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Why study coalitional games?

Coalitional (or Cooperative) games are a branch of game theory
in which cooperation or collaboration between agents can be
modeled. Coalitional games can also be studied from a compu-
tational point of view (e.g., the problem of succint reprensenta-
tion and reasoning).

A coalition may represent a set of:
persons or group of persons (labor unions, towns)
objectives of an economic project
artificial agents

We have a population N of n agents.
Definition (Coalition)

A coalition C is a set of agents: C ∈ 2N .
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Two main classes of games

1- Games with Transferable Utility (TU games)
Two agents can compare their utility
Two agents can transfer some utility

Definition (valuation or characteristic function)
A valuation function v associates a real number v(S) to any
subset S, i.e., v : 2N → R

Definition (TU game)
A TU game is a pair (N,v) where N is a set of agents and
where v is a valuation function.

2- Games with Non Transferable Utility (NTU games)
It is not always possible to compare the utility of two agents or
to transfer utility (e.g., no price tags). Agents have preference
over coalitions.
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Informal example: a task allocation problem

A set of tasks requiring different expertises needs to be
performed, tasks may be decomposed.
Agents do not have enough resource on their own to
perform a task.
Find complementary agents to perform the tasks

robots have the ability to move objects in a plant, but
multiple robots are required to move a heavy box.
transportation domain: agents are trucks, trains, airplanes,
ships... a task is a good to be transported.

Issues:
What coalition to form?
How to reward each each member when a task is
completed?
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Some types of TU games

∀C1,C2 ⊆N | C1∩C2 = ∅, i ∈N, i /∈ C1

additive (or inessential): v(C1∪C2) = v(C1)+ v(C2) trivial
from the game theoretic point of view
superadditive: v(C1∪C2)> v(C1)+ v(C2) satisfied in many
applications: it is better to form larger coalitions.
weakly superadditive: v(C1∪ {i})> v(C1)+ v({i})
subadditive: v(C1∪C2)6 v(C1)+ v(C2)

convex: ∀C⊆ T and i /∈ T,
v(C∪ {i})− v(C)6 v(T∪ {i})− v(T).
Convex game appears in some applications in game theory
and have nice properties.
monotonic: ∀C⊆ T ⊆N v(C)6 v(T).

Stéphane Airiau (ILLC) - Cooperative Games Introduction 6



The main problem

In the game (N,v) we want to form the grand coalition.

Each agent i will get a personal payoff xi.

What are the interesting properties that x should satisfy?

How to determine the payoff vector x?

problem: a game (N,v) in which v is a worth of a coalition
solution: a payoff vector x ∈ Rn
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An example

N = {1,2,3}

v({1}) = 0, v({2}) = 0, v({3}) = 0
v({1,2}) = 90
v({1,3}) = 80
v({2,3}) = 70

v({1,2,3}) = 105

What should we do?

form {1,2,3} and share equally 〈35,35,35〉?
3 can say to 1 “let’s form {1,3} and share 〈40,0,40〉”.
2 can say to 1 “let’s form {1,2} and share 〈45,45,0〉”.
3 can say to 2 “OK, let’s form {2,3} and share 〈0,46,24〉”.
1 can say to 2 and 3, “fine! {1,2,3} and 〈33,47,25〉
... is there a “good” solution?
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Some properties

Let x ∈ Rn be a solution of the TU game (N,v)

Feasible solution:
∑

i∈N x(i)6 v(N).
Anonymity: a solution is independent of the names of the
player.

Definition (marginal contribution)
The marginal contribution of agent i for a coalition
C⊆N \ {i} is mci(C) = v(C∪ {i})− v(C).

Let mcmin
i and mcmax

i denote the minimal and maximal marginal
contribution.

x is reasonable from above if ∀i ∈N x i < mcmax
i

ê mcmax
i is the strongest threat that an agent can use against

a coalition.
x is reasonable from below if ∀i ∈N x i > mcmin

i
ê mcmin

i is a minimum acceptable reward.
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Some properties

Let x , y be two solutions of a TU-game (N,v).
Efficiency: x(N) = v(N)

ê the payoff distribution is an allocation of the entire worth of
the grand coalition to all agents.

Individual rationality: ∀i ∈N, x(i)> v({i})
ê agent obtains at least its self-value as payoff.

Group rationality: ∀C⊆N,
∑

i∈C x(i) = v(C)

ê if
∑

i∈C x(i)< v(C) some utility is lost.
ê if

∑
i∈C x(i)> v(C) is not possible.

Pareto Optimal:
∑

i∈N x(i) = v(N)

ê no agent can improve its payoff without lowering the payoff
of another agent.

An imputation is a payoff distribution x that is efficient and in-
dividually rational.
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The core

D Gillies, Some theorems in n-person games. PhD thesis, Department of
Mathematics, Princeton, N.J., 1953.
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A condition for a coalition to form:
all agents prefer to be in it.

i.e., none of the participants wishes she were in a different
coalition or by herself ë Stability.
Stability is a necessary but not sufficient condition,
(e.g., there may be multiple stable coalitions).
The core is a stability concepts where no agents prefer to
deviate to form a different coalition.
For simplicity, we will only consider the problem of the
stability of the grand coalition:

ë Is the grand coalition stable? ⇔ Is the core non-empty?
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The core relates to the stability of the grand coalition:
No group of agents has any incentive to change coalition.

Definition (core of a game (N,v))
Let (N,v) be a TU game, and assume we form the grand
coalition N.
The core of (N,v) is the set:

Core(N,v) = {x ∈ Rn | x is a group rational imputation}

Equivalently,

Core(N,v) = {x ∈ Rn | x(N)6 v(N) ∧ x(C)> v(C) ∀C⊆N}
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Weighted graph games

N = {1,2}

v({1}) = 5, v({2}) = 5
v({1,2}) = 20

core(N,v) = {(x1,x2) ∈ R2 | x1 > 5, x2 > 5, x1 + x2 = 20}

x1

x2

0 5 10 15 20
0

5

10

15

20

The core may not be fair: the core only considers stability.
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Issues with the core

The core may not always be non-empty.
When the core is not empty, it may not be ’fair’.
It may not be easy to compute.

ë Are there classes of games that have a non-empty core?
ë Is it possible to characterize the games with non-empty

core?

Stéphane Airiau (ILLC) - Cooperative Games The core 22



Definition (Convex games)
A game (N,v) is convex iff
∀C⊆ T and i /∈ T, v(C∪ {i})− v(C)6 v(T∪ {i})− v(T).

TU-game is convex if the marginal contribution of each player
increases with the size of the coalition he joins.

Theorem
A TU game (N,v) is convex iff for all coalition S and T
v(S)+ v(T )6 v(S∪T )+ v(S∩T )

Theorem
A convex game has a non-empty core
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Games with Coalition structures
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Coalition Structure

Definition (Coalition Structure)
A coalition structure (CS) is a partition of the grand coali-
tion into coalitions.
S = {C1, . . . ,Ck } where ∪i∈{1..k}Ci = N and i 6= j⇒ Ci∩Cj = ∅.
We note SN the set of all coalition structures over the set
N.

ex: {{1,3,4} {2,7} {5} {6,8}} is a coalition structure for n = 8 agents.

We start by defining a game with coalition structure, and see how we
can define the core of such a game.
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Game with Coalition Structure

Definition (TU game)
A TU game is a pair (N,v) where N is a set of agents and
where v is a valuation function.

Definition (Game with Coalition Structures)
A TU-game with coalition structure (N,v ,S) consists of a
TU game (N,v) and a CS S ∈SN .

We assume that the players agreed upon the formation of S

and only the payoff distribution choice is left open.
The CS may model affinities among agents, may be due to
external causes (e.g. affinities based on locations).
The agents may refer to the value of coalitions with agents
outside their coalition (i.e. opportunities they would have
outside of their coalition).
(N,v) and (N,v , {N}) represent the same game.
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The set of feasible payoff vectors for (N,v ,S) is
X(N,v ,S) = {x ∈ Rn | for every C ∈ S x(C)6 v(C)}.

Definition (Core of a game with CS)
The core Core(N,v ,S) of (N,v ,S) is defined by
{x ∈ Rn | (∀C ∈ S, x(C)6 v(C)) and (∀C⊆N, x(C)> v(C))}

We have Core(N,v , {N}) = Core(N,v).

The next theorem is due to Aumann and Drèze.

R.J. Aumann and J.H. Drèze. Cooperative games with coalition structures,
International Journal of Game Theory, 1974
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Definition (Substitutes)
Let (N,v) be a game and (i, j) ∈ N2. Agents i and j are
substitutes iff ∀C⊆N \ {i, j}, v(C∪ {i}) = v(C∪ {j}).

A nice property of the core related to fairness:
Theorem

Let (N,v ,S) be a game with coalition structure,
let i and j be substitutes, and let x ∈ Core(N,v ,S).
If i and j belong to different members of S, then xi = xj .
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The nucleolus

D. Schmeidler, The nucleolus of a characteristic function game. SIAM Journal
of applied mathematics, 1969.
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Excess of a coalition

Definition (Excess of a coalition)
Let (N,v) be a TU game, C ⊆ N be a coalition, and x be a
payoff distribution over N. The excess e(C,x) of coalition C

at x is the quantity e(C,x) = v(C)− x(C).

An example: let N = {1,2,3}, C = {1,2}, v({1,2}) = 8, x = 〈3,2,5〉,
e(C,x) = v({1,2})−(x1 + x2) = 8−(3+2) = 3.

We can interpret a positive excess (e(C,x) > 0) as the amount of
dissatisfaction or complaint of the members of C from the allo-
cation x .

We can use the excess to define the core:
Core(N,v) = {x ∈ Rn | x is an imputation and ∀C⊆N,e(C,x)6 0}

This definition shows that no coalition has any complaint: each
coalition’s demand can be granted.
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N = {1,2,3}, v({i}) = 0 for i ∈ {1,2,3}

v({1,2}) = 5, v({1,3}) = 6, v({2,3}) = 6
v(N) = 8

Let us consider two payoff vectors x = 〈3,3,2〉 and y = 〈2,3,3〉.
Let e(x) denote the sequence of excesses of all coalitions at x .

x = 〈3,3,2〉
coalition C e(C,x)

{1} -3
{2} -3
{3} -2

{1,2} -1
{1,3} 1
{2,3} 1

{1,2,3} 0

y = 〈2,3,3〉
coalition C e(C,y)

{1} -2
{2} -3
{3} -3

{1,2} 0
{1,3} 1
{2,3} 0

{1,2,3} 0
Which payoff should we prefer? x or y? Let us write the ex-
cess in the decreasing order (from the greatest excess to the
smallest)
〈1,1,0,−1,−2,−3,−3〉 〈1,0,0,0,−2,−3,−3〉
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Definition (lexicographic order of Rm >lex )
Let >lex denote the lexicographical ordering of Rm,
i.e., ∀(x ,y) ∈ Rm, x >lex y iff{

x=y or
∃t s. t. 16 t 6 m s. t. ∀i s. t. 16 i 6 t xi = yi and xt > yt

example: 〈1,1,0,−1,−2,−3,−3〉>lex 〈1,0,0,0,−2,−3,−3〉

Let l be a sequence of m reals. We denote by lI the reordering
of l in decreasing order.

In the example, e(x) = 〈−3,−3,−2,−1,1,1,0〉,
then e(x)I = 〈1,1,0,−1,−2,−3,−3〉.

Hence, we can say that y is better than x by writing
e(x)I >lex e(y)I.
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Definition (Nucleolus)
Let (N,v) be a TU game.
Let Imp be the set of all imputations.
The nucleolus Nu(N,v) is the set
Nu(N,v) =

{
x ∈ Imp | ∀y ∈ Imp e(y)I >lex e(x)I

}
Theorem (Non-emptyness of the nucleolus)

Let (N,v) be a TU game, if Imp 6= ∅,
then the nucleolus Nu(N,v) is non-empty.

For a TU game (N,v) the nucleolus Nu(N,v) is non-empty when
Imp 6= ∅, which is a great property as agents will always find an
agreement. But there is more!
Theorem

The nucleolus has at most one element

In other words, there is one agreement which is stable according to
the nucleolus.
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Theorem
Let (N,v) be a superadditive game and Imp be its set of
imputations. Then, Imp 6= ∅.

Proof
Let (N,v) be a superadditive game.
Let x be a payoff distribution defined as follows:
xi = v({i})+ 1

|N|

(
v(N)−

∑
j∈N v({j})

)
.

v(N)−
∑

j∈N v({j})> 0 since (N,v) is superadditive.
It is clear x is individually rational 4

It is clear x is efficient 4

Hence, x ∈ Imp. �

Theorem
Let (N,v) be a TU game with a non-empty core. Then
Nu(N,v)⊆ Core(N,v)
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The kernel.

M. Davis. and M. Maschler, The kernel of a cooperative game. Naval Re-
search Logistics Quarterly, 1965.
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Excess

Definition (Excess)
For a TU game (N,v), the excess of coalition C for a payoff
distribution x is defined as e(C,x) = v(C)− x(C).

We saw that a positive excess can be interpreted as an amount
of complaint for a coalition.
We can also interpret the excess as a potential to generate more
utility.
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Definition (Maximum surplus)
For a TU game (N,v), the maximum surplus sk ,l(x) of
agent k over agent l with respect to a payoff distribution
x is the maximum excess from a coalition that includes k
but does exclude l, i.e.,
sk ,l(x) = max

C⊆N | k∈C, l/∈C
e(C,x).

Definition (Kernel)
Let (N,v ,S) be a TU game with coalition structure. The
kernel is the set of imputations x ∈ X(N,v ,S) such that for
every coalition C ∈ CS, if (k , l) ∈ C2, k 6= l, then we have
either skl(x)> slk(x) or xk = v({k}).

skl(x) < slk (x) calls for a transfer of utility from k to l unless it is
prevented by individual rationality, i.e., by the fact that xk = v({k}).
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Properties

Theorem
Let (N,v ,S) a game with coalition structure, and let Imp 6=
∅. Then we have Nu(N,v ,S)⊆ K (N,v ,S)

Theorem
Let (N,v ,S) a game with coalition structure, and let Imp 6=
∅. The kernel K (N,v ,S) of the game is non-empty.

Proof
Since the Nucleolus is non-empty when Imp 6= ∅, the proof is
immediate using the theorem above. �

Stéphane Airiau (ILLC) - Cooperative Games The kernel 38



Computing a kernel-stable payoff distribution

There is a transfer scheme converging to an element in the
kernel.
It may require an infinite number of small steps.
We can consider the ε-kernel where the inequality are
defined up to an arbitrary small constant ε.

R. E. Stearns. Convergent transfer schemes for n-person games. Transactions
of the American Mathematical Society, 1968.
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Computing a kernel-stable payoff distribution

Algorithm 1: Transfer scheme converging to a ε-Kernel-stable
payoff distribution for the CS S

compute-ε-Kernel-Stable(N, v , S, ε)
repeat

for each coalition C∈ S do
for each member (i, j)∈C, i 6= j do // compute the maximum surplus

// for two members of a coalition in S

sij← maxR⊆N|(i∈R , j/∈R) v(R)− x(R)

δ← max(i,j)∈C2 ,C∈S sij − sji;
(i?, j?)← argmax(i,j)∈N2(sij − sji);
if

(
xj? − v({j})< δ

2
)

then // payment should be individually rational

d← xj? − v({j?});
else

d← δ
2 ;

xi? ← xi? +d;
xj? ← xj? −d;

until δ
v(S) 6 ε ;
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The complexity for one side-payment is O(n ·2n).
Upper bound for the number of iterations for converging to
an element of the ε-kernel: n · log2(

δ0
ε·v(S) ), where δ0 is the

maximum surplus difference in the initial payoff distribution.
To derive a polynomial algorithm, the number of coalitions
must be bounded. For example, only consider coalitions
which size is bounded in [K1,K2] . The complexity of the
truncated algorithm is O(n2 ·ncoalitions) where ncoalitions is
the number of coalitions with size in[K1,K2], which is a
polynomial of order K2.

• M. Klusch and O. Shehory. A polynomial kernel-oriented coalition algo-
rithm for rational information agents. In Proceedings of the Second Interna-
tional Conference on Multi-Agent Systems, 1996.
• O. Shehory and S. Kraus. Feasible formation of coalitions among au-
tonomous agents in non-superadditve environments. Computational Intelli-
gence, 1999.
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The Shapley value

Lloyd S. Shapley. A Value for n-person Games. In Contributions to the The-
ory of Games, volume II (Annals of Mathematical Studies), 1953.
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Definition (marginal contribution)
The marginal contribution of agent i for a coalition
C⊆N \ {i} is mci(C) = v(C∪ {i})− v(C).

〈mc1(∅),mc2({1}),mc3({1,2})〉 is an efficient payoff distribution for any
game ({1,2,3},v). This payoff distribution may model a dynamic pro-
cess in which 1 starts a coalition, is joined by 2, and finally 3 joins
the coalition {1,2}, and where the incoming agent gets its marginal
contribution.

An agent’s payoff depends on which agents are already in the
coalition. This payoff may not be fair. To increase fairness,one
could take the average marginal contribution over all possible
joining orders.

Let σ represent a joining order of the grand coalition N, i.e., σ
is a permutation of 〈1, . . . ,n〉.
We write mc(σ) ∈ Rn the payoff vector where agent i obtains
mci({σ(j) | j < i}). The vector mc is called a marginal vector.
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Shapley value: version based on marginal contributions

Let (N,v) be a TU game. Let Π(N) denote the set of all permu-
tations of the sequence 〈1, . . . ,n〉.

Sh(N,v) =

∑
σ∈Π(N)

mc(σ)

n!
the Shapley value is a fair payoff distribution based on marginal
contributions of agents averaged over joining orders of the coali-
tion.
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An example

N = {1,2,3}, v({1}) = 0, v({2}) = 0, v({3}) = 0,
v({1,2}) = 90, v({1,3}) = 80, v({2,3}) = 70,

v({1,2,3}) = 120.

1 2 3
1← 2← 3 0 90 30
1← 3← 2 0 40 80
2← 1← 3 90 0 30
2← 3← 1 50 0 70
3← 1← 2 80 40 0
3← 2← 1 50 70 0
total 270 240 210
Shapley value 45 40 35

Let y = 〈50,40,30〉
C e(C,x) e(C,y)

{1} -45 0
{2} -40 0
{3} -35 0

{1,2} 5 0
{1,3} 0 0
{2,3} -5 0

{1,2,3} 120 0

This example shows that the Shapley value may not be in the
core, and may not be the nucleolus.
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There are |C|! permutations in which all members of C

precede i.
There are |N \ (C∪ {i})|! permutations in which the
remaining members succede i, i.e. (|N|− |C|−1)!.

The Shapley value Shi(N,v) of the TU game (N,v) for player i
can also be written

Shi(N,v) =
∑

C⊆N\{i}

|C|!(|N|− |C|−1)!
|N|!

(v(C∪ {i})− v(C)) .

Using definition, the sum is over 2|N|−1 instead of |N|!.

Stéphane Airiau (ILLC) - Cooperative Games Shapley Value 46



Some interesting properties

Let (N,v) and (N,u) be TU games and φ be a value function.
Symmetry or substitution (SYM): If ∀(i, j) ∈N,
∀C⊆N \ {i, j}, v(C∪ {i}) = v(C∪ {j}) then φi(N,v) = φj(N,v)

Dummy (DUM): If ∀C⊆N \ {i} v(C) = v(C∪ {i}), then
φi(N,v) = 0.
Additivity (ADD): Let (N,u + v) be a TU game defined by
∀C⊆N, (u + v)(N) = u(N)+ v(N). φ(u + v) = φ(u)+φ(v).

Theorem
The Shapley value is the unique value function φ that sat-
isfies (SYM), (DUM) and (ADD).
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Discussion about the axioms

SYM: it is desirable that two subsitute agents obtain the
same value 4

DUM: it is desirable that an agent that does not bring
anything in the cooperation does not get any value. 4

What does the addition of two games mean?
+ if the payoff is interpreted as an expected payoff, ADD is a

desirable property.
+ for cost-sharing games, the interpretation is intuitive: the

cost for a joint service is the sum of the costs of the
separate services.

- there is no interaction between the two games.
- the structure of the game (N,v +w) may induce a behavior

that has may be unrelated to the behavior induced by either
games (N,v) or (N,w).

The axioms are independent. If one of the axiom is dropped,
it is possible to find a different value function satisfying the
remaining two axioms.
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Some properties

Note that other axiomatisations are possible.
Theorem

For superadditive games, the Shapley value is an imputa-
tion.

Lemma
For convex game, the Shapley value is in the core.
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