
Deep Learning II DL3AIISO
PW4: Deep Reinforcement Learning: From Notebook to Python Script

Objective: The goal of the practical work is to learn how to manage a Deep Learning project
using python scripts. During the session, we will implement a Deep Reinforcement Learning
(DRL) and will go through different tools and techinques to improve the code quality and
the project management.

Structure: The repository of the project is available at:
https://www.lamsade.dauphine.fr/~averine/DL3AIISO/tp4.zip. It contains the follow-
ing files:

repo

agents.py

environment.py

main.py

models.py

train utils.py

utils.py

config
requirements.txt

environment.yml

experiments xp1

GIF

epoch 0.gif

epoch 10.gif

...

plots

epoch 0 0.png

epoch 0 1.png

...

models

epoch 0.pth

epoch 10.pth

...

info.log

This code works for minimal example of a DRL project. Your task is to complete the
implementation of the DQN algorithm.

1



1 Context

The goal of the project is to train a mouse to reach as much cheese in a grid filled with cheese
and poison. The mouse can move in four directions: up, down, left, right. However, the
mouse can only see two cells in each direction, thus a total of 5x5 cells. The mouse receives
a positive reward when it reaches a cheese and a negative reward when it reaches a poison.
The goal is to train the mouse to maximize the reward.

1.1 Mathematical formulation

The environment is a finite Markov Decision Process (MDP) of size T defined by the tuple
(S,A, P,R, γ):

• S: set of states s. Naively, we can represent the state as a 5x5 grid of the board around
the mouse. We will use a more detailed state representation in the code.

• A: set of actions a. The mouse can move in four directions: up, down, left, right. In
the code, we will use the following encoding: 0 for up, 1 for down, 2 for left, 3 for right.

• P (s′|s, a): transition probability. The environment can be deterministic if the mouse
moves in the direction it wants to go and thus P (s′|s, a) = 1 if the mouse can move in
the direction a and 0 otherwise. In the code, we will use a stochastic environment for
training and a deterministic environment for evaluation.

• r(s, a, s′): reward function. The mouse receives a positive reward when it reaches a
cheese and a negative reward when it reaches a poison. In this example the reward is
a function of s′ only and is deterministic.

• γ: discount factor. The discount factor is used to give more importance to the imme-
diate reward than the future reward.

• T : horizon. The mouse can move for a fixed number of steps T .

In RL, the goal is to find a policy π(a|s), the probability of taking action a in state s, that
maximizes the expected reward:

R(π) = Es0,P,π

[
T∑
t=0

γtr(st, at, st+1)

]
. (1)

One way to find the optimal policy π∗ is the Q-learning algorithm.

1.2 Q-learning

The Q-learning algorithm is a model-free reinforcement learning algorithm that learns the
optimal action-value function Qπ∗

(s, a). The Q-value is the expected reward of taking action
a in state s and following the policy π. The Q-value is defined as:

Qπ(s, a) = EP,π

[
T∑
t=0

γtr(st, at, st+1)

∣∣∣∣∣ s0 = s, a0 = a

]
. (2)

2



The Q-learning algorithm learns the optimal action-value function Q∗(s, a), using the Bell-
man equation:

Qπ∗
(s, a) = Es′∼π∗

[
r(s, a, s′) + γmax

a′
Qπ∗

(s′, a′)
]
. (3)

The Q-learning algorithm is an off-policy algorithm, meaning that it learns the optimal
policy π∗ while following a different policy π.

1.3 Deep Q-learning

The Q-learning algorithm can be extended to deep reinforcement learning by using a neural
network Qθ to approximate the Q-values. The target Q-value is defined as:

y = r(s, a, s′) + γmax
a′

Qθ−(s
′, a′), (4)

where θ− are the a fixed parameters of the target network. The loss function is defined as:

L(θ) = Es,a,s′
[
(y −Qθ(s, a))

2] . (5)

It can be shown that the loss can be written as:

L(θ) = Es,a,s′

[(
r(s, a, s′) + γmax

a′
Qθ−(s

′, a′)−Qθ(s, a)
)2
]
. (6)

The Q-learning algorithm is an off-policy algorithm, meaning that it learns the optimal
policy π∗ while following a different policy π. We can sample some trajectories from the
environment, store them in a replay buffer and train the agent using the loss function (6).
We can use the following algorithm to train the agent:

1. Initialize the replay buffer D.

2. Initialize the Q-network Qθ.

3. For each episode:

(a) Initialize the state s.

(b) For each step:

i. The agent chooses an action a and get the reward r and the next state s′.

ii. Store the transition (s, a, r, s′) in the replay buffer D.

iii. Sample a batch of transitions from the replay buffer D. (Batched)

iv. Compute the target y(a) using the target network Qθ− . (Batched)

v. Add γ +maxa′ y(a
′) to the target y(a) if the episode is not done. (Batched)

vi. Compute the loss using the loss function (6). (Batched)

vii. Update the Q-network Qθ using the loss function (6). (Batched)

With a Q-network learned, we can use the following policy to choose the action:

π(a|s) =

{
1 if a ∈ argmaxa′ Qθ(s, a

′)

0 otherwise
. (7)

3



2 Project Management

2.1 Setting the python environment

For each deep learning project, you might need specific version of the libraries. To avoid
conflicts between different projects, it is recommended to create a virtual environment for
each project, i.e. a specific python environment with the required libraries. To do so you
can use virtualenv or conda. You can find the files to configure the environment in the
config folder of the repository.

To Do 1. Create a virtual environment using either conda or virtualenv.

To Do 2. Activate the environment and install the required libraries using the file
in the config folder.

2.2 Running the code

The code is divided into different files:

• main.py: contains the main function to train/eval the agent.

• agents.py: contains the implementation of the DQN agent.

• environment.py: contains the implementation of the environment.

• models.py: contains the implementation of the neural network.

• train utils.py: contains the implementation of the training loop.

• utils.py: contains utility functions.

To understand how the code works and have a detailed explanation of the different
arguments, you can run the following command:

python main.py --help

Observe in the file main.py how the arguments are parsed using the argparse module. You
can define the argument, its type, its default value, and its help message.

To Do 3. Add an int argument to the main.py file to specify the maximum number
T of steps per episode using the argparse module. Call the argument max time with
a default value of 100.

To run the code, you can use the following command:

python main.py

It should run a naive agent (going up) for n epoch eval, compute the average reward. The
code should save the last episode in the GIF folder and the plots in the plots folder.

4



To Do 4. Run the code with the default arguments and observe the output in the
experiments folder. Use the argument --path naive to specify the path of the
experiment.

By default, the code print the logs in the console. You can redirect the logs to a file using
the module logging. The logs are saved in the info.log file in the experiment folder. Using
the argument --log type, you can specify what the function log should do.

To Do 5. Implement the logger function in the utils.py file to save the logs
in the info.log file. You just need to set the path of the log file. To do so, use
os.path.join to concatenate the path of the experiment and the name of the log
file.

To Do 6. Rerun the code with the naive agent and use the argument --log type

file to save the logs in the file and observe the output in the experiments folder.

Logging the information in the console is useful to debug the code. However, it is not recom-
mended to print the logs in the console when running the code on a server. Additionally, if
you want to run the code in the backgroud On Windows, you can use the following command:

pythonw main.py --log_type file --path naive

On MacOS/linux, you can use the following command:

python main.py --log_type file --path naive &

To Do 7. Run the command in the background and observe the output in the
experiments folder.

3 Implementation

3.1 The Random Agent

The file agents.py contains the implementation of the DQN agent. The framework to define
as class Agent.

To Do 8. Explain the role of self.epsilon in the Agent class and explain why it
is essential.

5



To Do 9. By lookin at the method Environment.act of the class Environment in
the file environment.py, explain the behavior of the naive agent when it hits the
wall.

The policy applied (and ideally) learned by the agent are implemented in the func-
tion Agent.learned act. The action made by the agent is implemented in the function
Agent.act.

To Do 10. Implement the function Agent.learned act in the file agents.py of
the RandomAgent class. The function should return a random action.

You can test your code by running the following command:

python main.py --agent random --path random

3.2 The Environment

The class Environment is used to simulate the environment. The environment is a grid of
size args.grid size×args.grid size with a mouse and some cheese and poison.

To Do 11. By looking at Environment. init and Environment.reset in the file
environment.py, explain the role of the tensors self.board and self.position.

To Do 12. By looking at the method Environment.act of the class Environment
in the file environment.py, explain the behavior of the naive agent when it hits the
wall.

For the moment, we will consider that the state observed by the mouse is both the board
and the position of the mouse around the mouse. The state is a tensor of size 5 × 5 ×
2.

To Do 13. In the methods Environment.reset and Environment.act, change the
state to a tensor of size 5× 5× 2 using the function Environment.get state.

3.3 The Neural Network

The property self.model of the class Agent is a neural network defined in the file models.py.
The neural network is trained to approximate the Q-values. We will start with a simple
neural network with three hidden layers of size 64 with ReLU activation functions between
the layers.

6



To Do 14. Implement the function DenseModel. init in the file models.py to
define the neural network.

To Do 15. Using the equation (7), implement the function DQN.learned act in the
file agents.py to compute the predicted action of the agent.

Once the neural network is defined and the agent can choose an action, we can train the
agent using the Q-learning algorithm. To do so, we use the function train model in the file
train utils.py. We play args.n epoch episodes and update the Q-network at each step
using tuples of transitions stored in the replay buffer. Loading the replay from the buffer
and computing the loss is done in the function DQN.reinforce.

To Do 16. Using the equation (6), complete the function DQN.reinforce in the file
agents.py to compute the loss.

To update the Q-network, we use an optimizer. The optimizer is loaded in the main
function main.py using the function get optimizer in the file utils.py.

To Do 17. Complete the function get optimizer in the file utils.py to load an
SGD optimizer with a learning rate of args.lr, a momentum of 0.0 and a weight
decay of 0.0001.

4 Training Deep Q-learning Models

Now that the code is implemented, you can train the agent using the following command:

python main.py --agent fc --path fc --epoch 100 --epoch_eval 10 --lr 0.05

--batch_size 32 --epsilon 0.2

4.1 Different models

To Do 18. Train the agent using the command above and observe the output in the
experiments folder.

We can try a more complex model by using a convolutional neural network. The convolu-
tional neural network is defined in the file models.py.

To Do 19. Complete the function ConvModel.forward the file models.py to com-
pute the Q-values using a convolutional neural network.

You can use --agent cnn to use the convolutional neural network.

7



To Do 20. Train the agent using a convolutional neural network and observe the
output.

4.2 ϵ-greedy policy

To train the model to explore, we need to randomize the action taken by the agent but
we also want the model to exploit the knowledge learned. We can use an ϵ-greedy policy
to balance the exploration and exploitation. The ϵ-greedy policy is defined in the function
Agent.act in the file agents.py.

To push the agent to explore more, we can decrease the value of ϵ over time. In practice,
the value of ϵ is decreased at every epoch, and during the epoch, the value of ϵ is decreased
at every step. The value of ϵ is defined in the function Agent.act in the file agents.py.

We can try this method by using the flag --explore:

python main.py --agent fc --path fc_explore --explore

To Do 21. Modify the function train model in the file train utils.py to include
the decay of ϵ.

Additionally, another way is to penalize the agent when it takes goes on the same cell.
We can use a large state representation of size 5×5×3 where the third channel is the number
of time the mouse has been on the cell.

To Do 22. Modify the function Environment.act in the file environment.py to pe-
nalize the agent when it goes on the same cell using the property self.malus position.

To Do 23. Test your code using the flag --explore.

8


