el

3
Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
9

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

26

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
31

Best Match Best Match Best Match Best Match

ALEXANDRE VÉRINE DEEP LEARNING 2 99 / 177

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image
C

h
an

n
el

12
Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
15

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

16

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
20

Best Match Best Match Best Match Best Match

ALEXANDRE VÉRINE DEEP LEARNING 2 100 / 177

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image
C

h
an

n
el

2
Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

13

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
24

Best Match Best Match Best Match Best Match

ALEXANDRE VÉRINE DEEP LEARNING 2 101 / 177

CONVOLUTIONAL NEURAL NETWORKS
INTUITION BEHIND CHANNELS

Original Image
C

h
an

n
el

5
Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
12

Best Match Best Match Best Match Best Match

Original Image

C
h

a
n

n
el

20

Best Match Best Match Best Match Best Match

Original Image

C
h

an
n

el
21

Best Match Best Match Best Match Best Match

ALEXANDRE VÉRINE DEEP LEARNING 2 102 / 177

RECURRENT NEURAL NETWORKS

Recurrent Networks (RNNs) are a type of neural network that are specifically designed to handle
sequential data, whereas CNNs are more suited for image and grid-like data. The main difference
between RNNs and CNNs lies in the way they process data, with RNNs considering the sequence
of elements and their interdependencies, while CNNs focus on capturing local patterns within the
input.

ALEXANDRE VÉRINE DEEP LEARNING 2 103 / 177

RECURRENT NEURAL NETWORKS
RECURRENT BLOCK

A Recurrent Network is a type of neural network that contains a loop mechanism, allowing
previous outputs to be used as inputs for future computations. This creates a form of memory that
allows the network to process sequential data with variable-length sequences.

ALEXANDRE VÉRINE DEEP LEARNING 2 104 / 177

RECURRENT NEURAL NETWORKS
RECURRENT BLOCK

Some of the limitations of Vanilla RNNs:
▶ Vanishing gradient problem: The gradient signals used to update

the weights during training can become very small, making it
difficult to train RNNs effectively.

▶ Exploding gradient problem: On the other hand, gradients can
become too large and cause numeric instability, making it
difficult to train RNNs effectively.

▶ Short-term memory: Vanilla RNNs have difficulty retaining
information over long periods of time, making them unsuitable
for tasks that require remembering information from previous
time steps.

▶ Computational limitations: RNNs can be computationally
intensive, making it difficult to apply them to large sequences of
data.

▶ Difficulty with parallelization: The sequential nature of RNNs
can make it difficult to take advantage of parallel processing to
speed up training and inference.

ALEXANDRE VÉRINE DEEP LEARNING 2 105 / 177

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that
overcome some of the limitations of traditional RNNs, such as the vanishing gradient problem and
difficulty in learning long-term dependencies. LSTM networks introduce memory cells, gates, and a
process for updating cells, which allows them to selectively preserve information from previous
time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 106 / 177

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that
overcome some of the limitations of traditional RNNs, such as the problem of vanishing gradients
and the difficulty of learning long-term dependencies. LSTM networks introduce memory cells,
gates, and a process for updating cells, which allows them to selectively preserve information from
previous time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 107 / 177

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that
overcome some of the limitations of traditional RNNs, such as the vanishing gradient problem and
difficulty in learning long-term dependencies. LSTM networks introduce memory cells, gates, and a
process for updating the cells, which allows them to selectively preserve information from previous
time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 108 / 177

RECURRENT NEURAL NETWORKS
LSTM

Long Short-Term Memory (LSTM) networks are a variant of recurrent neural networks (RNNs) that
overcome some of the limitations of traditional RNNs, such as the vanishing gradient problem and
difficulty in learning long-term dependencies. LSTM networks introduce memory cells, gates, and a
process for updating the cells, which allows them to selectively preserve information from previous
time steps.

ALEXANDRE VÉRINE DEEP LEARNING 2 109 / 177

RECURRENT NEURAL NETWORKS
LIMITS OF LSTM

Limitations of LSTM RNNs:
▶ High computational cost: LSTMs are computationally more expensive compared to other

traditional neural network models due to the presence of multiple gates and their sequential
processing nature.

▶ Vanishing Gradient Problem: LSTMs, like any other RNNs, are prone to the vanishing gradient
problem when the sequences are too long, making it difficult for the model to learn long-term
dependencies.

▶ Overfitting: LSTMs are complex models and are more susceptible to overfitting compared to
simple feedforward networks.

▶ Difficult to parallelize: Due to the sequential nature of LSTMs, they are difficult to parallelize
and can take longer to train.

▶ Gradient Explosion: LSTMs can also suffer from the gradient explosion problem, where the
gradients can become too large and cause numerical instability during training.

ALEXANDRE VÉRINE DEEP LEARNING 2 110 / 177

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are
similar to LSTMs in their function and ability to process sequential data. GRUs were introduced as a
simplification of LSTMs, with the aim of reducing the number of parameters in the network and
improving computational efficiency. GRUs achieve this by merging the forget and input gates in
LSTMs into a single update gate, effectively combining the two operations in a single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 111 / 177

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are
similar to LSTMs in their function and ability to process sequential data. GRUs were introduced as a
simplification of LSTMs, with the aim of reducing the number of parameters in the network and
improving computational efficiency. GRUs achieve this by merging the forget and input gates in
LSTMs into a single update gate, effectively combining the two operations in a single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 112 / 177

RECURRENT NEURAL NETWORKS
GRU

GRU blocks, or Gated Recurrent Units, are a type of recurrent neural network architecture that are
similar to LSTMs in their function and ability to process sequential data. GRUs were introduced as a
simplification of LSTMs, with the aim of reducing the number of parameters in the network and
improving computational efficiency. GRUs achieve this by merging the forget and input gates in
LSTMs into a single update gate, effectively combining the two operations in a single step.

ALEXANDRE VÉRINE DEEP LEARNING 2 113 / 177

RECURRENT NEURAL NETWORKS
LSTM AND GRU

Limitations of GRU RNNs:
▶ Computational complexity: GRUs are more computationally efficient than LSTMs but still more

complex than feedforward neural networks.
▶ Long-term dependencies: GRUs may struggle with capturing long-term dependencies in

sequences, although they perform better in this regard than vanilla RNNs.
▶ Vanishing gradient problem: GRUs can still be affected by the vanishing gradient problem that

plagues all RNN models. This problem makes it difficult for the model to learn from long
sequences.

▶ Non-stationary data: GRUs may struggle with nonstationary data, where the statistical
properties of the data change over time.

ALEXANDRE VÉRINE DEEP LEARNING 2 114 / 177

RECURRENT NEURAL NETWORKS
APPLICATION OF RNNS

Applications of RNNs:
▶ Natural language processing (NLP): Using RNNs for text classification, language translation,

and text generation.
▶ Time-series prediction: Using RNNs to make predictions based on sequential data, such as

stock prices and weather patterns.
▶ Speech recognition: Using RNNs for speech-to-text conversion.

ALEXANDRE VÉRINE DEEP LEARNING 2 115 / 177

TRANSFORMER AND ATTENTION MECHANISM

Transformers and Attention Mechanisms are relatively recent developments in the field of deep
learning, which have become popular for processing sequential data, such as natural language
processing (NLP) tasks. Unlike Recurrent Neural Networks (RNNs) which process sequential data
by repeatedly applying the same set of weights to the inputs over time, Transformers and Attention
Mechanisms use self-attention mechanisms to dynamically weight the importance of different
elements in the sequence. This enables Transformers to better capture the long-range dependencies
between elements in the sequence, leading to improved performance on NLP tasks.

ALEXANDRE VÉRINE DEEP LEARNING 2 116 / 177

TRANSFORMER AND ATTENTION MECHANISM
SELF-ATTENTION MECHANISM

Self-attention mechanism in transformers is a method of calculating the weight of each input token
in a sequence with respect to every other token in the same sequence, resulting in a representation
of the input sequence in which the most relevant tokens have the highest weight. Mathematically,
the self-attention mechanism can be represented as a dot product between the query (Q), key (K)
and value (V) matrices, obtained from the input sequence, followed by a softmax activation to
obtain the attention scores. These scores are then used to compute a weighted sum of the value
matrix to produce the final representation.

Attention(Q,K,V) = Softmax

(
QKT√

dk

)
V where Q ∈ Rm×dk , K ∈ Rn×dk , V ∈ Rn×dv

ALEXANDRE VÉRINE DEEP LEARNING 2 117 / 177

TRANSFORMER AND ATTENTION MECHANISM
SELF-ATTENTION MECHANISM

▶ Query (Q): Represents the query vector, which is used
to calculate the attention scores. Intuitively, the query
vector represents the token that we are interested in.

▶ Key (K): Represents the key vector, which is used to
calculate the attention scores. The key vector helps to
determine the importance of each token in the input
sequence.

▶ Value (V): Represents the value vector, which is used to
compute the weighted sum of the values. The value
vector provides the information that is used to update
the representation of the input sequence.

The resulting weighted sum of the values represents the
output of the self-attention mechanism, capturing the
relationships between different parts of the input sequence.

ALEXANDRE VÉRINE DEEP LEARNING 2 118 / 177

TRANSFORMER AND ATTENTION MECHANISM
MULTI-HEAD ATTENTION

In Multi-head Attention, the self-attention mechanism is
performed multiple times in parallel with different weight
matrices, before being concatenated and once again
projected, leading to a more robust representation of the
input sequence. The intuition behind the three matrices (Q,
K, V) remains the same as in self-attention, with Q
representing the query, K the key and V the value. Each
head performs an attention mechanism on the input
sequence, capturing different aspects and dependencies of
the data, before being combined to form a more
comprehensive representation of the input.

ALEXANDRE VÉRINE DEEP LEARNING 2 119 / 177

TRANSFORMER AND ATTENTION MECHANISM
VISUALIZING MULTI-HEAD ATTENTION

Visualizing Self-Attention for Image:
Link

ALEXANDRE VÉRINE DEEP LEARNING 2 120 / 177

https://epfml.github.io/attention-cnn/

TRANSFORMER AND ATTENTION MECHANISM
TRANSFORMERS MODEL

Transformers are neural network models that use an
encoder-decoder architecture. The encoder takes the input
sequence and converts it into a continuous hidden
representation, which is then passed to the decoder to
generate the output sequence. The architecture of the
transformer model is designed to allow the model to
process the entire sequence in parallel, rather than
processing one element at a time like in traditional RNNs.

Training of transformers involves optimizing a loss function
that measures the difference between the model predictions
and the true outputs. This loss function is usually based on
the cross entropy between the predicted and true sequences.

The encoder-decoder mechanism is commonly referred to
as the seq2seq mechanism.

ALEXANDRE VÉRINE DEEP LEARNING 2 121 / 177

TRANSFORMER AND ATTENTION MECHANISM
TRANSFORMERS MODEL

More information about transformers and specific model architectures will be covered next
semester in the course on Applied Deep Learning.

ALEXANDRE VÉRINE DEEP LEARNING 2 122 / 177

TP2: BUILD AND USE AN AUTOENCODER
FORMAL INTRODUCTION OF AN AUTOENCODER

Definition
An autoencoder is a type of artificial neural network used to learn efficient codings of unlabeled
data. It consists of two main components:
▶ An encoder function: encoder(x) : Rd → Rm

Maps an input x from the input space Rd to a hidden representation space Rm.
▶ A decoder function: decoder(z) : Rm → Rd

Maps the hidden representation z back to the original input space Rd.

Goal
The primary goal of an autoencoder is to learn a representation (encoding) for a set of data, typically
for the purpose of dimensionality reduction or feature learning. Through training, the autoencoder
learns to compress the data from Rd to Rm (where m < d) and then reconstruct the data back to Rd as
accurately as possible. This process forces the autoencoder to capture the most important features of
the data in the hidden representation z.

ALEXANDRE VÉRINE DEEP LEARNING 2 123 / 177

TP2: BUILD AND USE AN AUTOENCODER
FORMAL INTRODUCTION OF AN AUTOENCODER

ALEXANDRE VÉRINE DEEP LEARNING 2 124 / 177

TP2: BUILD AND USE AN AUTOENCODER
AUTOENCODERS AND UNSUPERVISED LEARNING

Unsupervised Learning

Autoencoders are a classic example of unsupervised learning. In unsupervised learning, the goal is
to learn patterns from unlabelled data. Autoencoders learn to compress and decompress the input
data without any explicit labels, aiming to capture the underlying structure of the data.

Objective Function

The learning process of an autoencoder is guided by the minimization of a loss function, typically
involving a norm that measures the difference between the input and the reconstructed output.
Formally, the objective is to minimize:

min
θ

Ex∼P [l(x,decoderθ(encoderθ(x)))]

where x is the input data, θ represents the parameters of the encoder and decoder, and l is a loss
function.

ALEXANDRE VÉRINE DEEP LEARNING 2 125 / 177

TP2: BUILD AND USE AN AUTOENCODER
AUTOENCODERS AND UNSUPERVISED LEARNING

Unsupervised Learning

Autoencoders are a classic example of unsupervised learning. In unsupervised learning, the goal is
to learn patterns from unlabelled data. Autoencoders learn to compress and decompress the input
data without any explicit labels, aiming to capture the underlying structure of the data.

Objective Function

The learning process of an autoencoder is guided by the minimization of a loss function, typically
involving a norm that measures the difference between the input and the reconstructed output.
Formally, the objective is to minimize:

min
θ

Ex∼P

[
∥x− x̂∥2

2

]
where x is the input data, θ represents the parameters of the encoder and decoder and
x̂ = decoderθ(encoderθ(x)) in the reconstruction.

ALEXANDRE VÉRINE DEEP LEARNING 2 126 / 177

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a
lower-dimensional space, facilitating faster data transfer by reducing the amount of data that
needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can
reconstruct cleaner versions of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from
these patterns, when the reconstruction error is high, can indicate anomalies or outliers in the
data.

ALEXANDRE VÉRINE DEEP LEARNING 2 127 / 177

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a
lower-dimensional space, facilitating faster data transfer by reducing the amount of data that
needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can
reconstruct cleaner versions of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from
these patterns, when the reconstruction error is high, can indicate anomalies or outliers in the
data.

ALEXANDRE VÉRINE DEEP LEARNING 2 127 / 177

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a
lower-dimensional space, facilitating faster data transfer by reducing the amount of data that
needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can
reconstruct cleaner versions of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from
these patterns, when the reconstruction error is high, can indicate anomalies or outliers in the
data.

ALEXANDRE VÉRINE DEEP LEARNING 2 127 / 177

APPLICATIONS OF AUTOENCODERS

▶ Reduce the size of the data to transfer: Autoencoders can compress data into a
lower-dimensional space, facilitating faster data transfer by reducing the amount of data that
needs to be transmitted.

▶ Denoise image: By learning to ignore the "noise" in the input data, autoencoders can
reconstruct cleaner versions of noisy images, effectively removing the noise.

▶ Anomaly detection: Autoencoders can learn the normal patterns within data. Deviations from
these patterns, when the reconstruction error is high, can indicate anomalies or outliers in the
data.

ALEXANDRE VÉRINE DEEP LEARNING 2 127 / 177

TP2: BUILD AND USE AN AUTOENCODER
YOUR TURN !

Get the TP2 on the course website and start working on it.
▶ https://www.alexverine.com

▶ Teaching
▶ Deep Learning II
▶ Lien Notebooks Python

ALEXANDRE VÉRINE DEEP LEARNING 2 128 / 177

https://www.alexverine.com

Part III

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING

ALEXANDRE VÉRINE DEEP LEARNING 2 129 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING

▶ Batch Normalization - Seen
▶ Dropout - Seen
▶ Data Augmentation
▶ Learning Rate Scheduling
▶ Early Stopping
▶ Gradient Clipping
▶ Weight Initialization
▶ Regularization
▶ GPU Acceleration

ALEXANDRE VÉRINE DEEP LEARNING 2 130 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
DATA AUGMENTATION

▶ Data Augmentation is a technique to increase the diversity of your training set by applying
random (but realistic) transformations to the training images.

▶ The goal is to train a model that is robust to these transformations.
▶ For example, you can randomly rotate, scale, and flip the images in your training set.
▶ This helps expose the model to different aspects of the data and reduce overfitting.

ALEXANDRE VÉRINE DEEP LEARNING 2 131 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
LEARNING RATE SCHEDULING

▶ The learning rate is one of the most important hyperparameters to tune for your deep learning
model. The learning rate determines how quickly the model learns the optimal weights and
how refined the gradient descent process is.

▶ If the learning rate is too high, the model may not converge or converge to a higher loss. If it is
too low, the model may take too long to train.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Epochs

Lo
ss

Low learning rate
High learning rate

ALEXANDRE VÉRINE DEEP LEARNING 2 132 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
LEARNING RATE SCHEDULING

▶ The learning rate is one of the most important hyperparameters to tune for your deep learning
model. The learning rate determines how quickly the model learns the optimal weights and
how refined the gradient descent process is.

▶ If the learning rate is too high, the model may not converge or converge to a higher loss. If it is
too low, the model may take too long to train.

▶ Learning rate scheduling is a technique to adjust the learning rate during training. For
example, you can start with a high learning rate and then decrease it over time.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Epochs

Lo
ss

Low learning rate
High learning rate

Learning rate scheduled

ALEXANDRE VÉRINE DEEP LEARNING 2 132 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
EARLY STOPPING

▶ Early stopping is a technique to prevent overfitting by stopping the training process when the
model’s performance on the validation set starts to degrade.

▶ The idea is to monitor the validation loss during training and stop training when the validation
loss stops decreasing.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Early Stopping Point

Epochs

Lo
ss

Training Loss
Evaluation Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 133 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
GRADIENT CLIPPING

▶ Gradient clipping is a technique to prevent exploding gradients during training.
▶ Exploding gradients occur when the gradients of the loss function with respect to the model’s

parameters are too large.
▶ This can cause the model to diverge and fail to learn.
▶ Gradient clipping involves scaling the gradients if their norm exceeds a certain threshold.

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

Epochs

Lo
ss

Without Gradient Clipping
With Gradient Clipping

ALEXANDRE VÉRINE DEEP LEARNING 2 134 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
WEIGHT INITIALIZATION

▶ Weight initialization is a technique to set the initial values of the weights in the model.
▶ The initial values of the weights can have a significant impact on the training process and the

final performance of the model.
▶ If the weights are initialized too small, the model may not learn effectively. If they are

initialized too large, the model may not converge.
▶ Common weight initialization techniques include Xavier/Glorot initialization and He

initialization.

ALEXANDRE VÉRINE DEEP LEARNING 2 135 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
WEIGHT INITIALIZATION

▶ Xavier/Glorot initialization: The weights are initialized from a normal distribution with mean
0 and variance 2/(nin + nout), where nin and nout are the number of input and output units,
respectively. It helps prevent the gradients from vanishing or exploding during training by
ensuring that the gradients have a similar scale.

▶ He initialization: The weights are initialized from a normal distribution with mean 0 and
variance 2/nin, where nin is the number of input units. It is commonly used for ReLU activation
functions.

ALEXANDRE VÉRINE DEEP LEARNING 2 136 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
REGULARIZATION

▶ Regularization is a technique to prevent overfitting by adding a penalty term to the loss
function that discourages the model from learning complex patterns that may not generalize
well.

▶ L1 regularization adds a penalty term to the loss function that is proportional to the absolute
value of the weights. It encourages sparsity in the weights.

▶ L2 regularization adds a penalty term to the loss function that is proportional to the square of
the weights. It encourages the weights to be small.

ALEXANDRE VÉRINE DEEP LEARNING 2 137 / 177

TECHNIQUES TO IMPROVE DEEP LEARNING TRAINING
GPU ACCELERATION

CPUs and GPUs are very different in terms of architecture and performance. CPUs are more suited
for general-purpose computing tasks, while GPUs are optimized for parallel processing of simple
operations, making them ideal for deep learning tasks.
▶ GPUs are much faster than CPUs for deep learning tasks because they have many more cores

and can perform many more operations in parallel.
▶ Deep learning frameworks like PyTorch and TensorFlow are designed to take advantage of

GPUs to accelerate the training process.
▶ Only the forward and backward passes of the model are executed on the GPU. The data

loading and preprocessing are still done on the CPU.

ALEXANDRE VÉRINE DEEP LEARNING 2 138 / 177

Part IV

DEEP LEARNING AND APPLICATIONS

ALEXANDRE VÉRINE DEEP LEARNING 2 139 / 177

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
DEEP Q-LEARNING

Deep Q-Learning is a reinforcement learning algorithm that utilizes a neural network to
approximate the optimal Q function, which is defined as the expected cumulative reward obtained
by following a specific policy. The expected reward can be represented mathematically as follows:

R(π) =
∑
t≤T

Epπ [γ
tr(st, at)] ,

where r(st, at) is the reward at time step t, γ is the discount factor, T is the final time step and

pπ(a0, a1, s1, ..., aT, sT) = p(a0)

T∏
t=1

π(at|st)p(st+1|st, at) .

The Q function, Q(s, a), represents the expected cumulative reward obtained by taking action a in
state s:

Qπ(s, a) = Epπ [
∑
t≤T

γtr(st, at)|s0 = s, a0 = a] .

The policy, represented by π(a|s), is a probability distribution over actions given a state. The optimal
Q function, Q∗(s, a), can be found by solving the Bellman equation:

Q∗(s, a) = E[R|s, a] = E[r + γmax
a′

Qπ(s′, a′)|s, a].
ALEXANDRE VÉRINE DEEP LEARNING 2 140 / 177

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
DEEP Q-LEARNING

The loss in Deep Q-Learning method is the difference between the predicted Q-value and the target
Q-value, which is the maximum expected reward obtained from the next state:

L(θ) = Es′∼π∗(.|s,a)∥r + γmax
a′

Q(s′, a′, θ)−Q(s, a, θ)∥2.

This loss is used to update the parameters of the deep learning model in order to make the
predictions more accurate. The target Q-value is typically computed as the reward obtained from
taking an action in the current state, plus the maximum expected reward obtainable from the next
state:

1. At the state st, select the action at with best reward using Qt and store the results;
2. Obtain the new state st+1 from the environment p;
3. Store (st, at, st+1);
4. Obtain Qt+1 by minimizing L from a batch recovered from previously stored results.

ALEXANDRE VÉRINE DEEP LEARNING 2 141 / 177

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
THE MOUSE GAME

▶ A Mouse has to feed on food (red)
and avoid poison (blue).

▶ It has a vision range of 2 squares.
So it can see the 25 cells around.

▶ The reward for a cheese cell is 0.5,
while the reward for eating poison
is −1.

On this example, the mouse behaves
randomly.

ALEXANDRE VÉRINE DEEP LEARNING 2 142 / 177

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
MODEL 1

Fully connected network:

InputLayer
input:

output:

[(None, 5, 5, 2)]

[(None, 5, 5, 2)]

Flatten
input:

output:

(None, 5, 5, 2)

(None, 50)

Dense
input:

output:

(None, 50)

(None, 24)

Dense
input:

output:

(None, 24)

(None, 24)

Dense
input:

output:

(None, 24)

(None, 4)

ALEXANDRE VÉRINE DEEP LEARNING 2 143 / 177

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
MODEL 2

Convolutional network:

InputLayer
input:

output:

[(None, 5, 5, 2)]

[(None, 5, 5, 2)]

Conv2D
input:

output:

(None, 5, 5, 2)

(None, 4, 4, 8)

Activation
input:

output:

(None, 4, 4, 8)

(None, 4, 4, 8)

Conv2D
input:

output:

(None, 4, 4, 8)

(None, 3, 3, 16)

Flatten
input:

output:

(None, 3, 3, 16)

(None, 144)

Dense
input:

output:

(None, 144)

(None, 4)

Activation
input:

output:

(None, 4)

(None, 4)

ALEXANDRE VÉRINE DEEP LEARNING 2 144 / 177

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
ϵ-GREEDY ALGORITHM

The ϵ-greedy algorithm is a common exploration strategy used in Deep Q learning. Balances
exploration, where the agent tries out new actions and collects new data, and exploitation, where
the agent uses the information it already has to select the action with the highest expected reward.
The algorithm selects a random action with probability ϵ and the action with the highest Q value
with probability 1− ϵ. The value of ϵ decreases over time to gradually shift the focus from
exploration to exploitation.

ALEXANDRE VÉRINE DEEP LEARNING 2 145 / 177

LEARNING TO ACT WITH DEEP REINFORCEMENT LEARNING
MODEL 2+ INCORPORATED ϵ-EXPLORATION

Convolutional network + ϵ-greedy
Algorithm during training:

InputLayer
input:

output:

[(None, 5, 5, 2)]

[(None, 5, 5, 2)]

Conv2D
input:

output:

(None, 5, 5, 2)

(None, 4, 4, 8)

Activation
input:

output:

(None, 4, 4, 8)

(None, 4, 4, 8)

Conv2D
input:

output:

(None, 4, 4, 8)

(None, 3, 3, 16)

Flatten
input:

output:

(None, 3, 3, 16)

(None, 144)

Dense
input:

output:

(None, 144)

(None, 4)

Activation
input:

output:

(None, 4)

(None, 4)

ALEXANDRE VÉRINE DEEP LEARNING 2 146 / 177

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL

NETWORKS
GANS MODELS

Generative Adversarial Networks (GANs) are a type of deep learning architecture composed of two
neural networks, the generator and the discriminator, that are trained in a adversarial manner. The
generator network is trained to generate fake data that appears similar to real data, while the
discriminator network is trained to distinguish between real and fake data. The loss for GANs is
defined as a min-max game, where the generator minimizes the loss function, and the discriminator
maximizes it. D and G represent the discriminator and generator networks, respectively, and the
goal is to find the optimal configuration for D and G such that the generated samples appear
indistinguishable from real data.

ALEXANDRE VÉRINE DEEP LEARNING 2 147 / 177

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL

NETWORKS
GANS MODELS

The loss of a (GAN) is defined as a minimax game between the generator and discriminator models.
The generator aims to generate samples that are indistinguishable from real samples, while the
discriminator aims to distinguish the generated samples from real samples. The loss function for the
generator is defined as − log(D(G(z))), where D is the discriminator model and G(z) is the
generator’s output for a random noise vector z. The loss function for the discriminator is defined as
log(D(x)) + log(1−D(G(z))), where x is a real sample.

min
D

max
G

Ex∼preal [log(D(x))] + Ez∼q [log(1−D(G(z)))]

ALEXANDRE VÉRINE DEEP LEARNING 2 148 / 177

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL

NETWORKS
MNIST GENERATION

G
input-tensor

depth:0 (64, 100)

Linear
depth:1

input: (64, 100)

output: (64, 256)

leaky_relu
depth:1

input: (64, 256)

output: (64, 256)

Linear
depth:1

input: (64, 256)

output: (64, 512)

leaky_relu
depth:1

input: (64, 512)

output: (64, 512)

Linear
depth:1

input: (64, 512)

output: (64, 1024)

leaky_relu
depth:1

input: (64, 1024)

output: (64, 1024)

Linear
depth:1

input: (64, 1024)

output: (64, 784)

tanh
depth:1

input: (64, 784)

output: (64, 784)

output-tensor
depth:0 (64, 784)

D
input-tensor

depth:0 (64, 784)

Linear
depth:1

input: (64, 784)

output: (64, 1024)

leaky_relu
depth:1

input: (64, 1024)

output: (64, 1024)

dropout
depth:1

input: (64, 1024)

output: (64, 1024)

Linear
depth:1

input: (64, 1024)

output: (64, 512)

leaky_relu
depth:1

input: (64, 512)

output: (64, 512)

dropout
depth:1

input: (64, 512)

output: (64, 512)

Linear
depth:1

input: (64, 512)

output: (64, 256)

leaky_relu
depth:1

input: (64, 256)

output: (64, 256)

dropout
depth:1

input: (64, 256)

output: (64, 256)

Linear
depth:1

input: (64, 256)

output: (64, 1)

sigmoid
depth:1

input: (64, 1)

output: (64, 1)

output-tensor
depth:0 (64, 1)

ALEXANDRE VÉRINE DEEP LEARNING 2 149 / 177

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL

NETWORKS
MNIST GENERATION

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Number of Examples Seen by the model ×107

0

1

2

3

4

5

C
ro

ss
-E

n
tr

op
y

D Loss

G Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 150 / 177

SYNTHETIC DATA GENERATION WITH GENERATIVE ADVERSARIAL

NETWORKS
MNIST GENERATION

ALEXANDRE VÉRINE DEEP LEARNING 2 151 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
BERT

BERT (Bidirectional Encoder Representations from Transformers) is a pre-trained language model
developed by Google in 2018. It is a transformer-based architecture that uses a masked language
modeling task to generate a deep understanding of the contextual relationships between words in a
sentence. BERT can be fine-tuned for various NLP tasks such as sentiment classification by adding a
classification layer on top of its pre-trained representations. The model has achieved state-of-the-art
performance in a wide range of NLP tasks, making it a popular choice for sentiment analysis.

A bidirectional transformer is a type of transformer architecture in natural language processing
(NLP) where information from both past and future contexts is taken into consideration when
making predictions. This is achieved by processing the input sequence in two directions, starting
from the beginning and the end of the sequence, and concatenating the outputs to obtain the final
representation. This allows the model to capture the context both in the forward and backward
directions, providing a more comprehensive representation of the input sequence.

ALEXANDRE VÉRINE DEEP LEARNING 2 152 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
BERT

BERT model consists of multiple transformer encoder blocks, with a self-attention mechanism, a
feedforward neural network and layer normalization, stacked on top of each other. It also includes a
positional encoding component to capture the relative position of tokens in a sequence, and a
segment encoding component to differentiate between different sequences within the same input.

ALEXANDRE VÉRINE DEEP LEARNING 2 153 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
TRAINING BERT

Bert is trained on two tasks, the masked language model and the next sentence prediction. In the
masked language model task, a portion of the input sequence is masked and the model must predict
the original token based on its context. In the next sentence prediction task, the model receives a
pair of sentences and must predict whether the second sentence follows the first one in the context
of the input text. Both of these tasks are used to train Bert to understand the context of words in a
sentence and how they relate to each other, allowing it to perform well on a wide range of natural
language processing tasks.

ALEXANDRE VÉRINE DEEP LEARNING 2 154 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

Bert can be fine-tuned for sentiment analysis by adding a classifier layer on top of the pretrained
Bert model. The layer is trained on a labeled sentiment analysis dataset to predict the sentiment of a
given input sequence, which can be a sentence, paragraph, or document. Fine-tuning the model
allows it to learn the specific nuances of sentiment in the target task and produce improved results
compared to using the pre-trained model alone.

ALEXANDRE VÉRINE DEEP LEARNING 2 155 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

ALEXANDRE VÉRINE DEEP LEARNING 2 156 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

0 50000 100000 150000 200000 250000
Number of Examples Seen by the model

0.0

0.1

0.2

0.3

0.4

0.5

C
ro

ss
-E

n
tr

op
y

Train Loss

Test Loss

ALEXANDRE VÉRINE DEEP LEARNING 2 157 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

0 2 4 6 8 10 12 14
Epochs

0

20

40

60

80

100

A
cc

u
ra

cy
(%

)

Train

Test

ALEXANDRE VÉRINE DEEP LEARNING 2 158 / 177

SENTIMENT ANALYSIS WITH TRANSFORMERS AND GRU
SENTIMENT ANALYSIS

ALEXANDRE VÉRINE DEEP LEARNING 2 159 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
ESTIMATING DENSITY

In Machine Learning, the task of density estimation consists in estimating the probability density
function of a random variable from a set of observations. This is a fundamental problem in statistics
and machine learning, with applications in a wide range of fields, including anomaly detection,
clustering, and generative modeling. There are several methods for density estimation, including
parametric models, non-parametric models, and deep learning models. In this section, we will focus
on a specific type of deep learning model called Normalizing Flows, which is used for density
estimation and generative modeling.

p(
x

)

X ⊂ Rd
x

Target
Distribution

P

Learned
Distribution

P̂

ALEXANDRE VÉRINE DEEP LEARNING 2 160 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
OVERVIEW

A Normalizing Flow is usually seen as:
▶ a generative model,
▶ a bijective mapping,
▶ an invertible neural network,
▶ a density estimator.

ALEXANDRE VÉRINE DEEP LEARNING 2 161 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
OVERVIEW

Figure. A mapping between two probability distributions
Point to point

ALEXANDRE VÉRINE DEEP LEARNING 2 162 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
OVERVIEW

Figure. A mapping between two probability distributions
Subset to subset

ALEXANDRE VÉRINE DEEP LEARNING 2 163 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
MATHEMATICAL FRAMEWORK

Normalizing Flow

A Normalizing Flow is a bijective function between a data space X and a latent space Z , both subset
of Rd.

F : X 7−→ Z
x 7−→ z = F(x)

Data and Latent Distributions
In theory, a NF maps a target distribution P, ie the data distribution to a simple latent distribution Q.
Usually, Q is set to be a Normal Gaussian multivariate distribution N (0d, Id). p and q are
respectivelly the probability densities of P and Q.

ALEXANDRE VÉRINE DEEP LEARNING 2 164 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
HOW DOES IT WORK ?

In practice, the mapping is not perfect. P∗ induces a distribution Q and similarly, the latent
distribution Q induces P̂, which is the learned distribution. The forward pass F is called the
Normalizing direction while the inverse pass F−1 is called the Generative direction.

Figure. 1D Normalizing Flow process.

ALEXANDRE VÉRINE DEEP LEARNING 2 165 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

Change of Variable Formula

For a bijective and continuous fonction F and a latent distribution Q, the distribution induced by Q
and F is defined through the change of variable formula:

∀x ∈ X , p̂(x) = |det JacF(x)| q(F(x)). (1)

ALEXANDRE VÉRINE DEEP LEARNING 2 166 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = |det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 167 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = |det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 167 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = |det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 167 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = |det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 167 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
INDUCED PROBABILITIES ?

∀x ∈ X , p̂(x) = |det JacF(x)| q(F(x)).

ALEXANDRE VÉRINE DEEP LEARNING 2 167 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
DENSITY ESTIMATION

To perfom density estimation:
1. Draw x ∼ P∗,
2. Compute F(x) and |det JacF(x)|,
3. Compute p̂(x) = q(F(x))| det JacF(x)|.

Figure. 1D Normalizing Process of Density Estimation.

ALEXANDRE VÉRINE DEEP LEARNING 2 168 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
DATA GENERATION

To perform data generation:
1. Draw z ∼ Q,
2. Compute x = F−1(x).

Figure. 1D Normalizing Flow process of Generation.

ALEXANDRE VÉRINE DEEP LEARNING 2 169 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
LOG-LIKELIHOOD

Loss
The objective is to approximate P∗ with P̂. We can minimize the Kullback-Leiber Divergence :

θ = argmin
θ
DKL(P∗∥P̂).

This is equivalent to maximizing the log likelihood :

θ = argmax
θ

Ex∼X [log p̂(x)] .

ALEXANDRE VÉRINE DEEP LEARNING 2 170 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
LOG-LIKELIHOOD

DKL(P∗∥P̂) =
∫
X

p∗(x) log
(

p∗(x)
p̂(x)

)
dx

nll = −Ex∼X [log p̂(x)]

ALEXANDRE VÉRINE DEEP LEARNING 2 171 / 177

DENSITY ESTIMATION WITH NORMALIZING FLOWS
LEARNING STEPS

Figure. Learning Process for a 1D Normalizing Flow.

ALEXANDRE VÉRINE DEEP LEARNING 2 172 / 177

IMAGE SEGMENTATION WITH U-NET
IMAGE SEGMENTATION

Image segmentation is the process of partitioning an image into multiple segments or regions based
on the characteristics of the pixels. It is a fundamental task in computer vision and has applications
in various fields, including medical imaging, autonomous driving, and satellite image analysis.
There are several methods for image segmentation, including thresholding, clustering, and deep
learning-based approaches. In this section, we will focus on a deep learning model called U-Net,
which is commonly used for image segmentation tasks.

ALEXANDRE VÉRINE DEEP LEARNING 2 173 / 177

IMAGE SEGMENTATION WITH U-NET
APPLICATIONS OF IMAGE SEGMENTATION

Image segmentation has a wide range of applications in computer vision and image processing,
including:
▶ Medical Imaging: Segmentation of organs, tumors, and other structures in medical images.
▶ Autonomous Driving: Segmentation of objects such as cars, pedestrians, and road signs in

images captured by autonomous vehicles.
▶ Satellite Image Analysis: Segmentation of land cover types, buildings, and other features in

satellite images.
▶ Object Detection: Segmentation of objects in images to localize and classify them.
▶ Image Editing: Segmentation of objects for image editing tasks such as background removal

and image compositing.

ALEXANDRE VÉRINE DEEP LEARNING 2 174 / 177

IMAGE SEGMENTATION WITH U-NET
TYPE OF SEGMENTATIONS

Image segmentation can be broadly classified
into two types: semantic segmentation and in-
stance segmentation.
▶ Semantic Segmentation: Semantic

segmentation assigns a class label to each
pixel in an image, such as road, car, person,
etc. The goal is to partition the image into
semantically meaningful regions.

▶ Instance Segmentation: Instance
segmentation goes a step further than
semantic segmentation by distinguishing
between different instances of the same
class. It assigns a unique label to each
object instance in the image.

ALEXANDRE VÉRINE DEEP LEARNING 2 175 / 177

IMAGE SEGMENTATION WITH U-NET
U-NET ARCHITECTURE

U-Net is a convolutional neural network architecture designed for image segmentation tasks. It
consists of an encoder-decoder structure with skip connections that allow the model to capture both
local and global features in the input image.

ALEXANDRE VÉRINE DEEP LEARNING 2 176 / 177

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is

classified into one of multiple classes.
▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted

segmentation mask and the ground truth mask.
▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object

boundaries, where the segmentation is most critical.

ALEXANDRE VÉRINE DEEP LEARNING 2 177 / 177

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is

classified into one of multiple classes.

L = − 1
N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c)

▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted
segmentation mask and the ground truth mask.

▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object
boundaries, where the segmentation is most critical.

ALEXANDRE VÉRINE DEEP LEARNING 2 177 / 177

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is

classified into one of multiple classes.
▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted

segmentation mask and the ground truth mask.

L = 1−
2
∑N

i=1 yiŷi∑N
i=1 yi +

∑N
i=1 ŷi

▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object
boundaries, where the segmentation is most critical.

ALEXANDRE VÉRINE DEEP LEARNING 2 177 / 177

IMAGE SEGMENTATION WITH U-NET
LOSS FUNCTIONS

3 main loss functions are used for image segmentation tasks:
▶ Categorical Cross-Entropy Loss: Used for multi-class segmentation tasks where each pixel is

classified into one of multiple classes.
▶ Dice Loss: A similarity-based loss function that measures the overlap between the predicted

segmentation mask and the ground truth mask.
▶ Shaped aware Loss: A loss function that penalizes the model for making errors near the object

boundaries, where the segmentation is most critical.

L = −w(x)

[
1
N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c)

]

with w(x) a weight function that assigns higher weights to pixels near the object boundaries.

ALEXANDRE VÉRINE DEEP LEARNING 2 177 / 177

	AI 101: From Fundamentals to Deep Learning
	Introduction to Artificial Intelligence
	Deep Learning in the AI family
	Representation Learning

	Neural Networks Fundamentals
	Neurons
	Layers
	Activation Functions

	The Multi-layer Perceptron (MLP)
	The first Deep Learning Model
	Stochastic Gradient Descent
	Back-propagation
	Example : Image classification of handwritten digits from A to Z

	Deep Learning in Action: From Neural Networks to Transformer Models
	Convolutional Neural Networks
	The Two dimensional Convolution
	CNN : Convolutional in a network Networks
	CNN in practice: CIFAR 10

	Recurrent Neural Networks
	Recurrent Block
	LSTM and GRU

	Transformer and Attention Mechanism
	Self-Attention Mechanism
	Transformers Model

	TP2: Build and use an autoencoder
	Formal introduction of an autoencoder

	Techniques to Improve Deep Learning Training
	Techniques to Improve Deep Learning Training

	Deep Learning and Applications
	Learning to act with Deep Reinforcement Learning
	Deep Q-Learning
	The Cheese Game

	Synthetic Data Generation with Generative Adversarial Networks
	GANS Models
	MNIST Generation

	Sentiment Analysis with Transformers and GRU
	Bert
	Sentiment Analysis

	Density Estimation with Normalizing Flows
	Estimating Density
	Normalizing Flows

	Image Segmentation with U-Net
	Image Segmentation
	U-Net Architecture

	anm4:
	4.304:
	4.303:
	4.302:
	4.301:
	4.300:
	4.299:
	4.298:
	4.297:
	4.296:
	4.295:
	4.294:
	4.293:
	4.292:
	4.291:
	4.290:
	4.289:
	4.288:
	4.287:
	4.286:
	4.285:
	4.284:
	4.283:
	4.282:
	4.281:
	4.280:
	4.279:
	4.278:
	4.277:
	4.276:
	4.275:
	4.274:
	4.273:
	4.272:
	4.271:
	4.270:
	4.269:
	4.268:
	4.267:
	4.266:
	4.265:
	4.264:
	4.263:
	4.262:
	4.261:
	4.260:
	4.259:
	4.258:
	4.257:
	4.256:
	4.255:
	4.254:
	4.253:
	4.252:
	4.251:
	4.250:
	4.249:
	4.248:
	4.247:
	4.246:
	4.245:
	4.244:
	4.243:
	4.242:
	4.241:
	4.240:
	4.239:
	4.238:
	4.237:
	4.236:
	4.235:
	4.234:
	4.233:
	4.232:
	4.231:
	4.230:
	4.229:
	4.228:
	4.227:
	4.226:
	4.225:
	4.224:
	4.223:
	4.222:
	4.221:
	4.220:
	4.219:
	4.218:
	4.217:
	4.216:
	4.215:
	4.214:
	4.213:
	4.212:
	4.211:
	4.210:
	4.209:
	4.208:
	4.207:
	4.206:
	4.205:
	4.204:
	4.203:
	4.202:
	4.201:
	4.200:
	4.199:
	4.198:
	4.197:
	4.196:
	4.195:
	4.194:
	4.193:
	4.192:
	4.191:
	4.190:
	4.189:
	4.188:
	4.187:
	4.186:
	4.185:
	4.184:
	4.183:
	4.182:
	4.181:
	4.180:
	4.179:
	4.178:
	4.177:
	4.176:
	4.175:
	4.174:
	4.173:
	4.172:
	4.171:
	4.170:
	4.169:
	4.168:
	4.167:
	4.166:
	4.165:
	4.164:
	4.163:
	4.162:
	4.161:
	4.160:
	4.159:
	4.158:
	4.157:
	4.156:
	4.155:
	4.154:
	4.153:
	4.152:
	4.151:
	4.150:
	4.149:
	4.148:
	4.147:
	4.146:
	4.145:
	4.144:
	4.143:
	4.142:
	4.141:
	4.140:
	4.139:
	4.138:
	4.137:
	4.136:
	4.135:
	4.134:
	4.133:
	4.132:
	4.131:
	4.130:
	4.129:
	4.128:
	4.127:
	4.126:
	4.125:
	4.124:
	4.123:
	4.122:
	4.121:
	4.120:
	4.119:
	4.118:
	4.117:
	4.116:
	4.115:
	4.114:
	4.113:
	4.112:
	4.111:
	4.110:
	4.109:
	4.108:
	4.107:
	4.106:
	4.105:
	4.104:
	4.103:
	4.102:
	4.101:
	4.100:
	4.99:
	4.98:
	4.97:
	4.96:
	4.95:
	4.94:
	4.93:
	4.92:
	4.91:
	4.90:
	4.89:
	4.88:
	4.87:
	4.86:
	4.85:
	4.84:
	4.83:
	4.82:
	4.81:
	4.80:
	4.79:
	4.78:
	4.77:
	4.76:
	4.75:
	4.74:
	4.73:
	4.72:
	4.71:
	4.70:
	4.69:
	4.68:
	4.67:
	4.66:
	4.65:
	4.64:
	4.63:
	4.62:
	4.61:
	4.60:
	4.59:
	4.58:
	4.57:
	4.56:
	4.55:
	4.54:
	4.53:
	4.52:
	4.51:
	4.50:
	4.49:
	4.48:
	4.47:
	4.46:
	4.45:
	4.44:
	4.43:
	4.42:
	4.41:
	4.40:
	4.39:
	4.38:
	4.37:
	4.36:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.201:
	3.200:
	3.199:
	3.198:
	3.197:
	3.196:
	3.195:
	3.194:
	3.193:
	3.192:
	3.191:
	3.190:
	3.189:
	3.188:
	3.187:
	3.186:
	3.185:
	3.184:
	3.183:
	3.182:
	3.181:
	3.180:
	3.179:
	3.178:
	3.177:
	3.176:
	3.175:
	3.174:
	3.173:
	3.172:
	3.171:
	3.170:
	3.169:
	3.168:
	3.167:
	3.166:
	3.165:
	3.164:
	3.163:
	3.162:
	3.161:
	3.160:
	3.159:
	3.158:
	3.157:
	3.156:
	3.155:
	3.154:
	3.153:
	3.152:
	3.151:
	3.150:
	3.149:
	3.148:
	3.147:
	3.146:
	3.145:
	3.144:
	3.143:
	3.142:
	3.141:
	3.140:
	3.139:
	3.138:
	3.137:
	3.136:
	3.135:
	3.134:
	3.133:
	3.132:
	3.131:
	3.130:
	3.129:
	3.128:
	3.127:
	3.126:
	3.125:
	3.124:
	3.123:
	3.122:
	3.121:
	3.120:
	3.119:
	3.118:
	3.117:
	3.116:
	3.115:
	3.114:
	3.113:
	3.112:
	3.111:
	3.110:
	3.109:
	3.108:
	3.107:
	3.106:
	3.105:
	3.104:
	3.103:
	3.102:
	3.101:
	3.100:
	3.99:
	3.98:
	3.97:
	3.96:
	3.95:
	3.94:
	3.93:
	3.92:
	3.91:
	3.90:
	3.89:
	3.88:
	3.87:
	3.86:
	3.85:
	3.84:
	3.83:
	3.82:
	3.81:
	3.80:
	3.79:
	3.78:
	3.77:
	3.76:
	3.75:
	3.74:
	3.73:
	3.72:
	3.71:
	3.70:
	3.69:
	3.68:
	3.67:
	3.66:
	3.65:
	3.64:
	3.63:
	3.62:
	3.61:
	3.60:
	3.59:
	3.58:
	3.57:
	3.56:
	3.55:
	3.54:
	3.53:
	3.52:
	3.51:
	3.50:
	3.49:
	3.48:
	3.47:
	3.46:
	3.45:
	3.44:
	3.43:
	3.42:
	3.41:
	3.40:
	3.39:
	3.38:
	3.37:
	3.36:
	3.35:
	3.34:
	3.33:
	3.32:
	3.31:
	3.30:
	3.29:
	3.28:
	3.27:
	3.26:
	3.25:
	3.24:
	3.23:
	3.22:
	3.21:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.201:
	2.200:
	2.199:
	2.198:
	2.197:
	2.196:
	2.195:
	2.194:
	2.193:
	2.192:
	2.191:
	2.190:
	2.189:
	2.188:
	2.187:
	2.186:
	2.185:
	2.184:
	2.183:
	2.182:
	2.181:
	2.180:
	2.179:
	2.178:
	2.177:
	2.176:
	2.175:
	2.174:
	2.173:
	2.172:
	2.171:
	2.170:
	2.169:
	2.168:
	2.167:
	2.166:
	2.165:
	2.164:
	2.163:
	2.162:
	2.161:
	2.160:
	2.159:
	2.158:
	2.157:
	2.156:
	2.155:
	2.154:
	2.153:
	2.152:
	2.151:
	2.150:
	2.149:
	2.148:
	2.147:
	2.146:
	2.145:
	2.144:
	2.143:
	2.142:
	2.141:
	2.140:
	2.139:
	2.138:
	2.137:
	2.136:
	2.135:
	2.134:
	2.133:
	2.132:
	2.131:
	2.130:
	2.129:
	2.128:
	2.127:
	2.126:
	2.125:
	2.124:
	2.123:
	2.122:
	2.121:
	2.120:
	2.119:
	2.118:
	2.117:
	2.116:
	2.115:
	2.114:
	2.113:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

