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Discovering and Analyzing Contextual
Behavioral Patterns from Event Logs

Mehdi Acheli, Daniela Grigori, and Matthias Weidlich

Abstract—Event logs that are recorded by information systems provide a valuable starting point for the analysis of processes in various
domains, reaching from healthcare, through logistics, to e-commerce. Specifically, behavioral patterns discovered from an event log
enable operational insights, even in scenarios where process execution is rather unstructured and shows a large degree of variability.
While such behavioral patterns capture frequently recurring episodes of a process’ behavior, they are not limited to sequential behavior
but include notions of concurrency and exclusive choices. Existing algorithms to discover behavioral patterns are context-agnostic,
though. They neglect the context in which patterns are observed, which severely limits the granularity at which behavioral regularities are
identified. In this paper, we therefore present an approach to discover contextual behavioral patterns. Contextual patterns may be
frequent solely in a certain partition of the event log, which enables fine-granular insights into the aspects that influence the conduct of a
process. Moreover, we show how to analyze the discovered contextual behavioral patterns in terms of causal relations between context
information and the patterns, as well as correlations between the patterns themselves. Experiments with real-world event logs
demonstrate the effectiveness of our techniques in obtaining fine-granular process insights.

Index Terms—Behavioral Patterns, Process Discovery, Pattern Mining, Contextual Data, Causality and Correlation.

F

1 INTRODUCTION

THE field of process mining develops techniques for a
data-driven analysis of processes in domains such as

healthcare, logistics, and e-commerce [1]. To this end, event
logs that are recorded by information systems during process
execution are exploited as an objective basis for process
analysis, that is not biased by human perception. Event
logs comprise traces, which are sequences of events, all of
them related to a single execution of the process. An event,
in turn, signals that a certain activity of the process was
executed and also contains information on the context in
which this happened. For instance, when considering the
treatment process for a patient in a hospital, events may
signal treatment steps such as a check of vitals, a blood draw,
or an infusion. In addition, events and traces contain context
information, e.g., on the age and sex of the patient, the results
of the vitals check, or a drug code used for an infusion.

An important branch of process mining is process discov-
ery [4]. Given an event log, discovery algorithms construct
a formal process model that generalizes the behavior rep-
resented by traces of the log. In recent years, a plethora
of process discovery algorithms has been proposed. They
vary in terms of the model imposed for event logs [34]; rely
on different modeling languages as a target formalism, e.g.,
Petri-nets [37], process trees [19], or BPMN [11]; and adopt
diverse strategies to handle noise and incompleteness of
event logs, e.g., by balancing over-fitting and under-fitting
of the resulting model [45] or by filtering noise [9].
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Traditional process discovery aims at the construction of
a formal model that captures all the behavior observed in
the log. However, such an approach is not well-suited for
relatively unstructured application scenarios, where process
execution shows a large degree of variability [1]. Indeed the
understandibility of such “spaghetti-like” process models
is compromised due to their structural peculiarities, in
particular, the high number of arcs and activities [25], [26]. In
such scenarios, in turn, it was advocated to base discovery
on a set of smaller models or behavioral patterns instead of
a single, complex, end-to-end model [2], [41], [42].

In essence, these patterns can be seen as generalizations
of common notions of frequent item sets [3] and frequent
sequences [39]. While traditional approaches for sequential
pattern mining [30] concern solely sequence dependencies,
such behavioral patterns have richer semantics. They are
defined by a tree structure, where leaf nodes denote types
of events (i.e., the executed activities) and non-leaf nodes de-
note behavioral operators, such as sequencing, concurrency,
or exclusive choice. Through discovery of these patterns,
insights on the conduct of the process are derived in terms
of frequently recurring episodes of process behavior.

Various algorithms to discover such rich behavioral
patterns from event logs have been proposed recently [2],
[41], [42]. However, all existing approaches derive patterns
that are frequent over all traces in a log, regardless of
the context in which the events have been recorded. As
a consequence, discovery is limited to patterns at a relatively
coarse granularity: Only patterns that are frequent over all
possible execution contexts are detected.

Such a context-agnostic approach to pattern discovery
constitutes a severe limitation in terms of the insights that
may be gained about a process. Episodes of process behavior
that are common for a specific execution context, but not
frequent over all contexts remain undetected. As an example,
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Trace Context Event
ID [Income, age] Sequence

1 [low, <70] EI ET PS ED BT BT GP TD SW CO RB
2 [low, <70] ET EI CV XS BT SW CS D RB CO
3 [low, <70] CI PS CV I BT XS SW E CO RB I
4 [low, <70] CI CV PS XS BT D SW CS GP RB CO
5 [low, <70] CI PS EI ED I XS GP TD CV
6 [high, <70]] EI ET PS ED BT GP TD CO RB
7 [high, <70] ET EI CV XS BT CS D CO RB
8 [high, <70] CI PS CV I BT XS E CO RB I
9 [high, <70] CI CV PS XS BT D CS GP CO RB
10 [high, <70] CI PS EI ED I XS GP TD CV
11 [low, 70+] ET PS ED BT GP TD SW CO RB
12 [high, 70+] CI PS EI ED I XS GP TD CV

SW: Meet with social worker, CO: Checkout, BT: Blood test, CI: Check-In, GP: Give prescription,

CS: Recheck sec. number, EI: Emergency intubation, ET: Emergency transfusion,

PS: Process sec. number, CV: Check Vitals, XS: X-ray Scan, TD: Temp. Diagnosis, D: Diagnosis,

ED: Emergency defibril., I: Infusion, E: Echography, RB: Retrieve belongings

(a)

Sequential Patterns

BT RB
BT CO
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RBCO

BT
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RBCO
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Fig. 1: (a) Event log; (b) sequential patterns discovered with PrefixSPAN [30]; (c) behavioral pattern for the whole log; (d)
behavioral pattern for the context [low, *]. All patterns have a support > 0.7 (i.e., occur in more than eight out of 12 traces).

consider the scenario given in Fig. 1. The traces of the event
log contain events of treatment steps that patients follow in
a hospital. There are two attributes representing contextual
information: The income level of the patient (low or high) and
the age group (<70 or 70+). For this log, traditional sequential
patterns as derived, for instance, by PrefixSpan [30] (relative
support > 0.7), provide limited insights as they fail to detect
frequent concurrent behavior. This limitation is overcome
by dedicated approaches to pattern discovery, such as [2],
which would identify that events of type BT are frequently
followed by the concurrent appearance of events of types CO
and RB. However, either way, more specific patterns that are
frequent within a particular context of process execution are
not identified. For example, considering solely low income
patients, there is a pattern of BT, followed by SW, which
is again followed by the concurrent appearance of CO and
RB. Detecting this contextual pattern provides insights (i.e.,
low income patients show a tendency to discuss the refund
policy with a social worker) that would go unnoticed when
neglecting context information. As such, contextual patterns
enable fine-granular analysis of the correlations of contextual
factors and process execution, thereby providing the basis
for an exploration and assessment of causal effects.

In this paper, for the first time, we address the problem of
discovering behavioural patterns while taking into account
the dimensions induced by contextual data. Specifically, our
contributions are summarized as follows:
(1) We introduce a model for contextual behavioral patterns.

It includes different notions to link a behavioral pattern
with contextual information of traces, such as contextual
frequency, generality, and exclusiveness.

(2) We define the problem of discovering contextual behav-
ioral patterns from an event log and propose an algorithm
to solve it. . Based on a state-of-the-art algorithm for
context-agnostic discovery of behavioural patterns, we
show how to incorporate an exploration of possible
contexts.

(3) We provide a methodology to analyze the discovered con-
textual behavioral patterns. We show how to verify causal
relations between context information and patterns, as
well as correlations between discovered patterns.

We evaluate our approach with four real-world event logs.
Our results show good performances and confirm the

effectiveness of the method. Indeed, not only there was
additional insight discovered about patterns returned by [2]
but more fine-grained patterns missed by context-agnostic
methods were recovered. Moreover, an in-depth study of
the discovered patterns reveals relevant insights on causal
relations between context data and the found patterns.
Finally, useful results on the interplay of behavioral patterns
and how they react to contexts were derived.

In the remainder, Section 2 first reviews related work.
We then provide the necessary background for our work
in Section 3. Section 4 introduces a model for contextual
behavioral patterns and an algorithm for their discovery. We
elaborate on the analysis of discovered patterns in Section 5.
An experimental evaluation is presented in Section 6, before
we conclude in Section 7.

2 RELATED WORK

The discovery of behavioral patterns defined with respect to
their frequency in an event log connects several research
areas, including sequential pattern mining and process
discovery. In this section, we review related algorithms
from either area. Moreover, we discuss approaches that
incorporate contextual information in log analysis and that
aim at the discovery of causal relations in recorded data.

Sequential pattern mining. Given a database of sequences
of data elements, sequential pattern mining aims at the extrac-
tion of frequently recurring (sub-)sequences of elements [13].
While there has been decades of research on pattern mining
algorithms, most of them proceed incrementally. For instance,
the widely established GSP algorithm [39] combines pairs of
sequential patterns of length k to obtain patterns of length
k + 1. This principle is also adopted in our previous work
on behavioral patterns to generate rich behavioral patterns
that include concurrency and exclusiveness.

Moreover, various approaches to optimize the runtime be-
havior of sequential pattern mining have been proposed. For
instance, the PrefixSPAN algorithm [30] presents the notion
of a projected database to evaluate the pattern candidates
on the minimal number of traces possible. Also, measures
such as maximality have been proposed to guide the search
for the most relevant patterns [13]. Such optimizations and
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measures may be lifted to behavioral patterns, as shown in
our previous work [2].

Approaches to association rule mining [3] and sequential
rule mining [14], [15] are also related as they strive for
the discovery of relations and correlations among elements
in a database. As we show later, the respective ideas are
useful when aiming at an understanding of the interplay of
contextual behavioral patterns.

Lastly, approaches to incorporate contextual data in
procedures for sequential pattern mining have been pro-
posed, which include a formal definition of contexts, a
characterization of different notions of frequentiality with
respect to context hierarchies (e.g., a proposed notion of
generality and exclusiveness) and an algorithm to mine
the sequential patterns [31]. We later argue that the results
exploited by this algorithm can be adapted to the discovery
of behavioral patterns.

Process discovery. Process discovery constructs models with
rich semantics that feature not only sequential dependencies,
but concurrency, exclusive choices, or repetitive behavior
from event logs, i.e., collections of traces [4]. While most ap-
proaches focus on the discovery of a single end-to-end model,
their application in scenarios with relatively unstructured
behavior will not yield useful insights [1].

To cope with event logs that show a large degree of
variability in the behavior, it was suggested to first employ
trace clustering before process discovery. Such clustering
algorithms [7], [8], [16], [38], [40], group traces into homoge-
neous clusters. Applying process discovery to each cluster
then enables the derivation of comparatively structured
models. Such techniques are well-suited if a log contains few
groups of similar traces. Yet, they do not cater for scenarios,
where a partitioning of a log into a few groups is not possible.

Instead of trying to generalize all behavior, some dis-
covery algorithms also rely on rule-based formalisms as a
target domain. For instance, the Declare Miner [23] extracts
rules that are satisfied by a certain share of traces based on
a predefined set of templates. These rules come in the form
of Linear Temporal Logic formulas and capture, presence,
absence, ordering, and exclusiveness dependencies between
types of events. Each rule, however, is limited to a relation
between at most two event types, whereas our behavioral
patterns link an arbitrary number of event types and also
consider the context in which they are observed. Similarly,
the Episode Miner [18] discovers frequent patterns in terms
of partial orders over event types. The method, however,
does not support loops and exclusive choices and, again,
does not incorporate contextual information.

The notion of behavioral patterns used in our work [2]
has first been proposed in [42] under the term Local Process
Models (LPMs). However, first discovery algorithms [42]
limited the size of patterns and were not grounded in the
traditional definition of support, as known from sequential
pattern mining. In addition, by following a generate-and-test
approach, the respective algorithm incurred the overhead of
redundant testing of pattern candidates, and suffers from
high runtimes due to the evaluation of the patterns on the
entire log. We addressed these aspects in our previous work
that introduced the COBPAM algorithm [2]. It guarantees
desirable properties for the discovered patterns (maximality

and compactness) and implements pruning strategies, so that
pattern candidates are explored at most once. To increase
effectiveness of behavioral patterns, it was suggested to
incorporate measures of utility and constraint satisfaction
in the discovery process [41]. However, such extensions are
orthogonal to our work: They prioritize and filter patterns
that are frequent over all execution contexts, whereas we
strive for the discovery of additional patterns that are
frequent solely in particular contexts.

Contextual log analysis. Some approaches to incorporate
contextual data in process discovery have been proposed. For
instance, the rules discovered by the Declare Miner may be
enriched with data attributes [24], which serve as conditions
on the satisfaction of a rule. While in [24], such conditions
are applied to the antecedent of rule, target conditions
assigned to the consequent of a rule have bee introduced
in [33]. Discovery of such conditions is assumed to rely
on user-defined queries, though. Similar approaches have
been proposed in [20] and [6] that strive for the discovery
of event correlations. However, these methods utilize event
data not trace attributes which makes them orthogonal to
our work. Besides, our focus is not on an enhancement of
discovered rules with data conditions, but on discovery of
novel patterns that would be missed by a non-data-aware
discovery approach.

To cope with contextual data in flexible processes, a pro-
cess cube representation of event logs has been proposed [5],
similar to what is known for OLAP [43]. Various views can
be derived from a cube, which then serve as input to process
mining algorithms. Our work, however, defines many types
of frequencies based on a hierarchy on data attributes, and
discovers correlations and dependencies between behavioral
patterns and context data.

Moreover, data attributes have been incorporated in
discovery of finite state machines [22], which neglects infor-
mation on concurrency. Annotations of process models with
data conditions may be derived by the Decision Miner [32] for
branching points, and the context-aware Inductive Miner [35]
for whole sub-parts of a model. All these approaches target
traditional process models that generalize all seen behavior.
As with the Declarative Miner family methods, the contextual
data considered is that of events.

Discovery of causal structures. Discovery of causal relation-
ships between data elements is a well-explored research
area. One main branch is probabilistic causality, which
relies on the discovery of Bayesian networks [28], or sim-
ilar probabilistic formalisms. While many algorithms use
Bayesian networks for the discovery of causal structures [17],
[27], they are known to impose computational challenges.
Some methods [12], [36] aim at increased efficiency by
constraining the search to some local structures instead
of discovering the whole network. Yet, this comes with
limitations in terms of the result quality. In our work, we
deal with observational correlated data. That is, we take up
ideas on causal association rules discovery [21], due to their
algorithmic efficiency.

3 BACKGROUND ON BEHAVIORAL PATTERNS

We discuss event logs and process trees to model behavioral
patterns (Section 3.1), before turning to the related discovery
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problem and the COBPAM algorithm (Section 3.2).

3.1 Event Logs and Process Trees

We start by introducing event logs. Let A be a set of activities,
and A∗ the set of all sequences over A. As usual, for a
sequence σ1 = 〈a1, . . . , an〉 ∈ A∗, we write |σ1| = n for
its length, σ1(i) = ai, 1 ≤ i ≤ n, for the i-th activity, and
σ1.σ2 = 〈a1, . . . , an, b1, . . . , bm〉 for the concatenation with
a sequence σ2 = 〈b1, . . . , bm〉 ∈ A∗. An interleaving of σ1
and σ2 is a sequence σ3 of length n+m that is induced by
a bijection α : {1, . . . , n+m} → {(s, j) | 1 ≤ s ≤ 2 ∧ 1 ≤
j ≤ |σs|}, which maps activities of σ3 to those in σ1 and σ2,
while preserving their original order in σ1 and σ2, i.e., for
all 1 ≤ i1 < i2 ≤ n + m with α(i1) = (s1, k1) and α(i2) =
(s2, k2), it holds that σ3(i1) = σs1(k1), σ3(i2) = σs2(k2), and
s1 = s2 implies that k1 < k2. The set of all interleavings of
σ1 and σ2 is denoted by {σ1, σ2}'.

A trace is a pair (id, σ) where σ ∈ A∗ is a finite sequence
of activities and id ∈ I is a trace identifier, with I being
the set of possible identifiers. Then, an event log L is a set
of traces, each having a unique identifier, i.e., L ⊆ I × A∗
where |{id | (id, σ) ∈ L}| = |L|.

Given an event log, behavioral patterns may be dis-
covered. In this work, we follow [42] and represent the
behavioral patterns as process trees, a hierarchical model to
define rich semantics over a set of activities. We recall the
definition of a process tree [10]:

Definition 3.1. A process tree is an ordered tree, where the leaf
nodes represent activities and non-leaf nodes represent operators.
Considering a set of activities A, a set of binary operators Ω =
{seq, and, loop, xor}, a process tree is recursively defined as:
• a ∈ A is a process tree.
• considering an operator x ∈ Ω and two process trees P1, P2,
x(P1, P2) is a process tree having x as root, P1 as left child,
and P2 as right child.

The depth of a node (activity or operator) in the tree is
the length of the path to its root. The depth of the tree is the
maximal depth of any of its nodes.

The language Σ(P ) of a process tree P is a set of
words, which is also defined recursively. For an atomic
process tree a ∈ A, the language is Σ(a) = {〈a〉}. For a
process tree x(P1, P2), in turn, the language is obtained
by a function fx that merges words of Σ1 = Σ(P1) and
Σ2 = Σ(P2) depending on the semantics of the operator
x. For the sequence and concurrency operator, the function
concatenates and interleaves two words of either language,
respectively:

fseq(Σ1,Σ2) = {w1.w2 | w1 ∈ Σ1 ∧ w2 ∈ Σ2},

fand(Σ1,Σ2) = {w | w ∈ {w1, w2}' ∧w1 ∈ Σ1 ∧w2 ∈ Σ2}.

For the exclusiveness operator, the languages are unified,
while the language of the loop operator is obtained by
alternating words of either language:

fxor(Σ1,Σ2) = Σ1 ∪ Σ2,

floop(Σ1,Σ2) = {w1.w
′
1.w2. . . . .w

′
n−1.wn |

n ∈ N∗,∀ 1 ≤ i ≤ n : wi ∈ Σ1 ∧ w′i ∈ Σ2}.

3.2 Discovery of Behavioral Patterns

Given an event log, only behavioral patterns that are useful
from an analysis point of view shall be discovered. Following
the reasoning presented in [42], we strive for patterns that are
based on behavioral containment. For a trace (id, σ) of a log
L, the behavior of a process tree P is exhibited by the trace,
if there exists a word w ∈ Σ(P ) of the language of P , such
that w is a projection of σ, i.e., the (order preserving) removal
of activities of σ yields w, which we denote as w |= σ.

For example, in Fig. 1, the process tree in Fig. 1d defines
the language {〈BT, SW,CO,RB〉, 〈BT, SW,RB,CO〉}.
Trace 1 of the event log in Fig. 1a exhibits this behavior, since
〈BT, SW,CO,RB〉, can be derived from trace 1 through
projection. Note though that the second occurrence of BT is
not part of the projection, as the language of the process tree
does not define a respective repetition. Trace 8 is a counter-
example. It does not exhibit the behavior since neither of the
two words of the model can be derived by projection.

Frequent patterns. We capture the importance of patterns in
terms of their frequency with the following measures:

Definition 3.2. Given an event log L, the count of a process tree
P is the number of traces that exhibit its behavior:

count(P,L) = |{(id, σ) ∈ L | ∃ w ∈ Σ(P ) : w |= σ}| .

Its support is the count over the size of the log:

support(P,L) =
count(P,L)

|L|
.

Precise patterns. We are interested in precise patterns, based
on the ratio of the behavior seen in the log and all the
behavior allowed for by the pattern. The language of a
process tree may be infinite due to loop operators. Thus,
we exploit the n-language which is defined as the language
of the model while traversing each loop at most n times:

Definition 3.3. Given a fixed value of n for all trees and an event
log L, the precision of a process tree P is defined as:

precision(P,L) =
|{w ∈ Σn(P ) | ∃ (id, σ) ∈ L : w |= σ}|

|Σn(P )|
.

Here, a low n value allows for loops being ‘precise’
with little repetition, whereas a higher value imposes more
repetitions before a model is considered to represent the log
behavior well. This decision has to be taken manually by
an analyst and offers control over the number of repetitions
observed in the log that shall be taken as evidence for the
presence of an actual loop in the model.

Compact patterns. To be useful for analysis, patterns shall
also be compact. Given an event log L, a process tree P is
compact, if it satisfies all following conditions:
• P does not exhibit the choice operator as a root node. If

so, the process tree would be the union of separate trees,
so that any support threshold may be passed through
the aggregation of unrelated behavior.

• P does not include a choice operator, where, given L,
just one of the children is frequent. The rationale is
that adding further behavior to a frequent tree adds
complexity, while the added behavior may not even
appear in the log.
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• P does not contain a loop operator loop(P1, P2), where,
given L, the behavior of P2 does not appear frequently
after P1. While a word of the process tree may only
show the behavior of P1, the operator loop(P1, P2) is
not meaningful for traces showing only this behavior.

Combinations. COBPAM is a generate and test approach
where k leaves trees are combined to get k+1 leaves trees.
The trees are in fact partially ordered (an inclusion order
where the results of the combination operation include the
operands trees) and can be organized in a directed acyclic
graph which we call construction graph. (Further details
on the combination operation and the partial order we
introduced can be found in [2]).

Maximal patterns. Behavioral patterns shall be maximal, to
avoid the discovery of superfluous patterns that could be de-
rived from other patterns. Indeed, a monotonocity property
ensures that the combined trees are frequent whenever the
combination results are so. As such, considering all patterns
of at most depth i, a pattern is maximal, if it is not included
in another pattern of depth smaller or equal to i.

Consider three trees seq(a,b), seq(a,c), and seq(a,and(b,c)). If
all of them are frequent, the first two trees are not maximal
since they can be infered from seq(a,and(b,c)). In our example
in Fig. 1, we discover that a blood test (BT) is frequently
followed by the checkout (CO) and the retrieval of belongings
(RB), i.e., seq(BT,and(CO,RB)). Here, patterns seq(BT,CO) and
seq(BT,RB) would not yield additional value. Moreover, we
note that the pattern seq(BT,and(CO,RB)) also provides richer
information about the frequent behavior. Unlike the set of the
two short patterns, seq(BT,CO) and seq(BT,RB), it also states
that the join occurrence of the checkout and the retrieval of
belongings is frequent.

Pattern discovery with COBPAM. The COBPAM algo-
rithm [2] for the discovery of behavioral patterns will serve
as the foundation for our approach. Given an event log,
it returns compact and maximal patterns that are frequent
and have high precision. Intuitively, COBPAM explores the
construction graph, starting from process trees of single ac-
tivities. It discovers process trees that are built from frequent
activities as well as frequent mergings of two infrequent
activities through the choice operator. Each candidate tree
is evaluated against a part of the log that may exhibit its
behavior to calculate the support and precision. COBPAM
further relies on a projection-based optimization and pruning
rules (see [2] for details) to limit the number of process trees
to evaluate and the number of traces used for evaluation. A
maximum recursion depth d, which also limits the maximum
depth for the discovered trees, can be used to explicitly
terminate the discovery procedure.

4 CONTEXTUAL BEHAVIORAL PATTERNS

This section presents our approach for taking into account
contexts when discovering behavioral patterns. In order to
obtain fine-granular insights into the behavior of a process,
behavioral patterns can be associated to different contexts
specified through conditions based on attributes that are
attached to traces. This way, it is revealed whether a pattern
is specific to a context, or materializes independently of any
execution context.

4.1 Contexts

As a first step, we clarify the notion of a contextual event
log. It includes attribute values that represent the context in
which a trace was recorded. The possible attribute values are
defined by a relationR(D1, . . . , Dn) with Di, i ∈ {1, . . . , n},
being the domain of the i-th attribute. In the remainder, we
write di for the name of the i-th attribute. A tuple of this
relation is assigned to a trace of the event log, as follows:

Definition 4.1. Given a relation R(D1, . . . , Dn), a contextual
event log is a pair (L, χ), whereL is an event log and χ : a function
that maps each trace (id, σ) of L to χ(id) = (v1, . . . , vn), with
vi ∈ Di, ∀ i ∈ {1, . . . , n}, i.e., a tuple of the relation R.

To define the notion of a context, we introduce D′i as
an extension of the domain Di with a dedicated, unique
symbol ‘∗’, which represents a wildcard. We capture this
semantics by an inclusion order ⊂D′

i
= {(vi, ∗) | vi ∈ Di},

with ⊆D′
i
=⊂D′

i
∪{(vi, vi) | vi ∈ Di} as its reflexive version,

so that the wildcard symbol includes any value vi ∈ Di.
The pair (D′i,⊂D′

i
) defines an inclusion hierarchy H(di) on

data attribute di. An example for two such hierarchies of our
initial example is given in Fig. 2.

A context is defined as a tuple (v1, . . . , vn) with
vi ∈ D′i,∀i ∈ {1, 2, . . . , n}. Contexts are organized
through an inclusion order ≤, such that two contexts
C = (v1, . . . , vn), C ′ = (v′1, . . . , v

′
n) are ordered, denoted

as C ≤ C ′, if vi ⊆D′
i
v′i ∀i ∈ {1, 2, . . . , n}. If ∃1 ≤ i ≤

n, vi ⊂D′
i
v′i, then context C ′ is said to be more general than

C , while C is referred to as being more specific and we write
C < C ′ (strict inclusion order). A context C = (v1, . . . , vn)
is atomic, if vi ∈ Di,∀i ∈ {1, 2, . . . , n}. We also designate a
decomposition of a context C as the non-empty set of atomic
contexts that are more specific than C .

For illustration purposes, consider the example of Fig. 2.
The context (*,<70) is more general than (low, <70). As stated
earlier, ‘∗’ is a wildcard symbol that represents any value vi;
meaning the context (*, <70) represents all the population
with the age being smaller than 70, independent of the
income. Contexts are derived directly from the data attribute
values assigned to the traces in a log, and their hierarchy is
well-defined due to the inclusion order over these values.

Note that the granularity of the contexts definition is con-
trolled by the size of the domains of the data attributes and
their number. In particular, for continuous data attributes,
discretization may be employed, which divides the domain
into several intervals, as to avoid generating a big number of
contexts. The age attribute of our example illustrates such a
discretization by considering solely two age groups (<70 and
70+) instead of the actual age values.

4.2 Contextual Behavioral Patterns

Now that we introduced contexts, we link a context to a
contextual event log. That is, we consider the set of traces for
which the contextual information is contained in the context.

Definition 4.2. Let (L, χ) be a contextual event log and C =
(c1, . . . , cn) a context. The associated event log of context C, is
a contextual event log (L′, χ′) with L′ ⊆ L, such that trace
(id, σ) ∈ L is part of L′ if χ(id) = (v1, . . . , vn) and for all vi it
holds that vi ⊆D′

i
ci; and χ′ is the restriction of χ to L′.
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*

low high

H(income)

*

<70 ≥70

H(age)

Fig. 2: Hierarchies on data attributes income and age

Moreover, we define the size of the context C with respect
to (L, χ) as the size of the associated event log (L′, χ′).

A process tree is said to be C-frequent or frequent in C,
if it is frequent in its associated log. In fact, we distinguish
two types of behavioral patterns for a non-atomic context:
• C-general behavioral patterns: The patterns are fre-

quent in C and in every descendant of C. Applied to our
running example, these would be patterns answering
questions such as what patterns are frequent in the low
income population whatever their age?

• C-exclusive behavioral patterns: The patterns are C-
frequent only in C and its descendants. In our example,
these would be patterns answering the question what
behavioral patterns are exclusively present for patients
that are older than 70, whatever their level of income?

If a pattern is C-frequent in at least an atomic context and
not C-General or C-exclusive in any context, it is called
AC-frequent. If a pattern is C-frequent in the most general
context, i.e., the associated event log is the original event log,
it is called log-frequent.

4.3 Contextual Pattern Discovery Approach
Based on the notions of context and contextual behavioral
patterns, we are ready to define the problem of discovering
these patterns from a given event log. We first formulate the
problem explicitly, before we discuss how to tackle it.

Problem 1 (Contextual Behavioral Pattern Discovery). Given
a contextual event log, (L, χ), the problem of contextual behav-
ioral pattern discovery is to find the set Φ of C-general and
C-exclusive behavioral patterns in each context of the hierarchy
induced by the mapping function χ.

The objective here is to exploit the data dimensions
present in the event log, which have been ignored by previ-
ous methods for behavioral pattern discovery. To address the
above problem, we introduce Contextual COBPAM (short
CCOBPAM), as an adaptation of the COBPAM algorithm.
Before defining the algorithm, we motivate the underlying
design choices. Adopting the reasoning presented for se-
quential pattern mining with contexts [31], we observe the
following: A behavioral pattern P is C-general, if and only if,
it is frequent in the atomic contexts in the decomposition of
C. In the same vein, a pattern P is C-exclusive, if and only if,
it is frequent in the atomic contexts in the decomposition of C
and not frequent in any other atomic context. Consequently,
discovery of the two types of patterns, C-general and C-
exclusive, in all contexts shall start with the discovery of
behavioral patterns in atomic contexts.

The CCOBPAM algorithm takes as input the data at-
tributes di that shall be considered for the definition of con-
texts, and a contextual event log. It returns a set of discovered

Algorithm 1: CCOBPAM: Function atomMine
input : AC, the set of atomic contexts;

τS , a support threshold; τL, a precision threshold;
τD , a depth threshold.

output : Φ, set of behavioral patterns;
atomLoc.

1 for C ∈ AC do
2 Γ← COBPAM (C , τS , τL, τD ), derive maximal compact

C-frequent behavioral patterns;
3 for P ∈ Γ do
4 add P to Φ;
5 add C to atomLoc(P );

behavioral patterns Φ, and three functions atomLoc, genLoc,
and excLoc. These functions map each behavioral pattern P
to, respectively, the atomic contexts, in which it is C-frequent;
the contexts, in which it is C-general; and the contexts, in
which it is C-exclusive.

CCOBPAM is based on two functions executed sequen-
tially. The first one, atomMine , defined in Alg. 1, extracts the
behavioral patterns from the atomic contexts by applying
COBPAM. It returns the set of contextual behavioral patterns
and, for each contextual pattern, the set of atomic contexts in
which it is frequent (through atomLoc).

Such a pattern could be the one in Fig. 1d, noted Pex.
It is discovered in both contexts [low, <70] and [low, 70+]
resulting in atomLoc(Pex ) = {[low, <70], [low, 70+]}

A second function, nonAtomMine , defined in Alg. 2,
iterates over the non-atomic contexts to discover the C-
general and C-exclusive patterns thus returning genLoc and
excLoc. We recall that a pattern P is C-general in a context C
if P is C-frequent in each context of the decomposition of C
and is C-exclusive if it is only frequent in that decomposition.
Since atomLoc(P) points to the atomic contexts where it is
frequent, then a C-general pattern in C is one such that the
decomposition of C is part of atomLoc(P ) and a C-exclusive
pattern in C is one such that the decomposition of C is
equal to atomLoc(P). Coming back to our running example,
when executing nonAtomMine , for Pex, we iterate over the
non-atomic contexts. Encountering [low, *], we realize that
atomLoc(Pex ) is equal to the decomposition of [low, *]. As
such, Pex is considered C-exclusive in [low, *] and excLoc
will be set to [low, *].

The support and precision of any pattern on a non
atomic context NC is directly inferred from the aggregation
of the counts and language seen in the decomposition of
NC. Particularly, the support of a pattern in context NC
is the sum of its counts in the atomic contexts from the
decomposition of NC over the size of NC . The precision of
a pattern in NC is the size of the union of the words seen
in the atomic contexts of the decomposition of NC over the
size of its language.

5 PATTERN ANALYSIS

In this section, we show how the result of discovering
contextual behavioral patterns may be analysed to support
the understanding of the considered process. To this end,
we first discuss the identification of causal relations between
contextual data and behavioral patterns. Second, we turn
to the interplay of several contextual behavioral patterns.
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Algorithm 2: CCOBPAM: Function nonAtomMine
input : NC, the set of non atomic contexts;

Φ, set of behavioral patterns.
output : genLoc; excLoc.

1 for P ∈ Φ do
2 for C ∈ NC do
3 if the decomposition of C is contained strictly in

atomLoc(P ) then
4 add C to genLoc(P)

5 else if the decomposition of C equals atomLoc(P ) then
6 set excLoc(P) to C

Finally, we integrate these two analysis perspectives in a
general methodology for pattern discovery and analysis.

5.1 Causal Relations between Data and Patterns

C-exclusive patterns are frequent solely in some context C
and its descendants. This suggests that the frequency of
the patterns is independent of the unconstrained attributes
(i.e., set to ’∗’) and is, in fact, correlated to the constrained
ones. Knowing this, in order to interpret a pattern, it is
useful to assess whether the traces actually suggest a causal
relation between the context C and the occurrence of the
pattern. Below, we limit ourselves to such causal relations
for contexts that define a specific value for one of the
attributes, while leaving the other attributes unconstrained.
This restriction is motivated by the potential existence of
causal relations between multiple constrained attributes,
which would compromise the analysis. Specifically, if context
C assigns a specific value v to some attribute d, the question
is whether the occurrence of pattern P that is frequent in
just context C and its descendants, is caused by the value v.
The derivation of such a causal relation helps to interpret the
discovered pattern and provides further insights into how
the context influences the execution of the process.

We approach the analysis of causal relations between the
context and a behavioral pattern by adopting the idea of a
cohort study, as known in the medical domain. It aims to
assess the impact of a risk factor, called the exposure variable,
on an outcome variable. The procedure follows two groups
with common characteristics apart from the risk factor. The
group with the risk factor is the exposure group, the other
one the non-exposure group. The common characteristics
must be evenly distributed among the two groups and serve
as controlled variables. A study may be a perspective study,
if the groups are followed until the outcome appears, or a
retrospective study, if it is conducted after the outcome has
been observed as in our case.

In our context, a C-exclusive pattern P induces a certain
correlation. With two variables for each trace, one indicating
whether attribute d is set to value v and one indicating
whether the behavior of P is exhibited, we may formalize the
dependency as an association rule linking these variables. As
a next step, we are interested in the presence of a causal asso-
ciation rule between the variables, which we assess following
common procedures for cohort studies [21]. Causality is a
stronger notion than correlation which states that a change
in the exposure variable provokes a change in the outcome.
However, for any point in time, concerning an individual in

a population, we cannot observe the outcome in the presence
and in the absence of the risk factor. The observed event is
called factual and the hidden one is called counterfactual. To
prove causality, the outcome should appear in the presence of
the exposure and disappear otherwise (either if the presence
of the exposure is the factual or the counterfactual). A cohort
study works with observational data. For each data point
in the exposure group, meaning an individual with some
characteristics (controlled variables) where the risk factor is
present, we simulate the counterfactual by choosing another
data point with exactly the same characteristics in the non-
exposure group. This concordance of the characteristics is, of
course, an assumption of the method as some variables can
be unrecorded. On another hand, if the outcome is clearly
independent of some variable, there is no use to it as its
value has no impact on the observed outcome. We can, in
fact, use an individual with a different value for that variable
as counterfactual because the outcome will not change.

In the following, we develop the method based on the
above principles. A running example will illustrate each step.
We suppose the existence of three attributes, d, a, b, in the
contextual event log with two modalities for d (v and v′) and
three for each of a and b, ai, bi,∀1 ≤ i ≤ 3. The following
steps ensue:
(1) We transform the relation R(D1, D2, D3) that captures

possible contexts in terms of attribute value combinations
into a relation of Boolean variables B(B1, . . . , B8). Here,
the modalities of each attribute d, a, b are transformed
into a set of Boolean indicator variables, od set to true
(resp. od′) if d = v (resp. d = v′) and oai (resp. obi) set to
true ∀1 ≤ i ≤ 3 if a = ai (resp. b = bi).

(2) The Boolean variable od that represents value v of
attribute d is defined as the exposure variable.

(3) We define a Boolean outcome variable t per trace (id, σ)
and pattern P that corresponds to count(P, {(id, σ)})
being one, i.e., it is true if the pattern is part of the trace,
and false otherwise.

(4) Next, we identify among the attributes present in the con-
textual log, the ones that are correlated with the outcome
variable, t and thus possible causal factors. These vari-
ables will serve as controlled variables. The reason is that
we want to assess if, variable od being set to true, causes
variable t being set to true among other possible causal
factors. To this end, we apply the odds ratio as a measure
of associativity, which should be significantly greater
than one. For an association rule R → Q, the odds ra-
tio is given as (support(R ∧Q) ∗ support(¬R ∧ ¬Q))/
(support(¬R ∧Q) ∗ support(R ∧ ¬Q)) while the confi-
dence interval’s lower bound at 95% writes as in Eq. 1.
If this latter value exceeds one then the association rule
holds. For our example, we suppose that only oa1, oa2,
oa3, ob1, ob2 hold association rules with od.

(5) The event log is divided into an exposure group (traces
where od is true) and non-exposure group (remaining
traces). The groups are then filtered to ensure that the
controlled variables are evenly distributed in both groups,
in order to mitigate their effect. As it can be seen in
Fig. 3, traces 6 and 11 were filtered out because both
of their controlled variables could not be found in the
opposite groups. By eliminating them, we ensure an
equal distribution of the controlled variables values
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exp(log(oddsRatio)− 1.96 ∗
√

1

supp(R ∧Q)
+

1

supp(¬R ∧ ¬Q)
+

1

supp(¬R ∧Q)
+

1

supp(R ∧ ¬Q)
) (1)

Exposure group

Trace ID od oa1 oa2 oa3 ob1 ob2 t

1 1 1 0 0 0 0 1
3 1 0 0 1 0 0 1
4 1 0 1 0 0 0 0
12 1 0 1 0 1 0 0
6 1 0 0 1 1 0 0

Non-exposure group

Trace ID od oa1 oa2 oa3 ob1 ob2 t

9 0 1 0 0 0 0 0
2 0 0 0 1 0 0 1
8 0 0 1 0 0 0 1
5 0 1 1 0 1 0 0
11 0 0 1 0 0 1 0

Fig. 3: Exposure and non exposure groups construction.

between the groups.
(6) For each existing combination of values of the controlled

variables, we assess the value of the outcome variable.
Traces with a positive outcome in the exposure group
and a negative one in the non-exposure group provide
evidence for a causal relation (let their number be n1).
Traces with a negative outcome in the exposure group
and a positive one in the non-exposure group, in turn,
provide evidence against a causal relation (their number
is noted n2). If the ratio of the number of traces providing
evidence for and those providing evidence against a
causal relation, n1

n2
, is larger than one, we conclude on

the existence of the causal relation. The lower bound
of the confidence interval of the latter ratio is given by
exp(log(n1

n2
)− 1.96 ∗

√
1
n1

+ 1
n2

) . A value higher than 1
confirms the causal relationship [21].

Following this procedure, we are able to identify whether the
context information of attribute d (or od, respectively) can
indeed be seen as the cause of the occurrence of pattern P .

5.2 Interplay of Behavioral Patterns

Another perspective for the analysis of discovered patterns
are correlations between the patterns themselves. Under-
standing the interplay between patterns, again, provides
deeper insights into the conduct of the considered process.

In particular, we explore the interplay of behavioral
patterns that are part of a frequent contextual behavioral
pattern, which includes a sequence or concurrence operator
as the root node. For such a setting, we investigate the
presence of correlations between child patterns.

First, consider a discovered pattern P = seq(P1, P2) with
P1, P2 being subtrees. For such a pattern, we investigate
whether there is evidence for an association rule P1 → P2.
From the existence of P , we know that the behavior of P2

Fig. 4: Example of a non-valid behavioral rule.

appears after the behavior of P1 during process execution.
Two cases are possible; either P2 is strongly associated with
P1, meaning P2 is observed always and only when P1 is
observed; or it is loosely associated, if that is not the case.
Again, we compute the odds ratio to evaluate the potential
correlation. Fig. 4 gives an example of a process configuration
where we can observe a case of interplay. It is to be noted
that the computation of the odds ratio is done efficiently
based on the results of the actual pattern discovery. Since the
root of P is a sequence operator and due to monotonicity, P1
and P2 are also frequent and the set of traces in which they
appear are already known.

The same procedure is also applied to behavioral patterns
that have the concurrency operator as a root node, P =
and(P1, P2). The sole difference is that the semantics of
the concurrency operator have to be incorporated: positive
evidence for a correlation is provided by traces, in which the
behavior of P1 appears in parallel with the one of P2, and
never without it. Also, if the behavior of P1 is not observed
in a trace, neither is the behavior of P2.

5.3 Methodology for Pattern Discovery and Analysis

Finally, we integrate the presented approach for the discovery
of behavioral patterns with the procedures for the analysis
of discovered patterns in a general methodology, as follows:
(1) To get a first overview of behavioral regularities, context-

agnostic behavioral patterns are identified with the
COBPAM algorithm, given a configuration of thresholds
for the support and precision.

(2) Next, contextual attributes are selected, paying attention
to their semantics and modalities (continuous or discrete).
If needed, pre-processing is applied to adapt, normalize,
or discretize the attribute values.

(3) A minimal context size is defined, in relation to the
size of the log and, potentially, knowledge about the
process under investigation. Contexts that don’t meet the
minimal size are discarded from the analysis and their
associated traces deemed not representative enough of
the context.
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(4) Contextual behavioral patterns are mined with the CCOB-
PAM algorithm.

(5) Follow the interpretation guidelines, detailed below, to
derive insights on the process.

(6) If suggested by these guidelines, adapt the support
threshold, repeat the discovery of behavioral patterns,
and note potential changes in the set of patterns.

(7) Finally, the presence of causal relations with context
data, and correlations among patterns is evaluated for
C-exclusive patterns according to the aforementioned
procedures.
To complete the above methodology, we provide guide-

lines for the interpretation of discovered contextual behav-
ioral patterns. CCOBPAM reveals patterns with respect to
a hierarchy of contexts and considers different types of
frequency that can be interpreted as follows:
• AC-frequent: The pattern is frequent in at least an atomic

context and not C-General or C-exclusive somewhere
else.

• C-exclusive: The pattern is exclusively frequent in the con-
text and all its descendants, meaning that its occurrence
is independent of the populations considered inside the
context.

• C-general: The same interpretation as for a C-exclusive
pattern applies. Yet, the pattern is also frequent some-
where else in the context hierarchy.

Moreover, patterns that are discovered by context-
agnostic discovery with COBPAM and context-aware dis-
covery with CCOBPAM are particularly interesting to derive
insights on the process. In the following, we characterize the
possible cases and provide an interpretation:
• A log-frequent pattern appears as a C-exclusive pattern in

the root context: The pattern is not only frequent in the
whole log, but also frequent in every context. This means
that the pattern is strongly frequent, independent of the
considered population.

• A log-frequent pattern appears as C-exclusive or C-general
in large contexts or C-frequent in large atomic contexts: The
pattern is actually frequent in some parts of the log that
represent a significant portion of the log, which renders
the pattern log-frequent. Yet, it is infrequent in other
contexts. As such, the occurrence of a pattern that occurs
very often (i.e., it is log-frequent) can be linked rather
accurately to a specific context.

• A log-frequent pattern appears as C-exclusive or C-General
in only some small contexts or as C-frequent in some small
atomic contexts: The pattern is frequent in some parts of
the log and close to frequent in other parts. This may
point to a need to revisit the chosen support threshold.

• A pattern is infrequent when the context is neglected, but
is frequent under some context: The identified behavior is
frequent, but applies solely to specific contexts, showing
the relevance of a contextual analysis.

6 EXPERIMENTAL EVALUATION

This section presents an evaluation of our techniques for the
discovery and analysis of contextual patterns.

6.1 Datasets and Setup

Our experiments used the following real-world event logs.
They cover different domains and are publicly available.1

Moreover, they are related to flexible processes, are of
reasonable size to be explored and include data attributes
with clear semantics.
• Sepsis: A log of a treatment process for Sepsis cases in a

hospital. It contains 1050 traces with 15214 events that
have been recorded for 16 activities.

• Traffic Fines: A log of an information system managing
road traffic fines, containing 150370 traces, 561470 events,
and 11 activities.

• WABO: A log of a building permit application process
in the Netherlands. It contains 1434 traces with 8577
events, recorded for 27 activities.

• BPI_2019S: A 30% sample of the BPI Challenge 2019 log.
The log belongs to a multinational company working
in the area of coatings and paints and records the
purchase order handling process. It regroups 479845
events distributed over 75519 traces with 41 event
classes.

For the above event logs, we derived possible contexts
based on the recorded attributes. Moreover, we considered
a minimal size for each possible context, set to 50. Since in
real-world data, the associated log of a certain context may
not be representative of all possible behavior of the context
population, such a minimal size helps to avoid the discovery
of non-relevant behavioral patterns. The contexts considered
for the event logs are summarized as follows.
• Sepsis: Two attributes were considered: ‘InfectionSus-

pected’, which is a Boolean variable stating if an in-
fection is suspected, and ‘Infusion’, a Boolean variable
stating if an infusion has been administered.

• Traffic Fines: Contexts were constructed from two at-
tributes, ‘amount’, the amount of the fine, and ‘Vehicle-
Class’, the type of the vehicle.

• WABO: From all data attributes available, we chose
‘department’ and ‘channel’ to construct contexts. The
former represents the department working on the proce-
dure. The latter refers to the channel of communication
with the applicants.

• BPI_2019S: Each trace refers to a line item of a certain
purchase order. The first attribute considered was the
item category which specifies the method of invoice
handling. The four categories are: ‘3-way matching,
invoice after goods receipt’, ‘3-way matching, invoice
before goods receipt’, ‘2-way matching (no goods receipt
needed)’, and ‘Consignment’. The second attribute
is the company concerned. We observed two values:
‘companyID_0000’ and ‘companyID_0003’.

Our techniques have been implemented as a plugin in
the ProM framework [44], a framework for process mining
research (package BehavioralPatternMining). The discovery
algorithm was configured with a threshold of 0.7 for the
support and precision and two for the maximal depth of the
patterns, unless stated otherwise.

To compare the efficiency of discovering behavioral
patterns that are context-agnostic with the efficiency of the

1. https://data.4tu.nl/search?q=:keyword:"real%20life%20event%
20logs"
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TABLE 1: Run-times of CCOBPAM for different context
definitions, including the numbers of atomic contexts

Sepsis Traffic Fines WABO BPI-2019S

LPM discovery 13m Insuff.Mem 19m >24h
0-attribute 49s (0) 3m (0) 8s (0) 3.4mn (0)
1-attribute 93s (2) 4.4h (49) 10s (1) 57mn (4)

1-attributeS 94s (2) 6.5mn (3) 12s (3) 5.3mn (2)
2-attribute 2m (3) 3.5h (66) 13s (3) 57mn (4)

proposed method for context-aware discovery, we consider
the algorithm for LPM discovery [42], which is also available
as a ProM plugin. It comes with a single parameter, which
is a bound for the number of LPMs to discover. We set this
bound to 500, the maximal possible value.

All experiments have been conducted on a PC (i7-2.2Ghz
CPU, 16GB RAM) running Windows 10.

6.2 Efficiency of Patterns Discovery

We start by evaluating the influence of the introduction of
contexts on the baseline algorithm COBPAM.

Table 1 reports a break-down of the run-times of the
discovery of contextual patterns with CCOBPAM . For each
log, we first list the run-time without incorporating context
(0-attribute, corresponds to COBPAM on the whole log).
Then, a 1-attribute experiment considers solely the first
attribute mentioned for each event log in Section 6.1 while
the 1-attribute experiment considers the second attribute
mentioned. The 2-attribute experiments incorporated two
attributes. The table also includes information on the number
of atomic context, given in brackets after the run-time.
This number of atomic contexts depends on the number of
attributes considered and their domain. Lastly, the runtime of
LPM on the whole log is included for comparison purposes
(for a quantitative and qualitative comparison between
COBPAM and LPM, see [2]).

First, we can observe that extending COBPAM to take
into account contexts increases execution time. However,
even with that additional overhead, LPM execution is still
slower than CCOBPAM. Second, the change in run-time
introduced by adding a new attribute in CCOBPAM can
be explained by two opposite forces. Contexts are smaller
when increasing the number of attributes, which, in general,
reduces the required run-time On the other hand, when
increasing the number of attributes, i.e., when increasing
the number of atomic contexts, new construction graphs,
along with the specific set of frequent trees they contain, are
observed in each additional context. In some cases, these
construction graphs are bigger or contain more frequent trees
and need to be explored, which requires additional run-time.
As can be seen in Table 1, both of these effects have varying
impact, depending on the considered event log. The scale of
the change in run-times depends on the number of atomic
contexts added.

In the following, we will attempt to validate the previous
statement. In Table 1, when increasing the number of con-
sidered attributes, the sizes of the atomic contexts explored
changes. Accordingly, we used different samples (from 10%
to 100%) of the Sepsis log, each simulating an atomic context
size. In Table 2, we report the run-times along with further

TABLE 2: Scalability analysis using the Sepsis event log

% nbEvents Q1 Q2 Q3 nbTrees nbEva Run-time (s)

10 1434 9 13 16 382 17916 9260
20 2892 8 13 16 287 8501 14
30 4416 8 13 17 476 38151 8289
40 5685 9 13 17 370 8692 27
50 7045 9 13 17 356 8727 31
60 8904 10 13 17 484 13645 85
70 10144 9 13 16 344 8624 40
80 11632 8 13 16 352 8022 37
90 12693 9 13 16 377 8093 41

100 15214 9 13 16 375 8029 49

TABLE 3: Run-times of CCOBPAM on logs w/o repetitive
activities

Sepsis Traffic Fines WABO BPI_2019S

Run-time 61s 3.3h 12s 51mn
Relative run-time 50% 94% 92% 89%
R1 37% 1% 3% 18%
R2 52% 1% 2% 28%

statistics on: nbEvents, the total number of events; Q1, Q2, Q3,
the first, second, and third quartile on the size of the traces;
nbTrees, the number of discovered trees; nbEva, the number
of trees evaluated.

The results indicate that the run-times are subject to
large variability in comparison to the size of the log, which
confirms that the log size (the first force discussed) is only one
of many factors influencing the hardness of pattern discovery.
Another important factor is the number of frequent patterns
and, hence, the number of trees to evaluate in the search
process (the second force mentioned). Since the evaluation
of a tree is computationally hard (support and precision
have an exponential run-time complexity in the size of the
tree), the highest overall run-times are observed when the
largest numbers of trees have to be evaluated. However, this
is only one factor and a large number of evaluations may
also turn out to not increase the run-time significantly. All
the other factors are related to the construction graph and
one of them is the number of loop-involving patterns which
we will discuss in the next section.

Impact of Repetitive Activities We also explored the
impact of repetitive activities, i.e., multiple events of the same
activity in a trace, which may indicate a pattern containing
a loop operator. Table 3 shows the run-times of executing
the 2-attribute CCOBPAM, when removing all but the first
of the events of a single activity per trace. Here, R1 is the
ratio of the number of removed events and the total number
of events; R2 is the mean ratio of the number of removed
events and the trace size. The relative run-time with respect
to the standard execution of CCOBPAM is also given.

There is a reduction in run-time, when the events of
repetitive activities are removed. This is due to the overhead
in the computation of support and precision for trees that
contain loop operators.

6.3 Effectiveness of Pattern Discovery
Next, we conducted a quantitative analysis on the patterns
returned by CCOBPAM for the WABO and BPI_2019S logs.
For the other logs, without further domain knowledge, the

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3077653

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



11

TABLE 4: Contexts statistics for WABO.

Size C-exclusive AC-frequent Rules

[General, Internet] 1211 / 8 9
[General, Post] 53 / 2 19
[General, desk] 105 / 2 9
[General, *] 1369 30 / 19
[*, *] 1369 30 / 19

TABLE 5: Contexts statistics for BPI_2019S.

Size C-exclusive AC-frequent Rules

[Consignment, comp.ID_0000] 4331 / 0 0
[inv. before GR, comp.ID_0000] 66318 / 41 20
[inv. after GR, comp.ID_0000] 4565 / 279 10
[2-way match, comp.ID_0003] 304 / 2 1
[Consignment, *] 4331 / / 0
[invoice before GR, *] 66318 / / 0
[*, companyID_0003] 304 / / 0
[2-way match, *] 1369 / / 0
[*, companyID_0000] 75214 1 / 0
[invoice after GR, *] 4565 / / 0
[*, *] 75518 / / 0

number of possible contexts and patterns turned out to be
overwhelming. Our observations are summarized in Table 4
and Table 5. First, we analyze the contexts constructed with
respect to the minimal context size in WABO. There are three
atomic contexts, as shown in the hierarchy in Table 4. Overall,
30 patterns are C-exclusive in the root context. Some patterns
are neither C-exclusive nor C-general. They are AC-frequent
and their number is indicated in the corresponding column.
Concerning BPI_2019S log, there are 4 atomic contexts and
only one pattern is C-exclusive. All the other 319 patterns
discovered are AC-frequent.

6.4 Patterns Analysis
6.4.1 Causal Relations between Data and Patterns
For the WABO event log, causal relations between context
data and patterns, see Section 5.1, could not be found due
to the peculiar hierarchy of contexts (the counterfactual of
the constrained attribute in the unique context that can hold
C-exclusive patterns is only present in discarded small-sized
contexts). We, therefore, considered the Sepsis event log and
explored causality of context data and patterns. Based on the
two Boolean attributes ‘InfectionSuspected’ and ‘Infusion’,
three contexts were constructed: [true, true], [true, false] and
[false, false]. The total number of patterns discovered was 968
and 77 of those were C-exclusive. We found causal relations
for 35 of the C-exclusive patterns. Specifically, they were
caused by the exposure variable InfectionSuspected = true,
highlighting that a suspected infection can be seen as the root
cause of various behavioral regularities like seq(seq(ER Triage,
Leucocytes), CRP). As for BPI_2019S, the only C-exclusive
pattern did not show any causal dependencies while no
C-exclusive patterns were accounted for in Traffic Fines.

6.4.2 Interplay of Behavioral Patterns (Rules)
The column Rules in Table 4 and Table 5 indicates how
many association rules that describe the interplay of the
discovered patterns were found in each context in WABO
log and BPI_2019S respectively, see Section 5.2. Specifically,
the number represents the number of patterns that hold a

TABLE 6: Presence of P1 and P2 in the traces of [low, *], the
odds ratio being 7.

P2 P2

P1 70 10
P1 10 10

TABLE 7: Presence of P1 and P2 in the traces of [low, <70],
the odds ratio being 0.93.

P2 P2

P1 28 6
P1 5 1

rule. An example of those patterns is Tree (1) in Fig. 5 which
holds a rule in all contexts of the log. In fact, there is a
strong dependency between seq(T02, T04) and seq(T06, T10)
(child subtrees of the root) in all contexts, in which the tree
is frequent. Note, however, that the presence of a rule in a
context does not mean that the same rule is present also in a
more general context. The opposite does not hold either. The
existence of a rule is independent between contexts. This is
known as the Simpson’s Paradox [29]. We give the example
of a process P = seq(P1, P2), with P1, P2, two subtrees
which is C-General in [low, *] while holding a rule in that
context (as shown in Table 6). The pattern, however, does
not satisfy a rule in the more specific contexts [low, <70]
(see Table 7) and [low, 70+] (see Table 8 ). Discovering the
occurrences of the Simpson’s Paradox is another upside of
the contextual technique. Uncovering statistical association
that is not verified when stratifying the data prevents the
analyst from considering misleading interplays. Indeed, the
strong association between P1 and P2 in [low, *] is spurious
as neither the "<70" nor the "70+" population confirms it. It is
to be noted that when variables are missing, there is a risk of
taking fallacious interplays for real ones. This happens when
stratifying the data on the missing variables brings opposite
results on the behavioral rules.

6.4.3 Methodology in practice: Interpretation of Patterns
In this section, we apply our methodology to the patterns
discovered. As the procedure needs to determine which
patterns were discovered both by CCOBPAM (on the two
attributes) and COBPAM (on the whole log) and in which
contexts, manually, we could only apply it on WABO and
BPI_2019S due to the limited number of patterns to inspect.
Table 9 shows that CCOBPAM discovered 40 contextual
patterns, whereas COBPAM discovered 33 context-agnostic
patterns. All of these were also discovered by CCOBPAM, so
that they are listed in the Common column. Of the common
patterns, 30 are C-exclusive and three AC-frequent. So, these
three patterns are frequent in the log. Yet, they are frequent

TABLE 8: Presence of P1 and P2 in the traces of [low, 70+],
the odds ratio being 0.6.

P2 P2

P1 42 10
P1 7 1
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TABLE 9: Pattern statistics of CCOBPAM and COBPAM for
WABO.

CCOBPAM Common

C-exclusive / 30
AC-frequent 7 3

TABLE 10: Pattern statistics of CCOBPAM and COBPAM for
BPI_2019S.

CCOBPAM Common

C-exclusive 1 0
AC-frequent 291 28

solely in some contexts, not in all of them. Seven patterns
were revealed only by our novel CCOBPAM algorithm and
are AC-frequent: They are frequent in some atomic contexts,
but not in the whole log. Hence, they are missed by context-
agnostic discovery. Table 10 shows on its turn that the only
C-exclusive pattern discovered by CCOBPAM is not log-
frequent. Moreover, among the 319 AC-frequent patterns
returned, 28 were also log-frequent.

For a more concrete example on the contextual patterns
analysis methodology, we illustrate in Fig. 5, a discovered
pattern for each of the cases of pattern frequentiality pre-
sented in the end of Section 5.3. It is important to note
that any tree discovered in WABO or BPI_2019S falls under
one of the four categories we are going to exemplify. The
trees we present here were selected randomly. Tree (1) is
observed in all contexts. Since the tree is C-exclusive in the
whole population, it is frequent regardless of the department
and communication channel used in the building permit
application process, thereby representing generic, recurring
behavior. Tree (2), in turn, exemplifies a log-frequent behavior
that occurs solely in two small atomic contexts, specific to
applications handled by desks and through the post office.
The total size of these contexts is only 158 traces, while
the whole log contains 1434 traces. This indicates that the
pattern is close to frequent in the other contexts suggesting a
potential need to re-calibrating the support threshold.

Tree (3) is log-frequent and frequent in the largest atomic
context concerning communication channel (i.e., the internet
channel). This is another insight regarding the specific set of
traces in which a pattern is frequent. Another interesting tree
is (4), which is not discovered when neglecting contextual
information, because it is only frequent in cases handled
via the internet channel. As such, it exemplifies that context-
aware discovery reveals patterns that are otherwise missed
since they relate to a small set of traces.

6.5 Discussion and future extensions
The experimental evaluation can be extended in several ways
to address its current limits:
• Unavailability of contextual logs: The scarcity of real

life logs containing contextual data prevented us from
doing more extensive experiments to study the influence
of contexts. Even when data attributes are present in
some logs, they are not documented and their meaning
stays obscure. An industrial use case would allow us to
do a more in-depth analysis.

Fig. 5: Illustrative examples of behavioral patterns mined
with CCOBPAM.

• Missing values for context attributes: In our experi-
ments, traces whose context attributes have no values,
have not been included in the discovery. In a real
application, the missing values could be handled using
methods known from databases in order to infer their
values. Alternatively, a Null value context could be
defined and the discovered patterns in it could help
in identifying causes of missing values.

• User validation: While the effectiveness evaluation
showed that our method gives a more compact view of
the behavior of a flexible process, a user-assisted eval-
uation should be conducted to conclude that business
analysts find indeed a significant aid using our method.

Our approach for contextual behavioral pattern discovery
and analysis can be extended in several directions that we
plan to explore in future work:
• Visualization techniques: While COBPAM (and a for-

tiori CCOBPAM) outputs only compact and maximal
patterns (compared with existing approaches that output
redundant patterns), the number of patterns may be too
large and user guidance and visualization techniques
may be needed.

• Relevant contexts definition: Constructing suitable con-
texts that ensure actionable insights relies on the expert
domain knowledge (e.g., deciding 70 as a boundary for
the age related context). Possible extensions are defining
an interface allowing users to easily define contexts
and explore them or automatically identifying atomic
contexts in which interesting patterns may appear.

• Memory issues: The method consumes a lot of mem-
ory as all previously discovered patterns need to be
maintained throughout the execution of the algorithm.
Because of this, our techniques fail in handling large
event logs.

• Data exploitation: Our methods use data associated
to traces and ignores data attributes specified on
events. Other methods specialize on those specific
attributes [6], [20], [24], [33]. Incorporating the whole
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data dimension present in the log in the pattern analysis
can help bring additional insights.

7 CONCLUSION

In this paper, we proposed the notion of contextual behav-
ioral patterns, an algorithm for extracting them from an event
log generated by a flexible process, and a methodology for
analyzing the discovered patterns. Contextual behavioral
patterns enable fine-granular insights in how a process is
conducted, by not only pointing to recurring behavior, but
revealing the contextual factors under which the behavior
is observed. This way, process analysis becomes (i) more
exhaustive by including patterns that are not frequent for
the whole log, but solely for a certain context; and (ii)
more precise as the impact of context is made explicit.
For efficient discovery of contextual behavioral patterns,
we presented CCOBPAM, an extension of the COBPAM
algorithm. Moreover, our methodology for pattern analysis
further supports the interpretation of the discovered patterns.
In particular, we showed how to explore causal relations
between context data and patterns, as well as the interplay
of patterns in terms of correlations.

An experimental evaluation with real-world event logs
demonstrated how our approach improves over the state-of-
the-art in behavioral pattern discovery in terms of relevance
of extracted patterns and resulting insights. Our results on
the efficiency of discovery also illustrate general feasibility.
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