
MIDO
Mathématiques et Informatique
de la décision et des organisations

Magistère BFA – 2016–2017 Lab 1 – Java101

Inheritance

In the following, we will create classes to manipulate geometry figures (for instance, we could use them
to draw a user interface, though we will not do it today). First, we will create a class to model a point.
To do so, we will simply represent a point using its coordinate.

We also want to create a class for a labelled point: it is a point, but it will have a label. To do so, we
will use the concept of inheritance.

Finally, we will also use our classes for modelling simple geometric figures (rectangle, circle, . . .).
For example to model a circle, all we need is a point that will model the center of the circle and a double
that will model the radius of the circle. To model a rectangle, we will consider only “straight” rectangles
and we can identify them using the top left corner and bottom right corner (which are ... Points!).
Again, we will use inheritance.

For each question, write the corresponding code and test it in the main method.

1. Implement a Point class. You will use a constructor with two arguments of type double that
model the cartesian coordinate of a point.

2. Implement a subclass LabelledPoint that contains a label of type String.

3. Now that we have two classes, we use this opportunity to test the visibility of instance variables:
public, private and protected. First check that when you declare the variables as public, you can
access them. Then, check what happens when you update your code by declaring them as private.
Finally, check again with protected. Think of a nice examples that test all possibilities.

4. Implement the following methods for Point and LabelledPoint:

• toString(),
• equals(Object o)

• hashCode().

Short lecture needed before moving on to the next question.

5. Implement an abstract class Figure. This class contains the following abstract methods

• void translate(double dx, double dy) that translates a figure using the vector (dx,dy)
• Point getBarycenter() that returns the barycenter of the figure (the barycenter of a circle

is its center, the barycenter of a rectangle is the intersection of its diagonals).

6. Implement two subclasses of the Figure class: Circle and Rectangle.

7. Write the clone()method for the classes Circle and Rectangle. Test and make sure the clones
are behaving as you want.


