
Witness Generation for JSON Schema
Lyes Attouche

Université Paris-Dauphine – PSL
lyes.attouche@dauphine.fr

Mohamed-Amine Baazizi
Sorbonne Université, LIP6 UMR 7606

baazizi@ia.lip6.fr

Dario Colazzo
Université Paris-Dauphine – PSL

dario.colazzo@dauphine.fr

Giorgio Ghelli
Dip. Informatica, Università di Pisa

ghelli@di.unipi.it

Carlo Sartiani
DIMIE, Università della Basilicata

carlo.sartiani@unibas.it

Stefanie Scherzinger
Universität Passau

stefanie.scherzinger@uni-passau.de

ABSTRACT
JSON Schema is an important, evolving standard schema language
for families of JSON documents. It is based on a complex combi-
nation of structural operators, Boolean operators, including full
negation, and mutually recursive variables. The static analysis of
JSON Schema documents comprises practically relevant problems,
including schema satisfiability, inclusion, and equivalence. These
three can be reduced to witness generation: given a schema, gen-
erate an element of the schema — if it exists — otherwise report
failure. Schema satisfiability, inclusion, and equivalence have been
shown to be decidable, by reduction to reachability in alternating
tree automata. However, no witness generation algorithm has yet
been formally described. We contribute a first, direct algorithm for
JSON Schema witness generation. We study its effectiveness and
efficiency, in experiments over several schema collections, includ-
ing thousands of real-world schemas. Our focus is on the complete-
ness of the language (where we only exclude the "uniqueItems"
operator) and on the ability of the algorithm to run in reasonable
time on a large set of real-world examples, despite the exponential
complexity of the problem.

KEYWORDS
JSON Schema, witness generation, inclusion, equivalence

1 INTRODUCTION
This paper is about witness generation for JSON Schema [33], the
de-facto standard schema language for JSON [10, 11, 18, 35].

JSON Schema is a schema language based on a set of assertions
that describe features of the JSON values described and on logical
and structural combinators for these assertions.

The semantics of this language can be subtle. For instance, the
two schemas below differ in their syntax, but are in fact equivalent.
Schema a) explicitly states that any instance must be an object, and
that a property named “foo” is not allowed. Schema b) implicitly re-
quires the same: the required keyword has implicative semantics,
stating that if the instance is an object, it must contain a property
named “foo”. Via negation, it is enforced that the instance must
be an object, where a property named “foo” is not allowed. While
this specific example is artificial, it exemplifies the most common
usage of not in JSON Schema [13].

(a
) { "type ": " object ",

" properties ": { "foo ": false } }

(b
) { "not ": { " required ": [" foo "] } }

Validation of a JSON value 𝐽 with respect to a JSON Schema
schema 𝑆 , denoted 𝐽 ⊨ 𝑆 , is a well-understood problem that can be

solved in time 𝑂 (|𝐽 |2 |𝑆 |) [35]. The JSON Schema Test Suite [34],
a collection of validation tests, lists over 50 validator tools, at the
time of writing. Yet there are static analysis problems, equally rel-
evant, where we still lack well-principled tools. We next outline
these problems, and then point out that they can be ultimately re-
duced to JSON Schema witness generation, the focus of this work.

Inclusion 𝑆 ⊆ 𝑆 ′: does, for each value 𝐽 , 𝐽 ⊨ 𝑆 ⇒ 𝐽 ⊨ 𝑆 ′?
Checking schemas for inclusion (or containment) is of great prac-
tical importance: if the output format of a tool is specified by a
schema 𝑆 , and the input format of a different tool by a schema 𝑆 ′,
the problem of format compatibility is equivalent to schema inclu-
sion 𝑆 ⊆ 𝑆 ′; given the high expressive power of JSON Schema,
this “format” may actually include detailed information about the
range of specific parameters. For example, the IBMML framework
LALE [16] adopts an incomplete inclusion checking algorithm for
JSON Schema, to improve safety of ML pipelines [28].

Schema inclusion also plays a central role in schema evolution,
with questions of the kind: will a value that respects the new schema
still be accepted by tools designed for legacy versions? If not, what
is an example of a problematic value?

Equivalence 𝑆 ≡ 𝑆 ′: does, for each value 𝐽 , 𝐽 ⊨ 𝑆 ⇔ 𝐽 ⊨ 𝑆 ′?
Checking equivalence builds upon inclusion, and is relevant in de-
signing workbenches for schema analysis and simplification [24].

Satisfiability of 𝑆 : does a value 𝐽 exist such that 𝐽 ⊨ 𝑆?
Note that the above problems are strictly interrelated. Indeed,

as JSON Schema includes the Boolean algebra, schema inclusion
and satisfiability are equivalent: 𝑆 ⊆ 𝑆 ′ if and only if 𝑆 ∧ ¬𝑆 ′ is
not satisfiable, and 𝑆 is satisfiable if and only if 𝑆 ⊈ false, where
false is the schema that no JSON document can match.

Witness generation for 𝑆 , a constructive generalization of satis-
fiability: given 𝑆 , generate a value 𝐽 such that 𝐽 ⊨ 𝑆 , or return
“unsatisfiable” if no such value exists. In the first case, we call 𝐽 a
witness. Schema inclusion 𝑆 ⊆ 𝑆 ′ can be immediately reduced to
witness generation for 𝑆 ∧ ¬𝑆 ′, but with a crucial advantage: if a
witness 𝐽 for 𝑆 ∧ ¬𝑆 ′ is generated, we can provide users with an
explanation: 𝑆 is not included in 𝑆 ′ because of values such as 𝐽 . We
can similarly solve a “witnessed” version of equivalence: given 𝑆
and 𝑆 ′, either prove that one is equivalent to the other, or provide
an explicit witness 𝐽 that belongs to one, but not to the other.

A witness generation algorithm, besides its use for the solu-
tion of witnessed inclusion, is the first step in the design of com-
plete enumeration and example generation algorithms. Here, com-
plete enumeration is any algorithm, in general non-terminating,
that, for a given 𝑆 , enumerates every 𝐽 that satisfies 𝑆 . With exam-
ple generation, we indicate any enumeration algorithm that is not
necessarily complete, but pursues some “practical” criterion in the

ar
X

iv
:2

20
2.

12
84

9v
3

 [
cs

.D
B

]
 1

6
Ju

l 2
02

2

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

choice of the generated witnesses, such as the “realism” of the base
values, or some form of coverage of the different cases allowed by
the schema. Example generation is extremely useful in the context
of test-case generation, and also as a tool to understand complex
schemas through realistic examples.

Open challenges. Witness generation for JSON Schema is dif-
ficult. Existing tools are incomplete and struggle with this task
(as we will show in our experiments). First of all, JSON Schema
includes conjunction, disjunction, negation, modal (or structural)
operators, recursive second-order variables, and recursion under
negation. Secondly, for each JSON type, the different structural op-
erators have complex interactions, as in the following example,
where "required" and the negated "patternProperties" force
the presence of fields whose names match "^a" and "^abz$" (this
is explained in the paper), "maxProperties" : 1 forces these two
fields to be one, and, finally, "patternProperties" forces the value
of that field to satisfy var2, since "abz" also matches "z$".
{"required":["abz"],
"not":{"patternProperties":{"^a":{"$ref":"#/$defs/var1"}}},
"maxProperties":1,
"patternProperties":{"z$":{"$ref":"#/$defs/var2"}},
"$defs" : ...

}

Each aspectwouldmake the problem computationally intractable
by itself. Their combination exacerbates the difficulty of the design
of a complete algorithm that is practical, that is, of an algorithm
that is correct and complete by design, but is also able to run in a
reasonable time over the vast majority of real-world schemas.

Contributions. The main contribution of this paper is an origi-
nal sound and complete algorithm for checking the satisfiability
of an input schema 𝑆 , generating a witness 𝐽 when the schema
is satisfiable. Our algorithm supports the whole language with-
out uniqueItems. While the existence of an algorithm for this spe-
cific problem follows from the results in [18], where the problem
is proved to be EXPTIME-complete, we are the first to explicitly
describe an algorithm, and specifically one that has the potential
to work in reasonable time over schemas of realistic size. Our al-
gorithm is based on a set of formal manipulations of the schema,
some of which, such as preparation, are unique to JSON Schema,
and have not been proposed before in this form. Particularly rele-
vant in this context is the notion of lazy and-completion, which we
will describe later. In this paper, we detail each algorithm phase,
show that each is in 𝑂 (2poly (N)), and focus on preparation and
generation of objects and arrays, the phases completely original to
this work.

The practical applicability of our algorithm is proved by our ex-
perimentation, which is another contribution of this work. Our ex-
periments are based on four real-world datasets, on a synthetic
dataset, and on a handwritten dataset. Real-world datasets com-
prise 6,427 unique schemas extracted, through an extensive data
cleaning process, from a large corpus of schemas crawled from
GitHub [14] and curated by us for errors and redundancies; the
other datasets, already used in [28], are related to specific applica-
tion domains and originated from Snowplow[5], The Washington
Post [36], and Kubernetes [30]. The synthetic dataset is synthe-
sized from the standard schemas provided by JSON SchemaOrg [34],

from which we derive schemas that are known to be satisfiable or
unsatisfiable by design [7]. The handwritten dataset is specifically
engineered to test the most complex aspects of the JSON Schema
language. The experiments show that our algorithm is complete,
and that, despite its exponential complexity, it behaves quite well
even on schemas with tens of thousands of nodes. Overall, we can
show that our contributions advance the state-of-the-art.

Our implementation of thewitness generation algorithm is avail-
able as open source. The code is part of a fully automated reproduc-
tion package [4], which contains all input data, as well as the data
generated in our experiments. For convenience, our implementa-
tion is also accessible as an interactive web-based tool [3].

Paper outline
The rest of the paper is organized as follows. In Section 2 we ana-
lyze related work. In Section 3 we briefly describe JSON and JSON
Schema. In Sections 4 and 5 we introduce our algebraic framework.
In Sections 6, 7, and 8, we describe the structure of the algorithm,
the initial phases, and the last phases. In Section 9 we present an
extensive experimental evaluation of our approach. In Section 10,
we draw our conclusions.

2 RELATEDWORK
Overviews over schema languages for JSON can be found in [10, 11,
18, 35]. Pezoa et al. [35] introduced the first formalization of JSON
Schema and showed that it cannot be captured by MSO or tree
automata because of the uniqueItems constraints. While they fo-
cused on validation and proved that it can be decided in𝑂 (|𝐽 |2 |𝑆 |)
time, they also showed that JSON Schema can simulate tree au-
tomata. Hence, schema satisfiability is EXPTIME-hard.

In [18] Bourhis et al. refined the analysis of Pezoa et al. They
mapped JSON Schema onto an equivalent modal logic, called re-
cursive JSL, and proved that satisfiability is PSPACE-complete for
schemaswithout recursion and uniqueItems, it is in EXPSPACE for
non recursive schemas with uniqueItems, it is EXPTIME-complete
for recursive schemas without uniqueItems, and it is in 2EXPTIME
for recursive schemas with uniqueItems. Their work is extremely
important in establishing complexity bounds. Since theymap JSON
Schema onto recursive JSL logic, and provide a specific kind of al-
ternating tree automata for this logic, they already provide an indi-
rect indication of an algorithm for witness generation. However,
classical reachability algorithms for alternating automata are de-
signed to prove complexity upper bounds, not as practical tools.
They are typically based on the exploration of all subsets of the
state set of the automaton [20], hence on a sequence of complex
operations on a set of sets whose dimension may be in the realm of
210,000. While exponentiality cannot be avoided in the worst case,
it is clear that we need a different approach when designing a prac-
tical algorithm.

To the best of our knowledge, the only tool that is currently
available to check the satisfiability of a schema is the containment
checker described by Habib et al. [28]. While it has been designed
for schema containment checking, e.g., 𝑆1 ⊆ 𝑆2, it can also be ex-
ploited for schema satisfiability since 𝑆 is satisfiable if and only if
𝑆 ⊈ 𝑆 ′, where 𝑆 ′ is an empty schema. The approach of Habib et
al. bears some resemblances to ours, e.g., schema canonicalization

Witness Generation for JSON Schema

has been first presented there, but its ability to cope with negation
is very limited as well as its support for recursion.

Several tools (see [17] and [1]) for example generation exist. They
generate JSON data starting from a schema. These tools, however,
are based on a trial-and-error approach and cannot detect unsatis-
fiable schemas. We compare our tool with [17] in our experiments.
There are also grammar-based approaches for generating JSON val-
ues. The tool by Gopinath et al. allows for data generation under
Boolean constraints [27], which have to be specified manually.

In [22], Benac Earle et al. present a systematic approach to test-
ing behavioral aspects of Web Services that communicate using
JSON data. In particular, this approach builds a finite state machine
capturing the schema describing the exchanged data, but this ma-
chine is only used for generating data and is restricted to atomic
values, objects and to some form of boolean expressions.

Own prior work. In our technical report [15], we discuss negation-
completeness for JSON Schema, that is, we showhowpairs of JSON
Schema operators such as "patternProperties"-"required" and
"items"-"contains" are almost dual under negation, as ∧-∨ or ∀-∃
are, but not exactly. In the process, we define an algorithm for not-
elimination, that we actually developed for its use in the witness
generation algorithm that we describe here. In Section 7.2 we will
rapidly recap this algorithm.

An earlier prototype implementation has been presented in tool
demos [8, 9, 24]. Meanwhile, we have optimized our algorithm, and
formalized the proofs, as presented in this paper.

A preliminary version of the algorithm described in the current
paper has been presented in [12] (informal proceedings).

3 PRELIMINARIES
3.1 JSON data model
Each JSON value belongs to one of the six JSON Schema types:
nulls, Booleans, decimal numbersNum (hereafter, we just use num-
bers to refer to decimal numbers), strings Str, objects, arrays. Ob-
jects represent sets of members, each member being a name-value
pair, where no name can be present twice, and arrays represent
ordered sequences of values.

𝐽 ::= 𝐵 | 𝑂 | 𝐴 JSON expressions
𝐵 ::= null | true | false | 𝑞 | 𝑠

𝑞 ∈ Num, 𝑠 ∈ Str Basic values
𝑂 ::= {𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛}

𝑛 ≥ 0, 𝑖 ≠ 𝑗 ⇒ 𝑙𝑖 ≠ 𝑙 𝑗 Objects
𝐴 ::= [𝐽1, . . . , 𝐽𝑛] 𝑛 ≥ 0 Arrays

Definition 1 (Value equality and sets of values). We interpret a
JSON object {𝑙1 : 𝐽1, . . . , 𝑙𝑛 : 𝐽𝑛} as a set of pairs (members) {(𝑙1, 𝐽1),
. . . , (𝑙𝑛, 𝐽𝑛)}, where 𝑖 ≠ 𝑗 ⇒ 𝑙𝑖 ≠ 𝑙 𝑗 , and an array [𝐽1, . . . , 𝐽𝑛] as an
ordered list; JSON value equality is defined accordingly, that is, by
ignoring member order when comparing objects.

Sets of JSON values are defined as collections with no repetition
with respect to this notion of equality.

3.2 JSON Schema
JSON Schema is a language for defining the structure of JSON docu-
ments. Many versions have been defined for this language, notably

Draft-03 of November 2010, Draft-04 of February 2013 [25], Draft-
06 of April 2017 [41], Draft 2019-09 of September 2019 [39], and
Draft 2020-12 of December 2020 [40]. Draft 2019-09 introduced a
major semantic shift, since it made assertion validation dependent
on annotations, and has not been amply adopted up to now, hence
we decided to base our work on Draft-06. However, we decided
also to include the operators "minContains" and "maxContains"
introduced with Draft 2019-09 since they are very interesting in
the context of witness generation and they do not present the prob-
lematic dependency on annotations of the other novel operators.

JSON Schema uses JSON syntax. A schema is a JSON object that
collects assertions that are members, i.e., name-value pairs, where
the name indicates the assertion and the value collects its param-
eters, as in "minLength" : 3, where the value is a number, or in
"items" : {"type" : ["boolean"]}, where the value for "items" is
an object that is itself a schema, and the value for "type" is an array
of strings.

A JSON Schema document (or schema) denotes a set of JSON
documents (or values) that satisfy it. The language offers the fol-
lowing abilities.
• Base type specification: it is possible to define complex prop-
erties of collections of base type values, such as all strings
that satisfy a given regular expressions ("pattern"), all num-
bers that are multiple of a given numbers ("multipleOf")
and included in a given interval ("minimum", "maximum",. . .).
• Array specification: it is possible to specify the types of the
elements for both uniform arrays and non-uniform arrays
("items"), to restrict the minimum and maximum size of the
array, to bound the number of elements that satisfy a given
property ("contains", "minContains", . . .), and also to en-
force uniqueness of the items ("uniqueItems").
• Object specification: it is possible to require for certain names
to be present or to be absent, to specify the schemas of both
optional ormandatorymembers, all of this by denoting classes
of names using regular expressions (via "properties", "patternProperties",
and "required"). It it possible to specify that some asser-
tions depend on the presence of somemembers ("dependencies"),
and it is possible to limit the number of members that are
present.
• Boolean combination: one can express union, intersection,
and complement of schemas ("anyOf", "allOf", "not"), and
also a generalized form of mutual exclusion ("oneOf").
• Mutual recursion: mutually recursive schema variables can
be defined ("definitions", "$ref").

In the next section we describe JSON Schema by giving its trans-
lation into a simpler algebra.

4 THE ALGEBRA
4.1 The core and the positive algebras
In JSON Schema, themeaning of some assertions is modified by the
surrounding assertions, making formal manipulation much more
difficult. Moreover, the language is rich in redundant operators,
such as "if" − "then" − "else" and "dependencies", which can
both be easily translated in terms of "not" and "anyOf".

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

𝑚 ∈Num−∞, 𝑀 ∈Num∞, 𝑙 ∈N>0, 𝑖 ∈N, 𝑗 ∈N∞, 𝑞 ∈Num, 𝑘 ∈Str
𝑇 ::= Arr | Obj | Null | Bool | Str | Num
𝑟 ::= Any regular expression | 𝑟 | 𝑟1 ⊓ 𝑟2
𝑏 ::= true | false
𝑆 ::= ifBoolThen(𝑏) | pattern(𝑟) | betw𝑀𝑚 | xBetw𝑀𝑚

| mulOf (𝑞) | props(r : 𝑆) | req(k) | pro𝑗
𝑖

| item(𝑙 : 𝑆) | items(𝑖+ : 𝑆) | cont𝑗
𝑖
(𝑆)

| type(𝑇) | x | 𝑆1 ∧ 𝑆2 | 𝑆1 ∨ 𝑆2
core: | ¬𝑆

positive: | notMulOf (𝑞) | pattReq(𝑟 : 𝑆) | contAfter(𝑖+ : 𝑆)
𝐸 ::= 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛
𝐷 ::= 𝑆 defs (𝐸)

Figure 1: Syntax of the core and positive algebras.

For these reasons, in our implementation, we translate JSON
Schema onto a core algebra, that is an algebraic version of JSON
Schema with less redundant operators.

This algebra is very similar (apart the syntax) to the recursive
JSL logic defined in [18], but has a different aim. While JSL is an
elegant and minimal logic upon which JSON Schema is translated,
and an excellent tool for theoretical research, our algebra is an im-
plementation tool with two aims:

(1) simplify the implementation by its algebraic nature and its
reduced size;

(2) simplify the formal discussion of the implementation.
Both aims are facilitated by the algebraic nature and the reduced
size of the algebra, but we also value a certain degree of adherence
to JSON Schema.

The first step of our approach is the translation of an input
schema into an algebraic representation, and the second step is
not-elimination (Section 7.2). For the first step we use a core al-
gebra that is defined by a subset of JSON Schema operators. For
not-elimination, we use a positive algebra where we remove nega-
tion but we add three new operators: notMulOf (𝑛), pattReq(𝑟 : 𝑆),
and contAfter(𝑖+ : 𝑆). Our algebras extend JSON Schema regu-
lar expressions with external intersection ⊓ and complement 𝑟 op-
erators; this extension is discussed in Section 4.4. The syntax of
the two algebras, core and positive, which are expressive enough
to capture all JSON Schema assertions of Draft-06, plus the extra
operators "minContains" and "maxContains" of Draft 2019-09, is
presented in Figure 1.

InmulOf (𝑞),𝑞 is a number. In betw𝑀𝑚 and in xBetw𝑀𝑚 ,𝑚 is either
a number or −∞,𝑀 is either a number or∞. In pro𝑗

𝑖
, in items(𝑖+ :

𝑆), in cont𝑗
𝑖
(𝑆), and in contAfter(𝑖+ : 𝑆), 𝑖 is an integer with 𝑖 ≥ 0,

and 𝑗 is either an integer with 𝑗 ≥ 0, or ∞, while in item(𝑙 : 𝑆), 𝑙
is an integer with 𝑙 ≥ 1, and 𝑘 in req(𝑘) is a string.

We distinguish Boolean operators (∧, ∨ and ¬), variables (x),
and Typed Operators (TO — all the others). All TOs different from
type(𝑇) have an implicative semantics: “if the instance belongs to
the type 𝑇 then . . . ”, so that they are trivially satisfied by every
instance not belonging to type 𝑇 . We say that they are implicative
typed operators (ITOs).

The operators of the core algebra strictly correspond to those
of JSON Schema, and in particular to their implicative semantics.
The exact relationship between core algebra and JSON Schema is
discussed in Section 5.

Informally, an instance 𝐽 of the core or positive algebra satisfies
an assertion 𝑆 if:
• ifBoolThen(𝑏): if the instance 𝐽 is a boolean, then 𝐽 = 𝑏.
• pattern(𝑟): if 𝐽 is a string, then 𝐽 matches 𝑟 .
• betw𝑀𝑚 : if 𝐽 is a number, then𝑚 ≤ 𝐽 ≤ 𝑀 . xBetw𝑀𝑚 is the
same with extreme excluded.
• mulOf (𝑞): if 𝐽 is a number, then 𝐽 = 𝑞× 𝑖 for some integer 𝑖 .
𝑞 is any number, i.e., any decimal number (Section 3.1).
• props(r : 𝑆) if 𝐽 is an object and if (𝑘, 𝐽 ′) is a member of 𝐽
where 𝑘 matches the pattern 𝑟 , then 𝐽 ′ satisfies 𝑆 . Hence, it
is satisfied by any instance that is not an object and also by
any object where no member name matches 𝑟 .
• req(k): if 𝐽 is an object, then it contains at least one member
whose name is 𝑘 .
• pro𝑗

𝑖
: if 𝐽 is an object, then it has between 𝑖 and 𝑗 members.

• item(𝑙 : 𝑆): if 𝐽 is an array [𝐽1, . . . , 𝐽𝑛] (𝑛 ≥ 0) and if 𝑙 ≤ 𝑛,
then 𝐽𝑙 satisfies 𝑆 . Hence, it is satisfied by any 𝐽 that is not
an array and also by any array that is strictly shorter than 𝑙 ,
such as the empty array: it does not force the position 𝑙 to
be actually used.
• items(𝑖+ : 𝑆): if 𝐽 is an array [𝐽1, . . . , 𝐽𝑛], then 𝐽𝑙 satisfies 𝑆
for every 𝑙 > 𝑖 . Hence, it is satisfied by any 𝐽 that is not an
array and by any array shorter than 𝑖 .
• cont𝑗

𝑖
(𝑆): if 𝐽 is an array, then the total number of elements

that satisfy 𝑆 is included between 𝑖 and 𝑗 .
• type(𝑇) is satisfied by any instance belonging to the prede-
fined JSON type 𝑇 (Str, Num, Bool, Obj, Arr, and Null).
• x is equivalent to its definition in the environment 𝐸 associ-
ated with the expression.
• 𝑆1 ∧ 𝑆2: both 𝑆1 and 𝑆2 are satisfied.
• 𝑆1 ∨ 𝑆2: either 𝑆1, or 𝑆2, or both, are satisfied.
• ¬𝑆 : 𝑆 is not satisfied.
• notMulOf (𝑛): if 𝐽 is a number, then is not a multiple of 𝑛.
• pattReq(𝑟 : 𝑆): if 𝐽 is an object, then it contains at least one
member (𝑘, 𝐽) where 𝑘 matches 𝑟 and 𝐽 satisfies 𝑆
• contAfter(𝑖+ : 𝑆): if 𝐽 is an array [𝐽1, . . . , 𝐽𝑛], then it con-
tains at least one element 𝐽 𝑗 with 𝑗 > 𝑖 that satisfies 𝑆 .
• An environment 𝐸 = 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛 defines 𝑛 mutually
recursive variables, so that x𝑖 can be used as an alias for 𝑆𝑖
inside any of 𝑆1, . . . , 𝑆𝑛 .
• 𝐷 = 𝑆 defs (𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛): 𝐽 satisfies 𝑆 when every 𝑥𝑖
is interpreted as an alias for the corresponding 𝑆𝑖 .

Variables in 𝐸 = 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛 are mutually recursive,
but we require recursion to be guarded. Let us say that 𝑥𝑖 directly
depends on 𝑥 𝑗 if some occurrence of 𝑥 𝑗 appears in the definition
of 𝑥𝑖 without being in the scope of an ITO. For example, in “𝑥 :
(props(r : y) ∧ z)”, 𝑥 directly depends on 𝑧, but not on 𝑦. Recur-
sion is not guarded if the transitive closure of the relation “directly
depends on” contains a reflexive pair (𝑥, 𝑥). Informally, recursion
is guarded iff every cyclic chain of dependencies traverses an ITO.

Hereafterwewill often use the derived operators t and f . t stands
for “always satisfied” and can be expressed, for example, as pro∞0 ,

Witness Generation for JSON Schema

which is satisfied by any instance. f stands for “never satisfied” and
can be expressed, for example, as ¬t.

4.2 Semantics of the core algebra
The semantics of a schema 𝑆 with respect to an environment 𝐸 is
the set of JSON instances [[𝑆]]𝐸 that satisfy that schema, as speci-
fied in Figure 2. Hereafter, 𝐸 (𝑥) indicates the schema that 𝐸 asso-
ciates to 𝑥 . 𝐿(𝑟) denotes the regular language generated by 𝑟 . For𝑇
in Null,Bool, Str,Num,Obj,Arr, JVal(𝑇) is the set of JSON values
of that type, and JVal(∗) is the set of all JSON values. Z is the set of
all integers. Universal quantification on an empty set is true, and
the set {1..0} is empty.

The definition can be read as follows (ignoring the index 𝑝 for a
moment): the semantics of props(r : 𝑆) specifies that 𝐽 ∈ [[props(r :
𝑆)]]𝐸 ⇔ if 𝐽 is an object, if (𝑘𝑖 : 𝐽𝑖) is a member where 𝑘𝑖 matches
𝑟 , then 𝐽𝑖 ∈ [[𝑆]]𝐸 , as informally specified in the previous section.

[[ifBoolThen(𝑏)]]𝑝
𝐸

= {| 𝐽 | 𝐽 ∈ JVal(Bool) ⇒ 𝐽 = 𝑏 |}
[[pattern(𝑟)]]𝑝

𝐸
= {| 𝐽 | 𝐽 ∈ JVal(Str) ⇒ 𝐽 ∈ 𝐿(𝑟) |}

[[betw𝑀𝑚]]
𝑝

𝐸
= {| 𝐽 | 𝐽 ∈ JVal(Num) ⇒𝑚 ≤ 𝐽 ≤ 𝑀 |}

[[xBetw𝑀𝑚]]
𝑝

𝐸
= {| 𝐽 | 𝐽 ∈ JVal(Num) ⇒𝑚 < 𝐽 < 𝑀 |}

[[mulOf (𝑞)]]𝑝
𝐸

= {| 𝐽 | 𝐽 ∈ JVal(Num) ⇒
∃𝑖 ∈ Z. 𝐽 = 𝑖 · 𝑞 |}

[[props(r : 𝑆)]]𝑝
𝐸

= {| 𝐽 | 𝐽 = {(𝑘1 : 𝐽1), . . . , (𝑘𝑛 : 𝐽𝑛)} ⇒
∀𝑖 ∈ {1..𝑛}. 𝑘𝑖 ∈ 𝐿(𝑟) ⇒ 𝐽𝑖 ∈ [[𝑆]]𝑝𝐸 |}

[[req(𝑘)]]𝑝
𝐸

= {| 𝐽 | 𝐽 = {(𝑘1 : 𝐽1), . . . , (𝑘𝑛 : 𝐽𝑛)} ⇒
∃𝑖 ∈ {1..𝑛}. 𝑘𝑖 = 𝑘 |}

[[pro𝑗
𝑖
]]𝑝
𝐸

= {| 𝐽 | 𝐽 = {(𝑘1 : 𝐽1), . . . , (𝑘𝑛 : 𝐽𝑛)} ⇒
𝑖 ≤ 𝑛 ≤ 𝑗 |}

[[item(𝑙 : 𝑆)]]𝑝
𝐸

= {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒
𝑛 ≥ 𝑙 ⇒ 𝐽𝑙 ∈ [[𝑆]]

𝑝

𝐸
|}

[[items(𝑖+ : 𝑆)]]𝑝
𝐸

= {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒
∀𝑗 ∈ {1..𝑛}. 𝑗 > 𝑖 ⇒ 𝐽 𝑗 ∈ [[𝑆]]𝑝𝐸 |}

[[cont𝑗
𝑖
(𝑆)]]𝑝

𝐸
= {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒

𝑖 ≤ |{| 𝑙 | 𝐽𝑙 ∈ [[𝑆]]
𝑝

𝐸
|}| ≤ 𝑗 |}

[[type(𝑇)]]𝑝
𝐸

= JVal(𝑇)
[[𝑆1 ∧ 𝑆2]]𝑝𝐸 = [[𝑆1]]𝑝𝐸 ∩ [[𝑆2]]

𝑝

𝐸

[[𝑆1 ∨ 𝑆2]]𝑝𝐸 = [[𝑆1]]𝑝𝐸 ∪ [[𝑆2]]
𝑝

𝐸

[[¬𝑆]]𝑝
𝐸

= JVal(∗) \ [[𝑆]]𝑝
𝐸

[[x]]0
𝐸

= ∅
[[x]]𝑝+1

𝐸
= [[𝐸 (𝑥)]]𝑝

𝐸

[[𝑆]]𝐸 =
⋃
𝑖∈N

⋂
𝑝≥𝑖 [[𝑆]]

𝑝

𝐸
[[𝑆 defs (𝐸)]] = [[𝑆]]𝐸

Figure 2: Semantics of the algebra with explicit negation.

The index𝑝 is used since otherwise the definition [[x]]𝐸 = [[𝐸 (𝑥)]]𝐸
would not be inductive: 𝐸 (𝑥) is in general bigger than 𝑥 , while the
use of the index makes the entire definition inductive on the lexi-
cographic pair (𝑝, |𝑆 |). However, we need to define an appropriate
notion of limit for the sequence [[𝑆]]𝑝

𝐸
. We cannot just set [[𝑆]]𝐸 =⋃

𝑝∈N [[𝑆]]
𝑝

𝐸
, since, because of negation, this sequence of interpre-

tations is not necessarily monotonic in 𝑝 . For example, if we have

a definition 𝑦 : ¬(𝑥), then [[𝑦]]0
𝐸
contains the entire JVal(∗). How-

ever, since the interpretation converges when 𝑝 grows, we can ex-
tract an exists-forall limit from it, by stipulating that an instance 𝐽
belongs to the limit [[𝑆]]𝐸 if an 𝑖 exists such that 𝐽 belongs to every
interpretation that comes after 𝑖:

[[𝑆]]𝐸 =
⋃
𝑖∈N

⋂
𝑗≥𝑖
[[𝑆]] 𝑗

𝐸

Now, it is easy to prove that this interpretation satisfies JSON
Schema specifications, since, for guarded schemas, it enjoys the
properties expressed in Theorem 4, stated below.

Definition 2. An environment 𝐸 = 𝑥1 : 𝑆1, . . . , 𝑥𝑛 : 𝑆𝑛 is guarded
if recursion is guarded in 𝐸. An environment 𝐸 = 𝑥1 : 𝑆1, . . . , 𝑥𝑛 :
𝑆𝑛 is closing for 𝑆 if all variables in 𝑆1, . . . , 𝑆𝑛 and in 𝑆 are included
in 𝑥1, . . . , 𝑥𝑛 .

Lemma 3 (Convergence). There exists a function 𝐼 that maps
every triple 𝐽 , 𝑆, 𝐸, where 𝐸 is guarded and closing for 𝑆 , to an integer
𝑖 = 𝐼 (𝐽 , 𝑆, 𝐸) such that:

(∀𝑗 ≥ 𝑖 . 𝐽 ∈ [[𝑆]] 𝑗
𝐸
) ∨ (∀𝑗 ≥ 𝑖 . 𝐽 ∉ [[𝑆]] 𝑗

𝐸
)

Proof. For any guarded 𝐸, we can define a function 𝑑𝐸 from
assertions to natural numbers such that, when 𝑥 directly depends
on 𝑦, then 𝑑𝐸 (𝑥) > 𝑑𝐸 (𝑦). Specifically, we define the degree 𝑑𝐸 (𝑆)
of a schema 𝑆 in 𝐸 as follows. If 𝑆 is a variable 𝑥 , then 𝑑𝐸 (𝑥) =
𝑑𝐸 (𝐸 (𝑥)) + 1. If 𝑆 is not a variable, then 𝑑𝐸 (𝑆) is the maximum
degree of all unguarded variables in 𝑆 and, if it contains no un-
guarded variable, then 𝑑𝐸 (𝑆) = 0. This definition is well-founded
thanks to the guardedness condition. We now define a function
𝐼 (𝐽 , 𝑆, 𝐸) with the desired property by induction on (𝐽 , 𝑑𝐸 (𝑆), 𝑆),
in this order of significance.

(i) Let 𝑆 = 𝑥 . We prove that 𝐼 (𝐽 , 𝑥, 𝐸) = 𝐼 (𝐽 , 𝐸 (𝑥), 𝐸) + 1 has the
desired property. We want to prove that

(∀𝑗 ≥ 𝐼 (𝐽 , 𝐸 (𝑥), 𝐸) + 1. 𝐽 ∈ [[𝑥]] 𝑗
𝐸
) ∨ (∀𝑗 ≥ 𝐼 (𝐽 , 𝐸 (𝑥), 𝐸) + 1. 𝐽 ∉

[[𝑥]] 𝑗
𝐸
)

We rewrite [[𝑥]] 𝑗
𝐸
as [[𝐸 (𝑥)]] 𝑗−1

𝐸
:

(∀𝑗 ≥ 𝐼 (𝐽 , 𝐸 (𝑥), 𝐸)+1. 𝐽 ∈ [[𝐸 (𝑥)]] 𝑗−1
𝐸
)∨(∀𝑗 ≥ 𝐼 (𝐽 , 𝐸 (𝑥), 𝐸)+1. 𝐽 ∉

[[𝐸 (𝑥)]] 𝑗−1
𝐸
)

i.e., (∀𝑗 ≥ 𝐼 (𝐽 , 𝐸 (𝑥), 𝐸) . 𝐽 ∈ [[𝐸 (𝑥)]] 𝑗
𝐸
) ∨ (∀𝑗 ≥ 𝐼 (𝐽 , 𝐸 (𝑥), 𝐸) . 𝐽 ∉

[[𝐸 (𝑥)]] 𝑗
𝐸
)

This last statement holds by induction, since 𝑑𝐸 (𝑥) = 𝑑𝐸 (𝐸 (𝑥)) +1,
hence the term 𝐽 is the same but the degree of 𝐸 (𝑥) is strictly
smaller than that of 𝑥 .

(ii) Let 𝑆 = ¬𝑆 ′. We prove that 𝐼 (𝐽 ,¬𝑆 ′, 𝐸) defined as 𝐼 (𝐽 , 𝑆 ′, 𝐸) has
the desired property. We want to prove that, for any 𝐽 :

(∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′, 𝐸) . 𝐽 ∈ [[¬𝑆 ′]] 𝑗
𝐸
) ∨ (∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′, 𝐸). 𝐽 ∉ [[¬𝑆 ′]] 𝑗

𝐸
)

By definition of [[¬𝑆 ′]] 𝑗
𝐸
, we need to prove that for any 𝐽 :

(∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′, 𝐸) . 𝐽 ∉ [[𝑆 ′]] 𝑗
𝐸
) ∨ (∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′, 𝐸). 𝐽 ∈ [[𝑆 ′]] 𝑗

𝐸
)

which holds by induction on 𝑆 , since the term 𝐽 is the same and
the degree is equal.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

(iii) Let 𝑆 = 𝑆 ′ ∧ 𝑆 ′′. In this case, we let
𝐼 (𝐽 , 𝑆 ′ ∧ 𝑆 ′′, 𝐸) = 𝑚𝑎𝑥 (𝐼 (𝐽 , 𝑆 ′, 𝐸), 𝐼 (𝐽 , 𝑆 ′′, 𝐸)). We want to prove
that:
(∀𝑗 ≥ 𝑚𝑎𝑥 (𝐼 (𝐽 , 𝑆 ′, 𝐸), 𝐼 (𝐽 , 𝑆 ′′, 𝐸)). 𝐽 ∈ [[𝑆 ′ ∧ 𝑆 ′′]] 𝑗

𝐸
)

∨(∀𝑗 ≥ 𝑚𝑎𝑥 (𝐼 (𝐽 , 𝑆 ′, 𝐸), 𝐼 (𝐽 , 𝑆 ′′, 𝐸)). 𝐽 ∉ [[𝑆 ′ ∧ 𝑆 ′′]] 𝑗
𝐸
)

This follows immediately from the following two properties, that
hold by induction on (𝐽 , 𝑑𝐸 (𝑆), 𝑆), since both 𝑆1 and 𝑆2 have a de-
gree less or equal to 𝑆 , and are strict subterms of 𝑆 :

(∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′, 𝐸). 𝐽 ∈ [[𝑆 ′]] 𝑗
𝐸
) ∨ (∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′, 𝐸). 𝐽 ∉ [[𝑆 ′]] 𝑗

𝐸
)

(∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′′, 𝐸) . 𝐽 ∈ [[𝑆 ′′]] 𝑗
𝐸
) ∨ (∀𝑗 ≥ 𝐼 (𝐽 , 𝑆 ′′, 𝐸). 𝐽 ∉ [[𝑆 ′′]] 𝑗

𝐸
)

The same proof holds for the case 𝑆 = 𝑆 ′ ∨ 𝑆 ′′.

(iv) Let 𝑆 = items(𝑛+ : 𝑆 ′). If 𝐽 is not an array, then we can take
𝐼 (𝐽 , 𝑆, 𝐸) = 0, since 𝐽 satisfies 𝑆 for any index. If 𝐽 = [𝐽1, . . . , 𝐽𝑚],
then we fix

𝐼 ([𝐽1, . . . , 𝐽𝑚], 𝑆, 𝐸) =𝑚𝑎𝑥𝑖∈{1..𝑚}𝐼 (𝐽𝑖 , 𝑆 ′, 𝐸) (∗)
which is well defined by induction, since every 𝐽𝑖 is a strict subterm
of 𝐽 . Observe that the fact that each 𝐽 𝑗 is strictly smaller than 𝐽 , and
not just less-or-equal, is essential since, in general, the degree of
𝑆 ′ may be bigger than the degree of 𝑆 , since 𝑆 ′ is in a guarded po-
sition inside 𝑆 . Consider the semantics of items(𝑛+ : 𝑆 ′):
{| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑚] ⇒ ∀𝑙 ∈ {1..𝑚}. 𝑙 > 𝑛 ⇒ 𝐽𝑙 ∈ [[𝑆 ′]]

𝑝

𝐸
|}.

Now, because of (∗), ∀𝑗 ≥ 𝐼 (𝐽 , 𝑆, 𝐸), either 𝐽𝑙 ∈ [[𝑆 ′]]
𝑗

𝐸
or 𝐽𝑙 ∉

[[𝑆 ′]] 𝑗
𝐸
, hence (∀𝑗 ≥ 𝐼 (𝐽 , 𝑆, 𝐸) . 𝐽 ∈ [[items(𝑛+ : 𝑆 ′)]] 𝑗

𝐸
) ∨ (∀𝑗 ≥

𝐼 (𝐽 , 𝑆, 𝐸) . 𝐽 ∉ [[items(𝑛+ : 𝑆 ′)]] 𝑗
𝐸
)

Informally, for any 𝑙 and for any 𝑗 ≥ 𝑚𝑎𝑥𝑖∈{1..𝑚}𝐼 (𝐽𝑖 , 𝑆 ′, 𝐸), the
question “does 𝐽 ′ belong to 𝐽𝑙 ∈ [[𝑆 ′]]

𝑗

𝐸
” has a fixed answer, hence

the question “does 𝐽 belong to items(𝑛+ : 𝑆 ′)” has a fixed answer
as well.

All other TOs can be treated in the same way.
□

Theorem 4. For any 𝐸 guarded, the following equality holds:

[[𝐸 (𝑥)]]𝐸 = [[𝑥]]𝐸
Moreover, for each equivalence in Figure 2, the equivalence still holds
if we substitute every occurrence of [[𝑆]]𝑝

𝐸
with [[𝑆]]𝐸 , obtaining for

example:

[[item(𝑙 : 𝑆)]]𝐸 = {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒ 𝑛 ≥ 𝑙 ⇒ 𝐽𝑙 ∈ [[𝑆]]𝐸 |}
from

[[item(𝑙 : 𝑆)]]𝑝
𝐸

= {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒ 𝑛 ≥ 𝑙 ⇒ 𝐽𝑙 ∈ [[𝑆]]
𝑝

𝐸
|}

Proof. This is an immediate consequence of convergence. Con-
sider any equation such as:
[[item(𝑙 : 𝑆)]]𝑝

𝐸
= {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒ 𝑛 ≥ 𝑙 ⇒ 𝐽𝑙 ∈ [[𝑆]]

𝑝

𝐸
|}

That is:
𝐽 ∈ [[item(𝑙 : 𝑆)]]𝑝

𝐸
⇔ (𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒ 𝑛 ≥ 𝑙 ⇒ 𝐽𝑙 ∈ [[𝑆]]

𝑝

𝐸
)

If we consider any integer 𝐼 that is bigger than 𝐼 (𝐽 , item(𝑙 : 𝑆), 𝐸)
and of every 𝐼 (𝐽𝑙 , 𝑆, 𝐸), then, if the equation holds for one index

𝑝 ≥ 𝐼 , then it holds for every such index, hence it holds for the
limit. This is the general idea, and we now present a more formal
proof.

We first prove that:⋃
𝑖∈N

⋂
𝑗≥𝑖
[[𝑥]] 𝑗

𝐸
=
⋃
𝑖∈N

⋂
𝑗≥𝑖
[[𝐸 (𝑥)]] 𝑗

𝐸

Assume that 𝐽 ∈ ⋃𝑖∈N
⋂
𝑗≥𝑖 [[𝑥]]

𝑗

𝐸
. Then,

∃𝑖 .∀𝑗 ≥ 𝑖 .𝐽 ∈ [[𝑥]] 𝑗
𝐸
. Let 𝐼 be one 𝑖 with that property. We have

that
∀𝑗 ≥ 𝐼 .𝐽 ∈ [[𝑥]] 𝑗

𝐸
, i.e.,

∀𝑗 ≥ 𝐼 .𝐽 ∈ [[𝐸 (𝑥)]] 𝑗−1
𝐸

, which implies that
∀𝑗 ≥ 𝐼 .𝐽 ∈ [[𝐸 (𝑥)]] 𝑗

𝐸
, hence

∃𝑖 .∀𝑗 ≥ 𝑖 .𝐽 ∈ [[𝐸 (𝑥)]] 𝑗
𝐸
.

In the other direction, assume 𝐽 ∈ ⋃𝑖∈N
⋂
𝑗≥𝑖 [[𝐸 (𝑥)]]

𝑗

𝐸
. Hence,

∃𝑖 .∀𝑗 ≥ 𝑖 .𝐽 ∈ [[𝐸 (𝑥)]] 𝑗
𝐸
. Let 𝐼 be one 𝑖 with that property. We have

that
∀𝑗 ≥ 𝐼 .𝐽 ∈ [[𝐸 (𝑥)]] 𝑗

𝐸
, i.e.,

∀𝑗 ≥ 𝐼 .𝐽 ∈ [[𝑥]] 𝑗+1
𝐸

, i.e.,
∀𝑗 ≥ (𝐼 + 1) .𝐽 ∈ [[𝑥]] 𝑗

𝐸
, i.e.,

∃𝑖 .∀𝑗 ≥ 𝑖 .𝐽 ∈ [[𝑥]] 𝑗
𝐸
.

For the second property, the crucial case is that for 𝐽 ∈ [[¬𝑆]]𝐸 ,
where we want to prove:

𝐽 ∈ [[¬𝑆]]𝐸 ⇔ 𝐽 ∉ [[𝑆]]𝐸
.
𝐽 ∈ [[¬𝑆]]𝐸 ⇔
∃𝑖 .∀𝑗 ≥ 𝑖 . 𝐽 ∈ [[¬𝑆]] 𝑗

𝐸
⇔

∃𝑖 .∀𝑗 ≥ 𝑖 . 𝐽 ∉ [[𝑆]] 𝑗
𝐸
⇔ (∗ ∗ ∗)

∀𝑖 .∃ 𝑗 ≥ 𝑖 . 𝐽 ∉ [[𝑆]] 𝑗
𝐸
⇔

¬(∃𝑖 .∀𝑗 ≥ 𝑖 . 𝐽 ∈ [[𝑆]] 𝑗
𝐸
) ⇔ 𝐽 ∉ [[𝑆]]𝐸

For the crucial⇔ (∗∗∗) step, the direction⇒ is immediate. For the
direction⇐ we use the convergence Lemma 3: if we assume that
∀𝑖 .∃ 𝑗 ≥ 𝑖 . 𝐽 ∉ [[𝑆]] 𝑗

𝐸
, then, by considering the case 𝑖 = 𝐼 (𝐽 , 𝑆, 𝐸),

we have that ∃ 𝑗 ≥ 𝐼 (𝐽 , 𝑆, 𝐸). 𝐽 ∉ [[𝑆]] 𝑗
𝐸
, hence, by Lemma 3, ∀𝑗 ≥

𝐼 (𝐽 , 𝑆, 𝐸). 𝐽 ∉ [[𝑆]] 𝑗
𝐸
, hence ∃𝑖 .∀𝑗 ≥ 𝑖 . 𝐽 ∉ [[𝑆]] 𝑗

𝐸
.

All other cases follow easily from convergence. Consider for ex-
ample the case where 𝐽 ∈ [[cont𝑀𝑚 (𝑆 ′)]]𝐸 . We want to prove:

𝐽 ∈ [[cont𝑀𝑚 (𝑆 ′)]]𝐸
⇔ (𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒𝑚 ≤ |{| 𝑙 | 𝐽𝑙 ∈ [[𝑆 ′]]𝐸 |}| ≤ 𝑀)

If 𝐽 is not an array, the double implication holds trivially. Consider
now the case 𝐽 = [𝐽1, . . . , 𝐽𝑛]:
𝐽 ∈ [[cont𝑀𝑚 (𝑆 ′)]]𝐸 ⇔
∃𝑖 .∀𝑗 ≥ 𝑖 . 𝐽 ∈ [[cont𝑀𝑚 (𝑆 ′)]]

𝑗

𝐸
⇔

∃𝑖 .∀𝑗 ≥ 𝑖 . 𝑚 ≤ |{| 𝑙 | 𝐽𝑙 ∈ [[𝑆 ′]]
𝑗

𝐸
|}| ≤ 𝑀 ⇔

Here, we choose an 𝐼 that is greater than 𝐼 (𝐽 , cont𝑀𝑚 (𝑆 ′), 𝐸) and is
greater than 𝐼 (𝐽𝑙 , 𝑆 ′, 𝐸) for every 𝐽𝑙 (from the proof of Lemma 3 we
know that 𝐼 (𝐽 , cont𝑀𝑚 (𝑆 ′), 𝐸) as defined in that proof would do the
work):

Witness Generation for JSON Schema

∃𝑖 .∀𝑗 ≥ 𝑖 . 𝑚 ≤ |{| 𝑙 | 𝐽𝑙 ∈ [[𝑆 ′]]
𝑗

𝐸
|}| ≤ 𝑀 ⇔

∀𝑗 ≥ 𝐼 . 𝑚 ≤ |{| 𝑙 | 𝐽𝑙 ∈ [[𝑆 ′]]
𝑗

𝐸
|}| ≤ 𝑀 ⇔

𝑚 ≤ |{| 𝑙 | ∀𝑗 ≥ 𝐼 . 𝐽𝑙 ∈ [[𝑆 ′]]
𝑗

𝐸
|}| ≤ 𝑀 ⇔

𝑚 ≤ |{| 𝑙 | 𝐽𝑙 ∈ [[𝑆 ′]]𝐸 |}| ≤ 𝑀
□

The official JSON Schema semantics specifies that 𝑥 is the same
as 𝐸 (𝑥) for all schemas where such interpretation never creates a
loop (i.e., for all guarded schemas) and describes, verbally, the equa-
tions that we wrote in the form without the index. Hence, Theo-
rem 4 proves that our semantics exactly captures the official JSON
Schema semantics (provided that we wrote the correct equations).

4.3 Semantics of the three extra operators of
the positive algebra

The three operators added in the positive algebra are redundant
in presence of negation. They do not correspond to JSON Schema
operators, but can still be expressed in JSON Schema, through the
negation of "multipleOf", "patternProperties", and "additionalItems".
The semantics of these operators can be easily expressed in the
core algebra with negation, as shown in Figure 3; hereafter, we use
𝑆1 ⇒ 𝑆2 as an abbreviation for ¬𝑆1 ∨ 𝑆2:

notMulOf (𝑛) = type(Num) ⇒ ¬mulOf (𝑛)
pattReq(𝑟 : 𝑆) = type(Obj) ⇒ ¬props(r : ¬𝑆)
contAfter(𝑖+ : 𝑆) = type(Arr) ⇒ ¬items(𝑖+ : ¬𝑆)

Figure 3: Semantics of additional operators.

Observe that the semantics of the additional operators is im-
plicative, as for all the others ITOs.

The definition of pattReq(𝑟 : 𝑆) deserves an explanation. The
implication type(Obj) ⇒ . . . just describes its implicative nature
— it is satisfied by any instance that is not an object. Since r : ¬𝑆
means that, if a name matching 𝑟 is present, then its value satis-
fies ¬𝑆 , any instance that does not satisfy r : ¬𝑆 must possess a
member name that matches 𝑟 and whose value does not satisfy ¬𝑆 ,
that is, satisfies 𝑆 . Hence, we exploit here the fact that the negation
of an implication forces the hypothesis to hold.

4.4 About regular expressions
4.4.1 Undecidability of JSON Schema regular expressions. JSON
Schema regular expressions (REs) are ECMA regular expressions.
Universality of these REs is undecidable [23], hence the witness
generation problem for any sublanguage of JSON Schema that in-
cludes ¬pattern(𝑟) is undecidable. In our implementation we side-
step this problem by mapping every JSON Schema RE unto a stan-
dard RE, as supported by the brics library [32], using a simple in-
complete algorithm.1 When the algorithm fails, we raise a failure.

1The rewriting algorithm was suggested to us by Dominik Freydenberger in personal
communication.

This approach allows us to manage the vast majority of our cor-
pus.2

We limit our complexity analysis to the schemas where our RE
translation succeeds, hence, we will hereafter assume that every
JSON Schema regexp that appears in the source schema, can be
translated to a standard RE with a linear expansion, similarly to
the approach adopted in [18], where the analysis is restricted to
standard REs.

4.4.2 Extending REs with external complement and intersection.
In our algebra, we use a form of externally extended REs (EEREs),
where the two extra operators are not first class RE operators, so
that one cannot write (𝑟)∗, but they can be used at the outer level:

𝑟 ::= Any regular expression | 𝑟 | 𝑟1 ⊓ 𝑟2
This extension does not affect the expressive power of regular ex-
pressions , since the set of regular languages is closed under inter-
section and complement, but affects their succinctness, hence the
complexity of problems such as emptiness checking. We are going
to exploit this expressive power in four different ways:

(1) in order to translate "additionalProperties" : 𝑆 as
props((𝑟1 | . . . |𝑟𝑚) : ⟨𝑆⟩) , where 𝑟 is applied to a standard
RE (Section 5);

(2) in order to translate "propertyNames" : 𝑆 , where a com-
plex boolean combination of pattern assertions inside 𝑆
produces a corresponding complex boolean combination of
patterns in the translation (Section 5);

(3) during not-elimination (Section 7.2), where pattern(𝑟) is used
to rewrite ¬pattern(𝑟);

(4) during object preparation (Section 8.3.3), where we must ex-
press the intersection and the difference of patterns that ap-
pear in props(𝑟 : 𝑆) and pattReq(𝑟 : 𝑆) operators.

During the final phases of our algorithm (Section 8.3), we need
to solve the following 𝑖-enumeration problem (which generalizes
emptiness) for our EEREs: for a given EERE 𝑟 and for a given 𝑖 , ei-
ther return 𝑖 words that belong to 𝐿(𝑟), or return “impossible” if
|𝐿(𝑟) | < 𝑖 . It is well-known that emptiness of REs extended (inter-
nally) with negation and intersection is non-elementary [37]. How-
ever, for our external-only extension 𝑖-enumeration and emptiness
can be solved in time 𝑂 (𝑖2 × 2𝑛).

Property 1. If 𝑟 is an EERE, its language can be recognized by a
DFA with 𝑂 (2 |𝑟 |) states, which can be built in time 𝑂 (2 |𝑟 |).

Proof. Let us define a circuit of REs to be a term 𝑟𝑟 generated by
the following grammar, where the graph of dependencies induced
by 𝑥1 : 𝑟1, . . . , 𝑥𝑛 : 𝑟𝑛 is acyclic:

𝑟 ::= Any regular expression | 𝑟 | 𝑟1 ⊓ 𝑟2 | 𝑥
𝑟𝑟 ::= 𝑟 defs (𝑥1 : 𝑟1, . . . , 𝑥𝑛 : 𝑟𝑛)

The semantics of such a circuit is defined by recursively substitut-
ing every 𝑥 with its definition, which is guaranteed to terminate
because the dependencies are acyclic. Circuits of 𝑅𝐸s generalize
our EEREs; we prove the desired property for any circuit since this
result will be useful in Section 5.3. We prove that any circuit 𝑟𝑟 of
REs can be simulated by an automaton with 𝑂 (2 |𝑟𝑟 |) states. We
2We are currently able to translate more than 97% of the unique patterns in our corpus.
The other ones mostly contain look-ahead and look-behind.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

first transform each basic RE 𝑟𝑖 that appears in the circuit into
a 𝐷𝐹𝐴 𝐴𝑖 of size 𝑂 (2 |𝑟𝑖 |), in time 𝑂 (2 |𝑟𝑖 |), using standard tech-
niques [26]. We build the product automaton 𝐴Π = 𝐴1 × . . . ×
𝐴𝑛 , whose states are tuple of states of 𝐴1 × . . . × 𝐴𝑛 in the stan-
dard fashion [29]; the states of this automaton grow as 𝑂 (2 |𝑟1 |) ×
. . . × 2 |𝑟𝑛 |), i.e. 𝑂 (2 |𝑟1 |+...+|𝑟𝑛 |), i.e., 𝑂 (2 |𝑟𝑟 |). We associate to each
subexpression 𝑟 in the circuit a set 𝐹 (𝑟, 𝑟𝑟) of states of 𝐴Π that
are “accepting” for 𝑟 in the natural way: for each basic 𝑟𝑖 , we de-
fine 𝐹 (𝑟𝑖 , 𝑟𝑟) to be the states of𝐴Π whose 𝑖-projection is accepting
for 𝐴𝑖 . We set 𝐹 (𝑟 ⊓ 𝑟 ′, 𝑟𝑟) = 𝐹 (𝑟, 𝑟𝑟) ∩ 𝐹 (𝑟 ′, 𝑟𝑟), 𝐹 (𝑟 , 𝑟𝑟) = 𝑄 \
𝐹 (𝑟 , 𝑟𝑟), where𝑄 are the states of𝐴Π , and we set 𝐹 (𝑥, 𝑟 defs (𝐸)) =
𝐹 (𝐸 (𝑥), 𝑟 defs (𝐸)), which is terminating since variables form a
DAG. To each subexpression 𝑟 of 𝑟𝑟 we associate the automaton
𝐴𝑟 whose states and transitions are the same as 𝐴Π , and whose
final states are 𝐹 (𝑟, 𝑟𝑟). We define 𝑑𝐸 (𝑟) as in the proof of Lemma
3, and we prove by induction on (𝑑𝐸 (𝑟), 𝑟) that 𝐴𝑟 recognizes the
language of 𝑟 defs (𝑥1 : 𝑟1, . . . , 𝑥𝑛 : 𝑟𝑛). When 𝑟 = 𝑥 , this is true by
induction, since 𝐴𝑥 = 𝐴𝐸 (𝑥) and 𝑑𝐸 (𝑥) < 𝑑𝐸 (𝐸 (𝑥)). When 𝑟 = 𝑟

or 𝑟 = 𝑟1 ⊓ 𝑟2, the result follows by induction on 𝑟 . □

Property 2. For any extended RE r generated by our grammar
starting from standard REs, the 𝑖-enumeration problem can be solved
in time 𝑂 (𝑖2 × 2 |𝑟 |).

Proof sketch. By Property 1, a DFA 𝐴(𝑟) for 𝑟 with less than
2 |𝑟 | states can be built in time 𝑂 (2 |𝑟 |).

Finally, given an automaton of size 2 |𝑟 | , it is easy to see that the
enumeration of 𝑖 words can be performed in 𝑂 (𝑖2 × 2 |𝑟 |). □

5 FROM JSON SCHEMA TO THE ALGEBRA
5.1 Structure of the chapter
A JSON Schema schema is a JSON object whose fields are asser-
tions. Essentially, the translation ⟨𝑆⟩ of a schema 𝑆 applies some
simple rules to the single assertions, and combines them by con-
junction, as follows:

⟨{"a1" : 𝑆1, . . . , "an" : 𝑆𝑛}⟩ = ⟨"a1" : 𝑆1⟩ ∧ . . . ∧ ⟨"an" : 𝑆𝑛⟩
⟨"multipleOf" : 𝑞⟩ = mulOf (𝑞)
. . .

However, there are some exceptions, that we describe in this
chapter. We first describe how we map the complex referencing
mechanism of JSON Schema into our simpler 𝑆 defs (𝐸) construct.
We then describe the translation of the redundant operators propertyNames,
const, enum, and oneOf into the core algebra. Finally, we describe
the non-algebraic JSON Schema operators, where a group of re-
lated operators must be translated together, and we finish with the
easy cases.

5.2 Representing definitions and references
JSON Schema defines a $ref : path operator that allows any sub-
schema of the current schema to be referenced, as well as any sub-
schema of a different schema that is reachable through aURI, hence
implementing a powerful form of mutual recursion. The path path
may navigate through the nodes of a schema document by travers-
ing its structure, or may retrieve a subdocument on the basis of a
special id, $id, or $anchor member ($anchor has been added in

Draft 2019-09), which can be used to associate a name to the sur-
rounding schema object. However, according to our collection of
JSON schemas, the subschemas that are referred are typically just
those that are collected inside the value of a top-level definitions
member. Hence, we defined a referencing mechanism that is pow-
erful enough to translate every collection of JSON schemas, but
that privileges a direct translation of the most commonly used
mechanism.

When all references in a JSON Schema document refer to a name
defined in the definitions section, we just use the natural trans-
lation:
⟨{𝑎1 : 𝑆1, . . . , 𝑎𝑛 : 𝑆𝑛, definitions : {𝑥1 : 𝑆 ′1, . . . , 𝑥𝑚 : 𝑆 ′𝑚}}⟩
= ⟨{𝑎1 : 𝑆1, . . . , 𝑎𝑛 : 𝑆𝑛}⟩ defs (𝑥1 : ⟨𝑆 ′1⟩, . . . , 𝑥𝑚 : ⟨𝑆 ′𝑚⟩)
In the general case, we collect all paths that are used in any refer-

ence assertion $ref : path and that are different from definitions/k,
we retrieve the referred subschema and copy it inside the definitions
member where we give it a name name, and we substitute all oc-
currences of $ref : path with $ref : definitions/name, until we
reach the shape (1) above. In principle, this may cause a quadratic
increase in the size of the schema, in case we have paths that re-
fer inside the object that is referenced by another path. It would
be easy to define a more complex mechanism with a linear worst-
case size increase, but this basic approach does not create any size
problem on the schemas we collected.3

Example 1. We consider the following JSON Schema document
{ "properties": {

"Country": { "type": "string" },
"City": { "$ref": "#/properties/Country" } }

}

Definition normalization produces the following, equivalent schema:
{"properties": {

"Country": {"type": "string" },
"City": {"$ref": "#/definitions/properties_Country"}},

"definitions": {"properties_Country": {"type": "string" }}
}

Which is translated as:

props(Country : type(Str)) ∧ props(City : properties_Country)
defs(properties_Country : type(Str))

5.3 "propertyNames" : S encoded as props(𝑟𝑆 : f)
The JSON Schema assertion "propertyNames" : S requires that, if
the instance is an object, then every member name satisfies S. Our
translation to the algebra proceeds in two steps. We first translate
to a new, redundant, algebraic operator pNames(𝑆) that has the
semantics that we just described:

[[pNames(𝑆)]]𝐸
= {| 𝐽 | 𝐽 = {𝑘1 : 𝐽1, . . . , 𝑘𝑚 : 𝐽𝑚} ⇒ ∀𝑙 ∈ {1..𝑚}. 𝑘𝑙 ∈ [[𝑆]]𝐸 |}

Hence, 𝐽 ∈ [[pNames(𝑆)]]𝐸 means that no member name violates
𝑆 . Hence, if we translate 𝑆 into a pattern 𝑟 = PattOfS(𝑆, 𝐸) that ex-
actly describes the strings that satisfy 𝑆 (whose variables are inter-
preted by𝐸), we can translate pNames(𝑆) into props(PattOfS(¬S, E) :

3When we have a collection of documents with mutual references, we first merge the
documents together and then apply the same mechanism, but this functionality has
not yet been integrated into our published code.

Witness Generation for JSON Schema

f), which means: if the instance is an object, it cannot contain any
member whose name does not match PattOfS(𝑆, 𝐸).

For all the ITOs 𝑆 whose type is not Str, such as mulOf (𝑞), we
define PattOfS(𝑆, 𝐸) = .∗, since they are satisfied by any string:

PattOfS(mulOf (𝑎), 𝐸) = PattOfS(cont𝑗
𝑖
(𝑆), 𝐸) = . . . = .∗

For the other operators, PattOfS(𝑆, 𝐸) is defined as follows.

PattOfS(type(𝑇), 𝐸) = .∗ if 𝑇 ≠ Str

PattOfS(type(𝑆𝑡𝑟), 𝐸) = .∗
PattOfS(pattern(𝑟), 𝐸) = 𝑟

PattOfS(𝑆1 ∧ 𝑆2, 𝐸) = PattOfS(𝑆1, 𝐸) ⊓ PattOfS(𝑆2, 𝐸)

PattOfS(𝑆1 ∨ 𝑆2, 𝐸) = PattOfS(𝑆1, 𝐸) ⊓ PattOfS(𝑆2, 𝐸)
PattOfS(¬𝑆, 𝐸) = PattOfS(𝑆, 𝐸)
PattOfS(x, 𝐸) = PattOfS(𝐸 (𝑥), 𝐸)

Above, while PattOfS(mulOf (𝑞), 𝐸) = .∗ since mulOf (𝑞) is an
Implicative Typed Operator, PattOfS(type(Num), 𝐸) = .∗, since
type(Num) is not implicative, and is not satisfied by any string.

Since PattOfS(𝑆, 𝐸) does not depend on the schemas that are
guarded by an ITO, the above definition is well-founded when
recursion is guarded: after a variable 𝑥 has been expanded, 𝑥 is
guarded in the result of any further expansion, hence we will not
need to expand it again.

It is easy to prove the following equivalences, which allow us to
translate pNames, hence propertyNames, into the core algebra.

Property 3. For any assertion 𝑆 and for any environment𝐸 guarded
and closing for 𝑆 , the following equivalences hold.

[[type(Str) ∧ 𝑆]]𝐸 = [[type(Str) ∧ pattern(PattOfS(𝑆, 𝐸))]]𝐸
[[pNames(𝑆)]]𝐸 = [[props(PattOfS(¬S, E) : f)]]𝐸
This translation expands each variable with its definition, hence

there exist schemas where PattOfS(¬𝑆, 𝐸) is exponential in the size
of (𝑆, 𝐸). In practice, this is not a problem: in all schemas that we
collected, "propertyNames" : S (which is quite rare) is invariably
used with a very simple 𝑆 , whose expansion is always small.

To ensure linear-size translation, we should extend regular ex-
pressions with a variable mechanism, for example in the following
way, wherewewould impose a non-cyclic dependencies constraint
to variable environments, so that an expression 𝑟𝑟 is actually a
Boolean circuit of regular expressions.

𝑟 ::= Any regular expression | 𝑟 | 𝑟1 ⊓ 𝑟2 | 𝑥
𝑟𝑟 ::= 𝑟 defs (𝑥1 : 𝑟1, . . . , 𝑥𝑛 : 𝑟𝑛)

Lifting 𝑟 and 𝑟 ⊓ 𝑟 ′ from EEREs to circuits is very easy. We can
prove that the complexity of 𝑖-generation (Section 4.4) for circuits
has the same bound as for EEREs, hence this extension would not
create complexity problems.We can now translate an environment

𝐸 = . . . 𝑥𝑖 : 𝑆𝑖 . . .

with a pattern environment

patt_𝐸 = . . . patt_𝑥𝑖 : PattOfS(𝑆𝑖 , 𝐸) . . .
and we can then define

PattOfS(x, 𝐸) = patt_𝑥 defs (patt_𝐸) .

Then, size expansion would be polynomial and not exponential.
Since the problem has, at the moment, no practical relevance,

we decided to avoid this complication, hence we limit our com-
plexity analysis to those schemas that are propertyNames-small,
according to the following definition. If we encounter families of
schemas that violate this property, we just need to extend our im-
plementation, and our analysis, by supporting Boolean circuits of
REs.

Definition 5 (propertyNames-small). A schema 𝑆 defs (𝐸) of the
core algebra extended with pNames(𝑆) is propertyNames-small if

|PNExpand (𝑆) | ≤ 2 × |𝑆 defs (𝐸) |
where PNExpand is the function that translates all instances of
pNames(𝑆 ′) with props(PattOfS(¬S′, E) : f).

Hence, by definition, the translation of propertyNames only
causes a linear increase in propertyNames-small schemas.

5.4 Translation of const and enum
The assertions "const" : 𝐽 and "enum" : [𝐽1, . . . , 𝐽𝑛], used to re-
strict a schema to a finite set of values, can be translated by first
rewriting them into their algebraic counterparts enum(𝐽1, . . . , 𝐽𝑛)
and const(𝐽), and then by applying the rules in Figure 4, similar
to those presented in [28]. Hereafter, we use k to denote a pattern
that only matches k;4 when 𝑘 is a string, so that "const" : 𝑘 can be
translated as type(Str) ∧ pattern(k).

5.5 Translation of oneOf
The assertion "oneOf" : [𝑆1, . . . , 𝑆𝑛] requires that 𝐽 satisfies one of
𝑆1, . . . , 𝑆𝑛 and violates all the others. It can be expressed as follows,
where the 𝑥𝑖 ’s are fresh variables, and the defs part must actually
be added to the outermost level:∨

𝑖∈{1..𝑛} (¬𝑥1 ∧ . . . ∧ ¬𝑥𝑖−1 ∧ xi ∧ ¬𝑥𝑖+1 ∧ . . . ∧ ¬𝑥𝑛)
defs (𝑥1 : ⟨𝑆1⟩, . . . , 𝑥𝑛 : ⟨𝑆𝑛⟩)

The definition of the fresh variables is fundamental in order to
avoid that a single subschema is copied many times, which may
cause an exponential size increase. The outermost

∨
has size𝑂 (𝑛2),

hence this encoding may still cause a quadratic size increase; this
increase can be avoided using amore sophisticated linear encoding
that we present in [15].5

5.6 The remaining assertions
While most JSON Schema assertions can be translated one by one,
as described in Section 5.1, we have four groups of exceptions, that
is, four families of assertions whose semantics depends on the oc-
currence of other assertions of the same family as members of the
same schema. These families are:

(1) if, then, else;
(2) additionalProperties, properties, patternProperties;
(3) additionalItems, items;
(4) in Draft 2019-09: minContains, maxContains, contains.

4Using standard notation, kwould generally coincide with k, unless k contains special
characters, such as “.”, “|”, or “*”, that need to be escaped.
5In our implementation we adopted the basic algorithm, having verified that, in our
schema corpus, oneOf has on average 2.3 arguments, and, moreover, the quadratic
encoding behaves better than the linear one when submitted to DNF expansion.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

enum(𝐽1, . . . , 𝐽𝑛) = const(𝐽1) ∨ . . . ∨ const(𝐽𝑛)
const(null) = type(Null)
const(𝑏) = type(Bool) ∧ ifBoolThen(𝑏) 𝑏 ∈ type(Bool)
const(𝑛) = type(Num) ∧ betw𝑛𝑛 𝑛 ∈ Num
const(s) = type(Str) ∧ pattern(s) s ∈ Str
const([𝐽1, . . . , 𝐽𝑛]) = type(Arr) ∧ cont𝑛𝑛 (t) ∧ item(1 : const(𝐽1)) ∧ . . . ∧ item(𝑛 : const(𝐽𝑛))
const({k1 : 𝐽1, . . . , kn : 𝐽𝑛}) = type(Obj) ∧ req(𝑘1, . . . , 𝑘𝑛) ∧ pro𝑛0 ∧ props(k1 : const(𝐽1); t) ∧ . . . ∧ props(kn : const(𝐽𝑛); t)

Figure 4: Elimination of enum and const.

When translating a schema object, we first partition it into fam-
ilies, we complete each family by adding the predefined default
value for missing operators (for example, a missing else becomes
"else" : true), and we then translate each family as we specify
below. All other assertions are just translated one by one.

The assertion group "if" : 𝑆1, "then" : 𝑆2, "else" : 𝑆3 is trans-
lated as follows, where 𝑥 : ⟨𝑆1⟩ is inserted in order to avoid dupli-
cation of ⟨𝑆1⟩, and is actually lifted at the outermost level, as we
do with oneOf:

((x ∧ ⟨𝑆2⟩) ∨ (¬x ∧ ⟨𝑆3⟩)) defs (𝑥 : ⟨𝑆1⟩)

The properties family is translated as follows, where we use
pattern complement 𝑟 to translate additionalProperties, which
associates a schema to any name that does notmatch either properties
or patternProperties arguments:

⟨"properties" : {k1 : 𝑆1, . . . , kn : 𝑆𝑛},
"patternProperties" : {r1 : 𝑃𝑆1, . . . , rm : 𝑃𝑆𝑚},
"additionalProperties" : 𝑆⟩

= props(k1 : ⟨𝑆1⟩) ∧ . . . ∧ props(kn : ⟨𝑆𝑛⟩)
∧ props(r1 : ⟨𝑃𝑆1⟩) ∧ . . . ∧ props(rm) : ⟨𝑃𝑆𝑚⟩
∧ props((k1 | . . . |kn |𝑟1 | . . . |𝑟𝑚) : 𝑆)

items may have either a schema 𝑆 or an array [𝑆1, . . . , 𝑆𝑛] as
argument; in the first case, it is equivalent to items(0+ : 𝑆), and
a co-occurring additionalItems is ignored, while in the second
case it is equivalent to (item(1 : 𝑆1) ∧ . . . ∧ item(𝑛 : 𝑆𝑛)), and
"additionalItems" : 𝑆 ′means items(𝑛+ : ⟨𝑆 ′⟩). The family is hence
translated as follows.

⟨"additionalItems" : 𝑆 ′⟩ = items(0+ : ⟨𝑆 ′⟩)
⟨"items" : 𝑆⟩ = items(0+ : ⟨𝑆⟩)
⟨"items" : 𝑆, "additionalItems" : 𝑆 ′⟩ = items(0+ : ⟨𝑆⟩)
⟨"items" : [𝑆1, . . . , 𝑆𝑛]⟩ = (item(1 : ⟨𝑆1⟩) ∧ . . . ∧ item(𝑛 : ⟨𝑆𝑛⟩))
⟨"items" : [𝑆1, . . . , 𝑆𝑛], "additionalItems" : 𝑆 ′⟩

= (item(1 : ⟨𝑆1⟩) ∧ . . . ∧ item(𝑛 : ⟨𝑆𝑛⟩)) ∧ items(𝑛+ : ⟨𝑆 ′⟩)

The contains family is translated as follows - a missing lower
bound defaults to 1 (rather than the usual 0), and a missing upper
bound defaults to∞:

⟨"contains" : 𝑆, "minContains" :𝑚, "maxContains" : 𝑀⟩
= cont𝑀𝑚 (⟨𝑆⟩)

Then, we have the dependencies assertion:

"dependencies" : {k1 : [k11 . . . , k
1
m1
], . . . , kn : [kn1 . . . , k

n
mn
]}

"dependencies" : {k1 : 𝑆1, . . . , kn : 𝑆𝑛}
The first form specifies that, for each 𝑖 ∈ {1..𝑛}, if the instance is
an object and if it contains a member with name 𝑘𝑖 , then it must
contain all of the member names ki1 . . . , k

i
mi
. The second form spec-

ifies that, under the same conditions, the instance must satisfy 𝑆𝑖 .
Both forms are translated using req and⇒:

⟨"dependencies" : {k1 : [r11 . . . , r
1
m1
], . . . , kn : [rn1 . . . , r

n
mn
]}⟩

= ((type(Obj) ∧ req(𝑘1)) ⇒ req(r11 . . . , r
1
m1
))

∧ . . . ∧ ((type(Obj) ∧ req(𝑘𝑛)) ⇒ req(rn1 . . . , r
n
mn
))

⟨"dependencies" : {k1 : 𝑆1, . . . , kn : 𝑆𝑛}⟩
= ((type(Obj) ∧ req(𝑘1)) ⇒ ⟨𝑆1⟩)
∧ . . . ∧ ((type(Obj) ∧ req(𝑘𝑛)) ⇒ ⟨𝑆𝑛⟩)

Finally, all the other JSON Schema assertions are translated one
by one in the natural way, as reported in Table 1, where we omit
the symmetric cases (e.g. "maximum": M, "exclusiveMaximum" : M,
etc) that can be easily guessed.

⟨"minimum": m⟩ = betw∞𝑚
⟨"exclusiveMinimum": m⟩ = xBetw∞𝑚
⟨"multipleOf": n⟩ = mulOf (𝑛)
⟨"minLength": m⟩ = pattern(ˆ .{𝑚, } $)
⟨"pattern": r⟩ = pattern(𝑟)
⟨"minItems": m⟩ = cont∞𝑚 (t)
Table 1: Translation rules for JSON Schema.

5.7 How we evaluate complexity
We have seen that JSON Schema can be translated to the algebra
with a polynomial (actually, linear) size increase, and in the rest
of the paper we show that our algorithm runs in𝑂 (2poly (N)) with
respect to the size of the input algebra, but with one important
caveat: hereafter, we assume that all 𝑖 and 𝑗 constants different
from ∞ that appear in item(𝑖 : 𝑆), items(𝑖+ : 𝑆), contAfter(𝑖+ : 𝑆),
cont𝑗

𝑖
(𝑆), and pro𝑗

𝑖
, are smaller than the input size, and we call

this assumption the linear constant assumption. This is a reason-
able assumption, since in practical cases these numbers tend to
be extremely small when compared with the input size. Hereafter,
whenever a result depends on this assumption, we will say that
explicitly.

Witness Generation for JSON Schema

6 WITNESS GENERATION
6.1 The structure of the algorithm
In a recursive algorithm for witness generation, in order to gener-
ate a witness for an ITO such as pattReq(𝑟 : 𝑆), one can generate a
witness 𝐽 for 𝑆 and use it to build an object with a member whose
name matches 𝑟 and whose value is 𝐽 . The same approach can be
followed for the other ITOs. For the Boolean operator 𝑆1 ∨ 𝑆2, one
recursively generates witnesses of 𝑆1 and 𝑆2.

Negation and conjunction are much less direct: there is no way
to generate a witness for ¬𝑆 starting from a witness for 𝑆 . Also,
given a witness for 𝑆1, if it is not a witness for 𝑆1∧𝑆2, we may need
to try infinitely many others before finding one that satisfies 𝑆2 as
well.6 We solve this problem as follows. We first eliminate ¬ using
not-elimination, then we bring all definitions of variables into DNF
so that conjunctions are limited to sets of ITOs that regard the
same type (Section 7). We then perform a form of and-elimination
over these homogeneous conjunctions (preparation), andwe finally
use these “prepared” homogeneous conjunctions to generate the
witnesses, through a bottom-up iterative process (Section 8).

Preparation is the crucial step: here we make all the interactions
between the conjuncted ITOs explicit, which may require the gen-
eration of new variables. This phase is delicate because it is expo-
nentially hard in the general case, and we must organize it in order
to run fast enough in typical case. Moreover, it may generate infin-
itely many new variables, which we avoid with a technique based
on ROBDDs, that we define in Section 7.1.

7 TRANSFORMATION IN POSITIVE,
STRATIFIED, GROUND, CANONICAL DNF

We will illustrate the preliminary phases of our algorithm by ex-
ploiting the running example of Figure 5.

7.1 Premise: ROBDD reduction
Two expressions built with variables and Boolean operators are
Boolean-equivalent when they can be proved equivalent using the
laws of the Boolean algebra. AnROBDD (ReducedOrdered Boolean
Decision Diagram) is a data structure that provides the same repre-
sentation for two such expressions if, and only if, they are Boolean-
equivalent [19]. Hence, whenever we define a variable 𝑥 whose
body 𝑆𝑥 is a Boolean combination of variables, in any phase of
the algorithm, we perform the ROBDD reduction: we compute the
ROBDD representation of 𝑆𝑥 , robdd (𝑆𝑥), and we store a pair 𝑥 :
robdd (𝑆𝑥) in the ROBDDTab table, unless a pair𝑦 : robdd (𝑆𝑦) with
robdd (𝑆𝑥) = robdd (𝑆𝑦) is already present. In this case, we substi-
tute every occurrence of 𝑥 with 𝑦. This technique makes the entire
algorithm more efficient and, crucially, it ensures termination of
the preparation phase (Section 8.3.3).

7.2 Not-elimination
Not-elimination, described in detail in our technical report [15],
proceeds in two phases.

6Onemay actually solve the problem by ordered generation of witnesses for𝑆1 and𝑆2
and a merge-sort implementation of intersection, but the algorithms that we explored
with this approach seem far more expensive than ours.

(a
) 𝑟 : pattReq(𝑏 : x) ∨ props(a : y) ∨ props(a.∗ : ¬r ∨ x),

𝑥 : type(Arr), 𝑦 : type(Num)

(b
)

𝑟 : pattReq(𝑏 : x) ∨ props(a : y) ∨ props(a.∗ : co(r) ∨ x),
𝑥 : type(Arr), 𝑦 : type(Num),
co(r) : type(Obj) ∧ props(𝑏 : co(x)) ∧ pattReq(a : co(y))

∧pattReq(a.∗ : r ∧ co(x)),
co(x) : type(Null)∨type(Bool)∨type(Num)∨type(Str)∨type(Obj),
co(y) : type(Null)∨ type(Bool)∨ type(Str)∨type(Obj)∨type(Arr)

(c
)

𝑟 : pattReq(𝑏 : x) ∨ props(a : y) ∨ props(a.∗ : crx),
co(r) : type(Obj) ∧ props(𝑏 : co(x)) ∧ pattReq(a : co(y))

∧pattReq(a.∗ : rcx),
crx : co(r) ∨ x, rcx : r ∧ co(x)

(d
)

crx : {type(Obj), props(𝑏 : co(x)), pattReq(a : co(y)),
pattReq(a.∗ : rcx) } ∨ {type(Arr) },

rcx : {(pattReq(𝑏 : x), type(Null) } ∨ {(pattReq(𝑏 : x), type(Bool) }
∨ {(pattReq(𝑏 : x), type(Num) } ∨ {(pattReq(𝑏 : x), type(Str) }
∨ {(pattReq(𝑏 : x), type(Obj) }
∨ {props(a : y), type(Null) } ∨ {props(a : y), type(Bool) }
∨ {props(a : y), type(Num) } ∨ {props(a : y), type(Str) }
∨ {props(a : y), type(Obj) }
∨ {props(a.∗ : crx), type(Null) } ∨ . . .
∨ {props(a.∗ : crx), type(Obj) }

(e
)

𝑟 : {type(Obj), pattReq(𝑏 : x) } ∨ {type(Obj), props(a : y) }
∨{type(Obj), props(a.∗ : crx} ∨ {type(Null) }
∨{type(Bool) } ∨ {type(Num) } ∨ {type(Str) } ∨ {type(Arr) },

rcx : {type(Obj), pattReq(𝑏 : x) } ∨ {type(Obj), props(a : y) }
∨{type(Obj), props(a.∗ : crx) } ∨ {type(Null) }
∨{type(Bool) } ∨ {type(Num) } ∨ {type(Str) } ∨ {type(Arr) }

Figure 5: (a) Original term. (b) After not-elimination. (c) Af-
ter stratification, omitting unaffected variables. (d) After
transformation to GDNF. (e) After canonicalization.

(1) Not-completion of variables: for every variable 𝑥𝑛 : 𝑆𝑛 we
define a corresponding 𝑛𝑜𝑡_𝑥𝑛 : ¬𝑆𝑛 .7

(2) Not-rewriting: we rewrite every expression ¬𝑆 into an ex-
pression where the negation has been pushed inside.

Not-completion of variables. Not-completion of variables is the
operation that adds a variable not_x for every variable x as follows:

not-completion(𝑥0 : 𝑆0, . . . , 𝑥𝑛 : 𝑆𝑛) =
𝑥0 : 𝑆0, , . . . , 𝑥𝑛 : 𝑆𝑛,
𝑛𝑜𝑡_𝑥0 : ¬𝑆0, . . . , 𝑛𝑜𝑡_𝑥𝑛 : ¬𝑆𝑛

After not-completion, every variable has a complement variable
co(xi) = 𝑛𝑜𝑡_𝑥𝑖 and co(not_xi) = 𝑥𝑖 . The complement co(x) is used
for not-elimination (and also in the preparation phase).

Not-rewriting. We rewrite req(𝑘) as pattReq(k : t), and then
we inductively apply the rules in Figure 6. It is easy to prove that
not-elimination can be performed in linear time and increases the
7We do this, unless a variable whose body is Boolean-equivalent to¬𝑆𝑛 already exists,
in which case that variable is used through ROBDD reduction

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

¬(ifBoolThen(true)) = type(Bool) ∧ ifBoolThen(false)
¬(ifBoolThen(false)) = type(Bool) ∧ ifBoolThen(true)
¬(pattern(𝑟)) = type(Str) ∧ pattern(𝑟)
¬(betw𝑀

𝑚) = type(Num) ∧ (xBetw𝑚
−∞ ∨ xBetw∞𝑀)

¬(xBetw𝑀
𝑚) = type(Num) ∧ (betw𝑚

−∞ ∨ betw∞𝑀)
¬(mulOf (𝑞)) = type(Num) ∧ notMulOf (𝑞)
¬(notMulOf (𝑞)) = type(Num) ∧mulOf (𝑞)
¬(props(r : 𝑆)) = type(Obj) ∧ pattReq(r : ¬𝑆)
¬(pattReq(𝑟 : 𝑆)) = type(Obj) ∧ props(𝑟 : ¬𝑆)
¬(pro𝑗

𝑖
) = type(Obj) ∧ (pro𝑖−10 ∨ pro∞

𝑗+1)
¬(item(𝑙 : 𝑆)) = type(Arr) ∧ item(𝑙 : ¬𝑆𝑖) ∧ cont∞𝑙 (t)
¬(items(𝑖+ : 𝑆)) = type(Arr) ∧ contAfter(𝑖+ : ¬𝑆)
¬(contAfter(𝑖+ : 𝑆)) = type(Arr) ∧ items(𝑖+ : ¬𝑆)
¬(cont𝑗

𝑖
(𝑆)) = type(Arr) ∧ (cont𝑖−10 (𝑆) ∨ cont∞𝑗+1 (𝑆))

¬(type(𝑇)) =
∨(type(𝑇 ′) | 𝑇 ′ ≠ 𝑇)

¬(x) = co(x)
¬(𝑆1 ∧ 𝑆2) = (¬𝑆1) ∨ (¬𝑆2)
¬(𝑆1 ∨ 𝑆2) = (¬𝑆1) ∧ (¬𝑆2)
¬(¬𝑆) = 𝑆

Figure 6: Not-pushing rules — unsatisfiable disjuncts, such
as pro−10 or pro∞∞, are generated as f .

schema size of a linear factor. We report here the following result
from [15].

Property 4. For any systemwhere recursion is guarded, not elim-
ination preserves the semantics of every variable.

From now on, every other phase of the algorithm will only pro-
duce schemas that belong to the positive algebra.

7.3 Stratification
We say that a schema is stratified when every schema argument of
every ITO is a variable, so that pattReq(𝑎 : x ∧ y) is not stratified
while pattReq(𝑎 : w) is stratified.

Stratification makes it easy to build a witness for a typed group
such as

{Obj, pattReq(^a$: x), pattReq(^b$: y)}
after a witness for each involved variable has been built.

In this phase, for every ITO that has a subschema 𝑆 in its syntax,
such as cont𝑗

𝑖
(𝑆), when 𝑆 is not a variable, we create a new variable

𝑥 : 𝑆 , and we substitute 𝑆 with x. For every variable 𝑥 : 𝑆 that
we define, we must also define its complement 𝑛𝑜𝑡_𝑥 : ¬𝑆 , and
perform not-elimination and stratification on ¬𝑆 — see Figure 5(c).
As specified in Section 7.1, we apply ROBDD reduction to 𝑥 : 𝑆 and
𝑛𝑜𝑡_𝑥 : ¬𝑆 .

Property 5. Stratification transforms a schema 𝑆 defs (𝐸) into a
schema 𝑆 ′ defs (𝐸 ′) such that [[𝑆]]𝐸 = [[𝑆 ′]]𝐸′ .

Property 6. Stratification transforms a schema 𝑆 defs (𝐸) into
a schema 𝑆 ′ defs (𝐸 ′) such that |𝑆 ′ defs (𝐸 ′) | is in 𝑂 (𝑁), where
𝑁 = |𝑆 defs (𝐸) |.

Proof. Assume that stratification is performed bottom up, so
that cont𝑗

𝑖
(cont𝑘

𝑙
(𝑆)) is first transformed into cont𝑗

𝑖
(cont𝑘

𝑙
(𝑥))with

𝑥 : 𝑆 and 𝑛𝑜𝑡_𝑥 : ¬𝑆 , and then in cont𝑗
𝑖
(𝑦) with 𝑦 : cont𝑘

𝑙
(𝑥) and

𝑛𝑜𝑡_𝑦 : ¬cont𝑘
𝑙
(𝑥). In this way, every 𝑆 that is moved to the en-

vironment is only copied twice (once below negation), and each
such operation generates two instances of 𝑥 and one of ¬𝑥 . Hence,
each node in the original tree corresponds to a constant number
of nodes in the stratified tree - in the worst case, it generates three
variables, one negation, and two copies of the original node. At this
point we apply not-elimination, and this step is linear as well. □

7.4 Transformation in Canonical GDNF
Guarded DNF. A schema is in Guarded Disjunctive Normal Form
(GDNF) if it has the shape∨(∧(𝑆1,1, . . . , 𝑆1,𝑛1), . . . ,∧(𝑆𝑙,1, . . . , 𝑆𝑙,𝑛𝑙))
and every 𝑆𝑖, 𝑗 is a TO. Every conjunction may be trivial (𝑛𝑖 = 1),
and so may be the disjunction (𝑙 = 1).

To produce a new environment 𝐸𝐺 in GDNF starting from a pos-
itive and stratified environment 𝐸, we first define an ordered enu-
meration {|𝑥1, . . . , 𝑥𝑜 |} of the variables in Vars(𝐸) such that when
𝑥𝑖 directly depends of 𝑥 𝑗 (as defined in Section 4.1) then 𝑗 < 𝑖 . We
know that such enumeration exists because recursion is guarded.
We now compute 𝐸𝐺 (𝑥𝑖) starting from 𝑥1 and going onward, so
that, whenwe compute 𝐸𝐺 (𝑥𝑖),𝐸𝐺 (𝑥 𝑗) has already been computed
for each 𝑗 < 𝑖 .

Let T denote the set of all TOs that appear in 𝐸 as subterms of
𝐸 (𝑦) for any 𝑦, so that, if

𝐸 = 𝑥 : (type(Num) ∧ pattReq(ˆ𝑎$: 𝑥)) ∨mulOf (3)

then T = {|type(Num), pattReq(ˆ𝑎$: 𝑥), mulOf (3) |}. As we will
show, reduction in GDNF does not create any new typed expres-
sion, hence every term in GDNF corresponds to a set 𝐷𝐶 (Disjunc-
tion of Conjunctions) of subsets of T as follows.

𝐸𝐺 (𝑥) =
∨

𝐶∈𝐷𝐶𝑥

∧
𝑆 ∈𝐶

𝑆 where 𝐷𝐶𝑥 ∈ P(P(T))

To compute this set-of-sets representation 𝑔(𝐸 (𝑥)) of the GDNF
of the body 𝐸 (𝑥) of every 𝑥 defined in 𝐸, we apply the following
rules:

𝑔(𝑆) = {|{|𝑆 |}|} if 𝑆 is a TO
𝑔(𝑦) = 𝐸𝐺 (𝑦)
𝑔(𝑆1 ∨ 𝑆2) = 𝑔(𝑆1) ∪ 𝑔(𝑆2)
𝑔(𝑆1 ∧ 𝑆2) =

⋃
(𝐶1,𝐶2) ∈𝑔 (𝑆1)×𝑔 (𝑆2) (𝐶1 ∪𝐶2)

When 𝑆 is a typed expression, it is translated into a trivial GDNF.
Each variable 𝑦 inside 𝐸 (𝑥) had its body already transformed. The
rule for ∨ is trivial, while the rule for ∧ is Boolean algebra distribu-
tivity: for each conjunction

∧
𝑆 ∈𝐶1 𝑆 of 𝑆1 and for each conjunction∧

𝑆 ∈𝐶2 of 𝑆2, the conjunction
∧
𝑆 ∈𝐶1 𝑆 ∧

∧
𝑆 ∈𝐶1 𝑆 =

∧
𝑆 ∈𝐶1∪𝐶2 𝑆 is

inserted in the result.
Reduction to GDNF can lead to an exponential explosion, and it

is actually the most expensive phase of our algorithm, according
to our measures (Section 9).

Property 7. For a given schema𝑥 defs (𝐸), such that𝑛 = |𝑥 defs (𝐸) |,
the size of 𝑥 defs (𝐸𝐺) is in𝑂 (2𝑛), and it can be build in time𝑂 (2𝑛).

Witness Generation for JSON Schema

Proof. The schema 𝑥 defs (𝐸𝐺) has𝑂 (𝑛) variables. The body of
each variable can be represented as a set𝐷𝐶 belonging toP(P(T))
The set P(T) has size 𝑂 (2𝑛), hence every set of sets 𝐷𝐶 contain
at most 𝑂 (2𝑛) sets, and each of these sets can be represented us-
ing 𝑛 bits. This yields a total upper bound of𝑂 (𝑛) ×𝑂 (𝑛) ×𝑂 (2𝑛)
for 𝑥 defs (𝐸𝐺). As for the construction time, the most expensive
part is the computation of

⋃
(𝐶1,𝐶2) ∈𝑔 (𝑆1)×𝑔 (𝑆2) (𝐶1 ∪𝐶2), that may

take place once for each variable. The size of 𝑔(𝑆1) × 𝑔(𝑆2) is in
𝑂 (2𝑛), the size of 𝐶1 and 𝐶2 is in 𝑂 (𝑛), hence this computation is
in 𝑂 (2𝑛). □

Canonicalization. Canonicalization is a process defined along the
lines of [28]. We say that a conjunction that contains exactly one
assertion type(𝑇) and a set of ITOs of that same type 𝑇 is a typed
group of type𝑇 ; canonicalization splits every conjunct of the GDNF
into a set of typed groups (Figure 5(e), where we also applied ele-
mentary equivalences, such as idempotence of ∨).

In order to transform a conjunction𝐶 of a GDNF𝐷𝐶 into a typed
group, we first repeatedly apply the following rewriting rules, which
preserve the meaning of the conjunction. In the third rule, ITO(𝑇 ′)
are the ITOs associated to type 𝑇 ′, which are trivially satisfied
when in conjunction with a type(𝑇) with 𝑇 ≠ 𝑇 ′:

type(𝑇), type(𝑇) → type(𝑇)
type(𝑇), type(𝑇 ′) → f 𝑇 ≠ 𝑇 ′

f, 𝑆 → f

type(𝑇), 𝑆 → type(𝑇) 𝑆 ∈ ITO(𝑇 ′), 𝑇 ′ ≠ 𝑇

The first three rules ensure that the result is either f , which is then
deleted from the disjunction, or has exactly one type(𝑇) assertion,
or has none. If it has exactly one type(𝑇) assertion, then the fourth
rule ensures that all the 𝐼𝑇𝑂s refer to type 𝑇 . If it has no type(𝑇)
assertion, we transform it in the following equivalent disjunction,
where filter ({S1, . . . , Sn},𝑇) is the conjunction of those ITOs in
{S1, . . . , Sn} whose type is 𝑇 :

(type(Null)) ∨(type(Bool) ∧ filter (𝐶,Bool))
∨(type(Str) ∧ filter (𝐶, Str)) . . .

so that every 𝐶 ∈ 𝐷𝐶 denotes a set of values of the same type.
By construction, every phase described in this section trans-

forms a JSON Schema document into an equivalent one.

Property 8 (Eqivalence). The phases of not-elimination, strat-
ification, transformation into Canonical GDNF, transform a JSON
Schema document into an equivalent one.

8 PREPARATION ANDWITNESS
GENERATION

8.1 Assignments and bottom-up semantics
Let us define an assignment 𝐴 for an environment 𝐸 as a function
mapping each variable of 𝐸 to a set of JSON values. An assignment
is sound when it maps each variable to a subset of its semantics.
We order assignments by variable-wise inclusion.

Definition 6 (Assignments, Soundness, Order). An assignment 𝐴
for an environment 𝐸 is a function mapping each variable of 𝐸 to a
set of JSON values. An assignment 𝐴 for 𝐸 is sound iff for all 𝑦 ∈
Vars(𝐸): 𝐴(y) ⊆ [[𝑦]]𝐸 . We say that 𝐴 ≤ 𝐴′ iff ∀𝑦. 𝐴(𝑦) ⊆ 𝐴′(𝑦).

Given a schema 𝑆 defs (𝐸), an assignment 𝐴 for 𝐸 defines an
assignment-evaluation for 𝑆 by applying the rules in Figure 7, which
are the same rules that define environment-based semantics [[𝑆]]𝐸 ,
with the only difference that a variable x is not interpreted by inter-
preting the schema 𝐸 (𝑥), but directly as the set of values𝐴(𝑥) (we
always assume that every schema 𝑆 defs (𝐸) is closed and guarded).

For all schemas not containing subschemas, such as ifBoolThen(𝑏),
we just define ⟨⟨ifBoolThen(𝑏)⟩⟩𝐴 = [[ifBoolThen(𝑏)]]𝐸 , and nei-
ther 𝐴 nor 𝐸 play any role in the definition

⟨⟨x⟩⟩𝐴 = 𝐴(𝑥)
⟨⟨ifBoolThen(𝑏)⟩⟩𝐴 = {| 𝐽 | 𝐽 ∈ JVal(Bool) ⇒ 𝐽 = 𝑏 |}
⟨⟨props(r : 𝑆)⟩⟩𝐴 = {| 𝐽 | 𝐽 = {(𝑘1 : 𝐽1), . . . , (𝑘𝑛 : 𝐽𝑛)} ⇒

∀𝑖 ∈ {1..𝑛}. 𝑘𝑖 ∈ 𝐿(𝑟) ⇒ 𝐽𝑖 ∈ ⟨⟨𝑆⟩⟩𝐴 |}
⟨⟨item(𝑙 : 𝑆)⟩⟩𝐴 = {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒

𝑛 ≥ 𝑙 ⇒ 𝐽𝑙 ∈ ⟨⟨𝑆⟩⟩𝐴 |}
⟨⟨cont𝑗

𝑖
(𝑆)⟩⟩𝐴 = {| 𝐽 | 𝐽 = [𝐽1, . . . , 𝐽𝑛] ⇒

𝑖 ≤ |{| 𝑙 | 𝐽𝑙 ∈ ⟨⟨𝑆⟩⟩𝐴 |}| ≤ 𝑗 |}
⟨⟨𝑆1 ∧ 𝑆2⟩⟩𝐴 = ⟨⟨𝑆1⟩⟩𝐴 ∩ ⟨⟨𝑆2⟩⟩𝐴
⟨⟨𝑆1 ∨ 𝑆2⟩⟩𝐴 = ⟨⟨𝑆1⟩⟩𝐴 ∪ ⟨⟨𝑆2⟩⟩𝐴
. . .

Figure 7: Rules for assignment-evaluation.

For schemas in the positive algebra, iterated assignment-evaluation
yields an alternative notion of semantics, as follows.

Definition 7. For a given positive environment𝐸, the correspond-
ing assignment transformation 𝑇𝐸 (_) is the function from assign-
ments to assignments defined as follows:

∀𝑦 ∈ Vars(𝐸) . 𝑇𝐸 (𝐴) (𝑦) = ⟨⟨𝐸 (𝑦)⟩⟩𝐴
Intuitively, if 𝐴 collects witnesses for the variables in 𝐸, then

𝑇𝐸 (𝐴) uses 𝐸 in order to build newwitnesses starting from those in
𝐴. For example, if𝐸 contains𝑦 : {type(Arr), items(0+ : 𝑥), cont31 (t)},
if 𝐴(𝑥) = {|𝐽 |}, then 𝑇𝐸 (𝐴) (𝑦) = {| [𝐽], [𝐽 , 𝐽], [𝐽 , 𝐽 , 𝐽] |}.

For any positive environment 𝐸, the corresponding assignment
transformation is monotone in𝐴, by positivity of 𝐸, hence𝑇𝐸 has a
minimal fix-point, that is the limitA∞

𝐸
of the sequenceA𝑖

𝐸
defined

accordingly to Tarski theorem, starting from the empty assignment
and then reapplying 𝑇𝐸 .

Definition 8 (A𝑖
𝐸
,A∞

𝐸
). For a given positive environment 𝐸, the

sequence of assignments A𝑖
𝐸
is defined as follows:

∀𝑦 ∈ Vars(𝐸). A0
𝐸
(𝑦) = ∅

A𝑖+1
𝐸

= 𝑇𝐸 (A𝑖𝐸)

The assignment A∞
𝐸

is defined as
⋃
𝑖∈NA𝑖𝐸 .

Property 9. For any positive 𝐸, the assignment A∞
𝐸

is the mini-
mal fix-point of the assignment transformation 𝑇𝐸 .

In Section 4.2, we adopted the official top-down semantics for
JSON schema in order to follow the standard and because it also
applies to negative operators. However, on positive schemas, the
top-down semantics and the bottom-up fix-point coincide.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

Property 10. For any positive schema 𝑆 defs (𝐸), the following
equality holds:

[[𝑆]]𝐸 = ⟨⟨𝑆⟩⟩A∞
𝐸

Proof sketch. Weprove, by induction on 𝑖 and, when 𝑖 is equal,
on 𝑆 , that for all 𝑖 , and for any positive assertion 𝑆 that is closed
wrt 𝐸, the following holds:

[[𝑆]]𝑖𝐸 = ⟨⟨𝑆⟩⟩A𝑖
𝐸

For the inductive step 𝑖 + 1, if 𝑆 is an operator that contains no
schema subterm, the equality

[[𝑆]]𝑖+1𝐸 = ⟨⟨𝑆⟩⟩A𝑖+1
𝐸

is immediate. If 𝑆 is a variable, we have, by definition, [[𝑦]]𝑖+1
𝐸

=

[[𝐸 (𝑦)]]𝑖
𝐸
and ⟨⟨𝑦⟩⟩A𝑖+1

𝐸
= (A𝑖+1

𝐸
) (𝑦) = ⟨⟨𝐸 (𝑦)⟩⟩A𝑖

𝐸
; we can con-

clude since [[𝐸 (𝑦)]]𝑖
𝐸

= ⟨⟨𝐸 (𝑦)⟩⟩A𝑖
𝐸
holds by induction on 𝑖 . For

𝑆 = 𝑆1 ∧ 𝑆2 we reason by induction on 𝑆 as follows:

[[𝑆1 ∧ 𝑆2]]𝑖+1𝐸 = [[𝑆1]]𝑖+1𝐸 ∩ [[𝑆2]]
𝑖+1
𝐸

= ⟨⟨𝑆1⟩⟩A𝑖+1
𝐸
∩ ⟨⟨𝑆2⟩⟩A𝑖+1

𝐸
= ⟨⟨𝑆1 ∧ 𝑆2⟩⟩A𝑖+1

𝐸

For all other operators we reason in the same way.
Finally, the base case 𝑖 = 0. When 𝑆 = 𝑥 , then both [[𝑥]]0

𝐸
and

⟨⟨𝑥⟩⟩A0
𝐸
are the empty set. In all other cases, we reason as in case

𝑖 > 0.
Now, since [[𝑆]]𝑝

𝐸
coincides with ⟨⟨𝑆⟩⟩A𝑝

𝐸

for any 𝑝 , then [[𝑆]]𝑝
𝐸
is

a succession of sets that growswith 𝑝 , hence
⋂
𝑝≥𝑖 [[𝑆]]

𝑝

𝐸
= ⟨⟨𝑆⟩⟩A𝑖

𝐸
,

hence
⋃
𝑖∈𝑁

⋂
𝑝≥𝑖 [[𝑆]]

𝑝

𝐸
=
⋃
𝑖∈N⟨⟨𝑆⟩⟩A𝑖

𝐸
= ⟨⟨𝑆⟩⟩A∞

𝐸
.

□

Any JSON value 𝐽 has a depth 𝛿 (𝐽), that is the number of levels
of its tree representation, formally defined as follows.

Definition 9 (Depth 𝛿 (𝐽), Jd). The depth of a JSON value 𝐽 , 𝛿 (𝐽),
is defined as follows, where max({| |}) is defined to be 0:
𝐽 belongs to a base type : 𝛿 (𝐽) = 1
𝐽 = [𝐽1, . . . , 𝐽𝑛] : 𝛿 (𝐽) = 1 +max({|𝛿 (𝐽1), . . . , 𝛿 (𝐽𝑛) |})
𝐽 = { a1 : 𝐽1, . . . , an : 𝐽𝑛 } : 𝛿 (𝐽) = 1 +max({|𝛿 (𝐽1), . . . , 𝛿 (𝐽𝑛) |})

Jd is the set of all JSON values 𝐽 with 𝛿 (𝐽) ≤ 𝑑 .

The assignment A𝑖
𝐸
includes all witnesses of depth 𝑖: for any

depth 𝑖 , it can be proved that ([[𝑦]]𝐸 ∩ J i) ⊆ A𝑖𝐸 (𝑦).
Bottom-up semantics is the basis of bottom-up witness genera-

tion: we will compute a witness for 𝑆 defs (𝐸) by approximating
the sequence A𝑖

𝐸
.

8.2 Bottom-up iterative witness generation
Since 𝑆 defs (𝐸) is equivalent to 𝑥 defs (𝑥 : 𝑆, 𝐸), we will discuss
here, for simplicity, generation for the 𝑥 defs (𝐸) case.

Our algorithm for bottom-up iterative witness generation for a
schema 𝑥 defs (𝐸) produces a sequence of finite assignments 𝐴𝑖 ,
each approximating the assignment A𝑖

𝐸
, until we reach either a

witness for 𝑥 or an “unsatisfiability fix-point”, which is a notion
that we will introduce shortly.
𝐴𝑖 is built as follows: 𝐴0 = A0

𝐸
; then, at step 𝑖 , for each 𝑦 ∈

Vars(𝐸), we compute a set of new values for𝑦 based on the current

assignment𝐴𝑖 using a generation algorithm Gen(𝐸 (𝑦), 𝐴𝑖) that com-
putes a subset of ⟨⟨𝐸 (𝑦)⟩⟩𝐴𝑖 ; formally, 𝐴𝑖+1 (𝑦) = Gen(𝐸 (𝑦), 𝐴𝑖).
Our specific Gen algorithm is defined in the next section, but we
show now that any generic algorithm𝑔 can be used to approximate
⟨⟨𝐸 (𝑦)⟩⟩𝐴𝑖 , provided that 𝑔 is sound and generative.

We first introduce a notion of 𝑖-witnessed assignment 𝐴: if a vari-
able 𝑦 has a witness 𝐽 with 𝛿 (𝐽) ≤ 𝑖 , then 𝑦 has a witness in an
𝑖-witnessed assignment 𝐴.

Definition 10 (𝑖-witnessed). For a given environment 𝐸, and an
assignment 𝐴 for 𝐸, we say that 𝐴 is 𝑖-witnessed if:

∀𝑦 ∈ Vars(𝐸). ([[𝑦]]𝐸 ∩ J i) ≠ ∅ ⇒ 𝐴(𝑦) ≠ ∅

Generativity of 𝑔 means that, if 𝐴 is 𝑖-witnessed, then the as-
signment computed using 𝑔 is (𝑖+1)-witnessed, so that, by repeated
application of 𝑔 starting from 𝐴0, every non-empty variable will
be eventually “witnessed” (Property 11).

Hereafter, we say that a triple (𝑆, 𝐸,𝐴) is coherent if 𝐸 is guarded
and closing for 𝑆 , and if Vars(𝐸) = Vars(𝐴).

Definition 11 (Soundness of 𝑔). A function 𝑔(_, _) mapping each
pair assertion-assignment to a set of JSON values is sound iff, for
every coherent (𝑆, 𝐸,𝐴), if 𝐴 is sound for 𝐸, then 𝑔(𝑆,𝐴) ⊆ [[𝑆]]𝐸 .

Definition 12 (Generativity of𝑔). A function𝑔(_, _)mapping each
pair assertion-assignment to a set of JSON values is generative for
an assertion 𝑆 iff for any 𝐸 and 𝐴 such that (𝑆, 𝐸,𝐴) is coherent:

(1) if ([[𝑆]]𝐸 ∩ J1) ≠ ∅, then 𝑔(𝑆,𝐴) ≠ ∅;
(2) for any 𝑖 ≥ 1, if 𝐴 is 𝑖-witnessed, and if ([[𝑆]]𝐸 ∩ J i+1) ≠ ∅,

then 𝑔(𝑆,𝐴) ≠ ∅.
𝑔 is generative for 𝐸 if it is generative for 𝐸 (𝑦) for each variable
𝑦 ∈ Vars(𝐸).

Soundness of Gen inductively implies that every assignment in
every 𝐴𝑖 is sound. Generativity implies that each 𝐴𝑖 computed by
the 𝑖-th pass of the algorithm is 𝑖-witnessed, so that, if a variable
has a witness 𝐽 of depth 𝑑 , then 𝐴𝑖 ≠ ∅ for every 𝑖 ≥ 𝑑 .

We can now define our bottom-up algorithm (Algorithm 1) as
follows.

Algorithm 1: Bottom-up witness generation
1 BottomUpGenerate(x,E)
2 Prepare (E);
3 ∀𝑦. 𝐴 [𝑦] := nextA[𝑦] := ∅ ;
4 while A[x] == ∅ do
5 for y in vars(E) where A[y] == ∅ do
6 nextA[𝑦] := Gen(E(y),A)
7 if (∀𝑦. nextA[y] == A[y]) then return (unsatisfiable);
8 else
9 ∀𝑦. 𝐴 [𝑦] := nextA[𝑦];

10 return (𝐴 [𝑥]);

Prepare(E) rewrites 𝐸 and prepares all the extra variables needed
for generation, as explained later. Then, we initialize 𝐴0 as the
empty assignment _𝑦. ∅. We repeatedly execute a pass that sets
𝐴𝑖 (𝑦) = Gen(𝐸 (𝑦), 𝐴𝑖−1) for any 𝑦 such that𝐴𝑖−1 (𝑦) = ∅ —we call
it “pass 𝑖”. We say that a pass 𝑖 is useful if there exists 𝑦 such that
𝐴𝑖 (𝑦) ≠ ∅ while 𝐴𝑖−1 (𝑦) = ∅, and we say that pass 𝑖 was useless
otherwise. Before each pass 𝑖 , if ⟨⟨𝑥⟩⟩𝐴𝑖−1 ≠ ∅, then the algorithm

Witness Generation for JSON Schema

stops with success. After pass 𝑖 , if the pass was useless, the algo-
rithm stops with “unsatisfiable”.

We can now prove that this algorithm is correct and complete,
as follows.

Property 11 (Correctness and completeness). If Gen is sound
and is generative for 𝐸 after preparation, then Algorithm 1 enjoys the
following properties.

(1) If the algorithm terminates with success after step 𝑖 , then𝐴𝑖 (𝑥)
is not empty and is a subset of [[𝑥]]𝐸 .

(2) If the algorithm terminates with “unsat.”, then [[𝑥]]𝐸 = ∅.
(3) The algorithm terminates after at most |Vars(𝐸) | + 1 passes.

Proof. Property (1) is immediate: by induction and by sound-
ness of Gen, we have that 𝐴𝑖 is sound for any 𝑖 , that is, ⟨⟨𝑆⟩⟩𝐴𝑖 ⊆
[[𝑆]]𝐸 .

For (2), we first prove the following property: if the algorithm
terminates with “unsatisfiable” after step 𝑗 , then, for every variable
𝑦:

𝐴 𝑗 (𝑦) = ∅ ⇒ [[𝑦]]𝐸 = ∅.
Assume, towards a contradiction, that there is a non empty set of
variables 𝑌 such that

𝑦 ∈ 𝑌 ⇒ (𝐴 𝑗 (𝑦) = ∅ ∧ [[𝑦]]𝐸 ≠ ∅) .
Let 𝑑 be the minimum depth of

⋃
𝑦∈𝑌 [[𝑦]]𝐸 , and let𝑤 be a variable

in 𝑌 and such that 𝑑 is the minimum depth of the values in [[𝑤]]𝐸 .
Minimality of 𝑑 implies that every variable 𝑧 with a value in [[𝑧]]𝐸
whose depth is less than 𝑑 − 1 has a witness in 𝐴 𝑗 , hence, since
the step 𝑗 was useless, every such 𝑧 has a witness in 𝐴 𝑗−1, hence
𝐴 𝑗−1 is (𝑑 − 1)-witnessed, hence, by generativity,𝑤 should have a
witness generated during step 𝑗 , which contradicts the hypothesis.

If the algorithm terminates with “unsatisfiable”, this means that
⟨⟨𝑥⟩⟩𝐴 𝑗−1 = ∅, hence ⟨⟨𝑥⟩⟩𝐴 𝑗 = ∅ since the step 𝑗 was useless, hence
[[𝑥]]𝐸 = ∅, since we proved that

𝐴 𝑗 (𝑦) = ∅ ⇒ [[𝑦]]𝐸 = ∅.
Property (3) is immediate: at every useful pass the number of

variables such that 𝐴𝑖 (𝑦) ≠ ∅ diminishes by at least 1, hence we
can have at most |Vars(𝐸) | useful passes plus one useless pass. □

We can finally describe the phases of preparation and genera-
tion for all typed groups.

Preparation is a crucial phase, where we make explicit the in-
teractions between different object or array operators found in a
same typed group, and we create new variables to manage these
interactions.

8.3 Object group preparation and generation
8.3.1 Constraints and requirements. We say that an assertion 𝑆 =

props(𝑟 : x) or 𝑆 = pro𝑀0 is a constraint. A constraint has the fol-
lowing features: (a) { } ∈ [[𝑆]]𝐸 and (b) {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛, 𝑘𝑛+1 :
𝐽𝑛+1} ∈ [[𝑆]]𝐸 ⇒ {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛} ∈ [[𝑆]]𝐸 — constraints
can prevent the addition of members, but they never require the
presence of a member, similarly to a for all fields quantifier.

We say that an assertion 𝑆 = pattReq(𝑟 : x) or 𝑆 = pro∞𝑚 with
𝑚 > 0 is a requirement. A requirement 𝑆 has the following features:
(a) { } ∉ [[𝑆]]𝐸 and (b) {𝑘1 : 𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛} ∈ [[𝑆]]𝐸 ⇒ {𝑘1 :
𝐽1, . . . , 𝑘𝑛 : 𝐽𝑛, 𝑘𝑛+1 : 𝐽𝑛+1} ∈ [[𝑆]]𝐸 — requirements can require

the addition of a member, but they never prevent adding a member,
similarly to an exists field quantifier.

As a consequence, a possible algorithm to build an object is: start
from the empty object, add one member at a time until all require-
ments are satisfied, but, whenever you add a member to satisfy
some requirements, verify that it satisfies all constraints too.

8.3.2 Preparation and generation. For a typical object group, where
every pattern is trivial and where each type in each pattReq is
just𝑥t, object generation is very easy. Consider the following group:

{ type(Obj), props("a" : x), pattReq("a" : 𝑥t), pattReq("c" : 𝑥t) }

In order to generate a witness, we just need to generate a mem-
ber k : 𝐽 for each required key, respecting the corresponding props
constraint if present. Hence, here we generate a member "a" : 𝐽
where 𝐽 ∈ 𝐴𝑖 (x), and a member "c" : 𝐽 ′, where 𝐽 ′ is arbitrary.

Unfortunately, in the general case where we have non-trivial
patterns and where the pattReq operator specifies a non-trivial
schema for the required member, the situation is much more com-
plex, and we must keep into account the following issues:

(1) need to compute the intersections between patterns of dif-
ferent assertions;

(2) need to generate new variables when patterns intersect;
(3) possibility for one member to satisfy many requirements.
To exemplify the first two problems, consider the following ob-

ject group: { type(Obj), props(p : x), pattReq(r : y), pro11 }.
There are two distinct ways of producing a witness { k : 𝐽 } for

the object above: either we generate a 𝑘 that matches r ⊓ p , and
a witness 𝐽 for y, or we generate a 𝑘 that matches r ⊓ p, and a
witness 𝐽 for x ∧ y. This exemplifies the first two issues above:

(1) patterns: we need to compute which of the combinations
r⊓ p and r⊓p have a non-empty language, in order to know
which approaches are viable w.r.t. to pattern combination;

(2) new variables: we need a new variable whose body is x ∧ y,
in order to generate a witness for this conjunctive schema.

Let us say that a member 𝑘 : 𝐽 has shape 𝑟 : 𝑆 when 𝑘 ∈ 𝐿(𝑟)
and 𝐽 is a witness for 𝑆 . Then, we can rephrase the example above
by saying that an object { k : 𝐽 } satisfies that object group iff k : 𝐽
either has shape (r ⊓ p : y) or (r ⊓ p : x ∧ y).

To exemplify the last problem— onemember possibly satisfying
many requirements — consider the following object group:

{ type(Obj), pattReq(r1 : y1), pattReq(r2 : y2), pro𝑀𝑎𝑥𝑚𝑖𝑛 }

In order to satisfy both requirements, we have two possibilities:
(1) producing just one member with shape r1 ⊓ r2 : y1 ∧ y2 ;
(2) producing two members, with shapes r1 : y1 and r2 : y2 .
In order to explore all possible ways of generating a witness, we

need to consider both possibilities. But, in order to consider the
first possibility, we need a new variable whose body is equivalent
to y1 ∧ y2 .

We solve all these issues by transforming, during the prepara-
tion phase, every object into a form where all possible interactions
between assertions are made explicit, and we create a fresh new
variable for every conjunction of variables that is relevant for wit-
ness generation. The generative witness-generation function that
is used during bottom-up evaluation, and that will be described in
the Section 8.3.4, will be applied to this prepared form.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

8.3.3 Object group preparation. Consider a generic object group
{ type(Obj), props(p1 : x1), . . . , props(pm : x𝑚),

pattReq(r1 : y1), . . . , pattReq(rn : y𝑛), pro𝑀𝑎𝑥𝑚𝑖𝑛
}

We use 𝐶𝑃 (constraining part) to denote the set of props asser-
tions {|props(pi : x𝑖) | 𝑖 ∈ 1..𝑚 |} and 𝑅𝑃 (requiring part) to denote
the set of pattReq assertions. Any witness for this object group is
a collection of fields (𝑘, 𝐽) where every field satisfies every con-
straint props(pi : x𝑖) such that 𝑘 ∈ 𝐿(𝑝𝑖), and such that every re-
quirement pattReq(rj : y𝑗) is satisfied by a matching field. Hence,
every field is associated to a set 𝐶𝑃 ′ ⊆ 𝐶𝑃 of constraints and to a
set 𝑅𝑃 ′ ⊆ 𝑅𝑃 of requirements. Only some pairs of sets (𝐶𝑃 ′, 𝑅𝑃 ′)
make sense, because of pattern compatibility. Object preparation
generates all, and only, the pairs (actually, the triples, as wewill see)
that will be useful to the task of exploring all ways of generating
a witness.

Formally, to every pair (𝐶𝑃 ′, 𝑅𝑃 ′), where 𝐶𝑃 ′ ⊆ 𝐶𝑃 and 𝑅𝑃 ′ ⊆
𝑅𝑃 , we associate a characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′) that describes
all strings (maybe none) thatmatch every pattern in (𝐶𝑃 ′, 𝑅𝑃 ′) and
no pattern in (𝐶𝑃 \𝐶𝑃 ′, 𝑅𝑃 \ 𝑅𝑃 ′), as follows.

Definition 13 (Characteristic pattern). Given an object group
{type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑎𝑥

𝑚𝑖𝑛
} and two subsets𝐶𝑃 ′ ⊆ 𝐶𝑃 and 𝑅𝑃 ′ ⊆

𝑅𝑃 , the characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′) is defined as follows:
𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)

= (.props(p:_) ∈𝐶𝑃 ′ 𝑝) ⊓ (
.

props(p:_) ∈(𝐶𝑃\𝐶𝑃 ′) 𝑝)
⊓ (.(pattReq(r :_) ∈𝑅𝑃 ′ 𝑟) ⊓ (.(pattReq(r :_) ∈(𝑅𝑃\𝑅𝑃 ′) 𝑟)

Consider for example the following object group, correspond-
ing, modulo variable names, to a fragment of our running example
(Figure 5(d)):
{type(Obj), props("b" : x), pattReq("a" : 𝑦1), pattReq("a.∗" : y2)}
For space reason, we adopt the following abbreviations for the

assertions that belong to 𝐶𝑃 and 𝑅𝑃 :
𝑝𝑏 = props("b" : x), 𝑟𝑎 = pattReq("a" : y1),
𝑟𝑎𝑠 = pattReq("a.∗" : y2)

Here we have 23 pairs (𝐶𝑃 ′, 𝑅𝑃 ′) that are elementwise included
in (𝐶𝑃, 𝑅𝑃), each pair defining its own characteristic pattern; for
each pattern we indicate an equivalent extended regular expres-
sion (“.+” stands for any non-empty string) or ∅ when the pattern
has an empty language:

𝑐𝑝 ({| |}, {| |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑏 ⊓ 𝑎.∗
𝑐𝑝 ({| |}, {|𝑟𝑎 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅
𝑐𝑝 ({| |}, {|𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑎.+
𝑐𝑝 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑎
𝑐𝑝 ({|𝑝𝑏 |}, {| |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ 𝑏
𝑐𝑝 ({|𝑝𝑏 |}, {|𝑟𝑎 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅
𝑐𝑝 ({|𝑝𝑏 |}, {|𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅
𝑐𝑝 ({|𝑝𝑏 |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}) = 𝑏 ⊓ 𝑎 ⊓ 𝑎.∗ ≡ ∅

All different pairs (𝐶𝑃 ′, 𝑅𝑃 ′) define languages that are mutually
disjoint by construction, but many of these are empty, as in this ex-
ample. The non-empty languages cover all strings, by construction,
hence they always define a partition of the set of all strings.

Consider now a member k : 𝐽 which we may use to build a
witness of the object group. The key 𝑘 matches exactly one non-
empty characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′), hence 𝐽 must be a wit-
ness for all variables xi such that props(pi : x𝑖) ∈ 𝐶𝑃 ′, since each
relevant constraint must be satisfied, but, as far as the assertions
pattReq(rj : y𝑗) ∈ 𝑅𝑃 ′ are concerned, there is much more choice.
If 𝐽 is a witness for every such y𝑗 , then this member satisfies all
requirements in 𝑅𝑃 ′. But it may be the case that some of these y𝑗 ’s
are mutually exclusive, hence we must choose which ones will be
satisfied by 𝐽 . Or, maybe, none of the y𝑗 is satisfied by 𝐽 , but we
may still use k : 𝐽 in order to satisfy a pro∞𝑚 requirement with
𝑚 ≠ 0. Hence, in order to explore all different ways of generating
a member (k : 𝐽) for a witness of the object group, we must choose
a pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′), and a subset 𝑅𝑃 ′′ of 𝑅𝑃 ′ that we require 𝐽
to satisfy. Hence, we define a choice to be a triple (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′),
with 𝑅𝑃 ′′ ⊆ 𝑅𝑃 ′. The (𝐶𝑃 ′, 𝑅𝑃 ′, _) part specifies the pattern that
is satisfied by 𝑘 , while the (𝐶𝑃 ′, _, 𝑅𝑃 ′′) part, with 𝑅𝑃 ′′ ⊆ 𝑅𝑃 ′,
specifies the variables that 𝐽 must satisfy.

We also distinguish R-choices, where 𝑅𝑃 ′′ is not empty, hence
they are useful in order to satisfy some requirements in 𝑅𝑃 , and
non-R-choices, where 𝑅𝑃 ′′ is empty, hence they can only be used
to satisfy a pro∞𝑚 requirement. The only choices that may describe
a member are those where the set of strings 𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)) is not
empty; we call them non-cp-empty choices.

Definition 14 (Choice, R-Choice, cp-empty choice). Given an ob-
ject group { type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑚 }with constraining part𝐶𝑃 =

{|props(pi : x𝑖) | 𝑖 ∈ 1..𝑚 |} and 𝑅𝑃 = {|pattReq(rj : y𝑗) | 𝑗 ∈ 1..𝑛 |},
a choice is a triple (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) such that 𝐶𝑃 ′ ⊆ 𝐶𝑃 , 𝑅𝑃 ′′ ⊆
𝑅𝑃 ′ ⊆ 𝑅𝑃 . The characteristic pattern 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) of the choice
is defined by its first two components, as follows:

𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) = 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)
The schema of the choice 𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) is defined by the first
and the third component, as follows:

𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) =
∧

props(p:x) ∈𝐶𝑃 ′
x ∧

∧
pattReq(r :y) ∈𝑅𝑃 ′′

y

A choice is cp-empty if 𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′)) is empty, is non-cp-
empty otherwise.

A choice is an R-choice if 𝑅𝑃 ′′ ≠ {| |}, is a non-R-choice otherwise.

In the object group of our previous example we have 4 non-
cp-empty pairs, ({| |}, {| |}), ({|𝑝𝑏 |}, {| |}), ({| |}, {|𝑟𝑎𝑠 |}), ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}),
which correspond to the following 8 non-cp-empty choices – for
each, we indicate the corresponding schema.

𝑠 ({| |}, {| |}, {| |}) = xt non-R-choice
𝑠 ({|𝑝𝑏 |}, {| |}, {| |}) = x non-R-choice
𝑠 ({| |}, {|𝑟𝑎𝑠 |}, {| |}) = xt non-R-choice
𝑠 ({| |}, {|𝑟𝑎𝑠 |}, {|𝑟𝑎𝑠 |}) = y2 R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {| |}) = xt non-R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {|𝑟𝑎 |}) = y1 R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {|𝑟𝑎𝑠 |}) = y2 R-choice
𝑠 ({| |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}, {|𝑟𝑎, 𝑟𝑎𝑠 |}) = y1 ∧ y2 R-choice

The schema of a choice is always a conjunction of variables, say
𝑥1∧. . .∧𝑥𝑛 . During bottom-up generation, we need to knowwhich
non-cp-empty choices have a witness in the current assignment𝐴𝑖 ,

Witness Generation for JSON Schema

hence we need to associate every non-cp-empty choice with just
one variable, not with a conjunction. Hence, we need to create a
new variable𝑦 for each conjunction 𝑥1∧. . .∧𝑥𝑛 that we have never
seen before, thenwe execute GDNF normalization over 𝑥1∧. . .∧𝑥𝑛 ,
transforming it into a guarded disjunction of typed groups 𝑆 , then
we add 𝑦 : 𝑆 to the current environment and we apply preparation
again to this new variable; we call this process and-completion. In
the example above, this may be the case for 𝑦1∧𝑦2, unless 𝑦1∧𝑦2
is Boolean-equivalent to some variable that already exists.

Preparation can be regarded as a sophisticated form of and-elimi-
nation. Here, and-completion plays the same role that not-comple-
tion plays for not-elimination: it creates the new variables that we
need in order to push conjunction through the object group opera-
tors. But, crucially, and-completion is lazy: we do not pre-compute
every possible conjunction, but only those that are really needed by
some specific non-cp-empty choice. This laziness is crucial for the
practical feasibility of the algorithm: when different constraints,
or requirements, are associated to disjoint patterns, we have very
few non-cp-empty choices, and in most cases they do not need any
fresh variable, as in the example. Despite laziness, this prepare-
generate-normalize-prepare loop can still generate a huge number
of variables. We keep their number under control using the ROBD-
DTab data structure that we introduced in Section 7.1, which allows
us to create a new variable only when none of the existing vari-
ables is boolean-equivalent to its body; this crucial optimization
also ensures that this phase can never generate an infinite loop.

Hence, object preparation proceeds as follows:
(1) determine the set of non-cp-empty pairs (𝐶𝑃 ′, 𝑅𝑃 ′), that is

the pairs such that 𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′) is not empty;
(2) for each non-cp-empty pair (𝐶𝑃 ′, 𝑅𝑃 ′) compute the corre-

sponding choices (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) and, if the variable inter-
section 𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) has no equivalent variable in the
environment, add a new variable 𝑥 : 𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) to the
environment, applyGDNF reduction to 𝑠 (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′), ap-
ply preparation to the GDNF-reduced conjunction.

When we describe object generation, we will show how the set
of all prepared choices can be used in order to enumerate all pos-
sible ways of generating a witness for an object group.

Step (1) has, in the worst case, an exponential cost, but in prac-
tice it is much cheaper: in the common case where every pattern
matches a single string, a set of 𝑛 properties and requirements gen-
erates at most 𝑛 + 1 non-empty pairs (one for each string plus one
for the complement of the string set), 𝑛 R-choices, and 𝑛 + 1 non-
R-choices. Since before preparation we have at most𝑂 (𝑁) distinct
variables (where 𝑁 is the input size), step (2) may generate at most
𝑂 (2𝑁) new variables, each of which has a body which can be pre-
pared in time 𝑂 (2poly (N)). Hence, the global cost of this phase is
still 𝑂 (2poly (N)).

Our experiments show that this cost is, formost real-world schemas,
tolerable.

Property 12. Object preparation can be performed in𝑂 (2poly (N))
time.

Remark 1. In our implementation, the generation of all non-cp-
empty pairs is not performed by brute force enumeration, but using
an algorithm based on the following schema: it matches every pair of
patterns 𝑟1 and 𝑟2 coming from either𝐶𝑃 and 𝑅𝑃 and, in case the two

are neither equal nor disjoint, splits them into three patterns 𝑟1⊓ 𝑟2,
𝑟1⊓𝑟2 and 𝑟1⊓𝑟2. This algorithm has a cost that is quadratic in the
number of non-empty pairs that are generated. Hence, it is 𝑂 (2𝑛) in
the worst case but is just quadratic in the typical case, the one where
the number of non-empty pairs is linear in the size of the object group.

8.3.4 Witness generation from a prepared object group. After the
object group has been prepared once for all, at each pass of bottom-
up witness generation we use the following sound and generative
algorithm, listed as Algorithm 2, to compute a witness for the pre-
pared object group starting from the current assignment 𝐴𝑖 .

In a nutshell, we (1) pick a list of choices that contains enough R-
choices to satisfy all requirements — each choicewill correspond to
one field in the generated object, and vice versa; (2) we verify that
the list is pattern-viable, i.e., that it does not require two fields with
the same name; (3) to satisfy any unfulfilled pro∞𝑚 requirement, we
add some non-R-choices, still keeping the choice list pattern-viable,
as defined above. In order to keep the search space in𝑂 (2poly (N)),
we limit ourselves to the subset of the disjoint solutions, and we
prove that it is big enough to have a complete algorithm.

In greater detail, consider a generic object group with the form
{ type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑚 } and assume that the corresponding
non-cp-empty choices have been prepared.

To generate an object, we first choose a list of choices that sat-
isfies all of 𝑅𝑃 . To reduce the search space, we first observe that a
single object can be described by many different choice lists. For
example, assume that ‘1’ belongs to both [[𝑥]]𝐸 and [[𝑦]]𝐸 and as-
sume that:

𝑟𝑥 = pattReq("a|b" : x)
𝑟𝑦 = pattReq("a|b" : y)
𝑅𝑃 = { 𝑟𝑥, 𝑟𝑦 }

then { "a" : 1, "b" : 1 } is described by each the following four
choice lists (and by others), where every choice could be used to
generate/describe each of the two members:

𝐶𝐿1 = [({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑦 |})]
𝐶𝐿2 = [({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {| |})]
𝐶𝐿3 = [({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |})]
𝐶𝐿4 = [({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥, 𝑟𝑦 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥 |})]

This example shows that we do not need to explore any possible
choice list, but just enough choice lists to generate all witnesses. To
this aim, we focus on disjoint solutions, defined as follows, whose
completeness will be proved in Theorem 18.

Definition 15 (Disjoint solution, Minimal disjoint solution). Fixed
a set of requirements 𝑅𝑃 , a size limit 𝑀 , and a set of choices C, a
multisetC′ = {|(𝐶𝑙 , 𝑅′𝑙 , 𝑅

′′
𝑙
) | 𝑙 ∈ 𝐿 |}with elements inC is a solution

(for the fixed 𝑅𝑃 and𝑀) iff:⋃
𝑙 ∈𝐿

𝑅′′
𝑙
= 𝑅𝑃 and |C′ | ≤ 𝑀

The solution is disjoint if: 𝑖 ≠ 𝑗 ⇒ 𝑅′′
𝑖
∩ 𝑅′′

𝑗
= ∅.

The solution is minimal if every choice in C′ is an R-choice.

In the previous example, only𝐶𝐿1 and𝐶𝐿2 are disjoint, and only
𝐶𝐿1 is disjoint and minimal.

Every object described by a solution for an object group is a
witness for the that group.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

Definition 16 (describes-in-𝐴). A choice 𝐶 = (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) for
a prepared object group describes in an assignment 𝐴 a field 𝑘 : 𝐽 ,
iff 𝑘 ∈ 𝐿(𝑐𝑝 (𝐶)) and 𝐽 ∈ 𝐴(𝑣𝑎𝑟 (𝐶)). A choice list C describes in 𝐴
an object 𝐽 if there is a bijection mapping each field 𝑘 : 𝐽 ′ in 𝐽 to a
choice 𝐶 in C such that 𝐶 describes 𝑘 : 𝐽 ′.

Property 13. For any prepared object group

𝑆 = {type(Obj),CP,RP, proMm }
with the corresponding environment 𝐸 and choices C, if C′ is a choice
list over C with𝑚 ≤ |C′ | ≤ 𝑀 that is a solution for 𝑅𝑃 , if𝐴 is sound
for 𝐸, and if 𝐽 is described in 𝐴 by C, then 𝐽 ∈ [[𝑆]]𝐸 .

Object generation depends on the current assignment 𝐴𝑖 . We
say that a variable 𝑥 is Populated (in 𝐴𝑖) when 𝐴𝑖 (𝑥) ≠ ∅, and is
Open otherwise. We say that a choice is Populated, or Open, when
its schema variable is Populated, or is Open. In order to generate a
witness, we first generate a disjoint minimal solution for 𝑅𝑃 with
bound 𝑀 , only using R-choices that are Populated. Then, in order
to deal with the constraint that all names in an object are distinct,
we check that the solution is pattern-viable. Informally, pattern-
viability ensures that, if we have 𝑛 choices in the solution with the
same characteristic pattern 𝑐𝑝 , then the language of 𝑐𝑝 has at least
𝑛 different strings, which can be used to build 𝑛 different members
corresponding to those 𝑛 choices. We will exemplify the issue after
the definition.

Definition 17 (Pattern-viable). A set of choicesC is pattern-viable
iff for every pair (𝐶𝑃 ′, 𝑅𝑃 ′), the number of choices inCwith shape
(𝐶𝑃 ′, 𝑅𝑃 ′, _) is smaller than the number ofwords in𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)):
∀𝐶𝑃 ′, 𝑅𝑃 ′.
| {| (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) | (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) ∈ C|} | ≤ | 𝐿(𝑐𝑝 (𝐶𝑃 ′, 𝑅𝑃 ′)) |

For example, the following choice list C is not viable since it
describes an object with two members that share the same charac-
teristic pattern "a" that only contains one string:

𝑟𝑥 = pattReq("a" : x), 𝑟𝑦 = pattReq("a" : y)
C = [({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑥 |}), ({| |}, {|𝑟𝑥, 𝑟𝑦 |}, {|𝑟𝑦 |})]

But it would be viable if the pattern "a" were substituted by "a|b".
Finally, for each viable disjoint solution, we check whether it

also satisfies the pro∞𝑚 requirement (line 6 of Algorithm 2). If it
does not, we try and extend the solution by adding some Popu-
lated non-R-choices (line 7). Observe that the disjoint solution con-
tains each R-choice (𝐶𝑃 ′, 𝑅𝑃 ′, 𝑅𝑃 ′′) at most once, because of dis-
jointness; however, we can add the same non-R-choice as many
times as we need in order to reach𝑚 members. A non-R-choice 𝐶
can only be added if the result remains viable; hence, a minimal
disjoint solution C may have a viable extension C′ of length 𝑚,
obtained by adding a multiset of non-R-choices (lines 6-13), or it
may not have such a viable extension, and then we need to start
from a different minimal solution. If no viable disjoint solution ad-
mits a viable extension of length at least 𝑚, then the algorithm
returns “Open” (according to the current assignment). Otherwise,
we use the extended solution C′ to build a witness: for each choice
𝐶 ∈ C′, we generate a name 𝑘 satisfying 𝑐𝑝 (𝐶), we pick a value
𝐽 from 𝐴𝑖 (𝑣𝑎𝑟 (𝐶)), and the set of members 𝑘 : 𝐽 that we obtain
is a witness for the object group. When 𝑛 different choices inside
C′ have the same characteristic pattern, we generate 𝑛 different

names, which is always possible since the solution is viable — this
is the𝑛-enumeration problem for EEREs that we introduced in Sec-
tion 4.4.

Algorithm 2: Object witness generation
1 Gen(RPart, WitRChoices,WitNonRChoices, min, Max,)
2 for Solution in minDisjointSols (WitRChoices,RPart,Max) do
3 if (viable(Solution)) then
4 missing := min — size(Solution);
5 nonViableChoices := ∅;
6 while (missing > 0 and nonViableChoices !=WitNonRChoices)

do
7 choose NRC from (WitNonRChoices-nonViableChoices);
8 if (viable([NRC]++Solution)) then
9 Solution := [NRC]++Solution;
10 missing := missing-1;
11 else nonViableChoices := [NRC]++nonViableChoices;
12 if (missing == 0) then
13 return (“Populated”, WitnessFrom(Solution));
14 return (“Open”);

Theorem 18 (Soundness and generativity). Algorithm Gen is
sound and generative.

Proof. Our algorithm is sound by construction. For generativ-
ity, assume that the object group

𝑆 = { type(Obj),𝐶𝑃, 𝑅𝑃, pro𝑀𝑎𝑥𝑚𝑖𝑛 }
has a witness of depth 𝑑 +1 in [[𝑆]]𝐸 . Assume that𝐴 is 𝑑-witnessed
for 𝐸. We want to prove that Gen, applied to 𝑆 and𝐴, will generate
at least one witness. Let

𝐽 = {a1 : 𝐽1, . . . , al : 𝐽𝑙 }
be a witness for 𝑆 in 𝐸 with depth 𝑑 + 1. We can now extract from

{a1 : 𝐽1, . . . , al : 𝐽𝑙 }
a set of choices (𝐶 ′

𝑖
, 𝑅′
𝑖
, 𝑅′′
𝑖
) with 𝑖 ∈ {1..𝑙}, as follows. 𝐶 ′

𝑖
and 𝑅′

𝑖
are defined by the only pair (𝐶 ′

𝑖
, 𝑅′
𝑖
) whose language includes 𝑎𝑖 . In

order to define 𝑅′′
𝑖
, we observe that, since 𝐽 satisfies 𝑅𝑃 , then, we

can associate to each 𝑆 in𝑅𝑃 onemember 𝑖 such that ai : 𝐽𝑖 satisfies
𝑆 — if many such members exist, we just choose one. The inverse
of this relation associates to each member 𝑖 a subset 𝑅′′

𝑖
of 𝑅′

𝑖
. The

collection of choices C = {| (𝐶 ′
𝑖
, 𝑅′
𝑖
, 𝑅′′
𝑖
) | 𝑖 ∈ {1..𝑙} |} that we have

defined is actually a multiset, since a non-R-choice may appear
more than once, and is a disjoint solution since, by construction,⋃
𝑖∈{1..𝑙 } 𝑅

′′
𝑖

= 𝑅𝑃 , 𝑙 ≤ 𝑀𝑎𝑥 , and 1 ≤ 𝑖 < 𝑗 ≤ 𝑙 ⇒ 𝑅′′
𝑖
∩ 𝑅′′

𝑗
= ∅,

since every requirement ismapped to exactly onemember.We now
prove that all these choices are Populated in𝐴. To this aim, consider
a choice 𝐶 = (𝐶 ′

𝑖
, 𝑅′
𝑖
, 𝑅′′
𝑖
) in C and the field ai : 𝐽𝑖 that we used to

define it. By construction, the schema 𝑠 (𝐶) is the conjunction of
the variables of all constraints 𝐶 ′

𝑖
that must be satisfied by and 𝐽

that is associated to 𝑎𝑖 in any witness of 𝑆 , plus the variables a
set of requirements 𝑅′′

𝑖
whose variables are satisfied by 𝐽𝑖 , hence

𝐽𝑖 ∈ [[𝑠 (𝐶)]]𝐸 , hence, by definition of 𝑣𝑎𝑟 (𝐶), 𝐽𝑖 ∈ [[𝑣𝑎𝑟 (𝐶)]]𝐸 .
Since 𝐽 has depth 𝑑 + 1, then 𝛿 (𝐽𝑖) ≤ 𝑑 , hence𝐴(𝑣𝑎𝑟 (𝐶)) ≠ ∅ since
𝐴 is 𝑑-witnessed, hence every choice in C is Populated in 𝐴.

Now we prove that our algorithm would generate at least one
subsequence of C that is a solution, unless it stops since it is able
to generate a different solution; in both cases, our algorithm gen-
erates a solution for the group.

Witness Generation for JSON Schema

To prove this, we remove every non-R-choice fromC, and so we
get a collection C′ that is a minimal disjoint solution. If𝑚𝑖𝑛 > |C′ |,
then we choose𝑚𝑖𝑛 − |C′ | non-R-choices out of C and add them
to C′. Being a subset of C, the result is viable and, by construction,
is an extension of a minimal disjoint solution C′ with a multiset
of non-R-choices. Our algorithm scans every such extension of ev-
ery minimal disjoint solution, hence, if it is not stopped because it
finds a different solution, it finds this one, and it generates a corre-
sponding witness. □

Property 14 (Complexity). Given a schema of size 𝑁 , each run
of the Gen algorithm has a complexity in 𝑂 (2poly (N)).

Proof. Let 𝑁 we the size of the original schema. Let us first
focus on a single, arbitrary, group. For any object group, 𝑅𝑃 has
at most 𝑁 elements, and any choice has a size that is 𝑂 (𝑁). Let
𝑀 be an upper bound for the number of non-empty choices for
an arbitrary object group. Since every minimal disjoint solution
contains at most |𝑅𝑃 | ≤ 𝑁 choices, we can generate all minimal
disjoint solutions by scanning the list of all 𝑁 -tuples of choices,
which can be done in time 𝑂 (𝑀𝑁). We then need to scan the list
of all non-R-choices for at most 𝑚𝑖𝑛 times, which adds another
𝑂 (𝑀𝑁) factor, since𝑚𝑖𝑛 ≤ 𝑁 by the linear constants assumption,
hence we arrive at𝑂 (𝑀2𝑁) solutions. For every solution that con-
tains 𝑖 choices, we need to solve at most 𝑖 times the 𝑖-enumeration
problem, with 𝑖 ≤ 𝑁 , in order to verify viability and to generate
the witness when a witness exists. The pattern expression 𝑐𝑝 (𝐶)
of each choice 𝐶 of the solution has a size that is in 𝑂 (poly(N)),
hence running 𝑖 times the 𝑖-enumeration problem has a cost that
is 𝑂 (2poly (N)), hence we can examine 𝑂 (𝑀2𝑁) solutions in time
𝑂 (𝑀2𝑁 ·poly(N) ·2poly (N)). Since𝑀 is in𝑂 (2poly (N)), each pass of
object generation is in𝑂 (2poly (N)) for each prepared object group.
Since we have less then 𝑂 (2poly (N)) groups, each pass of object
generation is in 𝑂 (2poly (N)). □

8.4 Array group preparation and generation
8.4.1 Constraints and requirements. As with objects, we say that
an assertion 𝑆 = contAfter(𝑖+ : x) or 𝑆 = cont∞

𝑖
(x) with 𝑖 > 0 is a

requirement, since it is not satisfied by [] and, if 𝐽+ extends 𝐽 , then
𝐽 ∈ [[𝑆]]𝐸 ⇒ 𝐽+ ∈ [[𝑆]]𝐸 .

We say that an assertion 𝑆 = item(𝑙 : x), 𝑆 = items(𝑖+ : x),
or 𝑆 = cont𝑗0 (x) is a constraint, since it is satisfied by [] and if 𝐽+
extends 𝐽 , then 𝐽+ ∈ [[𝑆]]𝐸 ⇒ 𝐽 ∈ [[𝑆]]𝐸 .

An assertion 𝑆 = cont𝑗
𝑖
(x) with 𝑖 ≠ 0 and 𝑗 ≠ ∞ combines a

requirement and a constraint.

8.4.2 Array group preparation. An array group is a set of asser-
tions with the following shape:

{ type(Arr), 𝐼𝑃, 𝐴𝑃, 𝐾𝑃 }

Here, 𝐼𝑃 is a set of item constraints item(𝑙 : x) and items(𝑖+ : x),
𝐴𝑃 is a set of contains-after requirements with shape contAfter(𝑙+ :
x), 𝐾𝑃 is a set of counting assertions cont𝑗

𝑖
(x), where every asser-

tions combines a requirement cont∞
𝑖
(x) and a constraint cont𝑗0 (x).

8

8For the sake of simplicity, in our formal treatment we do not distinguish cont𝑗
𝑖
(𝑥t)

from the other counting assertions, where 𝑥t here indicates the variable whose body

In theory, arrays and objects are almost identical, since they are
both finite mappings from labels to values, but arrays have some
extra issues:

(1) Arrays have a domain downward closure constraint, that
specifies that, when a value is associated to a label𝑛+1, then
a value is associated to 𝑛 as well, for every 𝑛 ≥ 1; objects do
not have anything similar.

(2) The cont𝑗
𝑖
(x) operator specifies an upper bound, and re-

quires counting, while pattReq(a : x) only specifies the ex-
istence of at least one member matching 𝑎 with schema x,
with no upper bound and no counting ability.

Consider for example the following array group.

{ type(Arr), item(2 : x), contAfter(0+ : y), cont11 (z), cont
2
2 (𝑥t)}

It describes an array of exactly two elements. The one at posi-
tion 2 must satisfy x. At least one of the two elements must satisfy
y. One, but only one, of the two elements must satisfy z.

Let us say that an array has shape [𝑆1, . . . , 𝑆𝑘] if it contains ex-
actly 𝑘 items [𝐽1, . . . , 𝐽𝑘], and if each item 𝐽𝑖 satisfies 𝑆𝑖 . Then, the
group above is satisfied by arrays with one of the following four
shapes:

[y ∧ z, x ∧ co(z)], [y ∧ co(z), x ∧ z],
[z, x ∧ y ∧ co(z)], [co(z), x ∧ y ∧ z]

We recognize the two problems that we have seen with objects:
interaction between constraints and requirements, resulting in con-
junctions of x with other variables in position 2, and the possibility
of one element to satisfy two requirements, resulting in y ∧ z con-
junctions, but we have the extra problem of the upper bound, that
results in the presence of the dual variable co(z) in some positions.

Hence, our algorithm to prepare arrays and to generate the cor-
responding witnesses is somehow different from that of objects,
although similar in spirit. It obviously differs in the presence of
dual variables like co(z), motivated by upper bounds, but also dif-
fers in the strategy that we use to explore the space of witnesses.
Instead of starting the exploration from the requirements, hence
from the “first choices”, here we are guided by the domain closure
constraint, hence we start the exploration from the first position
of the array.

We need to define some terminology. We first define a notion of
head-length for an array group 𝑆 (Definition 19): intuitively, when
the head-length of 𝑆 is ℎ, then, for any witness 𝐽 of 𝑆 , if the ele-
ments of 𝐽 from position ℎ + 1 onwards — which constitute the tail
of 𝐽 — are permuted, then 𝐽 is still a witness; the elements in posi-
tions 1 to ℎ constitute the head, and their position may matter. For
example, an array group {type(Arr), item(3 : 𝑥)} has head-length
3. The head-length 𝑛 may be 0, and actually this is the most com-
mon head-length that we encounter in practice. The interval of an
assertion In(𝑆) is the interval of positions of the array that the as-
sertion describes, which may belong to the head of the group, to
the tail, or may cross both.

Definition 19 ([𝑖, 𝑗], HL(𝑆), In(𝑆)). [𝑖, 𝑗], with 𝑖 ∈ N, 𝑗 ∈ N∞, de-
notes the interval between 𝑖 and 𝑗 , which is infinite when 𝑗 = ∞,

is t, although in the implementation we actually exploit its special properties for effi-
ciency reasons.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

and is empty when 𝑖 > 𝑗 . The head-length HL(𝑆) and the inter-
val In(𝑆) of an array ITO 𝑆 , and of an array group, are defined as
follows:

[𝑖, 𝑗] = {| 𝑙 | 𝑙 ∈ N, 𝑖 ≤ 𝑙 ≤ 𝑗 |}
HL(item(𝑙 : 𝑆)) = 𝑙

HL(items(𝑖+ : 𝑆)) = 𝑖

HL(contAfter(𝑙+ : 𝑆)) = 𝑙

HL(cont𝑗
𝑖
(𝑆)) = 0

HL(({type(Arr), 𝐼𝑃, 𝐴𝑃, 𝐾𝑃}) = max𝑆 ∈𝐼𝑃∪𝐴𝑃 (HL(𝑆))
In(item(𝑙 : 𝑆)) = [𝑙, 𝑙]
In(items(𝑖+ : 𝑆)) = [𝑖 + 1,∞]
In(contAfter(𝑙+ : 𝑆)) = [𝑙 + 1,∞]
In(cont𝑗

𝑖
(𝑆)) = [1,∞]

Property 15 (Irrelevance of tail position). If 𝑆 is an array
typed group, 𝐽 = [𝐽1, . . . , 𝐽𝑛] ∈ [[𝑆]]𝐸 , for all 𝑖, 𝑗 with 𝐻𝐿(𝑆) <

𝑖 ≤ 𝑗 ≤ 𝑛, if 𝐽 ′ is obtained from 𝐽 by exchanging 𝐽𝑖 with 𝐽 𝑗 , then
𝐽 ′ ∈ [[𝑆]]𝐸 .

In order to define a choice we need a last definition: for a set
of assertions S, we define its restriction to [𝑖, 𝑗], denoted by S ∩
[𝑖, 𝑗], as the subset of S containing the assertions whose interval
intersects [𝑖, 𝑗].

Definition 20 (S ∩ [𝑖, 𝑗]).

S ∩ [𝑖, 𝑗] = {| 𝑆 | 𝑆 ∈ S, ([𝑖, 𝑗] ∩ In(𝑆)) ≠ ∅ |}

Now, we define a choice for an array group 𝐼𝑃 , 𝐴𝑃 , 𝐾𝑃 with
ℎ = HL(𝐼𝑃 ∪𝐴𝑃), as a quintuple ([𝑖, 𝑗], 𝐼𝑃 ′, 𝐴𝑃 ′, 𝐾𝑃+, 𝐾𝑃−) where:

(1) either 𝑖 = 𝑗 ≤ ℎ or 𝑖 = ℎ + 1 and 𝑗 = ∞, hence a choice de-
scribes either a single element [𝑖, 𝑖] in the head of the array
group, or an element in the tail interval [ℎ + 1,∞];

(2) 𝐼𝑃 ′ is equal to 𝐼𝑃 ∩ [𝑖, 𝑗];
(3) 𝐴𝑃 ′ is a subset of 𝐴𝑃 ∩ [𝑖, 𝑗];
(4) 𝐾𝑃+ is a subset of 𝐾𝑃 ;
(5) 𝐾𝑃− is a subset of 𝐾𝑃 \ 𝐾𝑃+.
Hence, for each interval [𝑖, 𝑗], the element 𝐼𝑃 ′ is fixed, but we

may still have many choices for 𝐴𝑃 ′, 𝐾𝑃+ and 𝐾𝑃−. Intuitively, a
choice ([𝑖, 𝑗], 𝐼𝑃 ′, 𝐴𝑃 ′, 𝐾𝑃+, 𝐾𝑃−) describes an element in a posi-
tion that belongs to [𝑖, 𝑗], that satisfies all the constraints in 𝐼𝑃 ∩
[𝑖, 𝑗], that satisfies the assertions in 𝐴𝑃 ′ and in 𝐾𝑃+, and does not
satisfy any assertion in 𝐾𝑃−. With respect to object choices, here
the label is not represented by a pair of sets of assertions (𝐶𝑃 ′, 𝑅𝑃 ′),
but just by an interval [𝑖, 𝑗], while the schema is a bit more complex
since it has three positive components 𝐼𝑃 ′, 𝐴𝑃 ′ and 𝐾𝑃+, playing
the roles of𝐶𝑃 ′ and 𝑅𝑃 ′′, but also a negative component 𝐾𝑃−. Ob-
serve that, while 𝐼𝑃 ′ and 𝐴𝑃 ′ are restricted to the assertions that
apply to [𝑖, 𝑗], we do not have this restriction for 𝐾𝑃 , since every
counting assertion analyzes all positions of the array. Hence, the
schema of a choice is defined as follows.

Definition 21 (𝑠 ([𝑖, 𝑗], 𝐼𝑃 ′, 𝐴𝑃 ′, 𝐾𝑃+, 𝐾𝑃−)).

𝑠 ([𝑖, 𝑗], 𝐼𝑃 ′, 𝐴𝑃 ′, 𝐾𝑃+, 𝐾𝑃−)
= (∧(item(𝑙 :x)) ∈𝐼𝑃 ′ x) ∧ (∧(items(𝑖+:x)) ∈𝐼𝑃 ′ x)
∧ (∧(contAfter(𝑙+:x)) ∈𝐴𝑃 ′ x)
∧ (∧(cont𝑗

𝑖
(x)) ∈𝐾𝑃+ x) ∧ (

∧
(cont𝑗

𝑖
(x)) ∈𝐾𝑃− co(x))

As with object groups, a generative exploration of the space of
all possible solutions does not require the generation of all possi-
ble choices, and different strategies are possible. In our implemen-
tation, we limit ourselves to the choices where 𝐾𝑃− = 𝐾𝑃 \ 𝐾𝑃+,
which we call here the co-maximal choices. We prove later that
this strategy ensures the generativity property that we need. More
optimized strategies would be possible, but we believe that they
are not worth the effort, since in practice the array types that we
have to deal with are usually quite simple.

Hence, array preparation consists of the following steps.
(1) compute ℎ = HL(𝐼𝑃, 𝐴𝑃);
(2) for each interval [𝑖, 𝑖] corresponding to an 𝑖 ∈ [1, ℎ], and

for each subset𝐴𝑃 ′ of𝐴𝑃 and 𝐾𝑃 ′ of 𝐾𝑃 produce the corre-
sponding co-maximal choice:

([𝑖, 𝑖], 𝐼𝑃 ∩ [𝑖, 𝑖], 𝐴𝑃 ′, 𝐾𝑃 ′, 𝐾𝑃 \ 𝐾𝑃 ′)

and checkwhether the variable intersection that corresponds
to the schema of that choice is equivalent to some existing
variable, and, if not, create a new variable that will become
the schema of that choice, and apply preparation to the body
of this new variable, as in the case of object preparation;

(3) do the same for the interval [ℎ + 1,∞], and for each subset
𝐴𝑃 ′ of 𝐴𝑃 and 𝐾𝑃 ′ of 𝐾𝑃 .

As happens with object preparation, also array preparation has
an exponential cost that is quite low in practice, since in the vast
majority of cases the head-length of array groups is zero or one,
and the set𝐴𝑃 ∪𝐾𝑃 is either empty or a singleton. For this reason,
we did not put any special effort into the optimization of this phase.

Property 16. Array preparation can be performed in time𝑂 (2𝑁),
where 𝑁 is the size of the input schema.

8.4.3 Witness generation from a prepared array group. Array prepa-
ration applied to an array group { type(Arr), 𝐼𝑃, 𝐴𝑃, 𝐾𝑃 } with
head-length ℎ produces a set of co-maximal choices, each char-
acterized by an interval [𝑖, 𝑗] with shape [𝑖, 𝑖] when 𝑖 ≤ ℎ, or
[ℎ + 1,∞] otherwise, and by two subsets 𝐴𝑃 ′, 𝐾𝑃 ′ of 𝐴𝑃, 𝐾𝑃 . We
indicate with 𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) the co-maximal choice that is char-
acterized by these three parameters, and with 𝑠 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) and
𝑠 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) its schema and the associated variable, as follows:

𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) with 1 ≤ 𝑖 ≤ ℎ
= ([𝑖, 𝑖], 𝐼𝑃 ∩ [𝑖, 𝑖], 𝐴𝑃 ′, 𝐾𝑃 ′, 𝐾𝑃 \ 𝐾𝑃 ′)

𝐶 (ℎ + 1, 𝐴𝑃 ′, 𝐾𝑃 ′)
= ([ℎ + 1,∞], 𝐼𝑃 ∩ [ℎ + 1,∞], 𝐴𝑃 ′, 𝐾𝑃 ′, 𝐾𝑃 \ 𝐾𝑃 ′)

𝑠 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) = 𝑠 (𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′))
𝑣𝑎𝑟 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) = 𝑣𝑎𝑟 (𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′))

A choice𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) is a head choice when 𝑖 ≤ ℎ, and is a tail
choice when 𝑖 = ℎ + 1. At any pass of the generation algorithm, a
choice is Populated or Open, depending on its schema variable.

Witness Generation for JSON Schema

Given a list of choicesC and a set of contains-after and counting
assertions {|𝐴𝑃, 𝐾𝑃 |} (where {|𝐴𝑃 ′, 𝐾𝑃 ′ |} abbreviates 𝐴𝑃 ′ ∪ 𝐾𝑃 ′),
we define the incidence ofC over {|𝐴𝑃, 𝐾𝑃 |} as a function that maps
each 𝑆 ∈ {|𝐴𝑃, 𝐾𝑃 |} to the number of elements of C that are guar-
anteed to satisfy 𝑆 , as follows:

if 𝑆 ∉ (𝐴𝑃 ′ ∪ 𝐾𝑃 ′) : 𝐼𝐶 (𝑖,𝐴𝑃 ′,𝐾𝑃 ′) (𝑆) = 0
if 𝑆 ∈ (𝐴𝑃 ′ ∪ 𝐾𝑃 ′) : 𝐼𝐶 (𝑖,𝐴𝑃 ′,𝐾𝑃 ′) (𝑆) = 1
𝐼 [𝐶1,...,𝐶𝑛] (𝑆) =

∑
𝑖∈{1..𝑛} 𝐼𝐶𝑖

(𝑆)
We say that a list of choices C is a solution for {|𝐴𝑃, 𝐾𝑃 |} when

the incidence of the list satisfies all requirements and does not vi-
olate any constraint, as follows.

Definition 22 (Well formed list, Solution). A list of choices for an
array group is well-formed for head-length ℎ iff
(1) every choice in the list has either an interval [𝑖, 𝑖] with 𝑖 ≤ ℎ or

the interval [ℎ + 1,∞];
(2) if two consecutive choices in the list have intervals [𝑖, _] and

[𝑗, _], then either 𝑗 = 𝑖 + 1 or 𝑗 = 𝑖 = ℎ + 1.

For example, [([3, 3], . . .), [4, 4], . . .), ([5,∞], . . .), ([5,∞], . . .)],
[([5,∞], . . .)], and [] are well formed for head-length 4.

Definition 23 (Solution). Fixed an array group { type(Arr), IP,AP,KP }
with head-length ℎ, a choice list C is a solution for the array group
iff all the following hold:
(1) it is well formed for ℎ;
(2) either C is empty or the first choice has interval [1, _];
(3) for every assertion cont𝑀𝑚 (𝑥) ∈ 𝐾𝑃 we have 𝐼C (𝑆) ≤ 𝑀 ;
(4) for every assertion cont𝑀𝑚 (𝑥) ∈ 𝐾𝑃 we have 𝐼C (𝑆) ≥ 𝑚;
(5) for every requirement 𝑆 ∈ 𝐴𝑃 we have 𝐼C (𝑆) > 0.

Observe that an incidence 𝐼C (𝑆) = 𝑛 guarantees that an array
described by C has exactly 𝑛 elements that satisfy 𝑆 if 𝑆 ∈ 𝐾𝑃 ,
and at least 𝑛 elements that satisfy 𝑆 if 𝑆 ∈ 𝐴𝑃 . This happens by
design, and is sufficient to guarantee the essential property that ev-
ery array described by a solution is a witness for the corresponding
group.

Definition 24 (describes-in-𝐴). A choice𝐶 = ([𝑖, 𝑗], . . .) for a pre-
pared array group describes in an assignment 𝐴 an element 𝐽𝑙 of
an array [𝐽1, . . . , 𝐽𝑛], iff 𝑙 ∈ [𝑖, 𝑗] and 𝐽 ∈ 𝐴(𝑣𝑎𝑟 (𝐶)). A choice
list [𝐶1, . . . ,𝐶𝑛] describes in 𝐴 an array 𝐽 = [𝐽1, . . . , 𝐽𝑛] if every 𝐶𝑙
describes in 𝐴 the element 𝐽𝑙 .

Property 17. For any prepared array group

𝑆 = {type(Arr), IP,AP,KP}
with the corresponding environment 𝐸 and choicesC, if𝐴 is sound for
𝐸, if the choice list C′ over C is a solution for 𝑆 , and if 𝐽 is described
in 𝐴 by C, then 𝐽 ∈ [[𝑆]]𝐸 .

Proof. Consider a prepared group 𝑆 = {type(Arr), IP,AP,KP}
and the corresponding choices C and environment 𝐸. Let 𝐴 be
sound for 𝐸 and assume that C′ = [𝐶1, . . . ,𝐶𝑛] describes 𝐽 =

[𝐽1, . . . , 𝐽𝑛].
By definition of 𝐼C′ (𝑆), for any 𝑆 = contAfter(𝑖+ : 𝑥) ∈ 𝐴𝑃 ,

if 𝐼C′ (𝑆) = 𝑘 , then there are exactly 𝑘 choices 𝐶 in C′ such that
𝐶 = 𝐶 (𝑙, 𝐴𝑃 ′, 𝐾𝑃 ′), and 𝑆 ∈ 𝐴𝑃 ′. By definition of 𝑠 (𝐶) and 𝑣𝑎𝑟 (𝐶),
for all of these choices we have that 𝑠 (𝐶) is a conjunction of 𝑥 with

other variables, hence [[𝑣𝑎𝑟 (𝐶)]]𝐸 ⊆ [[𝑥]]𝐸 . For all of these choices,
the corresponding 𝐽𝑙 belongs to𝐴(𝑣𝑎𝑟 (𝐶)), since C′ describes in𝐴
𝐽 . Since 𝐴 is sound for 𝐸, we conclude that, for these choices, we
have that 𝐽𝑙 ∈ [[𝑥]]𝐸 . Hence, if 𝐼C′ (𝑆) > 0 with 𝑆 = contAfter(𝑖+ :
𝑥), we have at least one element of 𝐽 which satisfies 𝑥 . We must
now prove that the position of that elements is greater than 𝑖 . By
definition of choice, every choice that includes contAfter(𝑖+ : 𝑥)
has an interval that intersects [𝑖 + 1,∞]. Since the head-length of
the object group is at least 𝑖 , every choice whose interval intersects
[𝑖 + 1,∞] is either a head-choice with interval [𝑗, 𝑗] and 𝑗 > 𝑖 or a
tail choice with interval [ℎ + 1,∞] and ℎ ≥ 𝑖 . In both cases, every
position described by that choice is strictly greater than 𝑖 .

By definition of 𝐼C′ (𝑆), for any 𝑆 = cont𝑀𝑚 (𝑥) ∈ 𝐾𝑃 , if 𝐼C′ (𝑆) = 𝑘 ,
this implies that there are exactly 𝑘 choices 𝐶 in C′ such that 𝐶 =

𝐶 (𝑙, 𝐴𝑃 ′, 𝐾𝑃 ′), and 𝑆 ∈ 𝐾𝑃 ′, and, as in the previous case, for all
of these choices we have that [[𝑣𝑎𝑟 (𝐶)]]𝐸 ⊆ [[𝑥]]𝐸 . Since we only
consider co-maximal choices, for all the other 𝑛 − 𝑘 choices we
have that 𝑆 ∈ 𝐾𝑃−, hence for the other choices we have that 𝑠 (𝐶)
is a conjunction of co(x) with other variables, hence [[𝑣𝑎𝑟 (𝐶)]]𝐸 ∩
[[𝑥]]𝐸 = ∅. Since 𝐴 is sound for 𝐸, and C′ describes in 𝐴 𝐽 , we
conclude that exactly 𝑘 elements of 𝐽 belong to [[𝑥]]𝐸 . Since𝑚 ≤
𝐼C′ (𝑆) ≤ 𝑀 , we conclude that 𝐽 satisfies cont𝑀𝑚 (𝑥).

Consider any 𝑆 = item(𝑙 : 𝑥) ∈ 𝐼𝑃 and any choice 𝐶 whose in-
terval intersects [𝑙, 𝑙]. By construction, [[𝑣𝑎𝑟 (𝐶)]]𝐸 ⊆ [[𝑥]]𝐸 , hence,
by soundness of 𝐴, the element described by 𝐶 satisfies 𝑆 .

Consider any 𝑆 = items(𝑖+ : 𝑥) ∈ 𝐼𝑃 and any choice𝐶 whose in-
terval intersects [𝑖 + 1,∞]. By construction, [[𝑣𝑎𝑟 (𝐶)]]𝐸 ⊆ [[𝑥]]𝐸 ,
hence, by soundness of 𝐴, the element described by 𝐶 satisfies 𝑆 .

Hence, every assertion in {type(Arr), IP,AP,KP} is satisfied by
𝐽 . □

We finally need a notion of useful choices, which is similar in
spirit to the R-choices that we defined for the object case, andwhich
will be crucial to ensure the termination of the algorithm: a choice
𝐶 is useful for a set {|𝐴𝑃, 𝐾𝑃 |} iff some assertion in {|𝐴𝑃, 𝐾𝑃 |} is
affected by 𝐶 .

Definition 25 (useful choice). A choice𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′) is useful for
a set of assertions {|𝐴𝑃 ′′, 𝐾𝑃 ′′ |} iff

({|𝐴𝑃 ′, 𝐾𝑃 ′ |} ∩ {|𝐴𝑃 ′′, 𝐾𝑃 ′′ |}) ≠ ∅.

We can now describe our algorithm.
Our algorithm cList(hLen, aList, fLen, fInc, pChoices) recursively

solves the following generalized problem: assume you have a list of
assertions aList and you already have a choice list firstC of length
fLen, whose incidence on aList is fInc; find the rest of the list — that
is, find a well formed choice list C such that the concatenation of
firstC with C is a solution for aList.

If aList is already satisfied by fInc, then cList returns the empty
choice list (line 2). Otherwise, for each 𝐶 in pChoices that can de-
scribe position fLen+1, we try to solve the subproblem cList(hLen,
aList, fLen+1, fInc’, pChoices’), where fInc’ is the incidence updated
after C, and, when the position fLen+1 belongs to the tail, pChoice’
only contains the elements of pChoice that are still useful to solve
aList after a CLFirst with incidence fInc — this reduction of pChoice
will be commented later on. If such a C exists, andC is a solution for
cList(hLen, aList, fLen+1, fInc’, pChoices’), then we return [𝐶]++C
(lines 9-11). If pChoices contains no choice 𝐶 such that cList(hLen,

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

aList, fLen+1, fInc’, pChoices’) has a solution, then we return “un-
satisfiable”.

Hence, at each pass, we start from an assignment 𝐴, we collect
all choices that are Populated wrt 𝐴 in a list pChoices, and we in-
voke the algorithm cList(head-length,0,{|AP,KP|},allZeroes,pChoices).
Termination is ensured by the fact that, once we arrive to the tail,
we only keep the useful choices, hence every choice that is se-
lected either (a) increments to one the incidence over an asser-
tion contAfter(𝑖+ : x) whose incidence was zero, or (b) increments
by one the incidence over an assertion cont𝑀𝑚 (x) whose incidence
was still below𝑚, hence the algorithm stops after not more than
MaxSteps steps:

MaxSteps = ℎ + |𝐴𝑃 | + Σcont𝑀𝑚 (x) ∈𝐾𝑃 𝑚
Here, ℎ is the head-length, |𝐴𝑃 | is an upper bound for the (a) steps,
and Σ... 𝑚 is an upper bound for the steps of type (b). If the algo-
rithm returns a solution, we use it to generate a witness by sub-
stituting each choice with a witness from the corresponding Popu-
lated schema.

Algorithm 3: Pseudo-code for array solution generation
1 cList(hLen, aList, fLen, fInc, pChoices)
2 if emptyListSatisfies(aList, fInc) then return [];
3 if fLen >= hLen then
4 pChoices← tailUsefulChoices(pChoices, aList, fInc, hLen);
5 for C in pChoices where inInterval(hLen+1,C) do
6 newFInc← updateIncAfterChoice(aList, fInc, C);
7 if maxViolated(aList, newFInc) then continue;
8 else
9 restSolution = cList(hLen, aList, fLen+1, newFInc, pChoices);
10 if restSolution is not null then return ([C] ++ restSolution);
11 else continue;
12 return null;
13 tailUsefulChoices(choices, aList, fInc, hLen)
14 result = [];
15 for C in choices where start(C)==hLen+1 do
16 if exists ContAftInC in APPrimeOf(C)
17 where fInc(ContAftInC)=0 then
18 add C to result;
19 if exists MinMaxInC in KPPrimeOf(C)
20 where min(MinMaxInC) > fInc(MinMax) then
21 add C to result;
22 return results;

This algorithm is sound and generative.

Property 18 (Soundness and generativity). The algorithm
cList is sound and generative.

Proof. Assume that an array group 𝑆 = { type(Arr), 𝐼𝑃, 𝐴𝑃, 𝐾𝑃 }
with head-length ℎ has a witness with depth 𝑑 + 1, and consider
such a witness 𝐽 = [𝐽1, . . . , 𝐽𝑜]. For every 𝑖 of {1..𝑜}, we define
𝐴(𝑖) = {| 𝑆 | 𝑆 = contAfter(𝑙+ : x), 𝑆 ∈ 𝐴𝑃, 𝑖 > 𝑙, 𝐽𝑖 ∈ [[𝑥]]𝐸 |}
𝐾 (𝑖) = {| 𝑆 | 𝑆 = cont𝑀𝑚 (x), 𝑆 ∈ 𝐾𝑃, 𝐽𝑖 ∈ [[𝑥]]𝐸 |}

Now we build a choice list C that is derived from 𝐽 , as follows.
We define an index 𝑖 , initialized to 1, and a cumulative incidence

function 𝑖𝑛, that maps every assertion to 0. If the function 𝑖𝑛 sat-
isfies already both 𝐴𝑃 and 𝐾𝑃 , then C = []. Otherwise, we con-
sider the choice 𝐶 (𝑖, 𝐴(𝑖), 𝐾 (𝑖)). We say that a choice is useful for
{|𝐴𝑃, 𝐾𝑃 |} “after a list of choices described by 𝑖𝑛”, if the choice con-
tains some requirements from {|𝐴𝑃, 𝐾𝑃 |} that are not yet satisfied

by an array that is described by a list of choices whose incidence is
𝑖𝑛, which can be verified as described by function tailUsefulChoices
in the algorithm. If 𝑖 ≥ ℎ + 1 and 𝐶 (𝑖, 𝐴(𝑖), 𝐾 (𝑖)) is not a useful
choice for {|𝐴𝑃, 𝐾𝑃 |} after a list of choices described by 𝑖𝑛, then we
can remove 𝐽𝑖 from the array and what we obtain is still a witness:
all requirements are already satisfied by the part of the array with
incidence 𝑖𝑛, and the fact that all elements after 𝐽𝑖 decrease their
position by 1 is irrelevant sincewe are in the tail. If we are not in the
tail, or we are in the tail and𝐶 (𝑖, 𝐴(𝑖), 𝐾 (𝑖)) is a useful choice, then
we leave 𝐽𝑖 in the array witness, we put𝐶 (𝑚𝑖𝑛(ℎ + 1, 𝑖), 𝐴(𝑖), 𝐾 (𝑖))
in C, we update the cumulative incidence function 𝑖𝑛, we incre-
ment 𝑖 , and we continue.

At the end of this process, we have a new witness 𝐽 ′, obtained
by deleting some elements from the tail of 𝐽 , and a choice list C
that describes 𝐽 ′. By the definition of 𝐴(𝑖) and 𝐾 (𝑖), every 𝐽 ′

𝑖
in

𝐽 ′ belongs to [[𝑥]]𝐸 for all variables 𝑥 that appear positively in
𝑠 (𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′)) and does not belong to [[𝑥]]𝐸 for all variables 𝑥
that appear complemented in 𝑠 (𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′)), hence it belongs
to [[co(x)]]𝐸 for all these variables. Since 𝐽 ′ is a witness for 𝑆 , then
𝐽 ′
𝑖
also satisfies all applicable constraints in 𝐼𝑃 , hence it belongs to
[[𝑠 (𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′))]]𝐸 , hence it belongs to [[𝑣𝑎𝑟 (𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′))]]𝐸 .
If we assume that 𝐽 has depth 𝑑 + 1, then every 𝐽 ′

𝑖
has a depth

smaller than 𝑑 , hence, for any𝐴 that is 𝑑-witnessed, every variable
𝑣𝑎𝑟 (𝐶 (𝑖, 𝐴𝑃 ′, 𝐾𝑃 ′)) in the list C is populated. Hence, the choice
list C is a list of choices that are populated, such that every tail
choice 𝐶 is useful after the choices that have been chosen before
𝐶 , hence the choice list C would be generated by our algorithm
unless a different solution were generated, hence our algorithm is
generative.

Soundness of the algorithm is immediate. □

Property 19 (Complexity). For any array group whose size is in
𝑂 (𝑁), each pass of algorithm cList has a complexity in𝑂 (2poly (N)).

Proof. The cList algorithm explores atmost𝑂 (2poly (N)) choices
at each step, and the total number of steps is at most:

MaxSteps = ℎ + |𝐴𝑃 | + Σcont𝑀𝑚 (x) ∈𝐾𝑃 𝑚

By the linear constants assumption, MaxSteps is in 𝑂 (𝑁 2), hence
the algorithm explores at most𝑂 ((2poly (N))𝑁

2
) = 𝑂 (2poly (N)∗𝑁 2)

tuples, and the operation that must be executed for each tuple can
be performed in time 𝑂 (2poly (N)). □

8.5 Witness Generation from Base Typed
Groups

Witness generation for groups with a base type needs no prepara-
tion, is fully accomplished during the first pass, and is not difficult,
as detailed below.

8.5.1 Witness generation from a canonical schema of type Null or
Bool. A canonical group of type Null has the shape {type(Null)}
and generates null.

A group of type Bool that does not contain any ifBoolThen(𝑏)
operator will generate either true or false. If it contains a col-
lection of ifBoolThen(true) operators, it will only generate true,
and similarly for ifBoolThen(false). If it contains both, it is not
satisfiable, and will return “unsatisfiable”.

Witness Generation for JSON Schema

8.5.2 Witness generation from a canonical schema of type Str. A
canonical group of type Str is just the conjunction of zero or more
extended regular expressions, which we reduce to one by comput-
ing their intersection, whose size is linear in the size of the input
regular expressions. At this point, we generate a witness for this
regular expression, which can be done in time𝑂 (2poly (N)) (Section
4.4).

8.5.3 Witness generation from a canonical schema of type Num.
For a canonical schema of type Num, we can first merge all inter-
vals into one and all mulOf (𝑚) operators into one, let us call it
mulOf (𝑀); if the group contains an assertion notMulOf (𝑛) with
𝑀 = 𝑛 × 𝑖 for any integer 𝑖 , then the group returns “unsatisfi-
able”. Otherwise, we obtain one interval (if none is present, we add
betw∞−∞), a set of zero or many notMulOf (𝑛) constraints, and one
optional mulOf (𝑚) with𝑚 ≠ 𝑛 × 𝑖 for every 𝑖 ∈ Z and for every
notMulOf (𝑛). At this point, to simplify some operations, we sub-
stitute any negative argument𝑛 ofmulOf (𝑛) or notMulOf (𝑛) with
its opposite. The interval may be open at both extremes, closed at
both, or mixed. We distinguish five cases. In the last three cases we
describe an open interval xBetw𝑀𝑎𝑥

𝑚𝑖𝑛
, but the reasoning when one

extreme, or both, are included, is essentially the same.
(1) Empty interval: we return “unsatisfiable”.
(2) One-point interval betw𝑚𝑚 : if 𝑚 satisfies all notMulOf and

mulOf assertions we return𝑚, otherwise we return “unsat-
isfiable”.

(3) NomulOf (𝑚), i.e., many-points interval xBetw𝑀𝑎𝑥
𝑚𝑖𝑛

with no
mulOf (𝑚) constraint and 𝑙 notMulOf (𝑛 𝑗) constraints: choose
𝜖 such that

0 < 𝜖 ≤ 𝑚𝑖𝑛((𝑀𝑎𝑥 −𝑚𝑖𝑛), 𝑛1, . . . , 𝑛𝑙)
𝑙 + 2

If we consider the set 𝐵 = {|𝑚𝑖𝑛 + 𝑖 × 𝜖 | 𝑖 ∈ {1..(𝑙 + 1)} |},
then every value in 𝐵 satisfies xBetw𝑀𝑎𝑥

𝑚𝑖𝑛
, and no assertion

notMulOf (𝑛 𝑗) can be violated by two distinct values in 𝐵,
hence at least one value in 𝐵 is a witness.

(4) Finite 𝑀𝑎𝑥 −𝑚𝑖𝑛 and mulOf, i.e., interval xBetw𝑀𝑎𝑥
𝑚𝑖𝑛

with
a mulOf (𝑚) constraint and finite values for both 𝑚𝑖𝑛 and
𝑀𝑎𝑥 : we list all multiples of𝑚 starting from𝑚𝑖𝑛 (excluded
in case of xBetw) until we find one that satisfies all notMulOf
assertions, or until we go over 𝑀𝑎𝑥 (excluded or included
depending on the interval), in which case we return “unsat-
isfiable”.

(5) Infinite𝑀𝑎𝑥−𝑚𝑖𝑛 andmulOf, i.e., interval xBetw𝑀𝑎𝑥
𝑚𝑖𝑛

where
either𝑚𝑖𝑛 or 𝑀𝑎𝑥 is not finite, and with a mulOf (𝑚) con-
straint: bring all arguments ofmulOf (𝑚) and notMulOf (𝑛)
into a fractional form where they share the same denomina-
tor𝑑 , as inmulOf (𝑀/𝑑), notMulOf (𝑛 𝑗/𝑑). Select any prime
number 𝑝 that is strictly bigger than every 𝑛 𝑗 and such that
either 𝑝×𝑀/𝑑 or its opposite belongs to the interval. Such a
number clearly exists, and it is easy to prove that primality
of 𝑝 and the fact that (𝑀/𝑑) ≠ (𝑛 𝑗/𝑑) × 𝑖 for every 𝑖 ∈ Z
and for every notMulOf (𝑛 𝑗/𝑑), imply that 𝑝 ×𝑀/𝑑 satisfies
all notMulOf assertions.

Property 20. If a group of type Num has a witness, then the
above algorithm will return a witness.

Proof. The only difficult case is case (5). Assume, towards a
contradiction, that exists 𝑛 𝑗/𝑑 and an integer 𝑖 with 𝑝 × 𝑀/𝑑 =

𝑖 × (𝑛 𝑗/𝑑), that is 𝑝 × 𝑀 = 𝑖 × 𝑛 𝑗 . Since 𝑝 is prime and is bigger
than 𝑛 𝑗 , then 𝑝 is prime wrt 𝑛 𝑗 . Since 𝑝 is a factor of 𝑖 × 𝑛 𝑗 and is
prime wrt 𝑛 𝑗 , then 𝑝 is a factor of 𝑖 , hence there exists an integer 𝑖 ′
such that 𝑖 = 𝑖 ′ × 𝑝 , that is, 𝑝 ×𝑀 = 𝑖 ′ × 𝑝 ×𝑛 𝑗 , that is,𝑀 = 𝑖 ′ ×𝑛 𝑗 ,
which is impossible. □

Property 21. If a group of type Num has a witness, one can
be generated in time 𝑂 (2poly (N)), where 𝑁 is the size of the input
schema. If a group of typeNum has a witness, this fact can be proved
in time 𝑂 (2poly (N)).

Proof. Here we do not need the linear constant assumption
over any of the involved parameters. Let 𝑁 be the size of the input
schema. In case (3), we try 𝑂 (𝑁) witnesses. In case (4), we must
try at most (𝑀𝑎𝑥 −𝑚𝑖𝑛)/𝑚 possible witnesses, which is in𝑂 (2𝑁),
because of binary notation. In case (5), we exploit the fact that the
numbers are decimal, hence the number of digits of 𝑑 is linear in
𝑁 , hence the size of every 𝑛 𝑗 is still limited by 𝑁 . We must also
assure that either 𝑝 ×𝑀/𝑑 or its opposite belongs to the interval.
For example, when𝑚𝑖𝑛 is finite, 𝑝 must satisfy (𝑝 ×𝑀)/𝑑 > 𝑚𝑖𝑛

hence 𝑝 > 𝑚𝑖𝑛 × 𝑑/𝑀 , and again all the constants have a bitmap
representation linear in 𝑁 . A prime number greater than 𝑘 can
be generated in time that is polynomial in 𝑘 , hence we are still in
𝑂 (2poly (N)). □

9 EXPERIMENTAL ANALYSIS
9.1 Implementation and experimental setup
We implemented our witness generation algorithm for JSON Sche-
ma Draft-06 in Java 11, using the Brics library [32] to generate wit-
nesses from patterns, and the jdd library [38] for ROBDDs. Our
experiments were run on a Precision 7550 laptop with a 12-core
Intel i7 2.70GHz CPU, 32 GB of RAM , running Ubuntu 21.10. We
set the JVM heap size to 10 GB. Witnesses were validated by an
external tool [2] (version 1.0.65), and additionally by hand, since
the external tool reported false negatives in a few cases. Each
schema is processed by a single thread, and all reported times are
measured for a single run. Our reproduction package [4] can be
used to confirm our results.

9.2 Tools for comparative experiments
Due to the lack of equivalent tools, we compare our tool against a
Data Generator and a Containment Checker.

Data generator (DG). We use an open source test data genera-
tor for JSON Schema [17] (version 0.4.6). This Java implementation
pursues a try-and-fail approach: an example is first generated, then
validated against the schema, and potentially refined if validation
fails, exploiting the error message. This tool lends itself to a com-
parison although it is not able to detect schema emptiness: given
an unsatisfiable schema, it will always return an (invalid) instance.

Containment checker (CC).We compare our tool against the con-
tainment checker by Habib et al. [21] (version 0.0.5), described

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

in [28], and designed to check interoperability of data transforma-
tion operators [16]. Typically, these schemas do not contain nega-
tion or recursion. The “CC tool” only supports Draft-04 schemas,
a limitation that we consider when comparing against this tool.

9.3 Schema collections
We conduct experiments with six different schema collections: four
real-world and two synthetic. Table 2 states their origin, the num-
ber of schemas, broken down into satisfiable and unsatisfiable sche-
mas, and the average and maximal size of schemas.

Real-world schemas. The largest of the real-world schemas col-
lection was obtained from GitHub. We retrieved virtually every ac-
cessible, open source-licensed JSON file from GitHub that presents
the features of a schema, based on a BigQuery search on theGitHub
public dataset; Google hosts a snapshot of all open source-licensed
on GitHub, refreshed on a regular basis. The schemas were down-
loaded in July 2020, and are shared online [14]. We obtained over
80K schemas. As can be expected, we encountered a multitude of
problems in processing these non-curated, raw files: files with syn-
tactic errors, files which do not comply to any JSON Schema draft,
and files with references that we are unable to resolve. Notably,
there is a large share of duplicate schemas, with small variations in
syntax and semantics. We rigorously removed such files, eliminat-
ing schemas with the same occurrences of keywords, condensing
the corpus down to 7,046. We further excluded 619 schemas which
are either ill-formed, or use specialized types (audio, video) that we
do not support, or use an old draft with a different syntax, or em-
ploy patterns not supported by the third-party automaton library,
or use unguarded recursion. More precisely, we excluded 17 ill-
formed schemas, 105 schemas with specialized types, 355 schemas
expressed in Draft-3, 61 schemas whose patterns contain negative
lookahead, 68 schemas using unreachable references or references
to fragments expressed inside specific keywords (like properties)
that our tool does not yet correctly handle, and 13 schemas using
unguarded recursion. Of the remaining 6,427 schemas, 40 are well-
formed but unsatisfiable. We identified these schemas using our
tool, and then performed a manual verification on all of them.

The three remaining real-world collections correspond to speci-
fications of standards for deploying applications (Kubernetes [30]),
ruling interactions within a specific system (Snowplow [5]), and
describing data produced by content management systems (Wash-
ington Post [36]). To increase the number of processable schemas,
we inlined references to external schemas. An earlier version of
these collections where already used in [28] to check inclusion. Al-
most all schemas are satisfiable, except 5 from Kubernetes.

Hand-written schemas. Real-world schemas reflect real usage and
can be quite big, but they focus on the commonest operators and
combination of operators. Hence, for stress-testing, we inserted in
our reproduction packages 233 handwritten schemas that are small
but have been crafted to exemplify complex interactions between
the language operators. To illustrate such an interaction, consider
the following schema.

{ 𝑟 : props(𝑎 : x) ∧ props(a.∗ : y) ∧ req(a),
𝑥 : type(Str) ∧ pattern(𝑎(𝑐 |𝑒)),
𝑦 : type(Str) ∧ pattern(𝑎(𝑏 |𝑐)) }

Here we have an interaction between two props and a req with
overlapping patterns, and associated with two different variables
𝑥 and 𝑦 whose schema present non-trivial overlapping.

Array operators also present interactions, as in the following
example.

{ 𝑟 : item(1 : 𝑥) ∧ cont11 (𝑦),
𝑥 : type(Arr) ∧ cont∞2 (𝑡),
𝑦 : cont∞1 (type(Num) ∧mulOf (3))}

This example describes an array with schema 𝑟 that contains
another array with schema 𝑥 ∧ 𝑦, this one having at least two ele-
ments (because of cont∞2 (𝑡)), one of which is multiple of 3.

The collection has been built by systematically considering op-
erators for objects, arrays, strings and numbers, following software-
engineering principles for testing complex programs. Ultimately,
this collection has proved particularly helpful in debugging.

More precisely, we considered the following combinations of
typed operators by involving boolean operators with the goal of
testing virtually all non-trivial interactions.
• for objects, we test interactions among props (as in the pre-
vious example) and between props and pro𝑗

𝑖
by setting one

bound at a time than both the lower and the upper bounds,
• for arrays, we test the interactions among item(𝑙 : 𝑆) and
items(𝑖+ : 𝑆), but also between these operators and cont𝑗

𝑖
(𝑆),

• for strings, we basically test the interaction between pat-
terns (pattern) and the lower/upper-bound for the length of
string, which, in our algebra is captured in the pattern itself,
• for numbers, we test the interaction among betw𝑀𝑚 and xBetw𝑀𝑚 ,
mulOf (𝑞), than any combination thereof.

Synthesized schemas. We include schemas that are neither real-
world nor hand-written, but they are synthesized, that is, they are
generated from the reference test suite for JSON Schema valida-
tion [34], designed to cover all language operators. The deriva-
tion is described in [6, 7], and yields triples (𝑆1, 𝑆2, 𝑏) where the
Boolean 𝑏 specifies whether 𝑆1 ⊆ 𝑆2 holds for schemas 𝑆1, 𝑆2. Here,
we restrict ourselves to schemas inDraft-04, since the CC-tool is re-
stricted to this version. We excluded selected schemas that contain
features that we do not yet support, such as the format keyword
(a mere technicality) or references to external files.

We check a containment 𝑆1 ⊆ 𝑆2 by trying to generate a wit-
ness for the schema 𝑆1 ∧ ¬𝑆2, which is unsatisfiable if, and only
if, 𝑆1 ⊆ 𝑆2 holds; we thus obtain both satisfiable and unsatisfiable
schemas. The CC tool accepts two schemas as input and does not
need this encoding. We also test the DG tool, where comparison is
only meaningful for pairs where 𝑆1 ∧ ¬𝑆2 is satisfiable, since the
DG tool cannot recognize unsatisfiable schemas.

9.4 Research hypotheses
We test the following hypotheses: (H1) correctness of our implemen-
tation, that we test with the help of an external tool that verifies
the generated witnesses; (H2) completeness of our implementation,
that we test by using an ample and diverse test-set; (H3) it can be
used to fulfill some specific tasks better than existing tools; (H4) it
can be implemented to run in acceptable time on sizable real-world
schemas, despite its asymptotic complexity. We test the latest hy-
pothesis by applying our tool to a vast set of real-world schemas.

Witness Generation for JSON Schema

9.5 Experimental results
9.5.1 Correctness and completeness. In each run of each tool, we
distinguish four outcomes:
• success, when a result is returned and it is correct;
• failure: when the code raises a run-time error or a timeout,
that we set at 3,600 secs (1 hour);
• logical error on satisfiable schema, when the input schema 𝑆
is satisfiable but the code returns either “unsatisfiable” or a
witness that does not actually satisfy 𝑆 ;
• logical error on unsatisfiable schema, when the input schema
is unsatisfiable but a witness is nevertheless returned.

We consider two kinds of experiments. The first uses both the
GitHub schemas and the hand-written schemas, comparing against
the test data generator DG. The second uses the containment test
suite and compares our tool with both the data generator (DG) and
the containment checker (CC).We summarize the results in Table 2,
together with the average and median runtimes.

Our tool. Our tool produces no logical error in any of our schema
collections. With the GitHub schemas, it fails with “timeout” for
0.56% of schemas (35 schemas), and with “out of memory”, when
calling the automata library, for 0.36% of schemas (23 schemas).
(We refer to Section 9.6.1 for a breakdown of problematic schemas.)
No failures arise in the other two schema collections, supporting
hypothesis H1.

The data generator. The DG tool successfully handles 93.45% of
the GitHub schemas, and has similar correctness ratio for the other
real-world schemas but it performs poorly regarding correctness
on handwritten schemas, and cannot be really used for inclusion
checking, since it does not detect unsatisfiability. It is difficult to
compare run-times between tools. Essentially, on most schemas
the two tools have comparable times, evident when looking at the
median times, but there is a small percentage of files where our
tool takes a very long time, and this is reflected on our dispropor-
tionately high average time.

The containment checker. The synthesized schemas show that
our tool supports a much wider range of language features (hy-
pothesis H2), which is natural since the CC tool targets a language
subset, while completeness is core to our work.

We can conclude that our tool advances the state-of-the-art for
containment checking and witness generation, especially for sche-
mas that present aspects of complexity (hypothesis H3).

9.5.2 Runtime on real-world schemas. We next test hypothesis H4,
assessing runtime on real-world schemas. In the three biggest col-
lections, 95% of the files are elaborated in less than 2.1 secs, with
median ≤40 msecs, and average ≤2.5 secs. The smaller Washing-
ton Post collection presents higher times, which will be discussed
in Section 9.6. These results are coherent with hypothesis H4

9.6 Qualitative Insights
Several interesting insights can be extracted from an analysis of
the space-time relationship for the GitHub collection, represented
by the scatterplot in Figure 8b. The histograms at the top and at
the right hand side indicate that schema size and run-time are dis-
tributed along 6 orders of magnitude, with a strong concentration

on the low part of both axes, which forced us to use a log-log scale.
In the log-log plot, we observe a cloud with a slope of about 1, sug-
gesting a linear correlation, but we also observe that every file-
size exhibits many outliers, and that long-running schemas can be
found everywhere along the file-size axis. This clearly indicates
that the runtime is affected more by the presence of specific com-
binations of operators, which may take little space but cause expo-
nential runtime, than by schema size.

Indeed, our complexity analysis shows that exponential com-
plexity is triggered by some specific operations, among which (1)
object preparation, when different patterns overlap, requiring the
generation of an exponential number of choices and of new vari-
ables; (2) reduction to DNF; and (3) pattern manipulation.

We tried to complement this theoretical knowledge with obser-
vations on the data. We applied data-mining techniques to corre-
late features of the schemas with the run-time. The feature that
correlates more clearly with very long run-time is the presence
of a "maxLength": 𝑛 statement with 𝑛 > 65000, which induces the
creation of a large automaton. Other features with a strong correla-
tion with high run-time are the presence of "enum" with extremely
long lists of arguments, that may then cause the generation of very
big terms during DNF reduction, and of "oneOf" with long lists of
argument, which again can generate big terms during DNF, since
"oneOf" generates a conjunction during its translation.

We also resorted to visual inspection of problematic schemas,
which indicated that nested objects with overlapping patterns may
also require a lot of time, as indicated by the theoretical analysis.

The Washington Post collection required a specific analysis to
explain its high 95% percentile time and average time. It is a small-
ish collection (125 schemas), where approximately 20% of the files
require around 20 secs for their elaboration. All these files are
very similar, with more than 2K nodes in their syntax trees and
complex combinations of operators. By selectively deleting specific
subtrees, we could conclude that the high time is typically due to
pattern overlapping between an instance of "patternProperties"
and a corresponding instance of "properties", confirming our the-
oretical knowledge of the strong influence of pattern overlapping
over the complexity of object preparation. The small number of
files in this collection and their high homogeneity explains the
anomaly of the result.

Hence, the overall indication is that our algorithm fulfills its aim
of proving that this exponential problem can be successfully tack-
led on sizable real-world schema with a reasonable execution time,
and that a careful analysis of the results of experiments over our
vast and diverse dataset may guide further optimization efforts.

Runtime for the other collections is comparable to that of GitHub
with fewer timeouts for two Snowplow schemas, which contain
a maxLength assertion whose argument is 106. Another interest-
ing observation is a schema from Kubernetes whose root consists
in a oneOf with a list of 600 arguments, most of which are non-
trivial, and which is elaborated in 5 mn. This confirms that the use
of oneOf may increase the running time but is not sufficient to
create a blowup

9.6.1 Problematic schemas. Our data suggests that a very long run-
time does not really depend of the size of the schema but on the
presence of specific arrangements of operators.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

Table 2: Schema collections, correctness and completeness results, median/95th percentile/average runtime (in seconds).

Collection #Total #Sat/
#Unsat

Size (KB)
Avg/Max Tool Success Failure Errors

sat.
Errors
unsat.

Med.
Time

95%
-tile

Avg.
Time

GitHub [14] 6,427 6,387/40 8.7/1,145 Ours 99.08% 0.92% 0% 0% 0.013 s 0.600 s 2.711 s
DG 93.45% 4.89% 1.21% 0.45% 0.054 s 0.103 s 0.089 s

Kubernetes [30] 1,092 1,087/5 24.0/1,310.7 Ours 100% 0% 0% 0% 0.014 s 0.606 s 0.605 s
DG 99.54% 0% 0% 0.46% 0.078 s 0.144 s 0.088 s

Snowplow [5] 420 420/0 3.8/54.8 Ours 99.52% 0.48% 0% no unsat 0.036 s 1.483 s 0.892 s
DG 94.76% 0% 5.24% no unsat 0.053 s 0.112 s 0.062 s

WashingtonPost [36] 125 125/0 21.1/141.7 Ours 100% 0% 0% no unsat 0.021 s 20.773 s 3.622 s
DG 96.8% 0% 3.2% no unsat 0.090 s 0.181 s 0.107 s

Handwritten [4] 233 195/38 0.7/2.3 Ours 100% 0% 0% 0% 0.043 s 5.960 s 2.454 s
DG 7.57% 36.87% 48.99% 6.57% 0.072 s 0.280 s 0.091 s

Containment-draft4 [7] 1,331 450/881 0.5/2.9 Ours 100% 0% 0% 0% 0.002 s 0.018 s 0.005 s
DG 29.83% 28.85% 0.30% 41.02% 0.051 s 0.119 s 0.060 s
CC 35.91% 62.96% 0.15% 0.98% 0.003 s 0.096 s 0.036 s

100
101

102

103

104

105

106

Trans P&DNF Gen
Algorithm Phases

T
im

e
[m

s]

(a) GitHub collection.

Timeout

M
ed

ia
n

Median

100
101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

File Size [Bytes]

T
im

e
[m

s]

10
20
30
40
50

Count

(b) GitHub collection.

M
ed

ia
n

Median

100
101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

File Size [Bytes]

T
im

e
[m

s]

10
20
30

Count

(c) Kubernetes collection.

M
ed

ia
n

Median

100
101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

File Size [Bytes]

T
im

e
[m

s]

1
2
3
4
5
6

Count

(d) Snowplow collection.

M
ed

ia
n

Median

100
101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

File Size [Bytes]

T
im

e
[m

s]

2.5
5.0
7.5
10.0

Count

(e) Washington Post collection.

Figure 8: (a) Boxplots of processing times (in milliseconds, log scale) for the 3-phase witness generation algorithm, applied
to GitHub schemas. Boxes range from the lower to the upper quartile, horizontal line indicating the median. Whiskers end
at the 5th/95th percentile. Outliers above the whiskers are shown as individual dots, darker dots indicate overlapping values.
(b-e) Scatterplot showing size of the schema vs. time for generating a witness for the different schema collections. Along top
and right edge, a stylized histogram shows the distribution. Top right, the sizes of the files causing timeouts are shown in (b).

Our tool fails, with a timeout, only on 40 files, during the phase
which interleaves between preparation and DNF. In order to bet-
ter understand which operator usages create problems to our algo-
rithm, with a focus on those cases where the runtime is definitely
too high, we inspected these schemas, and verified that they all
feature at least one of the following characteristics:
• object specificationwith a very long list of properties (reach-
ing 142 for some schema), leading to the object preparation
examining a very high number of combinations ;
• string assertions with an argument of maxLength exceeding
106 (Snowplow) or complex pattern expression combined

with a relatively high argument for maxLength (reaching
5,000): both situations lead to manipulating very large au-
tomata increasing the total cost of the entire analysis;
• the use if recursive definitions involving the root and a nega-
tion of a complex object definition, this entails a problem
during object preparation and DNF construction

While these schemas present a tiny portion of the GitHub-crawled
corpora, they turn out to be very useful for stress-testing our tool
and for indicating optimization opportunities.

Witness Generation for JSON Schema

9.7 Lessons learned
The experiment was not only useful to verify our hypotheses, but
lead us also to other relevant insights, which we summarize here.

9.7.1 Patterns are important. Patterns appear in the pattern and
patternProperties operators, and can be used to encode opera-
tors such as minLength , maxLength , and additionalProperties.
Since these operators are not extremely common in real-world sche-
mas (see the empirical study in [13]), it is easy to overlook the prac-
tical relevance of patterns in JSON Schema, but we discovered that
the high complexity of regular expression operations has notice-
able impact on the performance of the algorithm. We now believe
that, while it is a good idea to rely on a high-quality external library
to deal with the general case, a robust tool for witness generation
must also dedicate extra effort to the special cases that arise in this
specific application.

9.7.2 Easy schemas are very common. Manual inspection reveals
that most GitHub schemas are very simple, using a subset of the
operators in a repetitive way, and especially the largest schemas
tend to be simplistic, often having been automatically generated
(as also observed in [31]). This suggests that the average speed of
any tool would greatly benefit from optimization targeted at this
specific class of schemas.

9.7.3 Polynomial phases can be relevant. The boxplot shows that
the polynomial phases of the algorithm take, on average, more
time than the exponential phases. Although we did hope that the
exponential phase were manageable, this inversion was for us a
surprise, and also a lesson: do not underestimate the phases that
appear inexpensive.

9.7.4 oneOf usually means anyOf. By a manual inspection of the
schemas, we discovered that many schema designers define the
different branches of a oneOf to be disjoint, as in

"oneOf" : [{"type" : "null"}, {"type" : "string"}] .

Hence, the designer is using oneOf to tell the reader of the schema
that the branches are disjoint, but if we substitute that oneOf with
anyOf, the semantics of the schema remains exactly the same. This
is extremely relevant, since oneOf is a very common operator, and
oneOf is much more complex than anyOf, since it requires to com-
pute the conjunction of each branch with the negation of all other
branches.We acted upon this observation, and implemented a very
simple optimization, where we first rewrite any oneOf to anyOf,
generate a witness for this simplified schema, check the witness
against the original schema, and fall back on the complete algo-
rithm only in the extremely rare case when the generated witness
was not valid. This simple optimization proved extremely effective.

10 CONCLUSIONS
JSON Schema is widely used in data-centric applications. The de-
cidability and complexity of satisfiability and containment were
known, but no explicit algorithm had been defined, and it was not
obvious whether the high asymptotic complexity of the problem
was compatible with a practical algorithm. In this paper we have
addressed this open problem. We have described an algorithm for
witness generation, satisfiability, and containment, that is based on

a specific combination of known and original techniques, to take
into account the specific features of JSON Schema object and array
operators, and the need to run in a reasonable time.

Our extensive experiments prove the practical viability of the
approach, and provide insight into the actual behavior of the algo-
rithm on real-world schemas. These experiments are a necessary
step for any redesign or re-factoring of the algorithm.

We have left the implementation of the uniqueItems operator
out of the scope of the current paper in order to keep the size and
complexity of this work under control, but the fundamental tech-
niques that we have designed, for object and array preparation and
generation, still apply, with some important generalizations that
we believe deserve a dedicated analysis.

Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger

Acknowledgments. The research has been partially supported by the
MIUR project PRIN 2017FTXR7S “IT-MaTTerS” (Methods and Tools for
Trustworthy Smart Systems) and by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 385808805.

We thank Dominik Freydenberger for proposing an algorithm to trans-
late between ECMAScript and Brics REs. We thank Avraham Shinnar for
feedback on an earlier version of this paper. We thank Stefan Klessinger for
creating the charts and the reproduction package. We thank the students
who contributed to our implementation effort: Francesco Falleni, Cristiano
Landi, Luca Escher, Lukas Ellinger, Christoph Köhnen, and Thomas Pilz.

REFERENCES
[1] 2022. JSON Schema Faker. Available on GitHub at https://github.com/

json-schema-faker/json-schema-faker and as an interactive tool at https://json-
schema-faker.js.org.

[2] 2022. JSON schema validator. https://github.com/networknt/json-schema-
validator

[3] 2022. JSONSchemaTool. Available at https://jsonschematool.ew.r.appspot.com.
[4] 2022. Reproduction Package on GitHub. Temporarily available at GitHub from

https://github.com/sdbs-uni-p/JSONSchemaWitnessGeneration, will be moved
to Zenodo, for long-term availability.

[5] Snowplow Analytics. 2022. Iglu Central. https://github.com/snowplow/iglu-
central, commit hash 726168e.

[6] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Yunchen Ding, Michael
Fruth, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2021. Reproduc-
tion package: A Test Suite for JSON Schema Containment. Available on Zen-
odo at https://zenodo.org/record/5336931#.YshD0XZBxD8 and maintained on
GitHub at https://github.com/sdbs-uni-p/json-schema-containment-testsuite.

[7] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Yunchen Ding, Michael
Fruth, Giorgio Ghelli, Carlo Sartiani, and Stefanie Scherzinger. 2021. A Test Suite
for JSON Schema Containment. In Proc. ER 2021. 19–24. http://ceur-ws.org/Vol-
2958/paper4.pdf

[8] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Francesco Falleni, Gior-
gio Ghelli, Cristiano Landi, Carlo Sartiani, and Stefanie Scherzinger. 2021. A
Tool for JSON Schema Witness Generation. In Proc. EDBT 2021. 694–697. https:
//doi.org/10.5441/002/edbt.2021.86 Tool Demo.

[9] Lyes Attouche, Mohamed-Amine Baazizi, Dario Colazzo, Francesco Falleni, Gior-
gio Ghelli, Cristiano Landi, Carlo Sartiani, and Stefanie Scherzinger. 2021. Un
Outil de Génération de Témoins pour les schémas JSONA Tool for JSON Schema
Witness Generation. In Proc. Actes de la conférence BDA. Informal proceedings.

[10] MohamedAmine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019.
Schemas And Types For JSON Data. In Proc. EDBT. 437–439.

[11] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani. 2019.
Schemas and Types for JSON Data: From Theory to Practice. In Proc. SIGMOD
Conference. 2060–2063.

[12] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Ste-
fanie Scherzinger. 2020. Not Elimination and Witness Generation for JSON
Schema. In Proc. Actes de la conférence BDA. Informal proceesings, article avail-
able online at https://hal.archives-ouvertes.fr/hal-03190106/document.

[13] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and Ste-
fanie Scherzinger. 2021. An Empirical Study on the "Usage of Not" in Real-World
JSON Schema Documents. In Proc. ER. 102–112. https://doi.org/10.1007/978-3-
030-89022-3_9

[14] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2021. A JSON Schema Corpus. A corpus of over
80thousand JSON Schema documents, collected from open source GitHub repos-
itories, using Google BigQuery, in July 2020. Available on Zenodo (10.5281/
zenodo.5141199) andmaintained onGitHub (https://github.com/sdbs-uni-p/json-
schema-corpus).

[15] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani,
and Stefanie Scherzinger. 2022. Negation-Closure for JSON Schema.
arXiv:2202.13434 [cs.DB] Accompanying technical report, available online https:
//arxiv.org/abs/2202.13434.

[16] Guillaume Baudart, Martin Hirzel, Kiran Kate, Parikshit Ram, and Avraham Shin-
nar. 2020. LALE: Consistent Automated Machine Learning, In Proc. KDDWork-
shop onAutomation inMachine Learning (AutoML@KDD). Computing Research
Repository abs/2007.01977. https://arxiv.org/abs/2007.01977

[17] Jim Blackler. 2022. JSONGenerator. Available at https://github.com/jimblackler/
jsongenerator.

[18] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017.
JSON: Data model, Query languages and Schema specification. In Proc. PODS.
123–135. https://doi.org/10.1145/3034786.3056120

[19] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Computers 35, 8 (1986), 677–691. https://doi.org/10.1109/TC.

1986.1676819
[20] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez,

Christof Löding, Sophie Tison, and Marc Tommasi. 2008. Tree Automata Tech-
niques and Applications. 262 pages. Available online at https://hal.inria.fr/hal-
03367725/file/tata.pdf .

[21] IBM Corp. 2021. jsonsubschema. https://github.com/IBM/jsonsubschema
[22] Clara Benac Earle, Lars-Ake Fredlund, Ángel Herranz-Nieva, and Julio Mariño.

2014. Jsongen: a quickcheck based library for testing JSON web services. In Pro-
ceedings of the Thirteenth ACM SIGPLAN workshop on Erlang, Gothenburg, Swe-
den, September 5, 2014, Laura M. Castro and Hans Svensson (Eds.). ACM, 33–41.
https://doi.org/10.1145/2633448.2633454

[23] Dominik D. Freydenberger. 2013. Extended Regular Expressions: Succinctness
and Decidability. Theory Comput. Syst. 53, 2 (2013), 159–193. https://doi.org/10.
1007/s00224-012-9389-0

[24] Michael Fruth, Kai Dauberschmidt, and Stefanie Scherzinger. 2021. New Work-
flows in NoSQL Schema Management. In Proc. SEA-Data@VLDB (CEUR Work-
shop Proceedings, Vol. 2929). CEUR-WS.org, 38–39.

[25] Francis Galiegue and Kris Zyp. 2013. JSON Schema: interactive and non inter-
active validation - draft-fge-json-schema-validation-00. Technical Report. Inter-
net Engineering Task Force. https://tools.ietf.org/html/draft-fge-json-schema-
validation-00

[26] Wouter Gelade and Frank Neven. 2012. Succinctness of the Complement and
Intersection of Regular Expressions. ACM Trans. Comput. Log. 13, 1 (2012), 4:1–
4:19. https://doi.org/10.1145/2071368.2071372

[27] Rahul Gopinath, Hamed Nemati, and Andreas Zeller. 2021. Input Algebras. In
Proc. ICSE. 699–710.

[28] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel. 2021. Find-
ing Data Compatibility Bugs with JSON Subschema Checking. In Proc. ISSTA.
620–632. https://doi.org/10.1145/3460319.3464796

[29] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. 2007. Introduction to
automata theory, languages, and computation, 3rd Edition. Addison-Wesley.

[30] Kubernetes. 2022. Kubernetes JSON Schemas. https://github.com/instrumenta/
kubernetes-json-schema, commit hash 133f848.

[31] Benjamin Maiwald, Benjamin Riedle, and Stefanie Scherzinger. 2019. What Are
Real JSON Schemas Like? - An Empirical Analysis of Structural Properties. In
Proc. EmpER@ER, Vol. 11787. Springer, 95–105. https://doi.org/10.1007/978-3-030-
34146-6_9

[32] Anders Møller. 2021. dk.brics.automaton – Finite-State Automata and Regular
Expressions for Java. Available at https://www.brics.dk/automaton/.

[33] JSON Schema Org. 2022. JSON Schema. Available at https://json-schema.org.
[34] JSON Schema Org. 2022. JSON Schema Test Suite. https://github.com/json-

schema-org/JSON-Schema-Test-Suite.
[35] Felipe Pezoa, Juan L. Reutter, Fernando Suárez, Martín Ugarte, and Domagoj

Vrgoc. 2016. Foundations of JSON Schema. In Proc. WWW. 263–273. https:
//doi.org/10.1145/2872427.2883029

[36] The Washington Post. 2022. ans-schema. https://github.com/washingtonpost/
ans-schema, commit hash abdd6c211.

[37] Larry J. Stockmeyer. 1974. The Complexity of Decision Problems in Automata
Theory and Logic. Ph. D. Dissertation. Massachusetts Institute of Technology.

[38] Arash Vahidi. 2020. JDD. https://bitbucket.org/vahidi/jdd/src/master/
[39] A. Wright, H. Andrews, and B. Hutton. 2019. JSON Schema Validation: A Vocabu-

lary for Structural Validation of JSON - draft-handrews-json-schema-validation-02.
Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/
draft-handrews-json-schema-validation-02

[40] A. Wright, H. Andrews, and B. Hutton. 2020. JSON Schema Validation: A Vocab-
ulary for Structural Validation of JSON - draft-bhutton-json-schema-validation-00.
Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/
draft-bhutton-json-schema-validation-00

[41] A. Wright, G. Luff, and H. Andrews. 2017. JSON Schema Validation: A Vocabulary
for Structural Validation of JSON - draft-wright-json-schema-validation-01. Tech-
nical Report. Internet Engineering Task Force. https://tools.ietf.org/html/draft-
wright-json-schema-validation-01

