
Java 101 - Magistère BFA
Lesson 2

Stéphane Airiau

Université Paris-Dauphine

Lesson 2– (Stéphane Airiau) Java 1

Object Oriented Programming in Java

Lesson 2– (Stéphane Airiau) Java 2

Objects and Classes

An object can be defined by its states and its behaviours

A car seen as an object
States Behaviours
brand accelerate
model gear up
power gear down
fuel level turn wheel
oil level opening door
tires pressure closing door
rpm break

A class can be seen as a blue print used for creating objects
states are represented by variables
behaviours are represented by methods.

An object is a class instance.

The state of an object can only be changed by the behaviour of the object
ë using the methods of the object.

Lesson 2– (Stéphane Airiau) Java 3

Object

An object is an instance of a class.

The running example for the course will be a class of characters of comic
books such as Astérix.

We will create a class Character. When we will create a particular cha-
racter, say Astérix, we will instantiate the class Character to create the
instance / the object Astérix.

By convention, the name of a class always start by an upper case letter.
The instances/objects and everything else will start by a lower case letter.

We will write a class MyClass in a file MyClass.java. We will write the
code of the class starting with the keyword class

class Character {
. . .

}

to be saved in a file Character.java

Lesson 2– (Stéphane Airiau) Java 4

Java comes with many classes!

Java comes with a large class library. The library is organised in different
packages.

http://docs.oracle.com/javase/8/docs/api/
overview-summary.html

For instance, the package java.lang contains all the basic classes of
Java. The class to manipulate strings of characters is located in that pa-
ckage and is called String.

Lesson 2– (Stéphane Airiau) Java 5

http://docs.oracle.com/javase/8/docs/api/overview-summary.html
http://docs.oracle.com/javase/8/docs/api/overview-summary.html

Instance variables

instance variables :
these variables define the characteristics of the objects.

• initialisation is optional.
access : <name object>.<instance variable name>

class variables : these variables are common to all the instances of the
class,

• declaration with the keyword static
• initialisation is compulsory
access : <class name>.<class variable name>

example : the class Float encapsulates a floating point number float.
class variables : MAX_VALUE, MAX_EXPONENT, NaN, etc.

Lesson 2– (Stéphane Airiau) Java 6

Class method and Instance methods

Instance methods : these methods allows to access or modify the state
of an instance/object
Class methods : these methods do not modify the state of an object.
Usually, there are utility methods to work with object of the class.

Example : Float class

instance method String toString()
ë returns a representation of the current object as a character string

class method static String toString(Float f)

ë returns a representation of an object passed in parameter

1 Float f;
2 . . .
3 System.out.println(f.toString());
4 System.out.println(Float.toString(3.1419));

Lesson 2– (Stéphane Airiau) Java 7

Encapsulation

The behaviour or the state of an object can be
known by every other object ë public
any class can

execute a public method
access or modify a public variable

hidden to other classes ë private
one can call a private method, access or modify a private variable only if
it is inside the class

ë goal is to hide what is "under the hood"
(one will be able to change code without affecting any other class).

ë protection

Lesson 2– (Stéphane Airiau) Java 8

Creating an object : call a constructor

A class is just a blue print to create instances.
To create an object, we use a special method called a constructor.
In the class, we need to implement a constructor
signature of the constructor

the name of the method is the name of the class
there is not return type nor void

The default constructor is the constructor with no argument :

1 public class <class name> {
2 // declare variables
3 // (class or instance)
... . . .

5 // default constructor
6 public <class name>(){
7 // body
8 }
9 }

Lesson 2– (Stéphane Airiau) Java 9

Example

With overloading, we can then have several constructors

1 public class Character {
2 public String name;
3
4 // default constructor
5 public Character(){
6 nom = ”unknown";
7 }
8
9 public Character(String name){

10 this.name = name;
11 }
12 }

In the example, we have two constructors.

Lesson 2– (Stéphane Airiau) Java 10

Creating an object

Declaration : exactly as primitive types :
<class name> <object name>;

Creation with the keyword new and we call the constructor :
new <class name>(<arguments list>);.
as for primitive types, we can declare and create the object in the
same instruction

1 Character asterix = new Character("Astérix");
2 Character obelix = new Character("Obelix"),
3 idefix = new Character(”Idéfix”),
4 romain = new Character();

Lesson 2– (Stéphane Airiau) Java 11

Equality between object

1 Character asterix = new Character("Astérix");
2 Character asterixBis = asterix;
3 Character asterixTer = new Character("Astérix");
4 if (asterix == asterixBis)
5 System.out.println("Red");
6 else
7 System.out.println("Green");
8 if (asterix == asterixTer)
9 System.out.println("Blue");

10 else
11 System.out.println("Yellow");

What is written in the output ?

a variable is a reference to an object in memory
and not the object !
== is the equality between references :
two references are equal if they refer to the same object in memory
For testing the equality between properties of an object
we use a special method boolean equals(Object o).

Lesson 2– (Stéphane Airiau) Java 12

Equality between object

1 Character asterix = new Character("Astérix");
2 Character asterixBis = asterix;
3 Character asterixTer = new Character("Astérix");
4 if (asterix == asterixBis)
5 System.out.println("Red");
6 else
7 System.out.println("Green");
8 if (asterix == asterixTer)
9 System.out.println("Blue");

10 else
11 System.out.println("Yellow");

What is written in the output ?

a variable is a reference to an object in memory
and not the object !
== is the equality between references :
two references are equal if they refer to the same object in memory
For testing the equality between properties of an object
we use a special method boolean equals(Object o).

Lesson 2– (Stéphane Airiau) Java 13

Compilation, execution, virtual machine

Java is not only a langage and a library of classes
Java has tools for generating and executing code.

Source code .java

Compilation javac

Bytecode .java
so

us
w

in
do

w
s sous

linux

sous
m

ac
O

S

Exécution java
virtual

machine

windows machine linux machine apple machine android smartphone

Lesson 2– (Stéphane Airiau) Java 14

Compilation

A class <MyClass> is saved in a file <MyClass>.java : the name of the
class matches the name of the file with the extension .java.

To compile, we use a program called javac that translate your code into
machine readable code.

Le compiler translates your code into a langage that the virtual machine
understands.

For Java it produces bytecode.

The result of the compilation is a file name <MyClass>.class

Lesson 2– (Stéphane Airiau) Java 15

Compilation

Roughly, there are two stages in the compilation process :

syntaxic analysis : we check the grammar of the code
semantic analysis : translation of the code in bytecode
and we check if everything is well known (other classes)

Lesson 2– (Stéphane Airiau) Java 16

Execution

What is executed is a special method called main.
Each class can have one main.
If a method main is implemented in a class MyClass, we lauch the virtual
Javamachine, which runs the main :
java MaClass
(on linux or mac os, you can run this command)

The main method has a well specified signature

1 public static void main(String[] args)

public : it must be called from outside the class
static : we have not yet been able to create an object !
void : lthe method does not return anything (to whom should it
return something ?)
String[] args : when we start the execution, we can add some
text, which will be accessible in this array of string. This is useful
when we want to launch an application with some options.

Lesson 2– (Stéphane Airiau) Java 17

Write your first class

Code a class that represent students. Each students has a name and 4
grades.

String toString() that returns a representation of the student
a method to add each grade
a method that compute the average of the grades. If one note is
missing, write a message. As you must return a value, choose an
appropriate one.
a method that tells whether the student passes.

Use a main method to test your code.

PS : to write a message on the console, use the following instruction :
System.out.println(<a string>)

PPS : for Strings, the binary operator + appends the two strings

Lesson 2– (Stéphane Airiau) Java 18

