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Abstract

This paper addresses decision-aiding problems that involve multiple ob-
jectives and uncertain states of the world. Inspired by the capability ap-
proach, we focus on cases where a policy maker chooses an act that, com-
bined with a state of the world, leads to a set of choices for citizens. While
no preferential information is available to construct importance parameters
for the criteria, we can obtain likelihoods for the different states. To effec-
tively support decision-aiding in this context, we propose two procedures
that merge the potential set of choices for each state of the world taking into
account their respective likelihoods. Our procedures satisfy several funda-
mental and desirable properties that characterize the outcomes.
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1 Introduction.
Consider the case of a policy maker deciding how to allocate resources for
climate change mitigation projects for a given territory.

A simplified version of a decision analytic approach consists of assess-
ing the current welfare of a territory based on the distribution of private
assets and the accessibility of the common (resources). This approach in-
volves identifying scenarios of potential damage to property and common
resources, along with their likelihood of occurrence, and then solving a ex-
pected utility optimisation problem. From a decision support perspective,
this implies that the welfare, consequences, and impacts of policies need to
be measured on a single utility function that summarizes all these aspects.
As suggested in Fayard et al. (2022); Sen (1985, 1993), while this approach
aids in rationalizing the decision-making process of policy makers, it fails
to address, at least, two specific issues:
- the impact of common resources upon the welfare of the citizens;
- the fact that the citizens do not behave as indistinguishable consumers
which means that considering the welfare as just an utility maximisation
problem is misleading.
In the aforementioned paper (Fayard et al., 2022), the authors introduce
the idea of using Sen’s “Capability Theory” (Sen, 1980, 1985, 1993, 1999,
2009) to overcome both issues. Their approach consists of assuming that
the welfare of a single citizen is the Pareto frontier resulting from solving
a mixed integer multi-objective linear programme (MI-MOLP) where con-
straints are given by the private assets of a citizen as well as the accessibility
to the common resources and, in turn, the objectives are the maximisation of
several value welfare functions. These functions reflect the individual’s sub-
jective preferences across different welfare dimensions, such as being safe,
being well-nourished, being in good health, or being happy. The rationale
for adopting this perspective is grounded on the significance of “freedom of
choice” for each citizen. Essentially, welfare is determined not only by our
possessions but also by the opportunities and capabilities that these posses-
sions enable us to pursue. When all significant welfare dimensions are taken
into account, the capability set can be perceived as a Pareto frontier, where,
with no loss of generality, we may assume that all such dimensions are to be
maximized.

Once we know each citizen’s capability set we can cluster the population
of a given community according to their capability similarity (how similar
are two Pareto frontiers). The consequence of this approach is that deter-
mining the welfare of a community (or a territory) is not just the sum of the
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utilities of the citizens within that community. Instead, it involves a Pareto
frontier that represents multidimensional welfare for each cluster of citizens
who share similar values. As a result, the decision problem of the PM con-
sists of establishing (choosing) a policy which maximises the capability of
a (cluster of) citizen, which means maximising both the level (utility) of the
outcomes (for each citizen) and their freedom of choice.

It is crucial to emphasize how the notion of capabilities refers to free-
dom. As an example from Sen (1985), if a citizen has access to a capability
set containing multiple solutions, among which option b is considered to be
the best, according to her preferences, a second capability set comprising
only option b would be deemed less desirable than the first set, even if the
citizen would end up choosing option b in both cases. This is because the
second set provides less freedom, in the sense of facilitating fewer choices.
When designing public policies, the question arises as to how to extend capa-
bility sets regarded as Pareto frontiers. Any variation to the private assets of
a citizen or their access to the commons (such as damages to private property
or to commons) will result in modifying the Pareto frontier and, therefore,
the citizen’s welfare. What we aim to model is how external events can af-
fect the current welfare distribution (the capability sets) for different clusters
of citizens and how policies can mitigate such impacts.

Considering various events under different scenarios, we need to take
into account the varying likelihoods of such events occurring. Assuming
such likelihoods are measurable through probabilities, the usual approach
consists of computing the expected utilities. However, for our policy maker
aiming at maximising welfare for the citizens of her territory there is no
single utility function to consider for each citizen, but a Pareto frontier rep-
resenting the welfare supposed to be achieved through the policies. The tra-
ditional expected public policy approach results now in considering public
policies as an Expected Pareto frontier, where the Pareto frontiers resulting
from different events occurring are merged taking into account the likeli-
hood of such events. The open technical question is how to construct such
“Expected Pareto frontiers”? To our knowledge this is an open question de-
spite the importance it has for policy design purposes.

Thus, our normative position stands around the following policy design
question: “How can we design a policy that maximizes freedom of choice
for citizens, focusing on actions that will invariably improve aspects of their
lives?”. When multiple states of the world are plausible, and their likeli-
hoods are known (even if they are subjective estimates), we aim to develop
policies that maximize freedom of choice across all potential states of the
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world, factoring in their relative chance of occurrence.
This Capability Theory based perspectives differs from more classical

approaches. For example, traditional decision-making methods like multi-
attribute utility theory (Fishburn, 1977; Keeney and Raiffa, 1993) aim to
identify the best solution for a decision-maker by quantifying and aggregat-
ing multiple attributes of each alternative based on the maximum expected
utility principle. Similarly, approaches at the juncture of scenario analysis
and multi-criteria decision making (Ríos Insua and French, 1991; Durbach
and Stewart, 2012) focus on the optimization of outcomes, but they do so
across a collection of decisions rather than individual ones. They aim to bal-
ance the overall risk and return across a ’portfolio’ of choices, taking into
account potential correlations among them for optimal diversification and
risk management. More specifically, we assume we have available proba-
bilities for the states (differing from the traditional assumption in scenario
planning (Stewart et al., 2013)) and have capability sets rather than single
consequences, even if multi-attribute (differing from the standard scenario-
based portfolio approaches (Ríos Insua and French, 1991; Liesiö and Salo,
2012; Vilkkumaa et al., 2018)). Our final discussion points out additional
issues concerning partial information about the states’ probabilities.

To summarize, the policy maker allocates resources within society, af-
ter which nature determines their actual distribution. We define the ways in
which citizens can use these resources to experience specific types of lives
as capability sets. Citizens then decide to choose a beings (seen as states of
existence encompassing various dimensions of human welfare) from their
capability set based on their individual values. The manner in which citi-
zens use the resources and the beings they choose are personal choices. The
objective of the policy maker is to ensure that citizens have access to a di-
verse and appreciated capability set. The policy maker must consider the re-
sources they allocate, as well as those determined by natural forces. Should
probabilities of nature’s actions be available, the policy maker might then
adopt a policy that optimizes the aggregated capability set, as represented
by the Pareto Frontier.

In this paper, our primary focus is on the exploration of mixed capability
sets within the previously outlined framework. We define a mixed capabil-
ity set as the combination or aggregation of capability sets corresponding
to different states of the world, each weighted by their respective subjective
probabilities. To achieve this, we begin by precisely formulating the prob-
lem in Section 2, where we introduce the necessary terminology. Section 3.1
introduces a natural approach toward mixing capability sets, termed average
capability sets. In Section 3.2, we propose a more sophisticated approach
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called the expected capability set. Section 4 delves into the major properties
of the expected capability set. Section 5 further explores the distinctions be-
tween both approaches, expanding our understanding of the possibilities and
considerations involved in decision-making within the capability approach
context.

2 Problem Formulation.
A Policy Maker (PM) is faced with the task of selecting an act in an environ-
ment of risk. To represent this risk, a set S of states of the world is employed.
S is assumed to be finite, with S = {s1, s2, ..., sl∗}. The PM’s beliefs about
the likelihood of each state being the actual one can be modeled using sub-
jective probabilities p(sl) for l ∈ {1, 2, · · · , l∗}, in accordance with well-
established results from the literature such as DeGroot (2000); French and
Ríos Insua (2000); Scott (1964), with

∑l∗

l=1 p(sl) = 1 and p(sl) ≥ 0 for all
sl.

The PM has to select an act from a set F = {f1, f2, ..., fm∗} which
maps states from S into consequences. To evaluate these consequences, we
employ a function U , resulting in a capability set U(fm(sl)) ⊆ Rh∗

+ for
each m ∈ {1, 2, . . . ,m∗} and l ∈ {1, 2, . . . , l∗}. The beings within these
sets, denoted as b⃗ ∈ {U(fm(sl)) | ∀(fm, sl) ∈ F × S}, are h∗-dimensional
vectors that encapsulate various welfare dimensions such as health, security,
pleasure, and more. It is essential to acknowledge that capability sets are
generally not singletons and are guaranteed to be non-empty (U(fm(sl)) ̸=
∅), potentially encompassing an infinite number of beings, and must form
a compact (closed and bounded) set. For the sake of simplicity in nota-
tion, we will represent sure acts U(fm(S)), U(fm′(S)), U(fm′′(S)), . . . as
A,B,C, . . . respectively. This notation will be utilized to discuss capability
sets in general terms. Similarly, U(fm(sl)), U(fm′(sl)), U(fm′′(sl)) will be
denoted as Al,Bl,Cl.

It is important to note that the choice of beings b⃗ within Al, made by the
citizen after the PM selects fm and nature determines sl, is not the concern
to the PM. The PM intentionally avoids making assumptions about which
beings will actually be chosen for two primary reasons: first, the PM may
not have access to the individual’s preferences across the various dimensions
of welfare; second, the objective of the PM is to enhance freedom without
dictating a specific lifestyle. Indeed, the sole assumption the PM makes
about the citizen is that all welfare dimensions relevant to the citizen’s choice
are included in the h∗ welfare dimensions, and that assuming increasing
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monotonic preferences over welfare, the citizen is rational. Thus, we will
choose a b⃗ in Al that is also in PF (Al), where PF represents the Pareto
frontier, as in Fayard et al. (2022). When a capability set Al comprises
a finite number n∗

l of solutions, we represent its beings by b⃗l,1, . . . , ⃗bl,n∗
l

(where bl,n,h specifies the value of the nth beings for the lth state in the hth

dimension).
We define A − Rh∗

+ as the set encompassing all beings weakly Pareto
dominated by A; that is, it includes all beings b⃗ for which there exists a
b⃗′ ∈ A such that bh ≤ b′h for all dimension h, denoted b⃗ ≤ b⃗′.1

One method to determine whether a capability set B is preferred to a
capability set A, when the state of nature is known, is to verify that for each
beings b⃗ ∈ A, there is a beings b⃗′ ∈ B such that b⃗ ≤ b⃗′. Additionally, there
should be at least one b⃗′ ∈ B for which there is no b⃗ ∈ A that is at least
as good as b⃗′. In other words, if B is “above” A, or A ⊆ B − Rh∗

+,∗, then
B is preferred to A, and if A ⊆ B − Rh∗

+ then B is at least as good as A.
This ensures that any rational individual, assuming they aim to maximize
their well-being across all dimensions, would choose B over A, regardless
of their specific preferences.

Example 1. Figure 1 depicts three compact capability sets with h∗ = 2.
Two of the capability sets, respectively denoted A and B, are finite, while
the third one, denoted C, contains an infinite number of solutions. The areas
in the plot represent the spaces dominated by A and B, specifically A−R2

+

and B− R2
+ (limited to the first quadrant).

In this example, B should be preferred to A because A is entirely con-
tained within B − R2

+. On the other hand, when comparing C to A using
the above method, no comparison can be made. This is because neither C
is a subset of A− R2

+, nor is A a subset of C− R2
+. △

Under classical assumptions (Savage, 1972), decision support within F
is carried out as follows. For a given act and state of the world, there exists
a unique consequence fm(sl). There is also a utility function u such that
u(fm(sl)) ∈ R for all fm ∈ F and sl ∈ S, such that fm′ is at least as
preferred as fm if and only if the expected utility of fm′ is not less than that
of fm, i.e.,

E(fm′) =
l∗∑
l=1

p(sl) · u(fm′(sl)) ≥
l∗∑
l=1

p(sl) · u(fm(sl)) = E(fm).

1Note that b⃗ = b⃗′ =⇒ b⃗ ≤ b⃗′ and b⃗′ ≤ b⃗
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Figure 1: Three capability sets A,B,C

Consequently, the PM is recommended to select the act maximizing ex-
pected utility, namely

max
fm∈F

(E(u(fm)).

Ultimately, the major difference in our framework is that we use ca-
pability sets U(fm(sl)) ⊆ Rh∗

+ , instead of utilities (i.e., u(fm(sl)) ∈ R).
Subsequent sections in this paper aim to elucidate the manner in which an
expected capability set can be established.

3 Average and Expected capability sets
In this section, we propose two ways to mix capability sets. One approach,
referred to as the average capability set seems quite natural, yet does not re-
spect some desirable properties. The other one, known as the expected capa-
bility set, is more sophisticated and generally more relevant to our problem
at hand.

3.1 Average capability set
A natural approach to addressing this problem, involves considering every
combination of beings from various capability sets. These combinations are
then aggregated based on the probability of their corresponding states of the
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world. This method of aggregation is referred to as the average capability
set, denoted by A for an act fm:

A =

{
l∗∑
l=1

p(sl) ·Xi,l, for all Xi such that Xi = (b⃗1, . . . , b⃗l∗)

with b⃗l ∈ Al for every l ∈ {1, . . . , l∗}

}
.

It is a natural extension of the expected utility concept and is consistent with
it: if the capability sets include just one beings and are only assessed using
one dimension, then expected capability sets are equivalent to expected util-
ities (see proof in the appendix). If our goal is to identify and retain only
the efficient Pareto set of the set A, denoted as PF (A), we calculate it by
solving Problem 1

PF (A) = PF
(∑l∗

l=1 bl,1 · p(sl), · · · ,
∑l∗

l=1 bl,h∗ · p(sl)
)

s.t.
b⃗l ∈ Al ∀l ∈ {1, · · · , l∗}.

(1)

Generally, reducing to the Pareto frontier is not mandatory. However, it
serves as a step in elucidating the concept of the expected capability set and
facilitates the comparison of both approaches. The decision to use or not the
Pareto frontier will be discussed in Section 5.

Example 2. Consider a case where U(fm(s1)) = A1 = {(2, 7), (3, 4)} and
U(fm(s2)) = A2 = {(4, 3), (7, 2)}. Should s1 be the actual state, a citizen
would choose between solutions (2, 7) and (3, 4), whereas if s2 was the ac-
tual one, such citizen would choose between (4, 3) and (7, 2). With p(s1) =
p(s2) = 0.5, the average capability set A is {(3, 5), (3.5, 3.5), (4.5, 4.5),
(5, 3)} and its Pareto frontier PF (A) is {(3, 5),(4.5, 4.5), (5, 3)}. Refer
to Table 1 for the steps used to construct this set and Figure 2 for a visual
depiction.
It is important to note that this mixed solution includes the possibility of
achieving (3.5, 3.5), which is dominated by (4.5, 4.5). Additionally, in this
particular case, the average capability set is not dominated by any beings
from A1 or A2. In fact, no beings within the average capability set is domi-
nated by beings from either A1 or A2. △
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Xi b⃗ ∈ A
{(2, 7), (4, 3)} (3,5)
{(2, 7), (7, 2)} (4.5,4.5)
{(3, 4), (4, 3)} (3.5, 3.5)
{(3, 4), (7, 2)} (5,3)

Table 1: Construction of solutions of A
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Figure 2: Example 2: Average capability set

Although the average capability set provides a straightforward method
for aggregating sets of capabilities, it will prove inadequate in our problem.
In the following subsection, we demonstrate the need to impose stronger
properties on such a procedure, which we will refer to as the expected capa-
bility set. Nevertheless, as Section 5 explores, the average capability set can
be useful for a problem that slightly differs from ours.

3.2 Expected capability set
Let us introduce two properties that naturally capture any citizens’ prefer-
ences in relation to capability sets that will inform our discussion. The first
one, called greater choice property, reflects the fundamental property within
the capability approach that citizens prefer to have access to more and better
beings.
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Property 1 (Greater choice). For all capability sets A and B, it holds that
A ∪B is at least as preferred as A.

By iteratively applying this property, we find that the union of the capability
sets resulting from an act fm across all the states, denoted ∪l∗

l=1Al, should
be not less preferred to the capability set corresponding to each individual
state. Accordingly, we should also expect that such union will also be not
less preferred to the expected capability set, to be denoted E(A).

The second one, designated the fewer choice property, captures another
aspect of citizens’ preferences: for any capability set, citizens do not prefer
having less choice.

Property 2 (Fewer choice). For all capability sets A and B ⊆ Rh∗
+ , it holds

that A is at least as preferred as (A− Rh∗
+ ) ∩ (B− Rh∗

+ ).

Based on this property, the capability set associated with each individual
state should not be less preferred to the intersection of the solutions domi-
nated by the capability sets resulting from an act fm across all states, that is
∩l∗
l=1(Al −Rh∗

+ ). Accordingly, the expected capability sets E(A) should be
not less preferred than such set.

A simple example illustrates these properties.

Example 2 (Cont). Figure 3 depicts the capability sets A1 and A2, as well
as the space dominated by the solutions in the union of the capability sets
under both states, denoted (A1 − R2

+) ∪ (A2 − R2
+), in light gray, and the

space that can be dominated in any state, denoted by (A1−R2
+)∩(A2−R2

+),
in dark gray. The average capability set is not contained within the light
gray area and does not fulfill Property 1.

Following Property 1, the expected capability set E(A) should be con-
tained within the light gray area, which is not the case for the average ca-
pability set. The space above the light gray area represents the beings that
we are sure not to be able to dominate, regardless of the actual state of the
world. On the other hand, following Property 2, the dark gray area should
be dominated by E(A), since in any state, we should find a solution domi-
nating such area and, therefore, are sure to be able to dominate it. △

Our objective is thus to establish a mixing procedure that ensures the
condition

l∗⋂
l=1

(Al − Rh∗
+ ) ⊆ E(A)− Rh∗

+ ⊆
l∗⋃
l=1

Al − Rh∗
+ .
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Figure 3: Example 2 used to illustrate Axioms 1 and 2.

Note that this condition is not a definition of the expected capability set
E(A), but rather a crucial requirement that such set must fulfill to be con-
sidered effective in our context. To operationalize it, we propose a model
ensuring that for any b⃗ ∈ E(A), there exists b⃗′ ∈

⋃l∗

l=1Al such that b⃗ ≤ b⃗′

(i.e., bh ≤ b′h for all h). Additionally, for any b⃗′′ in
⋂l∗

l=1Al − Rh∗
+ , there

exists b⃗ ∈ E(A) such that b⃗′′ ≤ b⃗.
To do this, we shall provide several mathematical programming formu-

lations to define and compute E(A). The first formulation, referred to as
Problem 2, is designed to define the expected capability set. Within this
framework, beings b⃗l are not contained in Al as in the averaging Problem
1, but are just weakly Pareto dominated by Al and are combined, using the
probabilities associated with their specific states as in Problem 1. Addition-
ally, a necessary condition for aggregation is imposed: to preserve weak
Pareto dominance across beings of in different states. This process ensures
that the resulting expected capability set fulfills the desired two properties.
Specifically, the problem is formulated as

E(A) = PF

(
l∗∑
l=1

bl,1 · p(sl), . . . . . . ,
l∗∑
l=1

bl,h∗ · p(sl)

)
b⃗l ∈ Al − Rh∗

+ ∀l ∈ {1, · · · , l∗} (2a)

b⃗l ≥ b⃗l′ or b⃗l ≤ b⃗l′ ∀l, l′ ∈ {1, . . . , l∗}, l ̸= l′. (2b)

11



Condition (2a) directs our focus towards mixing all beings dominated by Al

for all sl ∈ S, rather than just the beings of Al. On the other hand, condition
(2b) stipulates the existence of a total order among all b⃗l (whereby b⃗l ≥ b⃗l′

if and only if bl,h ≥ bl′,h for all h ∈ {1, · · · , h∗}). This implies that any
two beings b⃗l ∈ Al, b⃗l′ ∈ Al′ which are incomparable (i.e., neither b⃗l ≥ b⃗l′

nor b⃗l ≤ b⃗l′) are inappropriate to lead to an expected solution of the type
b⃗ = p(sl) · b⃗l + p(sl′) · b⃗l′ . Note that in the classical settings (Savage, 1972)
with one-dimensional utilities (h∗ = 1) and a single beings in the capability
sets, all beings are comparable as ≥ is a total order on R.

While Problem 2 has been employed to elucidate the concept of expected
capability set, we still need to provide computational schemes to build them.
When dealing with a collection of compact capability sets Al (with the dif-
ferent Al possibly obtained through a MI-MOLP as in Fayard et al. (2022)),
we turn to a second, more operational formulation to derive E(A). It is
based on a MI-MOLP, referred to as Problem 3, where M represents a suit-
ably large number.

E(A) = PF

(
l∗∑
l=1

bl,1 · p(sl), . . . . . . ,
l∗∑
l=1

bl,h∗ · p(sl)

)
s.t.

bl,h ≤ zl,h ∀l ∈ {1, · · · , l∗} (3a)

∀h ∈ {1, . . . , h∗}
z⃗l ∈ Al ∀l ∈ {1, . . . , l∗} (3b)

dl,l′ ∈ {0, 1} l ̸= l′ l, l′ ∈ {1, · · · , l∗} (3c)

bl,h ≤ bl′,h + dl,l′ ·M l ̸= l′ l, l′ ∈ {1, · · · , l∗} (3d)

dl,l′ + dl′,l ≤ 1 l < l′ l, l′ ∈ {1, · · · , l∗} (3e)

bl,h ∈ R ∀l ∈ {1, · · · , l∗} (3f)

∀h ∈ {1, · · · , h∗}

In this formulation, inequality (3a) guarantees that we aggregate vectors b⃗l
that are dominated by a solution z⃗l in Al, as expressed by (3b) which com-
piles the constraints to find the capability set of Al, as in Fayard et al. (2022).
To establish a total order among the solutions b⃗l = (bl,1, . . . , bl,h∗), we in-
troduce binary decision variables dl,l′ using Equations (3c). These variables
ensure that if dl,l′ = 0, then bl,h ≤ bl′,h for all h, as in inequality (3d). We
ensure that this order exists between all solutions b⃗l by using inequality (3e).

Two key factors influence the computational complexity of Problem 3.
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First, the number l∗ of states of the world plays a significant role. Indeed,∑l∗−1
l=1 l × 2 decision variables dl,l′ are introduced to establish a total order

between the weakly Pareto dominated solutions in each state. Thus, the big-
ger the number of states, the more decision variables and constraints need
to be considered. Second, the number h∗ of welfare dimensions affects the
complexity of finding the expected Pareto frontier, a crucial aspect in our
framework. When the dimensionality of the criteria is large, computational
demands become significant, scaling typically exponentially with the num-
ber of criteria (Ehrgott, 2005).

If the capability sets Al are finite {z⃗l,1, · · · , ⃗zl,n∗
l
}, the expected capa-

bility set E(A) can be found through the following MI-MOLP (Problem 4).
Where, again, M is a sufficiently large number

E(A) = PF

(
l∗∑

∀l=1

bl,1 · p(sl), · · · ,
l∗∑

∀l=1

bl,h∗ · p(sl)

)
s.t.

n∗
l∑

n=1

δl,n ≤ n∗
l − 1 ∀l ∈ {1, · · · , l∗} (4a)

bl,h ≤ zl,n,h + δl,n ·M ∀l ∈ {1, · · · , l∗}, (4b)

∀n ∈ {1, · · · , n∗
l }

∀h ∈ {1, · · · , h∗}
dl,l′ ∈ {0, 1} l ̸= l′ l, l′ ∈ {1, · · · , l∗} (4c)

bl,h ≤ bl′,h + dl,l′ ·M l ̸= l′ l, l′ ∈ {1, · · · , l∗} (4d)

dl,l′ + dl′,l ≤ 1 l < l′ l, l′ ∈ {1, · · · , l∗} (4e)

δl,n ∈ {0, 1} ∀l ∈ {1, · · · , l∗} (4f)

∀n ∈ {1, · · · , n∗
l }

bl,h ∈ R ∀l ∈ {1, · · · , l∗} (4g)

∀h ∈ {1, · · · , h∗}

Constraints (4c), (4d) and (4e) establish an order among the aggregated be-
ings as with constraints (3c), (3d), and (3e). To determine dominated be-
ings, we no longer use constraints (3a) and (3b) but rather introduce new
constraints (4a), (4b) and (4f). We introduce decision variables δl,n using
constraint (4f). Constraint (3b) is now replaced by (4b). If δl,n equals 0,
then the beings b⃗l = (bl,1, . . . , bl,h∗) is considered weakly dominated by
the n − th beings in the capability set Al. Finally, constraint (4a) ensures
that at least one of the decision variables δl,n equals 0, indicating that b⃗l is
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dominated by at least one solution in Al.
In addition to the number of states and the number of dimensions, a third

factor influences the computational complexity of Problem 4. The size of the
capability sets affects computational complexity. We introduce

∑l∗

l=1 n
∗
l de-

cision variables δl,n, where n∗
l represents the number of solutions in each ca-

pability set Al. Thus, larger capability sets involve more decision variables
and constraints, increasing computational demands.

Our proposal provides valuable insights into decision aiding under un-
certainty in the context of the capability approach. However, it is important
to consider carefully the above computational limitations when applying the
proposed framework. Addressing these limitations presents a compelling
line of research that could significantly improve the tractability of our model.
As a last resort, we would need to draw on multiobjective heuristics as in
Branke (2016); Chugh et al. (2019), or Deb et al. (2002).

Example 3. Consider an act fm with two states: U(fm(s1)) = A1 =
{(3, 10), (4, 5), (7, 3), (8, 1)} and U(fm(s2)) = A2 = {(2, 5), (5, 4), (10, 2)}.
Figure 4 displays A1, A2, and A1 − R2

+ and A2 − R2
+ as all the points on

and under the dotted (resp. dashed) lines.2 It also shows E(fm) according
to the formulation given in Problem 4, when p(s1) = 0.8 (and p(s2) = 0.2).
We obtain E(fm) = {(2.8, 9), (3, 8.8), (4, 4.8), (4.2, 4), (5, 3.2), (6.6, 3),
(7, 2.8), (7.6, 2), (8.4, 1.2)}. As an example, (2.8, 9) is obtained by aggre-
gating b⃗1 = (3, 10) and b⃗2 = (2, 5). We have b⃗1 ≤ z⃗1,1 = (3, 10) and
b⃗2 ≤ z⃗2,1 = (2, 5); since b⃗1 ≥ b⃗2, we have d1, d2 = (1, 0). The other
solutions are as shown in Table 2. △

Example 2 (Cont). Figure 5 depicts the expected capability set E(fm) when
p(s1) = p(s2) = 0.5. Notably, E(A) is situated between the set of solutions
dominated across all states, i.e., (A1−R2

+)∩ (A2−R2
+) ⊆ E(A), and the

set of solutions dominated by at least one state of the world, i.e., E(A) ⊆
(A1 ∪A2)− R2

+. △

4 Properties of expected capability sets
Inspired by Savage (1972) axioms, we consider the major properties satisfied
by the proposed expected capability concept. For comparison, properties for
average capability sets are provided in the appendix.

2For ease of representation, the figure only displays the non-negative region.
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Figure 4: Example 3: The expected capability set E(A) with p(s1) = 0.8 and
p(s2) = 0.2

b⃗ ∈ E(A) z⃗1 b⃗1 z⃗2 b⃗2 (d1, d2)
(2.8, 9) (3, 10) (3, 10) (2, 5) (2, 5) (1, 0)
(3, 8.8) (3, 10) (3, 10) (5, 4) (3, 4) (1, 0)
(4, 4.8) (4, 5) (4, 5) (5, 4) (4, 4) (1, 0)
(4.2, 4) (4, 5) (4, 4) (5, 4) (5, 4) (0, 1)
(5, 3.2) (7, 3) (5, 3) (5, 4) (5, 4) (0, 1)
(6.6, 3) (7, 3) (7, 3) (5, 4) (5, 3) (1, 0)
(7, 2.8) (7, 3) (7, 3) (10, 2) (7, 2) (1, 0)
(7.6, 2) (7, 3) (7, 2) (10, 2) (10, 2) (0, 1)
(8.4, 1.2) (8, 1) (8, 1) (10, 2) (10, 2) (0, 1)

Table 2: Example 3: Calculation of E(A)
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Figure 5: Example 2: The expected capability set E(A)

The first property expresses consistency with the classical maximum ex-
pected utility principle under the original conditions in Savage’s setup (uni-
variate utilities and single consequences).

Proposition 1 (Consistency with expected utility). If the capability sets in-
clude just one beings and are only assessed using one dimension, then ex-
pected capability sets are equivalent to expected utilities.

Proof Suppose capability sets include only one beings (|Al| = 1 for all sl)
and there is just one assessment dimension (h∗ = 1). In such case, we can
express Al as a single real number, bl. Given the total order among all bl,
and considering that there is a unique solution for each state, it follows that
b = max

∑l∗

l=1 p(sl) · (bl − R+) if and only if b =
∑l∗

l=1 p(sl) · bl. This
implies that b is the expected utility of fm, denoted

∑l∗

l=1 p(sl) ·Al. ■

The second property, derived from Property 1, states that the expected
capability set should be weakly Pareto dominated by the union of capability
sets across all states. This property is deemed desirable because if PMs
are certain that they cannot dominate solution b⃗ (i.e., for all states, there
is no b⃗′ ∈ Al such that b⃗ ≤ b⃗′), they should not expect to dominate b⃗.
By adhering to this property, PMs maintain a realistic understanding of the
feasible choices and avoid including beings that citizens are certain to not
dominate regardless of the state of nature. To illustrate this, consider the
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case of a one-dimensional expected capability set, where each capability
set Al is one-dimensional and contains only one beings (i.e., Al = {bl}
with bl ∈ R). Under this setting, the expected capability set is dominated
by the best solution among all capability sets from different states. In other
words, the expected capability set is dominated by the union of all capability
sets. Mathematically, this is expressed as E(A) ≤ max∀sl U(fm(sl)) or,
equivalently E(A) ∈

⋃l∗

l=1(Al − R+).

Proposition 2 (Sure domination of the Expected Capability). The expected
capability set is dominated by the union of capability sets over all possible
states, that is,

E(A) ⊆
l∗⋃
l=1

(Al − Rh∗
+ )

Proof Consider any solution b⃗ in E(A) obtained by aggregating
∑l∗

l=1 p(sl)·
b⃗l. By definition, there is an order among all the beings b⃗l used in this aggre-
gation. Therefore, b⃗ is at least weakly Pareto dominated by the best beings
used in the aggregation. This highest beings is necessarily weakly Pareto
dominated by a solution in Al. ■

The next property derives from property 2 and specifies that the expected
capability set should dominate the solutions dominated in the capability set
in every state. This seems desirable since if b⃗ ∈

⋂l∗

l=1(Al − Rh∗
+ ), we can

find a beings that dominates b⃗ under every state. To illustrate this, consider
the previous one dimension and one beings capability setting. In this state of
the world, the expected capability set dominates the worst solution among all
capability sets from different states. In other words, the expected capability
set dominates the intersection of the space dominated by capability sets in
every state. Mathematically, this is expressed as min∀sl U(fm(sl)) ≤ E(A)

or equivalently
⋂l∗

l=1(Al − R+) ∈ E(A)− R+.

Proposition 3 (Sure domination by the Expected Capability). Expected ca-
pability sets dominate the intersection of all beings dominated by all states’
capability sets, that is

l∗⋂
l=1

(Al − Rh∗
+ ) ⊆ E(A)− Rh∗

+

Proof Consider any beings b⃗ that is dominated by every capability set,
i.e. b⃗ ∈

⋂l∗

l=1(Al − Rh∗
+ ). For each l ∈ {1, . . . , l∗}, there exists b⃗l ∈
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(Al−Rh∗
+ ) such that b⃗l = b⃗. Therefore, the solution

∑l∗

i=l p(sl) · b⃗l ∈ E(A)

is equal to b⃗. ■

The fourth one shows that the expected procedures are preserved by pos-
itive affine transformations. This relates to the positive affine uniqueness
property of utility functions (French and Ríos Insua, 2000).

Proposition 4 (Linearity). (a) Preservation of addition:

E(A+ c⃗ ) = E(A) + c⃗ with c⃗ ∈ Rh∗

(b) Preservation of positive multiplication

E(A · c⃗ ) = E(A) · c⃗ with c⃗ ∈ Rh∗
+

Proof To prove (a), consider any b⃗ in E(A+c⃗ ). This means b⃗ =
∑l∗

l=1(p(sl)·
b⃗l), with an existing order between all b⃗l, and b⃗l ∈ Al + c⃗−Rh∗

+ . Similarly,
for any b⃗′ in E(A) + c⃗, we have b⃗′ ∈

∑l∗

l=1(p(sl) · b⃗′l) + c⃗, with an order
between all b⃗′l, and b⃗′l ∈ Al − Rh∗

+ . Now, for each b⃗ in E(A + c⃗ ), we can
find a b⃗′ in E(A) + c⃗ such that b⃗′ = b⃗, by setting b⃗′l = b⃗l − c⃗. Conversely,
for each b⃗′ in E(fm) + c⃗, we can find a b⃗ ∈ E(A+ c⃗ ) such that b⃗ = b⃗′, by
setting b⃗l = b⃗′l + c⃗.

The proof for (b) follows a similar approach. ■

The fifth property stipulates that extending capability sets on states can-
not lead to a reduction in the expected capability set.

Proposition 5 (Monotonicity over capability domination). If for all sl ∈ S
we have Al ⊆ [Bl − Rh∗

+ ], then E(A) ⊆ E(B)− Rh∗
+ .

Proof For every beings b⃗ in E(A), where b⃗ =
∑l∗

l=1 p(sl) · b⃗l, there exists
a b⃗′ =

∑l∗

l=1 p(sl) · b⃗′l in E(B)−Rh∗
+ such that b⃗′ = b⃗ by setting b⃗l = b⃗′l for

all l ∈ {1, . . . , l∗}. ■

Our sixth property shows that increasing the probability of one state of
the world dominating another one should lead to the expected capability set
of the first one to dominate the expected capability set of the second one.

Proposition 6 (Monotonicity over probabilities). If we have Az ⊆ Az′ −
Rh∗
+ with (sz, sz′) ∈ S2 and
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p′(sl) =


p(sl) + c , for l = z′

p(sl)− c , for l = z

p(sl) , otherwise
with c ∈ (0; p(sz)]. Then, E(A, p) ⊆ E(A, p′))− Rh∗

+ .

Proof For every beings b⃗ in E(A, p), defined as b⃗ =
∑l∗

l=1 p(sl)· b⃗l, there al-
ways exists a corresponding beings b⃗′ in E(A, p′), defined as b⃗′ =

∑l∗

l=1 p
′(sl)·

b⃗′l, such that b⃗′ ≥ b⃗:

• If b⃗z ≤ b⃗z′ , let b⃗l = b⃗′l for all l ∈ {1, . . . , l∗}. It then follows that∑l∗

l=1 p
′(sl) · b⃗′l ≥

∑l∗

l=1 p(sl) · b⃗l.

• If b⃗z > b⃗z′ , let b⃗′l be defined as:

b⃗′l =


b⃗z for l = z′

b⃗z′ for l = z

b⃗l Otherwise

Then, we can deduce that
∑l∗

l=1 p
′(sl) · b⃗′l ≥

∑l∗

l=1 p(sl) · b⃗l. ■

5 Expected vs Average Capability sets
Average capability sets respect the same properties as expected capability
sets except for the no domination of impossible beings (Proposition 2), and
the monotonicity over probabilities (Proposition 6), see the Appendix for
proofs.

An interesting relation between both concepts is that for all solutions in
the expected capability set, it is possible to find a solution in the average
capability set that is at least as preferred as it, i.e. the expected capability set
is dominated by the average capability set.

Proposition 7. We have

E(A) ⊆ A− Rh∗
+

Proof. For every beings b⃗ in E(A) such that b⃗ =
∑l∗

l=1 p(sl) · b⃗l, we have
that for each b⃗l there exists a corresponding beings b⃗′l in Al such that b⃗′l ≥ b⃗l.
Consequently, the beings b⃗′ =

∑l∗

l=1 p(sl) · b⃗′l is in A and satisfies b⃗′ ≥ b⃗.■
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Figure 6: Some examples of expected and average capability sets
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To illustrate the distinction both sets, consider the example of mixing two
capability sets as Figure 6 shows. In both frameworks, the mixed capability
set tends to align more closely with A1 as the probability p(s1) increases,
and similarly with A2 as its probability p(s2) increases. Furthermore, ob-
serve that the expected capability sets are always “below” the union of A1

and A2, as well as “below” the average capability set PF (A).
Expected and average capability sets therefor fulfill different properties.

Thus, a careful scrutiny is necessary to determine which set to employ un-
der given circumstances. The expected capability approach is best suited
when calculating the anticipated expected beings of a citizen. In this con-
text, Proposition 2 becomes highly relevant. Indeed, it is crucial that no
citizen should expect to dominate beings that are not weakly Pareto domi-
nated in any state of the world. Moreover, when increasing the probabilities
of a state of the world leading to a capability set that is preferred over an-
other one generated in a different state (Proposition 6), it is crucial that the
resulting expected capability set is improved for the citizen.

Conversely, the average capability approach is ideal in situations requir-
ing social aggregation. In this approach, the average capability set of a group
reflects a compound of all possible beings that any citizen within the group
could choose. Therefore, it is not surprising that average capability sets do
not fulfill Proposition 2. This is because the “social beings” in an average
capability set represent a combination of “individual beings”. This is also
why we recommend compiling A and not necessarily PF (A) because A
embodies actual social aggregation. This aggregation may not be efficient in
the sense that individuals maximize their beings regardless of the aggregated
beings at the social level, while PF (A) would represent the social aggre-
gation where all individuals choose in accordance with an efficient solution
at the social level. The non-fulfillment of Proposition 6 is expected because
increasing the probability of a better capability set will make the average ca-
pability set “closer” to it, but not necessarily dominate the previous average
capability set.

We illustrate such distinctions with two final examples.

Example 4. Consider a local farmers’ market where two farmers set up
identical stalls. Each stall offers two baskets for sale. One basket contains 2
apples and 4 carrots; the other holds 4 apples and 2 carrots. Two shoppers,
Alice and Bob, visit the market with enough money to purchase only one
basket each. The act fm represents the random assignment of Alice and Bob
to one of these stalls (we obtain Aalice = Abob = {(apples : 2, carrots :
4), (apples : 4, carrots : 2)}). Let us determine the average capability
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set in purchasing apples and carrots in the community (A = {(apples :
2, carrots : 4), (apples : 3, carrots : 3), (apples : 4, carrots : 2)}). Then,
- If both Alice and Bob choose the first basket, the average basket of Alice
and Bob contains 2 apples and 4 carrots per person.
- If Alice and Bob each select different baskets, the average basket of Alice
and Bob contains 3 apples and 3 carrots per person.
- If both Alice and Bob opt for the second basket, the average basket of Alice
and Bob contains 4 apples and 2 carrots per person.

Now, consider the particular case of a shopper that is randomly directed
to one of the stalls and is allowed to select one of the baskets (we obtain
A1 = A2 = {(apples : 2, carrots : 4), (apples : 4, carrots : 2)}). In
this context, the expected capability set for the shopper would be E(A) =
{(apples : 2, carrots : 4), (apples : 4, carrots : 2)}:
- 2 apples and 4 carrots if they select the first basket
- 4 apples and 2 carrots if they select the second basket. △

Example 5. Consider a region where the local government has two types of
land grants available: Land Grant 1 offers plots in a rain-abundant valley,
ideal for rice cultivation. On the other hand, Land Grant 2 provides plots
on sun-soaked hill terraces, perfect for vineyards. The government, in an
attempt to diversify agriculture, randomly assigns Land Grant 1 to farmer
Alice and Land Grant 2 to farmer Bob.

In this scenario, the term “average capability set” refers to the expected
agricultural products both farmers can yield. Although Alice has the exclu-
sive capability to cultivate rice due to her land’s conditions, and Bob has
the unique advantage to grow grapes (AAlice = {(rice : [0;M ], grapes :
0)},ABob = {(rice : 0, grapes : [0;M ])} with M a large number), each
farmer in this community, on average, possesses the ability to produce both
rice and grapes. Therefore, the average capability set align with any reason-
able amount of rice and grapes per farmer A = {(rice : [0; M2 ], grapes :
[0; M2 ])}.

In contrast, Alice’s expected yield is contingent on the specific land grant
she receives Avalley = {(rice : [0;M ], wine : 0),Aterrace = {(rice :
0, wine : [0;M ])}. If she is assigned Land Grant 1, she can cultivate an
ample amount of rice but no grapes. However, if she were to receive Land
Grant 2, she could produce grapes but not rice. Hence, Alice’s expected
yield encompasses up to a significant amount of either rice or grapes, but
not both, E(A) = {(rice : M

2 , wine : 0), (rice : 0, wine :
M
2 )}. △

These examples highlight the critical distinction between average and ex-
pected capability sets. While average capability sets reflect the combined
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possible outcomes in a population, expected capability sets provide a proba-
bilistic forecast of the individual’s potential outcomes. The choice between
both measures would be context-dependent, whether it requires a societal or
an individual perspective.

6 Conclusion
We have provided two mixing concepts that can be used to summarise ca-
pability sets in a multiobjective decision-making setup under risk within the
capability approach: expected and average capability sets. Both have sim-
ilar properties but are crucially different concerning sure domination of the
expected capability (Proposition 2). The choice of which concept to apply
depends on the decision-maker’s ultimate goal. Specifically, if the PM is
dealing with capability sets linked to states of the world, each having defi-
nite probabilities, and only one of these states of the world will materialize,
then using expected capability sets is recommended. Conversely, if the situa-
tion involves the combination of multiple capability sets, and all beings can
be achieved by different individuals, average capability sets seem a more
suitable choice.

This general framework of representing sets of choices in a multidimen-
sional space extends beyond the capability approach within welfare eco-
nomics. It can also find relevance and application in other fields and contexts
where decision-making involves multiple choice and criteria:

• In an uncertain environment, capability sets could refer to the potential
results associated with risk treatments before we are able to undertake
a full probabilistic assessment of impacts (Bossert et al., 2000; Cohen
and Jaffray, 1980).

• In research and development (R&D) management, capability sets can
refer to the potential outcomes through projects. R&D decisions are
often made over multiple periods, where choices made today impact
options available in the future. The question then arises as to which
development option should be chosen today, knowing that it will in-
fluence future development choices. Furthermore, in many cases, the
decision maker may not have precise knowledge of their future possi-
ble choices due to uncertainties related to factors such as the economy,
societal values, environmental conditions, future laws, etc. The sets of
possible future choices would also be uncertain due to the inherent un-
certainties associated with R&D projects, such as performance, devel-
opment time, and costs. Representing these choices as capability sets
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would enable flexibility and resilience (Evans, 1991; Koopmans, 1962;
Kreps, 1979), allowing for better adaptation to unforeseen events.

• Lastly, in a multi-objective setting (Bouyssou et al., 2006), capability
sets would refer to the multiple objective levels achievable under var-
ious states, when we have not yet undertaken a process to aggregate
results.

From a framework perspective, the proposed setting extends naturally
to two important cases. Firstly, we assumed a multi-objective setting es-
sentially entailing using the whole set of monotonic utility functions (rather
than a single utility function as in Savage’s framework). In between, we
could conceive cases in which a smaller class of utility functions is used;
as an example, we could consider the set of all monotonic risk-averse utility
functions, as in second order stochastic dominance. Secondly, we assumed a
single probability distribution over the states, but again, there could be cases
in which we have a class of probability distributions as in robust Bayesian
settings (Ríos Insua and Ruggeri, 2010).

Finally, another exciting direction for future research lies in develop-
ing new methodologies to assess expected capability sets. This exploration
should go beyond our proposed approach, exploring more nuanced strate-
gies as in Pattanaik and Xu (1990); Foster (2011); Barberà et al. (2004);
Gaertner (2012); Gaertner and Xu (2006, 2008). The prevailing challenge,
which remains unaddressed, lies in finding a way to account for the diversity
of beings and how these beings are valued by citizens. Advancements in this
direction will undoubtedly expand the potential use of capability sets within
a decision-making framework, offering further enrichment to this field of
study.
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Appendix
The appendix provides proofs of the properties satisfied by average capabil-
ity sets.

Proposition 1bis: Consistency with expected utility If the capability
sets include just one beings and are only assessed using one dimension, then
expected capability sets are equivalent to expected utilities.
Proof Suppose we are dealing with only one beings (|A| = 1) and one
assessment dimension (h∗ = 1). In such a case, we can express u(fm(sl))

as a single real number, bl. Then A =
{∑l∗

l=1 p(sl) · Xi,l, for all Xi such

that Xi = (b⃗1, . . . , b⃗l∗)|⃗bl ∈ Al for every l ∈ {1, . . . , l∗}
}

is equivalent to∑l∗

l=1 p(sl) · bl which is equivalent to
∑l∗

l=1 p(sl) · u(fm(sl)). ■

Proposition 3bis: Sure domination by the average capability The average
capability sets include the intersection of all beings dominated by states’
capability, that is

l∗⋂
l=1

(Al − Rh∗
+ ) ⊆ A− Rh∗

+
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Proof Consider any beings b⃗ that is dominated by every capability set, i.e.
b⃗ ∈

⋂l∗

l=1(Al − Rh∗
+ ). For each l ∈ {1, . . . , l∗}, there exists b⃗′l ∈ Al such

that b⃗′l ≥ b⃗. Therefore, the solution
∑l∗

i=l p(sl) ·Xi,l with Xi = (b⃗′1, . . . , b⃗
′
l∗)

is in A and is at least weakly dominating b⃗. ■

Proposition 4bis: Linearity
(a) Preservation of addition:

∀c⃗ ∈ Rh∗
, A+ c⃗ = A+ c⃗

(b) Preservation of positive multiplication

∀c⃗ ∈ Rh∗
+ , A · c⃗ = A · c⃗

Proof To prove (a), we simply remark that

A+ c⃗ =

{ l∗∑
l=1

(
p(sl) ·Xi,l

)
+ c⃗, for all Xi such that Xi = (b⃗1, . . . , b⃗l∗)

| b⃗l ∈ Al for every l ∈ {1, . . . , l∗}
}

and

A+ c⃗ =

{ l∗∑
l=1

p(sl) ·Xi,l, for all Xi such that Xi = (b⃗1, . . . , b⃗l∗)

| b⃗l ∈ Al + c⃗ for every l ∈ {1, . . . , l∗}
}

The proof for (b) follows a similar approach. ■

Proposition 5bis: Monotonicity over capability domination If for all sl ∈
S we have Al ⊆ [Bl − Rh∗

+ ], then A ⊆ B− Rh∗
+ .

Proof For every beings b⃗ in A, where b⃗ =
∑l∗

l=1 p(sl) · Xi,l and Xi =

(b⃗1, . . . , b⃗l∗), there is a set of beings X ′
i = (b⃗′1, . . . , b⃗

′
l∗) such that bl ≤ b′l for

all l (since for all sl ∈ S we have Al ⊆ [Bl − Rh∗
+ ]). Thus b⃗ is an element

of b⃗′ − Rh∗
+ with b⃗′ =

∑l∗

l=1 p(sl) ·X ′
i,l and b⃗′ is in A′. ■

We provide now counterexamples for the propositions not fulfilled by
average capability sets.
Proposition 2bis: Possible domination of the average capability The av-
erage capability set is not always dominated by the set of all possible states,
that is, we can have A ⊈

⋃l∗

l=1(Al − Rl∗
+).
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Proof See Examples 4, 5, or Set 1 and 3 of Figure 6. ■

Proposition 6bis: Non-monotonicity over probabilities If we have Az ⊆
Az′ − Rh∗

+ with (sz, sz′) ∈ S2 and

p′(sl) =


p(sl) + c for l = z′

p(sl)− c for l = z

p(sl) Otherwise
with c ∈ (0; p(sz)]. Then, we do not necessarily have A ⊆ A′ − Rh∗

+ .
Proof Consider a decision problem with two states of the world, s1 and
s2, and their associated capability set A1 = U(fm(s1)) = {(0, 1)} and
A2 = U(fm(s2)) = {(0, 1), (1, 0)}. We have A1 ⊆ A2 − R2

+

Initially, the policy makers base their decision on A with equal subjec-
tive probabilities (p(s1) = p(s2) = 0.5), resulting in A = {(0, 1), (0.5, 0.5)}.

Now, with increased importance on the “best” set (e.i. A2), the new
choice is A′ = {(0, 1), (0.75, 0.25)} when using subjective probabilities
p′(s1) = 0.25 and p′(s2) = 0.75, resulting in A ⊈ A′. ■
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