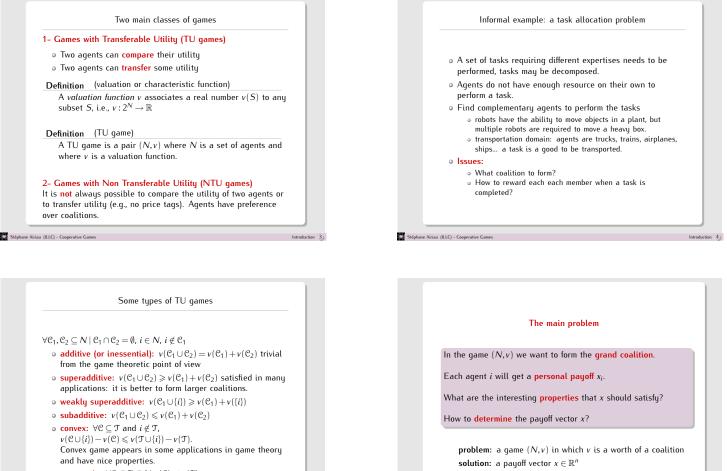
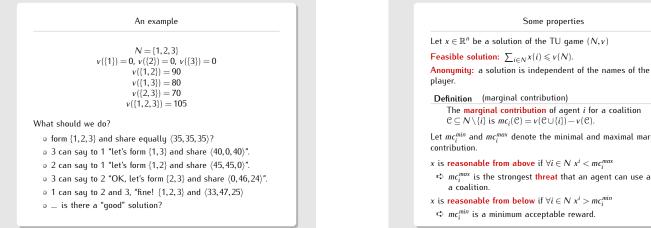
Cooperative Games

Stéphane Airiau


Institute for Logic, Language & Computations (ILLC) University of Amsterdam

12th European Agent Systems Summer School (EASSS 2010) Ecole Nationale Supérieure des Mines de Saint-Etienne Saint Etienne, France August 23rd 2010

Stéphane Airiau (ILLC) - Cooperative Games

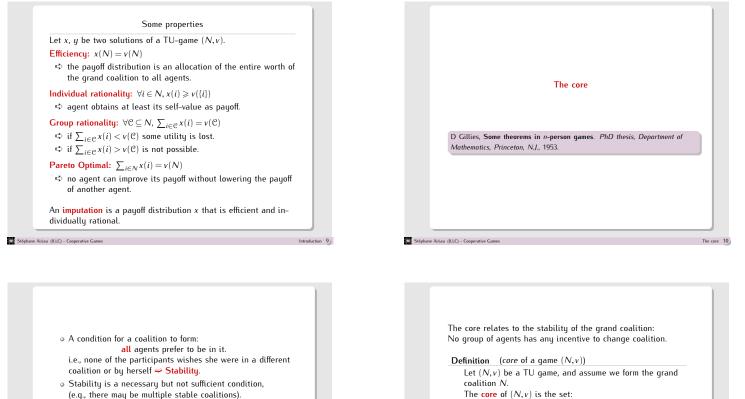

Why study coalitional games? Coalitional (or Cooperative) games are a branch of game theory in which cooperation or collaboration between agents can be modeled. Coalitional games can also be studied from a computational point of view (e.g., the problem of succint reprensentation and reasoning). A coalition may represent a set of: persons or group of persons (labor unions, towns) objectives of an economic project artificial agents We have a population N of n agents. Definition (Coalition) A coalition C is a set of agents: $C \in 2^N$. Stéphane Airiau (ILLC) - Cooperative Games

Stéphane Airiau (ILLC) - Cooperative Ga

Stéphane Airiau (ILLC) - Cooperative Games

• monotonic: $\forall \mathcal{C} \subseteq \mathcal{T} \subseteq \mathcal{N} \ v(\mathcal{C}) \leq v(\mathcal{T}).$

Stéphane Airiau (ILLC) - Cooperative Games

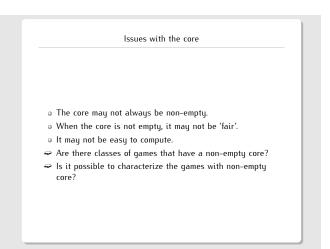

Introduction 7

Definition (marginal contribution) The marginal contribution of agent *i* for a coalition $\mathcal{C} \subseteq N \setminus \{i\}$ is $mc_i(\mathcal{C}) = v(\mathcal{C} \cup \{i\}) - v(\mathcal{C}).$ Let $\mathit{mc}_{i}^{\mathit{min}}$ and $\mathit{mc}_{i}^{\mathit{max}}$ denote the minimal and maximal marginal

Some properties

x is reasonable from above if $\forall i \in N \ x^i < mc_i^{max}$

- $r = mc_i^{max}$ is the strongest threat that an agent can use against a coalition.
- x is reasonable from below if $\forall i \in N \ x^i > mc_i^{min}$ $rac{min}{i}$ is a minimum acceptable reward.


The core 11

- (e.g., there may be multiple stable coalitions). • The core is a stability concepts where no agents prefer to
- deviate to form a different coalition. • For simplicity, we will only consider the problem of the
- stability of the grand coalition:
- ✓ Is the grand coalition stable? ⇔ Is the core non-empty?

Stéphane Airiau (ILLC) - Cooperative Games

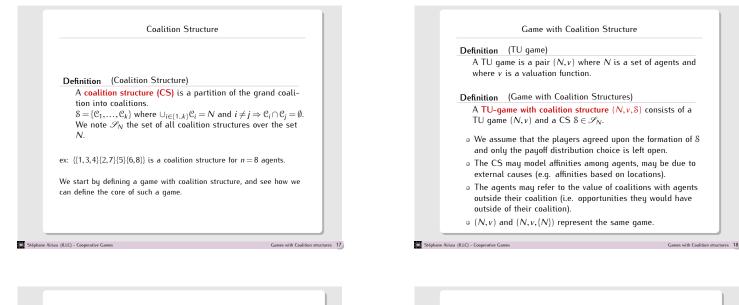
Weighted graph games $N = \{1, 2\}$ $v(\{1\}) = 5, v(\{2\}) = 5$ $v(\{1,2\}) = 20$ $core(N, v) = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_1 \ge 5, x_2 \ge 5, x_1 + x_2 = 20\}$ 201 15 10 01 10 15 20 The core may not be fair: the core only considers stability. Stéphane Airiau (ILLC) - Cooperative Games The core 13

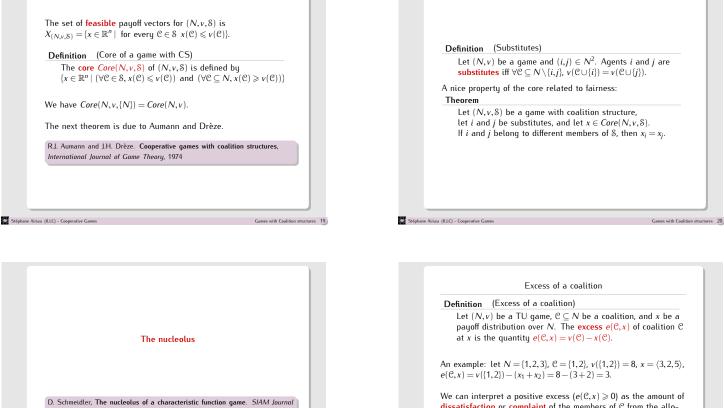
Definition (Convex games) A game (N, v) is **convex** iff $\forall \mathfrak{C} \subseteq \mathfrak{T} \text{ and } i \notin \mathfrak{T}, \, v(\mathfrak{C} \cup \{i\}) - v(\mathfrak{C}) \leqslant v(\mathfrak{T} \cup \{i\}) - v(\mathfrak{T}).$ TU-game is convex if the marginal contribution of each player increases with the size of the coalition he joins. Theorem A TU game (N, v) is convex iff for all coalition S and T $v(S) + v(T) \leq v(S \cup T) + v(S \cap T)$ Theorem A convex game has a non-empty core The core 15

 $Core(N, v) = \{x \in \mathbb{R}^n \mid x \text{ is a group rational imputation}\}$

 $Core(N, v) = \{x \in \mathbb{R}^n \mid x(N) \leqslant v(N) \land x(\mathcal{C}) \ge v(\mathcal{C}) \ \forall \mathcal{C} \subseteq N\}$

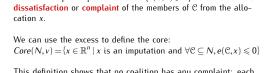
Equivalentlu.


Stéphane Airiau (ILLC) - Cooperative Games


Stéphane Airiau (ILLC) - Cooperative Games

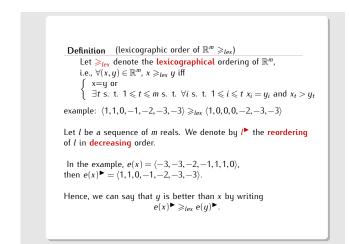
The core 12

The core 14



The nucleolus 21

D. Schmeidler, The nucleolus of a characteristic function game. S/AM Journal of applied mathematics, 1969.

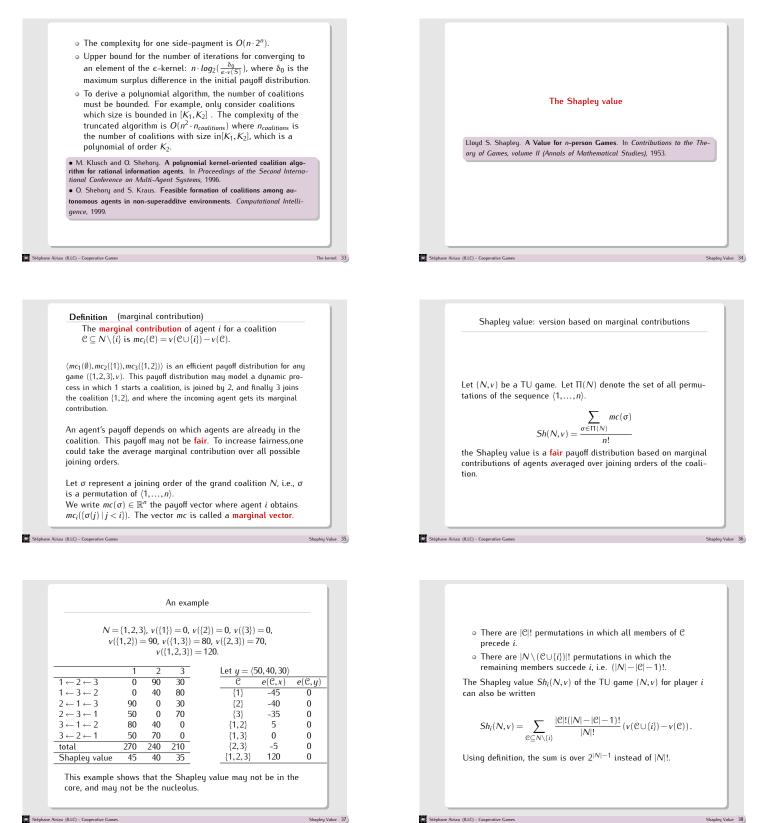

Stéphane Airiau (ILLC) - Cooperative Games

 $N = \{1, 2, 3\}, v(\{i\}) = 0 \text{ for } i \in \{1, 2, 3\}$ $v(\{1,2\}) = 5, v(\{1,3\}) = 6, v(\{2,3\}) = 6$ v(N) = 8Let us consider two payoff vectors $x = \langle 3, 3, 2 \rangle$ and $y = \langle 2, 3, 3 \rangle$. Let e(x) denote the sequence of excesses of all coalitions at x. $x = \langle 3, 3, 2 \rangle$ y = (2, 3, 3)coalition $\mathcal{C} = e(\mathcal{C}, x)$ coalition $C \mid e(C, y)$ -3 {2} -3 {2} -3 {3} -2 {3} -3 {1,2} -1 {1,2} 0 $\{1,3\}$ 1 {1.3} 1 {2.3} 0 {2.3} {1,2,3} 0 {1,2,3} 0 Which payoff should we prefer? x or y? Let us write the excess in the decreasing order (from the greatest excess to the smallest) (1, 1, 0, -1, -2, -3, -3)(1,0,0,0,-2,-3,-3)Stéphane Airiau (ILLC) - Cooperative Games The nucleolus 23

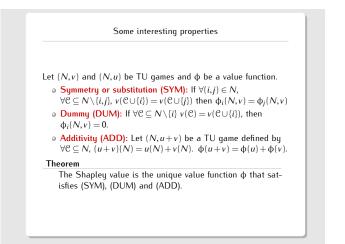
This definition shows that no coalition has any complaint: each coalition's demand can be granted.

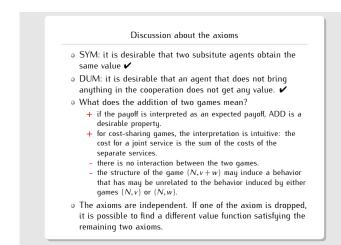
Stéphane Airiau (ILLC) - Cooperative Games

lus 22


Definition (Nucleolus)	Theorem
	Let (N, v) be a superadditive game and $\exists mp$ be its set of
Let (N, v) be a TU game. Let $\Im mp$ be the set of all imputations.	imputations. Then, $\exists mp \neq \emptyset$.
The nucleolus $Nu(N,v)$ is the set	
$Nu(N,v) = \left\{ x \in \exists mp \mid \forall y \in \exists mp \ e(y)^{\blacktriangleright} \ge_{lex} e(x)^{\blacktriangleright} \right\}$	Proof
	Let (N, v) be a superadditive game.
Theorem (New emptymess of the nucleolus)	Let x be a payoff distribution defined as follows:
Theorem (Non-emptyness of the nucleolus)	$x_i = v(\{i\}) + \frac{1}{ N } \left(v(N) - \sum_{j \in N} v(\{j\}) \right).$
Let (N, v) be a TU game, if $\exists mp \neq \emptyset$,	
then the nucleolus $Nu(N,v)$ is non-empty.	• $v(N) - \sum_{j \in N} v(\{j\}) > 0$ since (N, v) is superadditive.
	It is clear x is individually rational
For a TU game (N, v) the nucleolus $Nu(N, v)$ is non-empty when	It is clear x is efficient
$\Im mp \neq \emptyset$, which is a great property as agents will always find an	Hence, $x \in \Im mp$.
agreement. But there is more!	
Theorem The nucleolus has at most one element	Theorem
	Let (N, v) be a TU game with a non-empty core. Then
In other words there is an accompany which is stable according to	$Nu(N,v) \subseteq Core(N,v)$
In other words, there is one agreement which is stable according to the nucleolus.	
Airiau (ILLC) - Cooperative Games The nucleolus 25	Stéphane Airiau (ILLC) - Cooperative Games The r
	Excess
The kernel.	
	Definition (Excess)
	For a TU game (N, v) , the excess of coalition $\mathcal C$ for a payoff
	distribution x is defined as $e(\mathcal{C}, x) = v(\mathcal{C}) - x(\mathcal{C})$.
M. Davis. and M. Maschler, The kernel of a cooperative game. Naval Re-	We saw that a positive excess can be interpreted as an amount
search Logistics Quarterly, 1965.	of complaint for a coalition.
	We can also interpret the excess as a potential to generate more
	utility.
	utuity.
	utuity.
Ariau (ILLC) - Cooperative Games The kernet 27	Utility.
Ariau (ILLC) - Cooperative Games The kernet 27	
Definition (Maximum surplus)	Strjuhane Airlas (ILC) - Cooperative Games TI
	Strjuhane Airlas (ILC) - Cooperative Games TI
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of	Stiphane Ariau (ILLC) - Corporative Games. Th
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e.,	Stiphare Arias (ILC) - Cooperative Games To Properties Theorem
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e.,	Stylware Arian (ILC) - Cooperative Games
Definition (Maximum surplus) For a TU game (N,v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e.,	Stiphare Arian (ILC) - Cooperative Games T
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes $kbut does exclude l, i.e.,s_{k,l}(x) = \max_{\substack{0 \le N \ \ k \in \mathbb{C}, \ l \notin \mathbb{C}}} e^{(\mathcal{C}, x)}.$	$\begin{tabular}{l l} \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{0 \le N \mid k \in \mathbb{C}, l \notin \mathbb{C}}} e^{(\mathcal{C}, x)}.$ Definition (Kernel)	Stephane Ariau (ILC) - Cooperative Games $ \frac{Properties}{Let (N, v, S) a game with coalition structure, and let \Im mp \neq \emptyset. Then we have Nu(N, v, S) \subseteq K(N, v, S)Theorem$
Definition (Maximum surplus)For a TU game (N,v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{\mathcal{C} \subseteq N \mid k \in \mathcal{C}, k \notin \mathcal{C}}} e^{(\mathcal{C}, x)}$.Definition (Kernel)Let (N,v,S) be a TU game with coalition structure. The	Image: Stephene Atriau (ILC) - Cooperative Games Image: New York Cooperative Games Image: New York Cooperative Games Image: Image: Image: Properties Image: Image: New York Cooperative Games Image: Image: Image: New York Cooperative Games Image: Ima
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{\mathbb{C} \subseteq N \ k \in \mathbb{C}, l \notin \mathbb{C}}} e^{(\mathbb{C}, x)}$. Definition (Kernel) Let (N, v, \mathbb{S}) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,\mathbb{S})}$ such that for	Image: Stephene Aviau (ILC) - Cooperative Games Image: Properties Image: Image: Description of the structure is and let $\exists mp \neq \emptyset$. Theorem Image: Elet (N, v, S) a game with coalition structure, and let $\exists mp \neq \emptyset$. Theorem Image:
$\begin{array}{l} \hline \textbf{Definition} (\text{Maximum surplus}) \\ \hline For a TU game (N,v), the maximum surplus s_{k,l}(x) of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., s_{k,l}(x) = \max_{\substack{\mathbb{C} \subseteq N \mid k \in \mathbb{C}, l \notin \mathbb{C}}} e(\mathbb{C}, x). \\ \hline \textbf{Definition} (\text{Kernel}) \\ \text{Let } (N,v,\mathbb{S}) \text{ be a TU game with coalition structure. The kernel is the set of imputations x \in X_{(N,v,\mathbb{S})} such that for every coalition \mathbb{C} \in CS, if (k,l) \in \mathbb{C}^2, k \neq l, then we have$	Image: Stephene Atriau (ILC) - Corporative Games Image: Properties Image: Description of the condition structure, and let $\exists mp \neq \emptyset$. Theorem Image: Elet $(N, v, \$)$ a game with coalition structure, and let $\exists mp \neq \emptyset$. Theorem Image: Let $(N, v, \$)$ a game with coalition structure, and let $\exists mp \neq \emptyset$. Theorem Image: Let $(N, v, \$)$ a game with coalition structure, and let $\exists mp \neq \emptyset$. The kernel $K(N, v, \$)$ of the game is non-empty. Proof
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{\mathbb{C} \subseteq N \ k \in \mathbb{C}, l \notin \mathbb{C}}} e^{(\mathbb{C}, x)}$. Definition (Kernel) Let (N, v, \mathbb{S}) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,\mathbb{S})}$ such that for	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{l} \hline \textbf{Definition} (\text{Maximum surplus}) \\ \hline For a TU game (N,v), the maximum surplus s_{k,l}(x) of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., s_{k,l}(x) = \max_{\substack{\mathbb{C} \subseteq N \mid k \in \mathbb{C}, l \notin \mathbb{C}}} e(\mathbb{C}, x). \\ \hline \textbf{Definition} (\text{Kernel}) \\ \text{Let } (N,v,\mathbb{S}) \text{ be a TU game with coalition structure. The kernel is the set of imputations x \in X_{(N,v,\mathbb{S})} such that for every coalition \mathbb{C} \in CS, if (k,l) \in \mathbb{C}^2, k \neq l, then we have$	Image: Stephene Atriau (ILC) - Corporative Games Image: Properties Image: Description of the condition structure, and let $\exists mp \neq \emptyset$. Theorem Image: Elet $(N, v, \$)$ a game with coalition structure, and let $\exists mp \neq \emptyset$. Theorem Image: Let $(N, v, \$)$ a game with coalition structure, and let $\exists mp \neq \emptyset$. Theorem Image: Let $(N, v, \$)$ a game with coalition structure, and let $\exists mp \neq \emptyset$. The kernel $K(N, v, \$)$ of the game is non-empty. Proof
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{0 \leq N \ k \in \mathcal{C}}, l \notin \mathcal{C}} e(\mathcal{C}, x).$ Definition (Kernel) Let $(N, v, 8)$ be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,8)}$ such that for every coalition $\mathcal{C} \in CS$, if $(k, l) \in \mathbb{C}^2, k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{\mathbb{C} \subseteq N \mid k \in \mathbb{C}, l \notin \mathbb{C}}} e(\mathbb{C}, x).$ Definition (Kernel) Let (N, v, S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $\mathcal{C} \in CS$, if $(k, l) \in \mathbb{C}^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$.	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{0 \leq N \ k \in \mathcal{C}}, l \notin \mathcal{C}} e(\mathcal{C}, x).$ Definition (Kernel) Let $(N, v, 8)$ be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,8)}$ such that for every coalition $\mathcal{C} \in CS$, if $(k, l) \in \mathbb{C}^2, k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is	Image: Stephane Actaux (BLC) - Cooperative Cames Properties Image: Properties Image: End of the content o
Definition (Maximum surplus) For a TU game (N, v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{0 \leq N \ k \in \mathcal{C}}, l \notin \mathcal{C}} e(\mathcal{C}, x).$ Definition (Kernel) Let $(N, v, 8)$ be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,8)}$ such that for every coalition $\mathcal{C} \in CS$, if $(k, l) \in \mathbb{C}^2, k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is	Properties Image: Im
Definition (Maximum surplus) For a TU game (N,v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{0 \leq N \ k \in C, l \notin C}} e(C, x)$. Definition (Kernel) Let (N,v, S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k, l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.	Properties Image: Im
Definition (Maximum surplus) For a TU game (N,v), the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a paujoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{e \subseteq N \mid k \in C, I \notin e} e(C, x)$. Definition (Kernel) Let (N,v,S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k,l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.	Theorem
Definition (Maximum surplus) For a TU game (N,v) , the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{\substack{0 \leq N \ k \in C, l \notin C}} e(C, x)$. Definition (Kernel) Let (N,v, S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k, l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.	Properties Image: Im
Definition (Maximum surplus) For a TU game (N,v), the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a paujoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{e \subseteq N \mid k \in C, I \notin e} e(C, x)$. Definition (Kernel) Let (N,v,S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k,l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.	Image: Stylene Actual (ILC) - Corporative Games Properties Image: Description of the style of
Definition (Maximum surplus) For a TU game (N,v), the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a paujoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{e \subseteq N \mid k \in C, I \notin e} e(C, x)$. Definition (Kernel) Let (N,v,S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k,l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.	Theorem Properties Let (N,v,S) a game with coalition structure, and let Jmp ≠ Ø. Then we have Nu(N,v,S) ⊆ K(N,v,S) Theorem Let (N,v,S) a game with coalition structure, and let Jmp ≠ Ø. Then we have Nu(N,v,S) ⊆ K(N,v,S) Theorem Let (N,v,S) a game with coalition structure, and let Jmp ≠ Ø. The kernel K(N,v,S) of the game is non-empty. Proof Since the Nucleolus is non-empty when Jmp ≠ Ø, the proof is immediate using the theorem above. Immediate using the theorem above. Computing a kernel-stable payoff distribution Algorithm 1: Transfer scheme converging to a e-Kernel-stable
Definition (Maximum surplus) For a TU game (N,v), the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a paujoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{e \subseteq N \mid k \in C, I \notin e} e(C, x)$. Definition (Kernel) Let (N,v,S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k,l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$.	$\begin{tabular}{ c c } \hline \end{tabular} \en$
Definition (Maximum surplus) For a TU game (N,v), the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{e \subseteq N \mid k \in C, t \not \in e} e(C, x)$. Definition (Kernel) Let (N,v, S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,S)}$ such that for every coalition $C \in CS$, if $(k, l) \in C^2$, $k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{kk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$. Are: (LL) - Cognetic Games The computing a kernel-stable payoff distribution	$\begin{tabular}{ c c c c c c c c c c c c c $
Definition (Maximum surplus) For a TU game (N,v), the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \max_{e \subseteq N \mid k \in e, l \notin e} e(C, x)$. Definition (Kernel) Let (N,v, 8) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N,v,8)}$ such that for every coalition $C \in CS$, if $(k,l) \in C^2, k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{kl}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$. New (LLC) - Composition G a kernel-stable payoff distribution • There is a transfer scheme converging to an element in the	Theorem Et (N,v,S) a game with coalition structure, and let Jmp ≠ Ø. Then we have Nu(N,v,S) ⊆ K(N,v,S) Theorem Let (N,v,S) a game with coalition structure, and let Jmp ≠ Ø. Then we have Nu(N,v,S) ⊆ K(N,v,S) Theorem Let (N,v,S) a game with coalition structure, and let Jmp ≠ Ø. The kernel K(N,v,S) of the game is non-empty. Proof Since the Nucleolus is non-empty when Jmp ≠ Ø, the proof is immediate using the theorem above. Immediate using the theorem above.
Definition (Maximum surplus) For a TU game (N, v), the maximum surplus $s_{k,l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e., $s_{k,l}(x) = \underset{e \subseteq N \mid k \in \mathbb{C}, l \notin \mathbb{C}}{p_{e_{i} \in N}(k \in \mathbb{C}, k \in \mathbb{C})}$. Definition (Kernel) Let (N, v, S) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(Nv,S)}$ such that for every coalition $\mathbb{C} \in CS$, if $(k, l) \in \mathbb{C}^2, k \neq l$, then we have either $s_{kl}(x) \ge s_{lk}(x)$ or $x_k = v(\{k\})$. $s_{kl}(x) < s_{lk}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_k = v(\{k\})$. Arew (LLC) - Cognetive Came The termel -stable payoff distribution • There is a transfer scheme converging to an element in the kernel. • There is a transfer scheme converging to an element in the kernel.	$\begin{tabular}{ c c c c c c c c c c c c c $

- There is a transfer scheme converging to an element in the kernel.
- It may require an infinite number of small steps.
- $_{\odot}$ We can consider the $\varepsilon\text{-kernel}$ where the inequality are defined up to an arbitrary small constant $\boldsymbol{\varepsilon}.$


R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the American Mathematical Society, 1968.


Stéphane Airiau (ILLC) - Cooperative Games

// payment should be individually rational

Stéphane Airiau (ILLC) - Cooperative Games

Some properties	
	t other axiomatisations are possible.
Theorer	n
For s	superadditive games, the Shapley value is an imputa-
tion.	
Lemma	
For	convex game, the Shapley value is in the core.

Stéphane Airiau (ILLC) - Cooperative Games

Shapley Value 41