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The project THeory and Evidence to Measure Influence in Social structures
(THEMIS) (ANR-20-CE23-0018) is a PRC (‘Projets de recherche collaborative’)
project has been financed by the ‘Agence nationale de la recherche’ (ANR)
under the ‘AAP générique 2020’ (‘CE23 - Intelligence Artificielle’) with a total
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7243, Université Paris Dauphine, Paris and LIP6 CNRS UMR 7206, Sorbonne
Université, Paris. LAMSADE is the leading partner, and members of both Pole
1 and pole 2 are involved in the project.

The THEMIS project is positioned in the core of the emerging research
area on social influence analysis. Unlike existing measures of influence for so-
cial structures, this project brings insights based on different techniques from
artificial intelligence including multi-agent systems, compact representation, al-
gorithmic game theory, computational social choice, and social network analysis.
Our main objective is to show that the portfolio of models proposed under the
umbrella of a qualitative theory for social influence analysis is more adapted
to answer important questions arising from different domains of collective deci-
sion making. For this purpose, we apply our framework to alternative research
domains via a property-driven approach, keeping into account how algorithmic
and strategic aspects play a role in the design of specific social ranking solutions.
The originality of our project is summarized by the following list of innovative
tasks:

• to conceive a novel ordinal theory of cooperative games for measuring
power and influence in coalitional situations;

• to focus on a property-driven design of social ranking solutions that will
be used as a top-down approach aimed at splitting the complex behaviour
of groups or coalitions into more intelligible interaction situations;

• to explore natural applications of methods for compact preference repre-
sentation to social ranking computation and to coalition formation;

• to formulate a portfolio of solutions accompanied with a roadmap of their
properties to drive users in their practice;

1

https://www.lamsade.dauphine.fr/themis/
https://www.lamsade.dauphine.fr/themis/
http://www.cril.univ-artois.fr/
https://www.lamsade.dauphine.fr/?lang=en
https://www.lip6.fr/?LANG=en


• to implement most of the solutions proposed in this project as an open-
source software package socialranking available on the Comprehensive R
Archive Network (CRAN), which is R’s central software repository.

Among the articles published so far within the framework of the THEMIS
project, we mention in particular the paper [1] where the issue of manipulabil-
ity for social rankings (i.e., a ranking over individuals computed keeping into
account their relative positions over groups) is introduced and studied for the
first time. In this context, individuals behave strategically within each group
with the objective to impact groups’ performance and to reach highest positions
in the social ranking . So, the manipulability problem lies at the intersection
of computational social choice and the algorithmic theory of power indices and
perfectly fits into the perimeter of the transversal project Games and social
choice between Pole 1 and Pole 2. In this paper, we focus in particular on
classes of social rankings representing three fundamental approaches from the
literature: the marginal contribution approach [2], the lexicographic approach
[3] and the CP(ceteris paribus)-majority one [4]. In [1], we first consider some
particular members of these families of social rankings analysing their resistance
to a malicious behaviour of individuals. Then, we analyze the computational
complexity of manipulation, and complete our theoretical results with simula-
tions in order to analyse the manipulation frequencies and to assess the effects
of manipulations.

Website of the projetc: https://www.lamsade.dauphine.fr/themis/
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Abstract
We investigate the issue of manipulability for social
ranking rules, where the goal is to rank individuals
given the ranking of coalitions formed by them and
each individual prefers to reach the highest posi-
tions in the social ranking. This problem lies at the
intersection of computational social choice and the
algorithmic theory of power indices. Different so-
cial ranking rules have been recently proposed and
studied from an axiomatic point of view. In this pa-
per, we focus on rules representing three classical
approaches in social choice theory: the marginal
contribution approach, the lexicographic approach
and the (ceteris paribus) majority one. We first
consider some particular members of these families
analysing their resistance to a malicious behaviour
of individuals. Then, we analyze the computational
complexity of manipulation, and complete our the-
oretical results with simulations in order to analyse
the manipulation frequencies and to assess the ef-
fects of manipulations.

1 Introduction
In decision making and social choice theory, a number of
studies are devoted to ranking individuals based on the perfor-
mance of the coalitions formed by them. For instance, given
values on coalitions of individuals, power indices map these
values of coalitions on values of individuals. The seminal
works of Shapley [1953] and Banzhaf III [1964] paved the
way of a whole research domain and a related literature with
many issues, including axiomatization [Laruelle and Valen-
ciano, 2001; Holler and Packel, 1983], applications [Bilbao
et al., 2002; Moretti and Patrone, 2008], algorithmic analy-
sis [Matsui and Matsui, 2000] and computational complexity
[Deng and Papadimitriou, 1994; Bachrach and Rosenschein,
2009; Faliszewski and Hemaspaandra, 2009]. The non-
manipulability (or strategy proofness) is another fundamental
issue. In social choice, since the seminal theorems of Gib-
bard and Satterthwaite ([Gibbard, 1973] and [Satterthwaite,
∗We are grateful to anonymous reviewers for their critical and

helpful comments.
†Contact author.

1975]), we know that every interesting social choice function
is manipulable by misrepresentation of preferences. The ma-
nipulability is also analysed for power indices. We quote in
particular the literature on the paradoxical behaviour of power
indices under the modification of some elements of the game,
like the number of players or the size of coalitions [Felsen-
thal et al., 1998; Laruelle and Valenciano, 2005], or the study
of manipulation in weighted voting games [Aziz et al., 2011;
Zuckerman et al., 2012]. In these models, players are ana-
lyzed from a strategic perspective to establish under which
conditions they can increase their power adopting malicious
behaviors like, for example, splitting or merging.

Power indices (and other indices of individual productiv-
ity based on the evaluation of revenues generated by teams
[Flores-Szwagrzak and Treibich, 2020]) require a numerical
evaluation of coalitions of individuals. Following classical
situations in social choice where ordinal data are provided
(for instance, voting theory), several articles address the ques-
tion of defining ordinal notions of power indices when we
only have ordinal information over coalitions. This has been
formalized as the social ranking from coalitions (SRC) prob-
lem, where the objective is to evaluate the “influence” of indi-
viduals involved in a collective decision process like an elec-
toral system, a parliament, a governing council, a manage-
ment board, etc. ([Moretti, 2015; Moretti and Öztürk, 2017]).
Basically, an SRC problem consists of a finite set N of indi-
viduals and a binary relation � over some subsets (hereafter
called coalitions) of N ; the binary relation � is called power
relation and represents the relative power of coalitions in a
decision process. A solution or rule for an SRC problem is
a “suitable” method aimed to convert the information con-
tained in a power relation � into a ranking over the single
elements of N representing their overall individual power.
Several solutions for SRC problems have been proposed in
the literature. For instance, in the work by Haret et al. [2018]
(and the one by Fayard and Öztürk [2018]) two individuals
are compared using information from subsets ranking them
under a ceteris paribus interpretation. Bernardi et al. [2019]
axiomatically characterize a solution based on the idea that
the most influential individuals are those appearing more fre-
quently in the highest positions of the power relation. A rule
based on the idea of ordinal marginal contribution has been
recently introduced in the paper by Khani et al. [2019].
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Following these lines of research, in this article we are in-
terested in the analysis of the strategic manipulation of SRC
rules, in the sense that an individual may be interested in
behaving maliciously within one or more teams (weakening
their group’s effectiveness) in order to obtain a better posi-
tion in the individual ranking. The notion of manipulability
for SRC considered in this paper assumes that an individual
can only weaken the ranking of teams to which she belongs.
In other words, an individual i cannot affect the performances
of teams not containing i and, in addition, cannot improve the
position of a coalition already containing i.
Example 1. Consider a manager who must decide how to
allocate two bonuses over three employees (denoted by 1, 2
and 3). Suppose that she can only compare the performance
of teams in an ordinal way: {1, 2, 3} � {1, 3} � {1} �
{1, 2} � {2, 3} � {2} � {3} ∼ ∅1. Suppose the manager
wants to keep into account the attitude of employees to coop-
erate. So, an option is to count the number of (ordinal) pos-
itive and negative marginal contributions provided by each
employee to all possible coalitions, i.e. 1 contributes posi-
tively to four teams (i.e., {1, 2, 3} � {2, 3}, {1, 3} � {3},
{1, 2} � {2} and {1} � ∅), 3 contributes positively to
three coalitions while 2 also contributes positively to three
coalitions, but negatively to coalition {1, 2}. Therefore the
manager would end up to award players 1 and 3. Such a
rule could push individual 2 to behave strategically and to
undermine the cooperation within coalition {2, 3}. So the
new ranking being {1, 2, 3} �′ {1, 3} �′ {1} �′ {1, 2} �′
{2} �′ {2, 3} �′ {3} ∼′ ∅, individuals 1 and 2 should now
get the bonus.

To our knowledge, this article is the first one which investi-
gates the manipulation for SRC rules. As in social choice, the
manipulability is an important issue in many real-world coali-
tional frameworks. For instance, within a parliament, small
political parties are often able to blackmail a majority coali-
tion by threatening to withdraw from the coalition or to run a
candidate of their own [Ferrara, 2004]. In international orga-
nizations, the capacity to block the proposals of a group en-
sures a great visibility of the blocking state’s positions. In any
organizational context, like a business company or an aca-
demic institution, any perceived disparity about the merits of
a team’s members (e.g., over-remuneration of a leader) may
engender internal competition, or even the sabotage of the
team by some of it’s members. As a sensible example of this
kind of behaviors, consider the situation following the Italian
general election of March 2018, where no political party got
an absolute majority. After 3 months of negotiation, a coali-
tion government was finally formed by the two parties casting
the highest number of votes, precisely, the Five Star Move-
ment and the League. However, such a government ended
one year after, in August 2019, when the League withdrew
its support to the coalition government. As a consequence,
the League substantially increased its position in the opinion
polls done immediately after the government crisis [Chiara-
monte et al., 2020].

The article is organized as follows. We present basic no-
tions and notations in Section 2. In Section 3, we intro-

1� : strict preference, ∼ : indifference.

duce a formal definition of manipulability for an SRC rule
and provide theoretical results on four social ranking rules:
Copeland-like, Kramer-Simpson-like, Lexicographic Excel-
lence [Bernardi et al., 2019] and Ordinal Banzhaf [Khani et
al., 2019]. These social ranking rules display a wide vari-
ety of characteristics. The two first ones are based on ceteris
paribus comparisons and use the majority principle in a dif-
ferent way. Copeland-like solution is a kind of flow analysis
of majority graphs, whereas Kramer-Simpson is a minmax
score. Ordinal Banzhaf rule is based on a marginal contribu-
tion principle. Lexicographic Excellence (lexcel) considers
only information from the best ranked coalitions. We show
that only lexcel is not manipulable. In Section 4, we anal-
yse the computational complexity of manipulating each of
the three manipulable social ranking rules, and prove that for
each of them determining whether an individual can manip-
ulate or not is an NP-hard problem. In Section 5, we present
some simulation results on manipulable social ranking rules
showing the manipulation frequencies and their vulnerability
against the manipulation. Section 6 concludes the article.

2 Preliminaries
Let N = {1, . . . , n} be a finite set of elements called individ-
uals and let R ⊆ N × N be a binary relation on N . A pre-
order is a reflexive and transitive binary relation. A preorder
that is total is called total preorder. An antisymmetric2 total
preorder is called linear order. We denote by T (N) the set of
all total preorders onN and by 2N the powerset ofN , i.e. the
set of all subsets (also called, coalitions) of N . Let P ⊆ 2N

be a non-empty collection of subsets of N . A power relation
on P is a total preorder �⊆ P × P . We denote by T (P) the
family of all power relations on every non-empty collection
P ⊆ 2N . Given a power relation �∈ T (P) on P ⊆ 2N , we
denote by ∼ its symmetric part (i.e. S ∼ T if S � T and
T � S) and by � its asymmetric part (i.e. S � T and not
T � S). So, for each pair of subsets S, T ∈ P , S � T means
that S is strictly stronger than T , whereas S ∼ T means that
S and T are indifferent.

Let �∈ T (P) be of the form S1 � S2 � S3 � · · · �
S|P|. The quotient order of � is denoted as Σ1 � Σ2 �
Σ3 � · · · � Σm in which the subsets Sj are grouped in the
equivalence classes Σk generated by the symmetric part of
�. This means that all the sets in Σ1 are indifferent to S1 and
are strictly better than the sets in Σ2 and so on. So, Σi = Si
for any i = 1, . . . , |P| if and only if � is a linear order.

A social ranking solution or solution on N , is a function
R : T (P) −→ T (N) associating to each power relation �∈
T (P) a total preorder R(�) (or R�) over the elements of
N . By this definition, the notion iR�j means that applying
the social ranking solution to the power relation � gives the
result that i is ranked higher than or equal to j. We denote by
I� the symmetric part ofR�, and by P� its asymmetric part.
The social score pi(R�) of individual i ∈ N inR� is defined
as the number of individuals in N \ {i} that are ranked lower
than i minus the number of individuals in N \ {i} that are
ranked higher than i, that is

pi(R
�) = |{j ∈ N \{i} : iR�j}|−|{j ∈ N \{i} : jR�i}|.

2∀i, j ∈ N , iRj and jRi⇒ i = j.
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3 Manipulability
In this paper we focus on a particular notion of manipula-
tion, intended as the “unlimited” capacity of individuals to
undermine the position of coalitions to which they belong in
a power relation � on P ⊆ 2N .
Definition 1. Let �∈ T (P) on P be a power relation with
the associated quotient order �:

Σ1 � Σ2 � · · · � Σj � · · · � Σm. (1)
Let i be an individual, and C ⊆ P be a collection of coalitions
in P all containing i. For all S ∈ C, let j(S) ∈ {1, . . . ,m}
be such that S ∈ Σj(S)

3.
A manipulation of � by individual i via collection C is an-

other power relation �C on P with �C 6=� and with the asso-
ciated quotient order �C such that the following two condi-
tions hold:
i) Σ1\C �C Σ2\C �C · · · �C Σj\C �C · · · �C Σm\C;

ii) T �C S for all S ∈ C and T ∈
⋃
i=1,...,j(S) Σi \ C.

A social ranking R is manipulable by i on a power rela-
tion � on P if there exists a collection of coalitions C ⊆ P
containing i, a manipulation �C of � by i via C such that

pi(R
�C ) > pi(R

�).

[recall that pi(R�)) = |{j, iR�j}| − |{j, jR�i}|.]
A social ranking solutionR is manipulable on a power re-

lation � if it is manipulable by some individual i.
Condition (ii) says that �C is obtained from � moving

each coalition S ∈ C from the equivalence class to which it
belongs in �, to a strictly lower equivalence class (that can
also be a new singleton equivalence class containing only S
in �C), while the relation among all the other coalitions not
in C is maintained as in � (condition(i)). The family of all
manipulations of � via collection C is denoted byMC(�).
Example 2. Consider the power relation � such that4 23 �
(123 ∼ 12) � 13 (hence, Σ1 = {23},Σ2 = {123, 12},Σ3 =
{13}). Imagine that individual 1 wants to manipulate by de-
teriorating the positions of coalitions in C = {12, 13}. Con-
dition i) of Definition 1 imposes to maintain 23 �C 123, con-
dition ii) imposes 23 �C 12, 23 �C 13, 123 �C 12 and
123 �C 13 . Hence, the family of all possible manipulations
of � by 1 via collection C isMC(�) = {�Ca ,�Cb ,�Cc }, with
23 �Ca 123 �Ca 12 �Ca 13, 23 �Cb 123 �Cb 13 �Cb 12 and
23 �Cc 123 �Cc 12 ∼Cc 13.

We will now analyse the manipulability of different social
ranking rules.

3.1 Copeland-like and Kramer-Simpson-like Rules
Copeland-like and Kramer-Simpson (KS)-like rules are both
based on Ceteris Paribus-majority relation, where individuals
i and j are ranked according to their relative success over
comparisons of coalitions of the type S ∪ i vs. S ∪ j (CP-
comparisons), more precisely:

3j(S) represents the rank of the equivalence class to which S
belongs in the initial power relation �.

4To avoid cumbersome notations later, sets will be written for
short without commas and parentheses, e.g., 123 instead of {1, 2, 3},
and S ∪ i instead of S ∪ {i}.

Definition 2 (CP-Majority [Haret et al., 2018]). Let �∈
T (P). The Ceteris Paribus (CP-) majority relation is the bi-
nary relation R�CP ⊆ N ×N such that for all i, j ∈ N :

iR�CP j ⇔ dij(�) ≥ dji(�),

where dij(�) represents the cardinality of the setDij(�), the
set of all coalitions S ∈ 2N−{i,j} for which S ∪ i � S ∪ j5.
Example 3. Consider: (123 ∼ 12 ∼ 3 ∼ 1) � (2 ∼ 23) �
13. Then, we obtain 1I�CP 2, 1P�CP 3, 2I�CP 3. For instance,
1I�CP 2 : D12(�) = {∅} (1 � 2); D21(�) = {3} (23 � 13).

The CP-Majority relation has a major drawback: it can
generate cycles within the individual ranking (except under
some particular domain restrictions, as suggested in [Haret et
al., 2018]). For this reason, we investigate the manipulabil-
ity of two transitive solutions derived from the CP-Majority,
which are inspired, respectively, by the Copeland [Copeland,
1951] and Kramer-Simpson [Simpson, 1969] [Kramer, 1977]
voting schemes. These two rules are known to be Condorcet
coherent, meaning that when a Condorcet winner (a candidate
beating all the other candidates by the majority rule) exists, it
is chosen by them. Interestingly, while it can be easily proved
that CP-majority relation is not manipulable, Copeland like
and KS like solutions are manipulable.

Copeland-like Method
Strongly inspired by the Copeland score of social choice the-
ory, we define Copeland-like solution based on the net flow
of CP-majority graph. According to the Copeland solution,
individuals are ordered according to the number of pairwise
winning comparisons, minus the one of pairwise losing com-
parisons, over the set of all CP-comparisons.
Definition 3 (Copeland-like solution). Let �∈ T (P). The
Copeland-like relation is the binary relation R�Cop ⊆ N ×N
such that for all i, j ∈ N :

iR�Copj ⇔ Score�cop(i) ≥ Score�cop(j).

where Score�cop(i) = pi(R
�
CP ) =

|{j ∈ N \ {i} : iR�CP j}| − |{j ∈ N \ {i} : jR�CP i}|.

Theorem 1. The Copeland-like solution is manipulable.

Proof. See Example 4 for an instance of manipulation.

Example 4. Consider � of Example 3. Then,

Score�cop(1) = 1, Score�cop(2) = 0, Score�cop(3) = −1.

Hence, the Copeland-like relation is: 1P�Cop2P
�
Cop3. Now

imagine that 3 deteriorates the performance of 23 (C = {23})

(123 ∼C 12 ∼C 3 ∼C 1) �C 2 �C 13 �C 23.

Now we have: Score�
C

cop(1) = 2, Score�
C

cop(2) = −1,

Score�
C

cop(3) = −1. So, now, 3 shares the second position
with 2.

5Note that S can be ∅.

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

19



Kramer-Simpson-like Method
Strongly inspired by the Kramer-Simpson method of so-
cial choice theory (Minmax), individuals are ranked in-
versely to their greatest pairwise defeat over all possible CP-
comparisons.

Definition 4 (Kramer-Simpson-like solution). Let�∈ T (P).
The KS-like relation (KS relation) is the binary relation
R�KS ⊆ N ×N such that for all i, j ∈ N :

iR�KSj ⇔ Score�KS(i) ≤ Score�KS(j),

where Score�KS(i) = maxj∈N (dji(�))

Theorem 2. The Kramer-Simpson (KS)-like solution is ma-
nipulable.

Proof. See Example 5 for an instance of manipulation.

Example 5. Consider � : 2 � (1 ∼ 3) � 12 �
(13 ∼ 23) � ∅ � 123. Then, Score�KS(1) =

1, Score�KS(2) = 0, Score�KS(3) = 2. Hence, KS-like so-
lution is: 2P�KS1P�KS3. Now consider the following manipu-
lation operated by 1 on C = {12}:

2 �C (1 ∼C 3) �C (13 ∼C 23) �C 12 �C ∅ �C 123.

The new scores are: Score�
C

KS(1) = 1, Score�
C

KS(2) = 1,

Score�
C

KS(3) = 1. So, individual 1 now gets the first position.

Remark 1. For n = 2, the Copeland-like solution and
the KS-like solution coincide with the CP-majority relation,
hence these solutions are not manipulable for n = 2.

3.2 Ordinal Banzhaf
In the same spirit of the Banzhaf index [Banzhaf III, 1964],
the ordinal Banzhaf solution is based on counting the number
of positive and negative ordinal marginal contributions.

Definition 5 (Ordinal marginal contribution [Khani et al.,
2019]). Let �∈ T (P). The ordinal marginal contribution
mS
i (�) of player i w.r.t. coalition S, i /∈ S, in power relation
� is defined as:

mS
i (�) =

{
1 if S ∪ {i} � S,
−1 if S � S ∪ {i},

0 otherwise.
(2)

Definition 6 (Ordinal Banzhaf relation). Let �∈ T (P). The
ordinal Banzhaf relation is the binary relation R�Banz such
that for all i, j ∈ N :

iR�Banzj ⇔ Score�Banz(i) ≥ Score
�
Banz(j),

where Score�Banz(i) = u+,�i − u−,�i and u+,�i (u−,�i ) is
defined as the number of coalitions S with i /∈ S such that
mS
i (�) = 1 (mS

i (�) = −1).

Theorem 3. The Ordinal-Banzhaf solution is manipulable.

Proof. See Example 6 for an instance of manipulation.

Example 6. Consider � : 13 � 1 � 12 � 23 � 2 �
3 � 123 � ∅. Then, 1I�Banz3P

�
Banz2 since Score�Banz(1) =

2, Score�Banz(2) = 0, Score�Banz(3) = 2 . However, if 2
undermines the cooperation with 1 and 3 (C = {12, 23}):
13 �C 1 �C 2 �C 23 �C 3 �C 12 �C 123 �C ∅. Then the
three individuals would have a null Banzhaf score and would
be ranked equally.

3.3 Lexicographic Excellence Solution
The idea of lexicographic excellence is based on the lexico-
graphic comparison of the frequency of individuals within
equivalence classes, and taking care to reward individuals
within the most excellent ones. Given the power relation �
and its associated quotient ranking Σ1 � Σ2 � Σ3 � · · · �
Σm, we denote by ik the number of sets in Σk containing i:

ik = |{S ∈ Σk : i ∈ S}|

for k = 1, . . . , l. Now, let θ�(i) be the l-dimensional vector
θ�(i) = (i1, . . . , il) associated to �. Consider the lexico-
graphic order ≥L among vectors i and j: i ≥L j if either i =
j or there exists t : ir = jr, r = 1, . . . , t− 1, and it > jt.

Definition 7 (Lexicographic-excellence solution [Bernardi et
al., 2019]). Let �∈ T (P). The lexicographic excellence
(lexcel) relation is the binary relation R�lexcel such that for
all i, j ∈ N :

iR�lexcelj ⇔ θ�(i) ≥L θ�(j).

Example 7. Consider the power relation of Example 2. We
have θ�(1) = (0, 2, 1) (since 1 is twice in Σ2 and once in
Σ3), θ�(2) = (1, 2, 0), θ�(3) = (1, 1, 1), which yields the
following lexcel ranking: 2P�lexcel3P

�
lexcel1.

Theorem 4. The lexcel solution is not manipulable.

Proof. Let �∈ T (P) be a power relation on P ⊆ 2N with
the associated quotient order �:

Σ1 � Σ2 � · · · � Σj � · · · � Σk · · · � Σm, (3)

and let C = {S1, S2, . . . , Sl} ⊆ P and i ∈ N be such that
i ∈

⋂
S∈C S (wlog, assume S1 � S2 � . . . � Sl).

Suppose there exists a manipulation�C of� by i such that
pi(R

�C ) ≥ pi(R
�). Then there must be some k ∈ N \ {i}

such that
kR�lexceli and iR�

C

lexcelk. (4)

First, notice that there exists some coalition S ∈ C such
that k /∈ S (otherwise, if i, k ∈

⋂
S∈C S, the manipulation

would have no impact on the relative comparison of i and k,
since in this case θ�(i) ≥L θ�(k)⇔ θ�

C
(i) ≥L θ�

C
(k)).

Now let S∗ ∈ C be a coalition not containing k with the
smallest index in C, and let j(S∗) ∈ {1, . . . ,m} be such that
S∗ ∈ Σj(S∗). Since kR�lexceli, we distinguish two cases:

i) kI�lexceli (k and i are indifferent in � according to
the lexcel relation). Then, by Definition 7, θ�

C

v (k) =

θ�v (k) = θ�v (i) = θ�
C

v (i) for all v < j(S∗), while
θ�
C

j(S∗)(k) > θ�
C

j(S∗)(i). So, kP�
C

lexceli;
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ii) kP�lexceli (k is strictly stronger than i in � according to
the lexcel relation). So, let t be the smallest index such
that θ�t (k) > θ�t (i). Moreover, let q = min(t, j(S∗)).
By Definition 7, θ�

C

v (k) = θ�v (k) = θ�v (i) = θ�
C

v (i)

for all v < q and θ�
C

q (k) > θ�
C

q (i). So, again, kP�
C

lexceli.
In both cases we get a contradiction with the fact that
iR�

C

lexcelk by relation (4). Since C is an arbitrary collection
of coalitions in P , we have proved that the lexcel solution is
not manipulable.

A drawback of the lexcel solution is that it makes use of
a limited amount of information, giving a quasi-dictatorial
power to the best ranked coalitions. On the other hand,
Copeland-like and KS-like rules are based on the intuitive
idea of ceteris paribus comparisons and have the advantage
of choosing the Condorcet winner (with respect to the CP-
majority relation) when it exists. The Ordinal Banzhaf rule,
based on the intuitive notion of ordinal marginal contribution
of individuals, also offers another interesting interpretation in
terms of fairness. In order to further study the effective im-
pact of manipulation on these three appealing solutions, in
Section 4 we analyse the computational complexity of ma-
nipulation and in Section 5 we introduce some simulations
on several numerical instances.

4 Computational Complexity of Manipulation
As we have seen in the previous section, the Copeland-like
solution, the KS-like solution, and the Ordinal Banzhaf so-
lution are manipulable. We strengthen these results in this
section by showing that, for each of these social ranking so-
lutions, determining whether an individual can manipulate or
not is an NP-hard problem. Let us state the problem precisely.
As an instance, we have a set N = {1, . . . , n} of individuals
with a manipulator t ∈ N , a set P ⊆ 2N , and a power rela-
tion � on P . The question is to determine whether a given
solution is manipulable by t on P , as defined in Definition 1.
Theorem 5. For the Copeland-like solution, the KS-like so-
lution, and the Ordinal Banzhaf solution, the manipulation
problem is NP-hard.

Proof. Due to lack of space, we only present the proof for the
Ordinal Banzhaf solution. We build the following instance of
the manipulation problem under the Ordinal Banzhaf solu-
tion. First, let us consider the following individuals:
• we associate to each edge ei ∈ E an individual that we

call ei as well (for convenience), and to each vertex v an
individual that we call v as well (for convenience);
• two other individuals: t (the manipulator), and α.

For each vertex v, let us call Pv the set containing the subsets
of individuals {v, α, t}, {v, t} and all subsets {v, ei, α, t} for
each edge ei incident to v. Pv is ordered as follows in �:
{v, α, t} is the first one (strictly preferred to any other sets in
Pv), {v, t} is the last one, and all {v, ei, α, t} are equivalent,
ranked between {v, α, t} and {v, t}.

Note that each set in Pv contains v, so for the scores the
relative positions of 2 sets in Pv and Pv′ do not matter; we
do not specify it.

The contribution of these sets Pv to the scores are: +|V |
for α (due to {v, α, t} � {v, t} for each vertex/individual v),
−2 for each object ei (due to {v, α, t} � {v, ei, α, t}, for
each of the two extremities of edge ei), and 0 for t (each set
contains t).

The idea of the reduction is that, in order to manipulate,
t has to become first (defeating α). To do this she shall put
{v, α, t} below {v, t} in some Pv . But doing this, the score
of the edges incident to v increases. t cannot do this for the
two extremities of an edge, otherwise ei defeats him.

To make this true, we need to add dummy individuals to
adjust the initial scores of α and t. For the score of α, we add
λ = 2k − |V | individuals b1, . . . , bλ. For each bi, we order
{bi, α} � {bi}. This gives an extra score of λ = 2k − |V | to
α, while bi has score 0. Finally, we add an object γ, and order
{γ, t} � {γ}, giving an extra score of 1 to the manipulator t.

Note that as previously we do not need to further specify
�, since the relative positions of sets containing different bi,
and/or γ, and/or in different Pv , does not matter with respect
to the scores (there is no other set inclusion).

To sum up, we have |E| + |V | + 2 + (2k − |V |) + 1 in-
dividuals: each individual ei has score −2, individual t has
score 1, and α has score |V | + 2k − |V | = 2k. All dummy
objects and objects v have score 0. Note that the size of P is
polynomial in the size of G.

We claim that t can manipulate if and only if there is an
independent set of size k in G.

Suppose that there is an independent set S of size k in G.
Then consider the manipulation where, for each v in S, t puts
{v, eji , α, t} down to the last position in Pv . Then the score
of α decreases by 2k and becomes 0. The score of ei is mod-
ified in at most one Pv , since S is an independent set, so it
is at most 0. The score of t is still 1, and t manipulated the
election.

Conversely, suppose that t can manipulate. Note that t can-
not increase her own score, so she must make the score of α
at most 1. This means that she has to put {v, α, t} in the last
position in at least k sets Pv . Let S be the corresponding set
of vertices. If S contains both extremities of one edge ei, then
the score of ei becomes +2, and t is not better of. So, in order
to manipulate, the set S must be an independent set, and it is
of size at least k.

5 Simulations
Inspired by previous works in voting theory [Chamberlin,
1985], we study to what extend the three rules are manipula-
ble. In other terms, based on computer simulations of various
power relations, we estimate the probability that a manipula-
tion occurs and we analyse the vulnerability of each solution
to manipulation. We only consider situations with a single
manipulator and power relations on the whole set 2N . In or-
der to perform our simulations we need to find a manipulation
strategy for each rule under the assumption that the manipu-
lator has a complete knowledge about the power relation.

To find a manipulation, we set up an integer linear pro-
gramming (ILP) formulation of the problem (not detailed
here due to lack of space), the variables of which represent
the ranking after manipulation. This ILP is efficient enough
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Figure 1: Percentage of manipulable cases as a function of n = |N |.

Figure 2: Proportion of manipulators as a function of n = |N |.

for small values of n, and we perform our simulation on total
power relations over 2N up to n = 5, i.e., power relations on
up to 25 = 32 coalitions. The data generation is done using
Monte Carlo methods, following uniform (impartial culture)
model, which assumes that all power relations over coalitions
are equally likely to occur. For each number of individuals n,
we generated 1000 random total power relations.

The proportion of manipulable cases. A power relation
is manipulable if there exists at least one individual who can
manipulate it. The probability of having a manipulable power
relation increases rapidly with the number of individuals for
the three solutions, especially for the KS relation for which it
reaches 99.6% for n = 4 and 100% for n = 5. However, for
Copeland it reaches 41% and 92% for Banzhaf (see Figure 1).

Number of possible manipulators. We look at the num-
ber of possible manipulators for each manipulable case. The
results are shown in Figure 2. The proportion of manipu-
lators grows with the number of individuals. We note also
that for Copeland solution, there are on average less possible
manipulators for each power relation, and thus has a lower
probability of being actually manipulated by one of them.

Manipulating to be the best ranked. We analyse in the
following the probability of becoming the best ranked one

Figure 3: Probability to be ranked first as a function of n = |N |.

manipulable by N = 3 N = 4 N = 5
Banz. +Cop. +KS 7.4 16.4 33.1
Banz. +Cop. 0 0 0
Banz. +KS 29.6 61.2 56.2
Banz. 1 0 0
Cop. +KS 0.2 0.4 4.7
Cop. 0 0 0
KS 28.7 22.0 6.0
none 33.1 0 0

Table 1: Percentage of manipulable power relations.

(ties are possible) thanks to a manipulation (see Figure 3).

Cross-simulation. We end our analysis by a cross simula-
tion where for a given power relation we analyze the manip-
ulability with respect to each social ranking rule (Table 1).
Table 1 is coherent with our previous results (see Figure 1).
Based on the results of simulations, it seems that if a power
relation is manipulable by the Copeland-like solution, it is
also by the KS-like solution. The most common case is to
be manipulable by ordinal the Ordinal Banzhaf solution and
the KS-like solution. For these reasons, our conjecture (sug-
gested by the experimental results) is that the Copeland-like
solution is not manipulable alone.

6 Conclusion
We have studied the problem of manipulating social ranking
solutions. We have shown that lexcel is not manipulable and
the manipulation of three other rules is NP-hard. Using simu-
lation, we have remarked that Copeland-like is more resistant
to manipulation than the Ordinal Banzhaf solution and the
KS-like solution. Our study opens the way for many future
works. We quote some of them : An axiomatic character-
ization of SRC rules taking into account strategy-proofness
(like the one of Gibbard and Satterhwaite ([Gibbard, 1973]
and [Satterthwaite, 1975])), analysis of the impact on the ma-
nipulability of some domain restrictions, study of coalitional
manipulation or of simultaneous manipulation (game theoret-
ical issues).
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Nieves Jiménez, and Jorge J Lopez. Voting power in the
european union enlargement. European Journal of Opera-
tional Research, 143(1):181–196, 2002.

[Chamberlin, 1985] John R. Chamberlin. An investigation
into the relative manipulability of four voting systems. Be-
havioral Science, 30(4):195–203, 1985.

[Chiaramonte et al., 2020] Alessandro Chiaramonte,
Lorenzo De Sio, and Vincenzo Emanuele. Salvini’s
success and the collapse of the five-star movement:
The european elections of 2019. Contemporary Italian
Politics, pages 1–15, 2020.

[Copeland, 1951] Arthur H. Copeland. A reasonable social
welfare function. Technical report, mimeo, 1951. Univer-
sity of Michigan, 1951.

[Deng and Papadimitriou, 1994] Xiaotie Deng and Chris-
tos H Papadimitriou. On the complexity of cooperative
solution concepts. Mathematics of Operations Research,
19(2):257–266, 1994.

[Faliszewski and Hemaspaandra, 2009] Piotr Faliszewski
and Lane Hemaspaandra. The complexity of power-
index comparison. Theoretical Computer Science,
410(1):101–107, 2009.
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