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2. Reasoning about Coalitions

Outline
In the previous chapter, we showed how coalitions can
be rationally formed

In this chapter, we show how one can use modal logic
to reason about their play and their outcome.
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2. Reasoning about Coalitions 1. Modal Logic

2.1 Modal Logic
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2. Reasoning about Coalitions 1. Modal Logic

Why logic at all?

framework for thinking about systems,
makes one realise the implicit assumptions,
. . . and then we can:
investigate them, accept or reject them,
relax some of them and still use a part of the formal
and conceptual machinery;

reasonably expressive but simpler and more rigorous
than the full language of mathematics.
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2. Reasoning about Coalitions 1. Modal Logic

Why logic at all?

Verification: check specification against
implementation
Executable specifications
Planning as model checking

Game solving, mechanism design, and reasoning
about games have natural interpretation as logical
problems

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 7/70



2. Reasoning about Coalitions 1. Modal Logic

Why logic at all?

Verification: check specification against
implementation
Executable specifications
Planning as model checking

Game solving, mechanism design, and reasoning
about games have natural interpretation as logical
problems

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 7/70



2. Reasoning about Coalitions 1. Modal Logic

Modal logic is an extension of classical logic by new
connectives��� and ♦♦♦: necessity and possibility.

“���p is true” means p is necessarily true, i.e. true in
every possible scenario,
“♦♦♦p is true” means p is possibly true, i.e. true in at least
one possible scenario.
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2. Reasoning about Coalitions 1. Modal Logic

Various modal logics:

knowledge→ epistemic logic,
beliefs→ doxastic logic,
obligations→ deontic logic,
actions→ dynamic logic,
time→ temporal logic,

and combinations of the above
Most famous multimodal logic: BDI logic of beliefs,
desires, intentions (and time)
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2. Reasoning about Coalitions 1. Modal Logic

Definition 2.1 (Kripke Semantics)
Kripke model (possible world model):

M = 〈W , R, π〉,

W is a set of possible worlds
R ⊆ W ×W is an accessibility relation
π : W → P(Π) is a valuation of propositions.

M,w |= �ϕ iff for every w′ ∈ W with wRw′ we have that
M,w′ |= ϕ.
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2. Reasoning about Coalitions 1. Modal Logic

An Example

q0

q2 q1

x=2

x=0

x=1

x
.
= 1 → Ksx

.
= 1
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2. Reasoning about Coalitions 2. ATL

2.2 ATL
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2. Reasoning about Coalitions 2. ATL

ATL: What Agents Can Achieve

ATL: Agent Temporal Logic [Alur et al. 1997]
Temporal logic meets game theory
Main idea: cooperation modalities

〈〈A〉〉Φ: coalition A has a collective strategy to enforce Φ
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2. Reasoning about Coalitions 2. ATL

〈〈jamesbond〉〉♦win:
“James Bond has an infallible plan to eventually win”

〈〈jamesbond, bondsgirl〉〉funU shot:
“James Bond and his girlfriend are able to have fun
until someone shoots at them”

“Vanilla” ATL: every temporal operator preceded by
exactly one cooperation modality;
ATL*: no syntactic restrictions;
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2. Reasoning about Coalitions 2. ATL

ATL Models: Concurrent Game Structures

Agents, actions, transitions, atomic propositions
Atomic propositions + interpretation
Actions are abstract
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2. Reasoning about Coalitions 2. ATL

Definition 2.2 (Concurrent Game Structure)
A concurrent game structure is a tuple
M = 〈Agt, St, π, Act, d, o〉, where:

Agt: a finite set of all agents
St: a set of states
π: a valuation of propositions
Act: a finite set of (atomic) actions
d : Agt× St→ P(Act) defines actions available to an
agent in a state
o: a deterministic transition function that assigns
outcome states q′ = o(q, α1, . . . , αk) to states and tuples
of actions
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2. Reasoning about Coalitions 2. ATL

Example: Robots and Carriage
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2. Reasoning about Coalitions 2. ATL

Definition 2.3 (Strategy)
A strategy is a conditional plan.

We represent strategies by functions sa : St→ Act.

Function out(q,SA) returns the set of all paths that may
result from agents A executing strategy SA from state q
onward.
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2. Reasoning about Coalitions 2. ATL

Definition 2.4 (Semantics of ATL)

M, q |= p iff p is in π(q);
M, q |= ϕ ∧ ψ iffM, q |= ϕ andM, q |= ψ;

M, q |= 〈〈A〉〉Φ iff there is a collective strategy SA such
that, for every path λ ∈ out(q, SA), we
haveM,λ |= Φ.

M,λ |= ©ϕ iffM,λ[1] |= ϕ;
M,λ |= ♦ϕ iffM,λ[i] |= ϕ for some i ≥ 0;
M,λ |= �ϕ iffM,λ[i] |= ϕ for all i ≥ 0;
M,λ |= ϕU ψ iff M,λ[i] |= ψ for some i ≥ 0, and

M,λ[j] |= ϕ forall 0 ≤ j ≤ i.
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2. Reasoning about Coalitions 2. ATL

Example: Robots and Carriage
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2. Reasoning about Coalitions 2. ATL

Temporal operators allow a number of useful concepts to
be formally specified

safety properties
liveness properties
fairness properties
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2. Reasoning about Coalitions 2. ATL

Safety (maintenance goals):
“something bad will not happen”
“something good will always hold”

Typical example:

�¬bankrupt

Usually: �¬....

In ATL:

〈〈os〉〉�¬crash

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 22/70



2. Reasoning about Coalitions 2. ATL

Safety (maintenance goals):
“something bad will not happen”
“something good will always hold”

Typical example:

�¬bankrupt

Usually: �¬....

In ATL:

〈〈os〉〉�¬crash

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 22/70



2. Reasoning about Coalitions 2. ATL

Safety (maintenance goals):
“something bad will not happen”
“something good will always hold”

Typical example:

�¬bankrupt

Usually: �¬....

In ATL:

〈〈os〉〉�¬crash

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 22/70



2. Reasoning about Coalitions 2. ATL

Safety (maintenance goals):
“something bad will not happen”
“something good will always hold”

Typical example:

�¬bankrupt

Usually: �¬....

In ATL:

〈〈os〉〉�¬crash

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 22/70



2. Reasoning about Coalitions 2. ATL

Liveness (achievement goals):
“something good will happen”

Typical example:

♦rich

Usually: ♦....

In ATL:

〈〈alice, bob〉〉♦paperAccepted
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2. Reasoning about Coalitions 2. ATL

Fairness (service goals):

“if something is attempted/requested, then it will be
successful/allocated”

Typical examples:
�(attempt → ♦success)

�♦attempt → �♦success

In ATL* (!):

〈〈prod, dlr〉〉�(carRequested → ♦carDelivered)
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2. Reasoning about Coalitions 2. ATL

Connection to Games

Concurrent game structure = generalized extensive
game

〈〈A〉〉γ: 〈〈A〉〉 splits the agents into proponents and
opponents
γ defines the winning condition
 infinite 2-player, binary, zero-sum game

Flexible and compact specification of winning
conditions
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2. Reasoning about Coalitions 2. ATL

Solving a game ≈ checking ifM, q |= 〈〈A〉〉γ

But: do we really want to consider all the possible
plays?

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 26/70



2. Reasoning about Coalitions 2. ATL

Solving a game ≈ checking ifM, q |= 〈〈A〉〉γ
But: do we really want to consider all the possible
plays?

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 26/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

2.3 Rational Play (ATLP)
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Game-theoretical analysis of games:

Solution concepts define rationality of players

maxmin
Nash equilibrium
subgame-perfect Nash
undominated strategies
Pareto optimality

Then: we assume that players play rationally
...and we ask about the outcome of the game under
this assumption

Role of rationality criteria: constrain the possible game
moves to “sensible” ones
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2. Reasoning about Coalitions 3. Rational Play (ATLP)
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start → ¬〈〈2〉〉♦money2

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 29/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

start → ¬〈〈1〉〉♦money1

start → ¬〈〈2〉〉♦money2

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 29/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

start → ¬〈〈1〉〉♦money1

start → ¬〈〈2〉〉♦money2

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 29/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

start → ¬〈〈1〉〉♦money1

start → ¬〈〈2〉〉♦money2

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 29/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

ATL + Plausibility (ATLP)

ATL: reasoning about all possible behaviors.

〈〈A〉〉ϕ: agents A have some collective strategy to enforce ϕ
against any response of their opponents.

ATLP: reasoning about plausible behaviors.

〈〈A〉〉ϕ: agents A have a plausible collective strategy to
enforce ϕ against any plausible response of their
opponents.

Important

The possible strategies of both A and Agt\A are restricted.
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

New in ATLP:

(set-pl ω) : the set of plausible profiles is set/reset to the
strategies described by ω.
Only plausible strategy profiles are considered!

Example: (set-pl greedy1)〈〈2〉〉♦money2
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Concurrent game structures with plausibility

M = (Agt, St,Π, π, Act, d, δ,Υ,Ω, ‖·‖)

Υ ⊆ Σ: set of (plausible) strategy profiles

Ω = {ω1, ω2, . . . }: set of plausibility terms
Example: ωNE may stand for all Nash equilibria

‖·‖ : St→ (Ω → P(()Σ)): plausibility mapping

Example: ‖ωNE ‖q = {(confess, confess)}

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 32/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Concurrent game structures with plausibility

M = (Agt, St,Π, π, Act, d, δ,Υ,Ω, ‖·‖)
Υ ⊆ Σ: set of (plausible) strategy profiles

Ω = {ω1, ω2, . . . }: set of plausibility terms
Example: ωNE may stand for all Nash equilibria

‖·‖ : St→ (Ω → P(()Σ)): plausibility mapping

Example: ‖ωNE ‖q = {(confess, confess)}

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 32/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Concurrent game structures with plausibility

M = (Agt, St,Π, π, Act, d, δ,Υ,Ω, ‖·‖)
Υ ⊆ Σ: set of (plausible) strategy profiles

Ω = {ω1, ω2, . . . }: set of plausibility terms
Example: ωNE may stand for all Nash equilibria

‖·‖ : St→ (Ω → P(()Σ)): plausibility mapping

Example: ‖ωNE ‖q = {(confess, confess)}

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 32/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Concurrent game structures with plausibility

M = (Agt, St,Π, π, Act, d, δ,Υ,Ω, ‖·‖)
Υ ⊆ Σ: set of (plausible) strategy profiles

Ω = {ω1, ω2, . . . }: set of plausibility terms
Example: ωNE may stand for all Nash equilibria

‖·‖ : St→ (Ω → P(()Σ)): plausibility mapping

Example: ‖ωNE ‖q = {(confess, confess)}

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 32/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform
sA

when only plausible strategy profiles from Υ are played

outΥ(q, sA) =

{λ ∈ St+ | ∃t ∈ Υ(sA) ∀i ∈ N
(
λ[i+ 1] = δ(λ[i], t(λ[i]))

)
}
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P : the players always show
same sides of their coins

s1: always show “heads”

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 33/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform
sA when only plausible strategy profiles from Υ are played

outΥ(q, sA) =

{λ ∈ St+ | ∃t ∈ Υ(sA) ∀i ∈ N
(
λ[i+ 1] = δ(λ[i], t(λ[i]))

)
}

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

P : the players always show
same sides of their coins

s1: always show “heads”

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 33/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform
sA when only plausible strategy profiles from Υ are played

outΥ(q, sA) =

{λ ∈ St+ | ∃t ∈ Υ(sA) ∀i ∈ N
(
λ[i+ 1] = δ(λ[i], t(λ[i]))

)
}

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

P : the players always show
same sides of their coins

s1: always show “heads”

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 33/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform
sA when only plausible strategy profiles from Υ are played

outΥ(q, sA) =

{λ ∈ St+ | ∃t ∈ Υ(sA) ∀i ∈ N
(
λ[i+ 1] = δ(λ[i], t(λ[i]))

)
}

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

P : the players always show
same sides of their coins

s1: always show “heads”

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 33/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform
sA when only plausible strategy profiles from Υ are played

outΥ(q, sA) =

{λ ∈ St+ | ∃t ∈ Υ(sA) ∀i ∈ N
(
λ[i+ 1] = δ(λ[i], t(λ[i]))

)
}

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

P : the players always show
same sides of their coins

s1: always show “heads”

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 33/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Outcome = Paths that may occur when agents A perform
sA when only plausible strategy profiles from Υ are played

outΥ(q, sA) =

{λ ∈ St+ | ∃t ∈ Υ(sA) ∀i ∈ N
(
λ[i+ 1] = δ(λ[i], t(λ[i]))

)
}

P : the players always show
same sides of their coins

s1: always show “heads”

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 33/70



2. Reasoning about Coalitions 3. Rational Play (ATLP)

Semantics of ATLP

M, q |= 〈〈A〉〉γ iff there is a strategy sA consistent with Υ
such thatM,λ |= γ for all λ ∈ outΥ(q, sA)

M, q |= (set-pl ω)ϕ iffMω, q |= ϕ where the new model
Mω is equal toM but the new set Υω of
plausible strategy profiles is set to ‖ω‖q.
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Example: Pennies Game
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M, q0 |= (set-pl ωNE)〈〈2〉〉♦money2

What is a Nash equilibrium in this game?
We need some kind of winning criteria!
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Agent 1 “wins”, if γ1 ≡ �(¬start → money1) is satisfied.
Agent 2 “wins”, if γ2 ≡ ♦money2 is satisfied.
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Now we have a qualitative notion of success.

M, q0 |= (set-pl ωNE)〈〈2〉〉�(¬start → money1)

where ‖ωNE ‖q0 = “all profiles belonging to grey cells”.
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

How to obtain plausibility terms?

Idea
Formulae that describe plausible strategies!

(set-pl σ.θ)ϕ: “suppose that θ characterizes rational
strategy profiles, then ϕ holds”.

Sometimes quantifiers are needed...

E.g.: (set-pl σ. ∀σ′ dominates(σ, σ′))
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Sometimes quantifiers are needed...

E.g.: (set-pl σ. ∀σ′ dominates(σ, σ′))
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Characterization of Nash Equilibrium

σa is a’s best response to σ (wrt ~γ):

BR~γa(σ) ≡ (set-pl σ[Agt\{a}])
(
〈〈a〉〉γa → (set-pl σ)〈〈∅〉〉γa

)

σ is a Nash equilibrium:

NE~γ(σ) ≡
∧
a∈Agt

BR~γa(σ)
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Example: Pennies Game revisited

γ1 ≡ �(¬start → money1); γ2 ≡ ♦money2.

q0 start

q1

money1

q2

money2

q3
money1
money2

q4 q5
money2

H
hT

t

H
t

T
h

H
h

H
tT

h

T tHh

H
t

T
h

T
t

γ1\γ2 hh ht th tt

HH 1,1 0, 0 0, 1 0, 1

HT 0, 0 0, 1 0, 1 0, 1

TH 0, 1 0, 1 1,1 0, 0

TT 0, 1 0, 1 0, 0 0, 1

M1, q0 |= (set-pl σ.NEγ1,γ2(σ))〈〈2〉〉�(¬start → money1)

...where NEγ1,γ2(σ) is defined as on the last slide.
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Characterizations of Other Solution Concepts

σ is a subgame perfect Nash equilibrium:

SPN~γ(σ) ≡ 〈〈∅〉〉�NE~γ(σ)

σ is Pareto optimal:

PO~γ(σ) ≡ ∀σ′
(

∧
a∈Agt

((set-pl σ′)〈〈∅〉〉γa → (set-pl σ)〈〈∅〉〉γa) ∨∨
a∈Agt

((set-pl σ)〈〈∅〉〉γa ∧ ¬(set-pl σ′)〈〈∅〉〉γa
)
.
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

σ is undominated:

UNDOM ~γ(σ) ≡ ∀σ1∀σ2∃σ3((
(set-pl 〈σ{a}1 , σ

Agt\{a}
2 〉)〈〈∅〉〉γa →

(set-pl 〈σ{a}, σAgt\{a}
2 〉)〈〈∅〉〉γa

)
∨

(
(set-pl 〈σ{a}, σAgt\{a}

3 〉)〈〈∅〉〉γa ∧

¬(set-pl 〈σ{a}1 , σ
Agt\{a}
3 〉)〈〈∅〉〉γa

))
.
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2. Reasoning about Coalitions 3. Rational Play (ATLP)

Theorem 2.5
The characterizations coincide with game-theoretical
solution concepts in the class of game trees.
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2. Reasoning about Coalitions 4. Imperfect Information

2.4 Imperfect Information
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2. Reasoning about Coalitions 4. Imperfect Information

How can we reason about extensive games with imperfect
information?

Let’s put ATL and epistemic logic in one box.

 Problems!

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 44/70



2. Reasoning about Coalitions 4. Imperfect Information

How can we reason about extensive games with imperfect
information?

Let’s put ATL and epistemic logic in one box.

 Problems!

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 44/70



2. Reasoning about Coalitions 4. Imperfect Information

How can we reason about extensive games with imperfect
information?

Let’s put ATL and epistemic logic in one box.

 Problems!

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 44/70



2. Reasoning about Coalitions 4. Imperfect Information

q0

q10q9q8q7 q11 q12 q13 q14 q15 q16 q17 q18

win win
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win win win win

q1 q2 q3 q4 q5 q6
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Does it make sense?
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2. Reasoning about Coalitions 4. Imperfect Information

Problem:
Strategic and epistemic abilities are not independent!

〈〈A〉〉Φ = A can enforce Φ

It should at least mean that A are able to identify and
execute the right strategy!

Executable strategies = uniform strategies
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2. Reasoning about Coalitions 4. Imperfect Information

Definition 2.6 (Uniform strategy)
Strategy sa is uniform iff it specifies the same choices for
indistinguishable situations:
(no recall:) if q ∼a q

′ then sa(q) = sa(q
′)

(perfect recall:) if λ ≈a λ
′ then⇒ sa(λ) = sa(λ), where

λ ≈a λ
′ iff λ[i] ∼a λ

′[i] for every i.

A collective strategy is uniform iff it consists only of
uniform individual strategies.
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2. Reasoning about Coalitions 4. Imperfect Information

Note:
Having a successful strategy does not imply knowing that
we have it!

Knowing that a successful strategy exists does not imply
knowing the strategy itself!
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2. Reasoning about Coalitions 4. Imperfect Information

Levels of Strategic Ability

From now on, we restrict our discussion to uniform
memoryless strategies.

Our cases for 〈〈A〉〉Φ under incomplete information:

2 There is σ such that, for every execution of σ, Φ holds
3 A know that there is σ such that, for every execution of
σ, Φ holds

4 There is σ such that A know that, for every execution
of σ, Φ holds
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2. Reasoning about Coalitions 4. Imperfect Information

Case [4]: knowing how to play

Single agent case: we take into account the paths
starting from indistinguishable states (i.e.,⋃
q′∈img(q,∼a) out(q, sA))

What about coalitions?
Question: in what sense should they know the
strategy? Common knowledge (CA), mutual
knowledge (KA), distributed knowledge (DA)?
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2. Reasoning about Coalitions 4. Imperfect Information

Given strategy σ, agents A can have:

Common knowledge that σ is a winning strategy. This
requires the least amount of additional
communication (agents from Amay agree upon a
total order over their collective strategies at the
beginning of the game and that they will always
choose the maximal winning strategy with respect to
this order)

Mutual knowledge that σ is a winning strategy:
everybody in A knows that σ is winning
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2. Reasoning about Coalitions 4. Imperfect Information

Distributed knowledge that σ is a winning strategy: if
the agents share their knowledge at the current state,
they can identify the strategy as winning

“The leader”: the strategy can be identified by agent
a ∈ A
“Headquarters’ committee”: the strategy can be
identified by subgroup A′ ⊆ A

“Consulting company”: the strategy can be identified
by some other group B
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2. Reasoning about Coalitions 4. Imperfect Information

Many subtle cases...

 Solution: constructive knowledge operators
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2. Reasoning about Coalitions 4. Imperfect Information

Constructive Strategic Logic (CSL)

〈〈A〉〉Φ: A have a uniform memoryless strategy to
enforce Φ

Ka〈〈a〉〉Φ: a has a strategy to enforce Φ, and knows that
he has one
For groups of agents: CA, EA, DA, ...

Ka〈〈a〉〉Φ: a has a strategy to enforce Φ, and knows that
this is a winning strategy
For groups of agents: CA,EA,DA, ...

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 54/70



2. Reasoning about Coalitions 4. Imperfect Information

Constructive Strategic Logic (CSL)

〈〈A〉〉Φ: A have a uniform memoryless strategy to
enforce Φ

Ka〈〈a〉〉Φ: a has a strategy to enforce Φ, and knows that
he has one
For groups of agents: CA, EA, DA, ...

Ka〈〈a〉〉Φ: a has a strategy to enforce Φ, and knows that
this is a winning strategy
For groups of agents: CA,EA,DA, ...

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 54/70



2. Reasoning about Coalitions 4. Imperfect Information

Constructive Strategic Logic (CSL)

〈〈A〉〉Φ: A have a uniform memoryless strategy to
enforce Φ

Ka〈〈a〉〉Φ: a has a strategy to enforce Φ, and knows that
he has one
For groups of agents: CA, EA, DA, ...

Ka〈〈a〉〉Φ: a has a strategy to enforce Φ, and knows that
this is a winning strategy
For groups of agents: CA,EA,DA, ...

Stéphane Airiau and Wojtek Jamroga · Coalitional Games EASSS’09 @ Torino 54/70



2. Reasoning about Coalitions 4. Imperfect Information

Non-standard semantics:

Formulae are evaluated in sets of states
M,Q |= 〈〈A〉〉Φ: A have a single strategy to enforce Φ
from all states in Q

Additionally:

out(Q,SA) =
⋃
q∈Q out(q, SA)

img(Q,R) =
⋃
q∈Q img(q,R)

M, q |= ϕ iffM, {q} |= ϕ
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2. Reasoning about Coalitions 4. Imperfect Information

Definition 2.7 (Semantics of CSL)
M,Q |= p iff p ∈ π(q) for every q ∈ Q;

M,Q |= ¬ϕ iff notM,Q |= ϕ;
M,Q |= ϕ ∧ ψ iffM,Q |= ϕ andM,Q |= ψ;

M,Q |= 〈〈A〉〉γ iff there exists SA such that, for every
λ ∈ out(Q,SA), we have thatM,λ[1] |= ϕ;
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2. Reasoning about Coalitions 4. Imperfect Information

M,Q |= KAϕ iffM, q |= ϕ for every q ∈ img(Q,∼K
A) (where

K = C,E,D);

M,Q |= K̂Aϕ iffM, img(Q,∼K
A) |= ϕ (where K̂ = C,E,D

and K = C,E,D, respectively).
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2. Reasoning about Coalitions 4. Imperfect Information

Example: Simple Market

q0

q1

bad-market

loss

success

2
1

c
c

c

wait

subproduction

own-productio
n

own-production

own-production

subproduction

subproduction

q2

ql

qs

oligopoly

s&m

wait

wait

@ q1 :

¬Kc〈〈c〉〉♦success

¬E{1,2}〈〈c〉〉♦success

¬K1〈〈c〉〉♦success

¬K2〈〈c〉〉♦success

¬D{1,2}〈〈c〉〉♦success
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2. Reasoning about Coalitions 4. Imperfect Information

Theorem 2.8 (Expressivity)
CSL is strictly more expressive than most previous proposals.

Theorem 2.9 (Verification complexity)
The complexity of model checking CSL is minimal.
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2. Reasoning about Coalitions 5. Model Checking

2.5 Model Checking
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2. Reasoning about Coalitions 5. Model Checking

Model Checking Formulae of CTL and ATL

Model checking: Does ϕ hold in modelM and state q?

Natural for verification of existing systems; also during
design (“prototyping”)
Can be used for automated planning
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2. Reasoning about Coalitions 5. Model Checking

function plan(ϕ).
Returns a subset of St for which formula ϕ holds, together with a (conditional)
plan to achieve ϕ. The plan is sought within the context of concurrent
game structure S = 〈Agt, St,Π, π, o〉.

case ϕ ∈ Π : return {〈q,−〉 | ϕ ∈ π(q)}
case ϕ = ¬ψ : P1 := plan(ψ);
return {〈q,−〉 | q /∈ states(P1)}

case ϕ = ψ1 ∨ ψ2 :
P1 := plan(ψ1); P2 := plan(ψ2);
return {〈q,−〉 | q ∈ states(P1) ∪ states(P2)}

case ϕ = 〈〈A〉〉 © ψ : return pre(A, states(plan(ψ)))
case ϕ = 〈〈A〉〉�ψ :
P1 := plan(true); P2 := plan(ψ); Q3 := states(P2);
while states(P1) 6⊆ states(P2)
do P1 := P2|states(P1); P2 := pre(A, states(P1))|Q3 od;
return P2|states(P1)

case ϕ = 〈〈A〉〉ψ1 U ψ2 :
P1 := ∅; Q3 := states(plan(ψ1)); P2 := plan(true)|states(plan(ψ2));
while states(P2) 6⊆ states(P1)
do P1 := P1 ⊕ P2; P2 := pre(A, states(P1))|Q3 od;
return P1

end case
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2. Reasoning about Coalitions 5. Model Checking

Complexity od Model Checking ATL

Theorem (Alur, Kupferman & Henzinger 1998)

ATL model checking is P -complete, and can be done in
time linear in the size of the model and the length of the
formula.

So, let’s model-check!

Not as easy as it seems.
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2. Reasoning about Coalitions 5. Model Checking

Nice results: model checking ATL is tractable.

But: the result is relative to the size of the model and
the formula
Well known catch: size of models is exponential wrt a
higher-level description
Another problem: transitions are labeled
So: the number of transitions can be exponential in
the number of agents.
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2. Reasoning about Coalitions 5. Model Checking

3 agents/attributes, 12 states, 216 transitions

nofuel
roL

caR

fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

nofuel fuelOK nofuel fuelOK

1

5 6

2

3 4

87

9 10 1211

roL roP

roL roL

roLroL

roP

roP roP

roP

roP

caL caL caLcaL

caR caR caR

caP caP caP caP

< >load ,nop ,fuel1 2

< >unload ,unload ,fuel1 2

< >nop ,nop ,nop1 2 3
< >load ,unload ,nop1 2 3

< >nop ,unload ,load1 2 3

< >unload ,unload ,nop1 2 3

< >unload ,nop ,nop1 2 3

< >unload ,nop ,fuel1 2

< >load ,unload ,fuel1 2

< >nop ,nop ,fuel1 2

< >nop ,unload ,fuel1 2

< >nop ,nop ,load1 2 3
< >load ,nop ,load1 2 3

< >load ,unload ,load1 2 3

< >load ,nop ,nop1 2 3
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2. Reasoning about Coalitions 5. Model Checking

Model Checking Temporal & Strategic Logics

m, l n, k, l nlocal, k, l

CTL

P [1] P [1] PSPACE [2]

ATL

P [3] ∆P
3 [5,6] EXPTIME [8,9]

CSL

∆P
2 [4,7] ∆P

3 [7] PSPACE [9]

[1] Clarke, Emerson & Sistla (1986).
[2] Kupferman, Vardi & Wolper (2000).
[3] Alur, Henzinger & Kupferman (2002).
[4] Schobbens (2004).
[5] Jamroga & Dix (2005).
[6] Laroussinie, Markey & Oreiby (2006).
[7] Jamroga & Dix (2007).
[8] Hoek, Lomuscio & Wooldridge (2006).
[9] Jamroga & Ågotnes (2007).
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2. Reasoning about Coalitions 5. Model Checking

Main message:

Complexity is very sensitive to the context!

In particular, the way we define the input, and
measure its size, is crucial.
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2. Reasoning about Coalitions 5. Model Checking

Even if model checking appears very easy, it can be very
hard.

Still, people do automatic model checking!
LTL: SPIN
CTL/ATL: MOCHA, MCMAS, VeriCS

Even if model checking is theoretically hard, it can be
feasible in practice.
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2. Reasoning about Coalitions 6. References

2.6 References
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