Uncertainty & Decision Introduction and basic of representation of preference

Stéphane Airiau & Umberto Grandi

ILLC - University of Amsterdam

- Learn the basics of individual decision under uncertainty
- Learn the basics of collective decision (with complete information)
- Explore the literature on collective decision theory under uncertainty

Structure of the project

- week 1 to 3: lectures
- week 4: Presentation of one article from the literature (June 24th?)
- week 5: write a final paper

Schedule (tentative):

- Introduction + Representation (today)
- von Neumann Morgenstern theorem (Tuesday 7th)
- Approach from Savage and De Finetti (Fri 10th)
- Arrow's theorem (Mon 13th)
- Arrow-Debreu's theorem (Wed 15th)
- Overview of aggregation under uncertainty (Fri 17th)
- Condorcet Jury Theorem (Tue 21st)

References:

- Notes on the theory of Choice. D. Kreps
- Rational choice. I. Gilboa
- Theory of decision under uncertainty. I. Gilboa
- An introduction to Decision Theory. M. Peterson
- Theory of Distributed Justice. J. Roemer
- Theory of value. G. Debreu

descriptive: building theories that seek to explain and predict how people actually make decision **normative**: yield prescription about what decision makers are rationally required or ought to do.

- normative theory can be expected to withstand time and cultural differences
- maybe it is possible to build theories in which beliefs and desires may be aggregated into rational decisions.

A decision is **rational** iff the decision maker chooses to do what she has most reason to do at the point in time which the decision is made (instrumental rationality). **under Complete knowledge under Risk**: the decision maker knows the probability of the outcomes. **under ignorance**: the probabilities are unknown or nonexistent.

under uncertainty: synonym for ignorance, or broader term covering risk and ignorance.

When there are many decision makers:

- game theory: hypothesis about the opponent
- social choice theory: in most cases, decision under complete information.

Representation

Let X be a set of outcomes and let \succ be a binary relation to express ones strict preferences over the outcomes.

- **asymmetry**: $x \succ y \Rightarrow y \not\succ x$
- **transitivity**: $(x \succ y \land y \succ z) \Rightarrow x \succ z$ has been questioned
- **irreflexivity**: $\forall x \in X \ x \not\succ x$
- negative transitivity: x ≯ y ∧ y ≯ z ⇒ x ≯ z stronger version of transitivity (neg. transitivity implies that indifference is transitive)

Lemma

A binary relation *B* is negatively transitive iff

$$xBz \Rightarrow (\forall y \in X, xBy \lor yBz)$$

Is it reasonable to ask for neg transitivity?

Definition (Preference relation)

A binary relation \succ is called a **preference relation** if it is **asymmetric** and **negatively transitive**

Proposition

If \succ is a preference relation, then \succ is irreflexive, transitive and acyclic.

We can define weak preference (\succeq) and indifference (\sim) relations by $x \succeq y$ if $y \nvDash x$ and $x \sim y$ if $x \nvDash y$ and $y \nvDash x$.

Proposition

If \succ is a preference relation, then

- $\forall (x,y) \in X^2$, exactly one of $x \succ y$, $y \succ x$ or $x \sim y$ holds.
- \succeq is complete and transitive.
- ${\color{black} \bullet}$ \sim is reflexive, symmetric, and transitive.

•
$$w \succ x$$
, $x \sim y$, $y \succ z \Rightarrow w \succ y$ and $x \succ z$.

•
$$x \succ y$$
 iff $x \succ y$ or $x \sim y$.

•
$$x \succ y$$
 and $y \succeq x \Rightarrow x \sim y$.

Proposition

We can define \succ and \sim from a binary relation \succeq $x \succ y$ if $y \not\succeq x$ $x \sim y$ if $x \succeq y$ and $y \succeq x$. If \succeq is complete and transitive, then \succ is a preference relation. **Assumption:** $x \succ y$ iff you choose *x* over *y* whenever given the opportunity. \neg behavior reveals the preference.

This is debatable, perhaps

- You chose by mistake!
- You did not know *y* was available!
- In this case, it is more difficult to distinguish strict preference with indifference.

We consider a choice function *c* and we generate a binary relation \succ such that

 $x \succ y$ iff $x \in c(\{x, y\})$.

Let $\mathcal{P}(X)$ be the set of non-empty subset of *X*.

Definition (choice function)

A choice function for a finite set *X* if a function $c : \mathcal{P}(X) \to \mathcal{P}(X)$ such that $\forall A \subseteq X, c(A) \subseteq A$.

We define a function $c(\cdot, \succ)$ of $\mathcal{P}(X)$ by $c(A, \succ) = \{x \in A | \forall y \in A, y \not\succ x\}.$

A choice function is **normal** or **rationalizable** iff the binary relation \succ generated from *c* coincides with $c(\cdot, \succ)$.

If a binary relation is **acyclic**, then $c(\cdot, \succ)$ is **a choice function**.

Proposition

For a binary relation \succ , $c(\cdot, \succ)$ is a choice function iff \succ is acyclic

Definition (Houthakker's axiom)

if $x, y \in A \cap B$ and $x \in c(A)$ and $y \in c(B)$ then $x \in c(B)$

Definition (Sen α – Contraction consistency)

if $x \in B \subseteq A$ and $x \in c(A)$ then $x \in c(B)$.

"If the world champion is a Pakistani, then he must be champion of Pakistan"

Definition (Sen β – Expansion Consistency)

if $x, y \in c(A), A \subseteq B$ and $y \in c(B)$ then $x \in c(B)$.

"If the world champion is a Pakistani, then all champions of Pakistan are also world champions"

For an arbitrary binary relation \succ , $c(\cdot, \succ)$ satisfies Sen's α property.

Proposition

If \succ is a preference relation, then $c(\cdot, \succ)$ satisfies Houthakker's axiom, hence both Sen's α and β conditions.

Proposition

A choice function *c* satisfies both properties α and β then there exists a preference relation \succ such that *c* is $c(\cdot, \succ)$.

Ordinal utility

We are looking for a numerical representation of \succ , i.e. a function $u: X \to \mathbb{R}$ such that $x \succ y$ iff u(x) > u(y).

NB:

- **ordinal scales**: better object are assigned higher numbers, the numbers do not reflect any information about differences or ratios between objects.
- interval scales: differences have a meaning
- ratio scales: ratios have a meaning

For *X* countable, a binary relation \succ is a preference relation iff there exists a function $u: X \to \mathbb{R}$ such that $x \succ y$ iff u(x) > u(y).

If the set is uncountable, there may not exist a function u that represents the preference relation.

E.g. the lexicographic preference relation.

Proposition

For an arbitrary set *X* and binary relation \succ , there exists a function $u : X \to \mathbb{R}$ such that the property $(x \succ y \text{ iff } u(x) > u(y))$ holds iff \succ is a preference relation and there is a countable \succ -order dense subset *Z* of *X*.

Theorem

Given a set *X*, a preference relation \succ and functions *u* and *u'* that represent \succ , there exists an increasing function $f : \mathbb{R} \to \mathbb{R}$ such that

• *f* is strictly increasing

•
$$u' = f \circ u$$

Moreover, for any increasing function $g : \mathbb{R} \to \mathbb{R}, g \circ u$ represents \succ .

Extensions

Theorem

If *X* is a subset of a separable metric space, then \succ is a continuous preference relation iff there exists some continuous function $u: X \to \mathbb{R}$ such that $x \succ y$ iff u(x) > u(y).

