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PW5: Adversarial Examples: Importance of Git 21/04/2021

Objective: The goal of the practical work is to learn how to use Git for a project management.
During this session, we will work on adversarial examples to fool deep learning models and
by doing so understand the vulnerability of neural networks to adversarial attacks.

Structure: The repository of the project is available at:
https://github.com/AlexVerine/TP5. It contains the following files:

repo

attack utils.py

evaluate.py

models.py

train.py

run xp.py

utils.py

config
requirements.txt

environment.yml

experiments base

examples.png

examples FGSM 1.00e-01.png

model.pth

results.png

results.txt

This code works for minimal example of a neural network. The neural network is trained on
the CIFAR10 dataset.

1 Context

The goal of the project is to generate adversarial examples using different methods in order
to show that we can easily fool a neural network with perturbations that are not visible to
the human eye. We will show that a model trained on the CIFAR10 dataset with a high
accuracy can see its performance drop significantly using these methods.
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1.1 Mathematical formulation

Let f : [0, 1]d → {1, . . . , K} be a neural network with d input features and K output classes.
Given an input x ∈ [0, 1]d and a target class y ∈ {1, . . . , K}, the goal is to find a perturbation
δ ∈ [0, 1]d such that with a budget ϵ > 0 we have

f(x+ δ) ̸= y and ∥δ∥p ≤ ϵ. (1)

If we assume that the neural network has been trained to minimize a loss function L(f(x), y),
the problem can be formulated as an optimization problem:

max
δ

L(f(x+ δ), y) subject to ∥δ∥p ≤ ϵ. (2)

To solve this optimization problem, we can use two popular methods:

• Fast Gradient Sign Method (FGSM)

• Projected Gradient Descent (PGD)

1.2 Fast Gradient Sign Method (FGSM)

FGSM is a simple method to generate adversarial examples. We can see it as a one-step
optimization problem. Given an input x, the perturbation δ is computed as

δ = ϵ · sign(∇xL(f(x), y)). (3)

This method is fast but not very effective. It is a single step attack such that ∥δ∥∞ = ϵ.

1.3 Projected Gradient Descent (PGD)

PGD is a more complex method to generate adversarial examples. It is an iterative method
that performs multiple steps of gradient descent. Given an input x, the perturbation δ is
computed as

δ = ΠBp(x,ϵ)(δ + α · ∇xL(f(x+ δ), y)), (4)

where ΠBp(x,ϵ) is the projection operator in the p-ball of radius ϵ centered at x. This method
is slower but more effective than FGSM. It is a multi-step attack such that ∥δ∥p ≤ ϵ. When
p = ∞, the projection operator is defined as

ΠB∞(x,ϵ)(δ) = clip(δ, x− ϵ, x+ ϵ), (5)

where clip(δ, a, b) is the element-wise clipping operator that ensures that a ≤ δ ≤ b. The
algorithm is summarized in the following algorithm:

1. Initialize δ = 0.

2. For t = 1, . . . , T do:

(a) Compute the gradient ∇xL(f(x+ δ), y).

(b) Update δ = ΠBp(x,ϵ)(δ + α · ∇xL(f(x+ δ), y)).

Similarly to FGSM, when p = ∞, we will use sign(∇xL(f(x), y)) to compute the pertur-
bation.
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2 Setting up the repository

To start working on the project, you need to clone the repository on your local machine. To
do so, you need to install Git on your machine. You can find the installation instructions at
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git. Once you have
installed Git, you can clone the repository using the following command:

git clone https://github.com/AlexVerine/TP5.git

To Do 1. Clone the repository on your local machine.

Then, set up the environment using either conda or virtualenv using the configuration
files provided in the config folder.

To Do 2. Create and update a new environment.

3 Training the model

In this section, we will train a neural network on the CIFAR10 dataset. The code works for
a simple linear model which is not very effective. In this section, we will train more complex
models.

To Do 3. Run the command python train.py to train a linear neural network on
the CIFAR10 dataset. Observe the outputs in the experiments/base folder.

As you can see, the linear model is not very effective. We will now train a more complex
model using a convolutional neural network (CNN).

To Do 4. Modify the script models.py to complete the class CNN. The class should
contain 3 convolutional layers with ReLU activation and Max pooling and 2 fully
connected layers. The number of filters in the convolutional layers should be 32, 64,
and 128. The size of the fully connected layers should be 512 and 10.

To Do 5. Run the command python train.py --path cnn --model cnn --epochs

10 to train the CNN model on the CIFAR10 dataset. Observe the outputs in the
experiments/cnn folder.

As you can see, the model is more effective than the linear model but is prone to overfit-
ting.
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To Do 6. Modify the script train.py to save only the best model based on the test
loss. Similarly, make sure that the function visualize results is run only on the
best model.

Using PyTorch, we can easily import existing models such as ResNet, VGG, or DenseNet.
The class ResNet18 is loading the pre-trained ResNet18 model from torchvision.models.
We can fine-tune the model by changing the last layer to fit the CIFAR10 dataset.

To Do 7. Modify the class ResNet18 in the script models.py to fine-tune to replace
the last layer of the ResNet18 model (self.resnet.fc) with a linear layer with 512
input features and 10 output features.

To Do 8. Run the command python train.py --path resnet18 --model resnet18

--epochs 10 to fine-tune the ResNet18 model on the CIFAR10 dataset. Observe the
outputs in the experiments/resnet18 folder.

Now that model training is complete and functionning properly, we can commit the
changes to the repository. First we need to add the files to the staging area using the
command git add <file>. Then we can commit the changes using the command git

commit -m "message". Finally, we can push the changes to the remote repository using the
command git push origin master.

To Do 9. Check the status of the repository using the command git status.

To Do 10. Add the modified files to the staging area and commit the changes with
an appropriate message.

To Do 11. Push the changes to the remote repository.

4 Implementing FGSM

In this section, we will implement the FGSM and PGD methods to generate adversarial
examples. The code is already implemented in the attack utils.py script. The function
compute takes the input image, the target class and returns the perturbation δ.

To Do 12. Implement the compute method in the class FastGradientSignMethod
in the script attack utils.py.
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To Do 13. Test your code by running the command python evaluate.py --path

cnn --model cnn --attack fgsm --epsilon 0.05. Observe the outputs in the
experiments/cnn folder.

As specified, the budget ϵ is the maximum perturbation allowed, it defines how perceivable
the adversarial example is. The higher the ϵ, the more perceivable the adversarial example
is.

To run multiple experiments, we can either run a bash script but this solution would not
work on Windows. To simplify the process, we can use the run xp.py script that will run
multiple experiments with different hyperparameters.

To Do 14. Try different values (10−1, 10−2 and 10−3) of ϵ for the FGSM attack
using the script run xp.py. Observe the outputs in the experiments/cnn folder
both visually and in terms of accuracy.

To Do 15. If you observe that you have a low accuracy with almost no perceivable
perturbation, you can push the changes to the remote repository with the message
”Implemented FGSM attack”.

5 Implementing PGD

In this section, we will implement the PGD method to generate adversarial examples. The
code is partially implemented in the attack utils.py script.

To Do 16. Implement the compute method in the class ProjectedGradientDescent
in the script attack utils.py.

To Do 17. Test your code by running the command python evaluate.py --path

cnn --model cnn --attack pgd --epsilon 0.1. Observe the outputs.

To Do 18. Take a budget ϵ = 0.05 and try different values of the number of steps
T and the step size α. Make sure that PGD is more effective than FGSM.

A good practice is to use a small step size α in the order of ϵ/T . This ensures that the
perturbation is not too large at each step but still reaches the maximum budget ϵ after T
steps. One way to automatically implement this value is the set None to the step size α in
the parser and change the value in the attack utils.py script.
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To Do 19. Modify the init method in the class ProjectedGradientDescent

in the script attack utils.py to set the step size α to ϵ/T if it is set to None.
(Round the value for better printing.)

To Do 20. After you have found the best hyperparameters for the PGD attack, push
the changes to the remote repository with the message ”Implemented PGD attack”.

6 Comparison of the attacks

The attacks are now implemented and we can compare the FGSM and PGD attacks on the
CNN model. We can observe some behaviors such as the robustness of the model to the
attacks.

To Do 21. Compare the results of the PGD (with same hyperparameters) on the
CNN model and the FC models. What do you observe?

To Do 22. Compare the results of the PGD (with same hyperparameters) on resnet18
and a resnet18 that has been overfitted. What do you observe?
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