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Overview

Focus on a single-bidder’s optimization problem:
bid decision that maximizes the bidder’s payoff

Bid decision depends on:

- auction information: auction format (rules), items, information
disclosure policies, etc.

- bidder’s own information, such as the objective, item value(s), etc.
- information about other bidders’ (rivals’) objectives, valuations,
behavior, etc.

Research question:

How does rivals’ information impact the bidding policy?

- is all rivals’ information useful?
- impact of (even ϵ) misspecification of rivals’ information
- impact of (distributional) assumptions about (uncertain) rivals’
information
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Bidding in auctions

Standard assumptions:

Bidders are expected payoff maximizers.

Same objective for each bidder.

- What if objectives differ across bidders?

- What if uncertainty about rivals’ objectives?

Incentive compatibility: truthful reporting is a dominant strategy, i.e.,
maximizes bidder’s payoff, regardless of rivals’ actions.

2nd price (Vickrey) auction

Uniform price multi-item auction (unit-demand, price set at the
highest non-winning bid)

Vickrey-Clarke-Groves (VCG) mechanisms

What about auctions that are not incentive compatible?
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Example

First-price sealed-bid auction.

n = 2 bidders and m = 1 item, IPV valuations U[0, 1]

Both bidders are expected payoff maximizers

Equilibrium bidding profile:

b∗j (v) = v/2, v ∈ [0, 1], j ∈ {1, 2}

Saša Pekeč (Duke) Robust Bidding Policies December 5, 2023 5 / 25



Example

First-price sealed-bid auction

n = 2 bidders and m = 1 item, IPV valuations U[0, 1]

Both bidders are worst-case payoff maximizers

Truth-telling is an equilibrium

b∗j (v) = v , v ∈ [0, 1], j ∈ {1, 2}

(multiple equilibria exist)
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Example

First-price sealed bid auction

n = 2 bidders and m = 1 item, IPV valuations U[0, 1]

Bidder 1 is a worst-case payoff maximizer

Bidder 1 believes that Bidder 2 plays an expected payoff equilibrium
strategy, i.e.,

b2(v2) =
v2
2
, v2 ∈ [0, 1]

Bidder 1’s best response is

b∗1(v1) = min

{
v1,

1

2

}
, v1 ∈ [0, 1]
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Notation

m indivisible items from the set M = {1, 2, . . . ,m}

n bidders in N = {1, 2, . . . , n}

A bundle is a set S of items: S ⊆ M

vj(S) is bidder j ’s valuation for bundle S ⊆ M

bj(S) is bidder j ’s reported bid for bundle S ⊆ M

Bidder j ’s payoff for obtaining bundle Sj at price pj is πj = vj(Sj)− pj
(quasi-linear preferences)

Rivals’ bid profile b−j = (b1, b2, . . . , bj−1, bj+1, . . . , bn)
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Robust bidding problem
How should worst-case payoff maximizing bidder bid in auctions that are
not incentive compatible?

- Bidder 1’s feasible policy space U1

- Rivals’ bids belong to an uncertainty set U−1

Convex polytope: U−1 = {b−1 | A b−1 ≤ c}
Box set: U−1 = {b−1 | bj ≤ bj ≤ b̄j , j = 2, 3, . . . , n}

Robust bidding problem

πMAXMIN
1 = sup

b1∈U1

inf
b−1∈U−1

π1(b1, b−1)

Let πMINMAX
1 = inf

b−1∈U−1

sup
b1∈U1

π1(b1, b−1)

Minimax inequality:
πMAXMIN
1 ≤ πMINMAX

1
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Bidding in combinatorial auctions

Combinatorial auctions: market-clearing of multiple heterogeneous
items

Multiple billions in value procured over last decade (spectrum, energy,
pollution rights, real-estate, etc.)

Combinatorial Clock Auction (Paul Milgrom, 2020 Nobel Prize)

Combinatorial Clock Auction final phase: one-shot combinatorial
auction

- not incentive compatible, but
- (the claim is that this is) mitigated by using core-selecting auctions,
- (suggesting) truthful bidding the best bidder strategy from practical
perspective, as it is not computationally/informationally burdensome
and potential gains from strategizing might be elusive and could
backfire.

Robust bidding is the best response to the rivals’ truthful bidding in
core-selecting auctions
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Saša Pekeč (Duke) Robust Bidding Policies December 5, 2023 12 / 25



Core-selecting auctions

We consider bidder-optimal core-selecting payment rule.
(Essentially, the closest point from the VCG outcome to the core.)

Proposition

Let S1 denote bidder 1’s truthful allocation (i.e, the set of items S that
bidder 1 receives by bidding truthfully).
Then

bPI1 (S) =


0 if S ⊊ S1

v1(S1)− πVCG
1 if S1 ⊆ S ⊊ M

wb−1(N \ 1) if S = M

is the optimal bidding policy for bidder 1.

- πVCG
1 is bidder 1’s VCG payoff

- wb−1(N \ 1) is the maximum surplus generated by allocating all items
only to bidder 1’s rivals
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Suboptimality of truthful bidding

We consider bidder-optimal core-selecting payment rule.
(essentially, the closest point from the VCG outcome to the core)

Corollary

Assume bidders 2, . . . , n bid truthfully. Then bidder 1 has a
straightforward profitable deviation from bidding truthfully.

If all rivals bid truthfully (as suggested “best” strategy in core
selecting auctions), then bidding truthfully is not optimal.

- For any 0 < ϵ ≤ πVCG
1 , bidding b1(S1) = v1(S1)− ϵ is a profitable

deviation.

- Requires bidding b1(M) = wb−1(N \ 1).
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Bidding under uncertainty: the single-minded bidder

Bidder 1 is single-minded if it has positive valuation for a particular
bundle S1, i.e.,

v1(S) = a > 0 if S ⊇ S1,

v1(S) = 0 if S ⊉ S1.

Proposition

If bidder 1 is single-minded (and v1(S1) > p̄VCG ) then a robust policy for
bidder 1 is

bRO1 (S) = v1(S1)− min
b−1∈U−1

πVCG
1 , if S1 ⊆ S ⊊ M,

bRO1 (M) = v1(S1)− min
b−1∈U−1

πVCG
1 + wb−1(N \ 1,M \ S1),

bRO1 (S) = 0, otherwise.
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L\L\G valuation structure
n = 3 bidders and m = 2 homogeneous items

Bidder 1: local bidder

Rivals: Bidder 2 is local and bidder 3 is global

# items v1 b1 b2 b3

1 a x b 0
2 a y b c

Box-type uncertainty set

U−1 = {(b2, b3) | b̄ − ϵb ≤ b ≤ b̄ + ϵb, c̄ − ϵc ≤ c ≤ c̄ + ϵc}

Let ξ = maxb−1∈U−1(c − b)+

Bidder 1’s robust bidding policy:

bRO,1
1 = (ξ, ξ + b̄ − ϵb)
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Saša Pekeč (Duke) Robust Bidding Policies December 5, 2023 16 / 25



L\L\G valuation structure
n = 3 bidders and m = 2 homogeneous items

Bidder 1: local bidder

Rivals: Bidder 2 is local and bidder 3 is global

# items v1 b1 b2 b3

1 a x b 0
2 a y b c

Box-type uncertainty set

U−1 = {(b2, b3) | b̄ − ϵb ≤ b ≤ b̄ + ϵb, c̄ − ϵc ≤ c ≤ c̄ + ϵc}

Let ξ = maxb−1∈U−1(c − b)+

Bidder 1’s robust bidding policy:

bRO,1
1 = (ξ, ξ + b̄ − ϵb)
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L\L\G valuation structure: numerical example
n = 3 bidders and m = 2 homogeneous items

Bidder 1: local bidder

Rivals: Bidder 2 is local and bidder 3 is global

# items v1 b1 b2 b3

1 10 x b 0
2 10 y b c

Box-type uncertainty set

U−1 = {(b2, b3) | 7 ≤ b ≤ 13, 7 ≤ c ≤ 13}

Bidder 1 robust bidding policy:

bRO1 = (6, 13)
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Robust bidding vs. truthful bidding

Under robust policy bRO1 = (6, 13), bidder 1’s payoff is point-wise
greater than her truthful payoff
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9 8
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77

π
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TR
π
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Comparison of bRO1 and bTR1
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Robust bidding vs. (misspecified) perfect info bidding

Suppose bidder 1 believes its rivals will bid b and c

Bidder 1 best response is denoted by bPI1

If there is any uncertainty about the rivals’ actual bidding profile:

U−1 = [b − ϵ, b + ϵ]× [c − ϵ, c + ϵ],

then one can compare performance of the (misspecified) perfect
information bidding bPI1 and robust bidding bRO1 .

Numerical example:

Set b = 10, c = 10

Then bPI1 = (0, 10)

Let ϵ = 3

Then bRO1 = (6, 13)
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Robust bidding vs. (misspecified) perfect info bidding
Let b = c = 10, and let ϵ = 3.

Payoff difference for bRO1 = (6, 13) and bPI1 = (0, 10)
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Robust bidding vs. expected-payoff maximization
When b and c are uniformly distributed on [7, 13], the robust bidding
and expected-payoff maximization policies are the same

We also consider non-uniform distributions.
e.g., fb ↑, fc ↑ has linearly increasing marginal densities:

fb(y) = fc(y) = (y − 7)/18, 7 ≤ y ≤ 13.
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We also consider non-uniform distributions.
e.g., fb ↑, fc ↑ has linearly increasing marginal densities:

fb(y) = fc(y) = (y − 7)/18, 7 ≤ y ≤ 13.
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Robust bidding policy performance

b̄ = c̄ = 10 and ϵb = ϵc = 3

Distr. EM RO TR PI PI (ϵ′b = ϵ′c = 1)
fb, fc ↑ 7.9092 7.6010 4.7253 4.7284 7.1695

(96.10%) (59.74%) (59.78%) (90.65%)

fb, fc ↓ 8.5904 8.5904 5.2267 2.8548 4.7150

(100%) (60.84%) (33.23%) (54.89%)

fb ↑, fc ↓ 9.1212 8.9027 5.5274 7.1266 8.5371

(97.60%) (60.60%) (78.13%) (93.60%)

fb ↓, fc ↑ 6.8877 6.8877 4.0236 1.2946 3.1104

(100%) (58.42%) (18.80%) (45.16%)

N 8.5508 8.2207 4.9186 3.8648 7.6708

(96.14%) (57.52%) (45.20%) (89.71%)

Triangular 8.3014 8.1500 4.9000 3.8986 6.8839

(98.18%) (59.03%) (46.96%) (82.92%)
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Robust bidding policy performance

b̄ = 10, c̄ = 13.5, and ϵb = ϵc = 3

Distr. EM RO TR PI PI (ϵ′b = ϵ′c = 1)
fb, fc ↑ 4.9728 4.4871 3.2362 3.3582 4.6680

(90.23%) (65.08%) (67.53%) (93.87%)

fb, fc ↓ 5.4876 5.4870 3.2361 0.7910 2.0499

(99.99%) (58.97%) (14.41%) (37.36%)

fb ↑, fc ↓ 6.7200 6.3850 4.1342 5.5605 6.4263

(95.01%) (61.52%) (82.75%) (95.63%)

fb ↓, fc ↑ 3.5130 3.4996 2.2487 0.3855 1.1891

(99.62%) (64.01%) (10.97%) (33.85%)

N 5.3573 4.9989 3.2489 2.0920 4.6624

(93.31%) (60.64%) (39.05%) (87.03%)

Triangular 5.1933 4.9950 3.2450 2.2286 4.1309

(96.18%) (62.48%) (42.91%) (79.54%)
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Summary

Focus on single-bidder optimization problem: bidding policies that
maximize worst-case payoff.

Bidder uncertainty is modeled via robust optimization framework
(uncertainty set)

▶ belief-free re rivals’ valuations
▶ belief-free re rivals’ objectives

Minimax (in)equality is the key argument in the proofs.

Robust bidding in challenging settings, such as core-selecting
auctions:

▶ easy to determine bidding policy
▶ bypasses challenges with processing rivals’ information, such as

misspecification, distributional assumptions, objective, behavior
▶ outperforms truthful bidding
▶ outperforms misspecified perfect information setting
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Thank you!
pekec@duke.edu
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