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Simple Games

Definition (Simple games)
A game (N,v) is a Simple game when

the valuation function takes two values
1 for a winning coalitions
0 for the losing coalitions

v satisfies unanimity: v(N) = 1
v satisfies monotonicity: S ⊆ T ⇒ v(S)6 v(T )

One can represent the game by stating all the wining coalitions.
Thanks to monotonicity, it is sufficient to only write down the
minimal winning coalitions defined as follows:
Definition (Minimal winning coalition)

Let (N,v) be a TU game. A coalition C is a minimal win-
ning coalition iff v(C) = 1 and ∀i ∈ C, v(C\ {i}) = 0.
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Example

N = {1,2,3,4}.

We use majority voting, and in case of a tie, the decision of
player 1 wins.

The set of winning coalitions is

{{1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}}.

The set of minimal winning coalitions is
{{1,2}, {1,3}, {1,4}, {2,3,4}}.
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Formal definition of common terms in voting

Definition (Dictator)
Let (N,v) be a simple game. A player i ∈N is a dictator iff
{i} is a winning coalition.

Note that with the requirements of simple games, it is possible
to have more than one dictator!

Definition (Veto Player)
Let (N,v) be a simple game. A player i ∈ N is a veto
player if N \ {i} is a losing coalition. Alternatively, i is a
veto player iff for all winning coalition C, i ∈ C.

It also follows that a veto player is member of every minimal
winning coalitions.
Definition (blocking coalition)

A coalition C ⊆ N is a blocking coalition iff C is a losing
coalition and ∀S ⊆N \C, S \C is a losing coalition.
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Definition (weighted voting games)
A game (N,wi∈N ,q) is a weighted voting game when v sat-
isfies unanimity, monotonicity and the valuation function is
defined as

v(S) =

 1 when
∑
i∈S

wi > q

0 otherwise

Unanimity requires that
∑

i∈N wi > q.
If we assume that ∀i ∈N wi > 0, monotonicity is guaranteed. For
the rest of the lecture, we will assume wi > 0.

We will note a weighted voting game (N,wi∈N ,q) as
[q; w1, . . . ,wn].

A weighted voting game is a succint representation, as we only
need to define a weight for each agent and a threshold.

Weighted voting game is a strict subclass of voting games.
i.e., all voting games are not weighted voting games.
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Examples

Let us consider the game [10; 7,4,3,3,1].

The set of minimal winning coalitions is
{{1,2}{1,3}{1,4}{2,3,4}}

Player 5, although it has some weight, is a dummy.

Player 2 has a higher weight than player 3 and 4, but it is
clear that player 2, 3 and 4 have the same influence.
Let us consider the game [51; 49,49,2]

The set of winning coalition is {{1,2}, {1,3}, {2,3}}.

It seems that the players have symmetric roles, but it is not
reflected in their weights.
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Theorem
Let (N,v) be a simple game. Then

Core(N,v) =

{
x ∈ Rn x is an imputation

xi = 0 for each non-veto player i

}

Proof
⊆ Let x ∈ Core(N,v). By definition x(N) = 1. Let i be a

non-veto player. x(N \ {i})> v(N \ {i}) = 1. Hence
x(N \ {i}) = 1 and xi = 0.

⊇ Let x be an imputation and xi = 0 for every non-veto player
i. Since x(N) = 1, the set V of veto players is non-empty
and x(V ) = 1.
Let C⊆N. If C is a winning coalition then V ⊆ C, hence
x(C)> v(C). Otherwise, v(C) is a losing coalition (which
may contain veto players), and x(C)> v(C). Hence, x is
group rational.

�
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Shapley-Shubik power index

Definition (Pivotal or swing player)
Let (N,v) be a simple game. A agent i is pivotal or a
swing agent for a coalition C ⊆ N \ {i} if agent i turns the
coalition C from a losing to a winning coalition by joining
C, i.e., v(C) = 0 and v(C∪ {i}) = 1.

Given a permutation σ on N, there is a single pivotal agent.

The Shapley-Shubik index of an agent i is the percentage of
permutation in which i is pivotal, i.e.

ISS(N,v , i) =
∑

C⊆N\{i}

|C|!(|N|− |C |−1)!
|N|!

(v(C∪ {i})− v(C)).

“For each permutation, the pivotal player gets a point.”

The Shapley-Shubik power index is the Shapley value.
The index corresponds to the expected marginal utility assuming all
join orders to form the grand coalitions are equally likely.
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Banzhaff power index

Let (N,v) be a TU game.
We want to count the number of coalitions in which an
agent is a swing agent.

For each coalition, we determine which agent is a swing
agent (more than one agent may be pivotal).
The raw Banzhaff index of a player i is

βi =

∑
C⊆N\{i} v(C∪ {i})− v(C)

2n−1 .

For a simple game (N,v), v(N) = 1 and v(∅) = 0, at least
one player i has a power index βi 6= 0. Hence,
B =
∑

j∈N βj > 0.
The normalized Banzhaff index of player i for a simple
game (N,v) is defined as IB(N,v , i) =

βi
B .

The index corresponds to the expected marginal utility assuming all
coalitions are equally likely.
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Examples: [7; 4,3,2,1]

{1,2,3,4}
{1,2,4,3}
{1,3,2,4}
{1,3,4,2}
{1,4,2,3}
{1,4,3,2}
{2,1,3,4}
{2,1,4,3}
{2,3,1,4}
{2,3,4,1}
{2,4,1,3}
{2,4,3,1}
{3,1,2,4}
{3,1,4,2}
{3,2,1,4}
{3,2,4,1}
{3,4,1,2}
{3,4,2,1}
{4,1,2,3}
{4,1,3,2}
{4,2,1,3}
{4,2,3,1}
{4,3,1,2}
{4,3,2,1}

1 2 3 4
Sh 7

12
1
4

1
12

1
12

winning coalitions:
{1,2}

{1,2,3}

{1,2,4}

{1,3,4}

{1,2,3,4}

1 2 3 4
β 5

8
3
8

1
8

1
8

IB(N,v , i) 1
2

3
10

1
10

1
10

The Shapley-Shubik index and Banzhaff index may be different.
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Representation and Complexitity issues
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Representation by enumeration

Let us assume we want to write a program for computing a
solution concept.

How do we represent the input of a TU game?
Straighforward representation by enumeration requires
exponential space.
Brute force approach may appear good as complexity is
measured in term of the input size.

ë we need compact or succint representation of coalitional
games.

ë e.g., a representation so that the input size is a polynomial
in the number of agents.
In general, the more succint a representation is, the harder
it is to compute, hence we look for a balance between
succinctness and tractability.
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it is to compute, hence we look for a balance between
succinctness and tractability.
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Weighted graph games

A weighted graph game is a coalitional game defined by an undirected
weighted graph G = (V ,W ) where V is the set of vertices and
W : V → V is the set of edges weights. For (i, j) ∈ V 2, wij is the weight
of the edge between i and j .

N = V , i.e., each agent is a node in the graph.
for all C⊆N, v(C) =

∑
(i,j)∈C wij .

1

2

3

45

w12 w23

w34

w45

w15

w13

w14

w24

It is a succint representation: using an
adjacency matrix, we need to provide n2

entries.
However, it is not complete. Some TU
games cannot be represented by a
weighted graph game (e.g., a majority
voting game).
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Proposition
Let (V ,W ) be a weighted graph game. If all the weights
are nonnegative then the game is convex.

Proposition
Let (V ,W ) be a weighted graph game. If all the weights
are nonnegative then membership of a payoff vector in the
core can be tested in polynomial time.
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Theorem
Let (V ,W ) a weighted graph game. The Shapley value of
an agent i ∈ V is Shi(N,v) =

1
2

∑
(i,j)∈N2 | i 6=j

wij .

The Shapley value can be computed in O(n2) time.

Proof
Let (V ,W ) a weighted graph game. We can view this game as
the sum of the following |W | games (i.e., one game per edge):
Gij = (V , {wij }), (i, j) ∈ V 2.
For a game Gij , i and j are substitutes, and all other agents
k 6= i, j are dummy agents. Using the symmetry axiom, Shi(Gij) =

Shj(Gij). Using the dummy axiom, Shk (Gij) = 0. Hence,
Shi(Gij) = 1

2 wij .
Since (V ,W ) is the sum of all two-player games, by the additiv-
ity axiom, Shk =

∑
i,j Shk (Gij) =

∑
k ,i wij �

Theorem
Let (V ,W ) be a weighted graph game. Testing the
nonemptyness of the core is NP-complete.
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A representation for superadditive games

Instead of storing a value for each coalition, we can store the
positive synergies between agents.

Let (N,v) be a superadditive game and (N,s) its synergy rep-
resentation. Then for a coalition C⊆N,

v(C) =

(
max

{C1,C2,....,Ck }∈SC

k∑
i=1

v(Ci)

)
,

where SC is the set of all partition of C.

Example: N = {1,2,3}, v({i}) = 1, v({1,2}) = 3, v({1,3}) = 2,
v({2,3}) = 2, v({1,2,3}) = 4.
We can represent this game by v({i}) = 1, v({1,2}) = 3.

This representation may still require a space exponential in the
number of agents, but for many games, the space required is
much less.
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Theorem
It is NP-complete to determine the value of some coalitions
for a coalitional game specified with the synergy represen-
tation. In particular, it is NP-complete to determine the
value of the grand coalition.

Theorem
Let (N,v) a TU game specified with the synergy represen-
tation and the value of the grand coalition.
Then we can determine in polynomial time whether the core
of the game is empty.

V. Conitzer and T. Sandholm, Complexity of constructing solutions in the core
based on synergies among coalitions, Artificial Intelligence, 2006.
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Multi-issue representation

Some coalitions may form to solve problems requiring distinct
competences. For example, solving a set of tasks requiring dif-
ferent expertises.

Definition (Decomposition)
The vector of characteristic functions 〈v1,v2, . . . ,vT 〉, with
each vi : 2N → R, is a decomposition over T issues of char-
acteristic function v : 2N → R
if for any S ⊆N, v(S) =

∑T
i=1 vi(S).

It is a fully expressive representation (can use 1 issue).
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Multi-issue representation

Theorem
The Shapley value of a coalitional game represented with
multi-issue representation can be computed in linear time.

Theorem
Checking whether a given value division is in the core is
coNP-complete.

V. Conitzer and T. Sandholm. Computing shapley values, manipulating value
division schemes, and checking core membership in multi-issue domains. In
Proc. of the 19th Nat. Conf. on Artificial Intelligence (AAAI-04)

Stéphane Airiau (ILLC) - Cooperative Games Representation and Complexitity issues 59



A logical approach: Marginal contribution nets (MC-nets)

The idea:
represent each player by a boolean variable,
treat the characteristic vector of a coalition as a truth
assignment.
the truth assignment can be used to check whether a
formula is satisfied and to compute the value of a coalition.

Let N be a collection of atomic variables.
Definition (Rule)

A rule has a syntactic form (φ,w) where φ is called the
pattern and is a boolean formula containing variables in N
and w is called the weight, and is a real number.

examples:
(a ∧ b,5): each coalition containing both agents a and b increase its
value by 5 units.
(b,2): each coalition containing b increase its value by 2.
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A logical approach: Marginal contribution nets (MC-nets)

Definition (Marginal contribution nets)
An MC-net consists of a set of rules {(p1,w1), . . .(pk ,wk)}
where the valuation function is given by

v(C) =

k∑
i=1

pi(eC)wi,

where pi(eC) evaluates to 1 if the boolean formula pi evalu-
ates to true for the truth assignment eC and 0 otherwise.

S. Ieong and Y. Shoham, Marginal contribution nets: a compact representa-
tion scheme for coalitional games, in Proceedings of the 6th ACM conference
on Electronic commerce, 2005.
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Examples

Let us consider an MC-net with the following two rules:

(a ∧b, 5) and (b,2)

The coalitional game represented has two agents a and b and
the valuation function is defined as follows:

v(∅) = 0 v({b}) = 2
v({a}) = 0 v({a,b}) = 5+2 = 7

We can use negations in rules, and negative weights. Let con-
sider the following example:

(a ∧b, 5), (b,2), (c,4) and (b∧¬c,−2)

v(∅) = 0 v({b}) = 2−2 = 0 v({a,c}) = 4
v({a}) = 0 v({a,b}) = 5+2−2 = 5 v({b,c}) = 4+2 = 6
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Theorem (Expressivity)
MC-nets can represent any game when negative
literals are allowed in the patterns, or when the
weights can be negative.
When the patterns are limited to conjunctive formula
over postivie literals and weights are nonnegative,
MC-nets can represent all and only convex games.

Proposition
MC-nets generalize Weighted Graph game representation
(strict generalization) and the multi-issue representation.
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Theorem
Given a TU game represented by an MC-net limited to con-
junctive patterns, the Shapley value can be computed in
time linear in the size of the input.

Proof sketch: we can treat each rule as a game, compute the Shap-
ley value for the rule, and use ADD to sum all the values for the
overall game. For a rule, we cannot distinguish the contribution of
each agent, by SYM, they must have the same value. It is a bit more
complicated when negation occurs (see Ieong and Shoham, 2005).

Proposition
Determining whether the core is empty or checking whether an
imputation lies in the core are coNP-hard.

Proof sketch: due to the fact that MC-nets generalize over weighted
graph games.
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Hedonic Games and NTU games
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Hedonic games
Agents have preferences over coalitions, i.e. agent only cares
about the other members of the coalition: “enjoying the pleasure
of each other’s company”.

Let N be a set of agents and Ni be the set of coalitions that
contain agent i, i.e., Ni = {C∪ {i} | C⊆N \ {i}}.
Definition (Hedonic games)

An Hedonic game is a tuple (N,(�i)i∈N) where
N is the set of agents
�i⊆ 2Ni ×2Ni is a complete, reflexive and transitive
preference relation for agent i, with the interpretation
that if S �i T , agent i prefers coalition T at most as
much as coalition S.

A. Bogomolnaia and M.O. Jackson, The stability of hedonic coalition structure.
Games and Economic Behavior, 2002.
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Stability concepts of Hedonic Games
Let Π ∈SN be a coalition structure, and Πi denotes the coali-
tion in Π that contains i.

A coalition structure Π is core stable iff
@C ⊆N | ∀i ∈ C , C �i Πi.

A coalition structure s is Nash stable
(∀i ∈N) (∀C ∈ Π∪ {∅}) Πi %i C ∪ {i}.
No player would like to join any other coalition in Π assuming
the other coalitions did not change.
A coalition structure Π is individually stable iff
@i ∈N @C ∈ Π∪∅ |

(
(C ∪ {i}�i Πi) ∧ (∀j ∈ C , C ∪ {i}%j C)

)
.

No player can move to another coalition that it prefers without
making some members of that coalition unhappy.
A coalition structure Π is contractually individually stable
iff @i ∈N @C ⊆N |

(C ∪ {i}�i Πi) ∧ (∀j ∈ C , C ∪ {i}%j C) ∧ (∀j ∈Πi \{i}, Πi \{i}%j Πi)
No player can move to a coalition it prefers so that the members
of the coalition it leaves and it joins are better off
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No player would like to join any other coalition in Π assuming
the other coalitions did not change.
A coalition structure Π is individually stable iff
@i ∈N @C ∈ Π∪∅ |

(
(C ∪ {i}�i Πi) ∧ (∀j ∈ C , C ∪ {i}%j C)

)
.

No player can move to another coalition that it prefers without
making some members of that coalition unhappy.
A coalition structure Π is contractually individually stable
iff @i ∈N @C ⊆N |

(C ∪ {i}�i Πi) ∧ (∀j ∈ C , C ∪ {i}%j C) ∧ (∀j ∈Πi \{i}, Πi \{i}%j Πi)
No player can move to a coalition it prefers so that the members
of the coalition it leaves and it joins are better off
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Example

{1,2}�1 {1}�1 {1,2,3}�1 {1,3}

{1,2}�2 {2}�2 {1,2,3}�2 {2,3}

{1,2,3}�3 {2,3}�3 {1,3}�3 {3}

{{1,2}, {3}} is in the core and is individually stable.
There is no Nash stable partitions.

{{1}, {2}, {3}}
{1,2} is preferred by both agent 1 and 2, hence not NS,
not IS.

{{1,2}, {3}}

{1,2,3} is preferred by agent 3, so it is not NS, as agents
1 and 3 are worse off, it is not a possible move for IS.
no other move is possible for IS.

{{1,3}, {2}} agent 1 prefers to be on its own (not NS, then, not IS).

{{2,3}, {1}}
agent 2 prefers to join agent 1,
and agent 1 is better off, hence not NS, not IS.

{{1,2,3}}
agents 1 and 2 have an incentive to form a singleton,
hence not NS, not IS.
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Nash stability ⇒ Individual stability ⇒ contractual individual stability

Core stability ; Nash stability ; Core stability

Core stability ; Individual stability

Some classes of games have a non-empty core,
other classes have Nash stable coalition structures.

A. Bogomolnaia and M.O. Jackson, The stability of hedonic coalition structure.
Games and Economic Behavior, 2002.

A representation for hedonic games have been proposed, and is
based on MC-nets.

E. Elkind and M. Wooldridge, Hedonic Coalition Nets, in Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS), 2009
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A general model for NTU games (Non-transferable utility games)

It is not always possible to compare the utility of two agents or
to transfer utility.

Definition (NTU game)
A NTU game is a tuple (N,X ,V ,(�i)i∈N) where

X set of outcomes
�i a preference relation (transitive and complete) for
agent i over the set of outcomes.
V (C) a set of outcomes that a coalition C can bring
about
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Example 1: hedonic games as a special class of NTU
games.
Let (N,(�H

i )i∈N) be a hedonic game.
• For each coalition C⊆N, create a unique outcome xC.
• For any two outcomes xS and xT corresponding to coalitions S
and T that contains agent i, We define �i as follows: xS �i xT iff
S �H

i T .
• For each coalition C⊆N, we define V (C) as V (C) = {xC }

Example 2: a TU game can be viewed as an NTU game.
Let (N,v) be a TU game.
• We define X to be the set of all allocations, i.e., X = Rn.
• For any two allocations (x ,y) ∈ X2, we define �i as follows:
x �i y iff xi > yi .
• For each coalition C⊆N, we define V (C) as
V (C) = {x ∈ Rn |

∑
i∈N xi 6 v(C)}. V (C) lists all the feasible

allocation for the coalition C.
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Core

An outcome x ∈ X is blocked by a coalition C if there is some
outcome y ∈ V (C) such that all members i of C strictly prefer y
to x , i.e., ∃C⊆N, ∃y ∈ V (C) s.t. ∀i ∈ C, y �i x .

The core of an NTU game (N,X ,V ,(�i)i∈N) is defined as:
Core(N,X ,V ,(�)) = {x ∈ V (N) | @C⊆N, @y ∈ V (C), ∀i ∈ C : y �i
x}
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Games with externalities
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One of the purpose of Game theory is to “determine everything
that can be said about coalitions between players, compensa-
tions between partners in every coalition, mergers or fights be-
tween coalitions “...

von Neumann and Morgenstern,
Theory of games and economic behaviour, 1944.

1- Which coalition will be formed?
2- How will the coalitional worth be shared between

members?
3- How does the presence of other coalitions affect the

incentives to cooperate?

Cooperative game theory has focused mainly on point 2.
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Coalitional Games with externalities

In a TU game (N,v), the valuation of a coalition depends
only on the members, not on the other coalition present in
the population.
The value can depend on the other coalitions in the
population

competitive firms
teams in sport

ê valuation function for a coalition given a coalition structure
(in a competitive setting) v : 2N×S → R
Games in partition function form.

ê valuation function for each agent given a coalition structure
(ex: competitive supply chains) v : N×S → R.
Games with Valuations.
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Games in partition function form

Definition (Positive and negative spillovers)
A partition function v exhibits

positive spillovers if for any partition π and any two
coalitions S and T in π
v(C,π\ {S,T }∪ {S∪T })> v(C ,π) for all coalitions
C 6= S,T in π.
negative spillovers if for any partition π and any two
coalitions S and T in π
v(C,π\ {S,T }∪ {S∪T })6 v(C ,π) for all coalitions
C 6= S,T in π.
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Valuations

Assumption: Fixed rules of division appear naturally in many eco-
nomic situations and in theoretical studies based on a two-stage pro-
cedure:

1- formation of the coalitions
2- payoff distribution

Definition (Valuation)
A valuation v is a mapping which associates to each coalition
structure a payoff of individual payoff in Rn.

Definition (Positive and negative spillovers)
A valuation v exhibits

positive spillovers if for any partition π and any two
coalitions S and T in π vi(π\ {S,T }∪ {S∪T })> vi(π) for all
players i /∈ S∪T .
negative spillovers if for any partition π and any two
coalitions S and T in π vi(π\ {S,T }∪ {S∪T })6 vi(π) for all
players i /∈ S∪T .
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Definition (Core stability)
A coalition structure π is core stable if there does not exist
a group C of players a coalition structure π ′ that contains C

such that ∀i ∈ C, vi(π
′)> vi(π).

Definition (α-core Stability)
A coalition structure π is α-core stable if there does not
exist a group C of players and a partition π ′C such that,
for all partition πN\C formed by external players, ∀i ∈ C,
vi(π

′
C∪πN\C)> vi(π).

Definition (β-core Stability)
A coalition structure π is β-core stable if there does not
exist a group C of players such that for all partitions πN\C

of external players, there exists a partition πC of C such
that ∀i ∈ C, vi(πC∪πN\C)> vi(π).
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Issues studied in multiagent systems
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Search of an optimal coalition structure
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The difficulty of searching for the optimal CS is the large search space.
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How to distribute the computation of all the coalition values?

J goal is to minimize computational time
Computing the value of a coalition can be hard: ex solving
a TSP

ê load balancing: distribute coalitions of every size equally
among the agents coalitions.

but agents may have different computational speed
A naive approach does not avoid redundancy and may have a
high communication complexity.
The current best algorithm works by sharing the computation of
coalition of the same size between all the agents.

O. Shehory and S. Kraus. Methods for task allocation via agent coalition
formation. Artificial Intelligence, 1998
T. Rahwan and N. Jennings. An algorithm for distributing coalitional value
calculations among cooperating agents, Artificial Intelligence, 2007

Stéphane Airiau (ILLC) - Cooperative Games Issues studied in multiagent systems 90



Search of the Optimal Coalition Structure

First algorithm that guarantees a bound from the optimal
v(s)

V (s?) 6K. It is necessary to visit a least 2n−1 CSs, which
corresponds to the first two levels of the lattice.
Best current algorithm is called IP for Interger Partition:

Integer Partition: ex [1,1,2]→ space of coalition structures
containing two singletons and a coalition of size 2.
Finding bounds for each subspace is easy. Ex:

max
S∈[1,1,2]

v(S)6 max
C∈2N , |C|=1

v(C)+ max
C∈2N , |C|=1

v(C)+ max
C∈2N , |C|=2

v(C)

IP uses the representation to efficiently prune part of the
space and search the most promising subspaces.

T. Rahwan, S.D. Ramchurn, N. Jennings, and A. Giovannucci. An anytime al-
gorithm for optimal coalition structure generation, Journal of Artificial Intelli-
gence Research, 2009.
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Environments, Safety and Robustness, Communication

Agents can enter and leave the environment at any time
The characteristics of the agents may change with time
Communication links may fail during the negotiation phase

Extending some concepts to Open Environments.

ëhow to avoid recomputing from scratch?

Additional goals of the coalition formation: decreasing the time
and the number of messages required to reach an agreement.

ê learning may be used to decrease negotiation time.
ê communication costs are represented in the characteristic

function.
ê analysis of the communication complexity of computing the

payoff of a player with different stability concepts: they
find that it is Θ(n) when the Shapley value, the nucleolus,
or the core is used.
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Uncertainty about Knowledge and Task

Agents may not know some tasks.
Agents may not know the valuation function, and may use
Fuzzy sets to represent the coalition value.
Expected values of coalitions are used instead of the
valuation function.
Approximation of valuation function: e.g., computing a value
for a coalition requires solving a version of the traveling
salesman problem and approximations are used to solve
that problem.
Agent do not know the cost incurred by other agents and
may only estimate these costs.
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Manipulation

A protocol may require that they disclose some private informa-
tion.

ê Avoid information asymmetry that can be exploited by some
agents by using cryptographic techniques.

ê Use computational complexity to protect a protocol.
Other types of manipulations:

hiding skills
using false names (anonymous environments)
colluding

The traditional solution concepts can be vulnerable to false
names and to collusion.
Study for some TU games and for weighted voting games.
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Long Term Vs Short Term

In general, a coalition is a short-lived entity that is “formed with
a purpose in mind and dissolve when that need no longer exists,
the coalition ceases to suit its designed purpose, or critical mass
is lost as agents depart”.

Long term coalitions, and in particular the importance of
trust in this content.
Repeated coalition formation under uncertainty using
learning.
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Overlapping Coalitions

Agents may simultaneously belong to more than one coalition
ê Fuzzy approach

agents can be member of a coalition with a certain degree
that represents the risk associated with being in that
coalition.
agents have different degree of membership, and their payoff
depends on this degree.

ê Heuristic algorithms
ê Game theoretical approach (overlapping core)
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Conclusion

Game theory proposes many solution concepts (some of
which were not introduced: bargaining set, ε-core,
least-core, Owen value). Each solution concept has pros
and cons.
Work in AI has dealt with representation issues, and
practical coalition formation protocols.
Many issues are left unexaplored.
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