Uncertainty & Decision von Neumann Morgenstern's Theorem

Stéphane Airiau & Umberto Grandi

ILLC - University of Amsterdam

von Neumann Morgenstern's Theorem

- A strategy to build an **interval scale**.
- Ask the decision maker her preferences over **risky** acts.
- The outcome of the act cannot be controlled by the decision maker, but the probabilities are known (decision under risk).
- preferences over risky acts \rightarrow utility function u
- vNM propose a set of constraints on rational preferences (or axioms).
- If a decision maker follows these axioms, she behaves as if she maximizes expected utility.

- *X* is the set of outcomes
- Risky acts are lotteries with finite support:

$$L = \left\{ P : X \to [0,1] \mid \begin{array}{c} \#\{x | P(x) > 0\} < \infty \\ \sum_{x \in X} P(x) = 1 \end{array} \right\}$$

• A mixing operation on *L* is defined as follows: for $A, B \in L$, for a given probability $p \in [0, 1]$, $pA + (1-p)B \in L$ is given by

$$(pA + (1-p)B)(x) = pA(x) + (1-p)B(x)$$

"if *A* and *B* are lotteries, then so is the prospect of getting *A* with probability *p* and *B* with probability 1-p.

the decision maker gives her preferences > over lotteries (no longer on a set of certain outcomes)

$$A \succ B \Rightarrow B \not\succ A$$

 $A \succ B$ or $A \sim B$ or $B \succ A$

If
$$A \succ B$$
 and $B \succ C$ then $A \succ C$

The issues raised when we talked about preferences over certain outcomes remain the same.

vNM3 (continuity) For every $A \succ B \succ C$ there exists p and $q \in (0,1)$ such that $pA + (1-p)C \succ B \succ qA + (1-q)C$

$A \leftrightarrow \in 10M, B \leftrightarrow \in 9M, A \leftrightarrow \in 0.$

With continuity axiom, if $A \succ B \succ C$, then there is

p such that \in 10*M* with prob *p* and \in 0 with prob 1−*p* ≻ \in 9 for certain.

q such that \in 9*M* for certain $\succ \in$ 10 with prob *p* and \in 0 with prob 1 – *q*.

vNM4 (independence) $A \succ B$ iff $pA + (1-p)C \succ pB + (1-p)C$

Some kind of independence of irrelevant alternatives: either p or 1-p occurs (so you can disregard the other event).

Example:

- lottery A: 1M € for sure
- lottery B: 0 € with probability 0.1 or 5M € with probability 0.9

Suppose you prefer lottery *A* to lottery *B*, i.e. $A \succ B$.

Allais paradox can appear as there are **no constraints** on the lottery *C*.

- pA + (1-p)C: $0 \in$ with probability 0.9 or $1M \in$ with 0.1
- pB + (1-p)C: $0 \in$ with probability 0.91 or $5M \in$ with probability 0.09

Now, you cannot guarantee $1M \in$ for sure, so it may now be worth getting the risk to get $5M \in$.

Theorem (vNM theorem)

The **preference relation** \succ satisfies vNM 1–4 iff there exists a function *u* that takes a lottery as its argument and returns a real number between 0 and 1 with the following properties:

- (1) $A \succ B$ iff u(A) > u(B).
- (2) u(pA+(1-p)B) = pu(A) + (1-p)u(B).
- (3) for every other function satisfying (1) and (2), there are numbers c > 0 and $d \in \mathbb{R}$ such that $u' = c \cdot u + d$.

- From (1), we can see that $A \sim B$ iff u(A) = u(B).
- (2) is the expected utility property: anyone agreeing with the 4 axioms acts in accordance with the principle of maximizing expected utility.
- (1) and (2) are the representation part of the theorem
- (3) is the uniqueness part: all functions satisfying (1) and (2) are all positive linear transformation of each other → this is an interval scale.

- axioms are too strong
- No action guidance: to compute the utility, the decision maker should first know her preferences over lotteries. the output is not a preference over acts, it is indeed the input!
- The output is a set of functions that can be used for describing the agent as an expected utility maximiser.
- Agents do not prefer an act *because* its expected utility is higher, but it can only be described as if they were acting from this principle.
- → For some agents that are not fully rational
 - detect any inconsistencies in her preferences
 - the expected utility function may help to fill some gaps (preferences over lotteries that haven't been computed)
 - Utility without chance: meaning of utility is linked to preference over lotteries? Does utility have relationship with risk?